
Contents

Part 1 Overview

Chapter 1 History and Goals
1.1 History of the UNIX System 3

Origins 3
Research UNIX 4
AT&T UNIX System III and System V
Other Organizations 8
Berkeley Software Distributions 8
UNIX in the World 10

1.2 BSD and Other Systems 10
The Influence of the User Community

1.3 Design Goals of 4BSD 12
4.2BSD Design Goals 13
4.3BSD Design Goals 14
4.4BSD Design Goals 15

1.4 Release Engineering 16
References 17

1

3

11

Chapter 2 Design Overview of 4.4BSD
2.1 4.4BSD Facilities and the Kernel 21

The Kernel 22
2.2 Kernel Organization 23
2.3 Kernel Services 25
2.4 Process Management 26

Signals 27
Process Groups and Sessions 28

2.5 Memory Management 29
BSD Memory-Management Design Decisions

21

29

xvii



Memory Management Inside the Kernel 31
2.6 I/O System 31

Descriptors and I/O 32
Descriptor Management 33
Devices 34
Socket IPC 35
Scatter/Gather I/O 35
Multiple Filesystem Support 36

2.7 Filesystems 36
2.8 Filestores 40
2.9 Network Filesystem 41
2.10 Terminals 42
2.11 Interprocess Communication 43
2.12 Network Communication 44
2.13 Network Implementation 44
2.14 System Operation 45

Exercises 45
References 46

Chapter 3 Kernel Services
3.1 Kernel Organization 49

System Processes 49
System Entry 50
Run-Time Organization 50
Entry to the Kernel 52
Return from the Kernel 53

3.2 System Calls 53
Result Handling 54
Returning from a System Call 54

3.3 Traps and Interrupts 55
Traps 55
I/O Device Interrupts 55
Software Interrupts 56

3.4 Clock Interrupts 57
Statistics and Process Scheduling 58
Timeouts 58

3.5 Memory-Management Services 60
3.6 Timing Services 63

Real Time 63
Adjustment of the Time 63
External Representation 64
Interval Time 64

3.7 User, Group, and Other Identifiers 65
Host Identifiers 67
Process Groups and Sessions 68

3.8 Resource Services 68
Process Priorities 69
Resource Utilization 69

49

Resource Limits 70
Filesystem Quotas 70

3.9 System-Operation Services
Accounting 71
Exercises 72
References 73

Part 2 Processes

71

88
88

93

Chapter 4 Process Management
4. 1 Introduction to Process Management

Multiprogramming 78
Scheduling 79
Process State 80
The Process Structure 8 1
The User Structure 85
Context Switching 87
Process State 87
Low-Level Context Switching
Voluntary Context Switching
Synchronization 91
Process Scheduling 92
Calculations of Process Priority
Process-Priority Routines 95
Process Run Queues and Context Switching
Process Creation 98
Process Termination 99
Signals 100
Comparison with POSIX Signals
Posting of a Signal 104
Delivering a Signal 106
Process Groups and Sessions
Sessions 109
Job Control 110
Process Debugging
Exercises 114
References 116

75

77

77

4.2

4.3

4.4

4.5
4.6
4.7

4.8

4.9

96

103

107

112

Chapter 5 Memory Management
5.1 Terminology 117

Processes and Memory 118
Paging 119
Replacement Algorithms 120
Working-Set Model 121
Swapping 121
Advantages of Virtual Memory

117

122



5.2
5.3

5.4

128

132

5.5

5.6

5.7
5.8

5.9

Hardware Requirements for Virtual Memory 122
Overview of the 4.4BSD Virtual-Memory System
Kernel Memory Management 126
Kernel Maps and Submaps 127
Kernel Address-Space Allocation
Kernel Malloc 129
Per-Process Resources 132
4.4BSD Process Virtual-Address Space
Page-Fault Dispatch 134
Mapping to Objects 134
Objects 136
Objects to Pages 137
Shared Memory 137
Mmap Model 139
Shared Mapping 141
Private Mapping 142
Collapsing of Shadow Chains
Private Snapshots 145
Creation of a New Process
Reserving Kernel Resources
Duplication of the User Address Space
Creation of a New Process Without Copying
Execution of a File 150
Process Manipulation of Its Address Space
Change of Process Size 151
File Mapping 152
Change of Protection 154
Termination of a Process

123

144

146
147

148
149

151

154
156

166
168

169

172

5.10 The Pager Interface
Vnode Pager 157
Device Pager 159
Swap Pager 160

5.11 Paging 162
5.12 Page Replacement

Paging Parameters
The Pageout Daemon
Swapping 171
The Swap-In Process

5.13 Portability 173
The Role of the pmap Module
Initialization and Startup 179
Mapping Allocation and Deallocation 181
Change of Access and Wiring Attributes for Mappings
Management of Page-Usage Information 185
Initialization of Physical Pages 186
Management of Internal Data Structures 186
Exercises 187
References 188

176

184

6.2

6.3

6.4

Part 3 I/O System
Chapter 6 I/O System Overview

6.1 I/O Mapping from User to Device
Device Drivers 195
I/O Queueing 195
Interrupt Handling 196
Block Devices 196
Entry Points for Block-Device Drivers
Sorting of Disk I/O Requests 198
Disk Labels 199
Character Devices 200
Raw Devices and Physical I/O 201
Character-Oriented Devices 202
Entry Points for Character-Device Drivers
Descriptor Management and Services
Open File Entries 205
Management of Descriptors 207
File-Descriptor Locking 209
Multiplexing I/O on Descriptors 211
Implementation of Select 213
Movement of Data Inside the Kernel
The Virtual-Filesystem Interface
Contents of a Vnode 219
Vnode Operations 220
Pathname Translation 222
Exported Filesystem Services 222
Filesystem-Independent Services
The Name Cache 225
Buffer Management 226
Implementation of Buffer Management
Stackable Filesystems 231
Simple Filesystem Layers 234
The Union Mount Filesystem 235
Other Filesystems 237
Exercises 238
References 240

Chapter 7 Local Filesystems
7.1 Hierarchical Filesystem Management
7.2 Structure of an Inode 243

Inode Management 245
7.3 Naming 247

Directories 247
Finding of Names in Directories

191
193

193

197

203
205

6.5

6.6

6.7

216
218

223

229

241

241

249



Pathname Translation 249
Links 251

7.4 Quotas 253
7.5 File Locking 257
7.6 Other Filesystem Semantics 262

Large File Sizes 262
File Flags 263
Exercises 264
References 264

Chapter 8 Local Filestores
8.1 Overview of the Filestore 265
8.2 The Berkeley Fast Filesystem 269

Organization of the Berkeley Fast Filesystem
Optimization of Storage Utilization 271
Reading and Writing to a File 273
Filesystem Parameterization 275
Layout Policies 276
Allocation Mechanisms 277
Block Clustering 281
Synchronous Operations 284

8.3 The Log-Structured Filesystem 285
Organization of the Log-Structured Filesystem
Index File 288

290
291
292
294

295
296

265

269

286

Reading of the Log
Writing to the Log
Block Accounting
The Buffer Cache
Directory Operations
Creation of a File
Reading and Writing to a File 297
Filesystem Cleaning 297
Filesystem Parameterization 300
Filesystem-Crash Recovery 300

8.4 The Memory-Based Filesystem 302
Organization of the Memory-Based Filesystem
Filesystem Performance 305
Future Work 305
Exercises 306
References 307

Chapter 9 The Network Filesystem
9.1 History and Overview 311
9.2 NFS Structure and Operation 314

The NFS Protocol 316
The 4.4BSD NFS Implementation 318
Client-Server Interactions 321

303

311

10.2
10.3
10.4
10.5
10.6
10.7
10.8

RPC Transport Issues 322
Security Issues 324

9.3 Techniques for Improving Performance 325
Leases 328
Crash Recovery 332
Exercises 333
References 334

Chapter 10 Terminal Handling
10.1 Terminal-Processing Modes 338

Line Disciplines 339
User Interface 340
The tty Structure 342
Process Groups, Sessions, and Terminal Control
C-lists 344
RS-232 and Modem Control 346
Terminal Operations 347
Open 347
Output Line Discipline 347
Output Top Half 349
Output Bottom Half 350
Input Bottom Half 351
Input Top Half 352
The stop Routine 353
The ioctl Routine 353
Modem Transitions 354
Closing of Terminal Devices 355
Other Line Disciplines 355
Serial Line IP Discipline 356
Graphics Tablet Discipline 356
Exercises 357
References 357

Part 4 Interprocess Communication
Chapter 11 Interprocess Communication

337

343

10.9

359
361

11.1 Interprocess-Communication Model
Use of Sockets 364

11.2 Implementation Structure and Overview
11.3 Memory Management 369

Mbufs 369
Storage-Management Algorithms
Mbuf Utility Routines 373

11.4 Data Structures 374
Communication Domains 375
Sockets 376

368

372



Socket Addresses 378
11.5 Connection Setup 380
11.6 Data Transfer 382

Transmitting Data 383
Receiving Data 385
Passing Access Rights 388
Passing Access Rights in the Local Domain

11.7 Socket Shutdown 390
Exercises 391
References 393

Chapter 12 Network Communication

Chapter 13 Network Protocols 435

389

395
12.1

12.2

12.3

12.4

12.5

12.6

12.7

12.8

Internal Structure 396
Data Flow 397
Communication Protocols 398
Network Interfaces 400
Socket-to-Protocol Interface 405
Protocol User-Request Routine 405
Internal Requests 409
Protocol Control-Output Routine 409
Protocol-Protocol Interface 410
pr_output 411
pr_input 411
pr_ctlinput 411
Interface between Protocol and Network Interface
Packet Transmission 412
Packet Reception 413
Routing 416
Kernel Routing Tables 417
Routing Lookup 420
Routing Redirects 423
Routing-Table Interface 424
User-Level Routing Policies 425
User-Level Routing Interface: Routing Socket 425
Buffering and Congestion Control 426
Protocol Buffering Policies 427
Queue Limiting 427

428
428

429
429

Additional Network-Subsystem Topics 429
Out-of-Band Data 430
Address Resolution Protocol 430
Exercises 432
References 433

412

Raw Sockets
Control Blocks
Input Processing
Output Processing

13.1 Internet Network Protocols 436
Internet Addresses 437
Subnets 438
Broadcast Addresses 441
Internet Multicast 441
Internet Ports and Associations 442
Protocol Control Blocks 442

13.2 User Datagram Protocol (UDP) 443
Initialization 443
Output 444
Input 445
Control Operations 446

13.3 Internet Protocol (IP) 446
Output 447
Input 448
Forwarding 449

13.4 Transmission Control Protocol (TCP) 451
TCP Connection States 453
Sequence Variables 456

13.5 TCP Algorithms 457
Timers 459
Estimation of Round-Trip Time 460
Connection Establishment 461
Connection Shutdown 463

13.6 TCP Input Processing 464
13.7 TCP Output Processing 468

Sending of Data 468
Avoidance of the Silly-Window Syndrome 469
Avoidance of Small Packets 470
Delayed Acknowledgments and Window Updates 471
Retransmit State 472
Slow Start 472
Source-Quench Processing 474
Buffer and Window Sizing 474
Avoidance of Congestion with Slow Start 475
Fast Retransmission 476

13.8 Internet Control Message Protocol (ICMP) 477
13.9 OSI Implementation Issues 478
13.10 Summary of Networking and Interprocess Communication

Creation of a Communication Channel 481
Sending and Receiving of Data 482
Termination of Data Transmission or Reception 483
Exercises 484
References 486

480



P A R T 1
Part 5 System Operation

Chapter 14 System Startup
14.1 Overview 491
14.2 Bootstrapping 492

The boot Program 492
14.3 Kernel Initialization 493

Assembly-Language Startup 494
Machine-Dependent Initialization 495
Message Buffer 495
System Data Structures 496

14.4 Autoconfiguration 496
Device Probing 498
Device Attachment 499
New Autoconfiguration Data Structures 499
New Autoconfiguration Functions 501
Device Naming 501

14.5 Machine-Independent Initialization 502
14.6 User-Level Initialization 505

/sbin/init 505
/etc/re 505
/usr/libexec/getty 506
/usr/bin/login 506

14.7 System-Startup Topics 507
Kernel Configuration 507
System Shutdown and Autoreboot 507
System Debugging 508
Passage of Information To and From the Kernel
Exercises 511
References 511

Glossary

Index

489

491

Overview

509

513

551



C H A P T E R

History and Goals

1.1 History of the UNIX System

The UNIX system has been in wide use for over 20 years, and has helped to define
many areas of computing. Although numerous organizations have contributed
(and still contribute) to the development of the UNIX system, this book will pri-
marily concentrate on the BSD thread of development:

• Bell Laboratories, which invented UNIX

• The Computer Systems Research Group (CSRG) at the University of California
at Berkeley, which gave UNIX virtual memory and the reference implementation
of TCP/IP

• Berkeley Software Design, Incorporated (BSDI), The FreeBSD Project, and The
NetBSD Project, which continue the work started by the CSRG

Origins
The first version of the UNIX system was developed at Bell Laboratories in 1969
by Ken Thompson as a private research project to use an otherwise idle PDP-7.
Thompson was joined shortly thereafter by Dennis Ritchie, who not only con-
tributed to the design and implementation of the system, but also invented the C
programming language. The system was completely rewritten into C, leaving
almost no assembly language. The original elegant design of the system [Ritchie,
1978] and developments of the past 15 years [Ritchie, 1984a; Compton, 1985]
have made the UNIX system an important and powerful operating system [Ritchie,
1987].

Ritchie, Thompson, and other early UNIX developers at Bell Laboratories had
worked previously on the Multics project [Peirce, 1985; Organick, 1975], which
had a strong influence on the newer operating system. Even the name UNIX is



merely a pun on Multics; in areas where Multics attempted to do many tasks,
UNIX tried to do one task well. The basic organization of the UNIX filesystem, the
idea of using a user process for the command interpreter, the general organization
of the filesystem interface, and many other system characteristics, come directly
from Multics.

Ideas from various other operating systems, such as the Massachusetts Insti-
tute of Technology's (MIT's) CTSS, also have been incorporated. The fork opera-
tion to create new processes comes from Berkeley's GENIE (SDS-940, later
XDS-940) operating system. Allowing a user to create processes inexpensively led
to using one process per command, rather than to commands being run as proce-
dure calls, as is done in Multics.

There are at least three major streams of development of the UNIX system.
Figure 1.1 sketches their early evolution; Figure 1.2 (shown on page 6) sketches
their more recent developments, especially for those branches leading to 4.4BSD
and to System V [Chambers & Quarterman, 1983; Uniejewski, 1985]. The dates
given are approximate, and we have made no attempt to show all influences.
Some of the systems named in the figure are not mentioned in the text, but are
included to show more clearly the relations among the ones that we shall examine.

Research UNIX
The first major editions of UNIX were the Research systems from Bell Laborato-
ries. In addition to the earliest versions of the system, these systems include the
UNIX Time-Sharing System, Sixth Edition, commonly known as V6, which, in
1976, was the first version widely available outside of Bell Laboratories. Systems
are identified by the edition numbers of the UNIX Programmer's Manual that were
current when the distributions were made.

The UNIX system was distinguished from other operating systems in three
important ways:

1. The UNIX system was written in a high-level language.

2. The UNIX system was distributed in source form.

3. The UNIX system provided powerful primitives normally found in only those
operating systems that ran on much more expensive hardware.

Most of the system source code was written in C, rather than in assembly lan-
guage. The prevailing belief at the time was that an operating system had to be
written in assembly language to provide reasonable efficiency and to get access to
the hardware. The C language itself was at a sufficiently high level to allow it to
be compiled easily for a wide range of computer hardware, without its being so
complex or restrictive that systems programmers had to revert to assembly lan-
guage to get reasonable efficiency or functionality. Access to the hardware was
provided through assembly-language stubs for the 3 percent of the operating-sys-
tem functions—such as context switching—that needed them. Although the suc-
cess of UNIX does not stem solely from its being written in a high-level

USG/USDUATTIS
DSG/USO/USL

1969

1973

1976

Bell Laboratories
Research

First Edition

Fifth Edition

Sixth Edition

Berkeley Software
Distributions

1977 PWB MERT CB UNIX

1978

1979

1980

1BSD

2BSD

3.0.1

1981 4.0.1

1982 5.0 System III

1983 5.2 SystemV XENIX 3

1984 SystemV SunOS
Release 2

1985

Figure 1.1 The UNIX system family tree, 1969-1985.

2.8BSD

Eighth 4.1cBSD
Edition

2.9BSD

4.2BSD



System V
1985 Release 2 XENIX 3

1986

Eighth
SunOS Edition 4.2BSD 2.9BSD

1987 Chorus

1988

1989 2.11BSD
Chorus

V3

2.10BSD

1990

1991

1992

Novell
1993 Linux UNIX

Ware

1994

1995

1996

BSDI 1.0

4.4BSD BSDI2.°

Figure 1.2 The UNIX system family tree, 1986-1996.

language, the use of C was a critical first step [Ritchie et al, 1978; Kernighan &
Ritchie, 1978; Kernighan & Ritchie, 1988]. Ritchie's C language is descended
[Rosier, 1984] from Thompson's B language, which was itself descended from
BCPL [Richards & Whitby-Strevens, 1980]. C continues to evolve [Tuthill, 1985;
X3J11, 1988], and there is a variant—C++—that more readily permits data
abstraction [Stroustrup, 1984; USENIX, 1987].

The second important distinction of UNIX was its early release from Bell Lab-
oratories to other research environments in source form. By providing source, the
system's founders ensured that other organizations would be able not only to use
the system, but also to tinker with its inner workings. The ease with which new
ideas could be adopted into the system always has been key to the changes that
have been made to it. Whenever a new system that tried to upstage UNIX came
along, somebody would dissect the newcomer and clone its central ideas into
UNIX. The unique ability to use a small, comprehensible system, written in a
high-level language, in an environment swimming in new ideas led to a UNIX sys-
tem that evolved far beyond its humble beginnings.

The third important distinction of UNIX was that it provided individual users
with the ability to run multiple processes concurrently and to connect these pro-
cesses into pipelines of commands. At the time, only operating systems running
on large and expensive machines had the ability to run multiple processes, and the
number of concurrent processes usually was controlled tightly by a system admin-
istrator.

Most early UNIX systems ran on the PDP-11, which was inexpensive and
powerful for its time. Nonetheless, there was at least one early port of Sixth Edi-
tion UNIX to a machine with a different architecture, the Interdata 7/32 [Miller,
1978]. The PDP-11 also had an inconveniently small address space. The introduc-
tion of machines with 32-bit address spaces, especially the VAX-11/780, provided
an opportunity for UNIX to expand its services to include virtual memory and net-
working. Earlier experiments by the Research group in providing UNIX-like facil-
ities on different hardware had led to the conclusion that it was as easy to move
the entire operating system as it was to duplicate UNIX's services under another
operating system. The first UNIX system with portability as a specific goal was
UNIX Time-Sharing System, Seventh Edition (V7), which ran on the PDP-11
and the Interdata 8/32, and had a VAX variety called UNIX/32V Time-Sharing,
System Version 1.0 (32V). The Research group at Bell Laboratories has also
developed UNIX Time-Sharing System, Eighth Edition (V8), UNIX Time-Shar-
ing System, Ninth Edition (V9), and UNIX Time-Sharing System, Tenth Edi-
tion (V10). Their 1996 system is Plan 9.

AT&T UNIX System III and System V
After the distribution of Seventh Edition in 1978, the Research group turned over
external distributions to the UNIX Support Group (USG). USG had previously dis-
tributed internally such systems as the UNIX Programmer's Work Bench (PWB),
and had sometimes distributed them externally as well [Mohr, 1985].



USG's first external distribution after Seventh Edition was UNIX System III
(System III), in 1982, which incorporated features of Seventh Edition, of 32V,
and also of several UNIX systems developed by groups other than the Research
group. Features of UNIX /RT (a real-time UNIX system) were included, as were
many features from PWB. USG released UNIX System V (System V) in 1983;
that system is largely derived from System III. The court-ordered divestiture of
the Bell Operating Companies from AT&T permitted AT&T to market System V
aggressively [Wilson, 1985; Bach, 1986].

USG metamorphosed into the UNIX System Development Laboratory (USDL),
which released UNIX System V, Release 2 in 1984. System V, Release 2, Ver-
sion 4 introduced paging [Miller, 1984; Jung, 1985], including copy-on-write and
shared memory, to System V The System V implementation was not based on the
Berkeley paging system. USDL was succeeded by AT&T Information Systems
(ATTIS), which distributed UNIX System V, Release 3 in 1987. That system
included STREAMS, an IPC mechanism adopted from V8 [Presotto & Ritchie,
1985]. ATTIS was succeeded by UNIX System Laboratories (USL), which was
sold to Novell in 1993. Novell passed the UNIX trademark to the X/OPEN consor-
tium, giving the latter sole rights to set up certification standards for using the
UNIX name on products. Two years later, Novell sold UNIX to The Santa Cruz
Operation (SCO).

Other Organizations
The ease with which the UNIX system can be modified has led to development
work at numerous organizations, including the Rand Corporation, which is
responsible for the Rand ports mentioned in Chapter 11; Bolt Beranek and New-
man (BBN), who produced the direct ancestor of the 4.2BSD networking imple-
mentation discussed in Chapter 13; the University of Illinois, which did earlier
networking work; Harvard; Purdue; and Digital Equipment Corporation (DEC).

Probably the most widespread version of the UNIX operating system, accord-
ing to the number of machines on which it runs, is XENIX by Microsoft Corpora-
tion and The Santa Cruz Operation. XENIX was originally based on Seventh
Edition, but later on System V More recently, SCO purchased UNIX from Novell
and announced plans to merge the two systems.

Systems prominently not based on UNIX include IBM's OS/2 and Microsoft's
Windows 95 and Windows/NT. All these systems have been touted as UNIX
killers, but none have done the deed.

Berkeley Software Distributions
The most influential of the non-Bell Laboratories and non-AT&T UNIX develop-
ment groups was the University of California at Berkeley [McKusick, 1985].
Software from Berkeley is released in Berkeley Software Distributions
(BSD)—for example, as 4.3BSD. The first Berkeley VAX UNIX work was the
addition to 32V of virtual memory, demand paging, and page replacement in 1979
by William Joy and Ozalp Babaoglu, to produce 3BSD [Babaoglu & Joy, 1981].

The reason for the large virtual-memory space of 3BSD was the development of
what at the time were large programs, such as Berkeley's Franz LISP. This mem-
ory-management work convinced the Defense Advanced Research Projects
Agency (DARPA) to fund the Berkeley team for the later development of a stan-
dard system (4BSD) for DARPA's contractors to use.

A goal of the 4BSD project was to provide support for the DARPA Internet
networking protocols, TCP/IP [Cerf & Cain, 1983]. The networking implementa-
tion was general enough to communicate among diverse network facilities, rang-
ing from local networks, such as Ethernets and token rings, to long-haul networks,
such as DARPA's ARPANET.

We refer to all the Berkeley VAX UNIX systems following 3BSD as 4BSD,
although there were really several releases—4.0BSD, 4.1BSD, 4.2BSD, 4.3BSD,
4.3BSD Tahoe, and 4.3BSD Reno. 4BSD was the UNIX operating system of choice
for VAXes from the time that the VAX first became available in 1977 until the
release of System V in 1983. Most organizations would purchase a 32V license,
but would order 4BSD from Berkeley. Many installations inside the Bell System
ran 4.1BSD (and replaced it with 4.3BSD when the latter became available). A
new virtual-memory system was released with 4.4BSD. The VAX was reaching
the end of its useful lifetime, so 4.4BSD was not ported to that machine. Instead,
4.4BSD ran on the newer 68000, SPARC, MIPS, and Intel PC architectures.

The 4BSD work for DARPA was guided by a steering committee that included
many notable people from both commercial and academic institutions. The cul-
mination of the original Berkeley DARPA UNIX project was the release of 4.2BSD
in 1983; further research at Berkeley produced 4.3BSD in mid-1986. The next
releases included the 4.3BSD Tahoe release of June 1988 and the 4.3BSD Reno
release of June 1990. These releases were primarily ports to the Computer Con-
soles Incorporated hardware platform. Interleaved with these releases were two
unencumbered networking releases: the 4.3BSD Netl release of March 1989 and
the 4.3BSD Net2 release of June 1991. These releases extracted nonproprietary
code from 4.3BSD; they could be redistributed freely in source and binary form to
companies that and individuals who were not covered by a UNIX source license.
The final CSRG release was to have been two versions of 4.4BSD, to be released
in June 1993. One was to have been a traditional full source and binary distrib-
ution, called 4.4BSD-Encumbered, that required the recipient to have a UNIX
source license. The other was to have been a subset of the source, called 4.4BSD-
Lite, that contained no licensed code and did not require the recipient to have a
UNIX source license. Following these distributions, the CSRG would be dis-
solved. The 4.4BSD-Encumbered was released as scheduled, but legal action by
USL prevented the distribution of 4.4BSD-Lite. The legal action was resolved
about 1 year later, and 4.4BSD-Lite was released in April 1994. The last of the
money in the CSRG coffers was used to produce a bug-fixed version 4.4BSD-Lite,
release 2, that was distributed in June 1995. This release was the true final
distribution from the CSRG.

Nonetheless, 4BSD still lives on in all modern implementations of UNIX, and
in many other operating systems.



UNIX in the World
Dozens of computer manufacturers, including almost all the ones usually consid-
ered major by market share, have introduced computers that run the UNIX system or
close derivatives, and numerous other companies sell related peripherals, software
packages, support, training, and documentation. The hardware packages involved
range from micros through minis, multis, and mainframes to supercomputers. Most
of these manufacturers use ports of System V, 4.2BSD, 4.3BSD, 4.4BSD, or mix-
tures. We expect that, by now, there are probably no more machines running soft-
ware based on System III, 4.1BSD, or Seventh Edition, although there may well still
be PDP-1 1s running 2BSD and other UNIX variants. If there are any Sixth Edition
systems still in regular operation, we would be amused to hear about them (our con-
tact information is given at the end of the Preface).

The UNIX system is also a fertile field for academic endeavor. Thompson and
Ritchie were given the Association for Computing Machinery Turing award for
the design of the system [Ritchie, 1984b]. The UNIX system and related, specially
designed teaching systems—such as Tunis [Ewens et al, 1985; Holt, 1983], XINU
[Comer, 1984], and MINIX [Tanenbaum, 1987]—are widely used in courses on
operating systems. Linus Torvalds reimplemented the UNIX interface in his freely
redistributable LINUX operating system. The UNIX system is ubiquitous in uni-
versities and research facilities throughout the world, and is ever more widely used
in industry and commerce.

Even with the demise of the CSRG, the 4.4BSD system continues to flourish.
In the free software world, the FreeBSD and NetBSD groups continue to develop
and distribute systems based on 4.4BSD. The FreeBSD project concentrates on
developing distributions primarily for the personal-computer (PC) platform. The
NetBSD project concentrates on providing ports of 4.4BSD to as many platforms
as possible. Both groups based their first releases on the Net2 release, but
switched over to the 4.4BSD-Lite release when the latter became available.

The commercial variant most closely related to 4.4BSD is BSD/OS, produced
by Berkeley Software Design, Inc. (BSDI). Early BSDI software releases were
based on the Net2 release; the current BSDI release is based on 4.4BSD-Lite.

1.2 BSD and Other Systems

The CSRG incorporated features not only from UNIX systems, but also from other
operating systems. Many of the features of the 4BSD terminal drivers are from
TENEX/TOPS-20. Job control (in concept—not in implementation) is derived from
that of TOPS-20 and from that of the MIT Incompatible Timesharing System (ITS).
The virtual-memory interface first proposed for 4.2BSD, and since implemented
by the CSRG and by several commercial vendors, was based on the file-mapping
and page-level interfaces that first appeared in TENEX/TOPS-20. The current
4.4BSD virtual-memory system (see Chapter 5) was adapted from MACH, which
was itself an offshoot of 4.3BSD. Multics has often been a reference point in the
design of new facilities.

The quest for efficiency has been a major factor in much of the CSRG's work.
Some efficiency improvements have been made because of comparisons with the
proprietary operating system for the VAX, VMS [Kashtan, 1980; Joy, 1980].

Other UNIX variants have adopted many 4BSD features. AT&T UNIX System
V [AT&T, 1987], the IEEE POSIX.l standard [P1003.1, 1988], and the related
National Bureau of Standards (NBS) Federal Information Processing Standard
(FIPS) have adopted

• Job control (Chapter 2)

• Reliable signals (Chapter 4)

• Multiple file-access permission groups (Chapter 6)

• Filesystem interfaces (Chapter 7)

The X/OPEN Group, originally comprising solely European vendors, but now
including most U.S. UNIX vendors, produced the X/OPEN Portability Guide
[X/OPEN, 1987] and, more recently, the Spec 1170 Guide. These documents
specify both the kernel interface and many of the utility programs available to
UNIX system users. When Novell purchased UNIX from AT&T in 1993, it trans-
ferred exclusive ownership of the UNIX name to X/OPEN. Thus, all systems that
want to brand themselves as UNIX must meet the X/OPEN interface specifications.
The X/OPEN guides have adopted many of the POSIX facilities. The POSIX.l stan-
dard is also an ISO International Standard, named SC22 WG15. Thus, the POSIX
facilities have been accepted in most UNIX-like systems worldwide.

The 4BSD socket interprocess-communication mechanism (see Chapter 11)
was designed for portability, and was immediately ported to AT&T System III,
although it was never distributed with that system. The 4BSD implementation of
the TCP/IP networking protocol suite (see Chapter 13) is widely used as the basis
for further implementations on systems ranging from AT&T 3B machines running
System V to VMS to IBM PCs.

The CSRG cooperated closely with vendors whose systems are based on
4.2BSD and 4.3BSD. This simultaneous development contributed to the ease of
further ports of 4.3BSD, and to ongoing development of the system.

The Influence of the User Community
Much of the Berkeley development work was done in response to the user commu-
nity. Ideas and expectations came not only from DARPA, the principal direct-fund-
ing organization, but also from users of the system at companies and universities
worldwide.

The Berkeley researchers accepted not only ideas from the user community,
but also actual software. Contributions to 4BSD came from universities and other
organizations in Australia, Canada, Europe, and the United States. These contri-
butions included major features, such as autoconfiguration and disk quotas. A few
ideas, such as thefcntl system call, were taken from System V, although licensing



and pricing considerations prevented the use of any actual code from System III or
System V in 4BSD. In addition to contributions that were included in the distribu-
tions proper, the CSRG also distributed a set of user-contributed software.

An example of a community-developed facility is the public-domain time-
zone-handling package that was adopted with the 4.3BSD Tahoe release. It was
designed and implemented by an international group, including Arthur Olson,
Robert Elz, and Guy Harris, partly because of discussions in the USENET news-
group comp.std.unix. This package takes time-zone-conversion rules completely
out of the C library, putting them in files that require no system-code changes to
change time-zone rules; this change is especially useful with binary-only distribu-
tions of UNIX. The method also allows individual processes to choose rules,
rather than keeping one ruleset specification systemwide. The distribution
includes a large database of rules used in many areas throughout the world, from
China to Australia to Europe. Distributions of the 4.4BSD system are thus simpli-
fied because it is not necessary to have the software set up differently for different
destinations, as long as the whole database is included. The adoption of the time-
zone package into BSD brought the technology to the attention of commercial ven-
dors, such as Sun Microsystems, causing them to incorporate it into their systems.

Berkeley solicited electronic mail about bugs and the proposed fixes. The
UNIX software house MT XINU distributed a bug list compiled from such submis-
sions. Many of the bug fixes were incorporated in later distributions. There is
constant discussion of UNIX in general (including 4.4BSD) in the USENET
comp.unix newsgroups, which are distributed on the Internet; both the Internet
and USENET are international in scope. There was another USENET newsgroup
dedicated to 4BSD bugs: comp.bugs.4bsd. Few ideas were accepted by Berkeley
directly from these newsgroups' associated mailing lists because of the difficulty
of sifting through the voluminous submissions. Later, a moderated newsgroup
dedicated to the CSRG-sanctioned fixes to such bugs, called comp.bugs.4bsd.bug-
fixes, was created. Discussions in these newsgroups sometimes led to new facili-
ties being written that were later incorporated into the system.

1.3 Design Goals of 4BSD

4BSD is a research system developed for and partly by a research community,
and, more recently, a commercial community. The developers considered many
design issues as they wrote the system. There were nontraditional considerations
and inputs into the design, which nevertheless yielded results with commercial
importance.

The early systems were technology driven. They took advantage of current
hardware that was unavailable in other UNIX systems. This new technology
included

• Virtual-memory support

• Device drivers for third-party (non-DEC) peripherals

• Terminal-independent support libraries for screen-based applications; numerous
applications were developed that used these libraries, including the screen-based
editor vi

4BSD's support of numerous popular third-party peripherals, compared to the
AT&T distribution's meager offerings in 32V, was an important factor in 4BSD
popularity. Until other vendors began providing their own support of 4.2BSD-
based systems, there was no alternative for universities that had to minimize hard-
ware costs.

Terminal-independent screen support, although it may now seem rather
pedestrian, was at the time important to the Berkeley software's popularity.

4.2BSD Design Goals
DARPA wanted Berkeley to develop 4.2BSD as a standard research operating sys-
tem for the VAX. Many new facilities were designed for inclusion in 4.2BSD.
These facilities included a completely revised virtual-memory system to support
processes with large sparse address space, a much higher-speed filesystem, inter-
process-communication facilities, and networking support. The high-speed
filesystem and revised virtual-memory system were needed by researchers doing
computer-aided design and manufacturing (CAD/CAM), image processing, and
artificial intelligence (AI). The interprocess-communication facilities were needed
by sites doing research in distributed systems. The motivation for providing net-
working support was primarily DARPA's interest in connecting their researchers
through the 56-Kbit-per-second ARPA Internet (although Berkeley was also inter-
ested in getting good performance over higher-speed local-area networks).

No attempt was made to provide a true distributed operating system [Popek,
1981]. Instead, the traditional ARPANET goal of resource sharing was used.
There were three reasons that a resource-sharing design was chosen:

1. The systems were widely distributed and demanded administrative autonomy.
At the time, a true distributed operating system required a central administra-
tive authority.

2. The known algorithms for tightly coupled systems did not scale well.

3. Berkeley's charter was to incorporate current, proven software technology,
rather than to develop new, unproven technology.

Therefore, easy means were provided for remote login (rlogin, telnef), file transfer
(rcp, ftp), and remote command execution (rsh), but all host machines retained
separate identities that were not hidden from the users.

Because of time constraints, the system that was released as 4.2BSD did not
include all the facilities that were originally intended to be included. In particular,
the revised virtual-memory system was not part of the 4.2BSD release. The CSRG



did, however, continue its ongoing work to track fast-developing hardware
technology in several areas. The networking system supported a wide range of
hardware devices, including multiple interfaces to 10-Mbit-per-second Ethernet,
token ring networks, and to NSC's Hyperchannel. The kernel sources were modu-
larized and rearranged to ease portability to new architectures, including to micro-
processors and to larger machines.

4.3BSD Design Goals

Problems with 4.2BSD were among the reasons for the development of 4.3BSD.
Because 4.2BSD included many new facilities, it suffered a loss of performance
compared to 4.1BSD, partly because of the introduction of symbolic links. Some
pernicious bugs had been introduced, particularly in the TCP protocol implementa-
tion. Some facilities had not been included due to lack of time. Others, such as
TCP/IP subnet and routing support, had not been specified soon enough by outside
parties for them to be incorporated in the 4.2BSD release.

Commercial systems usually maintain backward compatibility for many
releases, so as not to make existing applications obsolete. Maintaining compati-
bility is increasingly difficult, however, so most research systems maintain little or
no backward compatibility. As a compromise for other researchers, the BSD
releases were usually backward compatible for one release, but had the deprecated
facilities clearly marked. This approach allowed for an orderly transition to the
new interfaces without constraining the system from evolving smoothly. In partic-
ular, backward compatibility of 4.3BSD with 4.2BSD was considered highly desir-
able for application portability.

The C language interface to 4.3BSD differs from that of 4.2BSD in only a few
commands to the terminal interface and in the use of one argument to one IPC
system call (select; see Section 6.4). A flag was added in 4.3BSD to the system
call that establishes a signal handler to allow a process to request the 4.1 BSD
semantics for signals, rather than the 4.2BSD semantics (see Section 4.7). The
sole purpose of the flag was to allow existing applications that depended on the
old semantics to continue working without being rewritten.

The implementation changes between 4.2BSD and 4.3BSD generally were not
visible to users, but they were numerous. For example, the developers made
changes to improve support for multiple network-protocol families, such as
XEROX NS, in addition to TCP/IP.

The second release of 4.3BSD, hereafter referred to as 4.3BSD Tahoe, added
support for the Computer Consoles, Inc. (CCI) Power 6 (Tahoe) series of minicom-
puters in addition to the VAX. Although generally similar to the original release of
4.3BSD for the VAX, it included many modifications and new features.

The third release of 4.3BSD, hereafter referred to as 4.3BSD-Reno, added
ISO/OSI networking support, a freely redistributable implementation of NFS, and
the conversion to and addition of the POSIX.l facilities.

4.4BSD Design Goals
4.4BSD broadened the 4.3BSD hardware base, and now supports numerous archi-
tectures, including Motorola 68K, Sun SPARC, MIPS, and Intel PCs.

The 4.4BSD release remedies several deficiencies in 4.3BSD. In particular,
the virtual-memory system needed to be and was completely replaced. The new
virtual-memory system provides algorithms that are better suited to the large
memories currently available, and is much less dependent on the VAX architecture.
The 4.4BSD release also added an implementation of networking protocols in the
International Organization for Standardization (ISO) suite, and further TCP/IP per-
formance improvements and enhancements.

The terminal driver had been carefully kept compatible not only with Seventh
Edition, but even with Sixth Edition. This feature had been useful, but is increas-
ingly less so now, especially considering the lack of orthogonality of its com-
mands and options. In 4.4BSD, the CSRG replaced it with a POSIX-compatible
terminal driver; since System V is compliant with POSIX, the terminal driver is
compatible with System V. POSIX compatibility in general was a goal. POSIX
support is not limited to kernel facilities such as termios and sessions, but rather
also includes most POSIX utilities.

The most critical shortcoming of 4.3BSD was the lack of support for multiple
filesystems. As is true of the networking protocols, there is no single filesystem
that provides enough speed and functionality for all situations. It is frequently
necessary to support several different filesystem protocols, just as it is necessary to
run several different network protocols. Thus, 4.4BSD includes an object-oriented
interface to filesy stems similar to Sun Microsystems' vnode framework. This
framework supports multiple local and remote filesystems, much as multiple net-
working protocols are supported by 4.3BSD [Sandberg et al, 1985]. The vnode
interface has been generalized to make the operation set dynamically extensible
and to allow filesystems to be stacked. With this structure, 4.4BSD supports
numerous filesystem types, including loopback, union, and uid/gid mapping lay-
ers, plus an ISO9660 filesystem, which is particularly useful for CD-ROMs. It also
supports Sun's Network filesystem (NFS) Versions 2 and 3 and a new local disk-
based log-structured filesystem.

Original work on the flexible configuration of IPC processing modules was
done at Bell Laboratories in UNIX Eighth Edition [Presotto & Ritchie, 1985].
This stream I/O system was based on the UNIX character I/O system. It allowed a
user process to open a raw terminal port and then to insert appropriate kernel-pro-
cessing modules, such as one to do normal terminal line editing. Modules to pro-
cess network protocols also could be inserted. Stacking a terminal-processing
module on top of a network-processing module allowed flexible and efficient
implementation of network virtual terminals within the kernel. A problem with
stream modules, however, is that they are inherently linear in nature, and thus they
do not adequately handle the fan-in and fan-out associated with multiplexing in
datagram-based networks; such multiplexing is done in device drivers, below the
modules proper. The Eighth Edition stream I/O system was adopted in System V,
Release 3 as the STREAMS system.



The design of the networking facilities for 4.2BSD took a different approach,
based on the socket interface and a flexible multilayer network architecture. This
design allows a single system to support multiple sets of networking protocols
with stream, datagram, and other types of access. Protocol modules may deal with
multiplexing of data from different connections onto a single transport medium, as
well as with demultiplexing of data for different protocols and connections
received from each network device. The 4.4BSD release made small extensions to
the socket interface to allow the implementation of the ISO networking protocols.

1.4 Release Engineering

The CSRG was always a small group of software developers. This resource limita-
tion required careful software-engineering management. Careful coordination was
needed not only of the CSRG personnel, but also of members of the general com-
munity who contributed to the development of the system. Even though the CSRG
is no more, the community still exists; it continues the BSD traditions with
FreeBSD, NetBSD, and BSDI.

Major CSRG distributions usually alternated between

• Major new facilities: 3BSD, 4.0BSD, 4.2BSD, 4.4BSD

• Bug fixes and efficiency improvements: 4.1BSD, 4.3BSD

This alternation allowed timely release, while providing for refinement and correc-
tion of the new facilities and for elimination of performance problems produced
by the new facilities. The timely follow-up of releases that included new facilities
reflected the importance that the CSRG placed on providing a reliable and robust
system on which its user community could depend.

Developments from the CSRG were released in three steps: alpha, beta, and
final, as shown in Table 1.1. Alpha and beta releases were not true distributions—
they were test systems. Alpha releases were normally available to only a few
sites, most of those within the University. More sites got beta releases, but they
did not get these releases directly; a tree structure was imposed to allow bug
reports, fixes, and new software to be collected, evaluated, and checked for

Table 1.1 Test steps for the release of 4.2BSD.

Release steps
Description
name:
major new facility:

alpha
4.1aBSD

networking

internal
4.1bBSD

fast filesystem

beta
4.1cBSD

IPC

final
4.2BSD

revised signals

redundancies by first-level sites before forwarding to the CSRG. For example,
4.1aBSD ran at more than 100 sites, but there were only about 15 primary beta
sites. The beta-test tree allowed the developers at the CSRG to concentrate on
actual development, rather than sifting through details from every beta-test site.
This book was reviewed for technical accuracy by a similar process.

Many of the primary beta-test personnel not only had copies of the release
running on their own machines, but also had login accounts on the development
machine at Berkeley. Such users were commonly found logged in at Berkeley
over the Internet, or sometimes via telephone dialup, from places far away, such as
Australia, England, Massachusetts, Utah, Maryland, Texas, and Illinois, and from
closer places, such as Stanford. For the 4.3BSD and 4.4BSD releases, certain
accounts and users had permission to modify the master copy of the system source
directly. Several facilities, such as the Fortran and C compilers, as well as impor-
tant system programs, such as telnet and ftp, include significant contributions from
people who did not work for the CSRG. One important exception to this approach
was that changes to the kernel were made by only the CSRG personnel, although
the changes often were suggested by the larger community.

People given access to the master sources were carefully screened before-
hand, but were not closely supervised. Their work was checked at the end of the
beta-test period by the CSRG personnel, who did a complete comparison of the
source of the previous release with the current master sources—for example, of
4.3BSD with 4.2BSD. Facilities deemed inappropriate, such as new options to the
directory-listing command or a changed return value for the fseek() library rou-
tine, were removed from the source before final distribution.

This process illustrates an advantage of having only a few principal develop-
ers: The developers all knew the whole system thoroughly enough to be able to
coordinate their own work with that of other people to produce a coherent final
system. Companies with large development organizations find this result difficult
to duplicate.

There was no CSRG marketing division. Thus, technical decisions were made
largely for technical reasons, and were not driven by marketing promises. The
Berkeley developers were fanatical about this position, and were well known for
never promising delivery on a specific date.

References
AT&T, 1987.

AT&T, The System V Interface Definition (SVID), Issue 2, American Tele-
phone and Telegraph, Murray Hill, NJ, January 1987.

Babaoglu & Joy, 1981.
O. Babaoglu & W. N. Joy, "Converting a Swap-Based System to Do Paging
in an Architecture Lacking Page-Referenced Bits," Proceedings of the
Eighth Symposium on Operating Systems Principles, pp. 78-86, December
1981.



Bach, 1986.
M. J. Bach, The Design of the UNIX Operating System, Prentice-Hall,
Englewood Cliffs, NJ, 1986.

Cerf& Cain, 1983.
V. Cerf & E. Cain, The DoD Internet Architecture Model, pp. 307-318,
Elsevier Science, Amsterdam, Netherlands, 1983.

Chambers & Quarterman, 1983.
J. B. Chambers & J. S. Quarterman, "UNIX System V and 4.1C BSD,"
USENIX Association Conference Proceedings, pp. 267-291, June 1983.

Comer, 1984.
D. Comer, Operating System Design: The Xinu Approach, Prentice-Hall,
Englewood Cliffs, NJ, 1984.

Compton, 1985.
M. Compton, editor, "The Evolution of UNIX," UNIX Review, vol. 3, no. 1,
January 1985.

Ewensetal, 1985.
P. Ewens, D. R. Blythe, M. Funkenhauser, & R. C. Holt, "Tunis: A Dis-
tributed Multiprocessor Operating System," USENIX Association Confer-
ence Proceedings, pp. 247-254, June 1985.

Holt, 1983.
R. C. Holt, Concurrent Euclid, the UNIX System, and Tunis, Addison-Wes-
ley, Reading, MA, 1983.

Joy, 1980,
W. N. Joy, "Comments on the Performance of UNIX on the VAX," Techni-
cal Report, University of California Computer System Research Group,
Berkeley, CA, April 1980.

Jung, 1985.
R. S. Jung, "Porting the AT&T Demand Paged UNIX Implementation to
Microcomputers," USENIX Association Conference Proceedings, pp.
361-370, June 1985.

Kashtan, 1980.
D. L. Kashtan, "UNIX and VMS: Some Performance Comparisons," Tech-
nical Report, SRI International, Menlo Park, CA, February 1980.

Kernighan & Ritchie, 1978.
B. W. Kernighan & D. M. Ritchie, The C Programming Language, Prentice-
Hall, Englewood Cliffs, NJ, 1978.

Kernighan & Ritchie, 1988.
B. W. Kernighan & D. M. Ritchie, The C Programming Language, 2nd ed,
Prentice-Hall, Englewood Cliffs, NJ, 1988.

McKusick, 1985.
M. K. McKusick, "A Berkeley Odyssey," UNIX Review, vol. 3, no. 1, p. 30,
January 1985.

Miller, 1978.
R. Miller, "UNIX—A Portable Operating System," ACM Operating System
Review, vol. 12, no. 3, pp. 32-37, July 1978.

Miller, 1984.
R. Miller, "A Demand Paging Virtual Memory Manager for System V,"
USENIX Association Conference Proceedings, p. 178-182, June 1984.

Mohr, 1985.
A. Mohr, "The Genesis Story," UNIX Review, vol. 3, no. 1, p. 18, January
1985.

Organick, 1975.
E. I. Organick, The Multics System: An Examination of Its Structure, MIT
Press, Cambridge, MA, 1975.

P1003.1, 1988.
P1003.1, IEEE P1003.1 Portable Operating System Interface for Computer
Environments (POSIX), Institute of Electrical and Electronic Engineers, Pis-
cataway, NJ, 1988.

Peirce, 1985.
N. Peirce, "Putting UNIX In Perspective: An Interview with Victor Vyssot-
sky," UNIX Review, vol. 3, no. 1, p. 58, January 1985.

Popek, 1981.
B. Popek, "Locus: A Network Transparent, High Reliability Distributed
System," Proceedings of the Eighth Symposium on Operating Systems Prin-
ciples, p. 169-177, December 1981.

Presotto & Ritchie, 1985.
D. L. Presotto & D. M. Ritchie, "Interprocess Communication in the Eighth
Edition UNIX System," USENIX Association Conference Proceedings, p.
309-316, June 1985.

Richards & Whitby-Strevens, 1980.
M. Richards & C. Whitby-Strevens, BCPL: The Language and Its Compiler,
Cambridge University Press, Cambridge, U.K., 1980, 1982.

Ritchie, 1978.
D. M. Ritchie, "A Retrospective," Bell System Technical Journal, vol. 57,
no. 6, p. 1947-1969, July-August 1978.

Ritchie, 1984a.
D. M. Ritchie, "The Evolution of the UNIX Time-Sharing System," AT&T
Bell Laboratories Technical Journal, vol. 63, no. 8, p. 1577-1593, October
1984.

Ritchie, 1984b.
D. M. Ritchie, "Reflections on Software Research," Comm ACM, vol. 27,
no. 8, p. 758-760, 1984.

Ritchie, 1987.
D. M. Ritchie, "Unix: A Dialectic," USENIX Association Conference Pro-
ceedings, p. 29-34, January 1987.

Ritchie et al, 1978.
D. M. Ritchie, S. C. Johnson, M. E. Lesk, & B. W. Kernighan, "The C Pro-
gramming Language," Bell System Technical Journal, vol. 57, no. 6, p.
1991-2019, July-August 1978.



Rosier, 1984.
L. Rosier, "The Evolution of C—Past and Future," AT&T Bell Laboratories
Technical Journal, vol. 63, no. 8, pp. 1685-1699, October 1984.

Sandberg et al, 1985.
R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, & B. Lyon, "Design and
Implementation of the Sun Network Filesystem," USENIX Association Con-
ference Proceedings, pp. 119-130, June 1985.

Stroustrup, 1984.
B. Stroustrup, "Data Abstraction in C," AT&T Bell Laboratories Technical
Journal, vol. 63, no. 8, pp. 1701-1732, October 1984.

Tanenbaum, 1987.
A. S. Tanenbaum, Operating Systems: Design and Implementation, Pren-
tice-Hall, Englewood Cliffs, NJ, 1987.

Tuthill, 1985.
B. Tuthill, "The Evolution of C: Heresy and Prophecy," UNIX Review, vol.
3, no. 1, p. 80, January 1985.

Uniejewski, 1985.
J. Uniejewski, UNIX System V and BSD4.2 Compatibility Study, Apollo
Computer, Chelmsford, MA, March 1985.

USENIX, 1987.
USENIX, Proceedings of the C++ Workshop, USENIX Association, Berke-
ley, CA, November 1987.

Wilson, 1985.
O. Wilson, "The Business Evolution of the UNIX System," UNIX Review,
vol. 3, no. 1, p. 46, January 1985.

X3J11, 1988.
X3J11, X3.159 Programming Language C Standard, Global Press, Santa
Ana, CA, 1988.

X/OPEN, 1987.
X/OPEN, The X/OPEN Portability Guide (XPG), Issue 2, Elsevier Science,
Amsterdam, Netherlands, 1987.

CHAPTER 2

Design Overview of 4.4BSD

2.1 4.4BSD Facilities and the Kernel
The 4.4BSD kernel provides four basic facilities: processes, a filesystem, commu-
nications, and system startup. This section outlines where each of these four basic
services is described in this book.

1. Processes constitute a thread of control in an address space. Mechanisms for
creating, terminating, and otherwise controlling processes are described in
Chapter 4. The system multiplexes separate virtual-address spaces for each
process; this memory management is discussed in Chapter 5.

2. The user interface to the filesystem and devices is similar; common aspects are
discussed in Chapter 6. The filesystem is a set of named files, organized in a
tree-structured hierarchy of directories, and of operations to manipulate them,
as presented in Chapter 7. Files reside on physical media such as disks.
4.4BSD supports several organizations of data on the disk, as set forth in Chap-
ter 8. Access to files on remote machines is the subject of Chapter 9. Termi-
nals are used to access the system; their operation is the subject of Chapter 10.

3. Communication mechanisms provided by traditional UNIX systems include
simplex reliable byte streams between related processes (see pipes, Section
11.1), and notification of exceptional events (see signals, Section 4.7). 4.4BSD
also has a general interprocess-communication facility. This facility, described
in Chapter 11, uses access mechanisms distinct from those of the filesystem,
but, once a connection is set up, a process can access it as though it were a
pipe. There is a general networking framework, discussed in Chapter 12, that
is normally used as a layer underlying the IPC facility. Chapter 13 describes a
particular networking implementation in detail.

21



4. Any real operating system has operational issues, such as how to start it run-
ning. Startup and operational issues are described in Chapter 14.

Sections 2.3 through 2.14 present introductory material related to Chapters 3
through 14. We shall define terms, mention basic system calls, and explore histor-
ical developments. Finally, we shall give the reasons for many major design deci-
sions.

The Kernel
The kernel is the part of the system that runs in protected mode and mediates
access by all user programs to the underlying hardware (e.g., CPU, disks, termi-
nals, network links) and software constructs (e.g., filesystem, network protocols).
The kernel provides the basic system facilities; it creates and manages processes,
and provides functions to access the filesystem and communication facilities.
These functions, called system calls, appear to user processes as library subrou-
tines. These system calls are the only interface that processes have to these facil-
ities. Details of the system-call mechanism are given in Chapter 3, as are
descriptions of several kernel mechanisms that do not execute as the direct result
of a process doing a system call.

A kernel, in traditional operating-system terminology, is a small nucleus of
software that provides only the minimal facilities necessary for implementing
additional operating-system services. In contemporary research operating sys-
tems—such as Chorus [Rozier et al, 1988], Mach [Accetta et al, 1986], Tunis
[Ewens et al, 1985], and the V Kernel [Cheriton, 1988]—this division of function-
ality is more than just a logical one. Services such as filesystems and networking
protocols are implemented as client application processes of the nucleus or kernel.

The 4.4BSD kernel is not partitioned into multiple processes. This basic
design decision was made in the earliest versions of UNIX. The first two imple-
mentations by Ken Thompson had no memory mapping, and thus made no hard-
ware-enforced distinction between user and kernel space [Ritchie, 1988]. A
message-passing system could have been implemented as readily as the actually
implemented model of kernel and user processes. The monolithic kernel was
chosen for simplicity and performance. And the early kernels were small; the
inclusion of facilities such as networking into the kernel has increased its size.
The current trend in operating-systems research is to reduce the kernel size by
placing such services in user space.

Users ordinarily interact with the system through a command-language inter-
preter, called a shell, and perhaps through additional user application programs.
Such programs and the shell are implemented with processes. Details of such pro-
grams are beyond the scope of this book, which instead concentrates almost exclu-
sively on the kernel.

Sections 2.3 and 2.4 describe the services provided by the 4.4BSD kernel, and
give an overview of the latter's design. Later chapters describe the detailed design
and implementation of these services as they appear in 4.4BSD.

Kernel Organization
In this section, we view the organization of the 4.4BSD kernel in two ways:

1. As a static body of software, categorized by the functionality offered by the
modules that make up the kernel

2. By its dynamic operation, categorized according to the services provided to
users

The largest part of the kernel implements the system services that applications
access through system calls. In 4.4BSD, this software has been organized accord-
ing to the following:

• Basic kernel facilities: timer and system-clock handling, descriptor management,
and process management

• Memory-management support: paging and swapping
• Generic system interfaces: the I/O, control, and multiplexing operations per-

formed on descriptors
•The filesystem: files, directories, pathname translation, file locking, and I/O

buffer management
• Terminal-handling support: the terminal-interface driver and terminal line disci-

plines
• Interprocess-communication facilities: sockets
• Support for network communication: communication protocols and generic net-

work facilities, such as routing

Most of the software in these categories is machine independent and is portable
across different hardware architectures.

The machine-dependent aspects of the kernel are isolated from the mam-
stream code. In particular, none of the machine-independent code contains condi-
tional code for specific architectures. When an architecture-dependent action is
needed, the machine-independent code calls an architecture-dependent function
that is located in the machine-dependent code. The software that is machine
dependent includes

• Low-level system-startup actions

• Trap and fault handling
• Low-level manipulation of the run-time context of a process

• Configuration and initialization of hardware devices

• Run-time support for I/O devices



Table 2.1 Machine-independent software in the 4.4BSD kernel. Table 2.2 Machine-dependent software for the HP300 in the 4.4BSD kernel.

Category
headers
initialization
kernel facilities
generic interfaces
interprocess communication
terminal handling
virtual memory
vnode management
filesystem naming
fast filestore
log-structure filestore
memory-based filestore
cd9660 filesystem
miscellaneous filesystems (10)
network filesystem
network communication
internet protocols
ISO protocols
X.25 protocols
XNS protocols

Lines of code
9,393
1,107
8,793
4,782
4,540
3,911

11,813
7,954
6,550
4,365
4,337

645
4,177

12,695
17,199
8,630

11,984
23,924
10,626
5,192

Percentage of kernel
4.6
0.6
4.4
2.4
2.2
1.9
5.8
3.9
3.2
2.2
2.1
0.3
2.1
6.3
8.5
4.3
5.9

11.8
5.3
2.6

total machine independent 162,617 80.4

Table 2.1 summarizes the machine-independent software that constitutes the
4.4BSD kernel for the HP300. The numbers in column 2 are for lines of C source
code, header files, and assembly language. Virtually all the software in the kernel
is written in the C programming language; less than 2 percent is written in assem-
bly language. As the statistics in Table 2.2 show, the machine-dependent soft-
ware, excluding HP/UX and device support, accounts for a minuscule 6.9 percent
of the kernel.

Only a small part of the kernel is devoted to initializing the system. This code
is used when the system is bootstrapped into operation and is responsible for set-
ting up the kernel hardware and software environment (see Chapter 14). Some
operating systems (especially those with limited physical memory) discard or
overlay the software that performs these functions after that software has been
executed. The 4.4BSD kernel does not reclaim the memory used by the startup
code because that memory space is barely 0.5 percent of the kernel resources used

Category
machine dependent headers
device driver headers
device driver source
virtual memory
other machine dependent
routines in assembly language
HP/UX compatibility

total machine dependent

Lines of code
1,562
3,495

17,506
3,087
6,287
3,014
4,683

Percentage of kernel
0.8
1.7
8.7
1.5
3.1
1.5
2.3

39,634 19.6

on a typical machine. Also, the startup code does not appear in one place in the
kernel—it is scattered throughout, and it usually appears in places logically asso-
ciated with what is being initialized.

2.3 Kernel Services
The boundary between the kernel- and user-level code is enforced by hardware-
protection facilities provided by the underlying hardware. The kernel operates in a
separate address space that is inaccessible to user processes. Privileged opera-
tions—such as starting I/O and halting the central processing unit (CPU)—are
available to only the kernel. Applications request services from the kernel with
system calls. System calls are used to cause the kernel to execute complicated
operations, such as writing data to secondary storage, and simple operations, such
as returning the current time of day. All system calls appear synchronous to appli-
cations: The application does not run while the kernel does the actions associated
with a system call. The kernel may finish some operations associated with a sys-
tem call after it has returned. For example, a write system call will copy the data to
be written from the user process to a kernel buffer while the process waits, but will
usually return from the system call before the kernel buffer is written to the disk.

A system call usually is implemented as a hardware trap that changes the
CPU's execution mode and the current address-space mapping. Parameters sup-
plied by users in system calls are validated by the kernel before being used. Such
checking ensures the integrity of the system. All parameters passed into the ker-
nel are copied into the kernel's address space, to ensure that validated parameters
are not changed as a side effect of the system call. System-call results are
returned by the kernel, either in hardware registers or by their values being copied
to user-specified memory addresses. Like parameters passed into the kernel,



addresses used for the return of results must be validated to ensure that they are
part of an application's address space. If the kernel encounters an error while pro-
cessing a system call, it returns an error code to the user. For the C programming
language, this error code is stored in the global variable errno, and the function
that executed the system call returns the value -1.

User applications and the kernel operate independently of each other. 4.4BSD
does not store I/O control blocks or other operating-system-related data structures
in the application's address space. Each user-level application is provided an inde-
pendent address space in which it executes. The kernel makes most state changes,
such as suspending a process while another is running, invisible to the processes
involved.

2.4 Process Management

4.4BSD supports a multitasking environment. Each task or thread of execution is
termed a process. The context of a 4.4BSD process consists of user-level state,
including the contents of its address space and the run-time environment, and
kernel-level state, which includes scheduling parameters, resource controls, and
identification information. The context includes everything used by the kernel in
providing services for the process. Users can create processes, control the pro-
cesses' execution, and receive notification when the processes' execution status
changes. Every process is assigned a unique value, termed a process identifier
(PID). This value is used by the kernel to identify a process when reporting sta-
tus changes to a user, and by a user when referencing a process in a system call.

The kernel creates a process by duplicating the context of another process.
The new process is termed a child process of the original parent process. The
context duplicated in process creation includes both the user-level execution state
of the process and the process's system state managed by the kernel. Important
components of the kernel state are described in Chapter 4.

The process lifecycle is depicted in Fig. 2.1. A process may create a new pro-
cess that is a copy of the original by using the fork system call. The fork call
returns twice: once in the parent process, where the return value is the process

Figure 2.1 Process-management system calls.

fork

wait

exit

identifier of the child, and once in the child process, where the return value is 0.
The parent-child relationship induces a hierarchical structure on the set of pro-
cesses in the system. The new process shares all its parent's resources, such as file
descriptors, signal-handling status, and memory layout.

Although there are occasions when the new process is intended to be a copy
of the parent, the loading and execution of a different program is a more useful
and typical action. A process can overlay itself with the memory image of another
program, passing to the newly created image a set of parameters, using the system
call execve. One parameter is the name of a file whose contents are in a format
recognized by the system—either a binary-executable file or a file that causes the
execution of a specified interpreter program to process its contents.

A process may terminate by executing an exit system call, sending 8 bits of
exit status to its parent. If a process wants to communicate more than a single
byte of information with its parent, it must either set up an interprocess-communi-
cation channel using pipes or sockets, or use an intermediate file. Interprocess
communication is discussed extensively in Chapter 11.

A process can suspend execution until any of its child processes terminate
using the wait system call, which returns the PID and exit status of the terminated
child process. A parent process can arrange to be notified by a signal when a child
process exits or terminates abnormally. Using the wait4 system call, the parent
can retrieve information about the event that caused termination of the child pro-
cess and about resources consumed by the process during its lifetime. If a process
is orphaned because its parent exits before it is finished, then the kernel arranges
for the child's exit status to be passed back to a special system process (init: see
Sections 3.1 and 14.6).

The details of how the kernel creates and destroys processes are given in
Chapter 5.

Processes are scheduled for execution according to a process-priority parame-
ter. This priority is managed by a kernel-based scheduling algorithm. Users can
influence the scheduling of a process by specifying a parameter (nice) that weights
the overall scheduling priority, but are still obligated to share the underlying CPU
resources according to the kernel's scheduling policy.

Signals
The system defines a set of signals that may be delivered to a process. Signals in
4.4BSD are modeled after hardware interrupts. A process may specify a user-level
subroutine to be a handler to which a signal should be delivered. When a signal is
generated, it is blocked from further occurrence while it is being caught by the
handler. Catching a signal involves saving the current process context and build-
ing a new one in which to run the handler. The signal is then delivered to the han-
dler, which can either abort the process or return to the executing process (perhaps
after setting a global variable). If the handler returns, the signal is unblocked and
can be generated (and caught) again.

Alternatively, a process may specify that a signal is to be ignored, or that a
default action, as determined by the kernel, is to be taken. The default action of



certain signals is to terminate the process. This termination may be accompanied
by creation of a core file that contains the current memory image of the process for
use in postmortem debugging.

Some signals cannot be caught or ignored. These signals include SIGKILL,
which kills runaway processes, and the job-control signal SIGSTOP.

A process may choose to have signals delivered on a special stack so that
sophisticated software stack manipulations are possible. For example, a language
supporting coroutines needs to provide a stack for each coroutine. The language
run-time system can allocate these stacks by dividing up the single stack provided
by 4.4BSD. If the kernel does not support a separate signal stack, the space allo-
cated for each coroutine must be expanded by the amount of space required to
catch a signal.

All signals have the same priority. If multiple signals are pending simulta-
neously, the order in which signals are delivered to a process is implementation
specific. Signal handlers execute with the signal that caused their invocation to
be blocked, but other signals may yet occur. Mechanisms are provided so that
processes can protect critical sections of code against the occurrence of specified
signals.

The detailed design and implementation of signals is described in Section 4.7.

Process Groups and Sessions
Processes are organized into process groups. Process groups are used to control
access to terminals and to provide a means of distributing signals to collections of
related processes. A process inherits its process group from its parent process.
Mechanisms are provided by the kernel to allow a process to alter its process
group or the process group of its descendents. Creating a new process group is
easy; the value of a new process group is ordinarily the process identifier of the
creating process.

The group of processes in a process group is sometimes referred to as a job
and is manipulated by high-level system software, such as the shell. A common
kind of job created by a shell is a pipeline of several processes connected by pipes,
such that the output of the first process is the input of the second, the output of the
second is the input of the third, and so forth. The shell creates such a job by fork-
ing a process for each stage of the pipeline, then putting all those processes into a
separate process group.

A user process can send a signal to each process in a process group, as well as
to a single process. A process in a specific process group may receive software
interrupts affecting the group, causing the group to suspend or resume execution,
or to be interrupted or terminated.

A terminal has a process-group identifier assigned to it. This identifier is
normally set to the identifier of a process group associated with the terminal. A
job-control shell may create a number of process groups associated with the same
terminal; the terminal is the controlling terminal for each process in these groups.
A process may read from a descriptor for its controlling terminal only if the ter-
minal's process-group identifier matches that of the process. If the identifiers do

not match, the process will be blocked if it attempts to read from the terminal.
By changing the process-group identifier of the terminal, a shell can arbitrate a
terminal among several different jobs. This arbitration is called job control and is
described, with process groups, in Section 4.8.

Just as a set of related processes can be collected into a process group, a set of
process groups can be collected into a session. The main uses for sessions are to
create an isolated environment for a daemon process and its children, and to col-
lect together a user's login shell and the jobs that that shell spawns.

2,5 Memory Management
Each process has its own private address space. The address space is initially
divided into three logical segments: text, data, and stack. The text segment is
read-only and contains the machine instructions of a program. The data and stack
segments are both readable and writable. The data segment contains the initial-
ized and uninitialized data portions of a program, whereas the stack segment holds
the application's run-time stack. On most machines, the stack segment is
extended automatically by the kernel as the process executes. A process can
expand or contract its data segment by making a system call, whereas a process
can change the size of its text segment only when the segment's contents are over-
laid with data from the filesystem, or when debugging takes place. The initial
contents of the segments of a child process are duplicates of the segments of a par-
ent process.

The entire contents of a process address space do not need to be resident for a
process to execute. If a process references a part of its address space that is not
resident in main memory, the system pages the necessary information into mem-
ory. When system resources are scarce, the system uses a two-level approach to
maintain available resources. If a modest amount of memory is available, the sys-
tem will take memory resources away from processes if these resources have not
been used recently. Should there be a severe resource shortage, the system will
resort to swapping the entire context of a process to secondary storage. The
demand paging and swapping done by the system are effectively transparent to
processes. A process may, however, advise the system about expected future
memory utilization as a performance aid.

BSD Memory-Management Design Decisions
The support of large sparse address spaces, mapped files, and shared memory was
a requirement for 4.2BSD. An interface was specified, called mmap(), that
allowed unrelated processes to request a shared mapping of a file into their address
spaces. If multiple processes mapped the same file into their address spaces,
changes to the file's portion of an address space by one process would be reflected
in the area mapped by the other processes, as well as in the file itself. Ultimately,
4.2BSD was shipped without the mmap() interface, because of pressure to make
other features, such as networking, available.



Further development of the mmap() interface continued during the work on
4.3BSD. Over 40 companies and research groups participated in the discussions
leading to the revised architecture that was described in the Berkeley Software
Architecture Manual [McKusick, Karels et al, 1994]. Several of the companies
have implemented the revised interface [Gingell et al, 1987].

Once again, time pressure prevented 4.3BSD from providing an implementa-
tion of the interface. Although the latter could have been built into the existing
4.3BSD virtual-memory system, the developers decided not to put it in because
that implementation was nearly 10 years old. Furthermore, the original virtual-
memory design was based on the assumption that computer memories were small
and expensive, whereas disks were locally connected, fast, large, and inexpensive.
Thus, the virtual-memory system was designed to be frugal with its use of mem-
ory at the expense of generating extra disk traffic. In addition, the 4.3BSD imple-
mentation was riddled with VAX memory-management hardware dependencies
that impeded its portability to other computer architectures. Finally, the virtual-
memory system was not designed to support the tightly coupled multiprocessors
that are becoming increasingly common and important today.

Attempts to improve the old implementation incrementally seemed doomed
to failure. A completely new design, on the other hand, could take advantage of
large memories, conserve disk transfers, and have the potential to run on multi-
processors. Consequently, the virtual-memory system was completely replaced in
4.4BSD. The 4.4BSD virtual-memory system is based on the Mach 2.0 VM sys-
tem [Tevanian, 1987], with updates from Mach 2.5 and Mach 3.0. It features effi-
cient support for sharing, a clean separation of machine-independent and
machine-dependent features, as well as (currently unused) multiprocessor support.
Processes can map files anywhere in their address space. They can share parts of
their address space by doing a shared mapping of the same file. Changes made
by one process are visible in the address space of the other process, and also are
written back to the file itself. Processes can also request private mappings of a
file, which prevents any changes that they make from being visible to other pro-
cesses mapping the file or being written back to the file itself.

Another issue with the virtual-memory system is the way that information is
passed into the kernel when a system call is made. 4.4BSD always copies data
from the process address space into a buffer in the kernel. For read or write opera-
tions that are transferring large quantities of data, doing the copy can be time con-
suming. An alternative to doing the copying is to remap the process memory into
the kernel. The 4.4BSD kernel always copies the data for several reasons:

• Often, the user data are not page aligned and are not a multiple of the hardware
page length.

• If the page is taken away from the process, it will no longer be able to reference
that page. Some programs depend on the data remaining in the buffer even after
those data have been written.

• If the process is allowed to keep a copy of the page (as it is in current 4.4BSD
semantics), the page must be made copy-on-write. A copy-on-write page is one

that is protected against being written by being made read-only. If the process
attempts to modify the page, the kernel gets a write fault. The kernel then makes
a copy of the page that the process can modify. Unfortunately, the typical pro-
cess will immediately try to write new data to its output buffer, forcing the data
to be copied anyway.

•When pages are remapped to new virtual-memory addresses, most memory-
management hardware requires that the hardware address-translation cache be
purged selectively. The cache purges are often slow. The net effect is that
remapping is slower than copying for blocks of data less than 4 to 8 Kbyte.

The biggest incentives for memory mapping are the needs for accessing big files
and for passing large quantities of data between processes. The mmapO interface
provides a way for both of these tasks to be done without copying.

Memory Management Inside the Kernel

The kernel often does allocations of memory that are needed for only the duration
of a single system call. In a user process, such short-term memory would be allo-
cated on the run-time stack. Because the kernel has a limited run-time stack, it is
not feasible to allocate even moderate-sized blocks of memory on it. Conse-
quently, such memory must be allocated through a more dynamic mechanism. For
example, when the system must translate a pathname, it must allocate a 1-Kbyte
buffer to hold the name. Other blocks of memory must be more persistent than a
single system call, and thus could not be allocated on the stack even if there was
space. An example is protocol-control blocks that remain throughout the duration
of a network connection.

Demands for dynamic memory allocation in the kernel have increased as
more services have been added. A generalized memory allocator reduces the
complexity of writing code inside the kernel. Thus, the 4.4BSD kernel has a single
memory allocator that can be used by any part of the system. It has an interface
similar to the C library routines malloc() andfree() that provide memory alloca-
tion to application programs [McKusick & Karels, 1988]. Like the C library inter-
face, the allocation routine takes a parameter specifying the size of memory that is
needed. The range of sizes for memory requests is not constrained; however,
physical memory is allocated and is not paged. The free routine takes a pointer to
the storage being freed, but does not require the size of the piece of memory being
freed. *

2.6 I/O System

The basic model of the UNIX I/O system is a sequence of bytes that can be
accessed either randomly or sequentially. There are no access methods and no
control blocks in a typical UNIX user process.



Different programs expect various levels of structure, but the kernel does not
impose structure on I/O. For instance, the convention for text files is lines of
ASCII characters separated by a single newline character (the ASCII line-feed char-
acter), but the kernel knows nothing about this convention. For the purposes of
most programs, the model is further simplified to being a stream of data bytes, or
an I/O stream. It is this single common data form that makes the characteristic
UNIX tool-based approach work [Kernighan & Pike, 1984]. An I/O stream from
one program can be fed as input to almost any other program. (This kind of tradi-
tional UNIX I/O stream should not be confused with the Eighth Edition stream I/O
system or with the System V, Release 3 STREAMS, both of which can be accessed
as traditional I/O streams.)

Descriptors and I/O

UNIX processes use descriptors to reference I/O streams. Descriptors are small
unsigned integers obtained from the open and socket system calls. The open sys-
tem call takes as arguments the name of a file and a permission mode to specify
whether the file should be open for reading or for writing, or for both. This sys-
tem call also can be used to create a new, empty file. A read or write system call
can be applied to a descriptor to transfer data. The close system call can be used
to deallocate any descriptor.

Descriptors represent underlying objects supported by the kernel, and are cre-
ated by system calls specific to the type of object. In 4.4BSD, three kinds of
objects can be represented by descriptors: files, pipes, and sockets.

• A file is a linear array of bytes with at least one name. A file exists until all its
names are deleted explicitly and no process holds a descriptor for it. A process
acquires a descriptor for a file by opening that file's name with the open system
call. I/O devices are accessed as files.

• A pipe is a linear array of bytes, as is a file, but it is used solely as an I/O stream,
and it is unidirectional. It also has no name, and thus cannot be opened with
open. Instead, it is created by the pipe system call, which returns two descrip-
tors, one of which accepts input that is sent to the other descriptor reliably, with-
out duplication, and in order. The system also supports a named pipe or FIFO. A
FIFO has properties identical to a pipe, except that it appears in the filesystem;
thus, it can be opened using the open system call. Two processes that wish to
communicate each open the FIFO: One opens it for reading, the other for writing.

• A socket is a transient object that is used for interprocess communication; it
exists only as long as some process holds a descriptor referring to it. A socket is
created by the socket system call, which returns a descriptor for it. There are dif-
ferent kinds of sockets that support various communication semantics, such as
reliable delivery of data, preservation of message ordering, and preservation of
message boundaries.

In systems before 4.2BSD, pipes were implemented using the filesystem; when
sockets were introduced in 4.2BSD, pipes were reimplemented as sockets.

The kernel keeps for each process a descriptor table, which is a table that
the kernel uses to translate the external representation of a descriptor into an
internal representation. (The descriptor is merely an index into this table.) The
descriptor table of a process is inherited from that process's parent, and thus
access to the objects to which the descriptors refer also is inherited. The main
ways that a process can obtain a descriptor are by opening or creation of an
object, and by inheritance from the parent process. In addition, socket IPC
allows passing of descriptors in messages between unrelated processes on the
same machine.

Every valid descriptor has an associated file offset in bytes from the beginning
of the object. Read and write operations start at this offset, which is updated after
each data transfer. For objects that permit random access, the file offset also may
be set with the lseek system call. Ordinary files permit random access, and some
devices do, as well. Pipes and sockets do not.

When a process terminates, the kernel reclaims all the descriptors that were in
use by that process. If the process was holding the final reference to an object, the
object's manager is notified so that it can do any necessary cleanup actions, such
as final deletion of a file or deallocation of a socket.

Descriptor Management
Most processes expect three descriptors to be open already when they start run-
ning. These descriptors are 0, 1, 2, more commonly known as standard input,
standard output, and standard error, respectively. Usually, all three are associated
with the user's terminal by the login process (see Section 14.6) and are inherited
through fork and exec by processes run by the user. Thus, a program can read
what the user types by reading standard input, and the program can send output to
the user's screen by writing to standard output. The standard error descriptor also
is open for writing and is used for error output, whereas standard output is used
for ordinary output.

These (and other) descriptors can be mapped to objects other than the termi-
nal; such mapping is called I/O redirection, and all the standard shells permit users
to do it. The shell can direct the output of a program to a file by closing descriptor
1 (standard output) and opening the desired output file to produce a new descriptor
1. It can similarly redirect standard input to come from a file by closing descriptor
0 and opening the file.

Pipes allow the output of one program to be input to another program without
rewriting or even relinking of either program. Instead of descriptor 1 (standard
output) of the source program being set up to write to the terminal, it is set up to be
the input descriptor of a pipe. Similarly, descriptor 0 (standard input) of the sink
program is set up to reference the output of the pipe, instead of the terminal
keyboard. The resulting set of two processes and the connecting pipe is known as
a pipeline. Pipelines can be arbitrarily long series of processes connected by pipes.



The open, pipe, and socket system calls produce new descriptors with the low-
est unused number usable for a descriptor. For pipelines to work, some mecha-
nism must be provided to map such descriptors into 0 and 1. The dup system call
creates a copy of a descriptor that points to the same file-table entry. The new
descriptor is also the lowest unused one, but if the desired descriptor is closed first,
dup can be used to do the desired mapping. Care is required, however: If descrip-
tor 1 is desired, and descriptor 0 happens also to have been closed, descriptor 0
will be the result. To avoid this problem, the system provides the dup2 system
call; it is like dup, but it takes an additional argument specifying the number of the
desired descriptor (if the desired descriptor was already open, dup2 closes it
before reusing it).

Devices

Hardware devices have filenames, and may be accessed by the user via the same
system calls used for regular files. The kernel can distinguish a device special file
or special file, and can determine to what device it refers, but most processes do
not need to make this determination. Terminals, printers, and tape drives are all
accessed as though they were streams of bytes, like 4.4BSD disk files. Thus, de-
vice dependencies and peculiarities are kept in the kernel as much as possible, and
even in the kernel most of them are segregated in the device drivers.

Hardware devices can be categorized as either structured or unstructured;
they are known as block or character devices, respectively. Processes typically
access devices through special files in the filesystem. I/O operations to these files
are handled by kernel-resident software modules termed device drivers. Most net-
work-communication hardware devices are accessible through only the interpro-
cess-communication facilities, and do not have special files in the filesystem name
space, because the raw-socket interface provides a more natural interface than
does a special file.

Structured or block devices are typified by disks and magnetic tapes, and
include most random-access devices. The kernel supports read-modify-write-type
buffering actions on block-oriented structured devices to allow the latter to be read
and written in a totally random byte-addressed fashion, like regular files. Filesys-
tems are created on block devices.

Unstructured devices are those devices that do not support a block structure.
Familiar unstructured devices are communication lines, raster plotters, and
unbuffered magnetic tapes and disks. Unstructured devices typically support large
block I/O transfers.

Unstructured files are called character devices because the first of these to be
implemented were terminal device drivers. The kernel interface to the driver for
these devices proved convenient for other devices that were not block structured.

Device special files are created by the mknod system call. There is an addi-
tional system call, ioctl, for manipulating the underlying device parameters of spe-
cial files. The operations that can be done differ for each device. This system call
allows the special characteristics of devices to be accessed, rather than overload-
ing the semantics of other system calls. For example, there is an ioctl on a tape

drive to write an end-of-tape mark, instead of there being a special or modified
version of write.

Socket IPC
The 4.2BSD kernel introduced an IPC mechanism more flexible than pipes, based
on sockets. A socket is an endpoint of communication referred to by a descriptor,
just like a file or a pipe. Two processes can each create a socket, and then connect
those two endpoints to produce a reliable byte stream. Once connected, the
descriptors for the sockets can be read or written by processes, just as the latter
would do with a pipe. The transparency of sockets allows the kernel to redirect
the output of one process to the input of another process residing on another
machine. A major difference between pipes and sockets is that pipes require a
common parent process to set up the communications channel. A connection
between sockets can be set up by two unrelated processes, possibly residing on
different machines.

System V provides local interprocess communication through FIFOs (also
known as named pipes). FIFOs appear as an object in the filesystem that unrelated
processes can open and send data through in the same way as they would commu-
nicate through a pipe. Thus, FIFOs do not require a common parent to set them
up; they can be connected after a pair of processes are up and running. Unlike
sockets, FIFOs can be used on only a local machine; they cannot be used to com-
municate between processes on different machines. FIFOs are implemented in
4.4BSD only because they are required by the standard. Their functionality is a
subset of the socket interface.

The socket mechanism requires extensions to the traditional UNIX I/O system
calls to provide the associated naming and connection semantics. Rather than
overloading the existing interface, the developers used the existing interfaces to
the extent that the latter worked without being changed, and designed new inter-
faces to handle the added semantics. The read and write system calls were used
for byte-stream type connections, but six new system calls were added to allow
sending and receiving addressed messages such as network datagrams. The sys-
tem calls for writing messages include send, sendto, and sendmsg. The system
calls for reading messages include recv, recvfrom, and recvmsg. In retrospect, the
first two in each class are special cases of the others; recvfrom and sendto proba-
bly should have been added as library interfaces to recvmsg and sendmsg, respec-
tively.

Scatter/Gather I/O
In addition to the traditional read and write system calls, 4.2BSD introduced the
ability to do scatter/gather I/O. Scatter input uses the readv system call to allow a
single read to be placed in several different buffers. Conversely, the writev system
call allows several different buffers to be written in a single atomic write. Instead
of passing a single buffer and length parameter, as is done with read and write, the
process passes in a pointer to an array of buffers and lengths, along with a count
describing the size of the array.



This facility allows buffers in different parts of a process address space to be
written atomically, without the need to copy them to a single contiguous buffer.
Atomic writes are necessary in the case where the underlying abstraction is record
based, such as tape drives that output a tape block on each write request. It is also
convenient to be able to read a single request into several different buffers (such as
a record header into one place and the data into another). Although an application
can simulate the ability to scatter data by reading the data into a large buffer and
then copying the pieces to their intended destinations, the cost of memory-to-
memory copying in such cases often would more than double the running time of
the affected application.

Just as send and recv could have been implemented as library interfaces to
sendto and recvfrom, it also would have been possible to simulate read with readv
and write with writev. However, read and write are used so much more frequently
that the added cost of simulating them would not have been worthwhile.

Multiple Filesystem Support
With the expansion of network computing, it became desirable to support both
local and remote filesystems. To simplify the support of multiple filesystems, the
developers added a new virtual node or vnode interface to the kernel. The set of
operations exported from the vnode interface appear much like the filesystem
operations previously supported by the local filesystem. However, they may be
supported by a wide range of filesystem types:

• Local disk-based filesystems

• Files imported using a variety of remote filesystem protocols

• Read-only CD-ROM filesystems

•Filesystems providing special-purpose interfaces—for example, the /proc
filesystem

A few variants of 4.4BSD, such as FreeBSD, allow filesystems to be loaded
dynamically when the filesystems are first referenced by the mount system call.
The vnode interface is described in Section 6.5; its ancillary support routines are
described in Section 6.6; several of the special-purpose filesystems are described
in Section 6.7.

Filesystems
A regular file is a linear array of bytes, and can be read and written starting at any
byte in the file. The kernel distinguishes no record boundaries in regular files,
although many programs recognize line-feed characters as distinguishing the ends
of lines, and other programs may impose other structure. No system-related infor-
mation about a file is kept in the file itself, but the filesystem stores a small amount
of ownership, protection, and usage information with each file.

A filename component is a string of up to 255 characters. These filenames are
stored in a type of file called a directory. The information in a directory about a
file is called a directory entry and includes, in addition to the filename, a pointer to
the file itself. Directory entries may refer to other directories, as well as to plain
files. A hierarchy of directories and files is thus formed, and is called a filesystem;
a small one is shown in Fig. 2.2. Directories may contain subdirectories, and there
is no inherent limitation to the depth with which directory nesting may occur. To
protect the consistency of the filesystem, the kernel does not permit processes to
write directly into directories. A filesystem may include not only plain files and
directories, but also references to other objects, such as devices and sockets.

The filesystem forms a tree, the beginning of which is the root directory,
sometimes referred to by the name slash, spelled with a single solidus character
( /) . The root directory contains files; in our example in Fig. 2.2, it contains vmu-
nix, a copy of the kernel-executable object file. It also contains directories; in this
example, it contains the usr directory. Within the usr directory is the bin direc-
tory, which mostly contains executable object code of programs, such as the files
Is and vi.

A process identifies a file by specifying that file's pathname, which is a string
composed of zero or more filenames separated by slash ( / ) characters. The kernel
associates two directories with each process for use in interpreting pathnames. A
process's root directory is the topmost point in the filesystem that the process can
access; it is ordinarily set to the root directory of the entire filesystem. A path-
name beginning with a slash is called an absolute pathname, and is interpreted by
the kernel starting with the process's root directory.

Figure 2.2 A small filesystem tree.



A pathname that does not begin with a slash is called a relative pathname, and
is interpreted relative to the current working directory of the process. (This direc-
tory also is known by the shorter names current directory or working directory.}
The current directory itself may be referred to directly by the name dot, spelled
with a single period (.). The filename dot-dot (..) refers to a directory's parent
directory. The root directory is its own parent.

A process may set its root directory with the chroot system call, and its cur-
rent directory with the chdir system call. Any process may do chdir at any time,
but chroot is permitted only a process with superuser privileges. Chroot is nor-
mally used to set up restricted access to the system.

Using the filesystem shown in Fig. 2.2, if a process has the root of the filesys-
tem as its root directory, and has /usr as its current directory, it can refer to the file
vi either from the root with the absolute pathname /usr/bin/vi, or from its current
directory with the relative pathname bin/vi.

System utilities and databases are kept in certain well-known directories. Part
of the well-defined hierarchy includes a directory that contains the home directory
for each user—for example, /usr/staff/mckusick and /usr/staff/karels in Fig. 2.2.
When users log in, the current working directory of their shell is set to the home
directory. Within their home directories, users can create directories as easily as
they can regular files. Thus, a user can build arbitrarily complex subhierarchies.

The user usually knows of only one filesystem, but the system may know that
this one virtual filesystem is really composed of several physical filesystems, each
on a different device. A physical filesystem may not span multiple hardware
devices. Since most physical disk devices are divided into several logical devices,
there may be more than one filesystem per physical device, but there will be no
more than one per logical device. One filesystem—the filesystem that anchors all
absolute pathnames—is called the root filesystem, and is always available. Others
may be mounted; that is, they may be integrated into the directory hierarchy of the
root filesystem. References to a directory that has a filesystem mounted on it are
converted transparently by the kernel into references to the root directory of the
mounted filesystem.

The link system call takes the name of an existing file and another name to
create for that file. After a successful link, the file can be accessed by either file-
name. A filename can be removed with the unlink system call. When the final
name for a file is removed (and the final process that has the file open closes it),
the file is deleted.

Files are organized hierarchically in directories. A directory is a type of file,
but, in contrast to regular files, a directory has a structure imposed on it by the sys-
tem. A process can read a directory as it would an ordinary file, but only the ker-
nel is permitted to modify a directory. Directories are created by the mkdir system
call and are removed by the rmdir system call. Before 4.2BSD, the mkdir and
rmdir system calls were implemented by a series of link and unlink system calls
being done. There were three reasons for adding systems calls explicitly to create
and delete directories:

1. The operation could be made atomic. If the system crashed, the directory
would not be left half-constructed, as could happen when a series of link oper-
ations were used.

2. When a networked filesystem is being run, the creation and deletion of files
and directories need to be specified atomically so that they can be serialized.

3. When supporting non-UNIX filesystems, such as an MS-DOS filesystem, on
another partition of the disk, the other filesystem may not support link opera-
tions. Although other filesystems might support the concept of directories,
they probably would not create and delete the directories with links, as the
UNIX filesystem does. Consequently, they could create and delete directories
only if explicit directory create and delete requests were presented.

The chown system call sets the owner and group of a file, and chmod changes
protection attributes. Stat applied to a filename can be used to read back such
properties of a file. The fchown, fchmod, a system calls are applied to a
descriptor, instead of to a filename, to do the same set of operations. The rename
system call can be used to give a file a new name in the filesystem, replacing one
of the file's old names. Like the directory-creation and directory-deletion opera-
tions, the rename system call was added to 4.2BSD to provide atomicity to name
changes in the local filesystem. Later, it proved useful explicitly to export renam-
ing operations to foreign filesystems and over the network.

The truncate system call was added to 4.2BSD to allow files to be shortened
to an arbitrary offset. The call was added primarily in support of the Fortran run-
time library, which has the semantics such that the end of a random-access file is
set to be wherever the program most recently accessed that file. Without the trun-
cate system call, the only way to shorten a file was to copy the part that was
desired to a new file, to delete the old file, then to rename the copy to the original
name. As well as this algorithm being slow, the library could potentially fail on a
full filesystem.

Once the filesystem had the ability to shorten files, the kernel took advantage
of that ability to shorten large empty directories. The advantage of shortening
empty directories is that it reduces the time spent in the kernel searching them
when names are being created or deleted.

Newly created files are assigned the user identifier of the process that created
them and the group identifier of the directory in which they were created. A three-
level access-control mechanism is provided for the protection of files. These three
levels specify the accessibility of a file to

1. The user who owns the file

2. The group that owns the file

3. Everyone else



Each level of access has separate indicators for read permission, write permission,
and execute permission.

Files are created with zero length, and may grow'when they are written.
While a file is open, the system maintains a pointer into the file indicating the cur-
rent location in the file associated with the descriptor. This pointer can be moved
about in the file in a random-access fashion. Processes sharing a file descriptor
through a fork or dup system call share the current location pointer. Descriptors
created by separate open system calls have separate current location pointers.
Files may have holes in them. Holes are void areas in the linear extent of the file
where data have never been written. A process can create these holes by position-
ing the pointer past the current end-of-file and writing. When read, holes are
treated by the system as zero-valued bytes.

Earlier UNIX systems had a limit of 14 characters per filename component.
This limitation was often a problem. For example, in addition to the natural desire
of users to give files long descriptive names, a common way of forming filenames
is as basename.extension, where the extension (indicating the kind of file, such as
.c for C source or .o for intermediate binary object) is one to three characters,
leaving 10 to 12 characters for the basename. Source-code-control systems and
editors usually take up another two characters, either as a prefix or a suffix, for
their purposes, leaving eight to 10 characters. It is easy to use 10 or 12 characters
in a single English word as a basename (e.g., "multiplexer").

It is possible to keep within these limits, but it is inconvenient or even dan-
gerous, because other UNIX systems accept strings longer than the limit when
creating files, but then truncate to the limit. A C language source file named
multiplexer.c (already 13 characters) might have a source-code-control file with
s. prepended, producing a filename s.multiplexer that is indistinguishable from
the source-code-control file for multiplexer.ms, a file containing troff source for
documentation for the C program. The contents of the two original files could
easily get confused with no warning from the source-code-control system. Care-
ful coding can detect this problem, but the long filenames first introduced in
4.2BSD practically eliminate it.

2.8 Filestores

The operations defined for local filesystems are divided into two parts. Common
to all local filesystems are hierarchical naming, locking, quotas, attribute manage-
ment, and protection. These features are independent of how the data will be
stored. 4.4BSD has a single implementation to provide these semantics.

The other part of the local filesystem is the organization and management of
the data on the storage media. Laying out the contents of files on the storage
media is the responsibility of the filestore. 4.4BSD supports three different file-
store layouts:

• The traditional Berkeley Fast Filesystem

• The log-structured filesystem, based on the Sprite operating-system design
[Rosenblum & Ousterhout, 1992]

• A memory-based filesystem

Although the organizations of these filestores are completely different, these dif-
ferences are indistinguishable to the processes using the filestores.

The Fast Filesystem organizes data into cylinder groups. Files that are likely
to be accessed together, based on their locations in the filesystem hierarchy, are
stored in the same cylinder group. Files that are not expected to accessed together
are moved into different cylinder groups. Thus, files written at the same time may
be placed far apart on the disk.

The log-structured filesystem organizes data as a log. All data being written
at any point in time are gathered together, and are written at the same disk loca-
tion. Data are never overwritten; instead, a new copy of the file is written that
replaces the old one. The old files are reclaimed by a garbage-collection process
that runs when the filesystem becomes full and additional free space is needed.

The memory-based filesystem is designed to store data in virtual memory. It
is used for filesystems that need to support fast but temporary data, such as /tmp.
The goal of the memory-based filesystem is to keep the storage packed as com-
pactly as possible to minimize the usage of virtual-memory resources.

Network Filesystem
Initially, networking was used to transfer data from one machine to another. Later,
it evolved to allowing users to log in remotely to another machine. The next logi-
cal step was to bring the data to the user, instead of having the user go to the
data—and network filesystems were born. Users working locally do not experi-
ence the network delays on each keystroke, so they have a more responsive envi-
ronment.

Bringing the filesystem to a local machine was among the first of the major
client-server applications. The server is the remote machine that exports one or
more of its filesystems. The client is the local machine that imports those filesys-
tems. From the local client's point of view, a remotely mounted filesystem
appears in the file-tree name space just like any other locally mounted filesystem.
Local clients can change into directories on the remote filesystem, and can read,
write, and execute binaries within that remote filesystem identically to the way
that they can do these operations on a local filesystem.

When the local client does an operation on a remote filesystem, the request is
packaged and is sent to the server. The server does the requested operation and
returns either the requested information or an error indicating why the request was



stream-type sockets. A new interface was added for more complicated sockets,
such as those used to send datagrams, with which a destination address must be
presented with each send call.

Another benefit is that the new interface is highly portable. Shortly after a
test release was available from Berkeley, the socket interface had been ported to
System III by a UNIX vendor (although AT&T did not support the socket interface
until the release of System V Release 4, deciding instead to use the Eighth Edition
stream mechanism). The socket interface was also ported to run in many Ethernet
boards by vendors, such as Excelan and Interlan, that were selling into the PC
market, where the machines were too small to run networking in the main proces-
sor. More recently, the socket interface was used as the basis for Microsoft's
Winsock networking interface for Windows.

2.12 Network Communication

Some of the communication domains supported by the socket IPC mechanism pro-
vide access to network protocols. These protocols are implemented as a separate
software layer logically below the socket software in the kernel. The kernel pro-
vides many ancillary services, such as buffer management, message routing, stan-
dardized interfaces to the protocols, and interfaces to the network interface drivers
for the use of the various network protocols.

At the time that 4.2BSD was being implemented, there were many networking
protocols in use or under development, each with its own strengths and weak-
nesses. There was no clearly superior protocol or protocol suite. By supporting
multiple protocols, 4.2BSD could provide interoperability and resource sharing
among the diverse set of machines that was available in the Berkeley environment.
Multiple-protocol support also provides for future changes. Today's protocols
designed for 10- to 100-Mbit-per-second Ethernets are likely to be inadequate for
tomorrow's 1- to 10-Gbit-per-second fiber-optic networks. Consequently, the net-
work-communication layer is designed to support multiple protocols. New proto-
cols are added to the kernel without the support for older protocols being affected.
Older applications can continue to operate using the old protocol over the same
physical network as is used by newer applications running with a newer network
protocol.

2.13 Network Implementation

The first protocol suite implemented in 4.2BSD was DARPA's Transmission Con-
trol Protocol/Internet Protocol (TCP/IP). The CSRG chose TCP/IP as the first net-
work to incorporate into the socket IPC framework, because a 4.1 BSD-based
implementation was publicly available from a DARPA-sponsored project at Bolt,
Beranek, and Newman (BBN). That was an influential choice: The 4.2BSD

implementation is the main reason for the extremely widespread use of this
protocol suite. Later performance and capability improvements to the TCP/IP
implementation have also been widely adopted. The TCP/IP implementation is
described in detail in Chapter 13.

The release of 4.3BSD added the Xerox Network Systems (XNS) protocol
suite, partly building on work done at the University of Maryland and at Cornell
University. This suite was needed to connect isolated machines that could not
communicate using TCP/IP.

The release of 4.4BSD added the ISO protocol suite because of the latter's
increasing visibility both within and outside the United States. Because of the
somewhat different semantics defined for the ISO protocols, some minor changes
were required in the socket interface to accommodate these semantics. The
changes were made such that they were invisible to clients of other existing proto-
cols. The ISO protocols also required extensive addition to the two-level routing
tables provided by the kernel in 4.3BSD. The greatly expanded routing capabili-
ties of 4.4BSD include arbitrary levels of routing with variable-length addresses
and network masks.

2.14 System Operation
Bootstrapping mechanisms are used to start the system running. First, the 4.4BSD
kernel must be loaded into the main memory of the processor. Once loaded, it
must go through an initialization phase to set the hardware into a known state.
Next, the kernel must do autoconfiguration, a process that finds and configures the
peripherals that are attached to the processor. The system begins running in sin-
gle-user mode while a start-up script does disk checks and starts the accounting
and quota checking. Finally, the start-up script starts the general system services
and brings up the system to full multiuser operation.

During multiuser operation, processes wait for login requests on the terminal
lines and network ports that have been configured for user access. When a login
request is detected, a login process is spawned and user validation is done. When
the login validation is successful, a login shell is created from which the user can
run additional processes.

rcises
2.1 How does a user process request a service from the kernel?

2.2 How are data transferred between a process and the kernel? What alterna-
tives are available?

2.3 How does a process access an I/O stream? List three types of I/O streams.

2.4 What are the four steps in the lifecycle of a process?



2.5 Why are process groups provided in 4.3BSD?

2.6 Describe four machine-dependent functions of the kernel?

2.7 Describe the difference between an absolute and a relative pathname.

2.8 Give three reasons why the mkdir system call was added to 4.2BSD.

2.9 Define scatter-gather I/O. Why is it useful?

2.10 What is the difference between a block and a character device?

2.11 List five functions provided by a terminal driver.

2.12 What is the difference between a pipe and a socket?

2.13 Describe how to create a group of processes in a pipeline.

*2.14 List the three system calls that were required to create a new directory foo
in the current directory before the addition of the mkdir system call.

*2.15 Explain the difference between interprocess communication and net-
working.

References
Accetta etal, 1986.

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, & M.
Young, "Mach: A New Kernel Foundation for UNIX Development,"
USENIX Association Conference Proceedings, pp. 93-113, June 1986.

Cheriton, 1988.
D. R. Cheriton, "The V Distributed System," Comm ACM, vol. 31, no. 3,
pp. 314-333, March 1988.

Ewens etal, 1985.
P. Ewens, D. R. Blythe, M. Funkenhauser, & R. C. Holt, "Tunis: A Dis-
tributed Multiprocessor Operating System," USENIX Association Confer-
ence Proceedings, pp. 247-254, June 1985.

Gingelletal, 1987.
R. Gingell, J. Moran, & W. Shannon, "Virtual Memory Architecture in
SunOS," USENIX Association Conference Proceedings, pp. 81-94, June
1987.

Kernighan & Pike, 1984.
B. W. Kernighan & R. Pike, The UNIX Programming Environment, Prentice-
Hall, Englewood Cliffs, NJ, 1984.

Macklem, 1994.
R. Macklem, "The 4.4BSD NFS Implementation," in 4.4BSD System Man-
ager's Manual, pp. 6:1-14, O'Reilly & Associates, Inc., Sebastopol, CA,
1994.

McKusick & Karels, 1988.
M. K. McKusick & M. J. Karels, "Design of a General Purpose Memory

Allocator for the 4.3BSD UNIX Kernel," USENIX Association Conference
Proceedings, pp. 295-304, June 1988.

J. Karels, S. J. Leffler, W. N. Joy, & R. S.
"Berkeley Software Architecture Manual, 4.4BSD Edition," in 4
Programmer's Supplementary Documents, pp. 5:1-42, O'Reilly & Associ-
ates, Inc., Sebastopol, CA, 1994.

8 Ritchie, "Early Kernel Design," private communication, March 1988.
Rosenblum & Ousterhout, 1992.

M Rosenblum & J. Ousterhout, "The Design and Implementation of a Log-
Structured File System," ACM Transactions on Computer Systems, vol. 10,
no. 1, pp. 26-52, Association for Computing Machinery, February 1992.

M. Rozier,V. Abrossimov, F. Armand, I. Boule, M. Gien, M. Guillemont, F.
Herrman, C. Kaiser, S. Langlois, P. Leonard, & W. Neuhauser Chorus
Distributed Operating Systems," USENIX Computing Systems, vol. 1, no. 4,
pp. 305-370, Fall 1988.

Tevanian ,1987. Memory Management for
Parallel and Distributed Environments: The Mach Approach, Technical
Report CMU-CS-88-106, Department of Computer Science, Carnegie-Mel-
lon University, Pittsburgh, PA, December 1987.



CHAPTER 3

Kernel Services

3.1 Kernel Organization

The 4.4BSD kernel can be viewed as a service provider to user processes. Pro-
cesses usually access these services through system calls. Some services, such as
process scheduling and memory management, are implemented as processes that
execute in kernel mode or as routines that execute periodically within the kernel.
In this chapter, we describe how kernel services are provided to user processes,
and what some of the ancillary processing performed by the kernel is. Then, we
describe the basic kernel services provided by 4.4BSD, and provide details of their
implementation.

System Processes
All 4.4BSD processes originate from a single process that is crafted by the kernel
at startup. Three processes are created immediately and exist always. Two of
them are kernel processes, and function wholly within the kernel. (Kernel pro-
cesses execute code that is compiled into the kernel's load image and operate with
the kernel's privileged execution mode.) The third is the first process to execute a
program in user mode; it serves as the parent process for all subsequent processes.

The two kernel processes are the swapper and the pagedaemon. The swap-
per—historically, process 0—is responsible for scheduling the transfer of whole
processes between main memory and secondary storage when system resources are
low. The pagedaemon—historically, process 2—is responsible for writing parts of
the address space of a process to secondary storage in support of the paging facili-
ties of the virtual-memory system. The third process is the init process—histori-
cally, process 1. This process performs administrative tasks, such as spawning
getty processes for each terminal on a machine and handling the orderly shutdown
of a system from multiuser to single-user operation. The init process is a user-
mode process, running outside the kernel (see Section 14.6).

49



System Entry

Entrances into the kernel can be categorized according to the event or action that
initiates it;

• Hardware interrupt

• Hardware trap

• Software-initiated trap

Hardware interrupts arise from external events, such as an I/O device needing
attention or a clock reporting the passage of time. (For example, the kernel
depends on the presence of a real-time clock or interval timer to maintain the cur-
rent time of day, to drive process scheduling, and to initiate the execution of sys-
tem timeout functions.) Hardware interrupts occur asynchronously and may not
relate to the context of the currently executing process.

Hardware traps may be either synchronous or asynchronous, but are related
to the current executing process. Examples of hardware traps are those generated
as a result of an illegal arithmetic operation, such as divide by zero.

Software-initiated traps are used by the system to force the scheduling of an
event such as process rescheduling or network processing, as soon as is possible.
For most uses of software-initiated traps, it is an implementation detail whether
they are implemented as a hardware-generated interrupt, or as a flag that is
checked whenever the priority level drops (e.g., on every exit from the kernel). An
example of hardware support for software-initiated traps is the asynchronous sys-
tem trap (AST) provided by the VAX architecture. An AST is posted by the kernel.
Then, when a return-from-interrupt instruction drops the interrupt-priority level
below a threshold, an AST interrupt will be delivered. Most architectures today do
not have hardware support for ASTs, so they must implement ASTs in software.

System calls are a special case of a software-initiated trap—the machine
instruction used to initiate a system call typically causes a hardware trap that is
handled specially by the kernel.

Run-Time Organization

The kernel can be logically divided into a top half and a bottom half, as shown in
Fig. 3.1. The top half of the kernel provides services to processes in response to
system calls or traps. This software can be thought of as a library of routines
shared by all processes. The top half of the kernel executes in a privileged execu-
tion mode, in which it has access both to kernel data structures and to the context
of user-level processes. The context of each process is contained in two areas of
memory reserved for process-specific information. The first of these areas is the
process structure, which has historically contained the information that is neces-
sary even if the process has been swapped out. In 4.4BSD, this information
includes the identifiers associated with the process, the process's rights and privi-
leges, its descriptors, its memory map, pending external events and associated

user process

top half
of kernel

cat

READ

Preemptive scheduling
cannot block; runs on user
stack in user address space

Runs until blocked or done.
Can block to wait for a
resource; runs on per-process
kernel stack

bottom half
of kernel

Figure 3.1 Run-time structure of the kernel.

Never scheduled, cannot
block. Runs on kernel
stack in kernel address space.

actions, maximum and current resource utilization, and many other things. The
second is the user structure, which has historically contained the information that
is not necessary when the process is swapped out. In 4.4BSD, the user-structure
information of each process includes the hardware process control block (PCB),
process accounting and statistics, and minor additional information for debugging
and creating a core dump. Deciding what was to be stored in the process structure
and the user structure was far more important in previous systems than it was in
4.4BSD. As memory became a less limited resource, most of the user structure
was merged into the process structure for convenience; see Section 4.2.

The bottom half of the kernel comprises routines that are invoked to handle
hardware interrupts. The kernel requires that hardware facilities be available to
block the delivery of interrupts. Improved performance is available if the hardware
facilities allow interrupts to be defined in order of priority. Whereas the HP300
provides distinct hardware priority levels for different kinds of interrupts, UNIX
also runs on architectures such as the Perkin Elmer, where interrupts are all at the
same priority, or the ELXSI, where there are no interrupts in the traditional sense.

Activities in the bottom half of the kernel are asynchronous, with respect to
the top half, and the software cannot depend on having a specific (or any) process
running when an interrupt occurs. Thus, the state information for the process that
initiated the activity is not available. (Activities in the bottom half of the kernel
are synchronous with respect to the interrupt source.) The top and bottom halves
of the kernel communicate through data structures, generally organized around
work queues.



The 4.4BSD kernel is never preempted to run another process while executing
in the top half of the kernel—for example, while executing a system call—
although it will explicitly give up the processor if it must wait for an event or for a
shared resource. Its execution may be interrupted, however, by interrupts for the
bottom half of the kernel. The bottom half always begins running at a specific
priority level. Therefore, the top half can block these interrupts by setting the pro-
cessor priority level to an appropriate value. The value is chosen based on the pri-
ority level of the device that shares the data structures that the top half is about to
modify. This mechanism ensures the consistency of the work queues and other
data structures shared between the top and bottom halves.

Processes cooperate in the sharing of system resources, such as the CPU. The
top and bottom halves of the kernel also work together in implementing certain
system operations, such as I/O. Typically, the top half will start an I/O operation,
then relinquish the processor; then the requesting process will sleep, awaiting noti-
fication from the bottom half that the I/O request has completed.

Entry to the Kernel

When a process enters the kernel through a trap or an interrupt, the kernel must
save the current machine state before it begins to service the event. For the HP300,
the machine state that must be saved includes the program counter, the user stack
pointer, the general-purpose registers and the processor status longword. The
HP300 trap instruction saves the program counter and the processor status long-
word as part of the exception stack frame; the user stack pointer and registers must
be saved by the software trap handler. If the machine state were not fully saved,
the kernel could change values in the currently executing program in improper
ways. Since interrupts may occur between any two user-level instructions (and,
on some architectures, between parts of a single instruction), and because they
may be completely unrelated to the currently executing process, an incompletely
saved state could cause correct programs to fail in mysterious and not easily repro-
duceable ways.

The exact sequence of events required to save the process state is completely
machine dependent, although the HP300 provides a good example of the general
procedure. A trap or system call will trigger the following events:

• The hardware switches into kernel (supervisor) mode, so that memory-access
checks are made with kernel privileges, references to the stack pointer use the
kernel's stack pointer, and privileged instructions can be executed.

• The hardware pushes onto the per-process kernel stack the program counter,
processor status longword, and information describing the type of trap. (On
architectures other than the HP300, this information can include the system-call
number and general-purpose registers as well.)

• An assembly-language routine saves all state information not saved by the hard-
ware. On the HP300, this information includes the general-purpose registers and
the user stack pointer, also saved onto the per-process kernel stack.

After this preliminary state saving, the kernel calls a C routine that can freely use
the general-purpose registers as any other C routine would, without concern about
changing the unsuspecting process's state.

There are three major kinds of handlers, corresponding to particular kernel
entries:

1. Syscall () for a system call
2. Trap () for hardware traps and for software-initiated traps other than system calls

3. The appropriate device-driver interrupt handler for a hardware interrupt

Each type of handler takes its own specific set of parameters. For a system call,
they are the system-call number and an exception frame. For a trap, they are the
type of trap, the relevant floating-point and virtual-address information related to
the trap, and an exception frame. (The exception-frame arguments for the trap and
system call are not the same. The HP300 hardware saves different information
based on different types of traps.) For a hardware interrupt, the only parameter is
a unit (or board) number.

Return from the Kernel
When the handling of the system entry is completed, the user-process state is
restored, and the kernel returns to the user process. Returning to the user process
reverses the process of entering the kernel.

• An assembly-language routine restores the general-purpose registers and user-
stack pointer previously pushed onto the stack.

• The hardware restores the program counter and program status longword, and
switches to user mode, so that future references to the stack pointer use the
user's stack pointer, privileged instructions cannot be executed, and memory-
access checks are done with user-level privileges.

Execution then resumes at the next instruction in the user's process.

System Calls
The most frequent trap into the kernel (after clock processing) is a request to do a
system call. System performance requires that the kernel minimize the overhead
in fielding and dispatching a system call. The system-call handler must do the fol-
lowing work:

• Verify that the parameters to the system call are located at a valid user address,
and copy them from the user's address space into the kernel

• Call a kernel routine that implements the system call



Result Handling

Eventually, the system call returns to the calling process, either successfully or
unsuccessfully. On the HP300 architecture, success or failure is returned as the
carry bit in the user process's program status longword: If it is zero, the return was
successful; otherwise, it was unsuccessful. On the HP300 and many other
machines, return values of C functions are passed back through a general-purpose
register (for the HP300, data register 0). The routines in the kernel that implement
system calls return the values that are normally associated with the global variable
errno. After a system call, the kernel system-call handler leaves this value in the
register. If the system call failed, a C library routine moves that value into errno,
and sets the return register to -1. The calling process is expected to notice the
value of the return register, and then to examine errno. The mechanism involving
the carry bit and the global variable errno exists for historical reasons derived
from the PDP-11.

There are two kinds of unsuccessful returns from a system call: those where
kernel routines discover an error, and those where a system call is interrupted.
The most common case is a system call that is interrupted when it has relinquished
the processor to wait for an event that may not occur for a long time (such as ter-
minal input), and a signal arrives in the interim. When signal handlers are initial-
ized by a process, they specify whether system calls that they interrupt should be
restarted, or whether the system call should return with an interrupted system call
(EINTR) error.

When a system call is interrupted, the signal is delivered to the process. If the
process has requested that the signal abort the system call, the handler then returns
an error, as described previously. If the system call is to be restarted, however, the
handler resets the process's program counter to the machine instruction that
caused the system-call trap into the kernel. (This calculation is necessary because
the program-counter value that was saved when the system-call trap was done is
for the instruction after the trap-causing instruction.) The handler replaces the
saved program-counter value with this address. When the process returns from
the signal handler, it resumes at the program-counter value that the handler pro-
vided, and reexecutes the same system call.

Restarting a system call by resetting the program counter has certain implica-
tions. First, the kernel must not modify any of the input parameters in the process
address space (it can modify the kernel copy of the parameters that it makes).
Second, it must ensure that the system call has not performed any actions that can-
not be repeated. For example, in the current system, if any characters have been
read from the terminal, the read must return with a short count. Otherwise, if the
call were to be restarted, the already-read bytes would be lost.

Returning from a System Call
While the system call is running, a signal may be posted to the process, or another
process may attain a higher scheduling priority. After the system call completes,
the handler checks to see whether either event has occurred.

The handler first checks for a posted signal. Such signals include signals that
interrupted the system call, as well as signals that arrived while a system call was
in progress, but were held pending until the system call completed. Signals that
are ignored, by default or by explicit programmatic request, are never posted to
the process. Signals with a default action have that action taken before the process
runs again (i.e., the process may be stopped or terminated as appropriate). If a
signal is to be caught (and is not currently blocked), the handler arranges to have
the appropriate signal handler called, rather than to have the process return
directly from the system call. After the handler returns, the process will resume
execution at system-call return (or system-call execution, if the system call is
being restarted).

After checking for posted signals, the handler checks to see whether any
process has a priority higher than that of the currently running one. If such a
process exists, the handler calls the con text-switch routine to cause the higher-
priority process to run. At a later time, the current process will again have the
highest priority, and will resume execution by returning from the system call to
the user process.

If a process has requested that the system do profiling, the handler also calcu-
lates the amount of time that has been spent in the system call, i.e., the system
time accounted to the process between the latter's entry into and exit from the
handler. This time is charged to the routine in the user's process that made the
system call.

Traps and Interrupts

Traps
Traps, like system calls, occur synchronously for a process. Traps normally occur
because of unintentional errors, such as division by zero or indirection through an
invalid pointer. The process becomes aware-of the problem either by catching a
signal or by being terminated. Traps can also occur because of a page fault, in
which case the system makes the page available and restarts the process without
the process being aware that the fault occurred.
. The trap handler is invoked like the system-call handler. First, the process

state is saved. Next, the trap handler determines the trap type, then arranges to post
a signal or to cause a pagein as appropriate. Finally, it checks for pending signals
and higher-priority processes, and exits identically to the system-call handler.

I/O Device Interrupts
Interrupts from I/O and other devices are handled by interrupt routines that are
loaded as part of the kernel's address space. These routines handle the console
terminal interface, one or more clocks, and several software-initiated interrupts
used by the system for low-priority clock processing and for networking facilities.



Unlike traps and system calls, device interrupts occur asynchronously. The
process that requested the service is unlikely to be the currently running process,
and may no longer exist! The process that started the operation will be notified
that the operation has finished when that process runs again. As occurs with traps
and system calls, the entire machine state must be saved, since any changes could
cause errors in the currently running process.

Device-interrupt handlers run only on demand, and are never scheduled by the
kernel. Unlike system calls, interrupt handlers do not have a per-process context.
Interrupt handlers cannot use any of the context of the currently running process
(e.g., the process's user structure). The stack normally used by the kernel is part
of a process context. On some systems (e.g., the HP300), the interrupts are caught
on the per-process kernel stack of whichever process happens to be running. This
approach requires that all the per-process kernel stacks be large enough to handle
the deepest possible nesting caused by a system call and one or more interrupts,
and that a per-process kernel stack always be available, even when a process is not
running. Other architectures (e.g., the VAX), provide a systemwide interrupt stack
that is used solely for device interrupts. This architecture allows the per-process
kernel stacks to be sized based on only the requirements for handling a syn-
chronous trap or system call. Regardless of the implementation, when an interrupt
occurs, the system must switch to the correct stack (either explicitly, or as part of
the hardware exception handling) before it begins to handle the interrupt.

The interrupt handler can never use the stack to save state between invoca-
tions. An interrupt handler must get all the information that it needs from the data
structures that it shares with the top half of the kernel—generally, its global work
queue. Similarly, all information provided to the top half of the kernel by the
interrupt handler must be communicated the same way. In addition, because
4.4BSD requires a per-process context for a thread of control to sleep, an interrupt
handler cannot relinquish the processor to wait for resources, but rather must
always run to completion.

Software Interrupts

Many events in the kernel are driven by hardware interrupts. For high-speed
devices such as network controllers, these interrupts occur at a high priority. A
network controller must quickly acknowledge receipt of a packet and reenable the
controller to accept more packets to avoid losing closely spaced packets. How-
ever, the further processing of passing the packet to the receiving process,
although time consuming, does not need to be done quickly. Thus, a lower prior-
ity is possible for the further processing, so critical operations will not be blocked
from executing longer than necessary.

The mechanism for doing lower-priority processing is called a software inter-
rupt. Typically, a high-priority interrupt creates a queue of work to be done at a .
lower-priority level. After queueing of the work request, the high-priority interrupt
arranges for the processing of the request to be run at a lower-priority level. When
the machine priority drops below that lower priority, an interrupt is generated that
calls the requested function. If a higher-priority interrupt comes in during request

processing, that processing will be preempted like any other low-priority task. On
some architectures, the interrupts are true hardware traps caused by software
instructions. Other architectures implement the same functionality by monitoring
flags set by the interrupt handler at appropriate times and calling the request-pro-
cessing functions directly.

The delivery of network packets to destination processes is handled by a
packet-processing function that runs at low priority. As packets come in, they are
put onto a work queue, and the controller is immediately reenabled. Between
packet arrivals, the packet-processing function works to deliver the packets. Thus,
the controller can accept new packets without having to wait for the previous
packet to be delivered. In addition to network processing, software interrupts are
used to handle time-related events and process rescheduling.

Clock Interrupts
The system is driven by a clock that interrupts at regular intervals. Each interrupt
is referred to as a tick. On the HP300, the clock ticks 100 times per second. At
each tick, the system updates the current time of day as well as user-process and
system timers.

Interrupts for clock ticks are posted at a high hardware-interrupt priority.
After the process state has been saved, the hardclock() routine is called. It is
important that the hardclock() routine finish its job quickly:

• If hardclock() runs for more than one tick, it will miss the next clock interrupt.
Since hardclock() maintains the time of day for the system, a missed interrupt
will cause the system to lose time.

• Because of hardclock()s high interrupt priority, nearly all other activity in the
system is blocked while hardclock() is running. This blocking can cause net-
work controllers to miss packets, or a disk controller to miss the transfer of a
sector coming under a disk drive's head.

So that the time spent in hardclock() is minimized, less critical time-related pro-
cessing is handled by a lower-priority software-interrupt handler called
softclock(). In addition, if multiple clocks are available, some time-related pro-
cessing can be handled by other routines supported by alternate clocks.

The work done by hardclock() is as follows:

• Increment the current time of day.
• If the currently running process has a virtual or profiling interval timer (see Sec-

tion 3.6), decrement the timer and deliver a signal if the timer has expired.

• If the system does not have a separate clock for statistics gathering, the
hardclock() routine does the operations normally done by statclock(), as
described in the next section.



• If softclock() needs to be called, and the current interrupt-priority level is low,
call softclock() directly.

Statistics and Process Scheduling

On historic 4BSD systems, the hardclock( ) routine collected resource-utilization
statistics about what was happening when the clock interrupted. These statistics
were used to do accounting, to monitor what the system was doing, and to deter-
mine future scheduling priorities. In addition, hardclock( ) forced context
switches so that all processes would get a share of the CPU.

This approach has weaknesses because the clock supporting hardclock( )
interrupts on a regular basis. Processes can become synchronized with the system
clock, resulting in inaccurate measurements of resource utilization (especially
CPU) and inaccurate profiling [McCanne & Torek, 1993]. It is also possible to
write programs that deliberately synchronize with the system clock to outwit the
scheduler.

On architectures with multiple high-precision, programmable clocks, such as
the HP300, randomizing the interrupt period of a clock can improve the system
resource-usage measurements significantly. One clock is set to interrupt at a fixed
rate; the other interrupts at a random interval chosen from times distributed uni-
formly over a bounded range.

To allow the collection of more accurate profiling information, 4.4BSD sup-
ports profiling clocks. When a profiling clock is available, it is set to run at a tick
rate that is relatively prime to the main system clock (five times as often as the
system clock, on the HP300).

The statclock( ) routine is supported by a separate clock if one is available,
and is responsible for accumulating resource usage to processes. The work done
by statclock() includes

• Charge the currently running process with a tick; if the process has accumulated
four ticks, recalculate its priority. If the new priority is less than the current pri-
ority, arrange for the process to be rescheduled.

• Collect statistics on what the system was doing at the time of the tick (sitting
idle, executing in user mode, or executing in system mode). Include basic infor-
mation on system I/O, such as which disk drives are currently active.

Timeouts

The remaining time-related processing involves processing timeout requests and
periodically reprioritizing processes that are ready to run. These functions are
handled by the softclockO routine.

When hardclockO completes, if there were any softclockO functions to be
done, hardclock( ) schedules a softclock interrupt, or sets a flag that will cause
softclock( ) to be called. As an optimization, if the state of the processor is such
that the softclock( ) execution will occur as soon as the hardclock interrupt returns,
hardclock( ) simply lowers the processor priority and calls softclock( ) directly,

avoiding the cost of returning from one interrupt only to reenter another. The
savings can be substantial over time, because interrupts are expensive and these
interrupts occur so frequently.

The primary task of the softclock( ) routine is to arrange for the execution of
periodic events, such as

• Process real-time timer (see Section 3.6)

• Retransmission of dropped network packets

• Watchdog timers on peripherals that require monitoring

• System process-rescheduling events

An important event is the scheduling that periodically raises or lowers the
CPU priority for each process in the system based on that process's recent CPU
usage (see Section 4.4). The rescheduling calculation is done once per second.
The scheduler is started at boot time, and each time that it runs, it requests that it
be invoked again 1 second in the future.

On a heavily loaded system with many processes, the scheduler may take a
long time to complete its job. Posting its next invocation 1 second after each com-
pletion may cause scheduling to occur less frequently than once per second. How-
ever, as the scheduler is not responsible for any time-critical functions, such as
maintaining the time of day, scheduling less frequently than once a second is nor-
mally not a problem.

The data structure that describes waiting events is called the callout queue.
Figure 3.2 shows an example of the callout queue. When a process schedules an
event, it specifies a function to be called, a pointer to be passed as an argument to
the function, and the number of clock ticks until the event should occur.

The queue is sorted in time order, with the events that are to occur soonest at
the front, and the most distant events at the end. The time for each event is kept as
a difference from the time of the previous event on the queue. Thus, the
hardclock( ) routine needs only to check the time to expire of the first element to
determine whether softclock( ) needs to run. In addition, decrementing the time to
expire of the first element decrements the time for all events. The softclock( ) rou-
tine executes events from the front of the queue whose time has decremented to
zero until it finds an event with a still-future (positive) time. New events are
added to the queue much less frequently than the queue is checked to see whether

Figure 3.2 Timer events in the callout queue.

queue —
time

function and
argument

when

-
1 tick

/(x)
10ms 40ms 40ms 850ms



any events are to occur. So, it is more efficient to identify the proper location to
place an event when that event is added to the queue than to scan the entire queue
to determine which events should occur at any single time.

The single argument is provided for the callout-queue function that is called,
so that one function can be used by multiple processes. For example, there is a
single real-time timer function that sends a signal to a process when a timer
expires. Every process that has a real-time timer running posts a timeout request
for this function; the argument that is passed to the function is a pointer to the pro-
cess structure for the process. This argument enables the timeout function to
deliver the signal to the correct process.

Timeout processing is more efficient when the timeouts are specified in ticks.
Time updates require only an integer decrement, and checks for timer expiration
require only a comparison against zero. If the timers contained time values, decre-
menting and comparisons would be more complex. If the number of events to be
managed were large, the cost of the linear search to insert new events correctly
could dominate the simple linear queue used in 4.4BSD. Other possible
approaches include maintaining a heap with the next-occurring event at the top
[Barkley & Lee, 1988], or maintaining separate queues of short-, medium- and
long-term events [Varghese & Lauck, 1987].

3.5 Memory-Management Services

The memory organization and layout associated with a 4.4BSD process is shown
in Fig. 3.3. Each process begins execution with three memory segments, called
text, data, and stack. The data segment is divided into initialized data and unini-
tialized data (also known as bss). The text is read-only and is normally shared by
all processes executing the file, whereas the data and stack areas can be written by,
and are private to, each process. The text and initialized data for the process are
read from the executable file.

An executable file is distinguished by its being a plain file (rather than a direc-
tory, special file, or symbolic link) and by its having 1 or more of its execute bits
set. In the traditional a. out executable format, the first few bytes of the file contain
a magic number that specifies what type of executable file that file is. Executable
files fall into two major classes:

1. Files that must be read by an interpreter

2. Files that are directly executable

In the first class, the first 2 bytes of the file are the two-character sequence #! fol-
lowed by the pathname of the interpreter to be used. (This pathname is currently
limited by a compile-time constant to 30 characters.) For example, #!/bin/sh refers
to the Bourne shell. The kernel executes the named interpreter, passing the name
of the file that is to be interpreted as an argument. To prevent loops, 4.4BSD allows
only one level of interpretation, and a file's interpreter may not itself be interpreted.

OxFFFOOOOO

0x00000000

per-process
kernel stack

red zone

user area

ps_strings struct

signal code

env strings

argv strings

env pointers

argv pointers

argc

user stack

heap

bss

initialized data

text

process memory-
resident image

symbol table

initialized data

text

a.out header

a.out magic number

executable-file
disk image

Figure 3.3 Layout of a UNIX process in memory and on disk.

For performance reasons, most files are directly executable. Each directly
executable file has a magic number that specifies whether that file can be paged
and whether the text part of the file can be shared among multiple processes. Fol-
lowing the magic number is an exec header that specifies the sizes of text, initial-
ized data, uninitialized data, and additional information for debugging. (The
debugging information is not used by the kernel or by the executing program.)
Following the header is an image of the text, followed by an image of the initial-
ized data. Uninitialized data are not contained in the executable file because they
can be created on demand using zero-filled memory.



To begin execution, the kernel arranges to have the text portion of the file
mapped into the low part of the process address space. The initialized data portion
of the file is mapped into the address space following the text. An area equal to
the uninitialized data region is created with zero-filled memory after the initialized
data region. The stack is also created from zero-filled memory. Although the
stack should not need to be zero filled, early UNIX systems made it so. In an
attempt to save some startup time, the developers modified the kernel to not zero
fill the stack, leaving the random previous contents of the page instead. Numerous
programs stopped working because they depended on the local variables in their
main procedure being initialized to zero. Consequently, the zero filling of the
stack was restored.

Copying into memory the entire text and initialized data portion of a large
program causes a long startup latency. 4.4BSD avoids this startup time by demand
paging the program into memory, rather than preloading the program. In demand
paging, the program is loaded in small pieces (pages) as it is needed, rather than
all at once before it begins execution. The system does demand paging by divid-
ing up the address space into equal-sized areas called pages. For each page, the
kernel records the offset into the executable file of the corresponding data. The
first access to an address on each page causes a page-fault trap in the kernel. The
page-fault handler reads the correct page of the executable file into the process
memory. Thus, the kernel loads only those parts of the executable file that are
needed. Chapter 5 explains paging details.

The uninitialized data area can be extended with zero-filled pages using the
system call sbrk, although most user processes use the library routine malloc( ) a
more programmer-friendly interface to sbrk. This allocated memory, which grows
from the top of the original data segment, is called the heap. On the HP300, the
stack grows down from the top of memory, whereas the heap grows up from the
bottom of memory.

Above the user stack are areas of memory that are created by the system when
the process is started. Directly above the user stack is the number of arguments
(argc), the argument vector (argv), and the process environment vector (envp) set
up when the program was executed. Above them are the argument and environ-
ment strings themselves. Above them is the signal code, used when the system
delivers signals to the process; above that is the structps_strings structure, used
by ps to locate the argv of the process. At the top of user memory is the user area
(u.), the red zone, and the per-process kernel stack. The red zone may or may not
be present in a port to an architecture. If present, it is implemented as a page of
read-only memory immediately below the per-process kernel stack. Any attempt
to allocate below the fixed-size kernel stack will result in a memory fault, protect-
ing the user area from being overwritten. On some architectures, it is not possible
to mark these pages as read-only, or having the kernel stack attempt to write a
write protected page would result in unrecoverable system failure. In these cases,
other approaches can be taken—for example, checking during each clock interrupt
to see whether the current kernel stack has grown too large.

In addition to the information maintained in the user area, a process usually
requires the use of some global system resources. The kernel maintains a linked
list of processes, called the process table, which has an entry for each process in
the system. Among other data, the process entries record information on schedul-
ing and on virtual-memory allocation. Because the entire process address space,
including the user area, may be swapped out of main memory, the process entry
must record enough information to be able to locate the process and to bring that
process back into memory. In addition, information needed while the process is
swapped out (e.g., scheduling information) must be maintained in the process
entry, rather than in the user area, to avoid the kernel swapping in the process only
to decide that it is not at a high-enough priority to be run.

Other global resources associated with a process include space to record
information about descriptors and page tables that record information about physi-
cal-memory utilization.

Timing Services
The kernel provides several different timing services to processes. These services
include timers that run in real time and timers that run only while a process is
executing.

Real Time
The system's time offset since January 1, 1970, Universal Coordinated Time
(UTC), also known as the Epoch, is returned by the system call gettimeofday.
Most modern processors (including the HP300 processors) maintain a battery-
backup time-of-day register. This clock continues to run even if the processor is
turned off. When the system boots, it consults the processor's time-of-day register
to find out the current time. The system's time is then maintained by the clock
interrupts. At each interrupt, the system increments its global time variable by an
amount equal to the number of microseconds per tick. For the HP300, running at
100 ticks per second, each tick represents 10,000 microseconds.

Adjustment of the Time
Often, it is desirable to maintain the same time on all the machines on a network.
It is also possible to keep more accurate time than that available from the basic
processor clock. For example, hardware is readily available that listens to the set
of radio stations that broadcast UTC synchronization signals in the United States.
When processes on different machines agree on a common time, they will wish to
change the clock on their host processor to agree with the networkwide time
value. One possibility is to change the system time to the network time using the
settimeofday system call. Unfortunately, the settimeofday system call will result
in time running backward on machines whose clocks were fast. Time running



backward can confuse user programs (such as make) that expect time to invariably
increase. To avoid this problem, the system provides the adjtime system call
[Gusella et al, 1994]. The adjtime system call takes a time delta (either positive or
negative) and changes the rate at which time advances by 10 percent, faster or
slower, until the time has been corrected. The operating system does the speedup
by incrementing the global time by 11,000 microseconds for each tick, and does
the slowdown by incrementing the global time by 9,000 microseconds for each
tick. Regardless, time increases monotonically, and user processes depending on
the ordering of file-modification times are not affected. However, time changes
that take tens of seconds to adjust will affect programs that are measuring time
intervals by using repeated calls to gettimeofday.

External Representation
Time is always exported from the system as microseconds, rather than as clock
ticks, to provide a resolution-independent format. Internally, the kernel is free to
select whatever tick rate best trades off clock-interrupt-handling overhead with
timer resolution. As the tick rate per second increases, the resolution of the sys-
tem timers improves, but the time spent dealing with hardclock interrupts
increases. As processors become faster, the tick rate can be increased to provide
finer resolution without adversely affecting user applications.

All filesystem (and other) timestamps are maintained in UTC offsets from the
Epoch. Conversion to local time, including adjustment for daylight-savings time,
is handled externally to the system in the C library.

Interval Time
The system provides each process with three interval timers. The real timer
decrements in real time. An example of use for this timer is a library routine
maintaining a wakeup-service queue. A SIGALRM signal is delivered to the pro-
cess when this timer expires. The real-time timer is run from the timeout queue
maintained by the softclock() routine (see Section 3.4).

The profiling timer decrements both in process virtual time (when running in
user mode) and when the system is running on behalf of the process. It is
designed to be used by processes to profile their execution statistically. A SIG-
PROF signal is delivered to the process when this timer expires. The profiling
timer is implemented by the hardclock( ) routine. Each time that hardclock( ) runs,
it checks to see whether the currently running process has requested a profiling
timer; if it has, hardclock( ) decrements the timer, and sends the process a signal
when zero is reached.

The virtual timer decrements in process virtual time. It runs only when the
process is executing in user mode. A SIGVTALRM signal is delivered to the pro-
cess when this timer expires. The virtual timer is also implemented in hardclock()
as the profiling timer is, except that it decrements the timer for the current process
only if it is executing in user mode, and not if it is running in the kernel.

User, Group, and Other Identifiers

One important responsibility of an operating system is to implement access-con-
trol mechanisms. Most of these access-control mechanisms are based on the
notions of individual users and of groups of users. Users are named by a 32-bit
number called a user identifier (UID). UIDs are not assigned by the kernel—they
are assigned by an outside administrative authority. UIDs are the basis for
accounting, for restricting access to privileged kernel operations, (such as the
request used to reboot a running system), for deciding to what processes a signal
may be sent, and as a basis for filesystem access and disk-space allocation. A sin-
gle user, termed the superuser (also known by the user name roof), is trusted by
the system and is permitted to do any supported kernel operation. The superuser
is identified not by any specific name, such as root, but instead by a UID of zero.

Users are organized into groups. Groups are named by a 32-bit number called
a group identifier (GID). GIDs, like UIDs, are used in the filesystem access-control
facilities and in disk-space allocation.

The state of every 4.4BSD process includes a UID and a set of GIDs. A pro-
cess's filesystem-access privileges are defined by the UID and GIDs of the process
(for the filesystem hierarchy beginning at the process's root directory). Normally,
these identifiers are inherited automatically from the parent process when a new
process is created. Only the superuser is permitted to alter the UID or GID of a
process. This scheme enforces a strict compartmentalization of privileges, and
ensures that no user other than the superuser can gain privileges.

Each file has three sets of permission bits, for read, write, or execute permis-
sion for each of owner, group, and other. These permission bits are checked in the
following order:

1. If the UID of the file is the same as the UID of the process, only the owner per-
missions apply; the group and other permissions are not checked.

2. If the UIDs do not match, but the GID of the file matches one of the GIDs of the
process, only the group permissions apply; the owner and other permissions
are not checked.

3. Only if the UID and GIDs of the process fail to match those of the file are the
permissions for all others checked. If these permissions do not allow the
requested operation, it will fail.

The UID and GIDs for a process are inherited from its parent. When a user logs in,
the login program (see Section 14.6) sets the UID and GIDs before doing the exec
system call to run the user's login shell; thus, all subsequent processes will inherit
the appropriate identifiers.

Often, it is desirable to grant a user limited additional privileges. For
example, a user who wants to send mail must be able to append the mail to
another user's mailbox. Making the target mailbox writable by all users would



permit a user other than its owner to modify messages in it (whether maliciously
or unintentionally). To solve this problem, the kernel allows the creation of pro-
grams that are granted additional privileges while they are running. Programs that
run with a different UID are called set-user-identifier (setuid) programs; programs
that run with an additional group privilege are called set-group-identifier (setgid)
programs [Ritchie, 1979]. When a setuid program is executed, the permissions of
the process are augmented to include those of the UID associated with the pro-
gram. The UID of the program is termed the effective UID of the process, whereas
the original UID of the process is termed the real UID. Similarly, executing a set-
gid program augments a process's permissions with those of the program's GID,
and the effective GID and real GID are defined accordingly.

Systems can use setuid and setgid programs to provide controlled access to
files or services. For example, the program that adds mail to the users' mailbox
runs with the privileges of the superuser, which allow it to write to any file in the
system. Thus, users do not need permission to write other users' mailboxes, but
can still do so by running this program. Naturally, such programs must be written
carefully to have only a limited set of functionality!

The UID and GIDs are maintained in the per-process area. Historically, GIDs
were implemented as one distinguished GID (the effective GID) and a supplemen-
tary array of GIDs, which was logically treated as one set of GIDs. In 4.4BSD, the
distinguished GID has been made the first entry in the array of GIDs. The supple-
mentary array is of a fixed size (16 in 4.4BSD), but may be changed by recompil-
ing the kernel.

4.4BSD implements the setgid capability by setting the zeroth element of the
supplementary groups array of the process that executed the setgid program to the
group of the file. Permissions can then be checked as it is for a normal process.
Because of the additional group, the setgid program may be able to access more
files than can a user process that runs a program without the special privilege. The
login program duplicates the zeroth array element into the first array element
when initializing the user's supplementary group array, so that, when a setgid pro-
gram is run and modifies the zeroth element, the user does not lose any privileges.

The setuid capability is implemented by the effective UID of the process being
changed from that of the user to that of the program being executed. As it will
with setgid, the protection mechanism will now permit access without any change
or special knowledge that the program is running setuid. Since a process can have
only a single UID at a time, it is possible to lose some privileges while running
setuid. The previous real UID is still maintained as the real UID when the new
effective UID is installed. The real UID, however, is not used for any validation
checking.

A setuid process may wish to revoke its special privilege temporarily while it
is running. For example, it may need its special privilege to access a restricted file
at only the start and end of its execution. During the rest of its execution, it should
have only the real user's privileges. In 4.3BSD, revocation of privilege was done
by switching of the real and effective UIDs. Since only the effective UID is used
for access control, this approach provided the desired semantics and provided a

place to hide the special privilege. The drawback to this approach was that the
real and effective UIDs could easily become confused.

In 4.4BSD, an additional identifier, the saved UID, was introduced to record
the identity of setuid programs. When a program is exec'ed, its effective UID is
copied to its saved UID. The first line of Table 3.1 shows an unprivileged program
for which the real, effective, and saved UIDs are all those of the real user. The sec-
ond line of Table 3.1 show a setuid program being run that causes the effective
UID to be set to its associated special-privilege UID. The special-privilege UID has
also been copied to the saved UID.

Also added to 4.4BSD was the new seteuid system call that sets only the
effective UID; it does not affect the real or saved UIDs. The seteuid system call is
permitted to set the effective UID to the value of either the real or the saved UID.
Lines 3 and 4 of Table 3.1 show how a setuid program can give up and then
reclaim its special privilege while continuously retaining its correct real UID.
Lines 5 and 6 show how a setuid program can run a subprocess without granting
the latter the special privilege. First, it sets its effective UID to the real UID. Then,
when it exec's the subprocess, the effective UID is copied to the saved UID, and all
access to the special-privilege UID is lost.

A similar saved GID mechanism permits processes to switch between the real
GID and the initial effective GID.

Host Identifiers
An additional identifier is defined by the kernel for use on machines operating in a
networked environment. A string (of up to 256 characters) specifying the host's
name is maintained by the kernel. This value is intended to be defined uniquely for
each machine in a network. In addition, in the Internet domain-name system, each
machine is given a unique 32-bit number. Use of these identifiers permits applica-
tions to use networkwide unique identifiers for objects such as processes, files, and
users, which is useful in the construction of distributed applications [Gifford,
1981]. The host identifiers for a machine are administered outside the kernel.

Table 3.1 Actions affecting the real, effective, and saved UIDs. R—real user identifier;
S—special-privilege user identifier.

Action

1. exec-normal
2. exec-setuid
3. seteuid(R)
4. seteuid(S)
5. seteuid(R)
6. exec-normal

Real

R
R .
R
R
R
R

Effective

R
S
R
S
R
R

Saved
R

S
S
S
S
R



The 32-bit host identifier found in 4.3BSD has been deprecated in 4.4BSD,
and is supported only if the system is compiled for 4.3BSD compatibility.

Process Groups and Sessions
Each process in the system is associated with a process group. The group of pro-
cesses in a process group is sometimes referred to as a job, and manipulated as a
single entity by processes such as the shell. Some signals (e.g., SIGINT) are deliv-
ered to all members of a process group, causing the group as a whole to suspend
or resume execution, or to be interrupted or terminated.

Sessions were designed by the IEEE POSIX. 1003.1 Working Group with the
intent of fixing a long-standing security problem in UNIX—namely, that processes
could modify the state of terminals that were trusted by another user's processes.
A session is a collection of process groups, and all members of a process group
are members of the same session. In 4.4BSD, when a user first logs onto the sys-
tem, they are entered into a new session. Each session has a controlling process,
which is normally the user's login shell. All subsequent processes created by the
user are part of process groups within this session, unless they explicitly create a
new session. Each session also has an associated login name, which is usually the
user's login name. This name can be changed by only the superuser.

Each session is associated with a terminal, known as its controlling terminal.
Each controlling terminal has a process group associated with it. Normally, only
processes that are in the terminal's current process group read from or write to the
terminal, allowing arbitration of a terminal between several different jobs. When
the controlling process exits, access to the terminal is taken away from any
remaining processes within the session.

Newly created processes are assigned process IDs distinct from all already-
existing processes and process groups, and are placed in the same process group
and session as their parent. Any process may set its process group equal to its pro-
cess ID (thus creating a new process group) or to the value of any process group
within its session. In addition, any process may create a new session, as long as it
is not already a process-group leader. Sessions, process groups, and associated
topics are discussed further in Section 4.8 and in Section 10.5.

3.8 Resource Services

All systems have limits imposed by their hardware architecture and configuration
to ensure reasonable operation and to keep users from accidentally (or mali-
ciously) creating resource shortages. At a minimum, the hardware limits must be
imposed on processes that run on the system. It is usually desirable to limit pro-
cesses further, below these hardware-imposed limits. The system measures
resource utilization, and allows limits to be imposed on consumption either at or
below the hardware-imposed limits.

Process Priorities
The 4.4BSD system gives CPU scheduling priority to processes that have not used
CPU time recently. This priority scheme tends to favor processes that execute for
only short periods of time—for example, interactive processes. The priority
selected for each process is maintained internally by the kernel. The calculation
of the priority is affected by the per-process nice variable. Positive nice values
mean that the process is willing to receive less than its share of the processor.
Negative values of nice mean that the process wants more than its share of the pro-
cessor. Most processes run with the default nice value of zero, asking neither
higher nor lower access to the processor. It is possible to determine or change the
nice currently assigned to a process, to a process group, or to the processes of a
specified user. Many factors other than nice affect scheduling, including the
amount of CPU time that the process has used recently, the amount of memory that
the process has used recently, and the current load on the system. The exact algo-
rithms that are used are described in Section 4.4.

Resource Utilization
As a process executes, it uses system resources, such as the CPU and memory.
The kernel tracks the resources used by each process and compiles statistics
describing this usage. The statistics managed by the kernel are available to a pro-
cess while the latter is executing. When a process terminates, the statistics are
made available to its parent via the wait family of system calls.

The resources used by a process are returned by the system call getrusage.
The resources used by the current process, or by all the terminated children of the
current process, may be requested. This information includes

• The amount of user and system time used by the process

• The memory utilization of the process

• The paging and disk I/O activity of the process

• The number of voluntary and involuntary context switches taken by the process

• The amount of interprocess communication done by the process

The resource-usage information is collected at locations throughout the kernel.
The CPU time is collected by the statclock() function, which is called either by the
system clock in hardclock( ) or, if an alternate clock is available, by the alternate-
clock interrupt routine. The kernel scheduler calculates memory utilization by
sampling the amount of memory that an active process is using at the same time
that it is recomputing process priorities. The vm_fault() routine recalculates the
paging activity each time that it starts a disk transfer to fulfill a paging request (see
Section 5.11). The I/O activity statistics are collected each time that the process
has to start a transfer to fulfill a file or device I/O request, as well as when the



general system statistics are calculated. The IPC communication activity is
updated each time that information is sent or received.

Resource Limits
The kernel also supports limiting of certain per-process resources. These
resources include

• The maximum amount of CPU time that can be accumulated

• The maximum bytes that a process can request be locked into memory

• The maximum size of a file that can be created by a process

• The maximum size of a process's data segment

• The maximum size of a process's stack segment

• The maximum size of a core file that can be created by a process

• The maximum number of simultaneous processes allowed to a user

• The maximum number of simultaneous open files for a process

• The maximum amount of physical memory that a process may use at any given
moment

For each resource controlled by the kernel, two limits are maintained: a soft limit
and a hard limit. All users can alter the soft limit within the range of 0 to the cor-
responding hard limit. All users can (irreversibly) lower the hard limit, but only
the superuser can raise the hard limit. If a process exceeds certain soft limits, a
signal is delivered to the process to notify it that a resource limit has been
exceeded. Normally, this signal causes the process to terminate, but the process
may either catch or ignore the signal. If the process ignores the signal and fails to
release resources that it already holds, further attempts to obtain more resources
will result in errors.

Resource limits are generally enforced at or near the locations that the
resource statistics are collected. The CPU time limit is enforced in the process
context-switching function. The stack and data-segment limits are enforced by a
return of allocation failure once those limits have been reached. The file-size limit
is enforced by the filesystem.

Filesystem Quotas
In addition to limits on the size of individual files, the kernel optionally enforces
limits on the total amount of space that a user or group can use on a filesystem.
Our discussion of the implementation of these limits is deferred to Section 7.4.

System-Operation Services

There are several operational functions having to do with system startup and shut-
down. The bootstrapping operations are described in Section 14.2. System shut-
down is described in Section 14.7.

Accounting
The system supports a simple form of resource accounting. As each process ter-
minates, an accounting record describing the resources used by that process is
written to a systemwide accounting file. The information supplied by the system
comprises

• The name of the command that ran

• The amount of user and system CPU time that was used

• The elapsed time the command ran

• The average amount of memory used

• The number of disk I/O operations done

• The UID and GID of the process

• The terminal from which the process was started

The information in the accounting record is drawn from the run-time statistics that
were described in Section 3.8. The granularity of the time fields is in sixty-fourths
of a second. To conserve space in the accounting file, the times are stored in a
16-bit word as a floating-point number using 3 bits as a base-8 exponent, and the
other 13 bits as the fractional part. For historic reasons, the same floating-
point-conversion routine processes the count of disk operations, so the number of
disk operations must be multiplied by 64 before it is converted to the floating-
point representation.

There are also flags that describe how the process terminated, whether it ever
had superuser privileges, and whether it did an exec after a fork

The superuser requests accounting by passing the name of the file to be used
for accounting to the kernel. As part of a process exiting, the kernel appends an
accounting record to the accounting file. The kernel makes no use of the account-
ing records; the records' summaries and use are entirely the domain of user-level
accounting programs. As a guard against a filesystem running out of space
because of unchecked growth of the accounting file, the system suspends account-
ing when the filesystem is reduced to only 2 percent remaining free space.
Accounting resumes when the filesystem has at least 4 percent free space.



The accounting information has certain limitations. The information on run
time and memory usage is only approximate because it is gathered statistically.
Accounting information is written only when a process exits, so processes that are
still running when a system is shut down unexpectedly do not show up in the
accounting file. (Obviously, long-lived system daemons are among such pro-
cesses.) Finally, the accounting records fail to include much information needed
to do accurate billing, including usage of other resources, such as tape drives and
printers.

Exercises

3.1 Describe three types of system activity.

3.2 When can a routine executing in the top half of the kernel be preempted?
When can it be interrupted?

3.3 Why are routines executing in the bottom half of the kernel precluded from
using information located in the user area?

3.4 Why does the system defer as much work as possible from high-priority
interrupts to lower-priority software-interrupt processes?

3.5 What determines the shortest (nonzero) time period that a user process can
request when setting a timer?

3.6 How does the kernel determine the system call for which it has been
invoked?

3.7 How are initialized data represented in an executable file? How are unini-
tialized data represented in an executable file? Why are the representations
different?

3.8 Describe how the "#!" mechanism can be used to make programs that
require emulation appear as though they were normal executables.

3.9 Is it possible for a file to have permissions set such that its owner cannot
read it, even though a group can? Is this situation possible if the owner is a
member of the group that can read the file? Explain your answers.

*3.10 Describe the security implications of not zero filling the stack region at pro-
gram startup.

*3.11 Why is the conversion from UTC to local time done by user processes,
rather than in the kernel?

*3.12 What is the advantage of having the kernel, rather than an application, re-
start an interrupted system call?

*3.13 Describe a scenario in which the sorted-difference algorithm used for the
callout queue does not work well. Suggest an alternative data structure that
runs more quickly than does the sorted-difference algorithm for your sce-
nario.

*3.14 The SIGPROF profiling timer was originally intended to replace the profil
system call to collect a statistical sampling of a program's program counter.
Give two reasons why the profil facility had to be retained.

**3.15 What weakness in the process-accounting mechanism makes the latter
unsuitable for use in a commercial environment?

ferences
Barkley & Lee, 1988.

R. E. Barkley & T. P. Lee, "A Heap-Based Callout Implementation to Meet
Real-Time Needs," USENIX Association Conference Proceedings, pp.
213-222, June 1988.

Gifford, 1981.
D. Gifford, "Information Storage in a Decentralized Computer System,"
PhD Thesis, Electrical Engineering Department, Stanford University, Stan-
ford, C A, 1981.

Gusellaetal, 1994.
R. Gusella, S. Zatti, & J. M. Bloom, 'The Berkeley UNIX Time Synchro-
nization Protocol," in 4.4BSD System Manager's Manual, pp. 12:1-10,
O'Reilly & Associates, Inc., Sebastopol, CA, 1994.

McCanne & Torek, 1993.
S. McCanne & C. Torek, "A Randomized Sampling Clock for CPU Utiliza-
tion Estimation and Code Profiling," USENIX Association Conference Pro-
ceedings, pp. 387-394, January 1993.

Ritchie, 1979.
D. M. Ritchie, "Protection of Data File Contents," United States Patent, no.
4,135,240, United States Patent Office, Washington, D.C., January 16, 1979.
Assignee: Bell Telephone Laboratories, Inc., Murray Hill, NJ, Appl. No.:
377,591, Filed: Jul. 9, 1973.

Varghese & Lauck, 1987.
G. Varghese & T. Lauck, "Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility," Proceed-
ings of the Eleventh Symposium on Operating Systems Principles, pp.
25-38, November 1987.



PART2

Processes



CHAPTER 4

Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process must have system resources, such
as memory and the underlying CPU. The kernel supports the illusion of concurrent
execution of multiple processes by scheduling system resources among the set of
processes that are ready to execute. This chapter describes the composition of a
process, the method that the system uses to switch between processes, and the
scheduling policy that it uses to promote sharing of the CPU. Later chapters study
process creation and termination, signal facilities, and process-debugging facilities.

Two months after the developers began the first implementation of the UNIX
operating system, there were two processes: one for each of the terminals of the
PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the
fork operation, and something like the wait system call. A process executed a new
program by reading in a new program on top of itself. The first PDP-11 system
(First Edition UNIX) saw the introduction of exec. All these systems allowed only
one process in memory at a time. When a PDP-11 with memory management (a
KS-11) was obtained, the system was changed to permit several processes to
remain in memory simultaneously, to reduce swapping. But this change did not
apply to multiprogramming because disk I/O was synchronous. This state of
affairs persisted into 1972 and the first PDP-11/45 system. True multiprogram-
ming was finally introduced when the system was rewritten in C. Disk I/O for one
process could then proceed while another process ran. The basic structure of pro-
cess management in UNIX has not changed since that time [Ritchie, 1988].

A process operates in either user mode or kernel mode. In user mode, a pro-
cess executes application code with the machine in a nonprivileged protection
mode. When a process requests services from the operating system with a system
call, it switches into the machine's privileged protection mode via a protected
mechanism, and then operates in kernel mode.

77



The resources used by a process are similarly split into two parts. The
resources needed for execution in user mode are defined by the CPU architecture
and typically include the CPU's general-purpose registers, the program counter,
the processor-status register, and the stack-related registers, as well as the contents
of the memory segments that constitute the 4.4BSD notion of a program (the text,
data, and stack segments).

Kernel-mode resources include those required by the underlying hardware—
such as registers, program counter, and stack pointer—and also by the state
required for the 4.4BSD kernel to provide system services for a process. This ker-
nel state includes parameters to the current system call, the current process's user
identity, scheduling information, and so on. As described in Section 3.1, the ker-
nel state for each process is divided into several separate data structures, with two
primary structures: the process structure and the user structure.

The process structure contains information that must always remain resident
in main memory, along with references to a number of other structures that remain
resident; whereas the user structure contains information that needs to be resident
only when the process is executing (although user structures of other processes
also may be resident). User structures are allocated dynamically through the
memory-management facilities. Historically, more than one-half of the process
state was stored in the user structure. In 4.4BSD, the user structure is used for
only the per-process kernel stack and a couple of structures that are referenced
from the process structure. Process structures are allocated dynamically as part of
process creation, and are freed as part of process exit.

Multiprogramming
The 4.4BSD system supports transparent multiprogramming: the illusion of con-
current execution of multiple processes or programs. It does so by context
switching—that is, by switching between the execution context of processes. A
mechanism is also provided for scheduling the execution of processes—that is,
for deciding which one to execute next. Facilities are provided for ensuring con-
sistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation
is influenced by the underlying hardware facilities. Some architectures provide
machine instructions that save and restore the hardware-execution context of the
process, including the virtual-address space. On the others, the software must col-
lect the hardware state from various registers and save it, then load those registers
with the new hardware state. All architectures must save and restore the software
state used by the kernel.

Context switching is done frequently, so increasing the speed of a context
switch noticeably decreases time spent in the kernel and provides more time for
execution of user applications. Since most of the work of a context switch is
expended in saving and restoring the operating context of a process, reducing the
amount of the information required for that context is an effective way to produce
faster context switches.

Section 4.1 Introdaction to Process management

Scheduling
Fair scheduling of processes is an involved task that is dependent on the types of
executable programs and on the goals of the scheduling policy. Programs are
characterized according to the amount of computation and the amount of I/O that
they do. Scheduling policies typically attempt to balance resource utilization
against the time that it takes for a program to complete. A process's priority is
periodically recalculated based on various parameters, such as the amount of CPU
time it has used, the amount of memory resources it holds or requires for execu-
tion, and so on. An exception to this rule is real-time scheduling, which must
ensure that processes finish by a specified deadline or in a particular order; the
4.4BSD kernel does not implement real-time scheduling.

4.4BSD uses a priority-based scheduling policy that is biased to favor interac-
tive programs, such as text editors, over long-running batch-type jobs. Interactive
programs tend to exhibit short bursts of computation followed by periods of inac-
tivity or I/O. The scheduling policy initially assigns to each process a high execu-
tion priority and allows that process to execute for a fixed time slice. Processes
that execute for the duration of their slice have their priority lowered, whereas pro-
cesses that give up the CPU (usually because they do I/O) are allowed to remain at
their priority. Processes that are inactive have their priority raised. Thus, jobs that
use large amounts of CPU time sink rapidly to a low priority, whereas interactive
jobs that are mostly inactive remain at a high priority so that, when they are ready
to run, they will preempt the long-running lower-priority jobs. An interactive job,
such as a text editor searching for a string, may become compute bound briefly,
and thus get a lower priority, but it will return to a high priority when it is inactive
again while the user thinks about the result.

The system also needs a scheduling policy to deal with problems that arise
from not having enough main memory to hold the execution contexts of all pro-
cesses that want to execute. The major goal of this scheduling policy is to mini-
mize thrashing—a phenomenon that occurs when memory is in such short supply
that more time is spent in the system handling page faults and scheduling pro-
cesses than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by
observing the amount of free memory. When the system has few free memory
pages and a high rate of new memory requests, it considers itself to be thrashing.
The system reduces thrashing by marking the least-recently run process as not
being allowed to run. This marking allows the pageout daemon to push all the
pages associated with the process to backing store. On most architectures, the ker-
nel also can push to backing store the user area of the marked process. The effect
of these actions is to cause the process to be swapped out (see Section 5.12). The
memory freed by blocking the process can then be distributed to the remaining
processes, which usually can then proceed. If the thrashing continues, additional
processes are selected for being blocked from running until enough memory
becomes available for the remaining processes to run effectively. Eventually,
enough processes complete and free their memory that blocked processes can



resume execution. However, even if there is not enough memory, the blocked
processes are allowed to resume execution after about 20 seconds. Usually, the
thrashing condition will return, requiring that some other process be selected for
being blocked (or that an administrative action be taken to reduce the load).

The orientation of the scheduling policy toward an interactive job mix reflects
the original design of 4.4BSD for use in a time-sharing environment. Numerous
papers have been written about alternative scheduling policies, such as those used
in batch-processing environments or real-time systems. Usually, these policies
require changes to the system in addition to alteration of the scheduling policy
[Khanna et al, 1992].

4.2 Process State

The layout of process state was completely reorganized in 4.4BSD. The goal was
to support multiple threads that share an address space and other resources.
Threads have also been called lightweight processes in other systems. A thread is
the unit of execution of a process; it requires an address space and other resources,
but it can share many of those resources with other threads. Threads sharing an
address space and other resources are scheduled independently, and can all do sys-
tem calls simultaneously. The reorganization of process state in 4.4BSD was
designed to support threads that can select the set of resources to be shared, known
as variable-weight processes [Aral et al, 1989]. Unlike some other implementa-
tions of threads, the BSD model associates a process ID with each thread, rather
than with a collection of threads sharing an address space.

Figure 4.1 Process state.

Section Process

process
entry

machine-dependent
process information

process group

process credential

___ VM space

file descriptors

resource limits

statistics

signal actions

_ session

user credential

_ region list

file entries

process control block
process kernel stack

user structure

The developers did the reorganization by moving many components of pro-
cess state from the process and user structures into separate substructures for each
type of state information, as shown in Fig. 4.1. The process structure references
all the substructures directly or indirectly. The use of global variables in the user
structure was completely eliminated. Variables moved out of the user structure
include the open file descriptors that may need to be shared among different
threads, as well as system-call parameters and error returns. The process structure
itself was also shrunk to about one-quarter of its former size. The idea is to mini-
mize the amount of storage that must be allocated to support a thread. The
4.4BSD distribution did not have kernel-thread support enabled, primarily because
the C library had not been rewritten to be able to handle multiple threads.

All the information in the substructures shown in Fig. 4.1 can be shared
among threads running within the same address space, except the per-thread statis-
tics, the signal actions, and the per-thread kernel stack. These unshared structures
need to be accessible only when the thread may be scheduled, so they are allo-
cated in the user structure so that they can be moved to secondary storage when
memory resources are low. The following sections describe the portions of these
structures that are relevant to process management. The VM space and its related
structures are described more fully in Chapter 5.

The Process Structure
In addition to the references to the substructures, the process entry shown in Fig.
4.1 contains the following categories of information:

• Process identification. The process identifier and the parent-process identifier

• Scheduling. The process priority, user-mode scheduling priority, recent CPU uti-
lization, and amount of time spent sleeping

• Process state. The run state of a process (runnable, sleeping, stopped); addi-
tional status flags; if the process is sleeping, the wait channel the identity of the
event for which the process is waiting (see Section 4.3), and a pointer to a string
describing the event

• Signal state. Signals pending delivery, signal mask, and summary of signal
actions

• Tracing. Process tracing information

• Machine state. The machine-dependent process information

• Timers. Real-time timer and CPU-utilization counters

The process substructures shown in Fig. 4.1 have the following categories of infor-
mation:

• Process-group identification. The process group and the session to which the
process belongs



Process Management

• User credentials. The real, effective, and saved user and group identifiers

• Memory management. The structure that describes the allocation of virtual
address space used by the process

• File descriptors. An array of pointers to file entries indexed by the process open
file descriptors; also, the open file flags and current directory

• Resource accounting. The rusage structure that describes the utilization of the
many resources provided by the system (see Section 3.8)

• Statistics. Statistics collected while the process is running that are reported
when it exits and are written to the accounting file; also, includes process timers
and profiling information if the latter is being collected

• Signal actions. The action to take when a signal is posted to a process

• User structure. The contents of the user structure (described later in this section)

A process's state has a value, as shown in Table 4.1. When a process is first cre-
ated with a fork system call, it is initially marked as SIDL. The state is changed to
SRUN when enough resources are allocated to the process for the latter to begin
execution. From that point onward, a process's state will fluctuate among SRUN
(runnable—e.g., ready to execute), SSLEEP (waiting for an event), and SSTOP
(stopped by a signal or the parent process), until the process terminates. A
deceased process is marked as SZOMB until its termination status is communi-
cated to its parent process.

The system organizes process structures into two lists. Process entries are on
the zombproc list if the process is in the SZOMB state; otherwise, they are on the
allproc list. The two queues share the same linkage pointers in the process struc-
ture, since the lists are mutually exclusive. Segregating the dead processes from
the live ones reduces the time spent both by the wait system call, which must scan
the zombies for potential candidates to return, and by the scheduler and other
functions that must scan all the potentially runnable processes.

Most processes, except the currently executing process, are also in one of two
queues: a run queue or a sleep queue. Processes that are in a runnable state are
placed on a run queue, whereas processes that are blocked awaiting an event are
located on a sleep queue. Stopped processes not also awaiting an event are on nei-
ther type of queue. The two queues share the same linkage pointers in the process
structure, since the lists are mutually exclusive. The run queues are organized
according to process-scheduling priority, and are described in Section 4.4. The
sleep queues are organized in a hashed data structure that optimizes finding of a
sleeping process by the event number (wait channel) for which the process is wait-
ing. The sleep queues are described in Section 4.3.

Every process in the system is assigned a unique identifier termed the process
identifier, (PID). PIDs are the common mechanism used by applications and by
the kernel to reference processes. PIDs are used by applications when the latter
are sending a signal to a process and when receiving the exit status from a
deceased process. Two PIDs are of special importance to each process: the PID of
the process itself and the PID of the process's parent process.

The p_pglist list and related lists (p_pptr, p_children, and p_siblings) are used
in locating related processes, as shown in Fig. 4.2. When a process spawns a child
process, the child process is added to its parent's p_children list. The child pro-
cess also keeps a backward link to its parent in its p_pptr field. If a process has
more than one child process active at a time, the children are linked together
through their p_sibling list entries. In Fig. 4.2, process B is a direct descendent of
process A, whereas processes C, D, and E are descendents of process B and are
siblings of one another. Process B typically would be a shell that started a
pipeline (see Sections 2.4 and 2.6) including processes C, D, and E. Process A
probably would be the system-initialization process init (see Section 3.1 and Sec-
tion 14.6).

CPU time is made available to processes according to their scheduling priority.
A process has two scheduling priorities, one for scheduling user-mode execution
and one for scheduling kernel-mode execution. The p_usrpri field in the process
structure contains the user-mode scheduling priority, whereas the p_priority field
holds the current kernel-mode scheduling priority. The current priority may be

Table 4.1 Process states.

State Description
SIDL intermediate state in process creation
SRUN runnable
SSLEEP awaiting an event
SSTOP process stopped or being traced
SZOMB intermediate state in process termination

Figure 4.2 Process-group hierarchy.

p_children

p_pptr
process C [ process D

p_sibling p_sibling



Process Management

Table 4.2 Process-scheduling priorities.

Priority
PSWP
PVM
PINOD
PRIBIO
PVFS
PZERO
PSOCK
PWAIT
PLOCK
PPAUSE
PUSER

Value
0
4
8

16
20
22
24
32
36
40
50

Description
priority while swapping process
priority while waiting for memory
priority while waiting for file control information
priority while waiting on disk I/O completion
priority while waiting for a kernel-level filesystem lock
baseline priority
priority while waiting on a socket
priority while waiting for a child to exit
priority while waiting for user-level filesystem lock
priority while waiting for a signal to arrive
base priority for user-mode execution

different from the user-mode priority when the process is executing in kernel
mode. Priorities range between 0 and 127, with a lower value interpreted as a
higher priority (see Table 4.2). User-mode priorities range from PUSER (50) to
127; priorities less than PUSER are used only when a process is asleep—that is,
awaiting an event in the kernel—and immediately after such a process is awak-
ened. Processes in the kernel are given a higher priority because they typically
hold shared kernel resources when they awaken. The system wants to run them as
quickly as possible once they get a resource, so that they can use the resource and
return it before another process requests it and gets blocked waiting for it.

Historically, a kernel process that is asleep with a priority in the range PZERO
to PUSER would be awakened by a signal; that is, it might be awakened and
marked runnable if a signal is posted to it. A process asleep at a priority below
PZERO would never be awakened by a signal. In 4.4BSD, a kernel process will be
awakened by a signal only if it sets the PCATCH flag when it sleeps. The PCATCH
flag was added so that a change to a sleep priority does not inadvertently cause a
change to the process's interruptibility.

For efficiency, the sleep interface has been divided into two separate entry
points: sleep() for brief, noninterruptible sleep requests, and tsleepO for longer,
possibly interrupted sleep requests. The sleep() interface is short and fast, to han-
dle the common case of a short sleep. The tsleep( ) interface handles all the special
cases including interruptible sleeps, sleeps limited to a maximum time duration,
and the processing of restartable system calls. The tsleep( ) interface also includes
a reference to a string describing the event that the process awaits; this string is
externally visible. The decision of whether to use an interruptible sleep is depen-
dent on how long the process may be blocked. Because it is complex to be pre-
pared to handle signals in the midst of doing some other operation, many sleep

requests are not interruptible; that is, a process will not be scheduled to run until
the event for which it is waiting occurs. For example, a process waiting for disk
I/O will sleep at an uninterruptible priority.

For quickly occurring events, delaying to handle a signal until after they com-
plete is imperceptible. However, requests that may cause a process to sleep for a
long period, such as while a process is waiting for terminal or network input, must
be prepared to have their sleep interrupted so that the posting of signals is not
delayed indefinitely. Processes that sleep at interruptible priorities may abort their
system call because of a signal arriving before the event for which they are wait-
ing has occurred. To avoid holding a kernel resource permanently, these processes
must check why they have been awakened. If they were awakened because of a
signal, they must release any resources that they hold. They must then return the
error passed back to them by tsleep( ), which will be EINTR if the system call is to
be aborted after the signal, or ERESTART if it is to be restarted. Occasionally, an
event that is supposed to occur quickly, such as a tape I/O, will get held up
because of a hardware failure. Because the process is sleeping in the kernel at an
uninterruptible priority, it will be impervious to any attempts to send it a signal,
even a signal that should cause it to exit unconditionally. The only solution to this
problem is to change sleep()s on hardware events that may hang to be interrupt-
ible. In the remainder of this book, we shall always use sleep () when referencing
the routine that puts a process to sleep, even when the tsleep( ) interface may be
the one that is being used.

The User Structure
The user structure contains the process state that may be swapped to secondary
storage. The structure was an important part of the early UNIX kernels; it stored
much of the state for each process. As the system has evolved, this state has
migrated to the process entry or one of its substructures, so that it can be shared.
In 4.4BSD, nearly all references to the user structure have been removed. The
only place that user-structure references still exist are in the fork system call,
where the new process entry has pointers set up to reference the two remaining
structures that are still allocated in the user structure. Other parts of the kernel
that reference these structures are unaware that the latter are located in the user
structure; the structures are always referenced from the pointers in the process
table. Changing them to dynamically allocated structures would require code
changes in only fork to allocate them, and exit to free them. The user-structure
state includes

• The user- and kernel-mode execution states

• The accounting information
• The signal-disposition and signal-handling state
• Selected process information needed by the debuggers and in core dumps

• The per-process execution stack for the kernel



The current execution state of a process is encapsulated in a process control block
(PCB). This structure is allocated in the user structure and is defined by the
machine architecture; it includes the general-purpose registers, stack pointers, pro-
gram counter, processor-status longword, and memory-management registers.

Historically, the user structure was mapped to a fixed location in the virtual
address space. There were three reasons for using a fixed mapping:

1. On many architectures, the user structure could be mapped into the top of the
user-process address space. Because the user structure was part of the user
address space, its context would be saved as part of saving of the user-process
state, with no additional effort.

2. The data structures contained in the user structure (also called the u-dot (u.)
structure, because all references in C were of the form u.) could always be
addressed at a fixed address.

3. When a parent forks, its run-time stack is copied for its child. Because the
kernel stack is part of the u. area, the child's kernel stack is mapped to the
same addresses as its parent kernel stack. Thus, all its internal references,
such as frame pointers and stack-variable references, work as expected.

On modern architectures with virtual address caches, mapping the user structure to
a fixed address is slow and inconvenient. Thus, reason 1 no longer holds. Since
the user structure is never referenced by most of the kernel code, reason 2 no
longer holds. Only reason 3 remains as a requirement for use of a fixed mapping.
Some architectures in 4.4BSD remove this final constraint, so that they no longer
need to provide a fixed mapping. They do so by copying the parent stack to the
child-stack location. The machine-dependent code then traverses the stack, relo-
cating the embedded stack and frame pointers. On return to the machine-indepen-
dent fork code, no further references are made to local variables; everything just
returns all the way back out of the kernel.

The location of the kernel stack in the user structure simplifies context switch-
ing by localizing all a process's kernel-mode state in a single structure. The kernel
stack grows down from the top of the user structure toward the data structures
allocated at the other end. This design restricts the stack to a fixed size. Because
the stack traps page faults, it must be allocated and memory resident before the
process can run. Thus, it is not only a fixed size, but also small; usually it is allo-
cated only one or two pages of physical memory. Implementors must be careful
when writing code that executes in the kernel to avoid using large local variables
and deeply nested subroutine calls, to avoid overflowing the run-time stack. As a
safety precaution, some architectures leave an invalid page between the area for
the run-time stack and the page holding the other user-structure contents. Thus,
overflowing the kernel stack will cause a kernel-access fault, instead of disas-
trously overwriting the fixed-sized portion of the user structure. On some archi-
tectures, interrupt processing takes place on a separate interrupt stack, and the size
of the kernel stack in the user structure restricts only that code executed as a result
of traps and system calls.

Context Switching

The kernel switches among processes in an effort to share the CPU effectively; this
activity is called context switching. When a process executes for the duration of
its time slice or when it blocks because it requires a resource that is currently
unavailable, the kernel finds another process to run and context switches to it. The
system can also interrupt the currently executing process to service an asyn-
chronous event, such as a device interrupt. Although both scenarios involve
switching the execution context of the CPU, switching between processes occurs
synchronously with respect to the currently executing process, whereas servicing
interrupts occurs asynchronously with respect to the current process. In addition,
interprocess context switches are classified as voluntary or involuntary. A volun-
tary context switch occurs when a process blocks because it requires a resource
that is unavailable. An involuntary context switch takes place when a process
executes for the duration of its time slice or when the system identifies a higher-
priority process to run.

Each type of context switching is done through a different interface. Volun-
tary context switching is initiated with a call to the sleep() routine, whereas an
involuntary context switch is forced by direct invocation of the low-level context-
switching mechanism embodied in the mi_switch() and setrunnable() routines.
Asynchronous event handling is managed by the underlying hardware and is effec-
tively transparent to the system. Our discussion will focus on how asynchronous
event handling relates to synchronizing access to kernel data structures.

Process State
Context switching between processes requires that both the kernel- and user-mode
context be changed; to simplify this change, the system ensures that all a process's
user-mode state is located in one data structure: the user structure (most kernel
state is kept elsewhere). The following conventions apply to this localization:

• Kernel-mode hardware-execution state. Context switching can take place in
only kernel mode. Thus, the kernel's hardware-execution state is defined by the
contents of the PCB that is located at the beginning of the user structure.

• User-mode hardware-execution state. When execution is in kernel mode, the
user-mode state of a process (such as copies of the program counter, stack pointer,
and general registers) always resides on the kernel's execution stack that is located
in the user structure. The kernel ensures this location of user-mode state by
requiring that the system-call and trap handlers save the contents of the user-mode
execution context each time that the kernel is entered (see Section 3.1).

process structure. The process structure always remains resident
memory.

•The in

• Memory resources. Memory resources of a process are effectively described by
the contents of the memory-management registers located in the PCB and by the
values present in the process structure. As long as the process remains in



memory, these values will remain valid, and context switches can be done
without the associated page tables being saved and restored. However, these val-
ues need to be recalculated when the process returns to main memory after being
swapped to secondary storage.

Low-Level Context Switching

The localization of the context of a process in the latter's user structure permits the
kernel to do context switching simply by changing the notion of the current user
structure and process structure, and restoring the context described by the PCB
within the user structure (including the mapping of the virtual address space).
Whenever a context switch is required, a call to the mi_switch() routine causes the
highest-priority process to run. The mi_switch() routine first selects the appropri-
ate process from the scheduling queues, then resumes the selected process by
loading that process's context from its PCB. Once mi_switch() has loaded the
execution state of the new process, it must also check the state of the new process
for a nonlocal return request (such as when a process first starts execution after a
fork; see Section 4.5).

Voluntary Context Switching

A voluntary context switch occurs whenever a process must await the availability
of a resource or the arrival of an event. Voluntary context switches happen fre-
quently in normal system operation. For example, a process typically blocks each
time that it requests data from an input device, such as a terminal or a disk. In
4.4BSD, voluntary context switches are initiated through the sleep() or tsleep( )
routines. When a process no longer needs the CPU, it invokes sleep( ) with a
scheduling priority and a wait channel. The priority specified in a sleep( ) call is
the priority that should be assigned to the process when that process is awakened.
This priority does not affect the user-level scheduling priority.

The wait channel is typically the address of some data structure that identifies
the resource or event for which the process is waiting. For example, the address of
a disk buffer is used while the process is waiting for the buffer to be filled. When
the buffer is filled, processes sleeping on that wait channel will be awakened. In
addition to the resource addresses that are used as wait channels, there are some
addresses that are used for special purposes:

• The global variable lbolt is awakened by the scheduler once per second. Pro-
cesses that want to wait for up to 1 second can sleep on this global variable. For
example, the terminal-output routines sleep on lbolt while waiting for output-
queue space to become available. Because queue space rarely runs out, it is eas-
ier simply to check for queue space once per second during the brief periods of
shortages than it is to set up a notification mechanism such as that used for man-
aging disk buffers. Programmers can also use the lbolt wait channel as a crude
watchdog timer when doing debugging.

Section 4.3 Context Switching

• When a parent process does a wait system call to collect the termination status of
its children, it must wait for one of those children to exit. Since it cannot know
which of its children will exit first, and since it can sleep on only a single wait
channel, there is a quandary as to how to wait for the next of multiple events.
The solution is to have the parent sleep on its own process structure. When a
child exits, it awakens its parent's process-structure address, rather than its own.
Thus, the parent doing the wait will awaken independent of which child process
is the first to exit.

• When a process does a sigpause system call, it does not want to run until it
receives a signal. Thus, it needs to do an interruptible sleep on a wait channel
that will never be awakened. By convention, the address of the user structure is
given as the wait channel.

Sleeping processes are organized in an array of queues (see Fig. 4.3). The
sleep() and wakeup( ) routines hash wait channels to calculate an index into the
sleep queues. The sleep() routine takes the following steps in its operation:

1. Prevent interrupts that might cause process-state transitions by raising the
hardware-processor priority level to splhigh (hardware-processor priority lev-
els are explained in the next section).

2. Record the wait channel in the process structure, and hash the wait-channel
value to locate a sleep queue for the process.

3. Set the process's priority to the priority that the process will have when the
process is awakened, and set the SSLEEP flag.

Figure 4.3 Queueing structure for sleeping processes.

sleep queue
hash-table header p_link

process process



4. Place the process at the end of the sleep queue selected in step 2.

5. Call mi_switch( ) to request that a new process be scheduled; the hardware pri-
ority level is implicitly reset as part of switching to the other process.

A sleeping process is not selected to execute until it is removed from a sleep
queue and is marked runnable. This operation is done by the wakeup( ) routine,
which is called to signal that an event has occurred or that a resource is available.
Wakeup( ) is invoked with a wait channel, and it awakens all processes sleeping on
that wait channel. All processes waiting for the resource are awakened to ensure
that none are inadvertently left sleeping. If only one process were awakened, it
might not request the resource on which it was sleeping, and so any other pro-
cesses waiting for that resource would be left sleeping forever. A process that
needs an empty disk buffer in which to write data is an example of a process that
may not request the resource on which it was sleeping. Such a process can use
any available buffer. If none is available, it will try to create one by requesting
that a dirty buffer be written to disk and then waiting for the I/O to complete.
When the I/O finishes, the process will awaken and will check for an empty buffer.
If several are available, it may not use the one that it cleaned, leaving any other
processes waiting for the buffer that it cleaned sleeping forever.

To avoid having excessive numbers of processes awakened, kernel program-
mers try to use wait channels with fine enough granularity that unrelated uses will
not collide on the same resource. Thus, they put locks on each buffer in the buffer
cache, rather than putting a single lock on the buffer cache as a whole. The prob-
lem of many processes awakening for a single resource is further mitigated on a
uniprocessor by the latter's inherently single-threaded operation. Although many
processes will be put into the run queue at once, only one at a time can execute.
Since the kernel is nonpreemptive, each process will run its system call to comple-
tion before the next one will get a chance to execute. Unless the previous user of
the resource blocked in the kernel while trying to use the resource, each process
waiting for the resource will be able get and use the resource when it is next run.

A wakeup( ) operation processes entries on a sleep queue from front to back.
For each process that needs to be awakened, wakeup( )

1. Removes the process from the sleep queue

2. Recomputes the user-mode scheduling priority if the process has been sleeping
longer than 1 second

3. Makes the process runnable if it is in a SSLEEP state, and places the process on
the run queue if it is not swapped out of main memory; if the process has been
swapped out, the swapin process will be awakened to load it back into memory
(see Section 5.12); if the process is in a SSTOP state, it is left on the queue
until it is explicitly restarted by a user-level process, either by a ptrace system
call or by a continue signal (see Section 4.7)

Section 4.3 Context Switching

If wakeup( ) moved any processes to the run queue and one of them had a schedul-
ing priority higher than that of the currently executing process, it will also request
that the CPU be rescheduled as soon as possible.

The most common use of sleep () and wakeup( ) is in scheduling access to
shared data structures; this use is described in the next section on synchronization.

Synchronization
Interprocess synchronization to a resource typically is implemented by the associ-
ation with the resource of two flags; a locked flag and a wanted flag. When a pro-
cess wants to access a resource, it first checks the locked flag. If the resource is
not currently in use by another process, this flag should not be set, and the process
can simply set the locked flag and use the resource. If the resource is in use, how-
ever, the process should set the wanted flag and call sleep 0 with a wait channel
associated with the resource (typically the address of the data structure used to
describe the resource). When a process no longer needs the resource, it clears the
locked flag and, if the wanted flag is set, invokes wakeupO to awaken all the pro-
cesses that called sleep 0 to await access to the resource.

Routines that run in the bottom half of the kernel do not have a context and
consequently cannot wait for a resource to become available by calling sleep ( )
When the top half of the kernel accesses resources that are shared with the bottom
half of the kernel, it cannot use the locked flag to ensure exclusive use. Instead, it
must prevent the bottom half from running while it is using the resource. Syn-
chronizing access with routines that execute in the bottom half of the kernel
requires knowledge of when these routines may run. Although interrupt priorities
are machine dependent, most implementations of 4.4BSD order them according to
Table 43. To block interrupt routines at and below a certain priority level, a criti-
cal section must make an appropriate set-priority-level call. All the set-priori ty-

Table 4.3 Interrupt-priority assignments, ordered from lowest to highest.

Name Blocks
splO() nothing (normal operating mode)
splsoftclock() low-priority clock processing
spinet() network protocol processing
spltty() terminal multiplexers and low-priority devices
splbio() disk and tape controllers and high-priority devices
splimp ( ) network device controllers
splclock( ) high-priority clock processing
splhigh() all interrupt activity



addresses used for the return of results must be validated to ensure that they are
part of an application's address space. If the kernel encounters an error while pro-
cessing a system call, it returns an error code to the user. For the C programming
language, this error code is stored in the global variable errno, and the function
that executed the system call returns the value — 1.

User applications and the kernel operate independently of each other. 4.4BSD
does not store I/O control blocks or other operating-system-related data structures
in the application's address space. Each user-level application is provided an inde-
pendent address space in which it executes. The kernel makes most state changes,
such as suspending a process while another is running, invisible to the processes
involved.

2.4 Process Management

4.4BSD supports a multitasking environment. Each task or thread of execution is
termed a process. The context of a 4.4BSD process consists of user-level state,
including the contents of its address space and the run-time environment, and
kernel-level state, which includes scheduling parameters, resource controls, and
identification information. The context includes everything used by the kernel in
providing services for the process. Users can create processes, control the pro-
cesses' execution, and receive notification when the processes' execution status
changes. Every process is assigned a unique value, termed a process identifier
(PID). This value is used by the kernel to identify a process when reporting sta-
tus changes to a user, and by a user when referencing a process in a system call.

The kernel creates a process by duplicating the context of another process.
The new process is termed a child process of the original parent process. The
context duplicated in process creation includes both the user-level execution state
of the process and the process's system state managed by the kernel. Important
components of the kernel state are described in Chapter 4.

The process lifecycle is depicted in Fig. 2.1. A process may create a new pro-
cess that is a copy of the original by using the fork system call. The fork call
returns twice: once in the parent process, where the return value is the process

Figure 2.1 Process-management system calls.

wait

identifier of the child, and once in the child process, where the return value is 0.
The parent-child relationship induces a hierarchical structure on the set of pro-
cesses in the system. The new process shares all its parent's resources, such as file
descriptors, signal-handling status, and memory layout.

Although there are occasions when the new process is intended to be a copy
of the parent, the loading and execution of a different program is a more useful
and typical action. A process can overlay itself with the memory image of another
program, passing to the newly created image a set of parameters, using the system
call execve. One parameter is the name of a file whose contents are in a format
recognized by the system—either a binary-executable file or a file that causes the
execution of a specified interpreter program to process its contents.

A process may terminate by executing an exit system call, sending 8 bits of
exit status to its parent. If a process wants to communicate more than a single
byte of information with its parent, it must either set up an interprocess-communi-
cation channel using pipes or sockets, or use an intermediate file. Interprocess
communication is discussed extensively in Chapter 11.

A process can suspend execution until any of its child processes terminate
using the wait system call, which returns the PID and exit status of the terminated
child process. A parent process can arrange to be notified by a signal when a child
process exits or terminates abnormally. Using the wait4 system call, the parent
can retrieve information about the event that caused termination of the child pro-
cess and about resources consumed by the process during its lifetime. If a process
is orphaned because its parent exits before it is finished, then the kernel arranges
for the child's exit status to be passed back to a special system process (ink: see
Sections 3.1 and 14.6).

The details of how the kernel creates and destroys processes are given in
Chapter 5.

Processes are scheduled for execution according to a process-priority parame-
ter. This priority is managed by a kernel-based scheduling algorithm. Users can
influence the scheduling of a process by specifying a parameter (nice) that weights
the overall scheduling priority, but are still obligated to share the underlying CPU
resources according to the kernel's scheduling policy.

Signals
The system defines a set of signals that may be delivered to a process. Signals in
4.4BSD are modeled after hardware interrupts. A process may specify a user-level
subroutine to be a handler to which a signal should be delivered. When a signal is
generated, it is blocked from further occurrence while it is being caught by the
handler. Catching a signal involves saving the current process context and build-
ing a new one in which to run the handler. The signal is then delivered to the han-
dler, which can either abort the process or return to the executing process (perhaps
after setting a global variable). If the handler returns, the signal is unblocked and
can be generated (and caught) again.

Alternatively, a process may specify that a signal is to be ignored, or that a
default action, as determined by the kernel, is to be taken. The default action of



certain signals is to terminate the process. This termination may be accompanied
by creation of a core file that contains the current memory image of the process for
use in postmortem debugging.

Some signals cannot be caught or ignored. These signals include SIGKILL,
which kills runaway processes, and the job-control signal SIGSTOP.

A process may choose to have signals delivered on a special stack so that
sophisticated software stack manipulations are possible. For example, a language
supporting coroutines needs to provide a stack for each coroutine. The language
run-time system can allocate these stacks by dividing up the single stack provided
by 4.4BSD. If the kernel does not support a separate signal stack, the space allo-
cated for each coroutine must be expanded by the amount of space required to
catch a signal.

All signals have the same priority. If multiple signals are pending simulta-
neously, the order in which signals are delivered to a process is implementation
specific. Signal handlers execute with the signal that caused their invocation to
be blocked, but other signals may yet occur. Mechanisms are provided so that
processes can protect critical sections of code against the occurrence of specified
signals.

The detailed design and implementation of signals is described in Section 4.7.

Process Groups and Sessions
Processes are organized into process groups. Process groups are used to control
access to terminals and to provide a means of distributing signals to collections of
related processes. A process inherits its process group from its parent process.
Mechanisms are provided by the kernel to allow a process to alter its process
group or the process group of its descendents. Creating a new process group is
easy; the value of a new process group is ordinarily the process identifier of the
creating process.

The group of processes in a process group is sometimes referred to as a job
and is manipulated by high-level system software, such as the shell. A common
kind of job created by a shell is a pipeline of several processes connected by pipes,
such that the output of the first process is the input of the second, the output of the
second is the input of the third, and so forth. The shell creates such a job by fork-
ing a process for each stage of the pipeline, then putting all those processes into a
separate process group.

A user process can send a signal to each process in a process group, as well as
to a single process. A process in a specific process group may receive software
interrupts affecting the group, causing the group to suspend or resume execution,
or to be interrupted or terminated.

A terminal has a process-group identifier assigned to it. This identifier is
normally set to the identifier of a process group associated with the terminal. A
job-control shell may create a number of process groups associated with the same
terminal; the terminal is the controlling terminal for each process in these groups.
A process may read from a descriptor for its controlling terminal only if the ter-
minal's process-group identifier matches that of the process. If the identifiers do

not match, the process will be blocked if it attempts to read from the terminal.
By changing the process-group identifier of the terminal, a shell can arbitrate a
terminal among several different jobs. This arbitration is called job control and is
described, with process groups, in Section 4.8.

Just as a set of related processes can be collected into a process group, a set of
process groups can be collected into a session. The main uses for sessions are to
create an isolated environment for a daemon process and its children, and to col-
lect together a user's login shell and the jobs that that shell spawns.

2,5 Memory Management

Each process has its own private address space. The address space is initially
divided into three logical segments: text, data, and stack. The text segment is
read-only and contains the machine instructions of a program. The data and stack
segments are both readable and writable. The data segment contains the initial-
ized and uninitialized data portions of a program, whereas the stack segment holds
the application's run-time stack. On most machines, the stack segment is
extended automatically by the kernel as the process executes. A process can
expand or contract its data segment by making a system call, whereas a process
can change the size of its text segment only when the segment's contents are over-
laid with data from the filesystem, or when debugging takes place. The initial
contents of the segments of a child process are duplicates of the segments of a par-
ent process.

The entire contents of a process address space do not need to be resident for a
process to execute. If a process references a part of its address space that is not
resident in main memory, the system pages the necessary information into mem-
ory. When system resources are scarce, the system uses a two-level approach to
maintain available resources. If a modest amount of memory is available, the sys-
tem will take memory resources away from processes if these resources have not
been used recently. Should there be a severe resource shortage, the system will
resort to swapping the entire context of a process to secondary storage. The
demand paging and swapping done by the system are effectively transparent to
processes. A process may, however, advise the system about expected future
memory utilization as a performance aid.

BSD Memory-Management Design Decisions
The support of large sparse address spaces, mapped files, and shared memory was
a requirement for 4.2BSD. An interface was specified, called mmap(), that
allowed unrelated processes to request a shared mapping of a file into their address
spaces. If multiple processes mapped the same file into their address spaces,
changes to the file's portion of an address space by one process would be reflected
in the area mapped by the other processes, as well as in the file itself. Ultimately,
4.2BSD was shipped without the mmap() interface, because of pressure to make
other features, such as networking, available.



Further development of the mmap() interface continued during the work on
4.3BSD. Over 40 companies and research groups participated in the discussions
leading to the revised architecture that was described in the Berkeley Software
Architecture Manual [McKusick, Karels et al, 1994]. Several of the companies
have implemented the revised interface [Gingell et al, 1987].

Once again, time pressure prevented 4.3BSD from providing an implementa-
tion of the interface. Although the latter could have been built into the existing
4.3BSD virtual-memory system, the developers decided not to put it in because
that implementation was nearly 10 years old. Furthermore, the original virtual-
memory design was based on the assumption that computer memories were small
and expensive, whereas disks were locally connected, fast, large, and inexpensive.
Thus, the virtual-memory system was designed to be frugal with its use of mem-
ory at the expense of generating extra disk traffic. In addition, the 4.3BSD imple-
mentation was riddled with VAX memory-management hardware dependencies
that impeded its portability to other computer architectures. Finally, the virtual-
memory system was not designed to support the tightly coupled multiprocessors
that are becoming increasingly common and important today.

Attempts to improve the old implementation incrementally seemed doomed
to failure. A completely new design, on the other hand, could take advantage of
large memories, conserve disk transfers, and have the potential to run on multi-
processors. Consequently, the virtual-memory system was completely replaced in
4.4BSD. The 4.4BSD virtual-memory system is based on the Mach 2.0 VM sys-
tem [Tevanian, 1987], with updates from Mach 2.5 and Mach 3.0. It features effi-
cient support for sharing, a clean separation of machine-independent and
machine-dependent features, as well as (currently unused) multiprocessor support.
Processes can map files anywhere in their address space. They can share parts of
their address space by doing a shared mapping of the same file. Changes made
by one process are visible in the address space of the other process, and also are
written back to the file itself. Processes can also request private mappings of a
file, which prevents any changes that they make from being visible to other pro-
cesses mapping the file or being written back to the file itself.

Another issue with the virtual-memory system is the way that information is
passed into the kernel when a system call is made. 4.4BSD always copies data
from the process address space into a buffer in the kernel. For read or write opera-
tions that are transferring large quantities of data, doing the copy can be time con-
suming. An alternative to doing the copying is to remap the process memory into
the kernel. The 4.4BSD kernel always copies the data for several reasons:

• Often, the user data are not page aligned and are not a multiple of the hardware
page length.

• If the page is taken away from the process, it will no longer be able to reference
that page. Some programs depend on the data remaining in the buffer even after
those data have been written.

• If the process is allowed to keep a copy of the page (as it is in current 4.4BSD
semantics), the page must be made copy-on-write. A copy-on-write page is one

that is protected against being written by being made read-only. If the process
attempts to modify the page, the kernel gets a write fault. The kernel then makes
a copy of the page that the process can modify. Unfortunately, the typical pro-
cess will immediately try to write new data to its output buffer, forcing the data
to be copied anyway.

•When pages are remapped to new virtual-memory addresses, most memory-
management hardware requires that the hardware address-translation cache be
purged selectively. The cache purges are often slow. The net effect is that
remapping is slower than copying for blocks of data less than 4 to 8 Kbyte.

The biggest incentives for memory mapping are the needs for accessing big files
and for passing large quantities of data between processes. The mmap() interface
provides a way for both of these tasks to be done without copying.

Memory Management Inside the Kernel

The kernel often does allocations of memory that are needed for only the duration
of a single system call. In a user process, such short-term memory would be allo-
cated on the run-time stack. Because the kernel has a limited run-time stack, it is
not feasible to allocate even moderate-sized blocks of memory on it. Conse-
quently, such memory must be allocated through a more dynamic mechanism. For
example, when the system must translate a pathname, it must allocate a 1-Kbyte
buffer to hold the name. Other blocks of memory must be more persistent than a
single system call, and thus could not be allocated on the stack even if there was
space. An example is protocol-control blocks that remain throughout the duration
of a network connection.

Demands for dynamic memory allocation in the kernel have increased as
more services have been added. A generalized memory allocator reduces the
complexity of writing code inside the kernel. Thus, the 4.4BSD kernel has a single
memory allocator that can be used by any part of the system. It has an interface
similar to the C library routines malloc( ) andfree( ) that provide memory alloca-
tion to application programs [McKusick & Karels, 1988]. Like the C library inter-
face, the allocation routine takes a parameter specifying the size of memory that is
needed. The range of sizes for memory requests is not constrained; however,
physical memory is allocated and is not paged. The free routine takes a pointer to
the storage being freed, but does not require the size of the piece of memory being
freed. *

2.6 I/O System

The basic model of the UNIX I/O system is a sequence of bytes that can be
accessed either randomly or sequentially. There are no access methods and no
control blocks in a typical UNIX user process.



Different programs expect various levels of structure, but the kernel does not
impose structure on I/O. For instance, the convention for text files is lines of
ASCII characters separated by a single newline character (the ASCII line-feed char-
acter), but the kernel knows nothing about this convention. For the purposes of
most programs, the model is further simplified to being a stream of data bytes, or
an I/O stream. It is this single common data form that makes the characteristic
UNIX tool-based approach work [Kernighan & Pike, 1984]. An I/O stream from
one program can be fed as input to almost any other program. (This kind of tradi-
tional UNIX I/O stream should not be confused with the Eighth Edition stream I/O
system or with the System V, Release 3 STREAMS, both of which can be accessed
as traditional I/O streams.)

Descriptors and I/O

UNIX processes use descriptors to reference I/O streams. Descriptors are small
unsigned integers obtained from the open and socket system calls. The open sys-
tem call takes as arguments the name of a file and a permission mode to specify
whether the file should be open for reading or for writing, or for both. This sys-
tem call also can be used to create a new, empty file. A read or write system call
can be applied to a descriptor to transfer data. The close system call can be used
to deallocate any descriptor.

Descriptors represent underlying objects supported by the kernel, and are cre-
ated by system calls specific to the type of object. In 4.4BSD, three kinds of
objects can be represented by descriptors: files, pipes, and sockets.

• A file is a linear array of bytes with at least one name. A file exists until all its
names are deleted explicitly and no process holds a descriptor for it. A process
acquires a descriptor for a file by opening that file's name with the open system
call. I/O devices are accessed as files.

• A pipe is a linear array of bytes, as is a file, but it is used solely as an I/O stream,
and it is unidirectional. It also has no name, and thus cannot be opened with
open. Instead, it is created by the pipe system call, which returns two descrip-
tors, one of which accepts input that is sent to the other descriptor reliably, with-
out duplication, and in order. The system also supports a named pipe or FIFO. A
FIFO has properties identical to a pipe, except that it appears in the filesystem;
thus, it can be opened using the open system call. Two processes that wish to
communicate each open the FIFO: One opens it for reading, the other for writing.

• A socket is a transient object that is used for interprocess communication; it
exists only as long as some process holds a descriptor referring to it. A socket is
created by the socket system call, which returns a descriptor for it. There are dif-
ferent kinds of sockets that support various communication semantics, such as
reliable delivery of data, preservation of message ordering, and preservation of
message boundaries.

In systems before 4.2BSD, pipes were implemented using the filesystem; when
sockets were introduced in 4.2BSD, pipes were reimplemented as sockets.

The kernel keeps for each process a descriptor table, which is a table that
the kernel uses to translate the external representation of a descriptor into an
internal representation. (The descriptor is merely an index into this table.) The
descriptor table of a process is inherited from that process's parent, and thus
access to the objects to which the descriptors refer also is inherited. The main
ways that a process can obtain a descriptor are by opening or creation of an
object, and by inheritance from the parent process. In addition, socket IPC
allows passing of descriptors in messages between unrelated processes on the
same machine.

Every valid descriptor has an associated file offset in bytes from the beginning
of the object. Read and write operations start at this offset, which is updated after
each data transfer. For objects that permit random access, the file offset also may
be set with the lseek system call. Ordinary files permit random access, and some
devices do, as well. Pipes and sockets do not.

When a process terminates, the kernel reclaims all the descriptors that were in
use by that process. If the process was holding the final reference to an object, the
object's manager is notified so that it can do any necessary cleanup actions, such
as final deletion of a file or deallocation of a socket.

Descriptor Management
Most processes expect three descriptors to be open already when they start run-
ning. These descriptors are 0, 1, 2, more commonly known as standard input,
standard output, and standard error, respectively. Usually, all three are associated
with the user's terminal by the login process (see Section 14.6) and are inherited
through fork and exec by processes run by the user. Thus, a program can read
what the user types by reading standard input, and the program can send output to
the user's screen by writing to standard output. The standard error descriptor also
is open for writing and is used for error output, whereas standard output is used
for ordinary output.

These (and other) descriptors can be mapped to objects other than the termi-
nal; such mapping is called I/O redirection, and all the standard shells permit users
to do it. The shell can direct the output of a program to a file by closing descriptor
1 (standard output) and opening the desired output file to produce a new descriptor
1. It can similarly redirect standard input to come from a file by closing descriptor
0 and opening the file.

Pipes allow the output of one program to be input to another program without
rewriting or even relinking of either program. Instead of descriptor 1 (standard
output) of the source program being set up to write to the terminal, it is set up to be
the input descriptor of a pipe. Similarly, descriptor 0 (standard input) of the sink
program is set up to reference the output of the pipe, instead of the terminal
keyboard. The resulting set of two processes and the connecting pipe is known as
a pipeline. Pipelines can be arbitrarily long series of processes connected by pipes.



The open, pipe, and socket system calls produce new descriptors with the low-
est unused number usable for a descriptor. For pipelines to work, some mecha-
nism must be provided to map such descriptors into 0 and 1. The dup system call
creates a copy of a descriptor that points to the same file-table entry. The new
descriptor is also the lowest unused one, but if the desired descriptor is closed first,
dup can be used to do the desired mapping. Care is required, however: If descrip-
tor 1 is desired, and descriptor 0 happens also to have been closed, descriptor 0
will be the result. To avoid this problem, the system provides the dup2 system
call; it is like dup, but it takes an additional argument specifying the number of the
desired descriptor (if the desired descriptor was already open, dup2 closes it
before reusing it).

Devices

Hardware devices have filenames, and may be accessed by the user via the same
system calls used for regular files. The kernel can distinguish a device special file
or special file, and can determine to what device it refers, but most processes do
not need to make this determination. Terminals, printers, and tape drives are all
accessed as though they were streams of bytes, like 4.4BSD disk files. Thus, de-
vice dependencies and peculiarities are kept in the kernel as much as possible, and
even in the kernel most of them are segregated in the device drivers.

Hardware devices can be categorized as either structured or unstructured;
they are known as block or character devices, respectively. Processes typically
access devices through special files in the filesystem. I/O operations to these files
are handled by kernel-resident software modules termed device drivers. Most net-
work-communication hardware devices are accessible through only the interpro-
cess-communication facilities, and do not have special files in the filesystem name
space, because the raw-socket interface provides a more natural interface than
does a special file.

Structured or block devices are typified by disks and magnetic tapes, and
include most random-access devices. The kernel supports read-modify-write-type
buffering actions on block-oriented structured devices to allow the latter to be read
and written in a totally random byte-addressed fashion, like regular files. Filesys-
tems are created on block devices.

Unstructured devices are those devices that do not support a block structure.
Familiar unstructured devices are communication lines, raster plotters, and
unbuffered magnetic tapes and disks. Unstructured devices typically support large
block I/O transfers.

Unstructured files are called character devices because the first of these to be
implemented were terminal device drivers. The kernel interface to the driver for
these devices proved convenient for other devices that were not block structured.

Device special files are created by the mknod system call. There is an addi-
tional system call, ioctl, for manipulating the underlying device parameters of spe-
cial files. The operations that can be done differ for each device. This system call
allows the special characteristics of devices to be accessed, rather than overload-
ing the semantics of other system calls. For example, there is an ioctl on a tape

drive to write an end-of-tape mark, instead of there being a special or modified
version of write.

Socket IPC
The 4.2BSD kernel introduced an IPC mechanism more flexible than pipes, based
on sockets. A socket is an endpoint of communication referred to by a descriptor,
just like a file or a pipe. Two processes can each create a socket, and then connect
those two endpoints to produce a reliable byte stream. Once connected, the
descriptors for the sockets can be read or written by processes, just as the latter
would do with a pipe. The transparency of sockets allows the kernel to redirect
the output of one process to the input of another process residing on another
machine. A major difference between pipes and sockets is that pipes require a
common parent process to set up the communications channel. A connection
between sockets can be set up by two unrelated processes, possibly residing on
different machines.

System V provides local interprocess communication through FIFOs (also
known as named pipes). FIFOs appear as an object in the filesystem that unrelated
processes can open and send data through in the same way as they would commu-
nicate through a pipe. Thus, FIFOs do not require a common parent to set them
up; they can be connected after a pair of processes are up and running. Unlike
sockets, FIFOs can be used on only a local machine; they cannot be used to com-
municate between processes on different machines. FIFOs are implemented in
4.4BSD only because they are required by the standard. Their functionality is a
subset of the socket interface.

The socket mechanism requires extensions to the traditional UNIX I/O system
calls to provide the associated naming and connection semantics. Rather than
overloading the existing interface, the developers used the existing interfaces to
the extent that the latter worked without being changed, and designed new inter-
faces to handle the added semantics. The read and write system calls were used
for byte-stream type connections, but six new system calls were added to allow
sending and receiving addressed messages such as network datagrams. The sys-
tem calls for writing messages include send, sendto, and sendmsg. The system
calls for reading messages include recv, recvfrom, and recvmsg. In retrospect, the
first two in each class are special cases of the others; recvfrom and sendto proba-
bly should have been added as library interfaces to recvmsg and sendmsg, respec-
tively.

Scatter/Gather I/O
In addition to the traditional read and write system calls, 4.2BSD introduced the
ability to do scatter/gather I/O. Scatter input uses the readv system call to allow a
single read to be placed in several different buffers. Conversely, the writev system
call allows several different buffers to be written in a single atomic write. Instead
of passing a single buffer and length parameter, as is done with read and write, the
process passes in a pointer to an array of buffers and lengths, along with a count
describing the size of the array.



This facility allows buffers in different parts of a process address space to be
written atomically, without the need to copy them to a single contiguous buffer.
Atomic writes are necessary in the case where the underlying abstraction is record
based, such as tape drives that output a tape block on each write request. It is also
convenient to be able to read a single request into several different buffers (such as
a record header into one place and the data into another). Although an application
can simulate the ability to scatter data by reading the data into a large buffer and
then copying the pieces to their intended destinations, the cost of memory-to-
memory copying in such cases often would more than double the running time of
the affected application.

Just as send and recv could have been implemented as library interfaces to
sendto and recvfrom, it also would have been possible to simulate read with readv
and write with writev. However, read and write are used so much more frequently
that the added cost of simulating them would not have been worthwhile.

Multiple Filesystem Support
With the expansion of network computing, it became desirable to support both
local and remote filesystems. To simplify the support of multiple filesystems, the
developers added a new virtual node or vnode interface to the kernel. The set of
operations exported from the vnode interface appear much like the filesystem
operations previously supported by the local filesystem. However, they may be
supported by a wide range of filesystem types:

• Local disk-based filesystems

• Files imported using a variety of remote filesystem protocols

• Read-only CD-ROM filesystems

• Filesystems providing special-purpose interfaces—for example, the /proc
filesystem

A few variants of 4.4BSD, such as FreeBSD, allow filesystems to be loaded
dynamically when the filesystems are first referenced by the mount system call.
The vnode interface is described in Section 6.5; its ancillary support routines are
described in Section 6.6; several of the special-purpose filesystems are described
in Section 6.7.

2.7 Filesystems

A regular file is a linear array of bytes, and can be read and written starting at any
byte in the file. The kernel distinguishes no record boundaries in regular files,
although many programs recognize line-feed characters as distinguishing the ends
of lines, and other programs may impose other structure. No system-related infor-
mation about a file is kept in the file itself, but the filesystem stores a small amount
of ownership, protection, and usage information with each file.

A filename component is a string of up to 255 characters. These filenames are
stored in a type of file called a directory. The information in a directory about a
file is called a directory entry and includes, in addition to the filename, a pointer to
the file itself. Directory entries may refer to other directories, as well as to plain
files. A hierarchy of directories and files is thus formed, and is called a filesystem',
a small one is shown in Fig. 2.2. Directories may contain subdirectories, and there
is no inherent limitation to the depth with which directory nesting may occur. To
protect the consistency of the filesystem, the kernel does not permit processes to
write directly into directories. A filesystem may include not only plain files and
directories, but also references to other objects, such as devices and sockets.

The filesystem forms a tree, the beginning of which is the root directory,
sometimes referred to by the name slash, spelled with a single solidus character
( /) . The root directory contains files; in our example in Fig. 2.2, it contains vmu-
nix, a copy of the kernel-executable object file. It also contains directories; in this
example, it contains the usr directory. Within the usr directory is the bin direc-
tory, which mostly contains executable object code of programs, such as the files
Is and vi.

A process identifies a file by specifying that file's pathname, which is a string
composed of zero or more filenames separated by slash ( / ) characters. The kernel
associates two directories with each process for use in interpreting pathnames. A
process's root directory is the topmost point in the filesystem that the process can
access; it is ordinarily set to the root directory of the entire filesystem. A path-
name beginning with a slash is called an absolute pathname, and is interpreted by
the kernel starting with the process's root directory.

Figure 2.2 A small filesystem tree.

mckusick



A pathname that does not begin with a slash is called a relative pathname, and
is interpreted relative to the current working directory of the process. (This direc-
tory also is known by the shorter names current directory or working directory.)
The current directory itself may be referred to directly by the name dot, spelled
with a single period (.). The filename dot-dot (..) refers to a directory's parent
directory. The root directory is its own parent.

A process may set its root directory with the chroot system call, and its cur-
rent directory with the chdir system call. Any process may do chdir at any time,
but chroot is permitted only a process with superuser privileges. Chroot is nor-
mally used to set up restricted access to the system.

Using the filesystem shown in Fig. 2.2, if a process has the root of the filesys-
tem as its root directory, and has /usr as its current directory, it can refer to the file
vi either from the root with the absolute pathname /usr/bin/vi, or from its current
directory with the relative pathname bin/vi.

System utilities and databases are kept in certain well-known directories. Part
of the well-defined hierarchy includes a directory that contains the home directory
for each user—for example, /usr/staff/mckusick and /usr/staff/karels in Fig. 2.2.
When users log in, the current working directory of their shell is set to the home
directory. Within their home directories, users can create directories as easily as
they can regular files. Thus, a user can build arbitrarily complex subhierarchies.

The user usually knows of only one filesystem, but the system may know that
this one virtual filesystem is really composed of several physical filesystems, each
on a different device. A physical filesystem may not span multiple hardware
devices. Since most physical disk devices are divided into several logical devices,
there may be more than one filesystem per physical device, but there will be no
more than one per logical device. One filesystem—the filesystem that anchors all
absolute pathnames—is called the root filesystem, and is always available. Others
may be mounted; that is, they may be integrated into the directory hierarchy of the
root filesystem. References to a directory that has a filesystem mounted on it are
converted transparently by the kernel into references to the root directory of the
mounted filesystem.

The link system call takes the name of an existing file and another name to
create for that file. After a successful link, the file can be accessed by either file-
name. A filename can be removed with the unlink system call. When the final
name for a file is removed (and the final process that has the file open closes it),
the file is deleted.

Files are organized hierarchically in directories. A directory is a type of file,
but, in contrast to regular files, a directory has a structure imposed on it by the sys-
tem. A process can read a directory as it would an ordinary file, but only the ker-
nel is permitted to modify a directory. Directories are created by the mkdir system
call and are removed by the rmdir system call. Before 4.2BSD, the mkdir and
rmdir system calls were implemented by a series of link and unlink system calls
being done. There were three reasons for adding systems calls explicitly to create
and delete directories:

1. The operation could be made atomic. If the system crashed, the directory
would not be left half-constructed, as could happen when a series of link oper-
ations were used.

2. When a networked filesystem is being run, the creation and deletion of files
and directories need to be specified atomically so that they can be serialized.

3. When supporting non-UNIX filesystems, such as an MS-DOS filesystem, on
another partition of the disk, the other filesystem may not support link opera-
tions. Although other filesystems might support the concept of directories,
they probably would not create and delete the directories with links, as the
UNIX filesystem does. Consequently, they could create and delete directories
only if explicit directory create and delete requests were presented.

The chown system call sets the owner and group of a file, and chmod changes
protection attributes. Stat applied to a filename can be used to read back such
properties of a file. The fchown, fchmod, and fstat system calls are applied to a
descriptor, instead of to a filename, to do the same set of operations. The rename
system call can be used to give a file a new name in the filesystem, replacing one
of the file's old names. Like the directory-creation and directory-deletion opera-
tions, the rename system call was added to 4.2BSD to provide atomicity to name
changes in the local filesystem. Later, it proved useful explicitly to export renam-
ing operations to foreign filesystems and over the network.

The truncate system call was added to 4.2BSD to allow files to be shortened
to an arbitrary offset. The call was added primarily in support of the Fortran run-
time library, which has the semantics such that the end of a random-access file is
set to be wherever the program most recently accessed that file. Without the trun-
cate system call, the only way to shorten a file was to copy the part that was
desired to a new file, to delete the old file, then to rename the copy to the original
name. As well as this algorithm being slow, the library could potentially fail on a
full filesystem.

Once the filesystem had the ability to shorten files, the kernel took advantage
of that ability to shorten large empty directories. The advantage of shortening
empty directories is that it reduces the time spent in the kernel searching them
when names are being created or deleted.

Newly created files are assigned the user identifier of the process that created
them and the group identifier of the directory in which they were created. A three-
level access-control mechanism is provided for the protection of files. These three
levels specify the accessibility of a file to

1. The user who owns the file

2. The group that owns the file

3. Everyone else



Each level of access has separate indicators for read permission, write permission,
and execute permission.

Files are created with zero length, and may grow when they are written.
While a file is open, the system maintains a pointer into the file indicating the cur-
rent location in the file associated with the descriptor. This pointer can be moved
about in the file in a random-access fashion. Processes sharing a file descriptor
through a fork or dup system call share the current location pointer. Descriptors
created by separate open system calls have separate current location pointers.
Files may have holes in them. Holes are void areas in the linear extent of the file
where data have never been written. A process can create these holes by position-
ing the pointer past the current end-of-file and writing. When read, holes are
treated by the system as zero-valued bytes.

Earlier UNIX systems had a limit of 14 characters per filename component.
This limitation was often a problem. For example, in addition to the natural desire
of users to give files long descriptive names, a common way of forming filenames
is as basename.extension, where the extension (indicating the kind of file, such as
.c for C source or .o for intermediate binary object) is one to three characters,
leaving 10 to 12 characters for the basename. Source-code-control systems and
editors usually take up another two characters, either as a prefix or a suffix, for
their purposes, leaving eight to 10 characters. It is easy to use 10 or 12 characters
in a single English word as a basename (e.g., "multiplexer").

It is possible to keep within these limits, but it is inconvenient or even dan-
gerous, because other UNIX systems accept strings longer than the limit when
creating files, but then truncate to the limit. A C language source file named
multiplexer.c (already 13 characters) might have a source-code-control file with
s. prepended, producing a filename s.multiplexer that is indistinguishable from
the source-code-control file for multiplexer.ms, a file containing troff source for
documentation for the C program. The contents of the two original files could
easily get confused with no warning from the source-code-control system. Care-
ful coding can detect this problem, but the long filenames first introduced in
4.2BSD practically eliminate it.

2.8 Filestores

The operations defined for local filesystems are divided into two parts. Common
to all local filesystems are hierarchical naming, locking, quotas, attribute manage-
ment, and protection. These features are independent of how the data will be
stored. 4.4BSD has a single implementation to provide these semantics.

The other part of the local filesystem is the organization and management of
the data on the storage media. Laying out the contents of files on the storage
media is the responsibility of the filestore. 4.4BSD supports three different file-
store layouts:

• The traditional Berkeley Fast Filesystem
• The log-structured filesystem, based on the Sprite operating-system design

[Rosenblum & Ousterhout, 1992]

• A memory-based filesystem

Although the organizations of these filestores are completely different, these dif-
ferences are indistinguishable to the processes using the filestores.

The Fast Filesystem organizes data into cylinder groups. Files that are likely
to be accessed together, based on their locations in the filesystem hierarchy, are
stored in the same cylinder group. Files that are not expected to accessed together
are moved into different cylinder groups. Thus, files written at the same time may
be placed far apart on the disk.

The log-structured filesystem organizes data as a log. All data being written
at any point in time are gathered together, and are written at the same disk loca-
tion. Data are never overwritten; instead, a new copy of the file is written that
replaces the old one. The old files are reclaimed by a garbage-collection process
that runs when the filesystem becomes full and additional free space is needed.

The memory-based filesystem is designed to store data in virtual memory. It
is used for filesystems that need to support fast but temporary data, such as /tmp.
The goal of the memory-based filesystem is to keep the storage packed as com-
pactly as possible to minimize the usage of virtual-memory resources.

2.9 Network Filesystem
Initially, networking was used to transfer data from one machine to another. Later,
it evolved to allowing users to log in remotely to another machine. The next logi-
cal step was to bring the data to the user, instead of having the user go to the
data—and network filesystems were born. Users working locally do not experi-
ence the network delays on each keystroke, so they have a more responsive envi-
ronment.

Bringing the filesystem to a local machine was among the first of the major
client-server applications. The server is the remote machine that exports one or
more of its filesystems. The client is the local machine that imports those filesys-
tems. From the local client's point of view, a remotely mounted filesystem
appears in the file-tree name space just like any other locally mounted filesystem.
Local clients can change into directories on the remote filesystem, and can read,
write, and execute binaries within that remote filesystem identically to the way
that they can do these operations on a local filesystem.

When the local client does an operation on a remote filesystem, the request is
packaged and is sent to the server. The server does the requested operation and
returns either the requested information or an error indicating why the request was



denied. To get reasonable performance, the client must cache frequently accessed
data. The complexity of remote filesystems lies in maintaining cache consistency
between the server and its many clients.

Although many remote-filesystem protocols have been developed over the
years, the most pervasive one in use among UNIX systems is the Network Filesys-
tem (NFS), whose protocol and most widely used implementation were done by
Sun Microsystems. The 4.4BSD kernel supports the NFS protocol, although the
implementation was done independently from the protocol specification [Mack-
lem, 1994]. The NFS protocol is described in Chapter 9.

2.10 Terminals

Terminals support the standard system I/O operations, as well as a collection of
terminal-specific operations to control input-character editing and output delays.
At the lowest level are the terminal device drivers that control the hardware termi-
nal ports. Terminal input is handled according to the underlying communication
characteristics, such as baud rate, and according to a set of software-controllable
parameters, such as parity checking.

Layered above the terminal device drivers are line disciplines that provide
various degrees of character processing. The default line discipline is selected
when a port is being used for an interactive login. The line discipline is run in
canonical mode', input is processed to provide standard line-oriented editing func-
tions, and input is presented to a process on a line-by-line basis.

Screen editors and programs that communicate with other computers gener-
ally run in noncanonical mode (also commonly referred to as raw mode or char-
acter-at-a-time mode). In this mode, input is passed through to the reading process
immediately and without interpretation. All special-character input processing is
disabled, no erase or other line editing processing is done, and all characters are
passed to the program that is reading from the terminal.

It is possible to configure the terminal in thousands of combinations between
these two extremes. For example, a screen editor that wanted to receive user inter-
rupts asynchronously might enable the special characters that generate signals and
enable output flow control, but otherwise run in noncanonical mode; all other
characters would be passed through to the process uninterpreted.

On output, the terminal handler provides simple formatting services, including

• Converting the line-feed character to the two-character carriage-return-line-feed
sequence

• Inserting delays after certain standard control characters

• Expanding tabs

• Displaying echoed nongraphic ASCII characters as a two-character sequence of
the form "^C" (i.e., the ASCII caret character followed by the ASCII character
that is the character's value offset from the ASCII "@" character).

Each of these formatting services can be disabled individually by a process
through control requests.

Interprocess Communication
Interprocess communication in 4.4BSD is organized in communication domains.
Domains currently supported include the local domain, for communication
between processes executing on the same machine; the internet domain, for com-
munication between processes using the TCP/IP protocol suite (perhaps within the
Internet); the ISO/OSI protocol family for communication between sites required
to run them; and the XNS domain, for communication between processes using the
XEROX Network Systems (XNS) protocols.

Within a domain, communication takes place between communication end-
points known as sockets. As mentioned in Section 2.6, the socket system call cre-
ates a socket and returns a descriptor; other IPC system calls are described in
Chapter 11. Each socket has a type that defines its communications semantics;
these semantics include properties such as reliability, ordering, and prevention of
duplication of messages.

Each socket has associated with it a communication protocol. This protocol
provides the semantics required by the socket according to the latter's type. Appli-
cations may request a specific protocol when creating a socket, or may allow the
system to select a protocol that is appropriate for the type of socket being created.

Sockets may have addresses bound to them. The form and meaning of socket
addresses are dependent on the communication domain in which the socket is cre-
ated. Binding a name to a socket in the local domain causes a file to be created in
the filesystem.

Normal data transmitted and received through sockets are untyped. Data-rep-
resentation issues are the responsibility of libraries built on top of the interprocess-
communication facilities. In addition to transporting normal data, communication
domains may support the transmission and reception of specially typed data,
termed access rights. The local domain, for example, uses this facility to pass
descriptors between processes.

Networking implementations on UNIX before 4. 2BSD usually worked by
overloading the character-device interfaces. One goal of the socket interface was
for naive programs to be able to work without change on stream-style connections.
Such programs can work only if the read and write systems calls are unchanged.
Consequently, the original interfaces were left intact, and were made to work on



stream-type sockets. A new interface was added for more complicated sockets,
such as those used to send datagrams, with which a destination address must be
presented with each send call.

Another benefit is that the new interface is highly portable. Shortly after a
test release was available from Berkeley, the socket interface had been ported to
System III by a UNIX vendor (although AT&T did not support the socket interface
until the release of System V Release 4, deciding instead to use the Eighth Edition
stream mechanism). The socket interface was also ported to run in many Ethernet
boards by vendors, such as Excelan and Interlan, that were selling into the PC
market, where the machines were too small to run networking in the main proces-
sor. More recently, the socket interface was used as the basis for Microsoft's
Winsock networking interface for Windows.

2.12 Network Communication

Some of the communication domains supported by the socket IPC mechanism pro-
vide access to network protocols. These protocols are implemented as a separate
software layer logically below the socket software in the kernel. The kernel pro-
vides many ancillary services, such as buffer management, message routing, stan-
dardized interfaces to the protocols, and interfaces to the network interface drivers
for the use of the various network protocols.

At the time that 4.2BSD was being implemented, there were many networking
protocols in use or under development, each with its own strengths and weak-
nesses. There was no clearly superior protocol or protocol suite. By supporting
multiple protocols, 4.2BSD could provide interoperability and resource sharing
among the diverse set of machines that was available in the Berkeley environment.
Multiple-protocol support also provides for future changes. Today's protocols
designed for 10- to 100-Mbit-per-second Ethernets are likely to be inadequate for
tomorrow's 1- to 10-Gbit-per-second fiber-optic networks. Consequently, the net-
work-communication layer is designed to support multiple protocols. New proto-
cols are added to the kernel without the support for older protocols being affected.
Older applications can continue to operate using the old protocol over the same
physical network as is used by newer applications running with a newer network
protocol.

2.13 Network Implementation

The first protocol suite implemented in 4.2BSD was DARPA's Transmission Con-
trol Protocol/Internet Protocol (TCP/IP). The CSRG chose TCP/IP as the first net-
work to incorporate into the socket IPC framework, because a 4.lBSD-based
implementation was publicly available from a DARPA-sponsored project at Bolt,
Beranek, and Newman (BBN). That was an influential choice: The 4.2BSD

implementation is the main reason for the extremely widespread use of this
protocol suite. Later performance and capability improvements to the TCP/IP
implementation have also been widely adopted. The TCP/IP implementation is
described in detail in Chapter 13.

The release of 4.3BSD added the Xerox Network Systems (XNS) protocol
suite, partly building on work done at the University of Maryland and at Cornell
University. This suite was needed to connect isolated machines that could not
communicate using TCP/IP.

The release of 4.4BSD added the ISO protocol suite because of the latter's
increasing visibility both within and outside the United States. Because of the
somewhat different semantics defined for the ISO protocols, some minor changes
were required in the socket interface to accommodate these semantics. The
changes were made such that they were invisible to clients of other existing proto-
cols. The ISO protocols also required extensive addition to the two-level routing
tables provided by the kernel in 4.3BSD. The greatly expanded routing capabili-
ties of 4.4BSD include arbitrary levels of routing with variable-length addresses
and network masks.

2.14 System Operation
Bootstrapping mechanisms are used to start the system running. First, the 4.4BSD
kernel must be loaded into the main memory of the processor. Once loaded, it
must go through an initialization phase to set the hardware into a known state.
Next, the kernel must do autoconfiguration, a process that finds and configures the
peripherals that are attached to the processor. The system begins running in sin-
gle-user mode while a start-up script does disk checks and starts the accounting
and quota checking. Finally, the start-up script starts the general system services
and brings up the system to full multiuser operation.

During multiuser operation, processes wait for login requests on the terminal
lines and network ports that have been configured for user access. When a login
request is detected, a login process is spawned and user validation is done. When
the login validation is successful, a login shell is created from which the user can
run additional processes.

xercises
2.1 How does a user process request a service from the kernel?

2.2 How are data transferred between a process and the kernel? What alterna-
tives are available?

2.3 How does a process access an I/O stream? List three types of I/O streams.

2.4 What are the four steps in the lifecycle of a process?



2.5 Why are process groups provided in 4.3BSD?

2.6 Describe four machine-dependent functions of the kernel?

2.7 Describe the difference between an absolute and a relative pathname.

2.8 Give three reasons why the mkdir system call was added to 4.2BSD.

2.9 Define scatter-gather I/O. Why is it useful?

2.10 What is the difference between a block and a character device?

2.11 List five functions provided by a terminal driver.

2.12 What is the difference between a pipe and a socket?

2.13 Describe how to create a group of processes in a pipeline.

*2.14 List the three system calls that were required to create a new directory foo
in the current directory before the addition of the mkdir system call.

*2.15 Explain the difference between interprocess communication and net-
working.

References
Accettaetal, 1986.

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, & M.
Young, "Mach: A New Kernel Foundation for UNIX Development,"
USENIX Association Conference Proceedings, pp. 93-113, June 1986.

Cheriton, 1988.
D. R. Cheriton, 'The V Distributed System," Comm ACM, vol. 31, no. 3,
pp. 314-333, March 1988.

Ewensetal, 1985.
P. Ewens, D. R. Blythe, M. Funkenhauser, & R. C. Holt, "Tunis: A Dis-
tributed Multiprocessor Operating System," USENIX Association Confer-
ence Proceedings, pp. 247-254, June 1985.

Gingelletal, 1987.
R. Gingell, J. Moran, & W. Shannon, "Virtual Memory Architecture in
SunOS," USENIX Association Conference Proceedings, pp. 81-94, June
1987.

Kernighan & Pike, 1984.
B. W. Kernighan & R. Pike, The UNIX Programming Environment, Prentice-
Hall, Englewood Cliffs, NJ, 1984.

Macklem, 1994.
R. Macklem, "The 4.4BSD NFS Implementation," in 4.4BSD System Man-
ager's Manual, pp. 6:1-14, O'Reilly & Associates, Inc., Sebastopol, CA,
1994.

McKusick & Karels, 1988.
M. K. McKusick & M. J. Karels, "Design of a General Purpose Memory

Allocator for the 4.3BSD UNIX Kernel," USENIX Association Conference
Proceedings, pp. 295-304, June 1988.

. Karels, S.J. Leffler, W. N. Joy, & R . S.
B e e y Software Architecture Manual, 4.4BSD E d i t i o n , "

Programmer's Supplementary Documents, pp. 5:1-42, O Reilly &
ates, Inc., Sebastopol, CA, 1994.

D .M. Ritchie, "Early Kernel Design," private communication, March 1988.

Ousterhout, "The Design and Implementation of a Log-

pp. 305-370, Fall 1988.
Tevanian, 1987. Independet Virtual Memory Management for

Parallel and Distributed Environments: The Mach Approach, Technical
Report CMU-CS-88-106, Department of Computer Science, Carnegie-Mel-
lon University, Pittsburgh, PA, December 1987.



CHAPTER 3

Kernel Services

3.1 Kernel Organization

The 4.4BSD kernel can be viewed as a service provider to user processes. Pro-
cesses usually access these services through system calls. Some services, such as
process scheduling and memory management, are implemented as processes that
execute in kernel mode or as routines that execute periodically within the kernel.
In this chapter, we describe how kernel services are provided to user processes,
and what some of the ancillary processing performed by the kernel is. Then, we
describe the basic kernel services provided by 4.4BSD, and provide details of their
implementation.

System Processes
All 4.4BSD processes originate from a single process that is crafted by the kernel
at startup. Three processes are created immediately and exist always. Two of
them are kernel processes, and function wholly within the kernel. (Kernel pro-
cesses execute code that is compiled into the kernel's load image and operate with
the kernel's privileged execution mode.) The third is the first process to execute a
program in user mode; it serves as the parent process for all subsequent processes.

The two kernel processes are the swapper and the pagedaemon. The swap-
per—historically, process 0—is responsible for scheduling the transfer of whole
processes between main memory and secondary storage when system resources are
low. The pagedaemon—historically, process 2—is responsible for writing parts of
the address space of a process to secondary storage in support of the paging facili-
ties of the virtual-memory system. The third process is the init process—histori-
cally, process 1. This process performs administrative tasks, such as spawning
getty processes for each terminal on a machine and handling the orderly shutdown
of a system from multiuser to single-user operation. The init process is a user-
mode process, running outside the kernel (see Section 14.6).

49



System Entry

Entrances into the kernel can be categorized according to the event or action that
initiates it;

• Hardware interrupt

• Hardware trap

• Software-initiated trap

Hardware interrupts arise from external events, such as an I/O device needing
attention or a clock reporting the passage of time. (For example, the kernel
depends on the presence of a real-time clock or interval timer to maintain the cur-
rent time of day, to drive process scheduling, and to initiate the execution of sys-
tem timeout functions.) Hardware interrupts occur asynchronously and may not
relate to the context of the currently executing process.

Hardware traps may be either synchronous or asynchronous, but are related
to the current executing process. Examples of hardware traps are those generated
as a result of an illegal arithmetic operation, such as divide by zero.

Software-initiated traps are used by the system to force the scheduling of an
event such as process rescheduling or network processing, as soon as is possible.
For most uses of software-initiated traps, it is an implementation detail whether
they are implemented as a hardware-generated interrupt, or as a flag that is
checked whenever the priority level drops (e.g., on every exit from the kernel). An
example of hardware support for software-initiated traps is the asynchronous sys-
tem trap (AST) provided by the VAX architecture. An AST is posted by the kernel.
Then, when a return-from-interrupt instruction drops the interrupt-priority level
below a threshold, an AST interrupt will be delivered. Most architectures today do
not have hardware support for ASTs, so they must implement ASTs in software.

System calls are a special case of a software-initiated trap—the machine
instruction used to initiate a system call typically causes a hardware trap that is
handled specially by the kernel.

Run-Time Organization

The kernel can be logically divided into a top half and a bottom half, as shown in
Fig. 3.1. The top half of the kernel provides services to processes in response to
system calls or traps. This software can be thought of as a library of routines
shared by all processes. The top half of the kernel executes in a privileged execu-
tion mode, in which it has access both to kernel data structures and to the context
of user-level processes. The context of each process is contained in two areas of
memory reserved for process-specific information. The first of these areas is the
process structure, which has historically contained the information that is neces-
sary even if the process has been swapped out. In 4.4BSD, this information
includes the identifiers associated with the process, the process's rights and privi-
leges, its descriptors, its memory map, pending external events and associated

user process

top half
of kernel

cat

READ

waiting

Preemptive scheduling
cannot block; runs on user
stack in user address space

Runs until blocked or done.
Can block to wait for a
resource; runs on per-process
kernel stack

bottom half
of kernel

Figure 3.1 Run-time structure of the kernel.

Never scheduled, cannot
block. Runs on kernel
stack in kernel address space.

actions, maximum and current resource utilization, and many other things. The
second is the user structure, which has historically contained the information that
is not necessary when the process is swapped out. In 4.4BSD, the user-structure
information of each process includes the hardware process control block (PCB),
process accounting and statistics, and minor additional information for debugging
and creating a core dump. Deciding what was to be stored in the process structure
and the user structure was far more important in previous systems than it was in
4.4BSD. As memory became a less limited resource, most of the user structure
was merged into the process structure for convenience; see Section 4.2.

The bottom half of the kernel comprises routines that are invoked to handle
hardware interrupts. The kernel requires that hardware facilities be available to
block the delivery of interrupts. Improved performance is available if the hardware
facilities allow interrupts to be defined in order of priority. Whereas the HP300
provides distinct hardware priority levels for different kinds of interrupts, UNIX
also runs on architectures such as the Perkin Elmer, where interrupts are all at the
same priority, or the ELXSI, where there are no interrupts in the traditional sense.

Activities in the bottom half of the kernel are asynchronous, with respect to
the top half, and the software cannot depend on having a specific (or any) process
running when an interrupt occurs. Thus, the state information for the process that
initiated the activity is not available. (Activities in the bottom half of the kernel
are synchronous with respect to the interrupt source.) The top and bottom halves
of the kernel communicate through data structures, generally organized around
work queues.



The 4.4BSD kernel is never preempted to run another process while executing
in the top half of the kernel—for example, while executing a system call—
although it will explicitly give up the processor if it must wait for an event or for a
shared resource. Its execution may be interrupted, however, by interrupts for the
bottom half of the kernel. The bottom half always begins running at a specific
priority level. Therefore, the top half can block these interrupts by setting the pro-
cessor priority level to an appropriate value. The value is chosen based on the pri-
ority level of the device that shares the data structures that the top half is about to
modify. This mechanism ensures the consistency of the work queues and other
data structures shared between the top and bottom halves.

Processes cooperate in the sharing of system resources, such as the CPU. The
top and bottom halves of the kernel also work together in implementing certain
system operations, such as I/O. Typically, the top half will start an I/O operation,
then relinquish the processor; then the requesting process will sleep, awaiting noti-
fication from the bottom half that the I/O request has completed.

Entry to the Kernel

When a process enters the kernel through a trap or an interrupt, the kernel must
save the current machine state before it begins to service the event. For the HP300,
the machine state that must be saved includes the program counter, the user stack
pointer, the general-purpose registers and the processor status longword. The
HP300 trap instruction saves the program counter and the processor status long-
word as part of the exception stack frame; the user stack pointer and registers must
be saved by the software trap handler. If the machine state were not fully saved,
the kernel could change values in the currently executing program in improper
ways. Since interrupts may occur between any two user-level instructions (and,
on some architectures, between parts of a single instruction), and because they
may be completely unrelated to the currently executing process, an incompletely
saved state could cause correct programs to fail in mysterious and not easily repro-
duceable ways.

The exact sequence of events required to save the process state is completely
machine dependent, although the HP300 provides a good example of the general
procedure. A trap or system call will trigger the following events:

• The hardware switches into kernel (supervisor) mode, so that memory-access
checks are made with kernel privileges, references to the stack pointer use the
kernel's stack pointer, and privileged instructions can be executed.

• The hardware pushes onto the per-process kernel stack the program counter,
processor status longword, and information describing the type of trap. (On
architectures other than the HP300, this information can include the system-call
number and general-purpose registers as well.)

• An assembly-language routine saves all state information not saved by the hard-
ware. On the HP300, this information includes the general-purpose registers and
the user stack pointer, also saved onto the per-process kernel stack.

After this preliminary state saving, the kernel calls a C routine that can freely use
the general-purpose registers as any other C routine would, without concern about
changing the unsuspecting process's state.

There are three major kinds of handlers, corresponding to particular kernel
entries:

1. Syscall () for a system call
2. Trap () for hardware traps and for software-initiated traps other than system calls

3. The appropriate device-driver interrupt handler for a hardware interrupt

Each type of handler takes its own specific set of parameters. For a system call,
they are the system-call number and an exception frame. For a trap, they are the
type of trap, the relevant floating-point and virtual-address information related to
the trap, and an exception frame. (The exception-frame arguments for the trap and
system call are not the same. The HP300 hardware saves different information
based on different types of traps.) For a hardware interrupt, the only parameter is
a unit (or board) number.

Return from the Kernel
When the handling of the system entry is completed, the user-process state is
restored, and the kernel returns to the user process. Returning to the user process
reverses the process of entering the kernel.

• An assembly-language routine restores the general-purpose registers and user-
stack pointer previously pushed onto the stack.

• The hardware restores the program counter and program status longword, and
switches to user mode, so that future references to the stack pointer use the
user's stack pointer, privileged instructions cannot be executed, and memory-
access checks are done with user-level privileges.

Execution then resumes at the next instruction in the user's process.

3.2 System Calls
The most frequent trap into the kernel (after clock processing) is a request to do a
system call. System performance requires that the kernel minimize the overhead
in fielding and dispatching a system call. The system-call handler must do the fol-
lowing work:

• Verify that the parameters to the system call are located at a valid user address,
and copy them from the user's address space into the kernel

• Call a kernel routine that implements the system call



Result Handling

Eventually, the system call returns to the calling process, either successfully or
unsuccessfully. On the HP300 architecture, success or failure is returned as the
carry bit in the user process's program status longword: If it is zero, the return was
successful; otherwise, it was unsuccessful. On the HP300 and many other
machines, return values of C functions are passed back through a general-purpose
register (for the HP300, data register 0). The routines in the kernel that implement
system calls return the values that are normally associated with the global variable
errno. After a system call, the kernel system-call handler leaves this value in the
register. If the system call failed, a C library routine moves that value into errno,
and sets the return register to -1. The calling process is expected to notice the
value of the return register, and then to examine errno. The mechanism involving
the carry bit and the global variable errno exists for historical reasons derived
from the PDP-11.

There are two kinds of unsuccessful returns from a system call: those where
kernel routines discover an error, and those where a system call is interrupted.
The most common case is a system call that is interrupted when it has relinquished
the processor to wait for an event that may not occur for a long time (such as ter-
minal input), and a signal arrives in the interim. When signal handlers are initial-
ized by a process, they specify whether system calls that they interrupt should be
restarted, or whether the system call should return with an interrupted system call
(EINTR) error.

When a system call is interrupted, the signal is delivered to the process. If the
process has requested that the signal abort the system call, the handler then returns
an error, as described previously. If the system call is to be restarted, however, the
handler resets the process's program counter to the machine instruction that
caused the system-call trap into the kernel. (This calculation is necessary because
the program-counter value that was saved when the system-call trap was done is
for the instruction after the trap-causing instruction.) The handler replaces the
saved program-counter value with this address. When the process returns from
the signal handler, it resumes at the program-counter value that the handler pro-
vided, and reexecutes the same system call.

Restarting a system call by resetting the program counter has certain implica-
tions. First, the kernel must not modify any of the input parameters in the process
address space (it can modify the kernel copy of the parameters that it makes).
Second, it must ensure that the system call has not performed any actions that can-
not be repeated. For example, in the current system, if any characters have been
read from the terminal, the read must return with a short count. Otherwise, if the
call were to be restarted, the already-read bytes would be lost.

Returning from a System Call

While the system call is running, a signal may be posted to the process, or another
process may attain a higher scheduling priority. After the system call completes,
the handler checks to see whether either event has occurred.

The handler first checks for a posted signal. Such signals include signals that
interrupted the system call, as well as signals that arrived while a system call was
in progress, but were held pending until the system call completed. Signals that
are ignored, by default or by explicit programmatic request, are never posted to
the process. Signals with a default action have that action taken before the process
runs again (i.e., the process may be stopped or terminated as appropriate). If a
signal is to be caught (and is not currently blocked), the handler arranges to have
the appropriate signal handler called, rather than to have the process return
directly from the system call. After the handler returns, the process will resume
execution at system-call return (or system-call execution, if the system call is
being restarted).

After checking for posted signals, the handler checks to see whether any
process has a priority higher than that of the currently running one. If such a
process exists, the handler calls the context-switch routine to cause the higher-
priority process to run. At a later time, the current process will again have the
highest priority, and will resume execution by returning from the system call to
the user process.

If a process has requested that the system do profiling, the handler also calcu-
lates the amount of time that has been spent in the system call, i.e., the system
time accounted to the process between the latter's entry into and exit from the
handler. This time is charged to the routine in the user's process that made the
system call.

3.3 Traps and Interrupts

Traps
Traps, like system calls, occur synchronously for a process. Traps normally occur
because of unintentional errors, such as division by zero or indirection through an
invalid pointer. The process becomes aware-of the problem either by catching a
signal or by being terminated. Traps can also occur because of a page fault, in
which case the system makes the page available and restarts the process without
the process being aware that the fault occurred.

The trap handler is invoked like the system-call handler. First, the process
state is saved. Next, the trap handler determines the trap type, then arranges to post
a signal or to cause a pagein as appropriate. Finally, it checks for pending signals
and higher-priority processes, and exits identically to the system-call handler.

I/O Device Interrupts
Interrupts from I/O and other devices are handled by interrupt routines that are
loaded as part of the kernel's address space. These routines handle the console
terminal interface, one or more clocks, and several soft ware-initiated interrupts
used by the system for low-priority clock processing and for networking facilities.



Unlike traps and system calls, device interrupts occur asynchronously. The
process that requested the service is unlikely to be the currently running process,
and may no longer exist! The process that started the operation will be notified
that the operation has finished when that process runs again. As occurs with traps
and system calls, the entire machine state must be saved, since any changes could
cause errors in the currently running process.

Device-interrupt handlers run only on demand, and are never scheduled by the
kernel. Unlike system calls, interrupt handlers do not have a per-process context.
Interrupt handlers cannot use any of the context of the currently running process
(e.g., the process's user structure). The stack normally used by the kernel is part
of a process context. On some systems (e.g., the HP300), the interrupts are caught
on the per-process kernel stack of whichever process happens to be running. This
approach requires that all the per-process kernel stacks be large enough to handle
the deepest possible nesting caused by a system call and one or more interrupts,
and that a per-process kernel stack always be available, even when a process is not
running. Other architectures (e.g., the VAX), provide a systemwide interrupt stack
that is used solely for device interrupts. This architecture allows the per-process
kernel stacks to be sized based on only the requirements for handling a syn-
chronous trap or system call. Regardless of the implementation, when an interrupt
occurs, the system must switch to the correct stack (either explicitly, or as part of
the hardware exception handling) before it begins to handle the interrupt.

The interrupt handler can never use the stack to save state between invoca-
tions. An interrupt handler must get all the information that it needs from the data
structures that it shares with the top half of the kernel—generally, its global work
queue. Similarly, all information provided to the top half of the kernel by the
interrupt handler must be communicated the same way. In addition, because
4.4BSD requires a per-process context for a thread of control to sleep, an interrupt
handler cannot relinquish the processor to wait for resources, but rather must
always run to completion.

Software Interrupts

Many events in the kernel are driven by hardware interrupts. For high-speed
devices such as network controllers, these interrupts occur at a high priority. A
network controller must quickly acknowledge receipt of a packet and reenable the
controller to accept more packets to avoid losing closely spaced packets. How-
ever, the further processing of passing the packet to the receiving process,
although time consuming, does not need to be done quickly. Thus, a lower prior-
ity is possible for the further processing, so critical operations will not be blocked
from executing longer than necessary.

The mechanism for doing lower-priority processing is called a software inter-
rupt. Typically, a high-priority interrupt creates a queue of work to be done at a .
lower-priority level. After queueing of the work request, the high-priority interrupt
arranges for the processing of the request to be run at a lower-priority level. When
the machine priority drops below that lower priority, an interrupt is generated that
calls the requested function. If a higher-priority interrupt comes in during request

processing, that processing will be preempted like any other low-priority task. On
some architectures, the interrupts are true hardware traps caused by software
instructions. Other architectures implement the same functionality by monitoring
flags set by the interrupt handler at appropriate times and calling the request-pro-
cessing functions directly.

The delivery of network packets to destination processes is handled by a
packet-processing function that runs at low priority. As packets come in, they are
put onto a work queue, and the controller is immediately reenabled. Between
packet arrivals, the packet-processing function works to deliver the packets. Thus,
the controller can accept new packets without having to wait for the previous
packet to be delivered. In addition to network processing, software interrupts are
used to handle time-related events and process rescheduling.

Clock Interrupts
The system is driven by a clock that interrupts at regular intervals. Each interrupt
is referred to as a tick. On the HP300, the clock ticks 100 times per second. At
each tick, the system updates the current time of day as well as user-process and
system timers.

Interrupts for clock ticks are posted at a high hardware-interrupt priority.
After the process state has been saved, the hardclock() routine is called. It is
important that the hardclock() routine finish its job quickly:

• If hardclock() runs for more than one tick, it will miss the next clock interrupt.
Since hardclock( ) maintains the time of day for the system, a missed interrupt
will cause the system to lose time.

•Because of hardclock()s high interrupt priority, nearly all other activity in the
system is blocked while hardclock() is running. This blocking can cause net-
work controllers to miss packets, or a disk controller to miss the transfer of a
sector coming under a disk drive's head.

So that the time spent in hardclock() is minimized, less critical time-related pro-
cessing is handled by a lower-priority software-interrupt handler called
softclock(). In addition, if multiple clocks are available, some time-related pro-
cessing can be handled by other routines supported by alternate clocks.

The work done by hardclock() is as follows:

• Increment the current time of day.

• If the currently running process has a virtual or profiling interval timer (see Sec-
tion 3.6), decrement the timer and deliver a signal if the timer has expired.

• If the system does not have a separate clock for statistics gathering, the
hardclock( ) routine does the operations normally done by statclock(), as
described in the next section.



• If softclock( ) needs to be called, and the current interrupt-priority level is low,
call softclock( ) directly.

Statistics and Process Scheduling

On historic 4BSD systems, the hardclock( ) routine collected resource-utilization
statistics about what was happening when the clock interrupted. These statistics
were used to do accounting, to monitor what the system was doing, and to deter-
mine future scheduling priorities. In addition, hardclock( ) forced context
switches so that all processes would get a share of the CPU.

This approach has weaknesses because the clock supporting hardclock( )
interrupts on a regular basis. Processes can become synchronized with the system
clock, resulting in inaccurate measurements of resource utilization (especially
CPU) and inaccurate profiling [McCanne & Torek, 1993]. It is also possible to
write programs that deliberately synchronize with the system clock to outwit the
scheduler.

On architectures with multiple high-precision, programmable clocks, such as
the HP300, randomizing the interrupt period of a clock can improve the system
resource-usage measurements significantly. One clock is set to interrupt at a fixed
rate; the other interrupts at a random interval chosen from times distributed uni-
formly over a bounded range.

To allow the collection of more accurate profiling information, 4.4BSD sup-
ports profiling clocks. When a profiling clock is available, it is set to run at a tick
rate that is relatively prime to the main system clock (five times as often as the
system clock, on the HP300).

The statclock( ) routine is supported by a separate clock if one is available,
and is responsible for accumulating resource usage to processes. The work done
by statclock( ) includes

• Charge the currently running process with a tick; if the process has accumulated
four ticks, recalculate its priority. If the new priority is less than the current pri-
ority, arrange for the process to be rescheduled.

• Collect statistics on what the system was doing at the time of the tick (sitting
idle, executing in user mode, or executing in system mode). Include basic infor-
mation on system I/O, such as which disk drives are currently active.

Timeouts

The remaining time-related processing involves processing timeout requests and
periodically reprioritizing processes that are ready to run. These functions are
handled by the softclock( ) routine.

When hardclock( ) completes, if there were any softclock( ) functions to be
done, hardclock( ) schedules a softclock interrupt, or sets a flag that will cause
softclock( ) to be called. As an optimization, if the state of the processor is such
that the softclock( ) execution will occur as soon as the hardclock interrupt returns,
hardclock( ) simply lowers the processor priority and calls softclock( ) directly,

avoiding the cost of returning from one interrupt only to reenter another. The
savings can be substantial over time, because interrupts are expensive and these
interrupts occur so frequently.

The primary task of the softclock( ) routine is to arrange for the execution of
periodic events, such as

• Process real-time timer (see Section 3.6)

• Retransmission of dropped network packets

• Watchdog timers on peripherals that require monitoring

• System process-rescheduling events

An important event is the scheduling that periodically raises or lowers the
CPU priority for each process in the system based on that process's recent CPU
usage (see Section 4.4). The rescheduling calculation is done once per second.
The scheduler is started at boot time, and each time that it runs, it requests that it
be invoked again 1 second in the future.

On a heavily loaded system with many processes, the scheduler may take a
long time to complete its job. Posting its next invocation 1 second after each com-
pletion may cause scheduling to occur less frequently than once per second. How-
ever, as the scheduler is not responsible for any time-critical functions, such as
maintaining the time of day, scheduling less frequently than once a second is nor-
mally not a problem.

The data structure that describes waiting events is called the callout queue.
Figure 3.2 shows an example of the callout queue. When a process schedules an
event, it specifies a function to be called, a pointer to be passed as an argument to
the function, and the number of clock ticks until the event should occur.

The queue is sorted in time order, with the events that are to occur soonest at
the front, and the most distant events at the end. The time for each event is kept as
a difference from the time of the previous event on the queue. Thus, the
hardclock( ) routine needs only to check the time to expire of the first element to
determine whether softclock( ) needs to run. In addition, decrementing the time to
expire of the first element decrements the time for all events. The softclock( ) rou-
tine executes events from the front of the queue whose time has decremented to
zero until it finds an event with a still-future (positive) time. New events are
added to the queue much less frequently than the queue is checked to see whether

Figure 3.2 Timer events in the callout queue.

queue —
time

function and
argument

when

-

1 tick

/(x)
10ms 40ms 40ms 850ms



any events are to occur. So, it is more efficient to identify the proper location to
place an event when that event is added to the queue than to scan the entire queue
to determine which events should occur at any single time.

The single argument is provided for the callout-queue function that is called,
so that one function can be used by multiple processes. For example, there is a
single real-time timer function that sends a signal to a process when a timer
expires. Every process that has a real-time timer running posts a timeout request
for this function; the argument that is passed to the function is a pointer to the pro-
cess structure for the process. This argument enables the timeout function to
deliver the signal to the correct process.

Timeout processing is more efficient when the timeouts are specified in ticks.
Time updates require only an integer decrement, and checks for timer expiration
require only a comparison against zero. If the timers contained time values, decre-
menting and comparisons would be more complex. If the number of events to be
managed were large, the cost of the linear search to insert new events correctly
could dominate the simple linear queue used in 4.4BSD. Other possible
approaches include maintaining a heap with the next-occurring event at the top
[Barkley & Lee, 1988], or maintaining separate queues of short-, medium- and
long-term events [Varghese & Lauck, 1987].

3.5 Memory-Management Services

The memory organization and layout associated with a 4.4BSD process is shown
in Fig. 3.3. Each process begins execution with three memory segments, called
text, data, and stack. The data segment is divided into initialized data and unini-
tialized data (also known as bss). The text is read-only and is normally shared by
all processes executing the file, whereas the data and stack areas can be written by,
and are private to, each process. The text and initialized data for the process are
read from the executable file.

An executable file is distinguished by its being a plain file (rather than a direc-
tory, special file, or symbolic link) and by its having 1 or more of its execute bits
set. In the traditional a.out executable format, the first few bytes of the file contain
a magic number that specifies what type of executable file that file is. Executable
files fall into two major classes:

1. Files that must be read by an interpreter

2. Files that are directly executable

In the first class, the first 2 bytes of the file are the two-character sequence #! fol-
lowed by the pathname of the interpreter to be used. (This pathname is currently
limited by a compile-time constant to 30 characters.) For example, #!/bin/sh refers
to the Bourne shell. The kernel executes the named interpreter, passing the name
of the file that is to be interpreted as an argument. To prevent loops, 4.4BSD allows
only one level of interpretation, and a file's interpreter may not itself be interpreted.

OxFFFOOOOO
per-process
kernel stack

red zone

user area

ps_strings struct

signal code

env strings

argv strings

env pointers

argv pointers

argc

user stack

process memory
resident image

0x00000000

heap

bss

initialized data

text

symbol table

initialized data

text

a.out header

a.out magic number

executable-file
disk image

Figure 3.3 Layout of a UNIX process in memory and on disk.

For performance reasons, most files are directly executable. Each directly
executable file has a magic number that specifies whether that file can be paged
and whether the text part of the file can be shared among multiple processes. Fol-
lowing the magic number is an exec header that specifies the sizes of text, initial-
ized data, uninitialized data, and additional information for debugging. (The
debugging information is not used by the kernel or by the executing program.)
Following the header is an image of the text, followed by an image of the initial-
ized data. Uninitialized data are not contained in the executable file because they
can be created on demand using zero-filled memory.



To begin execution, the kernel arranges to have the text portion of the file
mapped into the low part of the process address space. The initialized data portion
of the file is mapped into the address space following the text. An area equal to
the uninitialized data region is created with zero-filled memory after the initialized
data region. The stack is also created from zero-filled memory. Although the
stack should not need to be zero filled, early UNIX systems made it so. In an
attempt to save some startup time, the developers modified the kernel to not zero
fill the stack, leaving the random previous contents of the page instead. Numerous
programs stopped working because they depended on the local variables in their
main procedure being initialized to zero. Consequently, the zero filling of the
stack was restored.

Copying into memory the entire text and initialized data portion of a large
program causes a long startup latency. 4.4BSD avoids this startup time by demand
paging the program into memory, rather than preloading the program. In demand
paging, the program is loaded in small pieces (pages) as it is needed, rather than
all at once before it begins execution. The system does demand paging by divid-
ing up the address space into equal-sized areas called pages. For each page, the
kernel records the offset into the executable file of the corresponding data. The
first access to an address on each page causes a page-fault trap in the kernel. The
page-fault handler reads the correct page of the executable file into the process
memory. Thus, the kernel loads only those parts of the executable file that are
needed. Chapter 5 explains paging details.

The uninitialized data area can be extended with zero-filled pages using the
system call sbrk, although most user processes use the library routine malloc(), a
more programmer-friendly interface to sbrk. This allocated memory, which grows
from the top of the original data segment, is called the heap. On the HP300, the
stack grows down from the top of memory, whereas the heap grows up from the
bottom of memory.

Above the user stack are areas of memory that are created by the system when
the process is started. Directly above the user stack is the number of arguments
(argc), the argument vector (argv), and the process environment vector (envp) set
up when the program was executed. Above them are the argument and environ-
ment strings themselves. Above them is the signal code, used when the system
delivers signals to the process; above that is the struct ps_strings structure, used
by ps to locate the argv of the process. At the top of user memory is the user area
(u.), the red zone, and the per-process kernel stack. The red zone may or may not
be present in a port to an architecture. If present, it is implemented as a page of
read-only memory immediately below the per-process kernel stack. Any attempt
to allocate below the fixed-size kernel stack will result in a memory fault, protect-
ing the user area from being overwritten. On some architectures, it is not possible
to mark these pages as read-only, or having the kernel stack attempt to write a
write protected page would result in unrecoverable system failure. In these cases,
other approaches can be taken—for example, checking during each clock interrupt
to see whether the current kernel stack has grown too large.

In addition to the information maintained in the user area, a process usually
requires the use of some global system resources. The kernel maintains a linked
list of processes, called the process table, which has an entry for each process in
the system. Among other data, the process entries record information on schedul-
ing and on virtual-memory allocation. Because the entire process address space,
including the user area, may be swapped out of main memory, the process entry
must record enough information to be able to locate the process and to bring that
process back into memory. In addition, information needed while the process is
swapped out (e.g., scheduling information) must be maintained in the process
entry, rather than in the user area, to avoid the kernel swapping in the process only
to decide that it is not at a high-enough priority to be run.

Other global resources associated with a process include space to record
information about descriptors and page tables that record information about physi-
cal-memory utilization.

Timing Services
The kernel provides several different timing services to processes. These services
include timers that run in real time and timers that run only while a process is
executing.

Real Time
The system's time offset since January 1, 1970, Universal Coordinated Time
(UTC), also known as the Epoch, is returned by the system call gettimeofday.
Most modern processors (including the HP300 processors) maintain a battery-
backup time-of-day register. This clock continues to run even if the processor is
turned off. When the system boots, it consults the processor's time-of-day register
to find out the current time. The system's time is then maintained by the clock
interrupts. At each interrupt, the system increments its global time variable by an
amount equal to the number of microseconds per tick. For the HP300, running at
100 ticks per second, each tick represents 10,000 microseconds.

Adjustment of the Time
Often, it is desirable to maintain the same time on all the machines on a network.
It is also possible to keep more accurate time than that available from the basic
processor clock. For example, hardware is readily available that listens to the set
of radio stations that broadcast UTC synchronization signals in the United States.
When processes on different machines agree on a common time, they will wish to
change the clock on their host processor to agree with the networkwide time
value. One possibility is to change the system time to the network time using the
settimeofday system call. Unfortunately, the settimeofday system call will result
in time running backward on machines whose clocks were fast. Time running



backward can confuse user programs (such as make) that expect time to invariably
increase. To avoid this problem, the system provides the adjtime system call
[Gusella et al, 1994]. The adjtime system call takes a time delta (either positive or
negative) and changes the rate at which time advances by 10 percent, faster or
slower, until the time has been corrected. The operating system does the speedup
by incrementing the global time by 11,000 microseconds for each tick, and does
the slowdown by incrementing the global time by 9,000 microseconds for each
tick. Regardless, time increases monotonically, and user processes depending on
the ordering of file-modification times are not affected. However, time changes
that take tens of seconds to adjust will affect programs that are measuring time
intervals by using repeated calls to gettimeofday.

External Representation
Time is always exported from the system as microseconds, rather than as clock
ticks, to provide a resolution-independent format. Internally, the kernel is free to
select whatever tick rate best trades off clock-interrupt-handling overhead with
timer resolution. As the tick rate per second increases, the resolution of the sys-
tem timers improves, but the time spent dealing with hardclock interrupts
increases. As processors become faster, the tick rate can be increased to provide
finer resolution without adversely affecting user applications.

All filesystem (and other) timestamps are maintained in UTC offsets from the
Epoch. Conversion to local time, including adjustment for daylight-savings time,
is handled externally to the system in the C library.

Interval Time
The system provides each process with three interval timers. The real timer
decrements in real time. An example of use for this timer is a library routine
maintaining a wakeup-service queue. A SIGALRM signal is delivered to the pro-
cess when this timer expires. The real-time timer is run from the timeout queue
maintained by the softclock( ) routine (see Section 3.4).

The profiling timer decrements both in process virtual time (when running in
user mode) and when the system is running on behalf of the process. It is
designed to be used by processes to profile their execution statistically. A SIG-
PROF signal is delivered to the process when this timer expires. The profiling
timer is implemented by the hardclock() routine. Each time that hardclock() runs,
it checks to see whether the currently running process has requested a profiling
timer; if it has, hardclock() decrements the timer, and sends the process a signal
when zero is reached.

The virtual timer decrements in process virtual time. It runs only when the
process is executing in user mode. A SIGVTALRM signal is delivered to the pro-
cess when this timer expires. The virtual timer is also implemented in hardclock()
as the profiling timer is, except that it decrements the timer for the current process
only if it is executing in user mode, and not if it is running in the kernel.

User, Group, and Other Identifiers
One important responsibility of an operating system is to implement access-con-
trol mechanisms. Most of these access-control mechanisms are based on the
notions of individual users and of groups of users. Users are named by a 32-bit
number called a user identifier (UID). UIDs are not assigned by the kernel—they
are assigned by an outside administrative authority. UIDs are the basis for
accounting, for restricting access to privileged kernel operations, (such as the
request used to reboot a running system), for deciding to what processes a signal
may be sent, and as a basis for filesystem access and disk-space allocation. A sin-
gle user, termed the superuser (also known by the user name roof), is trusted by
the system and is permitted to do any supported kernel operation. The superuser
is identified not by any specific name, such as root, but instead by a UID of zero.

Users are organized into groups. Groups are named by a 32-bit number called
a group identifier (GID). GIDs, like UIDs, are used in the filesystem access-control
facilities and in disk-space allocation.

The state of every 4.4BSD process includes a UID and a set of GIDs. A pro-
cess's filesystem-access privileges are defined by the UID and GIDs of the process
(for the filesystem hierarchy beginning at the process's root directory). Normally,
these identifiers are inherited automatically from the parent process when a new
process is created. Only the superuser is permitted to alter the UID or GID of a
process. This scheme enforces a strict compartmentalization of privileges, and
ensures that no user other than the superuser can gain privileges.

Each file has three sets of permission bits, for read, write, or execute permis-
sion for each of owner, group, and other. These permission bits are checked in the
following order:

1. If the UID of the file is the same as the UID of the process, only the owner per-
missions apply; the group and other permissions are not checked.

2. If the UIDs do not match, but the GID of the file matches one of the GIDs of the
process, only the group permissions apply; the owner and other permissions
are not checked.

3. Only if the UID and GIDs of the process fail to match those of the file are the
permissions for all others checked. If these permissions do not allow the
requested operation, it will fail.

The UID and GIDs for a process are inherited from its parent. When a user logs in,
the login program (see Section 14.6) sets the UID and GIDs before doing the exec
system call to run the user's login shell; thus, all subsequent processes will inherit
the appropriate identifiers.

Often, it is desirable to grant a user limited additional privileges. For
example, a user who wants to send mail must be able to append the mail to
another user's mailbox. Making the target mailbox writable by all users would



permit a user other than its owner to modify messages in it (whether maliciously
or unintentionally). To solve this problem, the kernel allows the creation of pro-
grams that are granted additional privileges while they are running. Programs that
run with a different UID are called set-user-identifier (setuid) programs; programs
that run with an additional group privilege are called set-group-identifier (setgid)
programs [Ritchie, 1979]. When a setuid program is executed, the permissions of
the process are augmented to include those of the UID associated with the pro-
gram. The UID of the program is termed the effective UID of the process, whereas
the original UID of the process is termed the real UID. Similarly, executing a set-
gid program augments a process's permissions with those of the program's GID,
and the effective GID and real GID are defined accordingly.

Systems can use setuid and setgid programs to provide controlled access to
files or services. For example, the program that adds mail to the users' mailbox
runs with the privileges of the superuser, which allow it to write to any file in the
system. Thus, users do not need permission to write other users' mailboxes, but
can still do so by running this program. Naturally, such programs must be written
carefully to have only a limited set of functionality!

The UID and GIDs are maintained in the per-process area. Historically, GIDs
were implemented as one distinguished GID (the effective GID) and a supplemen-
tary array of GIDs, which was logically treated as one set of GIDs. In 4.4BSD, the
distinguished GID has been made the first entry in the array of GIDs. The supple-
mentary array is of a fixed size (16 in 4.4BSD), but may be changed by recompil-
ing the kernel.

4.4BSD implements the setgid capability by setting the zeroth element of the
supplementary groups array of the process that executed the setgid program to the
group of the file. Permissions can then be checked as it is for a normal process.
Because of the additional group, the setgid program may be able to access more
files than can a user process that runs a program without the special privilege. The
login program duplicates the zeroth array element into the first array element
when initializing the user's supplementary group array, so that, when a setgid pro-
gram is run and modifies the zeroth element, the user does not lose any privileges.

The setuid capability is implemented by the effective UID of the process being
changed from that of the user to that of the program being executed. As it will
with setgid, the protection mechanism will now permit access without any change
or special knowledge that the program is running setuid. Since a process can have
only a single UID at a time, it is possible to lose some privileges while running
setuid. The previous real UID is still maintained as the real UID when the new
effective UID is installed. The real UID, however, is not used for any validation
checking.

A setuid process may wish to revoke its special privilege temporarily while it
is running. For example, it may need its special privilege to access a restricted file
at only the start and end of its execution. During the rest of its execution, it should
have only the real user's privileges. In 4.3BSD, revocation of privilege was done
by switching of the real and effective UIDs. Since only the effective UID is used
for access control, this approach provided the desired semantics and provided a

place to hide the special privilege. The drawback to this approach was that the
real and effective UIDs could easily become confused.

In 4.4BSD, an additional identifier, the saved UID, was introduced to record
the identity of setuid programs. When a program is exec'ed, its effective UID is
copied to its saved UID. The first line of Table 3.1 shows an unprivileged program
for which the real, effective, and saved UIDs are all those of the real user. The sec-
ond line of Table 3.1 show a setuid program being run that causes the effective
UID to be set to its associated special-privilege UID. The special-privilege UID has
also been copied to the saved UID.

Also added to 4.4BSD was the new seteuid system call that sets only the
effective UID; it does not affect the real or saved UIDs. The seteuid system call is
permitted to set the effective UID to the value of either the real or the saved UID.
Lines 3 and 4 of Table 3.1 show how a setuid program can give up and then
reclaim its special privilege while continuously retaining its correct real UID.
Lines 5 and 6 show how a setuid program can run a subprocess without granting
the latter the special privilege. First, it sets its effective UID to the real UID. Then,
when it exec's the subprocess, the effective UID is copied to the saved UID, and all
access to the special-privilege UID is lost.

A similar saved GID mechanism permits processes to switch between the real
GID and the initial effective GID.

Host Identifiers
An additional identifier is defined by the kernel for use on machines operating in a
networked environment. A string (of up to 256 characters) specifying the host's
name is maintained by the kernel. This value is intended to be defined uniquely for
each machine in a network. In addition, in the Internet domain-name system, each
machine is given a unique 32-bit number. Use of these identifiers permits applica-
tions to use networkwide unique identifiers for objects such as processes, files, and
users, which is useful in the construction of distributed applications [Gifford,
1981]. The host identifiers for a machine are administered outside the kernel.

Table 3.1 Actions affecting the real, effective, and saved UIDs. R—real user identifier;
S—special-privilege user identifier.

Action

1. exec-normal
2. exec-setuid
3. seteuid (R)
4. seteuid(S)
5. seteuid(R)
6. exec-normal

Real

R

R .
R
R
R
R

Effective

R
S
R
S
R
R

Saved

R
S
S
S
S
R



The 32-bit host identifier found in 4.3BSD has been deprecated in 4.4BSD,
and is supported only if the system is compiled for 4.3BSD compatibility.

Process Groups and Sessions
Each process in the system is associated with a process group. The group of pro-
cesses in a process group is sometimes referred to as a job, and manipulated as a
single entity by processes such as the shell. Some signals (e.g., SIGINT) are deliv-
ered to all members of a process group, causing the group as a whole to suspend
or resume execution, or to be interrupted or terminated.

Sessions were designed by the IEEE POSIX. 1003.1 Working Group with the
intent of fixing a long-standing security problem in UNIX—namely, that processes
could modify the state of terminals that were trusted by another user's processes.
A session is a collection of process groups, and all members of a process group
are members of the same session. In 4.4BSD, when a user first logs onto the sys-
tem, they are entered into a new session. Each session has a controlling process,
which is normally the user's login shell. All subsequent processes created by the
user are part of process groups within this session, unless they explicitly create a
new session. Each session also has an associated login name, which is usually the
user's login name. This name can be changed by only the superuser.

Each session is associated with a terminal, known as its controlling terminal.
Each controlling terminal has a process group associated with it. Normally, only
processes that are in the terminal's current process group read from or write to the
terminal, allowing arbitration of a terminal between several different jobs. When
the controlling process exits, access to the terminal is taken away from any
remaining processes within the session.

Newly created processes are assigned process IDs distinct from all already-
existing processes and process groups, and are placed in the same process group
and session as their parent. Any process may set its process group equal to its pro-
cess ID (thus creating a new process group) or to the value of any process group
within its session. In addition, any process may create a new session, as long as it
is not already a process-group leader. Sessions, process groups, and associated
topics are discussed further in Section 4.8 and in Section 10.5.

3.8 Resource Services

All systems have limits imposed by their hardware architecture and configuration
to ensure reasonable operation and to keep users from accidentally (or mali-
ciously) creating resource shortages. At a minimum, the hardware limits must be
imposed on processes that run on the system. It is usually desirable to limit pro-
cesses further, below these hardware-imposed limits. The system measures
resource utilization, and allows limits to be imposed on consumption either at or
below the hardware-imposed limits.

Process Priorities
The 4.4BSD system gives CPU scheduling priority to processes that have not used
CPU time recently. This priority scheme tends to favor processes that execute for
only short periods of time—for example, interactive processes. The priority
selected for each process is maintained internally by the kernel. The calculation
of the priority is affected by the per-process nice variable. Positive nice values
mean that the process is willing to receive less than its share of the processor.
Negative values of nice mean that the process wants more than its share of the pro-
cessor. Most processes run with the default nice value of zero, asking neither
higher nor lower access to the processor. It is possible to determine or change the
nice currently assigned to a process, to a process group, or to the processes of a
specified user. Many factors other than nice affect scheduling, including the
amount of CPU time that the process has used recently, the amount of memory that
the process has used recently, and the current load on the system. The exact algo-
rithms that are used are described in Section 4.4.

Resource Utilization
As a process executes, it uses system resources, such as the CPU and memory.
The kernel tracks the resources used by each process and compiles statistics
describing this usage. The statistics managed by the kernel are available to a pro-
cess while the latter is executing. When a process terminates, the statistics are
made available to its parent via the wait family of system calls.

The resources used by a process are returned by the system call getrusage.
The resources used by the current process, or by all the terminated children of the
current process, may be requested. This information includes

• The amount of user and system time used by the process

• The memory utilization of the process

• The paging and disk I/O activity of the process

• The number of voluntary and involuntary context switches taken by the process

• The amount of interprocess communication done by the process

The resource-usage information is collected at locations throughout the kernel.
The CPU time is collected by the statclock() function, which is called either by the
system clock in hardclock(), or, if an alternate clock is available, by the alternate-
clock interrupt routine. The kernel scheduler calculates memory utilization by
sampling the amount of memory that an active process is using at the same time
that it is recomputing process priorities. The vm_fault() routine recalculates the
paging activity each time that it starts a disk transfer to fulfill a paging request (see
Section 5.11). The I/O activity statistics are collected each time that the process
has to start a transfer to fulfill a file or device I/O request, as well as when the



general system statistics are calculated. The IPC communication activity is
updated each time that information is sent or received.

Resource Limits
The kernel also supports limiting of certain per-process resources. These
resources include

• The maximum amount of CPU time that can be accumulated

• The maximum bytes that a process can request be locked into memory

• The maximum size of a file that can be created by a process

• The maximum size of a process's data segment

• The maximum size of a process's stack segment

• The maximum size of a core file that can be created by a process

• The maximum number of simultaneous processes allowed to a user

• The maximum number of simultaneous open files for a process

• The maximum amount of physical memory that a process may use at any given
moment

For each resource controlled by the kernel, two limits are maintained: a soft limit
and a hard limit. All users can alter the soft limit within the range of 0 to the cor-
responding hard limit. All users can (irreversibly) lower the hard limit, but only
the superuser can raise the hard limit. If a process exceeds certain soft limits, a
signal is delivered to the process to notify it that a resource limit has been
exceeded. Normally, this signal causes the process to terminate, but the process
may either catch or ignore the signal. If the process ignores the signal and fails to
release resources that it already holds, further attempts to obtain more resources
will result in errors.

Resource limits are generally enforced at or near the locations that the
resource statistics are collected. The CPU time limit is enforced in the process
context-switching function. The stack and data-segment limits are enforced by a
return of allocation failure once those limits have been reached. The file-size limit
is enforced by the filesystem.

Filesystem Quotas
In addition to limits on the size of individual files, the kernel optionally enforces
limits on the total amount of space that a user or group can use on a filesystem.
Our discussion of the implementation of these limits is deferred to Section 7.4.

System-Operation Services

There are several operational functions having to do with system startup and shut-
down. The bootstrapping operations are described in Section 14.2. System shut-
down is described in Section 14.7.

Accounting
The system supports a simple form of resource accounting. As each process ter-
minates, an accounting record describing the resources used by that process is
written to a systemwide accounting file. The information supplied by the system
comprises

• The name of the command that ran

• The amount of user and system CPU time that was used

• The elapsed time the command ran

• The average amount of memory used

• The number of disk I/O operations done

• The UID and GID of the process

• The terminal from which the process was started

The information in the accounting record is drawn from the run-time statistics that
were described in Section 3.8. The granularity of the time fields is in sixty-fourths
of a second. To conserve space in the accounting file, the times are stored in a
16-bit word as a floating-point number using 3 bits as a base-8 exponent, and the
other 13 bits as the fractional part. For historic reasons, the same floating-
point-conversion routine processes the count of disk operations, so the number of
disk operations must be multiplied by 64 before it is converted to the floating-
point representation.

There are also flags that describe how the process terminated, whether it ever
had superuser privileges, and whether it did an exec after a fork.

The superuser requests accounting by passing the name of the file to be used
for accounting to the kernel. As part of a process exiting, the kernel appends an
accounting record to the accounting file. The kernel makes no use of the account-
ing records; the records' summaries and use are entirely the domain of user-level
accounting programs. As a guard against a filesystem running out of space
because of unchecked growth of the accounting file, the system suspends account-
ing when the filesystem is reduced to only 2 percent remaining free space.
Accounting resumes when the filesystem has at least 4 percent free space.



The accounting information has certain limitations. The information on run
time and memory usage is only approximate because it is gathered statistically.
Accounting information is written only when a process exits, so processes that are
still running when a system is shut down unexpectedly do not show up in the
accounting file. (Obviously, long-lived system daemons are among such pro-
cesses.) Finally, the accounting records fail to include much information needed
to do accurate billing, including usage of other resources, such as tape drives and
printers.

Exercises

3.1 Describe three types of system activity.

3.2 When can a routine executing in the top half of the kernel be preempted?
When can it be interrupted?

3.3 Why are routines executing in the bottom half of the kernel precluded from
using information located in the user area?

3.4 Why does the system defer as much work as possible from high-priority
interrupts to lower-priority software-interrupt processes?

3.5 What determines the shortest (nonzero) time period that a user process can
request when setting a timer?

3.6 How does the kernel determine the system call for which it has been
invoked?

3.7 How are initialized data represented in an executable file? How are unini-
tialized data represented in an executable file? Why are the representations
different?

3.8 Describe how the "#!" mechanism can be used to make programs that
require emulation appear as though they were normal executables.

3.9 Is it possible for a file to have permissions set such that its owner cannot
read it, even though a group can? Is this situation possible if the owner is a
member of the group that can read the file? Explain your answers.

*3.10 Describe the security implications of not zero filling the stack region at pro-
gram startup.

*3.11 Why is the conversion from UTC to local time done by user processes,
rather than in the kernel?

*3.12 What is the advantage of having the kernel, rather than an application, re-
start an interrupted system call?

*3.13 Describe a scenario in which the sorted-difference algorithm used for the
callout queue does not work well. Suggest an alternative data structure that
runs more quickly than does the sorted-difference algorithm for your sce-
nario.

*3.14 The SIGPROF profiling timer was originally intended to replace the profit
system call to collect a statistical sampling of a program's program counter.
Give two reasons why the profil facility had to be retained.

**3.15 What weakness in the process-accounting mechanism makes the latter
unsuitable for use in a commercial environment?

ferences
Barkley&Lee, 1988.

R. E. Barkley & T. P. Lee, "A Heap-Based Callout Implementation to Meet
Real-Time Needs," USENIX Association Conference Proceedings, pp.
213-222, June 1988.

Gifford, 1981.
D. Gifford, "Information Storage in a Decentralized Computer System,"
PhD Thesis, Electrical Engineering Department, Stanford University, Stan-
ford, C A, 1981.

Gusellaetal, 1994.
R. Gusella, S. Zatti, & J. M. Bloom, "The Berkeley UNIX Time Synchro-
nization Protocol," in 4.4BSD System Manager's Manual, pp. 12:1-10,
O'Reilly & Associates, Inc., Sebastopol, CA, 1994.

McCanne & Torek, 1993.
S. McCanne & C. Torek, "A Randomized Sampling Clock for CPU Utiliza-
tion Estimation and Code Profiling," USENIX Association Conference Pro-
ceedings, pp. 387-394, January 1993.

Ritchie, 1979.
D. M. Ritchie, "Protection of Data File Contents," United States Patent, no.
4,135,240, United States Patent Office, Washington, D.C., January 16, 1979.
Assignee: Bell Telephone Laboratories, Inc., Murray Hill, NJ, Appl. No.:
377,591, Filed: Jul. 9, 1973.

Varghese & Lauck, 1987.
G. Varghese & T. Lauck, "Hashed and Hierarchical Timing Wheels: Data
Structures for the Efficient Implementation of a Timer Facility," Proceed-
ings of the Eleventh Symposium on Operating Systems Principles, pp.
25-38, November 1987.



P A R T 2

Processes



CHAPTER 4

Process Management

4.1 Introduction to Process Management

A process is a program in execution. A process must have system resources, such
as memory and the underlying CPU. The kernel supports the illusion of concurrent
execution of multiple processes by scheduling system resources among the set of
processes that are ready to execute. This chapter describes the composition of a
process, the method that the system uses to switch between processes, and the
scheduling policy that it uses to promote sharing of the CPU. Later chapters study
process creation and termination, signal facilities, and process-debugging facilities.

Two months after the developers began the first implementation of the UNIX
operating system, there were two processes: one for each of the terminals of the
PDP-7. At age 10 months, and still on the PDP-7, UNIX had many processes, the
fork operation, and something like the wait system call. A process executed a new
program by reading in a new program on top of itself. The first PDP-11 system
(First Edition UNIX) saw the introduction of exec. All these systems allowed only
one process in memory at a time. When a PDP-11 with memory management (a
KS-11) was obtained, the system was changed to permit several processes to
remain in memory simultaneously, to reduce swapping. But this change did not
apply to multiprogramming because disk I/O was synchronous. This state of
affairs persisted into 1972 and the first PDP-11745 system. True multiprogram-
ming was finally introduced when the system was rewritten in C. Disk I/O for one
process could then proceed while another process ran. The basic structure of pro-
cess management in UNIX has not changed since that time [Ritchie, 1988].

A process operates in either user mode or kernel mode. In user mode, a pro-
cess executes application code with the machine in a nonprivileged protection
mode. When a process requests services from the operating system with a system
call, it switches into the machine's privileged protection mode via a protected
mechanism, and then operates in kernel mode.

77



The resources used by a process are similarly split into two parts. The
resources needed for execution in user mode are defined by the CPU architecture
and typically include the CPU's general-purpose registers, the program counter,
the processor-status register, and the stack-related registers, as well as the contents
of the memory segments that constitute the 4.4BSD notion of a program (the text,
data, and stack segments).

Kernel-mode resources include those required by the underlying hardware—
such as registers, program counter, and stack pointer—and also by the state
required for the 4.4BSD kernel to provide system services for a process. This ker-
nel state includes parameters to the current system call, the current process's user
identity, scheduling information, and so on. As described in Section 3.1, the ker-
nel state for each process is divided into several separate data structures, with two
primary structures: the process structure and the user structure.

The process structure contains information that must always remain resident
in main memory, along with references to a number of other structures that remain
resident; whereas the user structure contains information that needs to be resident
only when the process is executing (although user structures of other processes
also may be resident). User structures are allocated dynamically through the
memory-management facilities. Historically, more than one-half of the process
state was stored in the user structure. In 4.4BSD, the user structure is used for
only the per-process kernel stack and a couple of structures that are referenced
from the process structure. Process structures are allocated dynamically as part of
process creation, and are freed as part of process exit.

Multiprogramming

The 4.4BSD system supports transparent multiprogramming: the illusion of con-
current execution of multiple processes or programs. It does so by context
switching—that is, by switching between the execution context of processes. A
mechanism is also provided for scheduling the execution of processes—that is,
for deciding which one to execute next. Facilities are provided for ensuring con-
sistent access to data structures that are shared among processes.

Context switching is a hardware-dependent operation whose implementation
is influenced by the underlying hardware facilities. Some architectures provide
machine instructions that save and restore the hardware-execution context of the
process, including the virtual-address space. On the others, the software must col-
lect the hardware state from various registers and save it, then load those registers
with the new hardware state. All architectures must save and restore the software
state used by the kernel.

Context switching is done frequently, so increasing the speed of a context
switch noticeably decreases time spent in the kernel and provides more time for
execution of user applications. Since most of the work of a context switch is
expended in saving and restoring the operating context of a process, reducing the
amount of the information required for that context is an effective way to produce
faster context switches.

Section 4.1

Scheduling
Fair scheduling of processes is an involved task that is dependent on the types of
executable programs and on the goals of the scheduling policy. Programs are
characterized according to the amount of computation and the amount of I/O that
they do. Scheduling policies typically attempt to balance resource utilization
against the time that it takes for a program to complete. A process's priority is
periodically recalculated based on various parameters, such as the amount of CPU
time it has used, the amount of memory resources it holds or requires for execu-
tion, and so on. An exception to this rule is real-time scheduling, which must
ensure that processes finish by a specified deadline or in a particular order; the
4.4BSD kernel does not implement real-time scheduling.

4.4BSD uses a priority-based scheduling policy that is biased to favor interac-
tive programs, such as text editors, over long-running batch-type jobs. Interactive
programs tend to exhibit short bursts of computation followed by periods of inac-
tivity or I/O. The scheduling policy initially assigns to each process a high execu-
tion priority and allows that process to execute for a fixed time slice. Processes
that execute for the duration of their slice have their priority lowered, whereas pro-
cesses that give up the CPU (usually because they do I/O) are allowed to remain at
their priority. Processes that are inactive have their priority raised. Thus, jobs that
use large amounts of CPU time sink rapidly to a low priority, whereas interactive
jobs that are mostly inactive remain at a high priority so that, when they are ready
to run, they will preempt the long-running lower-priority jobs. An interactive job,
such as a text editor searching for a string, may become compute bound briefly,
and thus get a lower priority, but it will return to a high priority when it is inactive
again while the user thinks about the result.

The system also needs a scheduling policy to deal with problems that arise
from not having enough main memory to hold the execution contexts of all pro-
cesses that want to execute. The major goal of this scheduling policy is to mini-
mize thrashing—a phenomenon that occurs when memory is in such short supply
that more time is spent in the system handling page faults and scheduling pro-
cesses than in user mode executing application code.

The system must both detect and eliminate thrashing. It detects thrashing by
observing the amount of free memory. When the system has few free memory
pages and a high rate of new memory requests, it considers itself to be thrashing.
The system reduces thrashing by marking the least-recently run process as not
being allowed to run. This marking allows the pageout daemon to push all the
pages associated with the process to backing store. On most architectures, the ker-
nel also can push to backing store the user area of the marked process. The effect
of these actions is to cause the process to be swapped out (see Section 5.12). The
memory freed by blocking the process can then be distributed to the remaining
processes, which usually can then proceed. If the thrashing continues, additional
processes are selected for being blocked from running until enough memory
becomes available for the remaining processes to run effectively. Eventually,
enough processes complete and free their memory that blocked processes can



resume execution. However, even if there is not enough memory, the blocked
processes are allowed to resume execution after about 20 seconds. Usually, the
thrashing condition will return, requiring that some other process be selected for
being blocked (or that an administrative action be taken to reduce the load).

The orientation of the scheduling policy toward an interactive job mix reflects
the original design of 4.4BSD for use in a time-sharing environment. Numerous
papers have been written about alternative scheduling policies, such as those used
in batch-processing environments or real-time systems. Usually, these policies
require changes to the system in addition to alteration of the scheduling policy
[Khannaetal, 1992].

4.2 Process State

The layout of process state was completely reorganized in 4.4BSD. The goal was
to support multiple threads that share an address space and other resources.
Threads have also been called lightweight processes in other systems. A thread is
the unit of execution of a process; it requires an address space and other resources,
but it can share many of those resources with other threads. Threads sharing an
address space and other resources are scheduled independently, and can all do sys-
tem calls simultaneously. The reorganization of process state in 4.4BSD was
designed to support threads that can select the set of resources to be shared, known
as variable-weight processes [Aral et al, 1989]. Unlike some other implementa-
tions of threads, the BSD model associates a process ID with each thread, rather
than with a collection of threads sharing an address space.

Figure 4.1 Process state.

Section Process State

process
entry

machine-dependent
process information

——— • process group

process credential
— session

___ user credential

VM space

— — •»»

—— .

file descriptors

resource limits

region list

file entries

statistics

signal actions

process control block
process kernel stack

The developers did the reorganization by moving many components of pro-
cess state from the process and user structures into separate substructures for each
type of state information, as shown in Fig. 4.1. The process structure references
all the substructures directly or indirectly. The use of global variables in the user
structure was completely eliminated. Variables moved out of the user structure
include the open file descriptors that may need to be shared among different
threads, as well as system-call parameters and error returns. The process structure
itself was also shrunk to about one-quarter of its former size. The idea is to mini-
mize the amount of storage that must be allocated to support a thread. The
4.4BSD distribution did not have kernel-thread support enabled, primarily because
the C library had not been rewritten to be able to handle multiple threads.

All the information in the substructures shown in Fig. 4.1 can be shared
among threads running within the same address space, except the per-thread statis-
tics, the signal actions, and the per-thread kernel stack. These unshared structures
need to be accessible only when the thread may be scheduled, so they are allo-
cated in the user structure so that they can be moved to secondary storage when
memory resources are low. The following sections describe the portions of these
structures that are relevant to process management. The VM space and its related
structures are described more fully in Chapter 5.

The Process Structure
In addition to the references to the substructures, the process entry shown in Fig.
4.1 contains the following categories of information:

• Process identification. The process identifier and the parent-process identifier

• Scheduling. The process priority, user-mode scheduling priority, recent CPU uti-
lization, and amount of time spent sleeping

• Process state. The run state of a process (runnable, sleeping, stopped); addi-
tional status flags; if the process is sleeping, the wait channel, the identity of the
event for which the process is waiting (see Section 4.3), and a pointer to a string
describing the event

• Signal state. Signals pending delivery, signal mask, and summary of signal
actions

• Tracing. Process tracing information

• Machine state. The machine-dependent process information

• Timers. Real-time timer and CPU-utilization counters

The process substructures shown in Fig. 4.1 have the following categories of infor-
mation:

• Process-group identification. The process group and the session to which the
process belongs



Chapter 4 Process Management

• User credentials. The real, effective, and saved user and group identifiers

• Memory management. The structure that describes the allocation of virtual
address space used by the process

• File descriptors. An array of pointers to file entries indexed by the process open
file descriptors; also, the open file flags and current directory

• Resource accounting. The rusage structure that describes the utilization of the
many resources provided by the system (see Section 3.8)

• Statistics. Statistics collected while the process is running that are reported
when it exits and are written to the accounting file; also, includes process timers
and profiling information if the latter is being collected

• Signal actions. The action to take when a signal is posted to a process

• User structure. The contents of the user structure (described later in this section)

A process's state has a value, as shown in Table 4.1. When a process is first cre-
ated with a fork system call, it is initially marked as SIDL. The state is changed to
SRUN when enough resources are allocated to the process for the latter to begin
execution. From that point onward, a process's state will fluctuate among SRUN
(runnable—e.g., ready to execute), SSLEEP (waiting for an event), and SSTOP
(stopped by a signal or the parent process), until the process terminates. A
deceased process is marked as SZOMB until its termination status is communi-
cated to its parent process.

The system organizes process structures into two lists. Process entries are on
the zombproc list if the process is in the SZOMB state; otherwise, they are on the
allproc list. The two queues share the same linkage pointers in the process struc-
ture, since the lists are mutually exclusive. Segregating the dead processes from
the live ones reduces the time spent both by the wait system call, which must scan
the zombies for potential candidates to return, and by the scheduler and other
functions that must scan all the potentially runnable processes.

Most processes, except the currently executing process, are also in one of two
queues: a run queue or a sleep queue. Processes that are in a runnable state are
placed on a run queue, whereas processes that are blocked awaiting an event are
located on a sleep queue. Stopped processes not also awaiting an event are on nei-
ther type of queue. The two queues share the same linkage pointers in the process
structure, since the lists are mutually exclusive. The run queues are organized
according to process-scheduling priority, and are described in Section 4.4. The
sleep queues are organized in a hashed data structure that optimizes finding of a
sleeping process by the event number (wait channel) for which the process is wait-
ing. The sleep queues are described in Section 4.3.

Every process in the system is assigned a unique identifier termed the process
identifier, (PID). PIDs are the common mechanism used by applications and by
the kernel to reference processes. PIDs are used by applications when the latter
are sending a signal to a process and when receiving the exit status from a
deceased process. Two PIDs are of special importance to each process: the PID of
the process itself and the PID of the process's parent process.

The p_pglist list and related lists (p_pptr, p_children, and p_siblings) are used
in locating related processes, as shown in Fig. 4.2. When a process spawns a child
process, the child process is added to its parent's p_children list. The child pro-
cess also keeps a backward link to its parent in its p_pptr field. If a process has
more than one child process active at a time, the children are linked together
through their p_sibling list entries. In Fig. 4.2, process B is a direct descendent of
process A, whereas processes C, D, and E are descendents of process B and are
siblings of one another. Process B typically would be a shell that started a
pipeline (see Sections 2.4 and 2.6) including processes C, D, and E. Process A
probably would be the system-initialization process init (see Section 3.1 and Sec-
tion 14.6).

CPU time is made available to processes according to their scheduling priority.
A process has two scheduling priorities, one for scheduling user-mode execution
and one for scheduling kernel-mode execution. The p_usrpri field in the process
structure contains the user-mode scheduling priority, whereas the p_priority field
holds the current kernel-mode scheduling priority. The current priority may be

Table 4.1 Process states.

State
SIDL

SRUN
SSLEEP
SSTOP
SZOMB

Description
intermediate state in process creation
runnable
awaiting an event
process stopped or being traced
intermediate state in process termination

Figure 4.2 Process-group hierarchy.

process A
p_children p_pptr

process B
p_children

process C
p_pptr p_pptr

p_pptr

process D process E
p_sibling p_sibling



Process Management

Table 4.2 Process-scheduling priorities.

Priority
PSWP
PVM
PINOD
PRIBIO
PVFS
PZERO
PSOCK
PWAIT
PLOCK
PPAUSE
PUSER

Value
0
4
8

16
20
22
24
32
36
40
50

Description
priority while swapping process
priority while waiting for memory
priority while waiting for file control information
priority while waiting on disk I/O completion
priority while waiting for a kernel-level filesystem lock
baseline priority
priority while waiting on a socket
priority while waiting for a child to exit
priority while waiting for user-level filesystem lock
priority while waiting for a signal to arrive
base priority for user-mode execution

different from the user-mode priority when the process is executing in kernel
mode. Priorities range between 0 and 127, with a lower value interpreted as a
higher priority (see Table 4.2). User-mode priorities range from PUSER (50) to
127; priorities less than PUSER are used only when a process is asleep—that is,
awaiting an event in the kernel—and immediately after such a process is awak-
ened. Processes in the kernel are given a higher priority because they typically
hold shared kernel resources when they awaken. The system wants to run them as
quickly as possible once they get a resource, so that they can use the resource and
return it before another process requests it and gets blocked waiting for it.

Historically, a kernel process that is asleep with a priority in the range PZERO
to PUSER would be awakened by a signal; that is, it might be awakened and
marked runnable if a signal is posted to it. A process asleep at a priority below
PZERO would never be awakened by a signal. In 4.4BSD, a kernel process will be
awakened by a signal only if it sets the PCATCH flag when it sleeps. The PCATCH
flag was added so that a change to a sleep priority does not inadvertently cause a
change to the process's interruptibility.

For efficiency, the sleep interface has been divided into two separate entry
points: sleep() for brief, noninterruptible sleep requests, and tsleep( ) for longer,
possibly interrupted sleep requests. The sleep() interface is short and fast, to han-
dle the common case of a short sleep. The tsleep( ) interface handles all the special
cases including interruptible sleeps, sleeps limited to a maximum time duration,
and the processing of restartable system calls. The tsleep( ) interface also includes
a reference to a string describing the event that the process awaits; this string is
externally visible. The decision of whether to use an interruptible sleep is depen-
dent on how long the process may be blocked. Because it is complex to be pre-
pared to handle signals in the midst of doing some other operation, many sleep

requests are not interruptible; that is, a process will not be scheduled to run until
the event for which it is waiting occurs. For example, a process waiting for disk
I/O will sleep at an uninterruptible priority.

For quickly occurring events, delaying to handle a signal until after they com-
plete is imperceptible. However, requests that may cause a process to sleep for a
long period, such as while a process is waiting for terminal or network input, must
be prepared to have their sleep interrupted so that the posting of signals is not
delayed indefinitely. Processes that sleep at interruptible priorities may abort their
system call because of a signal arriving before the event for which they are wait-
ing has occurred. To avoid holding a kernel resource permanently, these processes
must check why they have been awakened. If they were awakened because of a
signal, they must release any resources that they hold. They must then return the
error passed back to them by tsleep( ), which will be EINTR if the system call is to
be aborted after the signal, or ERESTART if it is to be restarted. Occasionally, an
event that is supposed to occur quickly, such as a tape I/O, will get held up
because of a hardware failure. Because the process is sleeping in the kernel at an
uninterruptible priority, it will be impervious to any attempts to send it a signal,
even a signal that should cause it to exit unconditionally. The only solution to this
problem is to change sleep ()s on hardware events that may hang to be interrupt-
ible. In the remainder of this book, we shall always use sleep() when referencing
the routine that puts a process to sleep, even when the tsleep( ) interface may be
the one that is being used.

The User Structure
The user structure contains the process state that may be swapped to secondary
storage. The structure was an important part of the early UNIX kernels; it stored
much of the state for each process. As the system has evolved, this state has
migrated to the process entry or one of its substructures, so that it can be shared.
In 4.4BSD, nearly all references to the user structure have been removed. The
only place that user-structure references still exist are in the fork system call,
where the new process entry has pointers set up to reference the two remaining
structures that are still allocated in the user structure. Other parts of the kernel
that reference these structures are unaware that the latter are located in the user
structure; the structures are always referenced from the pointers in the process
table. Changing them to dynamically allocated structures would require code
changes in only fork to allocate them, and exit to free them. The user-structure
state includes

• The user- and kernel-mode execution states

• The accounting information
• The signal-disposition and signal-handling state
• Selected process information needed by the debuggers and in core dumps

• The per-process execution stack for the kernel



The current execution state of a process is encapsulated in a process control block
(PCB). This structure is allocated in the user structure and is defined by the
machine architecture; it includes the general-purpose registers, stack pointers, pro-
gram counter, processor-status longword, and memory-management registers.

Historically, the user structure was mapped to a fixed location in the virtual
address space. There were three reasons for using a fixed mapping:

1. On many architectures, the user structure could be mapped into the top of the
user-process address space. Because the user structure was part of the user
address space, its context would be saved as part of saving of the user-process
state, with no additional effort.

2. The data structures contained in the user structure (also called the u-dot (u.)
structure, because all references in C were of the form u.) could always be
addressed at a fixed address.

3. When a parent forks, its run-time stack is copied for its child. Because the
kernel stack is part of the u. area, the child's kernel stack is mapped to the
same addresses as its parent kernel stack. Thus, all its internal references,
such as frame pointers and stack-variable references, work as expected.

On modern architectures with virtual address caches, mapping the user structure to
a fixed address is slow and inconvenient. Thus, reason 1 no longer holds. Since
the user structure is never referenced by most of the kernel code, reason 2 no
longer holds. Only reason 3 remains as a requirement for use of a fixed mapping.
Some architectures in 4.4BSD remove this final constraint, so that they no longer
need to provide a fixed mapping. They do so by copying the parent stack to the
child-stack location. The machine-dependent code then traverses the stack, relo-
cating the embedded stack and frame pointers. On return to the machine-indepen-
dent fork code, no further references are made to local variables; everything just
returns all the way back out of the kernel.

The location of the kernel stack in the user structure simplifies context switch-
ing by localizing all a process's kernel-mode state in a single structure. The kernel
stack grows down from the top of the user structure toward the data structures
allocated at the other end. This design restricts the stack to a fixed size. Because
the stack traps page faults, it must be allocated and memory resident before the
process can run. Thus, it is not only a fixed size, but also small; usually it is allo-
cated only one or two pages of physical memory. Implementors must be careful
when writing code that executes in the kernel to avoid using large local variables
and deeply nested subroutine calls, to avoid overflowing the run-time stack. As a
safety precaution, some architectures leave an invalid page between the area for
the run-time stack and the page holding the other user-structure contents. Thus,
overflowing the kernel stack will cause a kernel-access fault, instead of disas-
trously overwriting the fixed-sized portion of the user structure. On some archi-
tectures, interrupt processing takes place on a separate interrupt stack, and the size
of the kernel stack in the user structure restricts only that code executed as a result
of traps and system calls.

Context Switching

The kernel switches among processes in an effort to share the CPU effectively; this
activity is called context switching. When a process executes for the duration of
its time slice or when it blocks because it requires a resource that is currently
unavailable, the kernel finds another process to run and context switches to it. The
system can also interrupt the currently executing process to service an asyn-
chronous event, such as a device interrupt. Although both scenarios involve
switching the execution context of the CPU, switching between processes occurs
synchronously with respect to the currently executing process, whereas servicing
interrupts occurs asynchronously with respect to the current process. In addition,
interprocess context switches are classified as voluntary or involuntary. A volun-
tary context switch occurs when a process blocks because it requires a resource
that is unavailable. An involuntary context switch takes place when a process
executes for the duration of its time slice or when the system identifies a higher-
priority process to run.

Each type of context switching is done through a different interface. Volun-
tary context switching is initiated with a call to the sleep () routine, whereas an
involuntary context switch is forced by direct invocation of the low-level context-
switching mechanism embodied in the mi_switch() and setrunnable() routines.
Asynchronous event handling is managed by the underlying hardware and is effec-
tively transparent to the system. Our discussion will focus on how asynchronous
event handling relates to synchronizing access to kernel data structures.

Process State
Context switching between processes requires that both the kernel- and user-mode
context be changed; to simplify this change, the system ensures that all a process's
user-mode state is located in one data structure: the user structure (most kernel
state is kept elsewhere). The following conventions apply to this localization:

• Kernel-mode hardware-execution state. Context switching can take place in
only kernel mode. Thus, the kernel's hardware-execution state is defined by the
contents of the PCB that is located at the beginning of the user structure.

• User-mode hardware-execution state. When execution is in kernel mode, the
user-mode state of a process (such as copies of the program counter, stack pointer,
and general registers) always resides on the kernel's execution stack that is located
in the user structure. The kernel ensures this location of user-mode state by
requiring that the system-call and trap handlers save the contents of the user-mode
execution context each time that the kernel is entered (see Section 3.1).

• The process structure. The process structure always remains resident
memory.

• Memory resources. Memory resources of a process are effectively described by
the contents of the memory-management registers located in the PCB and by the
values present in the process structure. As long as the process remains in

in



memory, these values will remain valid, and context switches can be done
without the associated page tables being saved and restored. However, these val-
ues need to be recalculated when the process returns to main memory after being
swapped to secondary storage.

Low-Level Context Switching

The localization of the context of a process in the latter's user structure permits the
kernel to do context switching simply by changing the notion of the current user
structure and process structure, and restoring the context described by the PCB
within the user structure (including the mapping of the virtual address space).
Whenever a context switch is required, a call to the mi_switch() routine causes the
highest-priority process to run. The mi_switch() routine first selects the appropri-
ate process from the scheduling queues, then resumes the selected process by
loading that process's context from its PCB. Once mi_switch() has loaded the
execution state of the new process, it must also check the state of the new process
for a nonlocal return request (such as when a process first starts execution after a
fork', see Section 4.5).

Voluntary Context Switching

A voluntary context switch occurs whenever a process must await the availability
of a resource or the arrival of an event. Voluntary context switches happen fre-
quently in normal system operation. For example, a process typically blocks each
time that it requests data from an input device, such as a terminal or a disk. In
4.4BSD, voluntary context switches are initiated through the sleep() or tsleep( )
routines. When a process no longer needs the CPU, it invokes sleep() with a
scheduling priority and a wait channel The priority specified in a sleep ( ) call is
the priority that should be assigned to the process when that process is awakened.
This priority does not affect the user-level scheduling priority.

The wait channel is typically the address of some data structure that identifies
the resource or event for which the process is waiting. For example, the address of
a disk buffer is used while the process is waiting for the buffer to be filled. When
the buffer is filled, processes sleeping on that wait channel will be awakened. In
addition to the resource addresses that are used as wait channels, there are some
addresses that are used for special purposes:

• The global variable lbolt is awakened by the scheduler once per second. Pro-
cesses that want to wait for up to 1 second can sleep on this global variable. For
example, the terminal-output routines sleep on lbolt while waiting for output-
queue space to become available. Because queue space rarely runs out, it is eas-
ier simply to check for queue space once per second during the brief periods of
shortages than it is to set up a notification mechanism such as that used for man-
aging disk buffers. Programmers can also use the lbolt wait channel as a crude
watchdog timer when doing debugging.

Section 4. 3 Context Switching

• When a parent process does a wait system call to collect the termination status of
its children, it must wait for one of those children to exit. Since it cannot know
which of its children will exit first, and since it can sleep on only a single wait
channel, there is a quandary as to how to wait for the next of multiple events.
The solution is to have the parent sleep on its own process structure. When a
child exits, it awakens its parent's process-structure address, rather than its own.
Thus, the parent doing the wait will awaken independent of which child process
is the first to exit.

• When a process does a sigpause system call, it does not want to run until it
receives a signal. Thus, it needs to do an interruptible sleep on a wait channel
that will never be awakened. By convention, the address of the user structure is
given as the wait channel.

Sleeping processes are organized in an array of queues (see Fig. 4.3). The
sleep () and wakeup( ) routines hash wait channels to calculate an index into the
sleep queues. The sleep () routine takes the following steps in its operation:

1. Prevent interrupts that might cause process-state transitions by raising the
hardware-processor priority level to splhigh (hardware-processor priority lev-
els are explained in the next section).

2. Record the wait channel in the process structure, and hash the wait-channel
value to locate a sleep queue for the process.

3. Set the process's priority to the priority that the process will have when the
process is awakened, and set the SSLEEP flag.

Figure 4.3 Queueing structure for sleeping processes.

p_link

sleep queue
hash-table header

p_rlink

( process ) ( process )

( process



4. Place the process at the end of the sleep queue selected in step 2.

5. Call mi_switch() to request that a new process be scheduled; the hardware pri-
ority level is implicitly reset as part of switching to the other process.

A sleeping process is not selected to execute until it is removed from a sleep
queue and is marked runnable. This operation is done by the wakeup() routine,
which is called to signal that an event has occurred or that a resource is available.
Wakeup( ) is invoked with a wait channel, and it awakens all processes sleeping on
that wait channel. All processes waiting for the resource are awakened to ensure
that none are inadvertently left sleeping. If only one process were awakened, it
might not request the resource on which it was sleeping, and so any other pro-
cesses waiting for that resource would be left sleeping forever. A process that
needs an empty disk buffer in which to write data is an example of a process that
may not request the resource on which it was sleeping. Such a process can use
any available buffer. If none is available, it will try to create one by requesting
that a dirty buffer be written to disk and then waiting for the I/O to complete.
When the I/O finishes, the process will awaken and will check for an empty buffer.
If several are available, it may not use the one that it cleaned, leaving any other
processes waiting for the buffer that it cleaned sleeping forever.

To avoid having excessive numbers of processes awakened, kernel program-
mers try to use wait channels with fine enough granularity that unrelated uses will
not collide on the same resource. Thus, they put locks on each buffer in the buffer
cache, rather than putting a single lock on the buffer cache as a whole. The prob-
lem of many processes awakening for a single resource is further mitigated on a
uniprocessor by the latter's inherently single-threaded operation. Although many
processes will be put into the run queue at once, only one at a time can execute.
Since the kernel is nonpreemptive, each process will run its system call to comple-
tion before the next one will get a chance to execute. Unless the previous user of
the resource blocked in the kernel while trying to use the resource, each process
waiting for the resource will be able get and use the resource when it is next run.

A wakeup( ) operation processes entries on a sleep queue from front to back.
For each process that needs to be awakened, wakeup()

1. Removes the process from the sleep queue

2. Recomputes the user-mode scheduling priority if the process has been sleeping
longer than 1 second

3. Makes the process runnable if it is in a SSLEEP state, and places the process on
the run queue if it is not swapped out of main memory; if the process has been
swapped out, the swapin process will be awakened to load it back into memory
(see Section 5.12); if the process is in a SSTOP state, it is left on the queue
until it is explicitly restarted by a user-level process, either by a ptrace system
call or by a continue signal (see Section 4.7)

Section 4.3 Context Switching

If wakeup() moved any processes to the run queue and one of them had a schedul-
ing priority higher than that of the currently executing process, it will also request
that the CPU be rescheduled as soon as possible.

The most common use of sleep() and wakeup() is in scheduling access to
shared data structures; this use is described in the next section on synchronization.

Synchronization
Interprocess synchronization to a resource typically is implemented by the associ-
ation with the resource of two flags; a locked flag and a wanted flag. When a pro-
cess wants to access a resource, it first checks the locked flag. If the resource is
not currently in use by another process, this flag should not be set, and the process
can simply set the locked flag and use the resource. If the resource is in use, how-
ever, the process should set the wanted flag and call sleep () with a wait channel
associated with the resource (typically the address of the data structure used to
describe the resource). When a process no longer needs the resource, it clears the
locked flag and, if the wanted flag is set, invokes wakeup() to awaken all the pro-
cesses that called sleep () to await access to the resource.

Routines that run in the bottom half of the kernel do not have a context and
consequently cannot wait for a resource to become available by calling sleep().
When the top half of the kernel accesses resources that are shared with the bottom
half of the kernel, it cannot use the locked flag to ensure exclusive use. Instead, it
must prevent the bottom half from running while it is using the resource. Syn-
chronizing access with routines that execute in the bottom half of the kernel
requires knowledge of when these routines may run. Although interrupt priorities
are machine dependent, most implementations of 4.4BSD order them according to
Table 4.3. To block interrupt routines at and below a certain priority level, a criti-
cal section must make an appropriate set-priority-lev el call. All the set-priority -

Table 4.3 Interrupt-priority assignments; ordered from lowest to highest.

Name Blocks
spl0 () nothing (normal operating mode)
splsoftclock() low-priority clock processing
spinet() network protocol processing
spltty() terminal multiplexers and low-priority devices
splbio() disk and tape controllers and high-priority devices
splimp ( ) network device controllers
splclock() high-priority clock processing
splhigh () all interrupt activity



level calls return the previous priority level. When the critical section is done, the
priority is returned to its previous level using splx(). For example, when a process
needs to manipulate a terminal's data queue, the code that accesses the queue is
written in the following style:

s = splttyO ;

splx(s);

/* raise priority to block tty processing */
/* manipulate tty */
/* reset priority level to previous value */

Processes must take care to avoid deadlocks when locking multiple resources.
Suppose that two processes, A and B, require exclusive access to two resources,
R1 and R2, to do some operation. If process A acquires R1 and process B acquires
R2, then a deadlock occurs when process A tries to acquire R2 and process B tries
to acquire R1. Since a 4.4BSD process executing in kernel mode is never pre-
empted by another process, locking of multiple resources is simple, although it
must be done carefully. If a process knows that multiple resources are required to
do an operation, then it can safely lock one or more of those resources in any
order, as long as it never relinquishes control of the CPU. If, however, a process
cannot acquire all the resources that it needs, then it must release any resources
that it holds before calling sleep () to wait for the currently inaccessible resource
to become available.

Alternatively, if resources can be partially ordered, it is necessary only that
they be allocated in an increasing order. For example, as the namei() routine tra-
verses the filesystem name space, it must lock the next component of a pathname
before it relinquishes the current component. A partial ordering of pathname
components exists from the root of the name space to the leaves. Thus, transla-
tions down the name tree can request a lock on the next component without con-
cern for deadlock. However, when it is traversing up the name tree (i.e., following
a pathname component of dot-dot (..)), the kernel must take care to avoid sleeping
while holding any locks.

Raising the processor priority level to guard against interrupt activity works
for a uniprocessor architecture, but not for a shared-memory multiprocessor
machine. Similarly, much of the 4.4BSD kernel implicitly assumes that kernel
processing will never be done concurrently. Numerous vendors—such as Sequent,
OSF/1, AT&T, and Sun Microsystems—have redesigned the synchronization
schemes and have eliminated the uniprocessor assumptions implicit in the stan-
dard UNIX kernel, so that UNIX will run on tightly coupled multiprocessor archi-
tectures [Schimmel, 1994].

4.4 Process Scheduling

4.4BSD uses a process-scheduling algorithm based on multilevel feedback queues.
All processes that are runnable are assigned a scheduling priority that determines
in which run queue they are placed. In selecting a new process to run, the system
scans the run queues from highest to lowest priority and chooses the first process

on the first nonempty queue. If multiple processes reside on a queue, the system
runs them round robin; that is, it runs them in the order that they are found on the
queue, with equal amounts of time allowed. If a process blocks, it is not put back
onto any run queue. If a process uses up the time quantum (or time slice) allowed
it, it is placed at the end of the queue from which it came, and the process at the
front of the queue is selected to run.

The shorter the time quantum, the better the interactive response. However,
longer time quanta provide higher system throughput, because the system will
have less overhead from doing context switches, and processor caches will be
flushed less often. The time quantum used by 4.4BSD is 0.1 second. This value
was empirically found to be the longest quantum that could be used without loss
of the desired response for interactive jobs such as editors. Perhaps surprisingly,
the time quantum has remained unchanged over the past 15 years. Although the
time quantum was originally selected on centralized timesharing systems with
many users, it is still correct for decentralized workstations today. Although
workstation users expect a response time faster than that anticipated by the time-
snaring users of 10 years ago, the shorter run queues on the typical workstation
makes a shorter quantum unnecessary.

The system adjusts the priority of a process dynamically to reflect resource
requirements (e.g., being blocked awaiting an event) and the amount of resources
consumed by the process (e.g., CPU time). Processes are moved between run
queues based on changes in their scheduling priority (hence the word feedback in
the name multilevel feedback queue). When a process other than the currently
running process attains a higher priority (by having that priority either assigned or
given when it is awakened), the system switches to that process immediately if the
current process is in user mode. Otherwise, the system switches to the higher-pri-
ority process as soon as the current process exits the kernel. The system tailors
this short-term scheduling algorithm to favor interactive jobs by raising the
scheduling priority of processes that are blocked waiting for I/O for 1 or more sec-
onds, and by lowering the priority of processes that accumulate significant
amounts of CPU time.

Short-term process scheduling is broken up into two parts. The next section
describes when and how a process's scheduling priority is altered; the section after
describes the management of the run queues and the interaction between process
scheduling and context switching.

Calculations of Process Priority
A process's scheduling priority is determined directly by two values contained in
the process structure: p_estcpu and p_nice. The value of p_estcpu provides an
estimate of the recent CPU utilization of the process. The value of p_nice is a
user-settable weighting factor that ranges numerically between -20 and 20. The
normal value for p_nice is 0. Negative values increase a process's priority,
whereas positive values decrease its priority.

A process's user-mode scheduling priority is calculated every four clock ticks
(typically 40 milliseconds) by this equation:



Management

p_estcpu 1
p_usrpri = PUSER + ———-?— + 2 x p_nice. (Eq. 4.1)

Values less than PUSER are set to PUSER (see Table 4.2); values greater than 127
are set to 127. This calculation causes the priority to decrease linearly based on
recent CPU utilization. The user-controllable p_nice parameter acts as a limited
weighting factor. Negative values retard the effect of heavy CPU utilization by
offsetting the additive term containing p_estcpu. Otherwise, if we ignore the sec-
ond term, p_nice simply shifts the priority by a constant factor.

The CPU utilization, p_estcpu, is incremented each time that the system clock
ticks and the process is found to be executing. In addition, p_estcpu is adjusted
once per second via a digital decay filter. The decay causes about 90 percent of
the CPU usage accumulated in a 1-second interval to be forgotten over a period of
time that is dependent on the system load average. To be exact, p_estcpu is
adjusted according to

p_estcpu = (2 x load)
p_estcpu + p_nice, (Eq. 4.2)(2xload+1)

where the load is a sampled average of the sum of the lengths of the run queue
and of the short-term sleep queue over the previous 1-minute interval of system
operation.

To understand the effect of the decay filter, we can consider the case where a
single compute-bound process monopolizes the CPU. The process's CPU utiliza-
tion will accumulate clock ticks at a rate dependent on the clock frequency. The
load average will be effectively 1, resulting in a decay of

p_estcpu = 0. 66 x p_estcpu + p_nice.

If we assume that the process accumulates Ti clock ticks over time interval i, and
that p_nice is zero, then the CPU utilization for each time interval will count into
the current value of p_estcpu according to

p_estcpu = 0.66 x T0

p_estcpu = 0.66x(T1 + 0.66xT0) = 0.66xT1 +0.44xT0
p_estcpu = 0.66xT2 + 0.44xT1 +0.30xT0

p_estcpu = 0.66xT3 + • • • + 0.20xT0

p_estcpu = 0.66 x T4 + • • . + 0.13 x TQ.

Thus, after five decay calculations, only 13 percent of T0 remains present in the
current CPU utilization value for the process. Since the decay filter is applied once
per second, we can also say that about 90 percent of the CPU utilization is forgot-
ten after 5 seconds.

Processes that are runnable have their priority adjusted periodically as just
described. However, the system ignores processes blocked awaiting an event:
These processes cannot accumulate CPU usage, so an estimate of their filtered
CPU usage can be calculated in one step. This optimization can significantly
reduce a system's scheduling overhead when many blocked processes are present.
The system recomputes a process's priority when that process is awakened and

has been sleeping for longer than 1 second. The system maintains a value,
p_slptime, that is an estimate of the time a process has spent blocked waiting for
an event. The value of p_slptime is set to 0 when a process calls sleep (), and is
incremented once per second while the process remains in an SSLEEP or SSTOP
state. When the process is awakened, the system computes the value of p_estcpu
according to

p_slptime
(2xload)

x p_estcpu, (Eq. 4.3)p_estcpu =
(2xload+1)

and then recalculates the scheduling priority using Eq. 4.1. This analysis ignores
the influence of p_nice; also, the load used is the current load average, rather than
the load average at the time that the process blocked.

Process-Priority Routines

The priority calculations used in the short-term scheduling algorithm are spread
out in several areas of the system. Two routines, schedcpu() and roundrobin( )
run periodically. Schedcpu( ) recomputes process priorities once per second, using
Eq. 4.2, and updates the value of p_slptime for processes blocked by a call to
sleep(). The roundrobin() routine runs 10 times per second and causes the system
to reschedule the processes in the highest-priority (nonempty) queue in a round-
robin fashion, which allows each process a 100-millisecond time quantum.

The CPU usage estimates are updated in the system clock-processing module,
hardclock() , which executes 100 times per second. Each time that a process accu-
mulates four ticks in its CPU usage estimate, p_estcpu, the system recalculates the
priority of the process. This recalculation uses Eq. 4.1 and is done by the
setpriority( ) routine. The decision to recalculate after four ticks is related to the
management of the run queues described in the next section. In addition to issuing
the call from hardclock( ), each time setrunnable() places a process on a run
queue, it also calls setpriority( ) to recompute the process's scheduling priority.
This call from wakeup( ) to setrunnable( ) operates on a process other than the cur-
rently running process. So, wakeup() invokes updatepri() to recalculate the CPU
usage estimate according to Eq. 4.3 before calling setpriority( ). The relationship
of these functions is shown in Fig. 4.4.

Figure 4.4 Procedural interface to priority calculation.

wakeup()

hardclock() setrunnable( ) updatepri ()



Process Run Queues and Context Switching
The scheduling-priority calculations are used to order the set of runnable pro-
cesses. The scheduling priority ranges between 0 and 127, with 0 to 49 reserved
for processes executing in kernel mode, and 50 to 127 reserved for processes
executing in user mode. The number of queues used to hold the collection of
runnable processes affects the cost of managing the queues. If only a single
(ordered) queue is maintained, then selecting the next runnable process becomes
simple, but other operations become expensive. Using 128 different queues can
significantly increase the cost of identifying the next process to run. The system
uses 32 run queues, selecting a run queue for a process by dividing the process's
priority by 4. The processes on each queue are not further sorted by their priori-
ties. The selection of 32 different queues was originally a compromise based
mainly on the availability of certain VAX machine instructions that permitted the
system to implement the lowest-level scheduling algorithm efficiently, using a
32-bit mask of the queues containing runnable processes. The compromise works
well enough today that 32 queues are still used.

The run queues contain all the runnable processes in main memory except the
currently running process. Figure 4.5 shows how each queue is organized as a
doubly linked list of process structures. The head of each run queue is kept in an
array; associated with this array is a bit vector, whichqs, that is used in identifying
the nonempty run queues. Two routines, setrunqueue() and remrq(), are used to
place a process at the tail of a run queue, and to take a process off the head of a
run queue. The heart of the scheduling algorithm is the cpu_switch() routine.
The cpu_switch() routine is responsible for selecting a new process to run; it oper-
ates as follows:

Figure 4.5 Queueing structure for runnable processes.

run queues

high
priority

p_link

low
priority

process

p_rlink

1. Block interrupts, then look for a nonempty run queue. Locate a nonempty
queue by finding the location of the first nonzero bit in the whichqs bit vector.
If whichqs is zero, there are no processes to run, so unblock interrupts and
loop; this loop is the idle loop.

2. Given a nonempty run queue, remove the first process on the queue.

3. If this run queue is now empty as a result of removing the process, reset the
appropriate bit in whichqs.

4. Clear the curproc pointer and the want_resched flag. The curproc pointer ref-
erences the currently running process. Clear it to show that no process is cur-
rently running. The want_resched flag shows that a context switch should take
place; it is described later in this section.

5. Set the new process running and unblock interrupts.

The context-switch code is broken into two parts. The machine-independent code
resides in mi_switch(); the machine-dependent part resides in cpu_switch(). On
most architectures, cpu_switch() is coded in assembly language for efficiency.

Given the mi_switch() routine and the process-priority calculations, the only
missing piece in the scheduling facility is how the system forces an involuntary
context switch. Remember that voluntary context switches occur when a process
calls the sleep() routine. Sleep() can be invoked by only a runnable process, so
sleep () needs only to place the process on a sleep queue and to invoke
mi_switch() to schedule the next process to run. The mi_switch() routine, how-
ever, cannot be called from code that executes at interrupt level, because it must be
called within the context of the running process.

An alternative mechanism must exist. This mechanism is handled by the
machine-dependent need_resched() routine, which generally sets a global resched-
ule request flag, named want_resched, and then posts an asynchronous system trap
(AST) for the current process. An AST is a trap that is delivered to a process the
next time that that process returns to user mode. Some architectures support ASTs
directly in hardware; other systems emulate ASTs by checking the want_resched
flag at the end of every system call, trap, and interrupt of user-mode execution.
When the hardware AST trap occurs or the want_resched flag is set, the
mi_switch() routine is called, instead of the current process resuming execution.
Rescheduling requests are made by the wakeup( ), setpriority( ), roundrobin(),
schedcpu(), and setrunnable() routines.

Because 4.4BSD does not preempt processes executing in kernel mode, the
worst-case real-time response to events is defined by the longest path through the
top half of the kernel. Since the system guarantees no upper bounds on the dura-
tion of a system call, 4.4BSD is decidedly not a real-time system. Attempts to
retrofit BSD with real-time process scheduling have addressed this problem in dif-
ferent ways [Ferrin & Langridge, 1980; Sanderson et al, 1986].



4.5 Process Creation

In 4.4BSD, new processes are created with the fork system call. There is also a
vfork system call that differs from fork in how the virtual-memory resources are
treated; vfork also ensures that the parent will not run until the child does either an
exec or exit system call. The vfork system call is described in Section 5.6.

The process created by a fork is termed a child process of the original parent
process. From a user's point of view, the child process is an exact duplicate of the
parent process, except for two values: the child PID, and the parent PID. A call to
fork returns the child PID to the parent and zero to the child process. Thus, a pro-
gram can identify whether it is the parent or child process after a fork by checking
this return value.

A fork involves three main steps:

1. Allocating and initializing a new process structure for the child process

2. Duplicating the context of the parent (including the user structure and virtual-
memory resources) for the child process

3. Scheduling the child process to run

The second step is intimately related to the operation of the memory-management
facilities described in Chapter 5. Consequently, only those actions related to pro-
cess management will be described here.

The kernel begins by allocating memory for the new process entry (see
Fig. 4.1). The process entry is initialized in three steps: part is copied from the
parent's process structure, part is zeroed, and the rest is explicitly initialized. The
zeroed fields include recent CPU utilization, wait channel, swap and sleep time,
timers, tracing, and pending-signal information. The copied portions include all
the privileges and limitations inherited from the parent, including

• The process group and session

• The signal state (ignored, caught and blocked signal masks)

• The p_nice scheduling parameter

• A reference to the parent's credential

• A reference to the parent's set of open files

• A reference to the parent's limits

The explicitly set information includes

• Entry onto the list of all processes

• Entry onto the child list of the parent and the back pointer to the parent

• Entry onto the parent's process-group list

• Entry onto the hash structure that allows the process to be looked up by its PID

• A pointer to the process's statistics structure, allocated in its user structure

• A pointer to the process's signal-actions structure, allocated in its user structure

• A new PID for the process

The new PID must be unique among all processes. Early versions of BSD verified
the uniqueness of a PID by performing a linear search of the process table. This
search became infeasible on large systems with many processes. 4.4BSD main-
tains a range of unallocated PIDs between nextpid and pidchecked. It allocates a
new PID by using the value of nextpid, and nextpid is then incremented. When
nextpid reaches pidchecked, the system calculates a new range of unused PIDs by
making a single scan of all existing processes (not just the active ones are
scanned—zombie and swapped processes also are checked).

The final step is to copy the parent's address space. To duplicate a process's
image, the kernel invokes the memory-management facilities through a call to
vm_fork(). The vm_fork() routine is passed a pointer to the initialized process
structure for the child process and is expected to allocate all the resources that the
child will need to execute. The call to vm_fork() returns a value of 1 in the child
process and of 0 in the parent process.

Now that the child process is fully built, it is made known to the scheduler by
being placed on the run queue. The return value from vm_fork() is passed back to
indicate whether the process is returning in the parent or child process, and deter-
mines the return value of the fork system call.

Process Termination

Processes terminate either voluntarily through an exit system call, or involuntarily
as the result of a signal. In either case, process termination causes a status code to
be returned to the parent of the terminating process (if the parent still exists). This
termination status is returned through the wait4 system call. The wait4 call per-
mits an application to request the status of both stopped and terminated processes.
The wait4 request can wait for any direct child of the parent, or it can wait selec-
tively for a single child process, or for only its children in a particular process
group. Wait4 can also request statistics describing the resource utilization of a ter-
minated child process. Finally, the wait4 interface allows a process to request sta-
tus codes without blocking.



Within the kernel, a process terminates by calling the exit() routine. Exit()
first cleans up the process's kernel-mode execution state by

• Canceling any pending timers

• Releasing virtual-memory resources

• Closing open descriptors

• Handling stopped or traced child processes

With the kernel-mode state reset, the process is then removed from the list of
active processes—the allproc list—and is placed on the list of zombie processes
pointed to by zombproc. The process state is changed, and the global flag curproc
is marked to show that no process is currently running. The exit() routine then

• Records the termination status in the p_xstat field of the process structure

• Bundles up a copy of the process's accumulated resource usage (for accounting
purposes) and hangs this structure from the p_ru field of the process structure

• Notifies the deceased process's parent

Finally, after the parent has been notified, the cpu_exit() routine frees any
machine-dependent process resources, and arranges for a final context switch from
the process.

The wait4 call works by searching a process's descendant processes for pro-
cesses that have terminated. If a process in SZOMB state is found that matches the
wait criterion, the system will copy the termination status from the deceased pro-
cess. The process entry then is taken off the zombie list and is freed. Note that
resources used by children of a process are accumulated only as a result of a wait4
system call. When users are trying to analyze the behavior of a long-running pro-
gram, they would find it useful to be able to obtain this resource usage information
before the termination of a process. Although the information is available inside
the kernel and within the context of that program, there is no interface to request it
outside of that context until process termination.

4.7 Signals

UNIX defines a set of signals for software and hardware conditions that may arise
during the normal execution of a program; these signals are listed in Table 4.4.
Signals may be delivered to a process through application-specified signal han-
dlers, or may result in default actions, such as process termination, carried out by
the system. 4.4BSD signals are designed to be software equivalents of hardware
interrupts or traps.

Table 4.4 Signals defined in 4.4BSD.

Name
SIGHUP
SIGINT
SIGQUIT
SIGILL
SIGTRAP
SIGIOT
SIGEMT
SIGFPE
SIGKILL
SIGBUS
SIGSEGV
SIGSYS
SIGPIPE
SIGALRM
SIGTERM
SIGURG
SIGSTOP
SIGTSTP
SIGCONT
SIGCHLD
SIGTTIN
SIGTTOU
SIGIO
SIGXCPU
SIGXFSZ
SIGVTALRM
SIGPROF
SIGWINCH
SIGINFO
SIGUSR1
SIGUSR2

Default action
terminate process
terminate process
create core image
create core image
create core image
create core image
create core image
create core image
terminate process
create core image
create core image
create core image
terminate process
terminate process
terminate process
discard signal
stop process
stop process
discard signal
discard signal
stop process
stop process
discard signal
terminate process
terminate process
terminate process
terminate process
discard signal
discard signal
terminate process
terminate process

Description
terminal line hangup
interrupt program
quit program
illegal instruction
trace trap
I/O trap instruction executed
emulate instruction executed
floating-point exception
kill program
bus error
segmentation violation
bad argument to system call
write on a pipe with no one to read it
real-time timer expired
software termination signal
urgent condition on I/O channel
stop signal not from terminal
stop signal from terminal
a stopped process is being continued
notification to parent on child stop or exit
read on terminal by background process
write to terminal by background process
I/O possible on a descriptor
CPU time limit exceeded
file-size limit exceeded
virtual timer expired
profiling timer expired
window size changed
information request
user-defined signal 1
user-defined signal 2

Each signal has an associated action that defines how it should be handled
when it is delivered to a process. If a process has not specified an action for a sig-
nal, it is given a default action that may be any one of



• Ignoring the signal

• Terminating the process

• Terminating the process after generating a core file that contains the process's
execution state at the time the signal was delivered

• Stopping the process

• Resuming the execution of the process

An application program can use the sigaction system call to specify an action for a
signal, including

• Taking the default action

• Ignoring the signal

• Catching the signal with a handler

A signal handler is a user-mode routine that the system will invoke when the sig-
nal is received by the process. The handler is said to catch the signal. The two
signals SIGSTOP and SIGKILL cannot be ignored or caught; this restriction ensures
that a software mechanism exists for stopping and killing runaway processes. It is
not possible for a user process to decide which signals would cause the creation of
a core file by default, but it is possible for a process to prevent the creation of such
a file by ignoring, blocking, or catching the signal.

Signals are posted to a process by the system when it detects a hardware
event, such as an illegal instruction, or a software event, such as a stop request
from the terminal. A signal may also be posted by another process through the kill
system call. A sending process may post signals to only those receiving processes
that have the same effective user identifier (unless the sender is the superuser). A
single exception to this rule is the continue signal, SIGCONT, which always can be
sent to any descendent of the sending process. The reason for this exception is to
allow users to restart a setuid program that they have stopped from their keyboard.

Like hardware interrupts, the delivery of signals may be masked by a process.
The execution state of each process contains a set of signals currently masked
from delivery. If a signal posted to a process is being masked, the signal is
recorded in the process's set of pending signals, but no action is taken until the
signal is unmasked. The sigprocmask system call modifies a set of masked signals
for a process. It can add to the set of masked signals, delete from the set of
masked signals, or replace the set of masked signals.

The system does not allow the SIGKILL or SIGSTOP signals to be masked.
Although the delivery of the SIGCONT signal to the signal handler of a process
may be masked, the action of resuming that stopped process is not masked.

Two other signal-related system calls are sigsuspend and sigaltstack. The sig-
suspend call permits a process to relinquish the processor until that process
receives a signal. This facility is similar to the system's sleep() routine. The

sigaltstack call allows a process to specify a run-time stack to use in signal
delivery. By default, the system will deliver signals to a process on the latter's nor-
mal run-time stack. In some applications, however, this default is unacceptable.
For example, if an application is running on a stack that the system does not
expand automatically, and the stack overflows, then the signal handler must
execute on an alternate stack. This facility is similar to the interrupt-stack mecha-
nism used by the kernel.

The final signal-related facility is the sigreturn system call. Sigreturn is the
equivalent of a user-level load-processor-context operation. A pointer to a
(machine-dependent) context block that describes the user-level execution state of
a process is passed to the kernel. The sigreturn system call is used to restore state
and to resume execution after a normal return from a user's signal handler.

Comparison with POSIX Signals
Signals were originally designed to model exceptional events, such as an attempt
by a user to kill a runaway program. They were not intended to be used as a gen-
eral interprocess-communication mechanism, and thus no attempt was made to
make them reliable. In earlier systems, whenever a signal was caught, its action
was reset to the default action. The introduction of job control brought much
more frequent use of signals, and made more visible a problem that faster proces-
sors also exacerbated: If two signals were sent rapidly, the second could cause the
process to die, even though a signal handler had been set up to catch the first sig-
nal. Thus, reliability became desirable, so the developers designed a new frame-
work that contained the old capabilities as a subset while accommodating new
mechanisms.

The signal facilities found in 4.4BSD are designed around a virtual-machine
model, in which system calls are considered to be the parallel of machine's hard-
ware instruction set. Signals are the software equivalent of traps or interrupts, and
signal-handling routines perform the equivalent function of interrupt or trap service
routines. Just as machines provide a mechanism for blocking hardware interrupts
so that consistent access to data structures can be ensured, the signal facilities allow
software signals to be masked. Finally, because complex run-time stack environ-
ments may be required, signals, like interrupts, may be handled on an alternate run-
time stack. These machine models are summarized in Table 4.5 (on page 104).

The 4.4BSD signal model was adopted by POSIX, although several significant
changes were made.

• In POSIX, system calls interrupted by a signal cause the call to be terminated pre-
maturely and an "interrupted system call" error to be returned. In 4.4BSD, the
sigaction system call can be passed a flag that requests that system calls inter-
rupted by a signal be restarted automatically whenever possible and reasonable.
Automatic restarting of system calls permits programs to service signals without
having to check the return code from each system call to determine whether the
call should be restarted. If this flag is not given, the POSIX semantics apply.
Most applications use the C-library routine signal () to set up their signal



Table 4.5 Comparison of hardware-machine operations and the corresponding software
virtual-machine operations.

Hardware machine
instruction set
restartable instructions
interrupts/traps
interrupt/trap handlers
blocking interrupts
interrupt stack

Software virtual machine
set of system calls
restartable system calls
signals
signal handlers
masking signals
signal stack

handlers. In 4.4BSD, the signal() routine calls sigaction with the flag that
requests that system calls be restarted. Thus, applications running on 4.4BSD
and setting up signal handlers with signal () continue to work as expected, even
though the sigaction interface conforms to the POSIX specification.

• In POSIX, signals are always delivered on the normal run-time stack of a process.
In 4.4BSD, an alternate stack may be specified for delivering signals with the
si gait stack system call. Signal stacks permit programs that manage fixed-sized
run-time stacks to handle signals reliably.

• POSIX added a new system call sigpending; this routine determines what signals
have been posted but have not yet been delivered. Although it appears in
4.4BSD, it had no equivalent in earlier BSD systems because there were no appli-
cations that wanted to make use of pending-signal information.

Posting of a Signal

The implementation of signals is broken up into two parts: posting a signal to a
process, and recognizing the signal and delivering it to the target process. Signals
may be posted by any process or by code that executes at interrupt level. Signal
delivery normally takes place within the context of the receiving process. But
when a signal forces a process to be stopped, the action can be carried out when
the signal is posted.

A signal is posted to a single process with the psignal() routine or to a group
of processes with the gsignal() routine. The gsignal() routine invokes psignal( )
for each process in the specified process group. The actions associated with post-
ing a signal are straightforward, but the details are messy. In theory, posting a sig-
nal to a process simply causes the appropriate signal to be added to the set of
pending signals for the process, and the process is then set to run (or is awakened
if it was sleeping at an interruptible priority level). The CURSIG macro calculates
the next signal, if any, that should be delivered to a process. It determines the next
signal by inspecting the p_siglist field that contains the set of signals pending
delivery to a process. Each time that a process returns from a call to sleep() (with

the PCATCH flag set) or prepares to exit the system after processing a system call
or trap, it checks to see whether a signal is pending delivery. If a signal is pending
and must be delivered in the process's context, it is removed from the pending set,
and the process invokes the postsig() routine to take the appropriate action.

The work of psignal() is a patchwork of special cases required by the pro-
cess-debugging and job-control facilities, and by intrinsic properties associated
with signals. The steps involved in posting a signal are as follows:

1. Determine the action that the receiving process will take when the signal is
delivered. This information is kept in the p_sigignore, p_sigmask, and p_sig-
catch fields of the process's process structure. If a process is not ignoring,
masking, or catching a signal, the default action is presumed to apply. If a
process is being traced by its parent—that is, by a debugger—the parent pro-
cess is always permitted to intercede before the signal is delivered. If the pro-
cess is ignoring the signal, psignal()`s work is done and the routine can return.

2. Given an action, psignal() adds the signal to the set of pending signals,
p_siglist, and then does any implicit actions specific to that signal. For exam-
ple, if the signal is a continue signal, SIGCONT, any pending signals that
would normally cause the process to stop, such as SIGTTOU, are removed.

3. Next, psignal() checks whether the signal is being masked. If the process is
currently masking delivery of the signal, psignal( )'s work is complete and it
may return.

4. If, however, the signal is not being masked, psignal() must either do the action
directly, or arrange for the process to execute so that the process will take the
action associated with the signal. To get the process running, psignal() must
interrogate the state of the process, which is one of the following:

SSLEEP The process is blocked awaiting an event. If the process is sleeping at a
negative priority, then nothing further can be done. Otherwise, the ker-
nel can apply the action—either directly, or indirectly by waking up the
process. There are two actions that can be applied directly. For signals
that cause a process to stop, the process is placed in an SSTOP state,
and the parent process is notified of the state change by a SIGCHLD sig-
nal being posted to it. For signals that are ignored by default, the signal
is removed from p_siglist and the work is complete. Otherwise, the
action associated with the signal must be done in the context of the
receiving process, and the process is placed onto the run queue with a
call to setrunnable( )

SSTOP The process is stopped by a signal or because it is being debugged. If
the process is being debugged, then there is nothing to do until the con-
trolling process permits it to run again. If the process is stopped by a
signal and the posted signal would cause the process to stop again, then
there is nothing to do, and the posted signal is discarded. Otherwise,



the signal is either a continue signal or a signal that would normally
cause the process to terminate (unless the signal is caught). If the sig-
nal is SIGCONT, then the process is set running again, unless it is
blocked waiting on an event; if the process is blocked, it is returned to
the SSLEEP state. If the signal is SIGKILL, then the process is set run-
ning again no matter what, so that it can terminate the next time that it
is scheduled to run. Otherwise, the signal causes the process to be
made runnable, but the process is not placed on the run queue because
it must wait for a continue signal.

SRUN, SIDL, SZOMB
If the process is not the currently executing process, need_resched() is
called, so that the signal will be noticed by the receiving process as
soon as possible.

The implementation of psignal() is complicated, mostly because psignal() con-
trols the process-state transitions that are part of the job-control facilities and
because it interacts strongly with process-debugging facilities.

Delivering a Signal

Most actions associated with delivering a signal to a process are carried out within
the context of that process. A process checks its process structure for pending sig-
nals at least once each time that it enters the system, by calling the CURSIG macro.

If CURSIG determines that there are any unmasked signals in p_siglist, it calls
issignal() to find the first unmasked signal in the list. If delivering the signal
causes a signal handler to be invoked or a core dump to be made, the caller is noti-
fied that a signal is pending, and actual delivery is done by a call to postsig( ).
That is,

if (sig = CURSIG(p) )
postsig(sig);

Otherwise, the action associated with the signal is done within issignal() (these
actions mimic the actions carried out by psignal( ) ).

The postsig( ) routine has two cases to handle:

1. Producing a core dump

2. Invoking a signal handler

The former task is done by the coredump( ) routine and is always followed by a
call to exit() to force process termination. To invoke a signal handler, postsig( )
first calculates a set of masked signals and installs that set in p_sigmask. This set
normally includes the signal being delivered, so that the signal handler will not be
invoked recursively by the same signal. Any signals specified in the sigaction

step 1—sendsig( )

framen

signal context

framen

step 4—sigretum( )

step 2—sigtramp() called

framen

signal context

signal handler

frame n

signal context

step 3—sigtramp() returns

Figure 4.6 Delivery of a signal to a process.

system call at the time the handler was installed also will be included. Postsig( )
then calls the sendsig( ) routine to arrange for the signal handler to execute imme-
diately after the process returns to user mode. Finally, the signal in p_cursig is
cleared and postsig( ) returns, presumably to be followed by a return to user mode.

The implementation of the sendsig( ) routine is machine dependent. Figure
4.6 shows the flow of control associated with signal delivery. If an alternate stack
has been requested, the user's stack pointer is switched to point at that stack. An
argument list and the process's current user-mode execution context are stored on
the (possibly new) stack. The state of the process is manipulated so that, on return
to user mode, a call will be made immediately to a body of code termed the sig-
nal-trampoline code. This code invokes the signal handler with the appropriate
argument list, and, if the handler returns, makes a sigreturn system call to reset the
process's signal state to the state that existed before the signal.

Process Groups and Sessions

A process group is a collection of related processes, such as a shell pipeline, all of
which have been assigned the same process-group identifier. The process-group
identifier is the same as the PID of the process group's initial member; thus pro-
cess-group identifiers share the name space of process identifiers. When a new



process group is created, the kernel allocates a process-group structure to be
associated with it. This process-group structure is entered into a process-group
hash table so that it Can be found quickly.

A process is always a member of a single process group. When it is created,
each process is placed into the process group of its parent process. Programs such
as shells create new process groups, usually placing related child processes into a
group. A process can change its own process group or that of a child process by
creating a new process group or by moving a process into an existing process
group using the setpgid system call. For example, when a shell wants to set up a
new pipeline, it wants to put the processes in the pipeline into a process group dif-
ferent from its own, so that the pipeline can be controlled independently of the
shell. The shell starts by creating the first process in the pipeline, which initially
has the same process-group identifier as the shell. Before executing the target pro-
gram, the first process does a setpgid to set its process-group identifier to the same
value as its PID. This system call creates a new process group, with the child pro-
cess as the process-group leader of the process group. As the shell starts each
additional process for the pipeline, each child process uses setpgid to join the
existing process group.

In our example of a shell creating a new pipeline, there is a race. As the addi-
tional processes in the pipeline are spawned by the shell, each is placed in the pro-
cess group created by the first process in the pipeline. These conventions are
enforced by the setpgid system call. It restricts the set of process-group identifiers
to which a process may be set to either a value equal its own PID or a value of
another process-group identifier in its session. Unfortunately, if a pipeline process
other than the process-group leader is created before the process-group leader has
completed its setpgid call, the setpgid call to join the process group will fail. As
the setpgid call permits parents to set the process group of their children (within
some limits imposed by security concerns), the shell can avoid this race by mak-
ing the setpgid call to change the child's process group both in the newly created
child and in the parent shell. This algorithm guarantees that, no matter which pro-
cess runs first, the process group will exist with the correct process-group leader.
The shell can also avoid the race by using the vfork variant of the fork system call
that forces the parent process to wait until the child process either has done an
exec system call or has exited. In addition, if the initial members of the process
group exit before all the pipeline members have joined the group—for example if
the process-group leader exits before the second process joins the group, the
setpgid call could fail. The shell can avoid this race by ensuring that all child pro-
cesses are placed into the process group without calling the wait system call, usu-
ally by blocking the SIGCHLD signal so that the shell will not be notified yet if a
child exits. As long as a process-group member exists, even as a zombie process,
additional processes can join the process group.

There are additional restrictions on the setpgid system call. A process may
join process groups only within its current session (discussed in the next section),
and it cannot have done an exec system call. The latter restriction is intended to

avoid unexpected behavior if a process is moved into a different process group
after it has begun execution. Therefore, when a shell calls setpgid in both parent
and child processes after a fork, the call made by the parent will fail if the child
has already made an exec call. However, the child will already have joined the
process group successfully, and the failure is innocuous.

Sessions

Just as a set of related processes are collected into a process group, a set of pro-
cess groups are collected into a session. A session is a set of one or more process
groups and may be associated with a terminal device. The main uses for sessions
are to collect together a user's login shell and the jobs that it spawns, and to create
an isolated environment for a daemon process and its children. Any process that
is not already a process-group leader may create a session using the setsid system
call, becoming the session leader and the only member of the session. Creating a
session also creates a new process group, where the process-group ID is the PID of
the process creating the session, and the process is the process-group leader. By
definition, all members of a process group are members of the same session.

A session may have an associated controlling terminal that is used by default
for communicating with the user. Only the session leader may allocate a control-
ling terminal for the session, becoming a controlling process when it does so. A
device can be the controlling terminal for only one session at a time. The terminal
I/O system (described in Chapter 10) synchronizes access to a terminal by permit-
ting only a single process group to be the foreground process group for a control-
ling terminal at any time. Some terminal operations are allowed by only members
of the session. A session can have at most one controlling terminal. When a ses-
sion is created, the session leader is dissociated from its controlling terminal if it
had one.

A login session is created by a program that prepares a terminal for a user to
log into the system. That process normally executes a shell for the user, and thus
the shell is created as the controlling process. An example of a typical login ses-
sion is shown in Fig. 4.7 (on page 110).

The data structures used to support sessions and process groups in 4.4BSD are
shown in Fig. 4.8. This figure parallels the process layout shown in Fig. 4.7. The
pg_nembers field of a process-group structure heads the list of member processes;
these processes are linked together through the p_pglist list entry in the process
structure. In addition, each process has a reference to its process-group structure
in the p_pgrp field of the process structure. Each process-group structure has a
pointer to its enclosing session. The session structure tracks per-login informa-
tion, including the process that created and controls the session, the controlling
terminal for the session, and the login name associated with the session. Two pro-
cesses wanting to determine whether they are in the same session can traverse
their p_pgrp pointers to find their process-group structures, and then compare the
pg_session pointers to see whether the latter are the same.



Session

controlling
process 3

process group 3

process 4 process 5 process 8

process group 4 process group 8

Figure 4.7 A session and its processes. In this example, process 3 is the initial member
of the session—the session leader—and is referred to as the controlling process if it has a
controlling terminal. It is contained in its own process group, 3. Process 3 has spawned
two jobs: one is a pipeline composed of processes 4 and 5, grouped together in process
group 4, and the other one is process 8, which is in its own process group, 8. No process-
group leader can create a new session; thus, processes 3, 4, or 8 could not start their own
session, but process 5 would be allowed to do so.

Job Control
Job control is a facility first provided by the C shell [Joy, 1994], and today pro-
vided by most shells. It permits a user to control the operation of groups of pro-
cesses termed jobs. The most important facilities provided by job control are the
abilities to suspend and restart jobs and to do the multiplexing of access to the
user's terminal. Only one job at a time is given control of the terminal and is able
to read from and write to the terminal. This facility provides some of the advan-
tages of window systems, although job control is sufficiently different that it is
often used in combination with window systems on those systems that have the
latter. Job control is implemented on top of the process group, session, and signal
facilities.

Each job is a process group. Outside the kernel, a shell manipulates a job by
sending signals to the job's process group with the killpg system call, which deliv-
ers a signal to all the processes in a process group. Within the system, the two
main users of process groups are the terminal handler (Chapter 10) and the inter-
process-communication facilities (Chapter 11). Both facilities record process-
group identifiers in private data structures and use them in delivering signals. The
terminal handler, in addition, uses process groups to multiplex access to the con-
trolling terminal.

For example, special characters typed at the keyboard of the terminal (e.g.,
control-C or control-/) result in a signal being sent to all processes in one job in
the session; that job is in the foreground, whereas all other jobs in the session are
in the background. A shell may change the foreground job by using the
tcsetpgrp( ) function, implemented by the TIOCSPGRP ioctl on the controlling ter-
minal. Background jobs will be sent the SIGTTIN signal if they attempt to read
from the terminal, normally stopping the job. The SIGTTOU signal is sent to back-
ground jobs that attempt an ioctl system call that would alter the state of the

LISTHEAD pgrphashtbl

p_pglist

pg_id = 3 3=
t_pgrp (foreground process group)

P-Pgrp
pg_members p_pglist

struct session s_leader struct tty

struct pgrp

pg_session
pg_session
pg_session

—^l>8_hash

s_count — 3
s_login

s_ttyvp

t_ session

s_ ttyp

t_termios
t_winsize

• . •

Figure 4.8 Process-group organization.

terminal, and, if the TOSTOP option is set for the terminal, if they attempt to write
to the terminal.

The foreground process group for a session is stored in the t_pgrp field of the
session's controlling terminal tty structure (see Chapter 10). All other process
groups within the session are in the background. In Fig. 4.8, the session leader has
set the foreground process group for its controlling terminal to be its own process
group. Thus, its two jobs are in background, and the terminal input and output will
be controlled by the session-leader shell. Job control is limited to processes con-
tained within the same session and to the terminal associated with the session.
Only the members of the session are permitted to reassign the controlling terminal
among the process groups within the session.

If a controlling process exits, the system revokes further access to the control-
ling terminal and sends a SIGHUP signal to the foreground process group. If a
process such as a job-control shell exits, each process group that it created will
become an orphaned process group: a process group in which no member has a



Management

parent that is a member of the same session but of a different process group. Such
a parent would normally be a job-control shell capable of resuming stopped child
processes. The pg_jobc field in Fig. 4.8 counts the number of processes within the
process group that have the controlling process as a parent; when that count goes
to zero, the process group is orphaned. If no action were taken by the system, any
orphaned process groups that were stopped at the time that they became orphaned
would be unlikely ever to resume. Historically, the system dealt harshly with such
stopped processes: They were killed. In POSIX and 4.4BSD, an orphaned process
group is sent a hangup and a continue signal if any of its members are stopped
when it becomes orphaned by the exit of a parent process. If processes choose to
catch or ignore the hangup signal, they can continue running after becoming
orphaned. The system keeps a count of processes in each process group that have
a parent process in another process group of the same session. When a process
exits, this count is adjusted for the process groups of all child processes. If the
count reaches zero, the process group has become orphaned. Note that a process
can be a member of an orphaned process group even if its original parent process
is still alive. For example, if a shell starts a job as a single process A, that process
then forks to create process B, and the parent shell exits, then process B is a mem-
ber of an orphaned process group but is not an orphaned process.

To avoid stopping members of orphaned process groups if they try to read or
write to their controlling terminal, the kernel does not send them SIGTTIN and
SIGTTOU signals, and prevents them from stopping in response to those signals.
Instead, attempts to read or write to the terminal produce an error.

4.9 Process Debugging

4.4BSD provides a simplistic facility for controlling and debugging the execution
of a process. This facility, accessed through the ptrace system call, permits a par-
ent process to control a child process's execution by manipulating user- and ker-
nel-mode execution state. In particular, with ptrace, a parent process can do the
following operations on a child process:

• Read and write address space and registers

• Intercept signals posted to the process

• Single step and continue the execution of the process

• Terminate the execution of the process

The ptrace call is used almost exclusively by program debuggers, such as gdb.
When a process is being traced, any signals posted to that process cause it to

enter the SSTOP state. The parent process is notified with a SIGCHLD signal and
may interrogate the status of the child with the wait4 system call. On most
machines, trace traps, generated when a process is single stepped, and breakpoint
faults, caused by a process executing a breakpoint instruction, are translated by

4.4BSD into SIGTRAP signals. Because signals posted to a traced process cause it
to stop and result in the parent being notified, a program's execution can be con-
trolled easily.

To start a program that is to be debugged, the debugger first creates a child
process with a fork system call. After the fork, the child process uses a ptrace call
that causes the process to be flagged as traced by setting the P_TRACED bit in the
p_flag field of the process structure. The child process then sets the trace trap bit
in the process's processor status word and calls execve to load the image of the
program that is to be debugged. Setting this bit ensures that the first instruction
executed by the child process after the new image is loaded will result in a hard-
ware trace trap, which is translated by the system into a SIGTRAP signal. Because
the parent process is notified about all signals to the child, it can intercept the sig-
nal and gain control over the program before it executes a single instruction.

All the operations provided by ptrace are carried out in the context of the pro-
cess being traced. When a parent process wants to do an operation, it places the
parameters associated with the operation into a data structure named ipc and
sleeps on the address of ipc. The next time that the child process encounters a sig-
nal (immediately if it is currently stopped by a signal), it retrieves the parameters
from the ipc structure and does the requested operation. The child process then
places a return result in the ipc structure and does a wakeup() call with the address
of ipc as the wait channel. This approach minimizes the amount of extra code
needed in the kernel to support debugging. Because the child makes the changes
to its own address space, any pages that it tries to access that are not resident in
memory are brought into memory by the existing page-fault mechanisms. If the
parent tried to manipulate the child's address space, it would need special code to
find and load any pages that it wanted to access that were not resident in memory.

The ptrace facility is inefficient for three reasons. First, ptrace uses a single
global data structure for passing information back and forth between all the parent
and child processes in the system. Because there is only one structure, it must be
interlocked to ensure that only one parent-child process pair will use it at a time.
Second, because the data structure has a small, fixed size, the parent process is
limited to reading or writing 32 bits at a time. Finally, since each request by a par-
ent process must be done in the context of the child process, two context switches
need to be done for each request—one from the parent to the child to send the
request, and one from the child to the parent to return the result of the operation.

To address these problems, 4.4BSD added a /proc filesystem, similar to the
one found in UNIX Eighth Edition [Killian, 1984]. In the /proc system, the
address space of another process can be accessed with read and write system calls,
which allows a debugger to access a process being debugged with much greater
efficiency. The page (or pages) of interest in the child process is mapped into the
kernel address space. The requested data can then be copied directly from the ker-
nel to the parent address space. This technique avoids the need to have a data
structure to pass messages back and forth between processes, and avoids the con-
text switches between the parent and child processes. Because the ipc mechanism
was derived from the original UNIX code, it was not included in the freely



Process Management

redistributable 4.4BSD-Lite release. Most reimplementations simply converted the
ptrace requests into calls on /proc, or map the process pages directly into the ker-
nel memory. The result is a much simpler and faster implementation of ptrace.

Exercises

4.1 What are three implications of not having the user structure mapped at a
fixed virtual address in the kernel's address space?

4.2 Why is the performance of the context-switching mechanism critical to the
performance of a highly multiprogrammed system?

4.3 What effect would increasing the time quantum have on the system's inter-
active response and total throughput?

4.4 What effect would reducing the number of run queues from 32 to 16 have
on the scheduling overhead and on system performance?

4.5 Give three reasons for the system to select a new process to run.

4.6 What type of scheduling policy does 4.4BSD use? What type of jobs does
the policy favor? Propose an algorithm for identifying these favored jobs.

4.7 Is job control still a useful facility, now that window systems are widely
available? Explain your answer.

4.8 When and how does process scheduling interact with the memory-manage-
ment facilities?

4.9 After a process has exited, it may enter the state of being a zombie,
SZOMB, before disappearing from the system entirely. What is the purpose
of the SZOMB state? What event causes a process to exit from SZOMB?

4.10 Suppose that the data structures shown in Fig. 4.2 do not exist. Instead
assume that each process entry has only its own PID and the PID of its par-
ent. Compare the costs in space and time to support each of the following
operations:

a. Creation of a new process

b. Lookup of the process's parent

c. Lookup of all a process's siblings

d. Lookup of all a process's descendents

e. Destruction of a process

4.11 The system raises the hardware priority to splhigh in the sleep( ) routine be-
fore altering the contents of a process's process structure. Why does it do so?

4.12 A process blocked with a priority less than PZERO may never be awakened
by a signal. Describe two problems a noninterruptible sleep may cause if a
disk becomes unavailable while the system is running.

4.13 For each state listed in Table 4.1, list the system queues on which a process
in that state might be found.

*4.14 Define three properties of a real-time system. Give two reasons why
4.4BSD is not a real-time system.

*4.15 In 4.4BSD, the signal SIGTSTP is delivered to a process when a user types
a "suspend character." Why would a process want to catch this signal
before it is stopped?

*4.16 Before the 4.4BSD signal mechanism was added, signal handlers to catch
the SIGTSTP signal were written as

catchstop( )
{

prepare to stop;
signal (SIGTSTP, SIG_DFL) ;
kill (getpid ( ) , SIGTSTP) ;
signal (SIGTSTP, catchstop) ;

This code causes an infinite loop in 4.4BSD. Why does it do so? How
should the code be rewritten?

*4.17 The process-priority calculations and accounting statistics are all based on
sampled data. Describe hardware support that would permit more accurate
statistics and priority calculations.

*4.18 What are the implications of adding a fixed-priority scheduling algorithm
to 4.4BSD?

*4.19 Why are signals a poor interprocess-communication facility?

**4.20 A kernel-stack-invalid trap occurs when an invalid value for the kernel-
mode stack pointer is detected by the hardware. Assume that this trap is
received on an interrupt stack in kernel mode. How might the system ter-
minate gracefully a process that receives such a trap while executing on the
kernel's run-time stack contained in the user structure?

**4.21 Describe a synchronization scheme that would work in a tightly coupled
multiprocessor hardware environment. Assume that the hardware supports
a test-and-set instruction.

**4.22 Describe alternatives to the test-and-set instruction that would allow you to
build a synchronization mechanism for a multiprocessor 4.4BSD system.



*4.23 A lightweight process is a thread of execution that operates within the con-
text of a normal 4.4BSD process. Multiple lightweight processes may exist
in a single 4.4BSD process and share memory, but each is able to do block-
ing operations, such as system calls. Describe how lightweight processes
might be implemented entirely in user mode.

References
Aral et al, 1989.

Z. Aral, J. Bloom, T. Doeppner, I. Gertner, A. Langerman, & G. Schaffer,
"Variable Weight Processes with Flexible Shared Resources," USENIX
Association Conference Proceedings, pp. 405-412, January 1989.

Ferrin & Langridge, 1980.
T. E. Ferrin & R. Langridge, "Interactive Computer Graphics with the
UNIX Time-Sharing System," Computer Graphics, vol. 13, pp. 320-331,
1980.

Joy, 1994.
W. N. Joy, "An Introduction to the C Shell," in 4.4BSD User's Supplemen-
tary Documents, pp. 4:1-46, O'Reilly & Associates, Inc., Sebastopol, CA,
1994.

Khannaetal, 1992.
S. Khanna, M. Sebree, & J. Zolnowsky, "Realtime Scheduling in SunOS
5.0," USENIX Association Conference Proceedings, pp. 375-390, January
1992.

Killian, 1984.
T. J. Killian, "Processes as Files," USENIX Association Conference Pro-
ceedings, pp. 203-207, June 1984.

Ritchie, 1988.
D. M. Ritchie, "Multi-Processor UNIX," private communication, April 25,
1988.

Sanderson et al, 1986.
T. Sanderson, S. Ho, N. Heijden, E. Jabs, & J. L. Green, "Near-Realtime
Data Transmission During the ICE-Comet Giacobini-Zinner Encounter,"
ESA Bulletin, vol. 45, no. 21, 1986.

Schimmel, 1994.
C. Schimmel, UNIX Systems for Modern Architectures, Symmetric Multi-
processing, and Caching for Kernel Programmers, Addison-Wesley, Read-
ing, MA, 1994.

CHAPTER 5

Memory Management

Terminology
A central component of any operating system is the memory-management system.
As the name implies, memory-management facilities are responsible for the man-
agement of memory resources available on a machine. These resources are typi-
cally layered in a hierarchical fashion, with memory-access times inversely related
to their proximity to the CPU (see Fig. 5.1). The primary memory system is main
memory, the next level of storage is secondary storage or backing storage. Main-
memory systems usually are constructed from random-access memories, whereas
secondary stores are placed on moving-head disk drives. In certain workstation
environments, the common two-level hierarchy is becoming a three-level

Figure 5.1 Hierarchical layering of memory.

117



hierarchy, with the addition of file-server machines connected to a workstation via
a local-area network [Gingell, Moran, & Shannon, 1987].

In a multiprogrammed environment, it is critical for the operating system to
share available memory resources effectively among the processes. The operation
of any memory-management policy is directly related to the memory required for
a process to execute. That is, if a process must reside entirely in main memory for
it to execute, then a memory-management system must be oriented toward allocat-
ing large units of memory. On the other hand, if a process can execute when it is
only partially resident in main memory, then memory-management policies are
likely to be substantially different. Memory-management facilities usually try to
optimize the number of runnable processes that are resident in main memory.
This goal must be considered with the goals of the process scheduler (Chapter 4),
so that conflicts that can adversely affect overall system performance are avoided.

Although the availability of secondary storage permits more processes to exist
than can be resident in main memory, it also requires additional algorithms that
can be complicated. Space management typically requires algorithms and policies
different from those used for main memory, and a policy must be devised for
deciding when to move processes between main memory and secondary storage.

Processes and Memory

Each process operates on a virtual machine that is defined by the architecture of
the underlying hardware on which it executes. We are interested in only those
machines that include the notion of a virtual address space. A virtual address
space is a range of memory locations that a process references independently of
the physical memory present in the system. In other words, the virtual address
space of a process is independent of the physical address space of the CPU. For a
machine to support virtual memory, we also require that the whole of a process's
virtual address space does not need to be resident in main memory for that process
to execute.

References to the virtual address space—virtual addresses—are translated by
hardware into references to physical memory. This operation, termed address
translation, permits programs to be loaded into memory at any location without
requiring position-dependent addresses in the program to be changed. Address
translation and virtual addressing are also important in efficient sharing of a CPU,
because position independence usually permits context switching to be done
quickly.

Most machines provide a contiguous virtual address space for processes.
Some machines, however, choose to partition visibly a process's virtual address
space into regions termed segments [Intel, 1984]; such segments usually must be
physically contiguous in main memory and must begin at fixed addresses. We
shall be concerned with only those systems that do not visibly segment their vir-
tual address space. This use of the word segment is not the same as its earlier use
in Section 3.5, when we were describing 4.4BSD process segments, such as text
and data segments.

When multiple processes are coresident in main memory, we must protect the
physical memory associated with each process's virtual address space to ensure
that one process cannot alter the contents of another process's virtual address
space. This protection is implemented in hardware and is usually tightly coupled
with the implementation of address translation. Consequently, the two operations
usually are defined and implemented together as hardware termed the memory-
management unit.

Virtual memory can be implemented in many ways, some of which are soft-
ware based, such as overlays. Most effective virtual-memory schemes are, how-
ever, hardware based. In these schemes, the virtual address space is divided into
fixed-sized units, termed pages, as shown in Fig. 5.2. Virtual-memory references
are resolved by the address-translation unit to a page in main memory and an off-
set within that page. Hardware protection is applied by the memory-management
unit on a page-by-page basis.

Some systems provide a two-tiered virtual-memory system in which pages are
grouped into segments [Organick, 1975]. In these systems, protection is usually at
the segment level. In the remainder of this chapter, we shall be concerned with
only those virtual-memory systems that are page based.

Paging
Address translation provides the implementation of virtual memory by decoupling
the virtual address space of a process from the physical address space of the CPU.
Each page of virtual memory is marked as resident or nonresident in main mem-
ory. If a process references a location in virtual memory that is not resident, a
hardware trap termed a page fault is generated. The servicing of page faults, or
paging, permits processes to execute even if they are only partially resident in
main memory.

Figure 5.2 Paged virtual-memory scheme. Key: MMU—memory-management unit.

virtual
address
space

physical
address
space



Coffman and Denning [1973] characterize paging systems by three important
policies:

1. When the system loads pages into memory—the fetch policy

2. Where the system places pages in memory—the placement policy

3. How the system selects pages to be removed from main memory when pages
are unavailable for a placement request—the replacement policy

In normal circumstances, all pages of main memory are equally good, and the
placement policy has no effect on the performance of a paging system. Thus, a
paging system's behavior is dependent on only the fetch policy and the replace-
ment policy. Under a pure demand-paging system, a demand-fetch policy is used,
in which only the missing page is fetched, and replacements occur only when
main memory is full. Consequently, the performance of a pure demand-paging
system depends on only the system's replacement policy. In practice, paging sys-
tems do not implement a pure demand-paging algorithm. Instead, the fetch policy
often is altered to do prepaging—fetching pages of memory other than the one
that caused the page fault—and the replacement policy is invoked before main
memory is full.

Replacement Algorithms

The replacement policy is the most critical aspect of any paging system. There is
a wide range of algorithms from which we can select in designing a replacement
strategy for a paging system. Much research has been carried out in evaluating the
performance of different page-replacement algorithms [Belady, 1966; King, 1971;
Marshall, 1979].

A process's paging behavior for a given input is described in terms of the
pages referenced over the time of the process's execution. This sequence of
pages, termed a reference string, represents the behavior of the process at discrete
times during the process's lifetime. Corresponding to the sampled references that
constitute a process's reference string are real-time values that reflect whether or
not the associated references resulted in a page fault. A useful measure of a pro-
cess's behavior is the fault rate, which is the number of page faults encountered
during processing of a reference string, normalized by the length of the reference
string.

Page-replacement algorithms typically are evaluated in terms of their effec-
tiveness on reference strings that have been collected from execution of real pro-
grams. Formal analysis can also be used, although it is difficult to perform unless
many restrictions are applied to the execution environment. The most common
metric used in measuring the effectiveness of a page-replacement algorithm is the
fault rate.

Page-replacement algorithms are defined in terms of the criteria that they use
for selecting pages to be reclaimed. For example, the optimal replacement policy

[Denning, 1970] states that the "best" choice of a page to replace is the one with
the longest expected time until its next reference. Clearly, this policy is not appli-
cable to dynamic systems, as it requires a priori knowledge of the paging charac-
teristics of a process. The policy is useful for evaluation purposes, however, as it
provides a yardstick for comparing the performance of other page-replacement
algorithms.

Practical page-replacement algorithms require a certain amount of state infor-
mation that the system uses in selecting replacement pages. This state typically
includes the reference pattern of a process, sampled at discrete time intervals. On
some systems, this information can be expensive to collect [Babaoglu & Joy,
1981]. As a result, the "best" page-replacement algorithm may not be the most
efficient.

Working-Set Model
The working-set model assumes that processes exhibit a slowly changing locality
of reference. For a period of time, a process operates in a set of subroutines or
loops, causing all its memory references to refer to a fixed subset of its address
space, termed the working set. The process periodically changes its working set,
abandoning certain areas of memory and beginning to access new ones. After a
period of transition, the process defines a new set of pages as its working set. In
general, if the system can provide the process with enough pages to hold that pro-
cess's working set, the process will experience a low page-fault rate. If the system
cannot provide the process with enough pages for the working set, the process will
run slowly and will have a high page-fault rate.

Precise calculation of the working set of a process is impossible without a pri-
ori knowledge of that process's memory-reference pattern. However, the working
set can be approximated by various means. One method of approximation is to
track the number of pages held by a process and that process's page-fault rate. If
the page-fault rate increases above a high watermark, the working set is assumed
to have increased, and the number of pages held by the process is allowed to grow.
Conversely, if the page-fault rate drops below a low watermark, the working set is
assumed to have decreased, and the number of pages held by the process is
reduced.

Swapping
Swapping is the term used to describe a memory-management policy in which
entire processes are moved to and from secondary storage when main memory is
in short supply. Swap-based memory-management systems usually are less com-
plicated than are demand-paged systems, since there is less bookkeeping to do.
However, pure swapping systems are typically less effective than are paging sys-
tems, since the degree of multiprogramming is lowered by the requirement that
processes be fully resident to execute. Swapping is sometimes combined with
paging in a two-tiered scheme, whereby paging satisfies memory demands until a
severe memory shortfall requires drastic action, in which case swapping is used.



In this chapter, a portion of secondary storage that is used for paging or swap-
ping is termed a swap area or swap space. The hardware devices on which these
areas reside are termed swap devices.

Advantages of Virtual Memory

There are several advantages to the use of virtual memory on computers capable
of supporting this facility properly. Virtual memory allows large programs to be
run on machines with main-memory configurations that are smaller than the pro-
gram size. On machines with a moderate amount of memory, it allows more pro-
grams to be resident in main memory to compete for CPU time, as the programs
do not need to be completely resident. When programs use sections of their pro-
gram or data space for some time, leaving other sections unused, the unused sec-
tions do not need to be present. Also, the use of virtual memory allows programs
to start up faster, as they generally require only a small section to be loaded before
they begin processing arguments and determining what actions to take. Other
parts of a program may not be needed at all during individual runs. As a program
runs, additional sections of its program and data spaces are paged in on demand
(demand paging). Finally, there are many algorithms that are more easily pro-
grammed by sparse use of a large address space than by careful packing of data
structures into a small area. Such techniques are too expensive for use without
virtual memory, but may run much faster when that facility is available, without
using an inordinate amount of physical memory.

On the other hand, the use of virtual memory can degrade performance. It is
more efficient to load a program all at one time than to load it entirely in small
sections on demand. There is a finite cost for each operation, including saving and
restoring state and determining which page must be loaded. So, some systems use
demand paging for only those programs that are larger than some minimum size.

Hardware Requirements for Virtual Memory
Nearly all versions of UNIX have required some form of memory-management
hardware to support transparent multiprogramming. To protect processes from
modification by other processes, the memory-management hardware must prevent
programs from changing their own address mapping. The 4.4BSD kernel runs in a
privileged mode (kernel mode or system mode) in which memory mapping can be
controlled, whereas processes run in an unprivileged mode (user mode). There are
several additional architectural requirements for support of virtual memory. The
CPU must distinguish between resident and nonresident portions of the address
space, must suspend programs when they refer to nonresident addresses, and must
resume programs' operation once the operating system has placed the required
section in memory. Because the CPU may discover missing data at various times
during the execution of an instruction, it must provide a mechanism to save the
machine state, so that the instruction can be continued or restarted later. The CPU
may implement restarting by saving enough state when an instruction begins that
the state can be restored when a fault is discovered. Alternatively, instructions

Section Overview 01 me

could delay any modifications or side effects until after any faults would be
discovered, so that the instruction execution does not need to back up before
restarting. On some computers, instruction backup requires the assistance of the
operating system.

Most machines designed to support demand-paged virtual memory include
hardware support for the collection of information on program references to mem-
ory. When the system selects a page for replacement, it must save the contents of
that page if they have been modified since the page was brought into memory.
The hardware usually maintains a per-page flag showing whether the page has
been modified. Many machines also include a flag recording any access to a page
for use by the replacement algorithm.

5.2 Overview of the 4.4BSD Virtual-Memory System

The 4.4BSD virtual-memory system differs completely from the system that was
used in 4.3BSD and predecessors. The implementation is based on the Mach 2.0
virtual-memory system [Tevanian, 1987], with updates from Mach 2.5 and Mach
3.0. The Mach virtual-memory system was adopted because it features efficient
support for sharing and a clean separation of machine-independent and machine-
dependent features, as well as (currently unused) multiprocessor support. None of
the original Mach system-call interface remains. It has been replaced with the
interface first proposed for 4.2BSD that has been widely adopted by the UNIX
industry; the 4.4BSD interface is described in Section 5.5.

The virtual-memory system implements protected address spaces into which
can be mapped data sources (objects) such as files or private, anonymous pieces of
swap space. Physical memory is used as a cache of recently used pages from
these objects, and is managed by a global page-replacement algorithm much like
thatof4.3BSD.

The virtual address space of most architectures is divided into two parts. Typi-
cally, the top 30 to 100 Mbyte of the address space is reserved for use by the ker-
nel. The remaining address space is a available for use by processes. A traditional
UNIX layout is shown in Fig. 5.3 (on page 124). Here, the kernel and its associated
data structures reside at the top of the address space. The initial text and data areas
start at or near the beginning of memory. Typically, the first 4 or 8 Kbyte of mem-
ory are kept off limits to the process. The reason for this restriction is to ease pro-
gram debugging; indirecting through a null pointer will cause an invalid address
fault, instead of reading or writing the program text. Memory allocations made by
the running process using the malloc() library routine (or the sbrk system call) are
done on the heap that starts immediately following the data area and grows to
higher addresses. The argument vector and environment vectors are at the top of
the user portion of the address space. The user's stack starts just below these vec-
tors and grows to lower addresses. Subject to only administrative limits, the stack
and heap can each grow until they meet. At that point, a process running on a
32-bit machine will be using nearly 4 Gbyte of address space.



malloc()'ed memory
interrupt stack

data
text

argv, envp
user stack

heap
data
text

kernel

user process

Figure 5.3 Layout of virtual address space.

In 4.4BSD and other modern UNIX systems that support the mmap system
call, address-space usage is less structured. Shared library implementations may
place text or data arbitrarily, rendering the notion of predefined regions obsolete.
For compatibility, 4.4BSD still supports the sbrk call that malloc() uses to provide
a contiguous heap region, and the kernel has a designated stack region where adja-
cent allocations are performed automatically.

At any time, the currently executing process is mapped into the virtual
address space. When the system decides to context switch to another process, it
must save the information about the current-process address mapping, then load
the address mapping for the new process to be run. The details of this address-
map switching are architecture dependent. Some architectures need to change
only a few memory-mapping registers that point to the base, and to give the length
of memory-resident page tables. Other architectures store the page-table descrip-
tors in special high-speed static RAM. Switching these maps may require dump-
ing and reloading hundreds of map entries.

Both the kernel and user processes use the same basic data structures for the
management of their virtual memory. The data structures used to manage virtual
memory are as follows:

vmspace Structure that encompasses both the machine-dependent and
machine-independent structures describing a process's address
space

vm_map Highest-level data structure that describes the machine-inde-
pendent virtual address space

vm_map_entry Structure that describes a virtually contiguous range of address
space that shares protection and inheritance attributes

object Structure that describes a source of data for a range of addresses

shadow object Special object that represents modified copy of original data

vm_page The lowest-level data structure that represents the physical mem-
ory being used by the virtual-memory system

In the remainder of this section, we shall describe briefly how all these data struc-
tures fit together. The remainder of this chapter will describe what the details of
the structures are and how the structures are used.

Figure 5.4 shows a typical process address space and associated data struc-
tures. The vmspace structure encapsulates the virtual-memory state of a particular
process, including the machine-dependent and machine-independent data struc-
tures, as well as statistics. The machine-dependent vm_pmap structure is opaque
to all but the lowest level of the system, and contains all information necessary to
manage the memory-management hardware. This pmap layer is the subject of
Section 5.13 and is ignored for the remainder of the current discussion. The
machine-independent data structures include the address space that is represented
by a vm_map structure. The vm_map contains a linked list of vm_map_entry
structures, hints for speeding up lookups during memory allocation and page-fault
handling, and a pointer to the associated machine-dependent vm_pmap structure
contained in the vmspace. A vm_map_entry structure describes a virtually con-
tiguous range of address space that has the same protection and inheritance
attributes. Every vm_map_entry points to a chain of vm_object structures that
describes sources of data (objects) that are mapped at the indicated address range.
At the tail of the chain is the original mapped data object, usually representing a
persistent data source, such as a file. Interposed between that object and the map
entry are one or more transient shadow objects that represent modified copies of
the original data. These shadow objects are discussed in detail in Section 5.5.

Figure 5.4 Data structures that describe a process address space.

vm__pmap

statistics

vmspace

— vm map entry

vm_mapp_ entry

vm_map_entry

vm_map entry

— *>

shadow
object

vm_page

— ̂

shadow
object

vm_page

— ̂

vnode / object

vnode / object

vnode / object

— ̂ vm_page

vm_page

vm_page

vm_page

vm_page



Each vm_object structure contains a linked list of vm_page structures repre-
senting the physical-memory cache of the object, as well as a pointer to the
pager_struct structure that contains information on how to page in or page out
data from its backing store. There is a vm_page structure allocated for every page
of physical memory managed by the virtual-memory system, where a page here
may be a collection of multiple, contiguous hardware pages that will be treated by
the machine-dependent layer as though they were a single unit. The structure also
contains the status of the page (e.g., modified or referenced) and links for various
paging queues.

All structures contain the necessary interlocks for multithreading in a multi-
processor environment. The locking is fine grained, with at least one lock per
instance of a data structure. Many of the structures contain multiple locks to pro-
tect individual fields.

5.3 Kernel Memory Management

There are two ways in which the kernel's memory can be organized. The most
common is for the kernel to be permanently mapped into the high part of every
process address space. In this model, switching from one process to another does
not affect the kernel portion of the address space. The alternative organization is
to switch between having the kernel occupy the whole address space and mapping
the currently running process into the address space. Having the kernel perma-
nently mapped does reduce the amount of address space available to a large pro-
cess (and the kernel), but it also reduces the cost of data copying. Many system
calls require data to be transferred between the currently running user process and
the kernel. With the kernel permanently mapped, the data can be copied via the
efficient block-copy instructions. If the kernel is alternately mapped with the pro-
cess, data copying requires the use of special instructions that copy to and from
the previously mapped address space. These instructions are usually a factor of 2
slower than the standard block-copy instructions. Since up to one-third of the ker-
nel time is spent in copying between the kernel and user processes, slowing this
operation by a factor of 2 significantly slows system throughput.

Although the kernel is able freely to read and write the address space of the
user process, the converse is not true. The kernel's range of virtual address space
is marked inaccessible to all user processes. The reason for restricting writing is
so that user processes cannot tamper with the kernel's data structures. The reason
for restricting reading is so that user processes cannot watch sensitive kernel data
structures, such as the terminal input queues, that include such things as users typ-
ing their passwords.

Usually, the hardware dictates which organization can be used. All the archi-
tectures supported by 4.4BSD map the kernel into the top of the address space.

Kernel Maps and Submaps
When the system boots, the first task that the kernel must do is to set up data struc-
tures to describe and manage its address space. Like any process, the kernel has a
vm_map with a corresponding set of vm_map_entry structures that describe the
use of a range of addresses. Submaps are a special kernel-only construct used to
isolate and constrain address-space allocation for kernel subsystems. One use is
in subsystems that require contiguous pieces of the kernel address space. So that
intermixing of unrelated allocations within an address range is avoided, that range
is covered by a submap, and only the appropriate subsystem can allocate from that
map. For example, several network buffer (mbuf) manipulation macros use
address arithmetic to generate unique indices, thus requiring the network buffer
region to be contiguous. Parts of the kernel may also require addresses with par-
ticular alignments or even specific addresses. Both can be ensured by use of
submaps. Finally, submaps can be used to limit statically the amount of address
space and hence the physical memory consumed by a subsystem.

A typical layout of the kernel map is shown in Fig. 5.5. The kernel's address
space is described by the vm_map structure shown in the upper-left corner of the

Figure 5.5 Kernel address-space maps.
vm_map vm_map_entry



figure. Pieces of the address space are described by the vm_map_entry structures
that are linked in ascending address order from K0 to K8 on the vm_map struc-
ture. Here, the kernel text, initialized data, uninitialized data, and initially allo-
cated data structures reside in the range K0 to Kl and are represented by the first
vm_map_entry. The next vm_map_entry is associated with the address range from
K2 to K6; this piece of the kernel address space is being managed via a submap
headed by the referenced vm_map structure. This submap currently has two parts
of its address space used: the address range K2 to K3, and the address range K4 to
K5. These two submaps represent the kernel malloc arena and the network buffer
arena, respectively. The final part of the kernel address space is being managed in
the kernel's main map; the address range K7 to K8 representing the kernel I/O
staging area.

Kernel Address-Space Allocation

The virtual-memory system implements a set of primitive functions for allocating
and freeing the page-aligned, page-rounded virtual-memory ranges that the kernel
uses. These ranges may be allocated either from the main kernel-address map or
from a submap. The allocation routines take a map and size as parameters, but do
not take an address. Thus, specific addresses within a map cannot be selected.
There are different allocation routines for obtaining nonpageable and pageable
memory ranges.

A nonpageable, or wired, range has physical memory assigned at the time of
the call, and this memory is not subject to replacement by the pageout daemon.
Wired pages must never cause a page fault that might result in a blocking opera-
tion. Wired memory is allocated with kmem_alloc() and kmem_malloc().
Kmem_alloc() returns zero-filled memory and may block if insufficient physical
memory is available to honor the request. It will return a failure only if no address
space is available in the indicated map. Kmem_malloc() is a variant of
kmem_alloc() used by only the general allocator, malloc(), described in the next
subsection. This routine has a nonblocking option that protects callers against
inadvertently blocking on kernel data structures; it will fail if insufficient physical
memory is available to fill the requested range. This nonblocking option allocates
memory at interrupt time and during other critical sections of code. In general,
wired memory should be allocated via the general-purpose kernel allocator.
Kmem_alloc() should be used only to allocate memory from specific kernel
submaps.

Pageable kernel virtual memory can be allocated with kmem_alloc_pageable()
and kmem_alloc_wait(). A pageable range has physical memory allocated on
demand, and this memory can be written out to backing store by the pageout dae-
mon as part of the latter's normal replacement policy. Kmem_alloc_pageable()
will return an error if insufficient address space is available for the desired alloca-
tion; kmem_alloc_wait() will block until space is available. Currently, pageable
kernel memory is used only for temporary storage of exec arguments and for the
kernel stacks of processes that have been swapped out.

Kmem_free() deallocates kernel wired memory and pageable memory allo-
cated with kmem_alloc_pageable(). Kmem_free_wakeup() should be used with
kmem_alloc_wait() because it wakes up any processes waiting for address space
in the specified map.

Kernel Malloc
The kernel also provides a generalized nonpageable memory-allocation and free-
ing mechanism that can handle requests with arbitrary alignment or size, as well
as allocate memory at interrupt time. Hence, it is the preferred way to allocate
kernel memory. This mechanism has an interface similar to that of the well-
known memory allocator provided for applications programmers through the C
library routines malloc() and free(). Like the C library interface, the allocation
routine takes a parameter specifying the size of memory that is needed. The range
of sizes for memory requests are not constrained. The free routine takes a pointer
to the storage being freed, but does not require the size of the piece of memory
being freed.

Often, the kernel needs a memory allocation for the duration of a single sys-
tem call. In a user process, such short-term memory would be allocated on the
run-time stack. Because the kernel has a limited run-time stack, it is not feasible
to allocate even moderate blocks of memory on it. Consequently, such memory
must be allocated dynamically. For example, when the system must translate a
pathname, it must allocate a 1-Kbyte buffer to hold the name. Other blocks of
memory must be more persistent than a single system call, and have to be allo-
cated from dynamic memory. Examples include protocol control blocks that
remain throughout the duration of a network connection.

The design specification for a kernel memory allocator is similar to, but not
identical to, the design criteria for a user-level memory allocator. One criterion
for a memory allocator is that the latter make good use of the physical memory.
Use of memory is measured by the amount of memory needed to hold a set of
allocations at any point in time. Percentage utilization is expressed as

requested
utilization = —————

required.
Here, requested is the sum of the memory that has been requested and not yet
freed; required is the amount of memory that has been allocated for the pool from
which the requests are filled. An allocator requires more memory than requested
because of fragmentation and a need to have a ready supply of free memory for
future requests. A perfect memory allocator would have a utilization of 100 per-
cent. In practice, a 50-percent utilization is considered good [Korn & Vo, 1985].

Good memory utilization in the kernel is more important than in user pro-
cesses. Because user processes run in virtual memory, unused parts of their
address space can be paged out. Thus, pages in the process address space that are
part of the required pool that are not being requested do not need to tie up physical
memory. Since the kernel malloc arena is not paged, all pages in the required pool
are held by the kernel and cannot be used for other purposes. To keep the kernel-



utilization percentage as high as possible, the kernel should release unused
memory in the required pool, rather than hold it, as is typically done with user
processes. Because the kernel can manipulate its own page maps directly, freeing
unused memory is fast; a user process must do a system call to free memory.

The most important criterion for a kernel memory allocator is that the latter
be fast. A slow memory allocator will degrade the system performance because
memory allocation is done frequently. Speed of allocation is more critical when
executing in the kernel than it is in user code because the kernel must allocate
many data structures that user processes can allocate cheaply on their run-time
stack. In addition, the kernel represents the platform on which all user processes
run, and, if it is slow, it will degrade the performance of every process that is run-
ning.

Another problem with a slow memory allocator is that programmers of fre-
quently used kernel interfaces will think that they cannot afford to use the memory
allocator as their primary one. Instead, they will build their own memory allocator
on top of the original by maintaining their own pool of memory blocks. Multiple
allocators reduce the efficiency with which memory is used. The kernel ends up
with many different free lists of memory, instead of a single free list from which
all allocations can be drawn. For example, consider the case of two subsystems
that need memory. If they have their own free lists, the amount of memory tied up
in the two lists will be the sum of the greatest amount of memory that each of the
two subsystems has ever used. If they share a free list, the amount of memory tied
up in the free list may be as low as the greatest amount of memory that either sub-
system used. As the number of subsystems grows, the savings from having a sin-
gle free list grow.

The kernel memory allocator uses a hybrid strategy. Small allocations are
done using a power-of-2 list strategy; the typical allocation requires only a compu-
tation of the list to use and the removal of an element if that element is available,
so it is fast. Only if the request cannot be fulfilled from a list is a call made to the
allocator itself. To ensure that the allocator is always called for large requests, the
lists corresponding to large allocations are always empty.

Freeing a small block also is fast. The kernel computes the list on which to
place the block, and puts the block there. The free routine is called only if the
block of memory is considered to be a large allocation.

Because of the inefficiency of power-of-2 allocation strategies for large allo-
cations, the allocation method for large blocks is based on allocating pieces of
memory in multiples of pages. The algorithm switches to the slower but more
memory-efficient strategy for allocation sizes larger than 2 x pagesize. This value
is chosen because the power-of-2 algorithm yields sizes of 1, 2, 4, 8, ..., n pages,
whereas the large block algorithm that allocates in multiples of pages yields sizes
of 1, 2, 3, 4, ..., n pages. Thus, for allocations of sizes between one and two
pages, both algorithms use two pages; a difference emerges beginning with alloca-
tions of sizes between two and three pages, where the power-of-2 algorithm will
use four pages, whereas the large block algorithm will use three pages. Thus, the
threshold between the large and small allocators is set to two pages.

Large allocations are first rounded up to be a multiple of the page size. The
allocator then uses a "first-fit" algorithm to find space in the kernel address arena
set aside for dynamic allocations. On a machine with a 4-Kbyte page size, a
request for a 20-Kbyte piece of memory will use exactly five pages of memory,
rather than the eight pages used with the power-of-2 allocation strategy. When a
large piece of memory is freed, the memory pages are returned to the free-memory
pool and the vm_map_entry structure is deleted from the submap, effectively coa-
lescing the freed piece with any adjacent free space.

Another technique to improve both the efficiency of memory utilization and
the speed of allocation is to cluster same-sized small allocations on a page. When
a list for a power-of-2 allocation is empty, a new page is allocated and is divided
into pieces of the needed size. This strategy speeds future allocations because sev-
eral pieces of memory become available as a result of the call into the allocator.

Because the size is not specified when a block of memory is freed, the alloca-
tor must keep track of the sizes of the pieces that it has handed out. Many alloca-
tors increase the allocation request by a few bytes to create space to store the size
of the block in a header just before the allocation. However, this strategy doubles
the memory requirement for allocations that request a power-of-2-sized block.
Therefore, instead of storing the size of each piece of memory with the piece
itself, the kernel associates the size information with the memory page. Figure 5.6
shows how the kernel determines the size of a piece of memory that is being freed,
by calculating the page in which it resides and looking up the size associated with
that page. Locating the allocation size outside of the allocated block improved
utilization far more than expected. The reason is that many allocations in the ker-
nel are for blocks of memory whose size is exactly a power of 2. These requests
would be nearly doubled in size if the more typical strategy were used. Now they
can be accommodated with no wasted memory.

The allocator can be called both from the top half of the kernel that is willing
to wait for memory to become available, and from the interrupt routines in the bot-
tom half of the kernel that cannot wait for memory to become available. Clients
show their willingness (and ability) to wait with a flag to the allocation routine.
For clients that are willing to wait, the allocator guarantees that their request will

Figure 5.6 Calculation of allocation size. Key: free—unused page; cont—continuation of
previous page.

char *kmembase

kmemsizes( ] = { 4096,1024, 2048, 12288, cont, cont, 512, free, cont, cont,

usage: memsize(char *addr){
return(kmemsizes[(addr - kmembase) / PAGESIZE]);



succeed. Thus, these clients do not need to check the return value from the
allocator. If memory is unavailable and the client cannot wait, the allocator returns
a null pointer. These clients must be prepared to cope with this (hopefully infre-
quent) condition (usually by giving up and hoping to succeed later). The details of
the kernel memory allocator are further described in [McKusick & Karels, 1988].

5.4 Per-Process Resources

As we have already seen, a process requires a process entry and a kernel stack.
The next major resource that must be allocated is its virtual memory. The initial
virtual-memory requirements are defined by the header in the process's
executable. These requirements include the space needed for the program text, the
initialized data, the uninitialized data, and the run-time stack. During the initial
startup of the program, the kernel will build the data structures necessary to
describe these four areas. Most programs need to allocate additional memory.
The kernel typically provides this additional memory by expanding the uninitial-
ized data area.

Most 4.4BSD systems also provide shared libraries. The header for the
executable will describe the libraries that it needs (usually the C library, and possi-
bly others). The kernel is not responsible for locating and mapping these libraries
during the initial execution of the program. Finding, mapping, and creating the
dynamic linkages to these libraries is handled by the user-level startup code
prepended to the file being executed. This startup code usually runs before control
is passed to the main entry point of the program [Gingell et al, 1987].

4.4BSD Process Virtual-Address Space
The initial layout of the address space for a process is shown in Fig. 5.7. As dis-
cussed in Section 5.2, the address space for a process is described by that pro-
cess's vmspace structure. The contents of the address space are defined by a list of
vm_map_entry structures, each structure describing a region of virtual address
space that resides between a start and an end address. A region describes a range
of memory that is being treated in the same way. For example, the text of a pro-
gram is a region that is read-only and is demand paged from the file on disk that
contains it. Thus, the vm_map_entry also contains the protection mode to be
applied to the region that it describes. Each vm_map_entry structure also has a
pointer to the object that provides the initial data for the region. It also stores the
modified contents either transiently when memory is being reclaimed or more per-
manently when the region is no longer needed. Finally, each vm_map_entry struc-
ture has an offset that describes where within the object the mapping begins.

The example shown in Fig. 5.7 represents a process just after it has started
execution. The first two map entries both point to the same object; here, that
object is the executable. The executable consists of two parts: the text of the pro-
gram that resides at the beginning of the file and the initialized data area that

vmspace vm_map_en try

Figure 5.7 Layout of an address space.

follows at the end of the text. Thus, the first vm_map_entry describes a read-only
region that maps the text of the program. The second vm_map_entry describes the
copy-on-write region that maps the initialized data of the program that follows the
program text in the file (copy-on-write is described in Section 5.6). The offset
field in the entry reflects this different starting location. The third and fourth
vm_map_entry structures describe the uninitialized data and stack areas, respec-
tively. Both of these areas are represented by anonymous objects. An anonymous
object provides a zero-filled page on first use, and arranges to store modified pages
in the swap area if memory becomes tight. Anonymous objects are described in
more detail later in this section.



Page-Fault Dispatch

When a process attempts to access a piece of its address space that is not currently
resident, a page fault occurs. The page-fault handler in the kernel is presented
with the virtual address that caused the fault. The fault is handled with the follow-
ing four steps:

1. Find the vmspace structure for the faulting process; from that structure, find
the head of the vm_map_entry list.

2. Traverse the vm_map_entry list starting at the entry indicated by the map hint;
for each entry, check whether the faulting address falls within its start and end
address range. If the kernel reaches the end of the list without finding any
valid region, the faulting address is not within any valid part of the address
space for the process, so send the process a segment fault signal.

3. Having found a vm_map_entry that contains the faulting address, convert that
address to an offset within the underlying object. Calculate the offset within
the object as

object_offset = fault_address
- vm_map_entry—>start_address
+ vm_map_entry—»object_of f set

Subtract off the start address to give the offset into the region mapped by the
vm_map_entry. Add in the object offset to give the absolute offset of the page
within the object.

4. Present the absolute object offset to the underlying object, which allocates a
vm_page structure and uses its pager to fill the page. The object then returns a
pointer to the vm_page structure, which is mapped into the faulting location in
the process address space.

Once the appropriate page has been mapped into the faulting location, the page-
fault handler returns and reexecutes the faulting instruction.

Mapping to Objects

Objects are used to hold information about either a file or about an area of anony-
mous memory. Whether a file is mapped by a single process in the system or by
many processes in the system, it will always be represented by a single object.
Thus, the object is responsible for maintaining all the state about those pages of a
file that are resident. All references to that file will be described by
vm_map_entry structures that reference the same object. An object never stores
the same page of a file in more than one memory page, so that all mappings will
get a consistent view of the file.

An object stores the following information:

• A list of the pages for that object that are currently resident in main memory; a
page may be mapped into multiple address spaces, but it is always claimed by
exactly one object

• A count of the number of vm_map_entry structures or other objects that refer-
ence the object

• The size of the file or anonymous area described by the object

• The number of memory-resident pages held by the object

• Pointers to copy or shadow objects (described in Section 5.5)

• A pointer to the pager for the object; the pager is responsible for providing the
data to fill a page, and for providing a place to store the page when it has been
modified (pagers are covered in Section 5.10)

There are four types of objects in the system:

• Named objects represent files; they may also represent hardware devices that are
able to provide mapped memory such as frame buffers.

• Anonymous objects represent areas of memory that are zero filled on first use;
they are abandoned when they are no longer needed.

• Shadow objects hold private copies of pages that have been modified; they are
abandoned when they are no longer referenced.

• Copy objects hold old pages from files that have been modified after they were
privately mapped; they are abandoned when the private mapping is abandoned.

These objects are often referred to as "internal" objects in the source code. The
type of an object is defined by the pager that that object uses to fulfill page-fault
requests.

A named object uses either (an instance of) the device pager, if it maps a
hardware device, or the vnode pager, if it is backed by a file in the filesystem. A
pager services a page fault by returning the appropriate address for the device
being mapped. Since the device memory is separate from the main memory on
the machine, it will never be selected by the pageout daemon. Thus, the device
pager never has to handle a pageout request.

The vnode pager provides an interface to objects that represent files in the
filesystem. A vnode-pager instance keeps a reference to a vnode that represents
the file being mapped by the object. A vnode pager services a pagein request by
doing a read on the vnode; it services a pageout request by doing a write to the
vnode. Thus, the file itself stores the modified pages. In cases where it is not
appropriate to modify the file directly, such as an executable that does not want to
modify its initialized data pages, the kernel must interpose an anonymous shadow
object between the vm_map_entry and the object representing the file.



Anonymous objects use the swap pager. An anonymous object services
pagein requests by getting a page of memory from the free list, and zeroing that
page. When a pageout request is made for a page for the first time, the swap pager
is responsible for finding an unused page in the swap area, writing the contents of
the page to that space, and recording where that page is stored. If a pagein request
comes for a page that had been previously paged out, the swap pager is responsi-
ble for finding where it stored that page and reading back the contents into a free
page in memory. A later pageout request for that page will cause the page to be
written out to the previously allocated location.

Shadow objects and copy objects also use the swap pager. They work just
like anonymous objects, except that the swap pager provides their initial pages by
copying existing pages in response to copy-on-write faults, instead of by zero-fill-
ing pages.

Further details on the pagers are given in Section 5.10.

Objects

Each virtual-memory object has a pager associated with it; objects that map files
have a vnode pager associated with them. Each instance of a vnode pager is asso-
ciated with a particular vnode. Objects are stored on a hash chain and are identi-
fied by their associated pager. When a fault occurs for a file that is mapped into
memory, the kernel checks its vnode pager cache to see whether a pager already
exists for that file. If a pager exists, the kernel then looks to see whether there is
an object still associated with that pager. If the object exists, it can be checked to
see whether the faulted page is resident. If the page is resident, it can be used. If
the page is not resident, a new page is allocated, and the pager is requested to fill
the new page.

Caching in the virtual-memory system is identified by an object that is associ-
ated with a file or region that it represents. Each object contains pages that are the
cached contents of its associated file or region. Objects that represent anonymous
memory are reclaimed as soon as the reference count drops to zero. However,
objects that refer to files are persistent. When their reference count drops to zero,
the object is stored on a least-recently used (LRU) list known as the object cache.
The object remains on its hash chain, so that future uses of the associated file will
cause the existing object to be found. The pages associated with the object are
moved to the inactive list, which is described in Section 5.12. However, their
identity is retained, so that, if the object is reactivated and a page fault occurs
before the associated page is freed, that page can be reattached, rather than being
reread from disk.

This cache is similar to the text cache found in earlier versions of BSD in that
it provides performance improvements for short-running but frequently executed
programs. Frequently executed programs include those to list the contents of
directories, to show system status, or to do the intermediate steps involved in com-
piling a program. For example, consider a typical application that is made up of

multiple source files. Each of several compiler steps must be run on each file in
turn. The first time that the compiler is run, the objects associated with its various
components are read in from the disk. For each file compiled thereafter, the previ-
ously created objects are found, alleviating the need to reload them from disk each
time.

Objects to Pages
When the system is first booted, the kernel looks through the physical memory on
the machine to find out how many pages are available. After the physical memory
that will be dedicated to the kernel itself has been deducted, all the remaining
pages of physical memory are described by vm__page structures. These vm_page
structures are all initially placed on the memory free list. As the system starts run-
ning and processes begin to execute, they generate page faults. Each page fault is
matched to the object that covers the faulting piece of address space. The first
time that a piece of an object is faulted, it must allocate a page from the free list,
and must initialize that page either by zero filling it or by reading its contents from
the filesystem. That page then becomes associated with the object. Thus, each
object has its current set of vm_page structures linked to it. A page can be associ-
ated with at most one object at a time. Although a file may be mapped into sev-
eral processes at once, all those mappings reference the same object. Having a
single object for each file ensures that all processes will reference the same physi-
cal pages. One anomaly is that the object offset in a vm_map_entry structure may
not be page aligned (the result of an mmap call with a non-page-aligned offset
parameter). Consequently, a vm_page may be filled and associated with the object
with a non-page-aligned tag that will not match another access to the same object
at the page-aligned boundary. Hence, if two processes map the same object with
offsets of 0 and 32, two vm_pages will be filled with largely the same data, and
that can lead to inconsistent views of the file.

If memory becomes scarce, the paging daemon will search for pages that have
not been used recently. Before these pages can be used by a new object, they must
be removed from all the processes that currently have them mapped, and any mod-
ified contents must be saved by the object that owns them. Once cleaned, the
pages can be removed from the object that owns them and can be placed on the
free list for reuse. The details of the paging system are described in Section 5.12.

Shared Memory

In Section 5.4, we explained how the address space of a process is organized.
This section shows the additional data structures needed to support shared address
space between processes. Traditionally, the address space of each process was
completely isolated from the address space of all other processes running on the
system. The only exception was read-only sharing of program text. All



interprocess communication was done through well-defined channels that passed
through the kernel: pipes, sockets, files, and special devices. The benefit of this
isolated approach is that, no matter how badly a process destroys its own address
space, it cannot affect the address space of any other process running on the sys-
tem. Each process can precisely control when data are sent or received; it can also
precisely identify the locations within its address space that are read or written.
The drawback of this approach is that all interprocess communication requires at
least two system calls: one from the sending process and one from the receiving
process. For high volumes of interprocess communication, especially when small
packets of data are being exchanged, the overhead of the system calls dominates
the communications cost.

Shared memory provides a way to reduce interprocess-communication costs
dramatically. Two or more processes that wish to communicate map the same
piece of read-write memory into their address space. Once all the processes have
mapped the memory into their address space, any changes to that piece of memory
are visible to all the other processes, without any intervention by the kernel. Thus,
interprocess communication can be achieved without any system-call overhead,
other than the cost of the initial mapping. The drawback to this approach is that, if
a process that has the memory mapped corrupts the data structures in that memory,
all the other processes mapping that memory also are corrupted. In addition, there
is the complexity faced by the application developer who must develop data struc-
tures to control access to the shared memory, and must cope with the race condi-
tions inherent in manipulating and controlling such data structures that are being
accessed concurrently.

Some variants of UNIX have a kernel-based semaphore mechanism to provide
the needed serialization of access to the shared memory. However, both getting
and setting such semaphores require system calls. The overhead of using such
semaphores is comparable to that of using the traditional interprocess-communica-
tion methods. Unfortunately, these semaphores have all the complexity of shared
memory, yet confer little of its speed advantage. The primary reason to introduce
the complexity of shared memory is for the commensurate speed gain. If this gain
is to be obtained, most of the data-structure locking needs to be done in the shared
memory segment itself. The kernel-based semaphores should be used for only
those rare cases where there is contention for a lock and one process must wait.
Consequently, modern interfaces, such as POSIX Pthreads, are designed such that
the semaphores can be located in the shared memory region. The common case of
setting or clearing an uncontested semaphore can be done by the user process,
without calling the kernel. There are two cases where a process must do a system
call. If a process tries to set an already-locked semaphore, it must call the kernel
to block until the semaphore is available. This system call has little effect on per-
formance because the lock is contested, so it is impossible to proceed and the ker-
nel has to be invoked to do a context switch anyway. If a process clears a
semaphore that is wanted by another process, it must call the kernel to awaken that
process. Since most locks are uncontested, the applications can run at full speed
without kernel intervention.

Mmap Model
When two processes wish to create an area of shared memory, they must have
some way to name the piece of memory that they wish to share, and they must be
able to describe its size and initial contents. The system interface describing an
area of shared memory accomplishes all these goals by using files as the basis for
describing a shared memory segment. A process creates a shared memory seg-
ment by using

caddr_t addr = mmap(
caddr_t addr,
size_t len,
int prot,
int flags,
int fd,

/* base address */
/* length of region */
/* protection of region */
/* mapping flags */
/* file to map */

off_t offset); /* offset to begin mapping */

to map the file referenced by descriptor fd starting at file offset offset into its
address space starting at addr and continuing for len bytes with access permission
prot. The flags parameter allows a process to specify whether it wants to make a
shared or private mapping. Changes made to a shared mapping are written back
to the file and are visible to other processes. Changes made to a private mapping
are not written back to the file and are not visible to other processes. Two pro-
cesses that wish to share a piece of memory request a shared mapping of the same
file into their address space. Thus, the existing and well-understood filesystem
name space is used to identify shared objects. The contents of the file are used as
the initial value of the memory segment. All changes made to the mapping are
reflected back into the contents of the file, so long-term state can be maintained in
the shared memory region, even across invocations of the sharing processes.

Some applications want to use shared memory purely as a short-term inter-
process-communication mechanism. They need an area of memory that is initially
zeroed and whose contents are abandoned when they are done using it. Such pro-
cesses neither want to pay the relatively high start-up cost associated with paging
in the contents of a file to initialize a shared memory segment, nor to pay the shut-
down costs of writing modified pages back to the file when they are done with the
memory. Although an alternative naming scheme was considered to provide a
rendezvous mechanism for such short-term shared memory, the designers ulti-
mately decided that all naming of memory objects should use the filesystem name
space. To provide an efficient mechanism for short-term shared memory, they cre-
ated a virtual-memory-resident filesystem for transient objects. The details of the
virtual-memory-resident filesystem are described in Section 8.4. Unless memory
is in high demand, files created in the virtual-memory-resident filesystem reside
entirely in memory. Thus, both the initial paging and later write-back costs are
eliminated. Typically, a virtual-memory-resident filesystem is mounted on /tmp.
Two processes wishing to create a transient area of shared memory create a file in
/tmp that they can then both map into their address space.



When a mapping is no longer needed, it can be removed using

munmap(caddr_t addr, size_t len);

The munmap system call removes any mappings that exist in the address space,
starting at addr and continuing for len bytes. There are no constraints between
previous mappings and a later munmap. The specified range may be a subset of a
previous mmap or it may encompass an area that contains many mmap'ed files.
When a process exits, the system does an implied munmap over its entire address
space.

During its initial mapping, a process can set the protections on a page to allow
reading, writing, and/or execution. The process can change these protections later
by using

mprotect(caddr_t addr, int len, int prot);

This feature can be used by debuggers when they are trying to track down a mem-
ory-corruption bug. By disabling writing on the page containing the data structure
that is being corrupted, the debugger can trap all writes to the page and verify that
they are correct before allowing them to occur.

Traditionally, programming for real-time systems has been done with spe-
cially written operating systems. In the interests of reducing the costs of real-time
applications and of using the skills of the large body of UNIX programmers, com-
panies developing real-time applications have expressed increased interest in using
UNIX-based systems for writing these applications. Two fundamental require-
ments of a real-time system are maximum guaranteed latencies and predictable
execution times. Predictable execution time is difficult to provide in a virtual-
memory-based system, since a page fault may occur at any point in the execution
of a program, resulting in a potentially large delay while the faulting page is
retrieved from the disk or network. To avoid paging delays, the system allows a
process to force its pages to be resident, and not paged out, by using

mlock(caddr_t addr, size_t len);

As long as the process limits its accesses to the locked area of its address space, it
can be sure that it will not be delayed by page faults. To prevent a single process
from acquiring all the physical memory on the machine to the detriment of all
other processes, the system imposes a resource limit to control the amount of
memory that may be locked. Typically, this limit is set to no more than one-third
of the physical memory, and it may be set to zero by a system administrator that
does not want random processes to be able to monopolize system resources.

When a process has finished with its time-critical use of an mlock'ed region, it
can release the pages using

munlock(caddr_t addr, size_t len);

After the munlock call, the pages in the specified address range are still accessible,
but they may be paged out if memory is needed and they are not accessed.

The architecture of some multiprocessing machines does not provide consis-
tency between a high-speed cache local to a CPU and the machine's main memory.
For these machines, it may be necessary to flush the cache to main memory before
the changes made in that memory are visible to processes running on other CPUs.
A process does this synchronization using

msync(caddr_t addr, int len);

For a region containing a mapped file, msync also writes back any modified pages
to the filesystem.

Shared Mapping
When multiple processes map the same file into their address space, the system
must ensure that all the processes view the same set of memory pages. As shown
in Section 5.4, each file that is being used actively by a client of the virtual-mem-
ory system is represented by an object. Each mapping that a process has to a
piece of a file is described by a vm_map_entry structure. An example of two pro-
cesses mapping the same file into their address space is shown in Fig. 5.8. When a
page fault occurs in one of these processes, the process's vm_map_entry refer-
ences the object to find the appropriate page. Since all mappings reference the
same object, the processes will all get references to the same set of physical mem-
ory, thus ensuring that changes made by one process will be visible in the address
spaces of the other processes as well.

A second organization arises when a process with a shared mapping does a
fork. Here, the kernel interposes a sharing map between the two processes and the
shared object, so that both processes' map entries reference this map, instead of
the object. A sharing map is identical in structure to an address map: It is a linked

Figure 5.8 Multiple mappings to a file.

proc A:
vm_map_entry

proc B:

vm_map_entry

file object



list of map entries. The intent is that a sharing map, referenced by all processes
inheriting a shared memory region, will be the focus of map-related operations
that should affect all the processes. Sharing maps are useful in the creation of
shadow objects for copy-on-write operations because they affect part or all of the
shared region. Here, all sharing processes should use the same shadow object, so
that all will see modifications made to the region. Sharing maps are an artifact of
the virtual-memory code's early Mach origin; they do not work well in the 4.4BSD
environment because they work for only that memory shared by inheritance.
Shared mappings established with mmap do not use them. Hence, even if a shar-
ing map exists for a shared region, it does not necessarily reflect all processes
involved. The only effect that sharing maps have in 4.4BSD is to extend across
forks the delayed creation of shadow and copy objects. This delay does not offer a
significant advantage, and the small advantage is outweighed by the added amount
and complexity of code necessary to handle sharing maps. For this reason, shar-
ing maps probably will be eliminated from systems derived from 4.4BSD, as they
were from later versions of Mach.

Private Mapping

A process may request a private mapping of a file. A private mapping has two
main effects:

1. Changes made to the memory mapping the file are not reflected back into the
mapped file.

2. Changes made to the memory mapping the file are not visible to other pro-
cesses mapping the file.

An example of the use of a private mapping would be during program debugging.
The debugger will request a private mapping of the program text so that, when it
sets a breakpoint, the modification is not written back into the executable stored
on the disk and is not visible to the other (presumably nondebugging) processes
executing the program.

The kernel uses shadow objects to prevent changes made by a process from
being reflected back to the underlying object. The use of a shadow object is
shown in Fig. 5.9. When the initial private mapping is requested, the file object is
mapped into the requesting-process address space, with copy-on-write semantics.
If the process attempts to write a page of the object, a page fault occurs and traps
into the kernel. The kernel makes a copy of the page to be modified and hangs it
from the shadow object. In this example, process A has modified page 0 of the
file object. The kernel has copied page 0 to the shadow object that is being used
to provide the private mapping for process A.

If free memory is limited, it would be better simply to move the modified
page from the file object to the shadow object. The move would reduce the imme-
diate demand on the free memory, because a new page would not have to be allo-
cated. The drawback to this optimization is that, if there is a later access to the file
object by some other process, the kernel will have to allocate a new page. The

proc A:
vm_map_entry shadow object file object

(mod by A)

Figure 5.9 Use of a shadow object for a private mapping.

kernel will also have to pay the cost of doing an I/O operation to reload the page
contents. In 4.4BSD, the virtual-memory system never moves the page rather than
copying it.

When a page fault for the private mapping occurs, the kernel traverses the list
of objects headed by the vm_map_entry, looking for the faulted page. The first
object in the chain that has the desired page is the one that is used. If the search
gets to the final object on the chain without finding the desired page, then the page
is requested from that final object. Thus, pages on a shadow object will be used in
preference to the same pages in the file object itself. The details of page-fault han-
dling are given in Section 5.11.

When a process removes a mapping from its address space (either explicitly
from an munmap request or implicitly when the address space is freed on process
exit), pages held by its shadow object are not written back to the file object. The
shadow-object pages are simply placed back on the memory free list for immedi-
ate reuse.

When a process forks, it does not want changes to its private mappings to be
visible in its child; similarly, the child does not want its changes to be visible in its
parent. The result is that each process needs to create a shadow object if it contin-
ues to make changes in a private mapping. When process A in Fig. 5.9 forks, a set
of shadow object chains is created, as shown in Fig. 5.10 (on page 144). In this
example, process A modified page 0 before it forked, then later modified page 1.
Its modified version of page 1 hangs off its new shadow object, so that those mod-
ifications will not be visible to its child. Similarly, its child has modified page 0.
If the child were to modify page 0 in the original shadow object, that change
would be visible in its parent. Thus, the child process must make a new copy of
page 0 in its own shadow object.

If the system runs short of memory, the kernel may need to reclaim inactive
memory held in a shadow object. The kernel assigns to the swap pager the task of
backing the shadow object. The swap pager creates a swap map that is large
enough to describe the entire contents of the shadow object. It then allocates



Management

proc A: shadow
vm_map_entry object

mapping
0-N

—

object 3

*
page 1 1

(mod by parent)
proc A child:
m_map_entry

mapping
0-N

— **

shadow
object

object 2

shadow
object

object 1

— ̂

file object

pageO

(mod by child) (mod by A
before fork)

page 0

page 1

(unmod)
Figure 5.10 Shadow-object chains.

enough swap space to hold the requested shadow pages and writes them to that
area. These pages can then be freed for other uses. If a later page fault requests a
swapped-out page, then a new page of memory is allocated and its contents are
reloaded with an I/O from the swap area.

Collapsing of Shadow Chains

When a process with a private mapping removes that mapping either explicitly
with an munmap system call or implicitly by exiting, its parent or child process
may be left with a chain of shadow objects. Usually, these chains of shadow
objects can be collapsed into a single shadow object, often freeing up memory as
part of the collapse. Consider what happens when process A exits in Fig. 5.10.
First, shadow object 3 can be freed, along with its associated page of memory.
This deallocation leaves shadow objects 1 and 2 in a chain with no intervening ref-
erences. Thus, these two objects can be collapsed into a single shadow object.
Since they both contain a copy of page 0, and since only the page 0 in shadow
object 2 can be accessed by the remaining child process, the page 0 in shadow
object 1 can be freed, along with shadow object 1 itself.

If the child of process A were to exit, then shadow object 2 and the associated
page of memory could be freed. Shadow objects 1 and 3 would then be in a chain

that would be eligible for collapse. Here, there are no common pages, so the
remaining collapsed shadow object would contain page 0 from shadow object 1,
as well as page 1 from shadow object 3. A limitation of the implementation is that
it cannot collapse two objects if either of them has allocated a pager. This limita-
tion is serious, since pagers are allocated when the system begins running short of
memory—precisely the time when reclaiming of memory from collapsed objects
is most necessary.

Private Snapshots
When a process makes read accesses to a private mapping of an object, it contin-
ues to see changes made to that object by other processes that are writing to the
object through the filesystem or that have a shared mapping to the object. When a
process makes a write access to a private mapping of an object, a snapshot of the
corresponding page of the object is made and is stored in the shadow object, and
the modification is made to that snapshot. Thus, further changes to that page
made by other processes that are writing to the page through the filesystem or that
have a shared mapping to the object are no longer visible for that page. However,
changes to unmodified pages of the object continue to be visible. This mix of
changing and unchanging parts of the file can be confusing.

To provide a more consistent view of a file, a process may want to take a
snapshot of the file at the time that it is initially privately mapped. A process takes
such a snapshot by using a copy object, as shown in Fig. 5.11 (on page 146). In
this example, process B has a shared mapping to the file object, whereas process A
has a private mapping. Modifications made by process B will be reflected in the
file, and hence will be visible to any other process (such as process A) that is map-
ping that file. To avoid seeing the modifications made by process B after process
B has done its mapping, process A interposes a copy object between itself and the
file object. At the same time, it changes the protections on the file object to be
copy-on-write. Thereafter, when process B tries to modify the file object, it will
generate a page fault. The page-fault handler will save a copy of the unmodified
page in the copy object, then will allow process B to write the original page. If
process A later tries to access one of the pages that process B has modified, it will
get the page that was saved in the copy object, instead of getting the version that
process B changed.

In 4.4BSD, private snapshots work correctly only if all processes modifying
the file do so through the virtual-memory interface. For example, in Fig. 5.11,
assume that a third process C writes page 2 of the file using write before A or B
reference page 2. Now, even though A has made a snapshot of the file, it will see
the modified version of page 2, since the virtual-memory system has no knowl-
edge that page 2 was written. This behavior is an unwelcome side effect of the
separate virtual memory and filesystem caches; it would be eliminated if the two
caches were integrated.

Most non-BSD systems that provide the mmap interface do not provide copy-
object semantics. Thus, 4.4BSD does not provide copy semantics by default; such
semantics are provided only when they are requested explicitly. It is debatable



proc A:
vm_map_entry

proc B:
vm_map_entry

shadow object copy object

(mod by A)

file object

(unmod)

page 0 I (unmod)

page 1 (mod by B)

Figure 5.11 Use of a copy object.

whether the copy semantics are worth providing at all, because a process can
obtain them trivially by reading the file in a single request into a buffer in the pro-
cess address space. The added complexity and overhead of copy objects may well
exceed the value of providing copy semantics in the mmap interface.

5.6 Creation of a New Process

Processes are created with a fork system call. The fork is usually followed shortly
thereafter by an exec system call that overlays the virtual address space of the
child process with the contents of an executable image that resides in the filesys-
tem. The process then executes until it terminates by exiting, either voluntarily or
involuntarily, by receiving a signal. In Sections 5.6 to 5.9, we trace the manage-
ment of the memory resources used at each step in this cycle.

A fork system call duplicates the address space of an existing process, creat-
ing an identical child process. Fork is the only way that new processes are created
in 4.4BSD (except for its variant, vfork, which is described in the last subsection of
this section). Fork duplicates all the resources of the original process, and copies
that process's address space.

The virtual-memory resources of the process that must be allocated for the
child include the process structure and its associated substructures, and the user
area that includes both the user structure and the kernel stack. In addition, the ker-
nel must reserve storage (either memory, filesystem space, or swap space) used to
back the process. The general outline of the implementation of a fork is as fol-
lows:

• Reserve virtual address space for the child process.

• Allocate a process entry for the child process, and fill it in.
• Copy to the child the parent's process group, credentials, file descriptors, limits,

and signal actions.
• Allocate a new user area, copying the current one to initialize it.

• Allocate a vmspace structure.
• Duplicate the address space, by creating copies of the parent vm_map_entry

structures marked copy-on-write.
• Arrange for the child process to return 0, to distinguish its return value from the

new PID that is returned by the parent process.

The allocation and initialization of the process structure, and the arrangement
of the return value, were covered in Chapter 4. The remainder of this section dis-
cusses the other steps involved in duplicating a process.

Reserving Kernel Resources
The first resource to be reserved when an address space is duplicated is the
required virtual address space. To avoid running out of memory resources, the
kernel must ensure that it does not promise to provide more virtual memory than it
is able to deliver. The total virtual memory that can be provided by the system is
limited to the amount of physical memory available for paging plus the amount of
swap space that is provided. A few pages are held in reserve to stage I/O between
the swap area and main memory.

The reason for this restriction is to ensure that processes get synchronous
notification of memory limitations. Specifically, a process should get an error
back from a system call (such as sbrk, fork, or mmap) if there are insufficient
resources to allocate the needed virtual memory. If the kernel promises more vir-
tual memory than it can support, it can deadlock trying to service a page fault.
Trouble arises when it has no free pages to service the fault and no available swap
space to save an active page. Here, the kernel has no choice but to send a segmen-
tation-fault signal to the process unfortunate enough to be page faulting. Such
asynchronous notification of insufficient memory resources is unacceptable.

Excluded from this limit are those parts of the address space that are mapped
read-only, such as the program text. Any pages that are being used for a read-only
part of the address space can be reclaimed for another use without being saved



because their contents can be refilled from the original source. Also excluded
from this limit are parts of the address space that map shared files. The kernel can
reclaim any pages that are being used for a shared mapping after writing their con-
tents back to the filesystem from which they are mapped. Here, the filesystem is
being used as an extension of the swap area. Finally, any piece of memory that is
used by more than one process (such as an area of anonymous memory being
shared by several processes) needs to be counted only once toward the virtual-
memory limit.

The limit on the amount of virtual address space that can be allocated causes
problems for applications that want to allocate a large piece of address space, but
want to use the piece only sparsely. For example, a process may wish to make a
private mapping of a large database from which it will access only a small part.
Because the kernel has no way to guarantee that the access will be sparse, it takes
the pessimistic view that the entire file will be modified and denies the request.
One extension that many BSD derived systems have made to the mmap system call
is to add a flag that tells the kernel that the process is prepared to accept asyn-
chronous faults in the mapping. Such a mapping would be permitted to use up to
the amount of virtual memory that had not been promised to other processes. If
the process then modifies more of the file than this available memory, or if the
limit is reduced by other processes allocating promised memory, the kernel can
then send a segmentation-fault signal to the process. On receiving the signal, the
process must munmap an unneeded part of the file to release resources back to the
system. The process must ensure that the code, stack, and data structures needed
to handle the segment-fault signal do not reside in the part of the address space
that is subject to such faults.

Tracking the outstanding virtual memory accurately is a complex task. The
4.4BSD system makes no effort to calculate the outstanding-memory load and can
be made to promise more than it can deliver. When memory resources run out, it
either picks a process to kill or simply hangs. An import-ant future enhancement is
to track the amount of virtual memory being used by the processes in the system.

Duplication of the User Address Space
The next step in fork is to allocate and initialize a new process structure. This
operation must be done before the address space of the current process is dupli-
cated because it records state in the process structure. From the time that the pro-
cess structure is allocated until all the needed resources are allocated, the parent
process is locked against swapping to avoid deadlock. The child is in an inconsis-
tent state and cannot yet run or be swapped, so the parent is needed to complete
the copy of its address space. To ensure that the child process is ignored by the
scheduler, the kernel sets the process's state to SIDL during the entire fork proce-
dure.

Historically, the fork system call operated by copying the entire address space
of the parent process. When large processes fork, copying the entire user address
space is expensive. All the pages that are on secondary storage must be read back
into memory to be copied. If there is not enough free memory for both complete

copies of the process, this memory shortage will cause the system to begin paging
to create enough memory to do the copy (see Section 5.12). The copy operation
may result in parts of the parent and child processes being paged out, as well as
the paging out of parts of unrelated processes.

The technique used by 4.4BSD to create processes without this overhead is
called copy-on-write. Rather than copy each page of a parent process, both the
child and parent processes resulting from a fork are given references to the same
physical pages. The page tables are changed to prevent either process from modi-
fying a shared page. Instead, when a process attempts to modify a page, the ker-
nel is entered with a protection fault. On discovering that the fault was caused by
an attempt to modify a shared page, the kernel simply copies the page and changes
the protection field for the page to allow modification once again. Only pages
modified by one of the processes need to be copied. Because processes that fork
typically overlay the child process with a new image with exec shortly thereafter,
this technique significantly improves the performance of fork.

The next step in fork is to traverse the list of vm_map_entry structures in the
parent and to create a corresponding entry in the child. Each entry must be ana-
lyzed and the appropriate action taken:

• If the entry maps a read-only region, the child can take a reference to it.

• If the entry maps a privately mapped region (such as the data area or stack), the
child must create a copy-on-write mapping of the region. The parent must be
converted to a copy-on-write mapping of the region. If either process later tries
to write the region, it will create a shadow map to hold the modified pages.

• If the entry maps a shared region, a sharing map is created referencing the shared
object, and both map entries are set to reference this map.

Map entries for a process are never merged (simplified). Only entries for the ker-
nel map itself can be merged. The kernel-map entries need to be simplified so that
excess growth is avoided. It might be worthwhile to do such a merge of the map
entries for a process when it forks, especially for large or long-running processes.

With the virtual-memory resources allocated, the system sets up the kernel-
and user-mode state of the new process, including the hardware memory-manage-
ment registers and the user area. It then clears the SIDL flag and places the pro-
cess on the run queue; the new process can then begin execution.

Creation of a New Process Without Copying
When a process (such as a shell) wishes to start another program, it will generally
fork, do a few simple operations such as redirecting I/O descriptors and changing
signal actions, and then start the new program with an exec. In the meantime, the
parent shell suspends itself with wait until the new program completes. For such
operations, it is not necessary for both parent and child to run simultaneously, and
therefore only one copy of the address space is required. This frequently occur-
ring set of system calls led to the implementation of the vfork system call. In



4.4BSD, the vfork system call still exists, but it is implemented using the same
copy-on-write algorithm described in this section. Its only difference is that it
ensures that the parent does not run until the child has done either an exec or an
exit.

The historic implementation of vfork will always be more efficient than the
copy-on-write implementation because the kernel avoids copying the address
space for the child. Instead, the kernel simply passes the parent's address space to
the child and suspends the parent. The child process needs to allocate only new
process and user structures, receiving everything else from the parent. The child
process returns from the vfork system call with the parent still suspended. The
child does the usual activities in preparation for starting a new program, then calls
exec. Now the address space is passed back to the parent process, rather than
being abandoned, as in a normal exec. Alternatively, if the child process encoun-
ters an error and is unable to execute the new program, it will exit. Again, the
address space is passed back to the parent, instead of being abandoned.

With vfork, the entries describing the address space do not need to be copied,
and the page-table entries do not need to be marked and then cleared of copy-on-
write. Vfork is likely to remain more efficient than copy-on-write or other
schemes that must duplicate the process's virtual address space. The architectural
quirk of the vfork call is that the child process may modify the contents and even
the size of the parent's address space while the child has control. Modification of
the parent's address space is bad programming practice. Some programs that took
advantage of this quirk broke when they were ported to 4.4BSD, which imple-
mented vfork using copy-on-write.

5.7 Execution of a File

The exec system call was described in Sections 2.4 and 3.1; it replaces the address
space of a process with the contents of a new program obtained from an
executable file. During an exec, the target executable image is validated, then the
arguments and environment are copied from the current process image into a tem-
porary area of pageable kernel virtual memory.

To do an exec, the system must allocate resources to hold the new contents of
the virtual address space, set up the mapping for this address space to reference the
new image, and release the resources being used for the existing virtual memory.

The first step is to reserve memory resources for the new executable image.
The algorithm for the calculation of the amount of virtual address space that must
be reserved was described in Section 5.6. For an executable that is not being
debugged (and hence will not have its text space modified), a space reservation
needs to be made for only the data and stack space of the new executable. Exec
does this reservation without first releasing the currently assigned space, because
the system must be able to continue running the old executable until it is sure that
it will be able to run the new one. If the system released the current space and the
memory reservation failed, the exec would be unable to return to the original

process. Once the reservation is made, the address space and virtual-memory
resources of the current process are then freed as though the process were exiting;
this mechanism is described in Section 5.9.

Now, the process has only a user structure and kernel stack. The kernel now
allocates a new vmspace structure and creates the list of four vm_map_entry struc-
tures:

1. A copy-on-write, fill-from-file entry maps the text segment. A copy-on-write
mapping is used, rather than a read-only one, to allow active text segments to
have debugging breakpoints set without affecting other users of the binary. In
4.4BSD, some legacy code in the kernel debugging interface disallows the set-
ting of break points in binaries being used by more than one process. This
legacy code prevents the use of the copy-on-write feature.

2. A private (copy-on-write), fill-from-file entry maps the initialized data seg-
ment.

3. An anonymous zero-fill-on-demand entry maps the uninitialized data segment.

4. An anonymous zero-fill-on-demand entry maps the stack segment.

No further operations are needed to create a new address space during an exec
system call; the remainder of the work comprises copying the arguments and envi-
ronment out to the top of the new stack. Initial values are set for the registers: The
program counter is set to the entry point, and the stack pointer is set to point to the
argument vector. The new process image is then ready to run.

Process Manipulation of Its Address Space

Once a process begins execution, it has several ways to manipulate its address
space. The system has always allowed processes to expand their uninitialized
data area (usually done with the malloc() library routine). The stack is grown on
an as-needed basis. The 4.4BSD system also allows a process to map files and
devices into arbitrary parts of its address space, and to change the protection of
various parts of its address space, as described in Section 5.5. This section
describes how these address-space manipulations are done.

Change of Process Size
A process can change its size during execution by explicitly requesting more data
space with the sbrk system call. Also, the stack segment will be expanded auto-
matically if a protection fault is encountered because of an attempt to grow the
stack below the end of the stack region. In either case, the size of the process
address space must be changed. The size of the request is always rounded up to a
multiple of page size. New pages are marked fill-with-zeros, as there are no con-
tents initially associated with new sections of the address space.



The first step of enlarging a process's size is to check whether the new size
would violate the size limit for the process segment involved. If the new size is in
range, the following steps are taken to enlarge the data area:

1. Verify that the virtual-memory resources are available.

2. Verify that the address space of the requested size immediately following the
current end of the data area is not already mapped.

3. If the existing vm_map_entry is not constrained to be a fixed size because of
the allocation of swap space, increment its ending address by the requested
size. If the entry has had one or more of its pages written to swap space, then
the current implementation of the swap pager will not permit it to grow. Con-
sequently, a new vm_map_entry must be created with a starting address imme-
diately following the end of the previous fixed-sized entry. Its ending address
is calculated to give it the size of the request. Until a pageout forces the allo-
cation of a fixed-sized swap partition of this new entry, the latter will be able
to continue growing.

If the change is to reduce the size of the data segment, the operation is easy: Any
memory allocated to the pages that will no longer be part of the address space is
freed. The ending address of the vm_map_entry is reduced by the size. If the
requested size reduction is bigger than the range defined by the vm_map_entry,
the entire entry is freed, and the remaining reduction is applied to the
vm_map_entry that precedes it. This algorithm is applied until the entire reduc-
tion has been made. Future references to these addresses will result in protection
faults, as access is disallowed when the address range has been deallocated.

The allocation of the stack segment is considerably different. At exec time,
the stack is allocated at its maximum possible size. Due to the lazy allocation of
virtual-memory resources, this operation involves allocating only sufficient
address space. Physical memory and swap space are allocated on demand as the
stack grows. Hence, only step 3 of the data-growth algorithm applies to stack-
growth-related page faults. An additional step is required to check that the
desired growth does not exceed the dynamically changeable stack-size limit.

File Mapping

The mmap system call requests that a file be mapped into an address space. The
system call may request either that the mapping be done at a particular address or
that the kernel to pick an unused area. If the request is for a particular address
range, the kernel first checks to see whether that part of the address space is
already in use. If it is in use, the kernel first does an munmap of the existing map-
ping, then proceeds with the new mapping.

The kernel implements the munmap system call by traversing the list of
vm_map_entry structures for the process. The various overlap conditions to con-
sider are shown in Fig. 5.12. The five cases are as follows:

case:

existing:

new:

becomes:

Figure 5.12 Five types of overlap that the kernel must consider when adding a new ad-
dress mapping.

1. The new mapping exactly overlaps an existing mapping. The old mapping is
deallocated as described in Section 5.9. The new mapping is created in its
place as described in the paragraph following this list.

2. The new mapping is a subset of the existing mapping. The existing mapping
is split into three pieces (two pieces if the new mapping begins at the begin-
ning or ends at the end of the existing mapping). The existing vm_map_entry
structure is augmented with one or two additional vm_map_entry structures:
one mapping the remaining part of the existing mapping before the new map-
ping, and one mapping the remaining part of the existing mapping following
the new mapping. Its overlapped piece is replaced by the new mapping, as
described in the paragraph following this list.

3. The new mapping is a superset of an existing mapping. The old mapping is
deallocated as described in Section 5.9, and a new mapping is created as
described in the paragraph following this list.

4. The new mapping starts part way into and extends past the end of an existing
mapping. The existing mapping has its length reduced by the size of the
unmapped area. Its overlapped piece is replaced by the new mapping, as
described in the paragraph following this list.

5. The new mapping extends into the beginning of an existing mapping. The
existing mapping has its starting address incremented and its length reduced
by the size of the covered area. Its overlapped piece is replaced by the new
mapping, as described in the paragraph following this list.

In addition to the five basic types of overlap listed, a new mapping request may
span several existing mappings. Specifically, a new request may be composed of
zero or one of type 4, zero to many of type 3, and zero or one of type 5. When a
mapping is shortened, any shadow or copy pages associated with it are released, as
they are no longer needed.



Once the address space is zero filled, the kernel creates a new vm_map_entry
to describe the new address range. If the object being mapped is already being
mapped by another process, the new entry gets a reference to the existing object.
This reference is obtained in the same way, as described in Section 5.6, when a
new process is being created and needs to map each of the regions in its parent. If
this request is the first mapping of an object, then the kernel checks the object
cache to see whether a previous instance of the object still exists. If one does, then
that object is activated and referenced by the new vm_map_entry.

If the object is not found, then a new object must be created. First, a new
object is allocated. Next, the kernel must determine what is being mapped, so that
it can associate the correct pager with the object (pagers are described in Section
5.10). Once the object and its pager have been set up, the new vm_map_entry can
be set to reference the object.

Change of Protection

A process may change the protections associated with a region of its virtual mem-
ory by using the mprotect system call. The size of the region to be protected may
be as small as a single page. Because the kernel depends oh the hardware to
enforce the access permissions, the granularity of the protection is limited by the
underlying hardware. A region may be set for any combination of read, write, and
execute permissions. Many architectures do not distinguish between read and
execute permissions; on such architectures, the execute permission is treated as
read permission.

The kernel implements the mprotect system call by finding the existing
vm_map_entry structure or structures that cover the region specified by the call. If
the existing permissions are the same as the request, then no further action is
required. Otherwise, the new permissions are compared to the maximum protec-
tion value associated with the vm_map_entry. The maximum value is set at mmap
time and reflects the maximum value allowed by the underlying file. If the new
permissions are valid, one or more new vm_map_entry structures have to be set up
to describe the new protections. The set of overlap conditions that must be han-
dled is similar to that described in the previous subsection. Instead of replacing
the object underlying the new vm_map_entry structures, these vm_map_entry
structures still reference the same object; the difference is that they grant different
access permissions to it.

5.9 Termination of a Process

The final change in process state that relates to the operation of the virtual-mem-
ory system is exit', this system call terminates a process, as described in Chapter 4.
The part of exit that is discussed here is the release of the virtual-memory
resources of the process. The release is done in two steps:

1. The user portions of the address space are freed, both in memory and on swap
space.

2. The user area is freed.

These two operations are complicated because the kernel stack in the user area
must be used until the process relinquishes the processor for the final time.

The first step—freeing the user address space—is identical to the one that
occurs during exec to free the old address space. The free operation proceeds
entry by entry through the list of vm_map_entry structures associated with the
address space. The first step in freeing an entry is to traverse the latter's list of
shadow and copy objects. If the entry is the last reference to a shadow or copy
object, then any memory or swap space that is associated with the object can be
freed. In addition, the machine-dependent routines are called to unmap and free
up any page table or data structures that are associated with the object. If the
shadow or copy object is still referenced by other vm_map_entry structures, its
resources cannot be freed, but the kernel still needs to call the machine-dependent
routines to unmap and free the resources associated with the current process map-
ping. Finally, if the underlying object referenced by the vm_map_entry is losing
its last reference, then that object is a candidate for deallocation. If it is an object
that will never have any chance of a future reuse (such as an anonymous object
associated with a stack or uninitialized data area), then its resources are freed as
though it were a shadow or copy object. However, if the object maps a file (such
as an executable) that might be used again soon, the object is saved in the object
cache, where it can be found by newly executing processes or by processes map-
ping in a file. The number of unreferenced cached objects is limited to a threshold
set by the system (typically 100). If adding this new object would cause the cache
to grow beyond its limit, the least recently used object in the cache is removed and
deallocated.

Next, the memory used by the user area must be freed. This operation begins
the problematic time when the process must free resources that it has not yet fin-
ished using. It would be disastrous if a page from the user structure or kernel
stack were reallocated and reused before the process had finished the exit().
Memory is allocated either synchronously by the page-fault handler or asynchro-
nously from interrupt handlers that use malloc() such as the network when pack-
ets arrive (see Chapter 12). To block any allocation of memory, it is necessary to
delay interrupts by raising the processor interrupt-priority level. The process may
then free the pages of its user area, safe from having them reused until it has relin-
quished the processor. The next context switch will lower the priority so that
interrupts may resume.

With all its resources free, the exiting process finishes detaching itself from its
process group, and notifies its parent that it is done. The process has now become
a zombie process—one with no resources, not even a kernel stack. Its parent will
collect its exit status with a wait call, and will free its process structure.



There is nothing for the virtual-memory system to do when wait is called: All
virtual-memory resources of a process are removed when exit is done. On wait,
the system just returns the process status to the caller, and deallocates the process-
table entry and the small amount of space in which the resource-usage information
was kept.

5.10 The Pager Interface

The pager interface provides the mechanism by which data are moved between
backing store and physical memory. The 4.4BSD pager interface is a modification
of the interface present in Mach 2.0. The interface is page based, with all data
requests made in multiples of the software page size. Vm_page structures are
passed around as descriptors providing the backing-store offset and physical
cache-page address of the desired data. This interface should not be confused
with the current Mach 3.0 external paging interface [Young, 1989], where pagers
are typically user applications outside the kernel and are invoked via asynchronous
remote procedure calls using the Mach interprocess-communication mechanism.
The 4.4BSD interface is internal in the sense that the pagers are compiled into the
kernel and pager routines are invoked via simple function calls.

Associated with each object is a pager_struct structure representing an
instance of the pager type responsible for supplying the contents of pages within
the object. This structure contains pointers to type-specific routines for reading
and writing data, as well as a pointer to instance-specific storage. Conceptually,
the pager_struct structure describes a logically contiguous piece of backing store,
such as a chunk of swap space or a disk file. A pager_struct and any associated
instance-specific data are collectively known as a pager instance in the following
discussion.

A pager instance is typically created at the same time as the object when a
file, device, or piece of anonymous memory is mapped into a process address
space. The pager instance continues to exist until the object is deallocated. When
a page fault occurs for a virtual address mapping a particular object, the fault-han-
dling code allocates a vm_page structure and converts the faulting address to an
offset within the object. This offset is recorded in the vm_page structure, and the
page is added to the list of pages cached by the object. The page frame and the
object's pager instance are then passed to the underlying pager routine. The pager
routine is responsible for filling the vm_page structure with the appropriate initial
value for that offset of the object that it represents.

The pager instance is also responsible for saving the contents of a dirty page
if the system decides to push out the latter to backing store. When the pageout
daemon decides that a particular page is no longer needed, it requests the object
that owns the page to free the page. The object first passes the page with the asso-
ciated logical offset to the underlying pager instance, to be saved for future use.
The pager instance is responsible for finding an appropriate place to save the page,

doing any I/O necessary for the save, and then notifying the object that the page
can be freed. When it is done, the pager instance notifies the pageout daemon to
move the vm_page structure from the object to the free list for future use.

There are seven routines associated with each pager type. The pgo_init rou-
tine is called at boot time to do any one-time type-specific initializations, such as
allocating a pool of private pager structures. The pgo_alloc and pgo_dealloc rou-
tines are called when an instance of a pager should be created or destroyed. The
allocation routine is called whenever the corresponding object is mapped into an
address space via mmap. Hence, only the first call should create the structure;
successive calls just increment the reference count for the associated object and
return a pointer to the existing pager instance. The deallocation routine is called
only when the object reference count drops to zero.

Pgo_getpages is called to return one or more pages of data from a pager
instance either synchronously or asynchronously. Currently, this routine is called
from only the page-fault handler to synchronously fill single pages. Pgo_putpages
writes back one or more pages of data. This routine is called by the pageout dae-
mon to write back one or more pages asynchronously, and by msync to write back
single pages synchronously or asynchronously. Both the get and put routines are
called with an array of vm_page structures indicating the affected pages.

Pgo_duster takes an offset and returns an enclosing offset range representing
an optimal I/O transfer unit for the backing store. This range can be used with
pgo_getpages and pgo_putpages to help do informed prefetching or clustered
cleaning. Currently, it is used by only the pageout daemon for the latter task. The
pgo_haspage routine queries a pager instance to see whether that instance has data
at a particular backing-store offset. This routine is used in only the page-fault
handler, to determine whether an internal copy object already has received a copy
of a particular page.

The three types of pagers supported by the system are described in the next
three subsections.

Vnode Pager
The vnode pager handles objects that map files in a filesystem. Whenever a file is
mapped either explicitly by mmap or implicitly by exec, the vnode-pager alloca-
tion routine is called. If the call represents the first mapping of the vnode, the nec-
essary vnode-pager-specific structure is created, and an object of the appropriate
size is allocated and is associated with the pager instance. The vnode-pager struc-
ture contains a pointer to the vnode and a copy of the latter's current size. The
vnode reference count is incremented to reflect the pager reference. If this initial-
ization call is not the first for a vnode, the existing pager structure is located. In
either case, the associated object's reference count is incremented, and a pointer to
the pager instance is returned.

When a pagein request is received by the vnode-pager read routine, the pro-
vided physical page is mapped into the kernel address space long enough for the
pager instance to call the filesystem VOP_READ vnode operation to load the page



with the file contents. Once the page is filled, the kernel mapping can be dropped,
and the page can be returned.

When the vnode pager is asked to save a page to be freed, it simply arranges
to write back the page to the part of the file from which the page came. The page
is mapped into the kernel address space long enough for the pager routine to call
the filesystem VOP_WRITE vnode operation to store the page back into the file.
Once the page is stored, the kernel mapping can be dropped, and the object can be
notified that the page can be freed.

If a file is being privately mapped, then modified pages cannot be written
back to the filesystem. Such private mapping must use a shadow object with a
swap pager for all pages that are modified. Thus, a privately mapped object will
never be asked to save any dirty pages to the underlying file.

When the last address-space mapping of a vnode is removed by munmap or
exit, the vnode-pager deallocation routine is called. This routine releases the
vnode reference and frees the vnode-pager structure.

The vnode-pager I/O routines use the VOP_READ and VOP_WRITE vnode
operations that pass data through any caches maintained by filesystems (e.g., the
buffer cache used by UFS and NFS). The problem with this approach is that the vir-
tual-memory system maintains a cache of file pages that is independent of the
filesystem caches, resulting in potential double caching of file data. This condition
leads to inefficient cache use, and worse, to the potential for inconsistencies
between the two caches. Modifications to files that are mapped into memory are
not seen by processes that read those files until the mapped file is written back to
the filesystem and reread into the filesystem cache. Similarly, changes to files writ-
ten to the filesystem are not visible to processes that map those files until the file is
written back to disk and then page faulted into the process. The writeback and
rereading may take seconds to hours, depending on the level of memory activity.

In 4.4BSD, this problem is addressed in an ad hoc and incomplete fashion.
Two vnode-pager-specific routines are called from various points in the VFS code.
Vnode_pager_setsize(} is invoked when a file changes size. If the file has shrunk,
any excess cached pages are removed from the object. This page removal guaran-
tees that future mapped references to those pages will cause page faults, and in
turn, will generate a signal to the mapping process. Vnode_pager_uncache()
removes the object representing a vnode from the object cache. Recall that the
object cache contains only objects that are not currently referenced; thus, this rou-
tine will not help to maintain consistency for an object that is currently mapped.

A more consistent interface can be obtained by using a common cache for
both the virtual-memory system and the filesystem. Three approaches to merging
the two caches are being undertaken. One approach is to have the filesystem use
objects in the virtual-memory system as its cache; a second approach is to have
the virtual-memory objects that map files use the existing filesystem cache; the
third approach is to create a new cache that is a merger of the two existing caches,
and to convert both the virtual memory and the filesystems to use this new cache.
Each of these approaches has its merits and drawbacks; it is not yet clear which
approach will work best.

Device Pager

The device pager handles objects representing memory-mapped hardware devices.
Memory-mapped devices provide an interface that looks like a piece of memory.
An example of a memory-mapped device is a frame buffer, which presents a range
of memory addresses with one word per pixel on the screen. The kernel provides
access to memory-mapped devices by mapping the device memory into a pro-
cess's address space. The process can then access that memory without further
operating-system intervention. Writing to a word of the frame-buffer memory
causes the corresponding pixel to take on the appropriate color and brightness.

The device pager is fundamentally different from the other two pagers in that
it does not fill provided physical-memory pages with data. Instead, it creates and
manages its own vm_page structures, each of which describes a page of the device
space. This approach makes device memory look like wired physical memory.
Thus, no special code should be needed in the remainder of the virtual-memory
system to handle device memory.

When a device is first mapped, the device-pager allocation routine will vali-
date the desired range by calling the device d_mmap() routine. If the device
allows the requested access for all pages in the range, the-device pager creates a
device-pager structure and associated object. It does not create vm_page struc-
tures at this time—they are created individually by the page-get routine as they are
referenced. The reason for this late allocation is that some devices export a large
memory range in which either not all pages are valid or the pages may not be
accessed for common operations. Complete allocation of vm_page structures for
these sparsely accessed devices would be wasteful.

The first access to a device page will cause a page fault and will invoke the
device-pager page-get routine. The pager instance creates a vm_page structure,
initializes the latter with the appropriate object offset and a physical address
returned by the device d_mmap() routine, and flags the page as fictitious. This
vm_page structure is added to the list of all such allocated pages in the device-
pager structure. Since the fault code has no special knowledge of the device
pager, it has preallocated a physical-memory page to fill and has associated that
vm_page structure with the object. The device-pager routine removes that
vm_page structure from the object, returns the structure to the free list, and inserts
its own vm_page structure in the same place.

The device-pager page-put routine expects never to be called and will panic if
it is. This behavior is based on the assumption that device-pager pages are never
entered into any of the paging queues and hence will never be seen by the pageout
daemon. However, it is possible to msync a range of device memory. This opera-
tion brings up an exception to the higher-level virtual-memory system's ignorance
of device memory: The object page-cleaning routine will skip pages that are
flagged as fictitious.

Finally, when a device is unmapped, the device-pager deallocation routine is
invoked. This routine deallocates the vm_page structures that it allocated, as well
as the device-pager structure itself.



Swap Pager
The term swap pager refers to two functionally different pagers. In the most com-
mon use, swap pager refers to the pager that is used by objects that map anony-
mous memory. This pager has sometimes been referred to as the default pager
because it is the pager that is used if no other pager has been requested. It pro-
vides what is commonly known as swap space: nonpersistent backing store that is
zero filled on first reference. The zero filling is really done by the fault-handling
code, without ever invoking the swap pager. Because of the zero-filling optimiza-
tion and the transient nature of the backing store, allocation of swap-pager
resources for a particular object may be delayed until the first pageout operation.
Until that time, the pager-structure pointer in the object is NULL. While the object
is in this state, page faults (getpage) are handled by zero filling, and page queries
(haspage) are not necessary. The expectation is that free memory will be plentiful
enough that it will not be necessary to swap out any pages. The object will simply
create zero-filled pages during the process lifetime that can all be returned to the
free list when the process exits.

The role of the swap pager is swap-space management: figuring out where to
store dirty pages and how to find dirty pages when they are needed again. Shadow
objects require that these operations be efficient. A typical shadow object is
sparsely populated: It may cover a large range of pages, but only those pages that
have been modified will be in the shadow object's backing store. In addition, long
chains of shadow objects may require numerous pager queries to locate the correct
copy of an object page to satisfy a page fault. Hence, determining whether a pager
instance contains a particular page needs to be fast, preferably requiring no I/O
operations. A final requirement of the swap pager is that it can do asynchronous
writeback of dirty pages. This requirement is necessitated by the pageout daemon,
which is a single-threaded process. If the pageout daemon blocked waiting for a
page-clean operation to complete before starting the next operation, it is unlikely
that it could keep enough memory free in times of heavy memory demand.

In theory, any pager that meets these criteria can be used as the swap pager.
In Mach 2.0, the vnode pager was used as the swap pager. Special paging files
could be created in any filesystem and registered with the kernel. The swap pager
would then suballocate pieces of the files to back particular anonymous objects.
Asynchronous writes were a side effect of the filesystem's use of the buffer cache.
One obvious advantage of using the vnode pager is that swap space can be
expanded by the addition of more swap files or the extension of existing ones
dynamically (i.e., without rebooting or reconfiguring of the kernel). The main dis-
advantage is that, in the past, the filesystem has not been able to deliver a
respectable fraction of the disk bandwidth.

The desire to provide the highest possible disk bandwidth led to the creation
of a special raw-partition pager to use as the swap pager for 4.4BSD. Previous
versions of BSD also used dedicated disk partitions, commonly known as swap
partitions; hence, this partition pager became the swap pager. The remainder of
this section describes how the partition pager is implemented, and how it provides
the necessary capabilities for backing anonymous objects.

As mentioned, a swap-pager instance will not be created until the first time
that a page from the object is replaced in memory. At that time, a structure is allo-
cated to describe the swap space that can hold the object. This swap space is
described by an array of fixed-sized swap blocks. The size of each swap block is
selected based on the size of the object that the swap pager is managing. For a
small object, a minimal-sized (32-Kbyte) swap block will be used; for a large
object, each swap block may be as large as 32 x pagesize. For a machine such as
the HP300 with a pagesize of 4 Kbyte, the maximum swap-block size will be 128
Kbyte. A swap block is always an integral number of virtual-memory pages,
because those are the units used in the pager interface.

The two structures created by the swap pager are shown in Fig. 5.13. The
swpager structure describes the swap area being managed by the pager. It records
the total size of the object (object size), the size of each swap block being man-
aged (block size), and the number of swap blocks that make up the swap area for
the object (block count). It also has a pointer to an array of block-count swblock
structures, each containing a device block number and a bit mask. The block
number gives the address of the first device block in a contiguous chunk of block-
size DEV_BSIZE-sized blocks that form the swap block, or is zero if a swap block
has never been allocated. A mask of 1 bit per page-sized piece within this swap
block records which pages in the block contain valid data. A bit is set when the
corresponding page is first written to the swap area. Together, the swblock array
and associated bit masks provide a two-level page table describing the backing
store of an object. This structure provides efficient swap-space allocation for
sparsely populated objects, since a given swap block does not need to be allocated
until the first time that a page in its block-size range is written back. The structure
also allows efficient page lookup: at most an array-indexing operation and a bit-
mask operation.

The size of the object is frozen at the time of allocation. Thus, if the anony-
mous area continues to grow (such as the stack or heap of a process), a new object
must be created to describe the expanded area. On a system that is short of mem-
ory, the result is that a large process may acquire many anonymous objects.
Changing the swap pager to handle growing objects would cut down on this object
proliferation dramatically.

Figure 5.13 Structures used to manage swap space.

struct swpager



in use in use in use
(base) 0 8 16 29

resource:
(size) 8 8 13 7

resource map: <0,8>, <16,13>, <36,6>, <48,15>

Figure 5.14 A kernel resource map.

36 42 48

15

Allocation of swap blocks from the system's pool of swap space is managed
with a resource map called swapmap. Resource maps are ordered arrays of <base,
size> pairs describing the free segments of a resource (see Fig. 5.14). A segment
of a given size is allocated from a resource map by rmalloc( ), using a first-fit
algorithm, and is subsequently freed with rmfree(). The swapmap is initialized at
boot time to contain all the available swap space. An index into the swapmap at
which space has been allocated is used as the index of the disk address within the
swap area.

The swap pager is complicated considerably by the requirement that it handle
asynchronous writes from the pageout daemon. The protocol for managing these
writes is described in Section 5.12.

5.11 Paging

When the memory-management hardware detects an invalid virtual address, it
generates a trap to the system. This page-fault trap can occur for several reasons.
Most BSD programs are created in a format that permits the executable image to
be paged into main memory directly from the filesystem. When a program in a
demand-paged format is first run, the kernel marks as invalid the pages for the text
and initialized data regions of the executing process. The text and initialized data
regions share an object that provides fill-on-demand from the filesystem. As each
page of the text or initialized data region is first referenced, a page fault occurs.

Page faults can also occur when a process first references a page in the unini-
tialized data region of a program. Here, the anonymous object managing the
region automatically allocates memory to the process and initializes the newly
assigned page to zero. Other types of page faults arise when previously resident
pages have been reclaimed by the system in response to a memory shortage.

The handling of page faults is done with the vm_fault() routine; this routine
services all page faults. Each time vm_fault( ) is invoked, it is provided the virtual
address that caused the fault. The first action of vm_fault() is to traverse the
vm_map_entry list of the faulting process to find the entry associated with the
fault. The routine then computes the logical page within the underlying object and
traverses the list of objects to find or create the needed page. Once the page has
been found, vm_fault() must call the machine-dependent layer to validate the
faulted page, and return to restart the process.

The details of calculating the address within the object were described in Sec-
tion 5.4. Having computed the offset within the object and determined the
object's protection and object list from the vm_map_entry, the kernel is ready to
find or create the associated page. The page-fault-handling algorithm is shown in
Fig 5.15 (on pages 164 and 165). In the following overview, the lettered points
are references to the tags down the left side of the code.

A. The loop traverses the list of shadow, copy, anonymous, and file objects until it
either finds an object that holds the sought-after page, or reaches the final
object in the list. If no page is found, the final object will be requested to pro-
duce it.

B. An object with the desired page has been found. If the page is busy, another
process may be in the middle of faulting it in, so this process is blocked until
the page is no longer busy. Since many things could have happened to the
affected object while the process was blocked, it must restart the entire fault-
handling algorithm. If the page was not busy, the algorithm exits the loop with
the page.

C. Anonymous objects (such as those used to represent shadow and copy objects)
do not allocate a pager until the first time that they need to push a page to
backing store. Thus, if an object has a pager, then there is a chance that the
page previously existed but was paged out. If the object does have a pager,
then the kernel needs to allocate a page to give to the pager to be filled (see D).
The special case for the object being the first object is to avoid a race condition
with two processes trying to get the same page. The first process through will
create the sought after page in the first object, but keep it marked as busy.
When the second process tries to fault the same page it will find the page cre-
ated by the first process and block on it (see B). When the first process com-
pletes the pagein processing, it will unlock the first page, causing the second
process to awaken, retry the fault, and find the page created by the first pro-
cess.

D. If the page is present in the file or swap area, the pager will bring it back into
the newly allocated page. If the pagein succeeds, then the sought after page
has been found. If the page never existed, then the pagein request will fail.
Unless this object is the first, the page is freed and the search continues. If this
object is the first, the page is not freed, so that it will act as a block to further
searches by other processes (as described in C).

E. If the kernel created a page in the first object but did not use that page, it will
have to remember that page so that it can free the page when the pagein is
done (see M).

F. If the search has reached the end of the object list and has not found the page,
then the fault is on an anonymous object chain, and the first object in the list
will handle the page fault using the page allocated in C. The first_page entry
is set to NULL to show that it does not need to be freed, the page is zero filled,
and the loop is exited.



* Handle a page fault occurring at the given address,
* requiring the given permissions, in the map specified.
* If successful, insert the page into the associated
* physical map.
*/

vm_fault(map, addr, type)

RetryFault:
lookup address in map returning object/offset/prot;
first_object = object;

[A] for (;;) {
page = lookup page at object/offset;

[B] if (page found) {
if (page busy)

block and goto RetryFault;
remove from paging queues;
mark page as busy;
break;

[C] if (object has pager or object == first_object)
page = allocate a page for object/offset;
if (no pages available)

block and goto RetryFault;

[D] if (object has pager) {
call pager to fill page;
if (IO error)

return an error;
if (pager has page)

break;
if (object != first_object)

free page;

/* no pager, or pager does not have page */
[E] if (object == first_object)

first_page = page;
next_object = next object;

[F] if (no next object) {
if (object != first_object) {

object = first_object;
page = first_page;

first_page = NULL;
zero fill page;
break;

object = next_object;

Figure 5.15 Page-fault handling.

|G] /* appropriate page has been found or allocated */
orig_page = page;

[H] if (object != first_object) {
if (fault type == WRITE) {

copy page to first_page;
deactivate page;
page = first_page;
object = first_object;

} else {
prot &= ~WRITE;
mark page copy-on-write;

}
if (first_object has copy object) {

[I] if (fault type != WRITE) {
prot &= ~WRITE;
mark page copy-on-write;

} else {
copy_object = first_object copy object;
lookup page in copy_object;

[J] if (page exists) {
if (page busy)

block and goto RetryFault;
} else {

[K] allocate a blank page;
if (no pages available)

block and goto RetryFault;
if (copy_object has pager) {

call pager to see if page exists;
if (page exists)

free blank page;
}
if (page doesn't exist) {

copy page to copy_object page;
remove orig_page from pmaps;
activate copy page;

}

mark page not copy-on-write;

[L] if (prot & WRITE)
mark page not copy-on-write;

enter mapping for page;
[M] activate and unbusy page;

if (first_page != NULL)
unbusy and free first_page;

Figure 5.15 Page-fault handling (continued).



G. The search exits the loop with page as the page that has been found or allo-
cated and initialized, and object as the owner of that page. The page has
been filled with the correct data at this point.

H. If the object providing the page is not the first object, then this mapping must
be private, with the first object being a shadow object of the object providing
the page. If pagein is handling a write fault, then the contents of the page that
it has found have to be copied to the page that it allocated for the first object.
Having made the copy, it can release the object and page from which the copy
came, as the first object and first page will be used to finish the page-fault ser-
vice. If pagein is handling a read fault, it can use the page that it found, but it
has to mark the page copy-on-write to avoid the page being modified in the
future.

I. Pagein is handling a read fault. It can use the page that it found, but has to
mark the page copy-on-write to avoid the page being modified before pagein
has had a chance to copy the page for the copy object.

J. If the copy object already has a copy of the page in memory, then pagein does
not have to worry about saving the one that it just created.

K. If there is no page in memory, the copy object may still have a copy in its
backing store. If the copy object has a pager, the vm_pager_has_page() rou-
tine is called to find out if the copy object still has a copy of the page in its
backing store. This routine does not return any data; the blank page is allo-
cated to avoid a race with other faults. Otherwise, the page does not exist, so
pagein must copy the page that it found to the page owned by the copy object.
After doing this copying, pagein has to remove all existing mappings for the
page from which it copied, so that future attempts to access that page will fault
and find the page that pagein left in the copy object.

L. If pagein is handling a write fault, then it has made any copies that were neces-
sary, so it can safely make the page writable.

M. As the page and possibly the first_page are released, any processes waiting for
that page of the object will get a chance to run to get their own references.

Note that the page and object locking has been elided in Fig. 5.15 to simplify the
explanation. In 4.4BSD, no clustering is done on pagein; only the requested page
is brought in from the backing store.

5.12 Page Replacement

The service of page faults and other demands for memory may be satisfied from
the free list for some time, but eventually memory must be reclaimed for reuse.
Some pages are reclaimed when processes exit. On systems with a large amount
of memory and low memory demand, exiting processes may provide enough free

memory to fill demand. This case arises when there is enough memory for the
kernel and for all pages that have ever been used by any current process. Obvi-
ously, many computers do not have enough main memory to retain all pages in
memory. Thus, it eventually becomes necessary to move some pages to secondary
storage—to the swap space. Bringing in a page is demand driven. For paging it
out, however, there is no immediate indication when a page is no longer needed by
a process. The kernel must implement some strategy for deciding which pages to
move out of memory so that it can replace these pages with the ones that are cur-
rently needed in memory. Ideally, the strategy will choose pages for replacement
that will not be needed soon. An approximation to this strategy is to find pages
that have not been used recently.

The system implements demand paging with a page-replacement algorithm
that approximates global least-recently used [Corbato, 1968; Easton & Franaszek,
1979]. It is an example of a global replacement algorithm: one in which the
choice of a page for replacement is made according to system wide criteria. A
local replacement algorithm would choose a process for which to replace a page,
and then chose a page based on per-process criteria. Although the algorithm in
4.4BSD is similar in nature to that in 4.3BSD, its implementation is considerably
different.

The kernel scans physical memory on a regular basis, considering pages for
replacement. The use of a systemwide list of pages forces all processes to com-
pete for memory on an equal basis. Note that it is also consistent with the way
that 4.4BSD treats other resources provided by the system. A common alternative
to allowing all processes to compete equally for memory is to partition memory
into multiple independent areas, each localized to a collection of processes that
compete with one another for memory. This scheme is used, for example, by the
VMS operating system [Kenah & Bate, 1984]. With this scheme, system adminis-
trators can guarantee that a process, or collection of processes, will always have a
minimal percentage of memory. Unfortunately, this scheme can be difficult to
administer. Allocating too small a number of pages to a partition can result in
underutilization of memory and excessive I/O activity to secondary-storage
devices, whereas setting the number too high can result in excessive swapping
[Lazowska & Kelsey, 1978].

The kernel divides the main memory into four lists:

1. Wired: Wired pages are locked in memory and cannot be paged out. Typically,
these pages are being used by the kernel or have been locked down with mlock.
In addition, all the pages being used to hold the user areas of loaded (i.e., not
swapped-out) processes are also wired. Wired pages cannot be paged out.

2. Active: Active pages are being used by one or more regions of virtual memory.
Although the kernel can page them out, doing so is likely to cause an active
process to fault them back again.

3. Inactive: Inactive pages have contents that are still known, but they are not
usually part of any active region. If the system becomes short of memory, the



pageout daemon may try to move active pages to the inactive list in the hopes
of finding pages that are not really in use. The selection criteria that are used
by the pageout daemon to select pages to move from the active list to the inac-
tive list are described later in this section. When the free-memory list drops
too low, the pageout daemon traverses the inactive list to create more free
pages.

4. Free: Free pages have no useful contents, and will be used to fulfill new page-
fault requests.

The pages of main memory that can be used by user processes are those on the
active, inactive, and free lists.

Ideally, the kernel would maintain a working set for each process in the sys-
tem. It would then know how much memory to provide to each process to mini-
mize the latter's page-fault behavior. The 4.4BSD virtual-memory system does not
use the working-set model because it lacks accurate information about the refer-
ence pattern of a process. It does track the number of pages held by a process via
the resident-set size, but it does not know which of the resident pages constitute
the working set. In 4.3BSD, the count of resident pages was used in making deci-
sions on whether there was enough memory for a process to be swapped in when
that process wanted to run. This feature was not carried over to the 4.4BSD vir-
tual-memory system. Because it worked well during periods of high memory
demand, this feature should be incorporated in future 4.4BSD systems.

Paging Parameters

The memory-allocation needs of processes compete constantly, through the page-
fault handler, with the overall system goal of maintaining a minimum threshold of
pages in the free list. As the system operates, it monitors main-memory utiliza-
tion, and attempts to run the pageout daemon frequently enough to keep the
amount of free memory at or above the minimum threshold. When the page-allo-
cation routine, vm_page_alloc(), determines that more memory is needed, it
awakens the pageout daemon.

The work of the pageout daemon is controlled by several parameters that are
calculated during system startup. These parameters are fine tuned by the pageout
daemon as it runs based on the memory available for processes to use. In general,
the goal of this policy is to maintain free memory at, or above, a minimum thresh-
old. The pageout daemon implements this policy by reclaiming pages for the free
list. The number of pages to be reclaimed by the pageout daemon is a function of
the memory needs of the system. As more memory is needed by the system, more
pages are scanned. This scanning causes the number of pages freed to increase.

The pageout daemon determines the memory needed by comparing the num-
ber of free memory pages against several parameters. The first parameter,
free_target, specifies a threshold (in pages) for stopping the pageout daemon.
When available memory is above this threshold, no pages will be paged out by the
pageout daemon. Free_target is normally 7 percent of user memory. The other

interesting limit specifies the minimum free memory considered tolerable,
free_min; this limit is normally 5 percent of user memory. If the amount of free
memory goes below free_min, the pageout daemon is started. The desired size of
the list of inactive pages is kept in inactive_target\ this limit is normally 33 per-
cent of available user memory. The size of this threshold changes over time as
more or less of the system memory is wired down by the kernel. If the number of
inactive pages goes below inactive _tar get, the pageout daemon begins scanning
the active pages to find candidates to move to the inactive list.

The desired values for the paging parameters are communicated to the page-
out daemon through global variables. Likewise, the pageout daemon records its
progress in a global variable. Progress is measured by the number of pages
scanned over each interval that it runs.

The Pageout Daemon
Page replacement is done by the pageout daemon. When the pageout daemon
reclaims pages that have been modified, it is responsible for writing them to the
swap area. Thus, the pageout daemon must be able to use normal kernel-synchro-
nization mechanisms, such as sleep(). It therefore runs as a separate process, with
its own process structure, user structure, and kernel stack. Like init, the pageout
daemon is created by an internal fork operation during system startup (see Section
14.5); unlike init, however, it remains in kernel mode after the fork. The pageout
daemon simply enters vm_pageout() and never returns. Unlike other users of the
disk I/O routines, the pageout process needs to do its disk operations asyn-
chronously so that it can continue scanning in parallel with disk writes.

The goal of the pageout daemon is to keep at least 5 percent of the memory
on the free list. Whenever an operation that uses pages causes the amount of free
memory to fall below this threshold, the pageout daemon is awakened. It starts by
checking to see whether any processes are eligible to be swapped out (see the next
subsection). If the pageout daemon finds and swaps out enough eligible processes
to meet the free-page target, then the pageout daemon goes to sleep to await
another memory shortage.

If there is still not enough free memory, the pageout daemon scans the queue
of inactive pages, starting with the oldest page and working toward the youngest.
It frees those pages that it can until the free-page target is met or it reaches the end
of the inactive list. The following list enumerates the possible actions that can be
taken with each page:

• If the page is clean and unreferenced, move it to the free list and increment the
free-list count.

• If the page has been referenced by an active process, move it from the inactive
list back to the active list.

• If the page is dirty and is being written to the swap area or the filesystem, skip it
for now. The expectation is that the I/O will have completed by the next time
that the pageout daemon runs, so the page will be clean and can be freed.



• If the page is dirty but is not actively being written to the swap space or the
filesystem, then start an I/O operation to get it written. As long as a pageout is
needed to save the current page, adjacent pages of the region that are resident,
inactive, and dirty are clustered together so that the whole group can be written
to the swap area or filesystem in a single I/O operation. If they are freed before
they are next modified, the free operation will not require the page to be written.

When the scan of the inactive list completes, the pageout daemon checks the size
of the inactive list. Its target is to keep one-third of the available (nonwired) pages
on the inactive list. If the inactive queue has gotten too small, the pageout daemon
moves pages from the active list over to the inactive list until it reaches its target.
Like the inactive list, the active list is sorted into a least recently activated order:
The pages selected to be moved to the inactive list are those that were activated
least recently. Vm_pageout() then goes to sleep until free memory drops below
the target.

The procedure for writing the pages of a process to the swap device, a page
push, is somewhat complicated. The mechanism used by the pageout daemon to
write pages to the swap area differs from normal I/O in two important ways:

1. The dirty pages are mapped into the virtual address space of the kernel, rather
than being part of the virtual address space of the process.

2. The write operation is done asynchronously.

Both these operations are done by the swap_pager_putpage(} routine. Because
the pageout daemon does not synchronously wait while the I/O is done, it
does not regain control after the I/O operation completes. Therefore,
swap_pager_putpage() marks the buffer with a callback flag and sets the routine
for the callback to be swap_pager_iodone(). When the push completes,
swap_pager_iodone() is called; it places the buffer on the list of completed page-
outs. If the pageout daemon has finished initiating paging I/O and has gone to
sleep, swap_pager_iodone() awakens it so that it can process the completed page-
out list. If the pageout daemon is still running, it will find the buffer the next time
that it processes the completed pageout list.

Doing the write asynchronously allows the pageout daemon to continue exam-
ining pages, possibly starting additional pushes. Because the number of swap
buffers is constant, the kernel must take care to ensure that a buffer is available
before a commitment to a new page push is made. If the pageout daemon has used
all the swap buffers, swap_pager_putpage() waits for at least one write operation to
complete before it continues. When pageout operations complete, the buffers are
added to the list of completed pageouts and, if a swap_pager_putpage() was
blocked awaiting a buffer, swap_pager_putpage() is awakened.

The list of completed pageouts is processed by swap_pager_clean(} each
time a swap-pager instance is deallocated, before a new swap operation is started,
and before the pageout daemon sleeps. For each pageout operation on the list,
each page (including each in a page cluster) is marked as clean, has its busy bit

cleared, and has any processes waiting for it awakened. The page is not moved
from its active or inactive list to the free list. If a page remains on the inactive list,
it will eventually be moved to the free list during a future pass of the pageout dae-
mon. A count of pageouts in progress is kept for the pager associated with each
object; this count is decremented when the pageout completes, and, if the count
goes to zero, a wakeup() is issued. This operation is done so that an object that is
deallocating a swap pager can wait for the completion of all pageout operations
before freeing the pager's references to the associated swap space.

Swapping
Although swapping is generally avoided, there are several times when it is used in
4.4BSD to address a serious resource shortage. Swapping is done in 4.4BSD when
any of the following occurs:

• The system becomes so short of memory that the paging process cannot free
memory fast enough to satisfy the demand. For example, a memory shortfall
may happen when multiple large processes are run on a machine lacking enough
memory for the minimum working sets of the processes.

• Processes are completely inactive for more than 20 seconds. Otherwise, such
processes would retain a few pages of memory associated with the user structure
and kernel stack.

Swap operations completely remove a process from main memory, including the
process page tables, the pages of the data and the stack segments that are not
already in swap space, and the user area.

Process swapping is invoked only when paging is unable to keep up with
memory needs or when short-term resource needs warrant swapping a process. In
general, the swap-scheduling mechanism does not do well under heavy load; sys-
tem performance is much better when memory scheduling can be done by the
page-replacement algorithm than when the swap algorithm is used.

Swapout is driven by the pageout daemon. If the pageout daemon can find
any processes that have been sleeping for more than 20 seconds (maxslp, the cut-
off for considering the time sleeping to be "a long time"), it will swap out the one
sleeping for the longest time. Such processes have the least likelihood of making
good use of the memory that they occupy; thus, they are swapped out even if they
are small. If none of these processes are available, the pageout daemon will swap
out a process that has been sleeping for a shorter time. If memory is still desper-
ately low, it will select to swap out the runnable process that has been resident the
longest. These criteria attempt to avoid swapping entirely until the pageout dae-
mon is clearly unable to keep enough memory free. Once swapping of runnable
processes has begun, the processes eligible for swapping should take turns in
memory so that no process is frozen out entirely.

The mechanics of doing a swap out are simple. The swapped-in process flag
P_INMEM is cleared to show that the process is not resident in memory, and, if



necessary, the process is removed from the runnable process queue. Its user area
is then marked as pageable, which allows the user area pages, along with any other
remaining pages for the process, to be paged out via the standard pageout mecha-
nism. The swapped-out process cannot be run until after it is swapped back into
memory.

The Swap-In Process

Swap-in operations are done by the swapping process, process 0. This process is
the first one created by the system when the latter is started. The swap-in policy
of the swapper is embodied in the scheduler() routine. This routine swaps pro-
cesses back in when memory is available and they are ready to run. At any time,
the swapper is in one of three states:

1. Idle: No swapped-out processes are ready to be run. Idle is the normal state.

2. Swapping in: At least one runnable process is swapped out, and scheduler()
attempts to find memory for it.

3. Swapping out: The system is short of memory or there is not enough memory
to swap in a process. Under these circumstances, scheduler() awakens the
pageout daemon to free pages and to swap out other processes until the mem-
ory shortage abates.

If more than one swapped-out process is runnable, the first task of the swapper is
to decide which process to swap in. This decision may affect the decision whether
to swap out another process. Each swapped-out process is assigned a priority
based on

• The length of time it has been swapped out

• Its nice value

• The amount of time it was asleep since it last ran

In general, the process that has been swapped out longest or was swapped out
because it was not runnable will be brought in first. Once a process is selected,
the swapper checks to see whether there is enough memory free to swap in the
process. Historically, the 4.3BSD system required as much memory to be avail-
able as was occupied by the process before that process was swapped. Under
4.4BSD, this requirement was reduced to a requirement that only enough memory
be available to hold the swapped-process user structure and kernel stack. If there
is enough memory available, the process is brought back into memory. The user
area is swapped in immediately, but the process loads the rest of its working set by
demand paging from the swap device. Thus, not all the memory that is committed
to the process is used immediately.

The procedure for swapin of a process is the reverse of that for swapout:

1. Memory is allocated for the user structure and kernel stack, and they are read
back from swap space.

2. The process is marked as resident and is returned to the run queue if it is
runnable (i.e., is not stopped or sleeping).

After the swapin completes, the process is ready to run like any other, except
that it has no resident pages. It will bring in the pages that it needs by faulting
them.

Portability
Everything discussed in this chapter up to this section has been part of the
machine-independent data structures and algorithms. These parts of the virtual-
memory system require little change when 4.4BSD is ported to a new architecture.
This section will describe the machine-dependent parts of the virtual-memory sys-
tem; the parts of the virtual-memory system that must be written as part of a port
of 4.4BSD to a new architecture. The machine-dependent parts of the virtual-
memory system control the hardware memory-management unit (MMU). The
MMU implements address translation and access control when virtual memory is
mapped onto physical memory.

One common MMU design uses memory-resident forward-mapped page
tables. These page tables are large contiguous arrays indexed by the virtual
address. There is one element, or page-table entry, in the array for each virtual
page in the address space. This element contains the physical page to which the
virtual page is mapped, as well as access permissions, status bits telling whether
the page has been referenced or modified, and a bit indicating whether the entry
contains valid information. For a 4-Gbyte address space with 4-Kbyte virtual
pages and a 32-bit page-table entry, 1 million entries, or 4 Mbyte, would be
needed to describe an entire address space. Since most processes use little of their
address space, most of the entries would be invalid, and allocating 4 Mbyte of
physical memory per process would be wasteful. Thus, most page-table structures
are hierarchical, using two or more levels of mapping. With a hierarchical struc-
ture, different portions of the virtual address are used to index the various levels of
the page tables. The intermediate levels of the table contain the addresses of the
next lower level of the page table. The kernel can mark as unused large contigu-
ous regions of an address space by inserting invalid entries at the higher levels of
the page table, eliminating the need for invalid page descriptors for each individ-
ual unused virtual page.

This hierarchical page-table structure requires the hardware to make frequent
memory references to translate a virtual address. To speed the translation process,
most page-table-based MMUs also have a small, fast, fully associative hardware
cache of recent address translations, a structure known commonly as a translation
lookaside buffer (TLB). When a memory reference is translated, the TLB is first





current
address-space

register

V
V
V
V

M
M
M
M

R
R
R
R

ACC
ACC
ACC
ACC

•
•
•

V M R ACC
segment table

V
V
V
V

M
M
M
M

R
R
R
R

ACC
ACC
ACC
ACC

•
•
•

V M R ACC

V
V
V
V

M
M
M
M

R
R
R
R

ACC
ACC
ACC
ACC

•
•
•

V M R ACC

memory
pages

page tables
Figure 5.16 Two-level page-table organization. Key: V— page-valid bit; M— page-
modified bit; R — page-referenced bit; ACC — page-access permissions.

•The 10 most significant bits of the virtual address are used to index into the
active segment table.

• If the selected segment-table entry is valid and the access permissions grant the
access being made, the next 10 bits of the virtual address are used to index into
the page-table page referenced by the segment-table entry.

• If the selected page-table entry is valid and the access permissions match, the
final 12 bits of the virtual address are combined with the physical page refer-
enced by the page-table entry to form the physical address of the access.

The Role of the pmap Module

The machine-dependent code describes how the physical mapping is done between
the user-processes and kernel virtual addresses and the physical addresses of the
main memory. This mapping function includes management of access rights in
addition to address translation. In 4.4BSD, the physical mapping (pmap) module
manages machine-dependent translation and access tables that are used either
directly or indirectly by the memory-management hardware. For example, on the
HP300, the pmap maintains the memory-resident segment and page tables for each
process, as well as for the kernel. The machine-dependent state required to
describe the translation and access rights of a single page is often referred to as a
mapping or mapping structure.

The 4.4BSD pmap interface is nearly identical to that in Mach 3.0: it shares
many design characteristics. The pmap module is intended to be logically

independent of the higher levels of the virtual-memory system. The interface
deals strictly in machine-independent page-aligned virtual and physical addresses
and in machine-independent protections. The machine-independent page size may
be a multiple of the architecture-supported page size. Thus, pmap operations must
be able to affect more than one physical page per logical page. The machine-inde-
pendent protection is a simple encoding of read, write, and execute permission
bits. The pmap must map all possible combinations into valid architecture-spe-
cific values.

A process's pmap is considered to be a cache of mapping information kept in
a machine-dependent format. As such, it does not need to contain complete state
for all valid mappings. Mapping state is the responsibility of the machine-inde-
pendent layer. With one exception, the pmap module may throw away mapping
state at its discretion to reclaim resources. The exception is wired mappings,
which should never cause a fault that reaches the machine-independent vm_fault()
routine. Thus, state for wired mappings must be retained in the pmap until it is
removed explicitly.

In theory, the pmap module may also delay most interface operations, such as
removing mappings or changing their protection attributes. It can then do many of
them batched together, before doing expensive operations such as flushing the
TLB. In practice, however, this delayed operation has never been used, and it is
unclear whether it works completely. This feature was dropped from later releases
of the Mach 3.0 pmap interface.

In general, pmap routines may act either on a set of mappings defined by a vir-
tual address range or on all mappings for a particular physical address. Being able
to act on individual or all virtual mappings for a physical page requires that the
mapping information maintained by the pmap module be indexed by both virtual
and physical address. For architectures such as the HP300 that support memory-res-
ident page tables, the virtual-to-physical, or forward, lookup may be a simple emu-
lation of the hardware page-table traversal. Physical-to-virtual, or reverse, lookup
requires an inverted page table: an array with one entry per physical page indexed
by the physical page number. Entries in this table may be either a single mapping
structure, if only one virtual translation is allowed per physical page, or a pointer to
a list of mapping structures, if virtual-address aliasing is allowed. The kernel typi-
cally handles forward lookups in a system without page tables by using a hash table
to map virtual addresses into mapping structures in the inverted page table.

There are two strategies that can be used for management of pmap memory
resources, such as user-segment or page-table memory. The traditional and easiest
approach is for the pmap module to manage its own memory. Under this strategy,
the pmap module can grab a fixed amount of wired physical memory at system
boot time, map that memory into the kernel's address space, and allocate pieces of
the memory as needed for its own data structures. The primary benefit is that this
approach isolates the pmap module's memory needs from those of the rest of the
system and limits the pmap module's dependencies on other parts of the system.
This design is consistent with a layered model of the virtual-memory system in
which the pmap is the lowest, and hence self-sufficient, layer.



Memory Management

The disadvantage is that this approach requires the duplication of many of the
memory-management functions. The pmap module has its own memory allocator
and deallocator for its private heap—a heap that is statically sized and cannot be
adjusted for varying system wide memory demands. For an architecture with
memory-resident page tables, it must keep track of noncontiguous chunks of pro-
cesses' page tables, because a process may populate its address space sparsely.
Handling this requirement entails duplicating much of the standard list-manage-
ment code, such as that used by the vm_map code.

An alternative approach, used by the HP300, is to use the higher-level virtual-
memory code recursively to manage some pmap resources. Here, the page table
for a user process appears as a virtually contiguous 4-Mbyte array of page-table
entries in the kernel's address space. Using higher-level allocation routines, such
as kmem_alloc_wait(), ensures that physical memory is allocated only when
needed and from the systemwide free-memory pool. Page tables and other pmap
resources also can be allocated from pageable kernel memory. This approach eas-
ily and efficiently supports large sparse address spaces, including the kernel's own
address space.

The primary drawback is that this approach violates the independent nature of
the interface. In particular, the recursive structure leads to deadlock problems
with global multiprocessor spin locks that can be held while the kernel is calling a
pmap routine. Another problem for page-table allocation is that page tables are
typically hierarchically arranged; they are not flat, as this technique represents
them. With a two-level organization present on some HP300 machines, the pmap
module must be aware that a new page has been allocated within the 4-Mbyte
range, so that the page's physical address can be inserted into the segment table.
Thus, the advantage of transparent allocation of physical memory is partially lost.
Although the problem is not severe in the two-level case, the technique becomes
unwieldy for three or more levels.

The pmap data structures are contained in the machine-dependent include
directory in the file pmap.h. Most of the code for these routines is in the
machine-dependent source directory in the file pmap.c. The main tasks of the
pmap module are these:

• System initialization and startup (pmap_bootstrap_alloc(), pmap_bootstrap(),
pmap_init())

• Allocation and deallocation of mappings of physical to virtual pages
(pmap_enter(), pmap_remove ())

• Change of access protections and other attributes of mappings
(pmap_change_wiring(), pmap_page_protect(), pmap_protect())

• Maintenance of physical page-usage information (pmap_clear_modify(),
pmap_clear_reference (), pmap_is_modified(), pmap_is_referenced(})

• Initialization of physical pages (pmap_copy_page(), pmap_zero_page(})

• Management of internal data structures (pmap_create(), pmap_reference(),
pmap _destroy (), pmap_pinit(), pmap_release()pmap_copy(),
pmap_pageable(), pmap_collect(), pmap_update())

Each of these tasks will be described in the following subsections.

Initialization and Startup
The first step in starting up the system is for the loader to bring the kernel image
from a disk or the network into the physical memory of the machine. The kernel
load image looks much like that of any other process; it contains a text segment,
an initialized data segment, and an uninitialized data segment. The loader places
the kernel contiguously into the beginning of physical memory. Unlike a user pro-
cess that is demand paged into memory, the text and data for the kernel are read
into memory in their entirety. Following these two segments, the loader zeros an
area of memory equal to the size of the kernel's uninitialized memory segment.
After loading the kernel, the loader passes control to the starting address given in
the kernel executable image. When the kernel begins executing, it is executing
with the MMU turned off. Consequently, all addressing is done using the direct
physical addresses.

The first task undertaken by the kernel is to set up the kernel pmap, and any
other data structures that are necessary to describe the kernel's virtual address
space and to make it possible to enable the MMU. This task is done in
pmap_bootstrapO. On the HP300, bootstrap tasks include allocating and initializ-
ing the segment and page tables that map the statically loaded kernel image and
memory-mapped I/O address space, allocating a fixed amount of memory for ker-
nel page-table pages, allocating and initializing the user structure and kernel stack
for the initial process, allocating the empty segment table initially shared by all
processes, reserving special areas of the kernel's address space, and initializing
assorted critical pmap-internal data structures. After this call, the MMU is
enabled, and the kernel begins running in the context of process zero.

Once the kernel is running in its virtual address space, it proceeds to initialize
the rest of the system. This initialization starts with a call to set up the machine-
independent portion of the virtual-memory system and concludes with a
call to pmap_init(). Any subsystem that requires dynamic memory allocation
between enabling of the MMU and the call to pmap_init() must use
pmap_bootstrap_alloc(). Memory allocated by this routine will not be managed
by the virtual-memory system and is effectively wired down. Pmap_init() allo-
cates all resources necessary to manage multiple user address spaces and synchro-
nizes the higher level kernel virtual-memory data structures with the kernel pmap.

On the HP300, it first marks as in use the areas of the kernel's vm_map that
were allocated during the bootstrap. These marks prevent future high-level alloca-
tions from trying to use those areas. Next, it allocates a range of kernel virtual
address space, via a kernel submap, to use for user-process page tables. Pieces of
this address range are allocated when processes are created and are deallocated



when the processes exit. These areas are not populated with memory on
allocation. Page-table pages are allocated on demand when a process first accesses
memory that is mapped by an entry in that page of the page table. This allocation
is discussed later, in the mapping-allocation subsection. Page tables are allocated
from their own submap to limit the amount of kernel virtual address space that
they consume. At 4 Mbyte per process page table, 1024 active processes would
occupy the entire kernel address space. The available page-table address-space
limit is approximately one-half of the entire address space.

Pmap_init allocates a fixed amount of wired memory to use for kernel page-
table pages. In theory, these pages could be allocated on demand from the general
free-memory pool, as user page-table pages are; in practice, however, this
approach leads to deadlocks, so a fixed pool of memory is used.

After determining the number of pages of physical memory remaining, the
startup code allocates the inverted page table, pv_table. This table is an array of
pv_entry structures. Each pv_entry describes a single address translation and
includes the virtual address, a pointer to the associated pmap structure for that vir-
tual address, a link for chaining together multiple entries mapping this physical
address, and additional information specific to entries mapping page-table pages.
Figure 5.17 shows the pv_entry references for a set of pages that have a single
mapping. The pv_table contains actual instances of pv_entry structures, rather
than pointers; this strategy optimizes the common case where physical pages have
only one mapping. The purpose of the pv_entry structures is to identify the
address space that has the page mapped. Rather than having a pointer from the
vm_page structure to its corresponding pv_entry, the relationship is based on the
array index of the two entries. In Fig. 5.17, the object is using pages 5, 18, and
79; thus, the corresponding pv_entry structures 5, 18, and 79 point to the physical
map for the address space that has page tables referencing those pages.

Each pv_entry can reference only one physical map. When an object
becomes shared between two or more processes, each physical page of memory
becomes mapped into two or more sets of page tables. To track these multiple ref-
erences, the pmap module must create chains of pv_entry structures, as shown in

Figure 5.17 Physical pages with a single mapping.

start addr
end addr
obj offset

• • •

— — vm_page 5

vm_page 18

vm_page 19
\

lode / object
vmspace vm_map_entry

vmspace vm_map_entry

Figure 5.18 Physical pages with multiple mappings.

Fig. 5.18. These additional structures are allocated dynamically and are linked
from a list headed by the pv_entry that was allocated in the initial table. For
example, implementation of copy-on-write requires that the page tables be set to
read-only in all the processes sharing the object. The pmap module can imple-
ment this request by walking the list of pages associated with the object to be
made copy-on-write. For each page, it finds that pages' corresponding pv_entry
structure. It then makes the appropriate change to the page table associated with
that pv_entry structure. If that pv_entry structure has any additional pv_entry
structures linked off it, the pmap module traverses them, making the same modifi-
cation to their referenced page-table entry.

Finally, a page-attribute array is allocated with 1 byte per physical page. This
array contains reference and dirty information and is described later in the subsec-
tion on the management of page usage information. The first and last physical
addresses of the area covered by both the pv_entry and attribute arrays are
recorded, and are used by other routines for bounds checking. This area is
referred to as the pmap-managed memory.

Mapping Allocation and Deallocation
The primary responsibility of the pmap module is validating (allocating) and
invalidating (deallocating) mappings of physical pages to virtual addresses. The
physical pages represent cached portions of an object that is providing data from a
file or an anonymous memory region. A physical page is bound to a virtual
address because that object is being mapped into a process's address space either



explicitly by mmap or implicitly by fork or exec. Physical-to-virtual address
mappings are not created at the time that the object is mapped; rather, their cre-
ation is delayed until the first reference to a particular page is made. At that point,
an access fault will occur, and pmap_enter() will be called. Pmap_enter is
responsible for any required side effects associated with creation of a new map-
ping. Such side effects are largely the result of entering a second translation for an
already mapped physical page—for example, as the result of a copy-on-write
operation. Typically, this operation requires flushing uniprocessor or multiproces-
sor TLB or cache entries to maintain consistency.

In addition to its use to create new mappings, pmap_enter() may also be
called to modify the wiring or protection attributes of an existing mapping or to
rebind an existing mapping for a virtual address to a new physical address. The
kernel can handle changing attributes by calling the appropriate interface routine,
described in the next subsection. Changing the target physical address of a map-
ping is simply a matter of first removing the old mapping and then handling it like
any other new mapping request.

Pmap_enter() is the only routine that cannot lose state or delay its action.
When called, it must create a mapping as requested, and it must validate that map-
ping before returning to the caller. On the HP300, pmap_enter() takes the follow-
ing actions:

1. If no page-table exists for the process, a 4-Mbyte range is allocated in the ker-
nel's address space to map the process's address space.

2. If the process has no segment table of its own (i.e., it still references the initial
shared segment table), a private one is allocated.

3. If a physical page has not yet been allocated to the process page-table at the
location required for the new mapping, that is done now. Kernel page-table
pages are acquired from the reserved pool allocated at bootstrap time. For
user processes, the kernel does the allocation by simulating a fault on the
appropriate location in the 4-Mbyte page-table range. This fault forces alloca-
tion of a zero-filled page and makes a recursive call to pmap_enter() to enter
the mapping of that page in the kernel's pmap. For either kernel or user page-
table pages, the kernel mapping for the new page is flagged as being a page-
table page, and the physical address of the page is recorded in the segment
table. Recording this address is more complicated on the 68040 that has the
top two levels of the page-table hierarchy squeezed into the single segment-
table page.

After ensuring that all page-table resources exist for the mapping being
entered, pmap_enter() validates or modifies the requested mapping as follows:

1. Check to see whether a mapping structure already exists for this virtual-to-
physical address translation. If one does, the call must be one to change the
protection or wiring attributes of the mapping; it is handled as described in the
next subsection.

2. Otherwise, if a mapping exists for this virtual address but it references a differ-
ent physical address, that mapping is removed.

3. If the indicated mapping is for a user process, the kernel page-table page con-
taining that page-table entry is marked as nonpageable. Making this marking
is an obscure way of keeping page-table pages wired as long as they contain
any valid mappings. The vm_map_pageable() routine keeps a wired count for
every virtual page, wiring the page when the count is incremented from zero
and unwiring the page when the count is decremented to zero. The wiring and
unwiring calls trigger a call to pmap_pageable(), whose function is described
in the last subsection on the management of internal data structures. Wiring a
page-table page avoids having it involuntarily paged out, effectively invalidat-
ing all pages that it currently maps. A beneficial side effect is that, when a
page-table page is finally unwired, it contains no useful information and does
not need to be paged out. Hence, no backing store is required for page-table
pages.

4. If the physical address is outside the range managed by the pmap module (e.g.,
a frame-buffer page), no pv_table entry is allocated; only a page-table entry is
created. Otherwise, for the common case of a new mapping for a managed
physical page, a pvjtable entry is created.

5. For HP300 machines with a virtually-indexed cache, a check is made to see
whether this physical page already has other mappings. If it does, all map-
pings may need to be marked cache inhibited, to avoid cache inconsistencies.

6. A page-table entry is created and validated, with cache and TLB entries flushed
as necessary.

When an object is unmapped from an address space, either explicitly by
munmap( ) or implicitly on process exit, the pmap module is invoked to invalidate
and remove the mappings for all physical pages caching data for the object.
Unlike pmap_enter(), pmap_remove() can be called with a virtual-address range
encompassing more than one mapping. Hence, the kernel does the unmapping by
looping over all virtual pages in the range, ignoring those for which there is no
mapping and removing those for which there is one. Also unlike pmap_enter(),
the implied action can be delayed until pmap_update(), described in the next sub-
section, is called. This delay may enable the pmap to optimize the invalidation
process by aggregating individual operations.

Pmap_remove() on the HP300 is simple. It loops over the specified address
range, invalidating individual page mappings. Since pmap_remove() can be
called with large sparsely allocated regions, such as an entire process virtual
address range, it needs to skip efficiently invalid entries within the range. It skips
invalid entries by first checking the segment-table entry for a particular address
and, if an entry is invalid, skipping to the next 4-Mbyte boundary. This check also
prevents unnecessary allocation of a page-table page for the empty area. When all
page mappings have been invalidated, any necessary global cache flushing is done.



To invalidate a single mapping, the kernel locates and marks as invalid the
appropriate page-table entry. The reference and modify bits for the page are saved
in the separate attribute array for future retrieval. If this mapping was a user map-
ping, vm_map_pageable() is called to decrement the wired count on the page-
table page. When the count reaches zero, the page-table page can be reclaimed
because it contains no more valid mappings. If the physical address from the
mapping is outside the managed range, nothing more is done. Otherwise, the
pv_table entry is found and is deallocated. When a user page-table page is
removed from the kernel's address space (i.e., as a result of removal of the final
valid user mapping from that page), the process's segment table must be updated.
The kernel does this update by invalidating the appropriate segment-table entry.

Change of Access and Wiring Attributes for Mappings
An important role of the pmap module is to manipulate the hardware access pro-
tections for pages. These manipulations may be applied to all mappings covered
by a virtual-address range within a pmap via pmap_protect(), or they may be
applied to all mappings of a particular physical page across pmaps via
pmap_page_protect(). There are two features common to both calls. First, either
form may be called with a protection value of VM_PROT_NONE to remove a range
of virtual addresses or to remove all mappings for a particular physical page. Sec-
ond, these routines should never add write permission to the affected mappings;
thus, calls including VM_PROT_WRITE should make no changes. This restriction
is necessary for the copy-on-write mechanism to function properly. Write permis-
sion is added only via calls to pmap_enter().

Pmap_protect() is used primarily by the mprotect system call to change the
protection for a region of process address space. The strategy is similar to that of
pmap_remove(): Loop over all virtual pages in the range and apply the change to
all valid mappings that are found. Invalid mappings are left alone. As occurs with
pmap_remove(), the action may be delayed until pmap_update(} is called.

For the HP300, pmap_protect() first checks for the special cases. If the
requested permission is VM_PROT_NONE, it calls pmap_remove() to handle the
revocation of all access permission. If VM_PROT_WRITE is included, it just
returns immediately. For a normal protection value, pmap_remove(} loops over
the given address range, skipping invalid mappings. For valid mappings, the page-
table entry is looked up and, if the new protection value differs from the current
value, the entry is modified and any TLB and cache flushing done. As occurs with
pmap_remove(), any global cache actions are delayed until the entire range has
been modified.

Pmap_page_protect() is used internally by the virtual-memory system for
two purposes. It is called to set read-only permission when a copy-on-write oper-
ation is set up (e.g., during fork). It also removes all access permissions before
doing page replacement to force all references to a page to block pending the com-
pletion of its operation. In Mach, this routine used to be two separate
routines—pmap_copy_on_write() and pmap_remove_all()—and many pmap
modules implement pmap_page_protect() as a call to one or the other of these
functions, depending on the protection argument.

In the HP300 implementation of pmap_page_protect(), a check is made to
ensure that this page is a managed physical page and that VM_PROT_WRITE was
not specified. If either of these conditions is not met, pmap_page_protect()
returns without doing anything. Otherwise, it locates the pv_table entry for the
specified physical page. If the request requires the removal of mappings,
pmap_page_protect() loops over all pv_entry structures that are chained together
for this page, invalidating the individual mappings as described in the previous
subsection. Note that TLB and cache flushing differ from those for
pmap_remove(), since they must invalidate entries from multiple process contexts,
rather than invalidating multiple entries from a single process context.

If pmap_page_protect( ) is called to make mappings read-only, then it loops
over all pv_entry structures for the physical address, modifying the appropriate
page-table entry for each. As occurs with pmap_protect(), the entry is checked to
ensure that it is changing before expensive TLB and cache flushes are done.

Pmap_change_wiring() is called to wire or unwire a single machine-indepen-
dent virtual page within a pmap. As described in the previous subsection, wiring
informs the pmap module that a mapping should not cause a hardware fault that
reaches the machine-independent vm_fault( ) code. Wiring is typically a software
attribute that has no affect on the hardware MMU state: It simply tells the pmap
not to throw away state about the mapping. As such, if a pmap module never dis-
cards state, then it is not strictly necessary for the module even to track the wired
status of pages. The only side effect of not tracking wiring information in the
pmap is that the mlock system call cannot be completely implemented without a
wired page-count statistic.

The HP300 pmap implementation maintains wiring information. An
unused bit in the page-table-entry structure records a page's wired status.
Pmap_change_wiring() sets or clears this bit when it is invoked with a valid vir-
tual address. Since the wired bit is ignored by the hardware, there is no need to
modify the TLB or cache when the bit is changed.

Management of Page-Usage Information
The machine-independent page-management code needs to be able to get basic
information about the usage and modification of pages from the underlying hard-
ware. The pmap module facilitates the collection of this information without
requiring the machine-independent code to understand the details of the mapping
tables by providing a set of interfaces to query and clear the reference and modify
bits. The pageout daemon can call pmap_is_modified() to determine whether a
page is dirty. If the page is dirty, the pageout daemon can write it to backing store,
then call pmap_clear_modify() to clear the modify bit. Similarly, when the page-
out daemon pages out or inactivates a page, it uses pmap_clear_reference(} to
clear the reference bit for the page. Later, when it considers moving the page
from the inactive list, it uses pmap_is_referenced() to check whether the page has
been used since the page was inactivated. If the page has been used, it is moved
back to the active list; otherwise, it is moved to the free list.

One important feature of the query routines is that they should return valid
information even if there are currently no mappings for the page in question.



Thus, referenced and modified information cannot just be gathered from the
hardware-maintained bits of the various page-table or TLB entries; rather, there
must be an auxiliary array where the information is retained when a mapping is
removed.

The HP300 implementation of these routines is simple. As mentioned in the
subsection on initialization and startup, a page-attribute array with one entry per
managed physical page is allocated at boot time. Initially zeroed, the entries are
updated whenever a mapping for a page is removed. The query routines return
FALSE if they are not passed a managed physical page. Otherwise, they test the
referenced or modified bit of the appropriate attribute-array entry and, if the bit is
set, return TRUE immediately. Since this attribute array contains only past infor-
mation, they still need to check status bits in the page-table entries for currently
valid mappings of the page. Thus, they loop over all pv_entry structures associ-
ated with the physical page and examine the appropriate page-table entry for each.
They can return TRUE as soon as they encounter a set bit or FALSE if the bit is not
set in any page-table entry.

The clear routines also return immediately if they are not passed a managed
physical page. Otherwise, the referenced or modified bit is cleared in the attribute
array, and they loop over all pv_entry structures associated with the physical page,
clearing the hardware-maintained page-table-entry bits. This final step may
involve TLB or cache flushes along the way or afterward.

Initialization of Physical Pages

Two interfaces are provided to allow the higher-level virtual-memory routines to
initialize physical memory. Pmap_zero_page() takes a physical address and fills
the page with zeros. Pmap_copy_page() takes two physical addresses and copies
the contents of the first page to the second page. Since both take physical
addresses, the pmap module will most likely have first to map those pages into the
kernel's address space before it can access them. Since mapping and unmapping
single pages dynamically may be expensive, an alternative is to have all physical
memory permanently mapped into the kernel's address space at boot time. With
this technique, addition of an offset to the physical address is all that is needed to
create a usable kernel virtual address.

The HP300 implementation has a pair of global kernel virtual addresses
reserved for zeroing and copying pages, and thus is not as efficient as it could be.
Pmap_zero_page() calls pmap_enter() with the reserved virtual address and the
specified physical address, calls bzero() to clear the page, and then removes the
temporary mapping with the single translation-invalidation primitive used by
pmap_remove() Similarly, pmap_copy_page() creates mappings for both physi-
cal addresses, uses bcopy( ) to make the copy, and then removes both mappings.

Management of Internal Data Structures

The remaining pmap interface routines are used for management and synchroniza-
tion of internal data structures. Pmap_create() creates an instance of the
machine-dependent pmap structure. The value returned is the handle used for all

other pmap routines. Pmap_reference() increments the reference count for a
particular pmap. In theory this reference count allows a pmap to be shared by
multiple processes; in practice, only the kernel submaps that use the kernel's pmap
share references. Since kernel submaps as well as the kernel map are permanent,
there is currently no real need to maintain a reference count. Pmap_destroy()
decrements the reference count of the given pmap and deallocates the pmap's
resources when the count drops to zero.

Because of an incomplete transition in the virtual-memory code, there is also
another set of routines to create and destroy pmaps effectively. Pmap_pinit() ini-
tializes an already-existing pmap structure, and pmap_release() frees any
resources associated with a pmap without freeing the pmap structure itself. These
routines were added in support of the vm_space structure that encapsulates all
storage associated with a process's virtual-memory state.

On the HP300, the create and destroy routines use the kernel malloc() and
free() routines to manage space for the pmap structure, and then use pmap_pinit()
and pmap_release() to initialize and release the pmap. Pmap__pinit() sets the pro-
cess segment-table pointer to the common empty segment table. As noted earlier
in the subsection on mapping allocation and deallocation, page-table allocation is
delayed until the first access to the process's address space. Pmap_release() sim-
ply frees the process segment and page tables.

Pmap_copy() and pmap_pageable() are optional interface routines that are
used to provide hints to the pmap module about the use of virtual-memory
regions. Pmap_copy() is called when a copy-on-write operation has been done.
Its parameters include the source and destination pmap, and the virtual address
and the length of the region copied. On the HP300, this routine does nothing.
Pmap_pageable() indicates that the specified address range has been either wired
or unwired. The HP300 pmap module uses this interface to detect when a page-
table page is empty and can be released. The current implementation does not
free the page-table page; it just clears the modified state of the page and allows the
page to be reclaimed by the pageout daemon as needed. Clearing the modify bit is
necessary to prevent the empty page from being wastefully written out to backing
store.

Pmap_update() is called to notify the pmap module that all delayed actions
for all pmaps should be done now. On the HP300, this routine does nothing.
Pmap_collect() is called to inform the pmap module that the given pmap is not
expected to be used for some time, allowing the pmap module to reclaim
resources that could be used more effectively elsewhere. Currently, it is called
whenever a process is about to be swapped out. The HP300 pmap module does not
use this information for user processes, but it does use the information to attempt
to reclaim unused kernel page-table pages when none are available on the free list.

Xercises

5.1 What does it mean for a machine to support virtual memory? What four
hardware facilities are typically required for a machine to support virtual
memory



5.2 What is the relationship between paging and swapping on a demand-paged
virtual-memory system? Explain whether it is desirable to provide both
mechanisms in the same system. Can you suggest an alternative to provid-
ing both mechanisms?

5.3 What three policies characterize paging systems? Which of these policies
usually has no effect on the performance of a paging system?

5.4 Describe a disadvantage of the scheme used for the management of swap
space that holds the dynamic per-process segments. Hint: Consider what
happens when a process on a heavily paging system expands in many small
increments.

5.5 What is copy-on-write? In most UNIX applications, the fork system call is
followed almost immediately by an exec system call. Why does this behav-
ior make it particularly attractive to use copy-on-write in implementing
fork?

5.6 Explain why the vfork system call will always be more efficient than a
clever implementation of the fork system call.

5.7 When a process exits, all its pages may not be placed immediately on the
memory free list. Explain this behavior.

5.8 What is clustering? Where is it used in the virtual-memory system?

5.9 What purpose does the pageout-daemon process serve in the virtual-mem-
ory system? What facility is used by the pageout daemon that is not avail-
able to a normal user process?

5.10 Why is the sticky bit no longer useful in 4.4BSD?

5.11 Give two reasons for swapping to be initiated.

*5.12 The 4.3BSD virtual-memory system had a text cache that retained the iden-
tity of text pages from one execution of a program to the next. How does
the object cache in 4.4BSD improve on the performance of the 4.3BSD text
cache?

*5.13 Postulate a scenario under which the HP300 kernel would deadlock if it
were to allocate kernel page-table pages dynamically.

References
Babaoglu & Joy, 1981.

O. Babaoglu & W. N. Joy, "Converting a Swap-Based System to Do Paging
in an Architecture Lacking Page-Referenced Bits," Proceedings of the
Eighth Symposium on Operating Systems Principles, pp. 78-86, December
1981.

Belady, 1966.
L. A. Belady, "A Study of Replacement Algorithms for Virtual Storage Sys-
tems," IBM Systems Journal vol. 5, no. 2, pp. 78-101, 1966.

Coffman & Denning, 1973.
E. G. Coffman, Jr. & P. J. Denning, Operating Systems Theory, p. 243, Pren-
tice-Hall, Englewood Cliffs, NJ, 1973.

Corbato, 1968.
F. J. Corbato, "A Paging Experiment with the Multics System," Project
MAC Memo MAC-M-384, Massachusetts Institute of Technology, Boston,
MA, July 1968.

Denning, 1970.
P. J. Denning, "Virtual Memory," Computer Surveys, vol. 2, no. 3, pp.
153-190, September 1970.

Easton & Franaszek, 1979.
M. C. Easton & P. A. Franaszek, "Use Bit Scanning in Replacement Deci-
sions," IEEE Transactions on Computing, vol. 28, no. 2, pp. 133-141,
February 1979.

Gingell et al, 1987.
R. Gingell, M. Lee, X. Dang, & M. Weeks, "Shared Libraries in SunOS,"
USENIX Association Conference Proceedings, pp. 131-146, June 1987.

Gingell, Moran, & Shannon, 1987.
R. Gingell, J. Moran, & W. Shannon, "Virtual Memory Architecture in
SunOS," USENIX Association Conference Proceedings, pp. 81-94, June
1987.

Intel, 1984.
Intel, "Introduction to the iAPX 286," Order Number 210308, Intel Corpo-
ration, Santa Clara, CA, 1984.

Kenah & Bate, 1984.
L. J. Kenah & S. F. Bate, VAX/VMS Internals and Data Structures, Digital
Press, Bedford, MA, 1984.

King, 1971.
W. F. King, "Analysis of Demand Paging Algorithms," IFIP, pp. 485-490,
North Holland, Amsterdam, 1971.

Korn&Vo, 1985.
D. Korn & K. Vo, "In Search of a Better Malloc," USENIX Association Con-
ference Proceedings, pp. 489-506, June 1985.

Lazowska & Kelsey, 1978.
E. D. Lazowska & J. M. Kelsey, "Notes on Tuning VAX/VMS.," Technical
Report 78-12-01, Department of Computer Science, University of Washing-
ton, Seattle, WA, December 1978.

Marshall, 1979.
W. T. Marshall, "A Unified Approach to the Evaluation of a Class of 'Work-
ing Set Like' Replacement Algorithms," PhD Thesis, Department of Com-
puter Engineering, Case Western Reserve University, Cleveland, OH, May
1979.



McKusick & Karels, 1988.
M. K. McKusick & M. J. Karels, "Design of a General Purpose Memory
Allocator for the 4.3BSD UNIX Kernel," USENIX Association Conference
Proceedings, pp. 295-304, June 1988.

Organick, 1975.
E. I. Organick, The Multics System: An Examination of Its Structure, MIT
Press, Cambridge, MA, 1975.

Tevanian, 1987.
A. Tevanian, "Architecture-Independent Virtual Memory Management for
Parallel and Distributed Environments: The Mach Approach," Technical
Report CMU-CS-88-106, Department of Computer Science, Carnegie-Mel-
lon University, Pittsburgh, PA, December 1987.

Young, 1989.
M. W. Young, Exporting a User Interface to Memory Management from a
Communication-Oriented Operating System, CMU-CS-89-202, Department
of Computer Science, Carnegie-Mellon University, November 1989.

PART 3

I/O System



CHAPTER 6

I/O System Overview

I/O Mapping from User to Device

Computers store and retrieve data through supporting peripheral I/O devices.
These devices typically include mass-storage devices, such as moving-head disk
drives, magnetic-tape drives, and network interfaces. Storage devices such as
disks and tapes are accessed through I/O controllers that manage the operation of
their slave devices according to I/O requests from the CPU.

Many hardware device peculiarities are hidden from the user by high-level
kernel facilities, such as the filesystem and socket interfaces. Other such peculiar-
ities are hidden from the bulk of the kernel itself by the I/O system. The I/O sys-
tem consists of buffer-caching systems, general device-driver code, and drivers for
specific hardware devices that must finally address peculiarities of the specific
devices. The various I/O systems are summarized in Fig. 6.1 (on page 194).

There are four main kinds of I/O in 4.4BSD: the filesystem, the character-de-
vice interface, the block-device interface, and the socket interface with its related
network devices. The character and block interfaces appear in the filesystem
name space. The character interface provides unstructured access to the underly-
ing hardware, whereas the block device provides structured access to the underly-
ing hardware. The network devices do not appear in the filesystem; they are
accessible through only the socket interface. Block and character devices are
described in Sections 6.2 and 6.3 respectively. The filesystem is described in
Chapters 7 and 8. Sockets are described in Chapter 11.

A block-device interface, as the name indicates, supports only block-oriented
I/O operations. The block-device interface uses the buffer cache to minimize the
number of I/O requests that require an I/O operation, and to synchronize with
filesystem operations on the same device. All I/O is done to or from I/O buffers
that reside in the kernel's address space. This approach requires at least one mem-
ory-to-memory copy operation to satisfy a user request, but also allows 4.4BSD to
support I/O requests of nearly arbitrary size and alignment.

193



system-call interface to the kernel

active file entries

socket
VNODE layer

NFS

network
protocols

network-
interface
drivers

local naming (UFS)

MFS
FFS LFS

special devices

cooked

disk

buffer cache

block-device driver

raw
disk
and
tty

tty

line
discipline

VM

swap-
space
mgmt.

character-device driver

the hardware

Figure 6.1 Kernel I/O structure.

A character-device interface comes in two styles that depend on the character-
istics of the underlying hardware device. For some character-oriented hardware
devices, such as terminal multiplexers, the interface is truly character oriented,
although higher-level software, such as the terminal driver, may provide a line-ori-
ented interface to applications. However, for block-oriented devices such as disks
and tapes, a character-device interface is an unstructured or raw interface. For this
interface, I/O operations do not go through the buffer cache; instead, they are
made directly between the device and buffers in the application's virtual address
space. Consequently, the size of the operations must be a multiple of the underly-
ing block size required by the device, and, on some machines, the application's I/O
buffer must be aligned on a suitable boundary.

Internal to the system, I/O devices are accessed through a fixed set of entry
points provided by each device's device driver. The set of entry points varies
according to whether the I/O device supports a block- or character-device inter-
face. For a block-device interface, a device driver is described by a bdevsw struc-
ture, whereas for character-device interface, it accesses a cdevsw structure. All the
bdevsw structures are collected in the block-device table, whereas cdevsw struc-
tures are similarly organized in a character-device table.

Devices are identified by a device number that is constructed from a major
and a minor device number. The major device number uniquely identifies the type
of device (really of the device driver) and is the index of the device's entry in the
block- or character-device table. Devices that support both block- and character-
device interfaces have two major device numbers, one for each table. The minor
device number is interpreted solely by the device driver and is used by the driver
to identify to which, of potentially many, hardware devices an I/O request refers.
For magnetic tapes, for example, minor device numbers identify a specific con-
troller and tape transport. The minor device number may also specify a section of
a device—for example, a channel of a multiplexed device, or optional handling
parameters.

Device Drivers
A device driver is divided into three main sections:

1. Autoconfiguration and initialization routines

2. Routines for servicing I/O requests (the top half)

3. Interrupt service routines (the bottom half)

The autoconfiguration portion of a driver is responsible for probing for a hardware
device to see whether the latter is present and to initialize the device and any asso-
ciated software state that is required by the device driver. This portion of the
driver is typically called only once, when the system is initialized. Autoconfigura-
tion is described in Section 14.4.

The section of a driver that services I/O requests by the system is invoked
because of system calls or for the virtual-memory system. This portion of the de-
vice driver executes synchronously in the top half of the kernel and is permitted to
block by calling the sleep() routine. We commonly refer to this body of code as
the top half of a device driver.

Interrupt service routines are invoked when the system fields an interrupt
from a device. Consequently, these routines cannot depend on any per-process
state and cannot block. We commonly refer to a device driver's interrupt service
routines as the bottom half of a device driver.

In addition to these three sections of a device driver, an optional crash-dump
routine may be provided. This routine, if present, is invoked when the system rec-
ognizes an unrecoverable error and wishes to record the contents of physical
memory for use in postmortem analysis. Most device drivers for disk controllers,
and some for tape controllers, provide a crash-dump routine. The use of the crash-
dump routine is described in Section 14.7.

I/O Queueing
Device drivers typically manage one or more queues of I/O requests in their nor-
mal operation. When an input or output request is received by the top half of the
driver, it is recorded in a data structure that is placed on a per-device queue for
processing. When an input or output operation completes, the device driver
receives an interrupt from the controller. The interrupt service routine removes the
appropriate request from the device's queue, notifies the requester that the com-
mand has completed, and then starts the next request from the queue. The I/O
queues are the primary means of communication between the top and bottom
halves of a device driver.

Because I/O queues are shared among asynchronous routines, access to the
queues must be synchronized. Routines that make up the top half of a device
driver must raise the processor priority level (using splbio(), spltty(), etc.) to pre-
vent the bottom half from being entered as a result of an interrupt while a top-half
routine is manipulating an I/O queue. Synchronization among multiple processes
starting I/O requests also must be done. This synchronization is done using the
mechanisms described in Section 4.3.



Interrupt Handling
Interrupts are generated by devices to signal that an operation has completed or
that a change in status has occurred. On receiving a device interrupt, the system
invokes the appropriate device-driver interrupt service routine with one or more
parameters that identify uniquely the device that requires service. These parame-
ters are needed because device drivers typically support multiple devices of the
same type. If the interrupting device's identity were not supplied with each inter-
rupt, the driver would be forced to poll all the potential devices to identify the de-
vice that interrupted.

The system arranges for the unit-number parameter to be passed to the inter-
rupt service routine for each device by installing the address of an auxiliary glue
routine in the interrupt-vector table. This glue routine, rather than the actual inter-
rupt service routine, is invoked to service the interrupt; it takes the following
actions:

1. Save all volatile registers.

2. Update statistics on device interrupts.

3. Call the interrupt service routine with the appropriate unit number parameter.

4. Restore the volatile registers saved in step 1.

5. Return from the interrupt.

Because a glue routine is interposed between the interrupt-vector table and the
interrupt service routine, device drivers do not need to be concerned with saving
and restoring machine state. In addition, special-purpose instructions that cannot
be generated from C, which are needed by the hardware to support interrupts, can
be kept out of the device driver; this interposition of a glue routine permits device
drivers to be written without assembly language.

6.2 Block Devices
Block devices include disks and tapes. The task of the block-device interface is to
convert from the user abstraction of a disk as an array of bytes to the structure
imposed by the underlying physical medium. Although the user may wish to
write a single byte to a disk, the hardware can read and write only in multiples of
sectors. Hence, the system must arrange to read in the sector containing the byte
to be modified, to replace the affected byte, and to write back the sector to the
disk. This operation of converting random access to an array of bytes to reads and
writes of disk sectors is known as block I/O. Block devices are accessible directly
through appropriate device special files, but are more commonly accessed indi-
rectly through the filesystem (see Section 8.2).

Processes may read data in sizes smaller than a disk block. The first time that
a small read is required from a particular disk block, the block will be transferred

from the disk into a kernel buffer. Later reads of parts of the same block then
require only copying from the kernel buffer to the memory of the user process.
Multiple small writes are treated similarly. A buffer is allocated from the cache
when the first write to a disk block is made, and later writes to part of the same
block are then likely to require only copying into the kernel buffer, and no disk I/O.

In addition to providing the abstraction of arbitrary alignment of reads and
writes, the block buffer cache reduces the number of disk I/O transfers required by
filesystem accesses. Because system-parameter files, commands, and directories
are read repeatedly, their data blocks are usually in the buffer cache when they are
needed. Thus, the kernel does not need to read them from the disk every time that
they are requested.

If the system crashes while data for a particular block are in the cache but
have not yet been written to disk, the filesystem on the disk will be incorrect and
those data will be lost. (Critical system data, such as the contents of directories,
however, are written synchronously to disk, to ensure filesystem consistency;
operations requiring synchronous I/O are described in the last subsection of Sec-
tion 8.2.) So that lost data are minimized, writes are forced periodically for dirty
buffer blocks. These forced writes are done (usually every 30 seconds) by a user
process, update, which uses the sync system call. There is also a system call,
fsync, that a process can use to force all dirty blocks of a single file to be written to
disk immediately; this synchronization is useful for ensuring database consistency
or before removing an editor backup file.

Most magnetic-tape accesses are done through the appropriate raw tape de-
vice, bypassing the block buffer cache. When the cache is used, tape blocks must
still be written in order, so the tape driver forces synchronous writes for them.

Entry Points for Block-Device Drivers
Device drivers for block devices are described by an entry in the bdevsw table.
Each bdevsw structure contains the following entry points:

open Open the device in preparation for I/O operations. A device's open
entry point will be called for each open system call on a block special
device file, or, internally, when a device is prepared for mounting a
filesystem with the mount system call. The open() routine will com-
monly verify the integrity of the associated medium. For example, it
will verify that the device was identified during the autoconfiguration
phase and, for tape and disk drives, that a medium is present and on-
line.

strategy Start a read or write operation, and return immediately. I/O requests to
or from filesystems located on a device are translated by the system
into calls to the block I/O routines bread() and bwrite(). These block
I/O routines in turn call the device's strategy routine to read or write
data not in the cache. Each call to the strategy routine specifies a
pointer to a buf structure containing the parameters for an I/O request.



If the request is synchronous, the caller must sleep (on the address of
the buf structure) until I/O completes.

close Close a device. The close() routine is called after the final client inter-
ested in using the device terminates. These semantics are defined by
the higher-level I/O facilities. Disk devices have nothing to do when a
device is closed, and thus use a null close () routine. Devices that sup-
port access to only a single client must mark the device as available
once again. Closing a tape drive that was open for writing typically
causes end-of-file marks to be written on the tape and the tape to be
rewound.

dump Write all physical memory to the device. The dump entry point saves
the contents of memory on secondary storage. The system automati-
cally takes a dump when it detects an unrecoverable error and is about
to crash. The dump is used in a postmortem analysis of the problem
that caused the system to crash. The dump routine is invoked with the
processor priority at its highest level; thus, the device driver must poll
for device status, rather than wait for interrupts. All disk devices are
expected to support this entry point; some tape devices do as well.

psize Return the size of a disk-drive partition. The driver is supplied a logi-
cal unit and is expected to return the size of that unit, typically a disk-
drive partition, in DEV_BSIZE blocks. This entry point is used during
the bootstrap procedure to calculate the location at which a crash dump
should be placed and to determine the sizes of the swap devices.

Sorting of Disk I/O Requests
The kernel provides a generic disksort() routine that can be used by all the disk
device drivers to sort I/O requests into a drive's request queue using an elevator
sorting algorithm. This algorithm sorts requests in a cyclic, ascending, cylinder
order, so that requests can be serviced with a minimal number of one-way scans
over the drive. This ordering was originally designed to support the normal read-
ahead requested by the filesystem as well as to counteract the filesystem's random
placement of data on a drive. With the improved placement algorithms in the cur-
rent filesystem, the effect of the disksort() routine is less noticeable; disksort()
produces the largest effect when there are multiple simultaneous users of a drive.

The disksort() algorithm is shown in Fig. 6.2. A drive's request queue is
made up of one or two lists of requests ordered by cylinder number. The request
at the front of the first list indicates the current position of the drive. If a second
list is present, it is made up of requests that lie before the current position. Each
new request is sorted into either the first or the second list, according to the
request's location. When the heads reach the end of the first list, the drive begins
servicing the other list.

Disk sorting can also be important on machines that have a fast processor, but
that do not sort requests within the device driver. In this situation, if a write of

disksort(dq, bp)
drive queue *dq;
buffer *bp;

if (drive queue is empty) {
place the buffer at the front of the drive queue;
return;

if (request lies before the first active request) {
locate the beginning of the second request list;
sort bp into the second request list;

} else
sort bp into the current request list;

Figure 6.2 Algorithm for disksort().

several Kbyte is honored in order of queueing, it can block other processes from
accessing the disk while it completes. Sorting requests provides some scheduling,
which more fairly distributes accesses to the disk controller.

Disk Labels
Many disk controllers require the device driver to identify the location of disk sec-
tors that are to be transferred by their cylinder, track, and rotational offset. For
maximum throughput efficiency, this information is also needed by the filesystem
when deciding how to lay out files. Finally, a disk may be broken up into several
partitions, each of which may be used for a separate filesystem or swap area.

Historically, the information about the geometry of the disk and about the lay-
out of the partitions was compiled into the kernel device drivers. This approach
had several flaws. First, it was cumbersome to have all the possible disk types and
partitions compiled into the kernel. Any time that a disk with a new geometry was
added, the driver tables had to be updated and the kernel recompiled. It was also
restrictive in that there was only one choice of partition table for each drive type.
Choosing a different set of tables required modifying the disk driver and rebuild-
ing the kernel. Installing new tables also required dumping all the disks of that
type on the system, then booting the new kernel and restoring them onto the new
partitions. Disks with different partition layouts could not be moved from one
system to another. An additional problem arose when nonstandard partition tables
were used; new releases from the vendor had to have the partition tables modified
before they could be used on an existing system.

For all these reasons, 4.4BSD and most commercial UNIX vendors added disk
labels. A disk label contains detailed geometry information, including cylinder,
track, and sector layout, along with any other driver-specific information. It also
contains information about the partition layout and usage, the latter describing



partition usage: type of filesystem, swap partition, or unused. For the fast
filesystem, the partition usage contains enough additional information to enable
the filesystem check program (fsck) to locate the alternate superblocks for the
filesystem.

Having labels on each disk means that partition information can be different
for each disk, and that it carries over when the disk is moved from one system to
another. It also means that, when previously unknown types of disks are con-
nected to the system, the system administrator can use them without changing the
disk driver, recompiling, and rebooting the system.

The label is located near the beginning of each drive—usually, in block zero.
It must be located in the first track, because the device driver does not know the
geometry of the disk until the driver has read the label. Thus, it must assume that
the label is in cylinder zero, track zero, at some valid offset within that track.
Most architectures have hardware (or first-level) bootstrap code stored in read-
only memory (ROM). When the machine is powered up or the reset button is
pressed, the CPU executes the hardware bootstrap code from the ROM. The hard-
ware bootstrap code typically reads the first few sectors on the disk into the main
memory, then branches to the address of the first location that it read. The pro-
gram stored in these first few sectors is the second-level bootstrap. Having the
disk label stored in the part of the disk read as part of the hardware bootstrap
allows the second-level bootstrap to have the disk-label information. This infor-
mation gives it the ability to find the root filesystem and hence the files, such as
the kernel, needed to bring up 4.4BSD. The size and location of the second-level
bootstrap are dependent on the requirements of the hardware bootstrap code.
Since there is no standard for disk-label formats and the hardware bootstrap code
usually understands only the vendor label, it is often necessary to support both the
vendor and the 4.4BSD disk labels. Here, the vendor label must be placed where
the hardware bootstrap ROM code expects it; the 4.4BSD label must be placed out
of the way of the vendor label but within the area that is read in by the hardware
bootstrap code, so that it will be available to the second-level bootstrap.

6.3 Character Devices

Almost all peripherals on the system, except network interfaces, have a character-
device interface. A character device usually maps the hardware interface into a
byte stream, similar to that of the filesystem. Character devices of this type
include terminals (e.g., /dev/ttyOO), line printers (e.g, /dev/lp0), an interface to
physical main memory (/dev/mem), and a bottomless sink for data and an endless
source of end-of-file markers (/dev/null). Some of these character devices, such
as terminal devices, may display special behavior on line boundaries, but in gen-
eral are still treated as byte streams.

Devices emulating terminals use buffers that are smaller than those used for
disks and tapes. This buffering system involves small (usually 64-byte) blocks of
characters kept in linked lists. Although all free character buffers are kept in a

single free list, most device drivers that use them limit the number of characters
that can be queued at one time for a single terminal port.

Devices such as high-speed graphics interfaces may have their own buffers or
may always do I/O directly into the address space of the user; they too are classed
as character devices. Some of these drivers may recognize special types of
records, and thus be further from the plain byte-stream model.

The character interface for disks and tapes is also called the raw device inter-
face; it provides an unstructured interface to the device. Its primary task is to
arrange for direct I/O to and from the device. The disk driver isolates the details
of tracks, cylinders, and the like from the rest of the kernel. It also handles the
asynchronous nature of I/O by maintaining and ordering an active queue of pend-
ing transfers. Each entry in the queue specifies whether it is for reading or writ-
ing, the main-memory address for the transfer, the device address for the transfer
(usually a disk sector number), and the transfer size (in bytes).

All other restrictions of the underlying hardware are passed through the char-
acter interface to its clients, making character-device interfaces the furthest from
the byte-stream model. Thus, the user process must abide by the sectoring restric-
tions imposed by the underlying hardware. For magnetic disks, the file offset and
transfer size must be a multiple of the sector size. The character interface does not
copy the user data into a kernel buffer before putting them on an I/O queue.
Rather, it arranges to have the I/O done directly to or from the address space of the
process. The size and alignment of the transfer is limited by the physical device.
However, the transfer size is not restricted by the maximum size of the internal
buffers of the system, because these buffers are not used.

The character interface is typically used by only those system utility programs
that have an intimate knowledge of the data structures on the disk or tape. The
character interface also allows user-level prototyping; for example, the 4.2BSD
filesystem implementation was written and largely tested as a user process that
used a raw disk interface, before the code was moved into the kernel.

Character devices are described by entries in the cdevsw table. The entry
points in this table (see Table 6.1 on page 202) are used to support raw access to
block-oriented devices, as well as normal access to character-oriented devices
through the terminal driver. Because of the diverse requirements of these two
types of devices, the set of entry points is the union of two disjoint sets. Raw
devices support a subset of the entry points that correspond to those entry points
found in a block-device driver, whereas character devices support the full set of
entry points. Each is described in the following sections.

Raw Devices and Physical I/O
Most raw devices differ from block devices only in the way that they do I/O.
Whereas block devices read and write data to and from the system buffer cache,
raw devices transfer data to and from user data buffers. Bypassing the buffer
cache eliminates the memory-to-memory copy that must be done by block
devices, but also denies applications the benefits of data caching. In addition, for
devices that support both raw- and block-device access, applications must take



Table 6.1 Entry points for character and raw device drivers.

Entry point Function
open() open the device
close() close the device
ioctl() do an I/O control operation
mmap() map device offset to memory location
read() do an input operation
reset() reinitialize device after a bus reset
select() poll device for I/O readiness
stop() stop output on the device
write () do an output operation

care to preserve consistency between data in the buffer cache and data written
directly to the device; the raw device should be used only when the block device is
idle. Raw-device access is used by many filesystem utilities, such as the filesys-
tem check program, fsck, and by programs that read and write magnetic tapes—
for example, tar, dump, and restore.

Because raw devices bypass the buffer cache, they are responsible for manag-
ing their own buffer structures. Most devices borrow swap buffers to describe
their I/O. The read and write routines use the physio () routine to start a raw I/O
operation (see Fig. 6.3). The strategy parameter identifies a block-device strategy
routine that starts I/O operations on the device. The buffer indicated by bp is used
by physio 0 in constructing the request(s) made to the strategy routine. The de-
vice, read-write flag, and uio parameters completely specify the I/O operation that
should be done. The minphys () routine is called by physio() to adjust the size of
each I/O transfer before the latter is passed to the strategy routine; this call to
minphys () allows the transfer to be done in sections, according to the maximum
transfer size supported by the device.

Raw-device I/O operations request the hardware device to transfer data
directly to or from the data buffer in the user program's address space described
by the uio parameter. Thus, unlike I/O operations that do direct memory access
(DMA) from buffers in the kernel address space, raw I/O operations must check
that the user's buffer is accessible by the device, and must lock it into memory for
the duration of the transfer.

Character-Oriented Devices
Character-oriented I/O devices are typified by terminal multiplexers, although they
also include printers and other character- or line-oriented devices. These devices
are usually accessed through the terminal driver, described in Chapter 10. The

physio(strategy, bp, dev, flags, minphys, uio)
int strategy();
buffer *bp;
device dev;
int flags;
int minphys();
struct uio *uio;

if no buffer passed in, allocate a swap buffer;
while (uio is not exhausted) {

check user read/write access at uio location;
if buffer passed in, wait until not busy;
mark the buffer busy for physical I/O;
set up the buffer for a maximum sized transfer;
call minphys to bound the transfer size;
lock the part of the user address space

involved in the transfer;
map the user pages into the buffer;
call strategy to start the transfer;
raise the priority level to splbio;
wait for the transfer to complete;
unmap the user pages from the buffer;
unlock the part of the address space previously

locked;
wake up anybody waiting on the buffer;
lower the priority level;
deduct the transfer size from the total number

of data to transfer;

if using swap buffer, free it;

Figure 6.3 Algorithm for physical I/O.

close tie to the terminal driver has heavily influenced the structure of character-
device drivers. For example, several entry points in the cdevsw structure exist for
communication between the generic terminal handler and the terminal multiplexer
hardware drivers.

Entry Points for Character-Device Drivers
A device driver for a character device is defined by an entry in the cdevsw table.
This structure contains many of the same entry points found in an entry in the
bdevsw table.



open

close

read

write

ioctl

select

stop

mmap

reset

Open or close a character device. The open() and close() entry points
provide functions similar to those of a block device driver. For character
devices that simply provide raw access to a block device, these entry
points are usually the same. But some block devices do not have these
entry points, whereas most character devices do have them.

Read data from a device. For raw devices, this entry point normally just
calls the physio() routine with device-specific parameters. For terminal-
oriented devices, a read request is passed immediately to the terminal
driver. For other devices, a read request requires that the specified data be
copied into the kernel's address space, typically with the uiomove() rou-
tine, and then be passed to the device.

Write data to a device. This entry point is a direct parallel of the read
entry point: Raw devices use physio (), terminal-oriented devices call the
terminal driver to do this operation, and other devices handle the request
internally.

Do an operation other than a read or write. This entry point originally
provided a mechanism to get and set device parameters for terminal
devices; its use has expanded to other types of devices as well. Histori-
cally, ioctl() operations have varied widely from device to device.
4.4BSD, however, defines a set of operations that is supported by all tape
devices. These operations position tapes, return unit status, write end-of-
file marks, and place a tape drive off-line.

Check the device to see whether data are available for reading, or space is
available for writing, data. The select entry point is used by the select sys-
tem call in checking file descriptors associated with device special files.
For raw devices, a select operation is meaningless, since data are not
buffered. Here, the entry point is set to seltrue(), a routine that returns
true for any select request. For devices used with the terminal driver, this
entry point is set to ttselect(), a routine described in Chapter 10.

Stop output on a device. The stop routine is defined for only those
devices used with the terminal driver. For these devices, the stop routine
halts transmission on a line when the terminal driver receives a stop char-
acter—for example, "^S"—or when it prepares to flush its output queues.

Map a device offset into a memory address. This entry point is called by
the virtual-memory system to convert a logical mapping to a physical
address. For example, it converts an offset in /dev/mem to a kernel
address.

Reset device state after a bus reset. The reset routine is called from the
bus-adapter support routines after a bus reset is made. The device driver
is expected to reinitialize the hardware to set into a known state—typi-
cally the state it has when the system is initially booted.

Descriptor Management and Services

For user processes, all I/O is done through descriptors. The user interface to
descriptors was described in Section 2.6. This section describes how the kernel
manages descriptors, and how it provides descriptor services, such as locking and
selecting.

System calls that refer to open files take a file descriptor as an argument to
specify the file. The file descriptor is used by the kernel to index into the descrip-
tor table for the current process (kept in the filedesc structure, a substructure of the
process structure for the process) to locate a file entry, or file structure. The rela-
tions of these data structures are shown in Fig. 6.4.

The file entry provides a file type and a pointer to an underlying object for the
descriptor. For data files, the file entry points to a vnode structure that references a
substructure containing the filesystem-specific information described in Chapters
7, 8, and 9. The vnode layer is described in Section 6.5. Special files do not have
data blocks allocated on the disk; they are handled by the special-device filesys-
tem that calls appropriate drivers to handle I/O for them. The 4.4BSD file entry
may also reference a socket, instead of a file. Sockets have a different file type,
and the file entry points to a system block that is used in doing interprocess com-
munication. The virtual-memory system supports the mapping of files into a pro-
cess's address space. Here, the file descriptor must reference a vnode that will be
partially or completely mapped into the user's address space.

Open File Entries
The set of file entries is the focus of activity for file descriptors. They contain the
information necessary to access the underlying objects and to maintain common
information.

The file entry is an object-oriented data structure. Each entry contains a type
and an array of function pointers that translate the generic operations on file
descriptors into the specific actions associated with their type. In 4.4BSD, there
are two descriptor types: files and sockets. The operations that must be imple-
mented for each type are as follows:

Figure 6.4 File-descriptor reference to a file entry.

file
descriptor

user
process

descriptor
table

filedesc proces
substructure

s

file
entry

kernel
list

vnode

interprocess
communication

virtual
memory



• Read from the descriptor

• Write to the descriptor

• Select on the descriptor

• Do ioctl operations on the descriptor

• Close and possibly deallocate the object associated with the descriptor

Note that there is no open routine defined in the object table. 4.4BSD treats
descriptors in an object-oriented fashion only after they are created. This
approach was taken because sockets and files have different characteristics. Gen-
eralizing the interface to handle both types of descriptors at open time would have
complicated an otherwise simple interface.

Each file entry has a pointer to a data structure that contains information spe-
cific to the instance of the underlying object. The data structure is opaque to the
routines that manipulate the file entry. A reference to the data structure is passed
on each call to a function that implements a file operation. All state associated
with an instance of an object must be stored in that instance's data structure; the
underlying objects are not permitted to manipulate the file entry themselves.

The read and write system calls do not take an offset in the file as an argu-
ment. Instead, each read or write updates the current file offset in the file accord-
ing to the number of bytes transferred. The offset determines the position in the
file for the next read or write. The offset can be set directly by the lseek system
call. Since more than one process may open the same file, and each such process
needs its own offset for the file, the offset cannot be stored in the per-object data
structure. Thus, each open system call allocates a new file entry, and the open file
entry contains the offset.

Some semantics associated with all file descriptors are enforced at the
descriptor level, before the underlying system call is invoked. These semantics are
maintained in a set of flags associated with the descriptor. For example, the flags
record whether the descriptor is open for reading, writing, or both reading and
writing. If a descriptor is marked as open for reading only, an attempt to write it
will be caught by the descriptor code. Thus, the functions defined for doing read-
ing and writing do not need to check the validity of the request; we can implement
them knowing that they will never receive an invalid request.

Other information maintained in the flags includes

• The no-delay (NDELAY) flag: If a read or a write would cause the process to
block, the system call returns an error (EWOULDBLOCK) instead.

• The asynchronous (ASYNC) flag: The kernel watches for a change in the status of
the descriptor, and arranges to send a signal (SIGIO) when a read or write
becomes possible.

Other information that is specific to regular files also is maintained in the flags
field:

Management and Services 207

• Information on whether the descriptor holds a shared or exclusive lock on the
underlying file: The locking primitives could be extended to work on sockets, as
well as on files. However, the descriptors for a socket rarely refer to the same
file entry. The only way for two processes to share the same socket descriptor is
for a parent to share the descriptor with its child by forking, or for one process to
pass the descriptor to another in a message.

• The append flag: Each time that a write is made to the file, the offset pointer is
first set to the end of the file. This feature is useful when, for example, multiple
processes are writing to the same log file.

Each file entry has a reference count. A single process may have multiple refer-
ences to the entry because of calls to the dup or fcntl system calls. Also, file struc-
tures are inherited by the child process after a fork, so several different processes
may reference the same file entry. Thus, a read or write by either process on the
twin descriptors will advance the file offset. This semantic allows two processes
to read the same file or to interleave output to the same file. Another process that
has independently opened the file will refer to that file through a different file
structure with a different file offset. This functionality was the original reason for
the existence of the file structure; the file structure provides a place for the file off-
set intermediate between the descriptor and the underlying object.

Each time that a new reference is created, the reference count is incremented.
When a descriptor is closed (any one of (1) explicitly with a close, (2) implicitly
after an exec because the descriptor has been marked as close-on-exec, or (3) on
process exit), the reference count is decremented. When the reference count drops
to zero, the file entry is freed.

The AF_LOCAL domain interprocess-communication facility allows descrip-
tors to be sent between processes. While a descriptor is in transit between pro-
cesses, it may not have any explicit references. It must not be deallocated, as it
will be needed when the message is received by the destination process. However,
the message might never be received; thus, the file entry also holds a message
count for each entry. The message count is incremented for each descriptor that is
in transit, and is decremented when the descriptor is received. The file entry
might need to be reclaimed when all the remaining references are in messages.
For more details on message passing in the AF_LOCAL domain, see Section 11.6.

The close-on-exec flag is kept in the descriptor table, rather than in the file
entry. This flag is not shared among all the references to the file entry because it is
an attribute of the file descriptor itself. The close-on-exec flag is the only piece of
information that is kept in the descriptor table, rather than being shared in the file
entry.

Management of Descriptors

The fcntl system call manipulates the file structure. It can be used to make the fol-
lowing changes to a descriptor:



Overview

• Duplicate a descriptor as though by a dup system call.

• Get or set the close-on-exec flag. When a process forks, all the parent's descrip-
tors are duplicated in the child. The child process then execs a new process.
Any of the child's descriptors that were marked close-on-exec are closed. The
remaining descriptors are available to the newly executed process.

• Set the descriptor into nonblocking mode. If any data are available for a read
operation, or if any space is available for a write operation, an immediate partial
read or write is done. If no data are available for a read operation, or if a write
operation would block, the system call returns an error showing that the opera-
tion would block, instead of putting the process to sleep. This facility was not
implemented for regular files in 4.4BSD, because filesystem I/O is always
expected to complete within a few milliseconds.

• Force all writes to append data to the end of the file, instead of at the descriptor's
current location in the file.

• Send a signal to the process when it is possible to do I/O.

• Send a signal to a process when an exception condition arises, such as when
urgent data arrive on an interprocess-communication channel.

• Set or get the process identifier or process-group identifier to which the two
I/O-related signals in the previous steps should be sent.

• Test or change the status of a lock on a range of bytes within an underlying file.
Locking operations are described in the next subsection.

The implementation of the dup system call is easy. If the process has reached
its limit on open files, the kernel returns an error. Otherwise, the kernel scans the
current process's descriptor table, starting at descriptor zero, until it finds an
unused entry. The kernel allocates the entry to point to the same file entry as does
the descriptor being duplicated. The kernel then increments the reference count
on the file entry, and returns the index of the allocated descriptor-table entry. The
fcntl system call provides a similar function, except that it specifies a descriptor
from which to start the scan.

Sometimes, a process wants to allocate a specific descriptor-table entry. Such
a request is made with the dup2 system call. The process specifies the descriptor-
table index into which the duplicated reference should be placed. The kernel
implementation is the same as for dup, except that the scan to find a free entry is
changed to close the requested entry if that entry is open, and then to allocate the
entry as before. No action is taken if the new and old descriptors are the same.

The system implements getting or setting the close-on-exec flag via the fcntl
system call by making the appropriate change to the flags field of the associated
descriptor-table entry. Other attributes that fcntl can get or set manipulate the flags
in the file entry. However, the implementation of the various flags cannot be han-
dled by the generic code that manages the file entry. Instead, the file flags must be
passed through the object interface to the type-specific routines to do the

appropriate operation on the underlying object. For example, manipulation of the
nonblocking flag for a socket must be done by the socket layer, since only that
layer knows whether an operation can block.

The implementation of the ioctl system call is broken into two major levels.
The upper level handles the system call itself. The ioctl call includes a descriptor,
a command, and pointer to a data area. The command argument encodes what the
size is of the data area for the parameters, and whether the parameters are input,
output, or both input and output. The upper level is responsible for decoding the
command argument, allocating a buffer, and copying in any input data. If a return
value is to be generated and there is no input, the buffer is zeroed. Finally, the
ioctl is dispatched through the file-entry ioctl function, along with the I/O buffer,
to the lower-level routine that implements the requested operation.

The lower level does the requested operation. Along with the command argu-
ment, it receives a pointer to the I/O buffer. The upper level has already checked
for valid memory references, but the lower level may do more precise argument
validation because it knows more about the expected nature of the arguments.
However, it does not need to copy the arguments in or out of the user process. If
the command is successful and produces output, the lower level places the results
in the buffer provided by the top level. When the lower level returns, the upper
level copies the results to the process.

File-Descriptor Locking
Early UNIX systems had no provision for locking files. Processes that needed to
synchronize access to a file had to use a separate lock file. A process would try to
create a lock file. If the creation succeeded, then the process could proceed with
its update; if the creation failed, the process would wait, and then try again. This
mechanism had three drawbacks:

1. Processes consumed CPU time by looping over attempts to create locks.

2. Locks left lying around because of system crashes had to be removed (nor-
mally in a system-startup command script).

3. Processes running as the special system-administrator user, the superuser, are
always permitted to create files, and so were forced to use a different mecha-
nism.

Although it is possible to work around all these problems, the solutions are not
straightforward, so a mechanism for locking files was added in 4.2BSD.

The most general locking schemes allow multiple processes to update a file
concurrently. Several of these techniques are discussed in [Peterson, 1983]. A
simpler technique is to serialize access to a file with locks. For standard system
applications, a mechanism that locks at the granularity of a file is sufficient. So,
4.2BSD and 4.3BSD provided only a fast whole-file locking mechanism. The
semantics of these locks include allowing locks to be inherited by child processes
and releasing locks only on the last close of a file.



System Overview

Certain applications require the ability to lock pieces of a file. Locking facili-
ties that support a byte-level granularity are well understood [Bass, 1981]. Unfor-
tunately, they are not powerful enough to be used by database systems that require
nested hierarchical locks, but are complex enough to require a large and cumber-
some implementation compared to the simpler whole-file locks. Because byte-
range locks are mandated by the POSIX standard, the developers added them to
4.4BSD reluctantly. The semantics of byte-range locks come from the lock's ini-
tial implementation in System V, which included releasing all locks held by a pro-
cess on a file every time a close system call was done on a descriptor referencing
that file. The 4.2BSD whole-file locks are removed only on the last close. A prob-
lem with the POSIX semantics is that an application can lock a file, then call a
library routine that opens, reads, and closes the locked file. Calling the library
routine will have the unexpected effect of releasing the locks held by the applica-
tion. Another problem is that a file must be open for writing to be allowed to get
an exclusive lock. A process that does not have permission to open a file for writ-
ing cannot get an exclusive lock on that file. To avoid these problems, yet remain
POSIX compliant, 4.4BSD provides separate interfaces for byte-range locks and
whole-file locks. The byte-range locks follow the POSIX semantics; the whole-file
locks follow the traditional 4.2BSD semantics. The two types of locks can be used
concurrently; they will serialize against each other properly.

Both whole-file locks and byte-range locks use the same implementation; the
whole-file locks are implemented as a range lock over an entire file. The kernel
handles the other differing semantics between the two implementations by having
the byte-range locks be applied to processes whereas the whole-file locks are
applied to descriptors. Because descriptors are shared with child processes, the
whole-file locks are inherited. Because the child process gets its own process
structure, the byte-range locks are not inherited. The last-close versus every-close
semantics are a small bit of special-case code in the close routine that checks
whether the underlying object is a process or a descriptor. It releases locks on
every call if the lock is associated with a process, and only when the reference
count drops to zero if the lock is associated with a descriptor.

Locking schemes can be classified according to the extent that they are
enforced. A scheme in which locks are enforced for every process without choice
is said to use mandatory locks, whereas a scheme in which locks are enforced for
only those processes that request them is said to use advisory locks. Clearly, advi-
sory locks are effective only when all programs accessing a file use the locking
scheme. With mandatory locks, there must be some override policy implemented
in the kernel. With advisory locks, the policy is left to the user programs. In the
4.4BSD system, programs with superuser privilege are allowed to override any
protection scheme. Because many of the programs that need to use locks must
also run as the superuser, 4.2BSD implemented advisory locks, rather than creating
an additional protection scheme that was inconsistent with the UNIX philosophy or
that could not be used by privileged programs. The use of advisory locks carried
over to the POSIX specification of byte-range locks and is retained in 4.4BSD.

The 4.4BSD file-locking facilities allow cooperating programs to apply advi-
sory shared or exclusive locks on ranges of bytes within a file. Only one process
may have an exclusive lock on a byte range, whereas multiple shared locks may be
present. Both shared and exclusive locks cannot be present on a byte range at the
same time. If any lock is requested when another process holds an exclusive lock,
or an exclusive lock is requested when another process holds any lock, the lock
request will block until the lock can be obtained. Because shared and exclusive
locks are only advisory, even if a process has obtained a lock on a file, another
process may access the file if it ignores the locking mechanism.

So that there are no races between creating and locking a file, a lock can be
requested as part of opening a file. Once a process has opened a file, it can manip-
ulate locks without needing to close and reopen the file. This feature is useful, for
example, when a process wishes to apply a shared lock, to read information, to
determine whether an update is required, then to apply an exclusive lock and to
update the file.

A request for a lock will cause a process to block if the lock cannot be
obtained immediately. In certain instances, this blocking is unsatisfactory. For
example, a process that wants only to check whether a lock is present would
require a separate mechanism to find out this information. Consequently, a pro-
cess can specify that its locking request should return with an error if a lock can-
not be obtained immediately. Being able to request a lock conditionally is useful
to daemon processes that wish to service a spooling area. If the first instance of
the daemon locks the directory where spooling takes place, later daemon pro-
cesses can easily check to see whether an active daemon exists. Since locks exist
only while the locking processes exist, locks can never be left active after the pro-
cesses exit or if the system crashes.

The implementation of locks is done on a per-filesystem basis. The imple-
mentation for the local filesystems is described in Section 7.5. A network-based
filesystem has to coordinate locks with a central lock manager that is usually
located on the server exporting the filesystem. Client lock requests must be sent to
the lock manager. The lock manager arbitrates among lock requests from pro-
cesses running on its server and from the various clients to which it is exporting
the filesystem. The most complex operation for the lock manager is recovering
lock state when a client or server is rebooted or becomes partitioned from the rest
of the network. The 4.4BSD system does not have a network-based lock manager.

Multiplexing I/O on Descriptors

A process sometimes wants to handle I/O on more than one descriptor. For exam-
ple, consider a remote login program that wants to read data from the keyboard
and to send them through a socket to a remote machine. This program also wants
to read data from the socket connected to the remote end and to write them to the
screen. If a process makes a read request when there are no data available, it is
normally blocked in the kernel until the data become available. In our example,



blocking is unacceptable. If the process reads from the keyboard and blocks, it
will be unable to read data from the remote end that are destined for the screen.
The user does not know what to type until more data arrive from the remote end;
hence, the session deadlocks. Conversely, if the process reads from the remote
end when there are no data for the screen, it will block and will be unable to read
from the terminal. Again, deadlock would occur if the remote end were waiting
for output before sending any data. There is an analogous set of problems to
blocking on the writes to the screen or to the remote end. If a user has stopped
output to their screen by typing the stop character, the write will block until they
type the start character. In the meantime, the process cannot read from the
keyboard to find out that the user wants to flush the output.

Historic UNIX systems have handled the multiplexing problem by using mul-
tiple processes that communicate through pipes or some other interprocess-com-
munication facility, such as shared memory. This approach, however, can result in
significant overhead as a result of context switching among the processes if the
cost of processing input is small compared to the cost of a context switch. Fur-
thermore, it is often more straightforward to implement applications of this sort in
a single process. For these reasons, 4.4BSD provides three mechanisms that per-
mit multiplexing I/O on descriptors: polling I/O, nonblocking I/O, and signal-
driven I/O. Polling is done with the select system call, described in the next sub-
section. Operations on nonblocking descriptors complete immediately, partially
complete an input or output operation and return a partial count, or return an error
that shows that the operation could not be completed at all. Descriptors that have
signaling enabled cause the associated process or process group to be notified
when the I/O state of the descriptor changes.

There are four possible alternatives that avoid the blocking problem:

1. Set all the descriptors into nonblocking mode. The process can then try opera-
tions on each descriptor in turn, to find out which descriptors are ready to do
I/O. The problem with this approach is that the process must run continuously
to discover whether there is any I/O to be done.

2. Enable all descriptors of interest to signal when I/O can be done. The process
can then wait for a signal to discover when it is possible to do I/O. The draw-
back to this approach is that signals are expensive to catch. Hence, signal-
driven I/O is impractical for applications that do moderate to large amounts of
I/O.

3. Have the system provide a method for asking which descriptors are capable of
doing I/O. If none of the requested descriptors are ready, the system can put
the process to sleep until a descriptor becomes ready. This approach avoids
the problem of deadlock, because the process will be awakened whenever it is
possible to do I/O, and will be told which descriptor is ready. The drawback is
that the process must do two system calls per operation: one to poll for the
descriptor that is ready to do I/O and another to do the operation itself.

4. Have the process notify the system of all the descriptors that it is interested in
reading, then do a blocking read on that set of descriptors. When the read
returns, the process is notified on which descriptor the read completed. The
benefit of this approach is that the process does a single system call to specify
the set of descriptors, then loops doing only reads [Accetta et al, 1986].

The first approach is available in 4.4BSD as nonblocking I/O. It typically is
used for output descriptors, because the operation typically will not block. Rather
than doing a select, which nearly always succeeds, followed immediately by a
write, it is more efficient to try the write and revert to using select only during
periods when the write returns a blocking error. The second approach is available
in 4.4BSD as signal-driven I/O. It typically is used for rare events, such as for the
arrival of out-of-band data on a socket. For such rare events, the cost of handling
an occasional signal is lower than that of checking constantly with select to find
out whether there are any pending data.

The third approach is available in 4.4BSD via the select system call.
Although less efficient than the fourth approach, it is a more general interface. In
addition to handling reading from multiple descriptors, it handles writes to multi-
ple descriptors, notification of exceptional conditions, and timeout when no I/O is
possible.

The select interface takes three masks of descriptors to be monitored, corre-
sponding to interest in reading, writing, and exceptional conditions. In addition, it
takes a timeout value for returning from select if none of the requested descriptors
becomes ready before a specified amount of time has elapsed. The select call
returns the same three masks of descriptors after modifying them to show the
descriptors that are able to do reading, to do writing, or to provide an exceptional
condition. If none of the descriptors has become ready in the timeout interval,
select returns showing that no descriptors are ready for I/O.

Implementation of Select
The implementation of select, like that of much other kernel functionality, is
divided into a generic top layer and many device- or socket-specific bottom pieces.

At the top level, select decodes the user's request and then calls the appropri-
ate lower-level select functions. The top level takes the following steps:

1. Copy and validate the descriptor masks for read, write, and exceptional condi-
tions. Doing validation requires checking that each requested descriptor is
currently open by the process.

2. Set the selecting flag for the process.

3. For each descriptor in each mask, poll the device by calling its select routine.
If the descriptor is not able to do the requested I/O operation, the device select
routine is responsible for recording that the process wants to do I/O. When
I/O becomes possible for the descriptor—usually as a result of an interrupt



from the underlying device
process.

-a notification must be issued for the selecting

4. Because the selection process may take a long time, the kernel does not want
to block out I/O during the time it takes to poll all the requested descriptors.
Instead, the kernel arranges to detect the occurrence of I/O that may affect the
status of the descriptors being polled. When such I/O occurs, the select-notifi-
cation routine, selwakeup(), clears the selecting flag. If the top-level select
code finds that the selecting flag for the process has been cleared while it has
been doing the polling, and it has not found any descriptors that are ready to
do an operation, then the top level knows that the polling results are incom-
plete and must be repeated starting at step 2. The other condition that requires
the polling to be repeated is a collision. Collisions arise when multiple pro-
cesses attempt to select on the same descriptor at the same time. Because the
select routines have only enough space to record a single process identifier,
they cannot track multiple processes that need to be awakened when I/O is
possible. In such rare instances, all processes that are selecting must be awak-
ened.

5. If no descriptors are ready and the select specified a timeout, the kernel posts a
timeout for the requested amount of time. The process goes to sleep, giving
the address of the kernel global variable selwait. Normally, a descriptor will
become ready and the process will be notified by selwakeup(). When the pro-
cess is awakened, it repeats the polling process and returns the available
descriptors. If none of the descriptors become ready before the timer expires,
the process returns with a timed-out error and an empty list of available
descriptors.

Each of the low-level polling routines in the terminal drivers and the network pro-
tocols follows roughly the same set of steps. A piece of the select routine for a
terminal driver is shown in Fig. 6.5. The steps involved in a device select routine
are as follows:

1. The socket or device select entry is called with flag of FREAD, FWRITE, or 0
(exceptional condition). The example in Fig. 6.5 shows the FREAD case; the
others cases are similar.

2. The poll returns success if the requested operation is possible. In Fig. 6.5, it is
possible to read a character if the number of unread characters is greater than
zero. In addition, if the carrier has dropped, it is possible to get a read error.
A return from select does not necessarily mean that there are data to read;
rather, it means that a read will not block.

3. If the requested operation is not possible, the process identifier is recorded
with the socket or device for later notification. In Fig. 6.5, the recording is
done by the selrecord() routine. That routine first checks to see whether the
current process was the one that was recorded previously for this record; if it

struct selinfo {
pid_t
short

si_pid;
si_flags;

/* process to be notified */
/* SI_COLL - collision occurred */

struct tty *tp;

case FREAD:
if (nread > 0 || (tp->t_state & TS_CARR_ON) == 0)

return (1);
selrecord(curproc, &tp->t_rsel);
return (0);

selrecord(selector, sip)
struct proc *selector;
struct selinfo *sip;

{
struct proc *p;
pid_t mypid;

mypid = selector->p_pid;
if (sip->si_pid == mypid)

return;
if (sip->si_pid && (p = pfind(sip->si_pid)) &&

p->p_wchan == (caddr_t)fcselwait)
sip->si_flags |= SI_COLL;

else
sip->si_pid = mypid;

}

Figure 6.5 Select code to check for data to read in a terminal driver.

was, then no further action is needed. The second if statement checks for a
collision. The first part of the conjunction checks to see whether any process
identifier is recorded already. If there is none, then there is no collision. If
there is a process identifier recorded, it may remain from an earlier call on
select by a process that is no longer selecting because one of its other descrip-
tors became ready. If that process is still selecting, it will be sleeping on sel-
wait (when it is sleeping, the address of the sleep event is stored in p_wchan).
If it is sleeping on some other event, its p_wchan will have a value different
from that of selwait. If it is running, its p_wchan will be zero. If it is not
sleeping on selwait, there is no collision, and the process identifier is saved in
si_pid.

4. If multiple processes are selecting on the same socket or device, a collision is
recorded for the socket or device, because the structure has only enough space



for a single process identifier. In Fig. 6.5, a collision occurs when the second
if statement in the selrecord() function is true. There is a tty structure for each
terminal line (or pseudoterminal) on the machine. Normally, only one process
at a time is selecting to read from the terminal, so collisions are rare.

Selecting processes must be notified when I/O becomes possible. The steps
involved in a status change awakening a process are as follows:

1. The device or socket detects a change in status. Status changes normally
occur because of an interrupt (e.g., a character coming in from a keyboard or a
packet arriving from the network).

2. Selwakeup( ) is called with a pointer to the selinfo structure used by
selrecord() to record the process identifier, and with a flag showing whether a
collision occurred.

3. If the process is sleeping on selwait, it is made runnable (or is marked ready, if
it is stopped). If the process is sleeping on some event other than selwait, it is
not made runnable. A spurious call to selwakeup() can occur when the pro-
cess returns from select to begin processing one descriptor and then another
descriptor on which it had been selecting also becomes ready.

4. If the process has its selecting flag set, the flag is cleared so that the kernel will
know that its polling results are invalid and must be recomputed.

5. If a collision has occurred, all sleepers on selwait are awakened to rescan to
see whether one of their descriptors became ready. Awakening all selecting
processes is necessary because the selrecord() routine could not record all the
processes that needed to be awakened. Hence, it has to wake up all processes
that could possibly have been interested. Empirically, collisions occur infre-
quently. If they were a frequent occurrence, it would be worthwhile to store
multiple process identifiers in the selinfo structure.

Movement of Data Inside the Kernel

Within the kernel, I/O data are described by an array of vectors. Each I/O vector
or iovec has a base address and a length. The I/O vectors are identical to the I/O
vectors used by the readv and writev system calls.

The kernel maintains another structure, called a uio structure, that holds addi-
tional information about the I/O operation. A sample uio structure is shown in
Fig. 6.6; it contains

• A pointer to the iovec array

• The number of elements in the iovec array

• The file offset at which the operation should start

struct uio struct iov[]

uio_iovcnt
uio_offset
uio_resid
uio_segflg
uio_rw
uio_procp

iov_base

iov_len

iov_base

iov_len

iovjbase

iov_len

Figure 6.6 A uio structure.

• The sum of the lengths of the I/O vectors

• A flag showing whether the source and destination are both within the kernel, or
whether the source and destination are split between the user and the kernel

• A flag showing whether the data are being copied from the uio structure to the
kernel (UIO_WRITE) or from the kernel to the uio structure (UIO_READ)

• A pointer to the process whose data area is described by the uio structure (the
pointer is NULL if the uio structure describes an area within the kernel)

All I/O within the kernel is described with iovec and uio structures. System calls
such as read and write that are not passed an iovec create a uio to describe their
arguments; this uio structure is passed to the lower levels of the kernel to specify
the parameters of an I/O operation. Eventually, the uio structure reaches the part
of the kernel responsible for moving the data to or from the process address space:
the filesystem, the network, or a device driver. In general, these parts of the kernel
do not interpret uio structures directly. Instead, they arrange a kernel buffer to
hold the data, then use uiomove() to copy the data to or from the buffer or buffers
described by the uio structure. The uiomove() routine is called with a pointer to a
kernel data area, a data count, and a uio structure. As it moves data, it updates the
counters and pointers of the iovec and uio structures by a corresponding amount.
If the kernel buffer is not as large as the areas described by the uio structure, the
uio structure will point to the part of the process address space just beyond the
location completed most recently. Thus, while servicing a request, the kernel may
call uiomove() multiple times, each time giving a pointer to a new kernel buffer
for the next block of data.



Character device drivers that do not copy data from the process generally do
not interpret the uio structure. Instead, there is one low-level kernel routine that
arranges a direct transfer to or from the address space of the process. Here, a sep-
arate I/O operation is done for each iovec element, calling back to the driver with
one piece at a time.

Historic UNIX systems used global variables in the user area to describe I/O.
This approach has several problems. The lower levels of the kernel are not reen-
trant, because there is exactly one context to describe an I/O operation. The sys-
tem cannot do scatter-gather I/O, since there is only a single base and size variable
per process. Finally, the bottom half of the kernel cannot do I/O, because it does
not have a user area.

The one part of the 4.4BSD kernel that does not use uio structures is the
block-device drivers. The decision not to change these interfaces to use uio struc-
tures was largely pragmatic. The developers would have had to change many
drivers. The existing buffer interface was already decoupled from the user struc-
ture; hence, the interface was already reentrant and could be used by the bottom
half of the kernel. The only gain was to allow scatter-gather I/O. The kernel does
not need scatter-gather operations on block devices, however, and user operations
on block devices are done through the buffer cache.

6.5 The Virtual-Filesystem Interface

In 4.3BSD, the file entries directly referenced the local filesystem inode. An inode
is a data structure that describes the contents of a file; it is more fully described in
Section 7.2. This approach worked fine when there was a single filesystem imple-
mentation. However, with the advent of multiple filesystem types, the architecture
had to be generalized. The new architecture had to support importing of filesys-
tems from other machines including other machines that were running different
operating systems.

One alternative would have been to connect the multiple filesystems into the
system as different file types. However, this approach would have required mas-
sive restructuring of the internal workings of the system, because current directo-
ries, references to executables, and several other interfaces used inodes instead of
file entries as their point of reference. Thus, it was easier and more logical to add
a new object-oriented layer to the system below the file entry and above the inode.
This new layer was first implemented by Sun Microsystems, which called it the
virtual-node, or vnode, layer. Interfaces in the system that had referred previously
to inodes were changed to reference generic vnodes. A vnode used by a local
filesystem would refer to an inode. A vnode used by a remote filesystem would
refer to a protocol control block that described the location and naming informa-
tion necessary to access the remote file.

Contents of a Vnode

The vnode is an extensible object-oriented interface. It contains information that
is generically useful independent of the underlying filesystem object that it repre-
sents. The information stored in a vnode includes the following:

•Flags are used for locking the vnode and identifying generic attributes. An
example generic attribute is a flag to show that a vnode represents an object that
is the root of a filesystem.

• The various reference counts include the number of file entries that are open for
reading and/or writing that reference the vnode, the number of file entries that
are open for writing that reference the vnode, and the number of pages and
buffers that are associated with the vnode.

• A pointer to the mount structure describes the filesystem that contains the object
represented by the vnode.

• Various information is used to do file read-ahead.

• A reference to an NFS lease is included; see Section 9.3.

• A reference to state about special devices, sockets, and FIFOs is included.

• There is a pointer to the set of vnode operations defined for the object. These
operations are described in the next subsection.

• A pointer to private information needed for the underlying object is included.
For the local filesystem, this pointer will reference an inode; for NFS, it will ref-
erence an nfsnode.

• The type of the underlying object (e.g., regular file, directory, character device,
etc.) is given. The type information is not strictly necessary, since a vnode client
could always call a vnode operation to get the type of the underlying object.
However, because the type often is needed, the type of underlying objects does
not change, and it takes time to call through the vnode interface, the object type
is cached in the vnode.

• There are clean and dirty buffers associated with the vnode. Each valid buffer in
the system is identified by its associated vnode and the starting offset of its data
within the object that the vnode represents. All the buffers that have been modi-
fied, but have not yet been written back, are stored on their vnode dirty-buffer
list. All buffers that have not been modified, or have been written back since
they were last modified, are stored on their vnode clean list. Having all the dirty
buffers for a vnode grouped onto a single list makes the cost of doing an fsync
system call to flush all the dirty blocks associated with a file proportional to the
amount of dirty data. In 4.3BSD, the cost was proportional to the smaller of the



size of the file or the size of the buffer pool. The list of clean buffers is used to
free buffers when a file is deleted. Since the file will never be read again, the
kernel can immediately cancel any pending I/O on its dirty buffers, and reclaim
all its clean and dirty buffers and place them at the head of the buffer free list,
ready for immediate reuse.

• A count is kept of the number of buffer write operations in progress. To speed
the flushing of dirty data, the kernel does this operation by doing asynchronous
writes on all the dirty buffers at once. For local filesystems, this simultaneous
push causes all the buffers to be put into the disk queue, so that they can be
sorted into an optimal order to minimize seeking. For remote filesystems, this
simultaneous push causes all the data to be presented to the network at once, so
that it can maximize their throughput. System calls that cannot return until the
data are on stable store (such as fsync) can sleep on the count of pending output
operations, waiting for the count to reach zero.

The position of vnodes within the system was shown in Fig. 6.1. The vnode
itself is connected into several other structures within the kernel, as shown in
Fig. 6.7. Each mounted filesystem within the kernel is represented by a generic
mount structure that includes a pointer to a filesystem-specific control block. All
the vnodes associated with a specific mount point are linked together on a list
headed by this generic mount structure. Thus, when it is doing a sync system call
for a filesystem, the kernel can traverse this list to visit all the files active within
that filesystem. Also shown in the figure are the lists of clean and dirty buffers
associated with each vnode. Finally, there is a free list that links together all the
vnodes in the system that are not being used actively. The free list is used when a
filesystem needs to allocate a new vnode, so that the latter can open a new file; see
Section 6.4.

Vnode Operations

Vnodes are designed as an object-oriented interface. Thus, the kernel manipulates
them by passing requests to the underlying object through a set of defined opera-
tions. Because of the many varied filesystems that are supported in 4.4BSD, the
set of operations defined for vnodes is both large and extensible. Unlike the origi-
nal Sun Microsystems vnode implementation, that in 4.4BSD allows dynamic
addition of vnode operations at system boot time. As part of the booting process,
each filesystem registers the set of vnode operations that it is able to support. The
kernel then builds a table that lists the union of all operations supported by any
filesystem. From that table, it builds an operations vector for each filesystem.
Supported operations are filled in with the entry point registered by the filesystem.
Filesystems may opt to have unsupported operations filled in with either a default
routine (typically a routine to bypass the operation to the next lower layer; see
Section 6.7), or a routine that returns the characteristic error "operation not sup-
ported" [Heidemann & Popek, 1994].

6.5 The Virtual-Filesystem Interface 221

mounted
filesystems

struct
mount

file-
system-
specific

info

struct
mount

file-
system-
specific

info

struct
mount

file-
system-
specific

info

struct
vno

free

node-
specific

info

stri
vno

\

node-
specific

info

V
struct
vnode

\

node-
specific

info

X

[c}
D

LHcH

vnode

node-
specific

info

V
struct
vnode

V
node-

specific
info

node-
specific

info

V

Figure 6.7 Vnode linkages. D—dirty buffer; C—clean buffer.

In 4.3BSD, the local filesystem code provided both the semantics of the hier-
archical filesystem naming and the details of the on-disk storage management.
These functions are only loosely related. To enable experimentation with other
disk-storage techniques without having to reproduce the entire naming semantics,
4.4BSD splits the naming and storage code into separate modules. This split is
evident at the vnode layer, where there are a set of operations defined for hierar-
chical filesystem operations and a separate set of operations defined for storage of
variable-sized objects using a flat name space. About 60 percent of the traditional
filesystem code became the name-space management, and the remaining 40 per-
cent became the code implementing the on-disk file storage. The naming scheme
and its vnode operations are described in Chapter 7. The disk-storage scheme and
its vnode operations are explained in Chapter 8.



Pathname Translation

The translation of a pathname requires a series of interactions between the vnode
interface and the underlying filesystems. The pathname-translation process pro-
ceeds as follows:

1. The pathname to be translated is copied in from the user process or, for a
remote filesystem request, is extracted from the network buffer.

2. The starting point of the pathname is determined as either the root directory or
the current directory (see Section 2.7). The vnode for the appropriate direc-
tory becomes the lookup directory used in the next step.

3. The vnode layer calls the filesystem-specific lookup() operation, and passes to
that operation the remaining components of the pathname and the current
lookup directory. Typically, the underlying filesystem will search the lookup
directory for the next component of the pathname and will return the resulting
vnode (or an error if the name does not exist).

4. If an error is returned, the top level returns the error. If the pathname has been
exhausted, the pathname lookup is done, and the returned vnode is the result of
the lookup. If the pathname has not been exhausted, and the returned vnode is
not a directory, then the vnode layer returns the "not a directory" error. If
there are no errors, the top layer checks to see whether the returned directory
is a mount point for another filesystem. If it is, then the lookup directory
becomes the mounted filesystem; otherwise, the lookup directory becomes the
vnode returned by the lower layer. The lookup then iterates with step 3.

Although it may seem inefficient to call through the vnode interface for each
pathname component, doing so usually is necessary. The reason is that the under-
lying filesystem does not know which directories are being used as mount points.
Since a mount point will redirect the lookup to a new filesystem, it is important
that the current filesystem not proceed past a mounted directory. Although it
might be possible for a local filesystem to be knowledgeable about which directo-
ries are mount points, it is nearly impossible for a server to know which of the
directories within its exported filesystems are being used as mount points by its
clients. Consequently, the conservative approach of traversing only a single path-
name component per lookup() call is used. There are a few instances where a
filesystem will know that there are no further mount points in the remaining path,
and will traverse the rest of the pathname. An example is crossing into a portal,
described in Section 6.7.

Exported Filesystem Services
The vnode interface has a set of services that the kernel exports from all the
filesystems supported under the interface. The first of these is the ability to sup-
port the update of generic mount options. These options include the following:

noexec Do not execute any files on the filesystem. This option is often used
when a server exports binaries for a different architecture that cannot be
executed on the server itself. The kernel will even refuse to execute
shell scripts; if a shell script is to be run, its interpreter must be invoked
explicitly.

nosuid Do not honor the set-user-id or set-group-id flags for any executables on
the filesystem. This option is useful when a filesystem of unknown ori-
gin is mounted.

nodev Do not allow any special devices on the filesystem to be opened. This
option is often used when a server exports device directories for a differ-
ent architecture. The values of the major and minor numbers are non-
sensical on the server.

Together, these options allow reasonably secure mounting of untrusted or for-
eign filesystems. It is not necessary to unmount and remount the filesystem to
change these flags; they may be changed while a filesystem is mounted. In addi-
tion, a filesystem that is mounted read-only can be upgraded to allow writing.
Conversely, a filesystem that allows writing may be downgraded to read-only pro-
vided that no files are open for modification. The system administrator can
forcibly downgrade the filesystem to read-only by requesting that any files open
for writing have their access revoked.

Another service exported from the vnode interface is the ability to get infor-
mation about a mounted filesystem. The statfs system call returns a buffer that
gives the numbers of used and free disk blocks and inodes, along with the filesys-
tem mount point, and the device, location, or program from which the filesystem
is mounted. The getfsstat system call returns information about all the mounted
filesystems. This interface avoids the need to track the set of mounted filesystems
outside the kernel, as is done in many other UNIX variants.

Filesystem-Independent Services

The vnode interface not only supplies an object-oriented interface to the underly-
ing filesystems, but also provides a set of management routines that can be used
by the client filesystems. These facilities are described in this section.

When the final file-entry reference to a file is closed, the usage count on the
vnode drops to zero and the vnode interface calls the inactive() vnode operation.
The inactive() call notifies the underlying filesystem that the file is no longer
being used. The filesystem will often use this call to write dirty data back to the
file, but will not typically reclaim the buffers. The filesystem is permitted to cache
the file so that the latter can be reactivated quickly (i.e., without disk or network
I/O) if the file is reopened.

In addition to the inactive () vnode operation being called when the reference
count drops to zero, the vnode is placed on a systemwide free list. Unlike most



vendor's vnode implementations, which have a fixed number of vnodes allocated
to each filesystem type, the 4.4BSD kernel keeps a single systemwide collection of
vnodes. When an application opens a file that does not currently have an in-mem-
ory vnode, the client filesystem calls the getnewvnode() routine to allocate a new
vnode. The getnewvnode() routine removes the least recently used vnode from
the front of the free list and calls the reclaim() operation to notify the filesystem
currently using the vnode that that vnode is about to be reused. The reclaim()
operation writes back any dirty data associated with the underlying object,
removes the underlying object from any lists that it is on (such as hash lists used to
find it), and frees up any auxiliary storage that was being used by the object. The
vnode is then returned for use by the new client filesystem.

The benefit of having a single global vnode table is that the kernel memory
dedicated to vnodes is used more efficiently than when several filesystem-specific
collections of vnodes are used. Consider a system that is willing to dedicate mem-
ory for 1000 vnodes. If the system supports 10 filesystem types, then each filesys-
tem type will get 100 vnodes. If most of the activity moves to a single filesystem
(e.g., during the compilation of a kernel located in a local filesystem), all the
active files will have to be kept in the 100 vnodes dedicated to that filesystem
while the other 900 vnodes sit idle. In a 4.4BSD system, all 1000 vnodes could be
used for the active filesystem, allowing a much larger set of files to be cached in
memory. If the center of activity moved to another filesystem (e.g., compiling a
program on an NFS mounted filesystem), the vnodes would migrate from the pre-
viously active local filesystem over to the NFS filesystem. Here, too, there would
be a much larger set of cached files than if only 100 vnodes were available using a
partitioned set of vnodes.

The reclaim( ) operation is a disassociation of the underlying filesystem object
from the vnode itself. This ability, combined with the ability to associate new
objects with the vnode, provides functionality with usefulness that goes far
beyond simply allowing vnodes to be moved from one filesystem to another. By
replacing an existing object with an object from the dead filesystem—a filesystem
in which all operations except close fail—the kernel revokes the object. Internally,
this revocation of an object is provided by the vgone() routine.

This revocation service is used for session management, where all references
to the controlling terminal are revoked when the session leader exits. Revocation
works as follows. All open terminal descriptors within the session reference the
vnode for the special device representing the session terminal. When vgone() is
called on this vnode, the underlying special device is detached from the vnode and
is replaced with the dead filesystem. Any further operations on the vnode will
result in errors, because the open descriptors no longer reference the terminal.
Eventually, all the processes will exit and will close their descriptors, causing the
reference count to drop to zero. The inactive() routine for the dead filesystem
returns the vnode to the front of the free list for immediate reuse, because it will
never be possible to get a reference to the vnode again.

The revocation service is used to support forcible unmounting of filesystems.
If it finds an active vnode when unmounting a filesystem, the kernel simply calls

the vgone() routine to disassociate the active vnode from the filesystem object.
Processes with open files or current directories within the filesystem find that they
have simply vanished, as though they had been removed. It is also possible to
downgrade a mounted filesystem from read-write to read-only. Instead of access
being revoked on every active file within the filesystem, only those files with a
nonzero number of references for writing have their access revoked.

Finally, the ability to revoke objects is exported to processes through the
revoke system call. This system call can be used to ensure controlled access to a
device such as a pseudo-terminal port. First, the ownership of the device is
changed to the desired user and the mode is set to owner-access only. Then, the
device name is revoked to eliminate any interlopers that already had it open.
Thereafter, only the new owner is able to open the device.

The Name Cache
Name-cache management is another service that is provided by the vnode man-
agement routines. The interface provides a facility to add a name and its corre-
sponding vnode, to look up a name to get the corresponding vnode, and to delete a
specific name from the cache. In addition to providing a facility for deleting spe-
cific names, the interface also provides an efficient way to invalidate all names that
reference a specific vnode. Directory vnodes can have many names that reference
them—notably, the .. entries in all their immediate descendents. The kernel could
revoke all names for a vnode by scanning the entire name table, looking for refer-
ences to the vnode in question. This approach would be slow, however, given that
the name table may store thousands of names. Instead, each vnode is given a
capability—a 32-bit number guaranteed to be unique. When all the numbers have
been exhausted, all outstanding capabilities are purged, and numbering restarts
from scratch. Purging is possible, because all capabilities are easily found in ker-
nel memory; it needs to be done only if the machine remains running for nearly 1
year. When an entry is made in the name table, the current value of the vnode's
capability is copied to the associated name entry. A vnode's capability is invali-
dated each time it is reused by getnewvnode () or, when specifically requested by a
client (e.g., when a file is being renamed), by assignment of a new capability to
the vnode. When a name is found during a cached lookup, the capability assigned
to the name is compared with that of the vnode. If they match, the lookup is suc-
cessful; if they do not match, the cache entry is freed and failure is returned.

The cache-management routines also allow for negative caching. If a name is
looked up in a directory and is not found, that name can be entered in the cache,
along with a null pointer for its corresponding vnode. If the name is later looked
up, it will be found in the name table, and thus the kernel can avoid scanning the
entire directory to determine that the name is not there. If a directory is modified,
then potentially one or more of the negative entries may be wrong. So, when the
directory is modified, the kernel must invalidate all the negative names for that
directory vnode by assigning the directory a new capability. Negative caching
provides a significant performance improvement because of path searching in
command shells. When executing a command, many shells will look at each path



in turn, looking for the executable. Commonly run executables will be searched
for repeatedly in directories in which they do not exist. Negative caching speeds
these searches.

An obscure but tricky issue has to do with detecting and properly handling
special device aliases. Special devices and FIFOs are hybrid objects. Their nam-
ing and attributes (such as owner, timestamps, and permissions) are maintained by
the filesystem in which they reside. However, their operations (such as read and
write) are maintained by the kernel on which they are being used. Since a special
device is identified solely by its major and minor number, it is possible for two or
more instances of the same device to appear within the filesystem name space,
possibly in different filesystems. Each of these different names has its own vnode
and underlying object, yet all these vnodes must be treated as one from the per-
spective of identifying blocks in the buffer cache and in other places where the
vnode and logical block number are used as a key. To ensure that the set of
vnodes is treated as a single vnode, the vnode layer provides a routine
checkalias() that is called each time that a new special device vnode comes into
existence. This routine looks for other instances of the device, and if it finds them,
links them together so that they can act as one.

Buffer Management
Another important service provided by the filesystem-independent layer is the
management of the kernel's buffer space. The task of the buffer cache is two-fold.
One task is to manage the memory that buffers data being transferred to and from
the disk or network. The second, and more important, task is to act as a cache of
recently used blocks. The semantics of the filesystem imply much I/O. If every
implied transfer had to be done, the CPU would spend most of its time waiting for
I/O to complete. On a typical 4.4BSD system, over 85 percent of the implied disk
or network transfers can be skipped, because the requested block already resides
in the buffer cache. Depending on available memory, a system is configured with
from 100 to 1000 buffers. The larger the number of buffers is, the longer a given
block can be retained in memory, and the greater the chance that actual I/O can be
avoided.

Figure 6.8 shows the format of a buffer. The buffer is composed of two parts.
The first part is the buffer header, which contains information used to find the
buffer and to describe the buffer's contents. The content information includes the
vnode (i.e., a pointer to the vnode whose data the buffer holds), the starting offset
within the file, and the number of bytes contained in the buffer. The flags entry
tracks status information about the buffer, such as whether the buffer contains use-
ful data, whether the buffer is in use, and whether the data must be written back to
the file before the buffer can be reused.

The second part is the actual buffer contents. Rather than the header being
prepended to the data area of the buffer, as is done with mbufs (see Section 11.3),
the data areas are maintained separately. Thus, there is a pointer to the buffer con-
tents and a field that shows the size of the data-buffer contents. The buffer size is
always at least as big as the size of the data block that the buffer contains. Data

hash link

free-list link

flags

vnode pointer

file offset

byte count

buffer size

buffer pointer

(64 Kbyte)
— MAXBSIZE —

buffer header

Figure 6.8 Format of a buffer.

buffer contents

are maintained separately from the header to allow easy manipulation of buffer
sizes via the page-mapping hardware. If the headers were prepended, either each
header would have to be on a page by itself or the kernel would have to avoid
remapping buffer pages that contained headers.

The sizes of buffer requests from a filesystem range from 512 bytes up to
65,536 bytes. If many small files are being accessed, then many small buffers are
needed. Alternatively, if several large files are being accessed, then fewer large
buffers are needed. To allow the system to adapt efficiently to these changing
needs, the kernel allocates to each buffer MAXBSIZE bytes of virtual memory, but
the address space is not fully populated with physical memory. Initially, each
buffer is assigned 4096 bytes of physical memory. As smaller buffers are allo-
cated, they give up their unused physical memory to buffers that need to hold
more than 4096 bytes. The algorithms for managing the physical memory are
described in the next subsection.

In earlier versions of BSD and in most other versions of UNIX, buffers were
identified by their physical disk block number. 4.4BSD changes this convention to
identify buffers by their logical block number within the file. For filesystems such
as NFS, the local client has no way to compute the physical block address of a log-
ical file block on the server, so only a logical block number can be used. Using
the logical block number also speeds lookup, because it is no longer necessary to
compute the physical block number before checking for the block in the cache.
For a local filesystem where the computation may require traversing up to three
indirect blocks, the savings are considerable. The drawback to using a logical-
address cache is that it is difficult to detect aliases for a block belonging to a local
file and the same block accessed through the block device disk whose logical-
block address is the same as the physical-block address. The kernel handles these
aliases by administratively preventing them from occurring. The kernel does not
allow the block device for a partition to be opened while that partition is mounted.



Conversely, the kernel will not allow a partition on a block device disk to be
mounted if the latter is already open.

The internal kernel interface to the buffer pool is simple. The filesystem allo-
cates and fills buffers by calling the bread() routine. Bread( ) takes a vnode, a log-
ical block number, and a size, and returns a pointer to a locked buffer. Any other
process that tries to obtain the buffer will be put to sleep until the buffer is
released. A buffer can be released in one of four ways. If the buffer has not been
modified, it can simply be released through use of brelse(), which returns it to the
free list and awakens any processes that are waiting for it.

If the buffer has been modified, it is called dirty. Dirty buffers must eventu-
ally be written back to their filesystem. Three routines are available based on the
urgency with which the data must be written. In the typical case, bdwrite() is
used; since the buffer may be modified again soon, it should be marked as dirty,
but should not be written immediately. After the buffer is marked as dirty, it is
returned to the free list and any processes waiting for it are awakened. The heuris-
tic is that, if the buffer will be modified again soon, the I/O would be wasted.
Because the buffer is held for an average of 15 seconds before it is written, a pro-
cess doing many small writes will not repeatedly access the disk or network.

If a buffer has been filled completely, then it is unlikely to be written again
soon, so it should be released with bawrite( ). Bawrite() schedules an I/O on the
buffer, but allows the caller to continue running while the output completes.

The final case is bwrite(), which ensures that the write is complete before
proceeding. Because bwrite( ) can introduce a long latency to the writer, it is used
only when a process explicitly requests the behavior (such as the fsync system
call), when the operation is critical to ensure the consistency of the filesystem after
a system crash, or when a stateless remote filesystem protocol such as NFS is
being served. Buffers that are written using bawrite() or bwrite() are placed on
the appropriate output queue. When the output completes, the brelse() routine is
called to return them to the free list and to awaken any processes that are waiting
for them.

Figure 6.9 shows a snapshot of the buffer pool. A buffer with valid contents
is contained on exactly one bufhash hash chain. The kernel uses the hash chains
to determine quickly whether a block is in the buffer pool, and if it is, to locate it.
A buffer is removed only when its contents become invalid or it is reused for dif-
ferent data. Thus, even if the buffer is in use by one process, it can still be found
by another process, although the busy flag will be set so that it will not be used
until its contents are consistent.

In addition to appearing on the hash list, each unlocked buffer appears on
exactly one free list. The first free list is the LOCKED list. Buffers on this list can-
not be flushed from the cache. This list was originally intended to hold superblock
data; in 4.4BSD, it is used by only the log-structured filesystem.

The second list is the LRU list. When a buffer is found—typically on the LRU
list—it is removed and used. The buffer is then returned to the end of the LRU list.
When new buffers are needed, they are taken from the front of the LRU list. Thus,
buffers used repeatedly will continue to migrate to the end of the LRU list and are

bfreelist \ LOCKED

bufhash

LRU AGE

Figure 6.9 Snapshot of the buffer pool. V—vnode; X—file offset

EMPTY

\

i

\
i i

\
i i i

not likely to be reused for new blocks. As its name suggests, this list implements
a least recently used (LRU) algorithm.

The third free list is the AGE list. This list holds blocks that have not proved
their usefulness, but are expected to be used soon, or have already been used and
are not likely to be reused. Buffers can be pushed onto either end of this list:
Buffers containing no useful data are pushed on the front (where they will be
reclaimed quickly), and other buffers are pushed on the end (where they might

r e m a i n long enough to be used again). When a file is unlinked, its buffers are
placed at the front of the AGE list. In Fig. 6.9, the file associated with vnode 7 has
just been deleted. The AGE list is also used to hold read-ahead blocks. In Fig.
6.9, vnode 8 has just finished using the buffer starting with offset 48 Kbyte
(which, being a full-sized block, contains logical blocks 48 through 55), and will

I probably use its read-ahead, contained in the buffer starting with offset 56 Kbyte
at end of the AGE list. If a requested block is found on the AGE list, it is returned
to the end of the LRU list, because it has proved its usefulness. When a new buffer

I is needed, the AGE list is searched first; only when that list is empty is the LRU list
used.

The final list is the list of empty buffers, the EMPTY list. The empty buffers
have had all their physical memory stripped away by other buffers. They are held

this list waiting for another buffer to be reused for a smaller block and thus to
give up its extra physical memory.

Implementation of Buffer Management
Having looked at the functions and algorithms used to manage the buffer pool, we
shall now turn our attention to the implementation requirements for ensuring the
consistency of the data in the buffer pool. Figure 6.10 (on page 230) shows the



bremfree( )

iable
e list

1
bread ( )

getblk( )

getnewbuf( )

che

VOP_STRATEGY ( )

ckf

allocbuf( )

or buffer on free list

adjust memory in
to requested size

do the I/O

buffer

take buffer off free
list and mark busy

Figure 6.10 Procedural interface to the buffer-allocation system.

support routines that implement the interface for getting buffers. The primary
interface to getting a buffer is through bread( ), which is called with a request for a
data block of a specified size for a specified vnode. There is also a related inter-
face, breadn() that both gets a requested block and starts read-ahead for addi-
tional blocks. Bread( ) first calls getblk( ) to find out whether the data block is
available in a buffer that is already in memory. If the block is available in a buffer,
getblk( ) calls bremfree( ) to take the buffer off whichever free list it is on and to
mark it busy; bread( ) can then return the buffer to the caller.

If the block is not already in memory, getblk( ) calls getnewbuf( ) to allocate a
new buffer. The new buffer is then passed to allocbuf( ), which ensures that the
buffer has the right amount of physical memory. Getblk( ) then returns the buffer
to bread( ) marked busy and unfilled. Noticing that the buffer is unfilled, bread( )
passes the buffer to the strategy( ) routine for the underlying filesystem to have the
data read in. When the read completes, the buffer is returned.

The task of allocbuf( ) is to ensure that the buffer has enough physical mem-
ory allocated to it. Figure 6.11 shows the virtual memory for the data part of a
buffer. The data area for each buffer is allocated MAXBSIZE bytes of virtual
address space. The bufsize field in the buffer header shows how much of the vir-
tual address space is backed by physical memory. Allocbuf( ) compares the size of
the intended data block with the amount of physical memory already allocated to
the buffer. If there is excess physical memory and there is a buffer available on
the EMPTY list, a buffer is taken off the EMPTY list, the excess memory is put into
the empty buffer, and that buffer is then inserted onto the front of the AGE list. If

Figure 6.11 Allocation of buffer memory.

buffer I
virtual address

physical pages

(64 K
MAXI

I I I
I

\

byte)
BSIZE

bufsize= 16 Kbyte
NBPG NBPG

|32|33|34|35

new buffer

36 37 38 39 40 41

old buffer

42|43|44 4546 47

Figure 6.12 Potentially overlapping allocation of buffers.

there are no buffers on the EMPTY list, the excess physical memory is retained in
the original buffer.

If the buffer has insufficient memory, allocbuf( ) takes memory from other
buffers. Allocbuf( ) does the allocation by calling getnewbuf( ) to a second buffer
and then transferring the physical memory in the second buffer to the new buffer
under construction. If there is memory remaining in the second buffer, the second
buffer is released to the front of the AGE list; otherwise, the second buffer is
released to the EMPTY list. If the new buffer still does not have enough physical
memory, the process is repeated. Allocbuf( ) ensures that each physical-memory
page is mapped into exactly one buffer at all times.

To maintain the consistency of the filesystem, the kernel must ensure that a
disk block is mapped into at most one buffer. If the same disk block were present
in two buffers, and both buffers were marked dirty, the system would be unable to
determine which buffer had the most current information. Figure 6.12 shows a
sample allocation. In the middle of the figure are the blocks on the disk. Above
the disk is shown an old buffer containing a 4096-byte fragment for a file that pre-
sumably has been removed or shortened. The new buffer is going to be used to
hold a 3072-byte fragment for a file that is presumably being created and that will
reuse part of the space previously held by the old file. The kernel maintains the
consistency by purging old buffers when files are shortened or removed. When-
ever a file is removed, the kernel traverses its list of dirty buffers. For each buffer,
the kernel cancels its write request and marks the buffer invalid, so that the buffer
cannot be found in the buffer pool again. Each invalid buffer is put at the front of
the AGE list, so that it will be used before any buffers with potentially useful data.
For a file being partially truncated, only the buffers following the truncation point
are invalidated. The system can then allocate the new buffer knowing that the
buffer maps the corresponding disk blocks uniquely.

Stackable Filesystems

The early vnode interface was simply an object-oriented interface to an underlying
filesystem. As the demand grew for new filesystem features, it became desirable
to find ways of providing them without having to modify the existing and stable
filesystem code. One approach is to provide a mechanism for stacking several



filesystems on top of one another other [Rosenthal, 1990]. The stacking ideas
were refined and implemented in the 4.4BSD system [Heidemann & Popek, 1994].
The bottom of a vnode stack tends to be a disk-based filesystem, whereas the lay-
ers used above it typically transform their arguments and pass on those arguments
to a lower layer.

In all UNIX systems, the mount command takes a special device as a source
and maps that device onto a directory mount point in an existing filesystem.
When a filesystem is mounted on a directory, the previous contents of the direc-
tory are hidden; only the contents of the root of the newly mounted filesystem are
visible. To most users, the effect of the series of mount commands done at system
startup is the creation of a single seamless filesystem tree.

Stacking also uses the mount command to create new layers. The mount com-
mand pushes a new layer onto a vnode stack; an unmount command removes a
layer. Like the mounting of a filesystem, a vnode stack is visible to all processes
running on the system. The mount command identifies the underlying layer in the
stack, creates the new layer, and attaches that layer into the filesystem name space.
The new layer can be attached to the same place as the old layer (covering the old
layer) or to a different place in the tree (allowing both layers to be visible). An
example is shown in the next subsection.

If layers are attached to different places in the name space then the same file
will be visible in multiple places. Access to the file under the name of the new
layer's name space will go to the new layer, whereas that under the old layer's
name space will go to only the old layer.

When a file access (e.g., an open, read, stat, or close) occurs to a vnode in the
stack, that vnode has several options:

• Do the requested operations and return a result.

• Pass the operation without change to the next-lower vnode on the stack. When
the operation returns from the lower vnode, it may modify the results, or simply
return them.

• Modify the operands provided with the request, then pass it to the next-lower
vnode. When the operation returns from the lower vnode, it may modify the
results, or simply return them.

If an operation is passed to the bottom of the stack without any layer taking action
on it, then the interface will return the error "operation not supported."

Vnode interfaces released before 4.4BSD implemented vnode operations as
indirect function calls. The requirements that intermediate stack layers bypass
operations to lower layers and that new operations can be added into the system at
boot time mean that this approach is no longer adequate. Filesystems must be
able to bypass operations that may not have been defined at the time that the
filesystem was implemented. In addition to passing through the function, the
filesystem layer must also pass through the function parameters, which are of
unknown type and number.

/*
* Check for read permission on file "vp''
*/

if (error = VOP_ACCESS(vp, VREAD, cred, p))
return (error);

/*
* Check access permission for a file.
*/

iht
ufs_access (ap)

struct vop_access_args {
struct vnodeop_desc *a_desc; /
struct vnode *a_vp; /
int a_mode; /
struct ucred *a_cred; /
struct proc *a_p; /

} *ap;

operation descrip. */
file to be checked */
access mode sought */
user seeking access */
associated process */

if (permission granted)
return (1) ;

return (0) ;
}
Figure 6.1 3 Call to and function header for access vnode operation.

To resolve these two problems in a clean and portable way, the kernel places
the vnode operation name and its arguments into an argument structure. This argu-
ment structure is then passed as a single parameter to the vnode operation. Thus,
all calls on a vnode operation will always have exactly one parameter, which is the
pointer to the argument structure. If the vnode operation is one that is supported by
the filesystem, then it will know what the arguments are and how to interpret them.
If it is an unknown vnode operation, then the generic bypass routine can call the
same operation in the next-lower layer, passing to the operation the same argument
structure that it received. In addition, the first argument of every operation is a
pointer to the vnode operation description. This description provides to a bypass
routine the information about the operation, including the operation's name and the
location of the operation's parameters. An example access-check call and its
implementation for the UFS filesystem are shown in Fig. 6.13. Note that the
vop_access_args structure is normally declared in a header file, but here is
declared at the function site to simplify the example.



Simple Filesystem Layers
The simplist filesystem layer is nullfs. It makes no transformations on its argu-
ments, simply passing through all requests that it receives and returning all results
that it gets back. Although it provides no useful functionality if it is simply
stacked on top of an existing vnode, nullfs can provide a loopback filesystem by
mounting the filesystem rooted at its source vnode at some other location in the
filesystem tree. The code for nullfs is also an excellent starting point for designers
who want to build their own filesystem layers. Examples that could be built
include a compression layer or an encryption layer.

A sample vnode stack is shown in Fig. 6.14. The figure shows a local filesys-
tem on the bottom of the stack that is being exported from /local via an NFS layer.
Clients within the administrative domain of the server can import the /local
filesystem directly, because they are all presumed to use a common mapping of
UIDs to user names.

The umapfs filesystem works much like the nullfs filesystem in that it pro-
vides a view of the file tree rooted at the /local filesystem on the /export mount
point. In addition to providing a copy of the /local filesystem at the /export
mount point, it transforms the credentials of each system call made to files within
the /export filesystem. The kernel does the transformation using a mapping that
was provided as part of the mount system call that created the umapfs layer.

The /export filesystem can be exported to clients from an outside administra-
tive domain that uses different UIDs and GIDs. When an NFS request comes in for
the /export filesystem, the umapfs layer modifies the credential from the foreign
client by mapping the UIDs used on the foreign client to the corresponding UIDs
used on the local system. The requested operation with the modified credential is
passed down to the lower layer corresponding to the /local filesystem, where it is
processed identically to a local request. When the result is returned to the map-
ping layer, any returned credentials are mapped inversely so that they are con-
verted from the local UIDs to the outside UIDs, and this result is sent back as the
NFS response.

Figure 6.14 Stackable vnodes.

outside administrative exports local administrative exports

There are three benefits to this approach:

1. There is no cost of mapping imposed on the local clients.

2. There are no changes required to the local filesystem code or the NFS code to
support mapping.

3. Each outside domain can have its own mapping. Domains with simple map-
pings consume small amounts of memory and run quickly; domains with large
and complex mappings can be supported without detracting from the perfor-
mance of simpler environments.

Vnode stacking is an effective approach for adding extensions, such as the umapfs
service.

The Union Mount Filesystem

The union filesystem is another example of a middle filesystem layer. Like the
nullfs, it does not store data; it just provides a name-space transformation. It is
loosely modeled on the work on the 3-D filesystem [Korn & Krell, 1989], on the
Translucent filesystem [Hendricks, 1990], and on the Automounter [Pendry &
Williams, 1994]. The union filesystem takes an existing filesystem and transpar-
ently overlays the latter on another filesystem. Unlike most other filesystems, a
union mount does not cover up the directory on which the filesystem is mounted.
Instead, it shows the logical merger of both directories and allows both directory
trees to be accessible simultaneously [Pendry & McKusick, 1995].

A small example of a union-mount stack is shown in Fig. 6.15. Here, the bot-
tom layer of the stack is the src filesystem that includes the source for the shell
program. Being a simple program, it contains only one source and one header file.
The upper layer that has been union mounted on top of src initially contains just
the src directory. When the user changes directory into shell, a directory of the
same name is created in the top layer. Directories in the top layer corresponding
to directories in the lower layer are created only as they are encountered while the
top layer is traversed. If the user were to run a recursive traversal of the tree
rooted at the top of the union-mount location, the result would be a complete tree
of directories matching the underlying filesystem. In our example, the user now
types make in the shell directory. The sh executable is created in the upper layer

Figure 6.15 A union-mounted filesystem.
/usr/src /tmp/src



of the union stack. To the user, a directory listing shows the sources and
executable all apparently together, as shown on the right in Fig. 6.15.

All filesystem layers, except the top one, are treated as though they were read-
only. If a file residing in a lower layer is opened for reading, a descriptor is
returned for that file. If a file residing in a lower layer is opened for writing, the
kernel first copies the file to the top layer, then returns a descriptor referencing the
copy of the file. The result is that there are two copies of the file: the original
unmodified file in the lower layer and the modified copy of the file in the upper
layer. When the user does a directory listing, any duplicate names in the lower
layer are suppressed. When a file is opened, a descriptor for the file in the upper-
most layer in which the name appears is returned. Thus, once a file has been
copied to the top layer, instances of the file in lower layers become inaccessible.

The tricky part of the union filesystem is handling the removal of files that
reside in a lower layer. Since the lower layers cannot be modified, the only way to
remove a file is to hide it by creating a whiteout directory entry in the top layer. A
whiteout is an entry in a directory that has no corresponding file; it is distin-
guished by having an inode number of 1. If the kernel finds a whiteout entry
while searching for a name, the lookup is stopped and the "no such file or direc-
tory" error is returned. Thus, the file with the same name in a lower layer appears
to have been removed. If a file is removed from the top layer, it is necessary to
create a whiteout entry for it only if there is a file with the same name in the lower
level that would reappear.

When a process creates a file with the same name as a whiteout entry, the
whiteout entry is replaced with a regular name that references the new file.
Because the new file is being created in the top layer, it will mask out any files
with the same name in a lower layer. When a user does a directory listing, white-
out entries and the files that they mask usually are not shown. However, there is
an option that causes them to appear.

One feature that has long been missing in UNIX systems is the ability to
recover files after they have been deleted. For the union filesystem, the kernel can
implement file recovery trivially simply by removing the whiteout entry to expose
the underlying file. The LFS filesystem also has the (currently unimplemented)
ability to recover deleted files, because it never overwrites previously written data.
Deleted versions of files may not be reclaimed until the filesystem becomes nearly
full and the LFS garbage collector runs. For filesystems that provide file recovery,
users can recover files by using a special option to the remove command; pro-
cesses can recover files by using the undelete system call.

When a directory whose name appears in a lower layer is removed, a whiteout
entry is created just as it would be for a file. However, if the user later attempts to
create a directory with the same name as the previously deleted directory, the

- union filesystem must treat the new directory specially to avoid having the previ-
ous contents from the lower-layer directory reappear. When a directory that
replaces a whiteout entry is created, the union filesystem sets a flag in the direc-
tory metadata to show that this directory should be treated specially. When a
directory scan is done, the kernel returns information about only the top-level

directory; it suppresses the list of files from the directories of the same name in the
lower layers.

The union filesystem can be used for many purposes:

• It allows several different architectures to build from a common source base.
The source pool is NFS mounted onto each of several machines. On each host
machine, a local filesystem is union mounted on top of the imported source tree.
As the build proceeds, the objects and binaries appear in the local filesystem that
is layered above the source tree. This approach not only avoids contaminating
the source pool with binaries, but also speeds the compilation, because most of
the filesystem traffic is on the local filesystem.

• It allows compilation of sources on read-only media such as CD-ROMs. A local
filesystem is union mounted above the CD-ROM sources. It is then possible to
change into directories on the CD-ROM and to give the appearance of being able
to edit and compile in that directory.

• It allows creation of a private source directory. The user creates a source direc-
tory in her own work area, then union mounts the system sources underneath that
directory. This feature is possible because the restrictions on the mount com-
mand have been relaxed. Any user can do a mount if she owns the directory on
which the mount is being done and she has appropriate access permissions on
the device or directory being mounted (read permission is required for a read-
only mount, read-write permission is required for a read-write mount). Only the
user who did the mount or the superuser can unmount a filesystem.

Other Filesystems
There are several other filesystems included as part of 4.4BSD. The portal filesys-
tem mounts a process onto a directory in the file tree. When a pathname that tra-
verses the location of the portal is used, the remainder of the path is passed to the
process mounted at that point. The process interprets the path in whatever way it
sees fit, then returns a descriptor to the calling process. This descriptor may be for
a socket connected to the portal process. If it is, further operations on the descrip-
tor will be passed to the portal process for the latter to interpret. Alternatively, the
descriptor may be for a file elsewhere in the filesystem.

Consider a portal process mounted on /dialout used to manage a bank of
dialout modems. When a process wanted to connect to an outside number, it
would open /dialout/15105551212/9600 to specify that it wanted to dial
1-510-555-1212 at 9600 baud. The portal process would get the final two path-
name components. Using the final component, it would determine that it should
find an unused 9600-baud modem. It would use the other component as the num-
ber to which to place the call. It would then write an accounting record for future
billing, and would return the descriptor for the modem to the process.

One of the more interesting uses of the portal filesystem is to provide an Inter-
net service directory. For example, with an Internet portal process mounted on
/net, an open of /net/tcp/McKusick.COM/smtp returns a TCP socket descriptor



to the calling process that is connected to the SMTP server on McKusick.COM.
Because access is provided through the normal filesystem, the calling process does
not need to be aware of the special functions necessary to create a TCP socket and
to establish a TCP connection [Stevens & Pendry, 1995].

There are several filesystems that are designed to provide a convenient inter-
face to kernel information. The procfs filesystem is normally mounted at /proc
and provides a view of the running processes in the system. Its primary use is for
debugging, but it also provides a convenient interface for collecting information
about the processes in the system. A directory listing of /proc produces a numeric
list of all the processes in the system. Each process entry is itself a directory that
contains the following:

ctl A file to control the process, allowing the process to be stopped, contin-
ued, and signaled

file The executable for the process

mem The virtual memory of the process

regs The registers for the process

status A text file containing information about the process.

Thefdesc filesystem is normally mounted on /dev/fd, and provides a list of all
the active file descriptors for the currently running process. An example where
this is useful is specifying to an application that it should read input from its stan-
dard input. Here, you can use the pathname /dev/fd/0, instead of having to come
up with a special convention, such as using the name - to tell the application to
read from its standard input.

The kernfs filesystem is normally mounted on /kern, and contains files that
have various information about the system. It includes information such as the
host name, time of day, and version of the system.

Finally there is the cd9660 filesystem. It allows ISO-9660-compliant filesys-
tems, with or without Rock Ridge extensions, to be mounted. The ISO-9660
filesystem format is most commonly used on CD-ROMs.

Exercises

6.1
6.2

6.3

6.4

Where are the read and write attributes of an open file descriptor stored?

Why is the close-on-exec bit located in the per-process descriptor table,
instead of in the system file table?

Why are the file-table entries reference counted?

What three shortcomings of lock files are addressed by the 4.4BSD descrip-
tor-locking facilities?

6.5 What two problems are raised by mandatory locks?

6.6 Why is the implementation of select split between the descriptor-manage-
ment code and the lower-level routines?

6.7 Describe how the process selecting flag is used in the implementation of
select.

6.8 The update program is usually started shortly after the system is booted.
Once every 30 seconds, it does a sync system call. What problem could
arise if this program were not run?

6.9 The special device /dev/kmem provides access to the kernel's virtual
address space. Would you expect it to be a character or a block device?
Explain your answer.

6.10 Many tape drives provide a block-device interface. Is it possible to support
a filesystem on a such a tape drive?

6.11 When is a vnode placed on the free list?

6.12 Why must the lookup routine call through the vnode interface once for each
component in a pathname?

6.13 Give three reasons for revoking access to a vnode.

6.14 Why are the buffer headers allocated separately from the memory that
holds the contents of the buffer?

6.15 How does the maximum filesystem block size affect the buffer cache?

*6.16 Why are there both an AGE list and an LRU list, instead of all buffers being
managed on the LRU list?

*6.17 Filenames can be up to 255 characters long. How could you implement the
systemwide name cache to avoid allocating 255 bytes for each entry?

*6.18 If a process reads a large file, the blocks of the file will fill the buffer cache
completely, flushing out all other contents. All other processes in the sys-
tem then will have to go to disk for all their filesystem accesses. Write an
algorithm to control the purging of the buffer cache.

*6.19 Discuss the tradeoff between dedicating memory to the buffer cache and
making the memory available to the virtual-memory system for use in ful-
filling paging requests. Give a policy for moving memory between the
buffer pool and the virtual-memory system.

*6.20 Vnode operation parameters are passed between layers in structures. What
alternatives are there to this approach? Explain why your approach is more
or less efficient, compared to the current approach, when there are less than
five layers in the stack. Also compare the efficiency of your solution when
there are more than five layers in the stack.



*6.21 True asynchronous I/O is not supported in 4.4BSD. What problems arise
with providing asynchronous I/O in the existing read-write interface?

CHAPTER 7

References
Accettaetal, 1986.

M. Accetta, R. Baron, W. Bolosky, D. Golub, R. Rashid, A. Tevanian, & M.
Young, "Mach: A New Kernel Foundation for UNIX Development," USENIX
Association Conference Proceedings, pp. 93-113, June 1986.

Bass, 1981.
J. Bass, Implementation Description for File Locking, Onyx Systems Inc., 73
E. Trimble Road, San Jose, CA, January 1981.

Heidemann & Popek, 1994.
J. S. Heidemann & G. J. Popek, "File-System Development with Stackable
Layers," ACM Transactions on Computer Systems, vol. 12, no. 1, pp. 58-89,
February 1994.

Hendricks, 1990.
D. Hendricks, "A Filesystem for Software Development," USENIX Associa-
tion Conference Proceedings, pp. 333-340, June 1990.

Korn & Krell, 1989.
D. Korn & E. Krell, "The 3-D File System," USENIX Association Confer-
ence Proceedings, pp. 147-156, June 1989.

Pendry & McKusick, 1995.
J. Pendry & M. McKusick, "Union Mounts in 4.4BSD-Lite," USENIX Asso-
ciation Conference Proceedings, pp. 25-33, January 1995.

Pendry & Williams, 1994.
J. Pendry & N. Williams, "AMD: The 4.4BSD Automounter Reference
Manual," in 4.4BSD System Manager's Manual, pp. 13:1-57, O'Reilly &
Associates, Inc., Sebastopol, CA, 1994.

Peterson, 1983.
G. Peterson, "Concurrent Reading While Writing," ACM Transactions on
Programming Languages and Systems, vol. 5, no. 1, pp. 46-55, January
1983.

Rosenthal, 1990.
D. Rosenthal, "Evolving the Vnode Interface," USENIX Association Confer-
ence Proceedings, pp. 107-118, June 1990.

Stevens & Pendry, 1995.
R. Stevens & J. Pendry, "Portals in 4.4BSD," USENIX Association Confer-
ence Proceedings, pp. 1-10, January 1995.

Local Filesystems

Hierarchical Filesystem Management

The operations defined for local filesystems are divided into two parts. Common
to all local filesystems are hierarchical naming, locking, quotas, attribute manage-
ment, and protection. These features, which are independent of how data are
stored, are provided by the UFS code described in this chapter. The other part of
the local filesystem is concerned with the organization and management of the
data on the storage media. Storage is managed by the datastore filesystem opera-
tions described in Chapter 8.

The vnode operations defined for doing hierarchical filesystem operations are
shown in Table 7.1. The most complex of these operations is that for doing a
lookup. The filesystem-independent part of the lookup was described in Section
6.5. The algorithm used to look up a pathname component in a directory is
described in Section 7.3.

Table 7.1 Hierarchical filesystem operations.

Operation done
pathname searching
name creation
name change/deletion
attribute manipulation
object interpretation
process control
object management

Operator names
lookup
create, mknod, link, symlink, mkdir
rename, remove, rmdir
access, getattr, setattr
open, readdir, readlink, mmap, close
advlock, ioctl, select
lock, unlock, inactive, reclaim, abortop

241



There are five operators for creating names. The operator used depends on
the type of object being created. The create operator creates regular files and also
is used by the networking code to create AF_LOCAL domain sockets. The link
operator creates additional names for existing objects. The symlink operator cre-
ates a symbolic link (see Section 7.3 for a discussion of symbolic links). The
mknod operator creates block and character special devices; it is also used to cre-
ate FIFOs. The mkdir operator creates directories.

There are three operators for changing or deleting existing names. The
rename operator deletes a name for an object in one location and creates a new
name for the object in another location. The implementation of this operator is
complex when the kernel is dealing with the movement of a directory from one
part of the filesystem tree to another. The remove operator removes a name. If the
removed name is the final reference to the object, the space associated with the
underlying object is reclaimed. The remove operator operates on all object types
except directories; they are removed using the rmdir operator.

Three operators are supplied for object attributes. The kernel retrieves
attributes from an object using the getattr operator; it stores them using the setattr
operator. Access checks for a given user are provided by the access operator.

Five operators are provided for interpreting objects. The open and close oper-
ators have only peripheral use for regular files, but, when used on special devices,
are used to notify the appropriate device driver of device activation or shutdown.
The readdir operator converts the filesystem-specific format of a directory to the
standard list of directory entries expected by an application. Note that the inter-
pretation of the contents of a directory is provided by the hierarchical filesystem-
management layer; the filestore code considers a directory as just another object
holding data. The readlink operator returns the contents of a symbolic link. As it
does directories, the filestore code considers a symbolic link as just another object
holding data. The mmap operator prepares an object to be mapped into the
address space of a process.

Three operators are provided to allow process control over objects. The select
operator allows a process to find out whether an object is ready to be read or writ-
ten. The ioctl operator passes control requests to a special device. The advlock
operator allows a process to acquire or release an advisory lock on an object.
None of these operators modifies the object in the filestore. They are simply using
the object for naming or directing the desired operation.

There are five operations for management of the objects. The inactive and
reclaim operators were described in Section 6.6. The lock and unlock operators
allow the callers of the vnode interface to provide hints to the code that implement
operations on the underlying objects. Stateless filesystems such as NFS ignore
these hints. Stateful filesystems, however, can use hints to avoid doing extra work.
For example, an open system call requesting that a new file be created requires
two steps. First, a lookup call is done to see if the file already exists. Before the
lookup is started, a lock request is made on the directory being searched. While
scanning through the directory checking for the name, the lookup code also identi-
fies a location within the directory that contains enough space to hold the new

name. If the lookup returns successfully (meaning that the name does not already
exist), the open code verifies that the user has permission to create the file. If the
user is not eligible to create the new file, then the abortop operator is called to
release any resources held in reserve. Otherwise, the create operation is called. If
the filesystem is stateful and has been able to lock the directory, then it can simply
create the name in the previously identified space, because it knows that no other
processes will have had access to the directory. Once the name is created, an
unlock request is made on the directory. If the filesystem is stateless, then it can-
not lock the directory, so the create operator must rescan the directory to find
space and to verify that the name has not been created since the lookup.

Structure of an I node

To allow files to be allocated concurrently and random access within files, 4.4BSD
uses the concept of an index node, or inode. The inode contains information about
the contents of the file, as shown in Fig. 7.1. This information includes

Figure 7.1 The structure of an inode.

mode

owners (2)

timestamps (3)

size

direct blocks

single indirect

double indirect

triple indirect

block count

reference count

flags

generation number



• The type and access mode for the file

• The file's owner

• The group-access identifier

• The time that the file was most recently read and written

• The time that the inode was most recently updated by the system

• The size of the file in bytes

• The number of physical blocks used by the file (including blocks used to hold
indirect pointers)

• The number of references to the file

• The flags that describe characteristics of the file

• The generation number of the file (a unique number selected to be the approxi-
mate creation time of the file and assigned to the inode each time that the latter is
allocated to a new file; the generation number is used by NFS to detect references
to deleted files)

Notably missing in the inode is the filename. Filenames are maintained in directo-
ries, rather than in inodes, because a file may have many names, or links, and the
name of a file may be large (up to 255 bytes in length). Directories are described
in Section 7.3.

To create a new name for a file, the system increments the count of the num-
ber of names referring to that inode. Then, the new name is entered in a directory,
along with the number of the inode. Conversely, when a name is deleted, the entry
is deleted from a directory, and the name count for the inode is then decremented.
When the name count reaches zero, the system deallocates the inode by putting all
the inode's blocks back on a list of free blocks and by putting the inode back on a
list of unused inodes.

The inode also contains an array of pointers to the blocks in the file. The sys-
tem can convert from a logical block number to a physical sector number by
indexing into the array using the logical block number. A null array entry shows
that no block has been allocated and will cause a block of zeros to be returned on
a read. On a write of such an entry, a new block is allocated, the array entry is
updated with the new block number, and the data are written to the disk.

Inodes are statically allocated and most files are small, so the array of pointers
must be small for efficient use of space. The first 12 array entries are allocated in
the inode itself. For typical filesystems, this allows the first 48 or 96 Kbyte of data
to be located directly via a simple indexed lookup.

For somewhat larger files, Fig. 7.1 shows that the inode contains a single indi-
rect pointer that points to a single indirect block of pointers to data blocks. To
find the one-hundredth logical block of a file, the system first fetches the block
identified by the indirect pointer, then indexes into the eighty-eighth block (100
minus 12 direct pointers), and fetches that data block.

For files that are bigger than a few Mbyte, the single indirect block is eventu-
ally exhausted; these files must resort to using a double indirect block, which is a
pointer to a block of pointers to pointers to data blocks. For files of multiple
Gbyte, the system uses a triple indirect block, which contains three levels of
pointer before reaching the data block.

Although indirect blocks appear to increase the number of disk accesses
required to get a block of data, the overhead of the transfer is typically much
lower. In Section 6.6, we discussed the management of the filesystem cache that
holds recently used disk blocks. The first time that a block of indirect pointers is
needed, it is brought into the filesystem cache. Further accesses to the indirect
pointers find the block already resident in memory; thus, they require only a single
disk access to get the data.

Inode Management
Most of the activity in the local filesystem revolves around inodes. As described
in Section 6.6, the kernel keeps a list of active and recently accessed vnodes. The
decisions regarding how many and which files should be cached are made by the
vnode layer based on information about activity across all filesystems. Each local
filesystem will have a subset of the system vnodes to manage. Each uses an inode
supplemented with some additional information to identify and locate the set of
files for which it is responsible. Figure 7.2 shows the location of the inodes within
the system.

Reviewing the material in Section 6.4, each process has a process open-file
table that has slots for up to a system-imposed limit of file descriptors; this table is
maintained as part of the process state. When a user process opens a file (or
socket), an unused slot is located in the process's open-file table; the small integer
file descriptor that is returned on a successful open is an index value into this
table.

The per-process file-table entry points to a system open-file entry, which con-
tains information about the underlying file or socket represented by the descriptor.
For files, the file table points to the vnode representing the open file. For the local
filesystem, the vnode references an inode. It is the inode that identifies the file
itself.

Figure 7.2 Layout of kernel tables.

kernel-resident structures
disk



hash on
<inumber, devnumber>

Figure 7.3 Structure of the inode table.

The first step in opening a file is to find the file's associated vnode. The
lookup request is given to the filesystem associated with the directory currently
being searched. When the local filesystem finds the name in the directory, it gets
the inode number of the associated file. First, the filesystem searches its collection
of inodes to see whether the requested inode is already in memory. To avoid
doing a linear scan of all its entries, the system keeps a set of hash chains keyed
on inode number and filesystem identifier, as shown in Fig. 7.3. If the inode is not
in the table, such as the first time a file is opened, the filesystem must request a
new vnode. When a new vnode is allocated to the local filesystem, a new structure
to hold the inode is allocated.

The next step is to locate the disk block containing the inode and to read that
block into a buffer in system memory. When the disk I/O completes, the inode is
copied from the disk buffer into the newly allocated inode entry. In addition to the
information contained in the disk portion of the inode, the inode table itself main-
tains supplemental information while the inode is in memory. This information
includes the hash chains described previously, as well as flags showing the inode's
status, reference counts on its use, and information to manage locks. The informa-
tion also contains pointers to other kernel data structures of frequent interest, such
as the superblock for the filesystem containing the inode.

When the last reference to a file is closed, the local filesystem is notified that
the file has become inactive. When it is inactivated, the inode times will be
updated, and the inode may be written to disk. However, it remains on the hash
list so that it can be found if it is reopened. After being inactive for a period deter-
mined by the vnode layer based on demand for vnodes in all the filesystems, the
vnode will be reclaimed. When a vnode for a local file is reclaimed, the inode is
removed from the previous filesystem's hash chain and, if the inode is dirty, its

contents are written back to disk. The space for the inode is then deallocated, so
that the vnode will be ready for use by a new filesystem client.

Naming
Filesystems contain files, most of which contain ordinary data. Certain files are
distinguished as directories and contain pointers to files that may themselves be
directories. This hierarchy of directories and files is organized into a tree struc-
ture; Fig. 7.4 shows a small filesystem tree. Each of the circles in the figure repre-
sents an inode with its corresponding inode number inside. Each of the arrows
represents a name in a directory. For example, inode 4 is the /usr directory with
entry ., which points to itself, and entry .., which points to its parent, inode 2, the
root of the filesystem. It also contains the name bin, which references directory
inode 7, and the name foo, which references file inode 6.

Directories
Directories are allocated in units called chunks; Fig. 7.5 (on page 248) shows a
typical directory chunk. The size of a chunk is chosen such that each allocation
can be transferred to disk in a single operation; the ability to change a directory in
a single operation makes directory updates atomic. Chunks are broken up into
variable-length directory entries to allow filenames to be of nearly arbitrary length.
No directory entry can span multiple chunks. The first four fields of a directory
entry are of fixed length and contain

1. An index into a table of on-disk inode structures; the selected entry describes
the file (inodes were described in Section 7.2)

Figure 7.4 A small filesystem tree.



# FILE 5 foo.c # DIR 3 bar # \
DIR 6 mumble

a directory block with three entries

0

an empty directory block

Figure 7.5 Format of directory chunks.

2. The size of the entry in bytes

3. The type of the entry

4. The length of the filename contained in the entry in bytes

The remainder of an entry is of variable length and contains a null-terminated file-
name, padded to a 4-byte boundary. The maximum length of a filename in a
directory is 255 characters.

The filesystem records free space in a directory by having entries accumulate
the free space in their size fields. Thus, some directory entries are larger than
required to hold the entry name plus fixed-length fields. Space allocated to a
directory should always be accounted for completely by the total of the sizes of
the directory's entries. When an entry is deleted from a directory, the system coa-
lesces the entry's space into the previous entry in the same directory chunk by
increasing the size of the previous entry by the size of the deleted entry. If the first
entry of a directory chunk is free, then the pointer to the entry's inode is set to zero
to show that the entry is unallocated.

Applications obtain chunks of directories from the kernel by using the getdi-
rentries system call. For the local filesystem, the on-disk format of directories is
identical to that expected by the application, so the chunks are returned uninter-
preted. When directories are read over the network or from non-BSD filesystems
such as MS-DOS, the getdirentries system call has to convert the on-disk represen-
tation of the directory to that described.

Normally, programs want to read directories one entry at a time. This inter-
face is provided by the directory-access routines. The opendir() function returns a
structure pointer that is used by readdir() to get chunks of directories using getdi-
rentries; readdir() returns the next entry from the chunk on each call. The
closedir( ) function deallocates space allocated by opendir() and closes the direc-
tory. In addition, there is the rewinddir() function to reset the read position to the
beginning, the telldir() function that returns a structure describing the current
directory position, and the seekdir() function that returns to a position previously
obtained with telldir().

Finding of Names in Directories
A common request to the filesystem is to look up a specific name in a directory.
The kernel usually does the lookup by starting at the beginning of the directory
and going through, comparing each entry in turn. First, the length of the sought-
after name is compared with the length of the name being checked. If the lengths
are identical, a string comparison of the name being sought and the directory entry
is made. If they match, the search is complete; if they fail, either in the length or
in the string comparison, the search continues with the next entry. Whenever a
name is found, its name and containing directory are entered into the systemwide
name cache described in Section 6.6. Whenever a search is unsuccessful, an entry
is made in the cache showing that the name does not exist in the particular direc-
tory. Before starting a directory scan, the kernel looks for the name in the cache.
If either a positive or negative entry is found, the directory scan can be avoided.

Another common operation is to look up all the entries in a directory. For
example, many programs do a stat system call on each name in a directory in the
order that the names appear in the directory. To improve performance for these
programs, the kernel maintains the directory offset of the last successful lookup
for each directory. Each time that a lookup is done in that directory, the search is
started from the offset at which the previous name was found (instead of from the
beginning of the directory). For programs that step sequentially through a direc-
tory with n files, search time decreases from Order(n2) to Order(n).

One quick benchmark that demonstrates the maximum effectiveness of the
cache is running the Is -I command on a directory containing 600 files. On a sys-
tem that retains the most recent directory offset, the amount of system time for this
test is reduced by 85 percent on a directory containing 600 files. Unfortunately,
the maximum effectiveness is much greater than the average effectiveness.
Although the cache is 90-percent effective when hit, it is applicable to only about
25 percent of the names being looked up. Despite the amount of time spent in the
lookup routine itself decreasing substantially, the improvement is diminished
because more time is spent in the routines that that routine calls. Each cache miss
causes a directory to be accessed twice—once to search from the middle to the
end, and once to search from the beginning to the middle.

Pathname Translation
We are now ready to describe how the filesystem looks up a pathname. The
small filesystem introduced in Fig. 7.4 is expanded to show its internal structure
in Fig. 7.6 (on page 250). Each of the files in Fig. 7.4 is shown expanded into its
constituent inode and data blocks. As an example of how these data structures
work, consider how the system finds the file /usr/bin/vi. It must first search the
root directory of the filesystem to find the directory usr. It first finds the inode
that describes the root directory. By convention, inode 2 is always reserved for
the root directory of a filesystem; therefore, the system finds and brings inode 2
into memory. This inode shows where the data blocks are for the root directory;
these data blocks must also be brought into memory so that they can be searched
for the entry usr. Having found the entry for usr, the system knows that the



root wheel

drwxr-xr-x

Apr 1 1995

0

root wheel

drwxr-xr-x

Apr 1 1995

root wheel

rwxr-xr-x

Apr 15 1995

sam staff

rw-rw-r—

Jan 19 1994

root wheel

Apr 1 1995

0

bin bin

Apr 15 1995

#4

#5

ft /

•

••
usr

vmunix
•
•
•

.

..

bin

foo
••

text data

Hello World

.

.,

ex

groff

vi
•
•
•

text data

2

2

4

5

4
2

7

6

!

/

4

9

10

9

inode list

Figure 7.6 Internal structure of a small filesystem.

data blocks

directory
/

directory
/usr

file
/vmunix

file
/usr/foo

directory
/usr/bin

file
/usr/bin/vi

contents of usr are described by inode 4. Returning once again to the disk, the
system fetches inode 4 to find where the data blocks for usr are located. Search-
ing these blocks, it finds the entry for bin. The bin entry points to inode 7.
Next, the system brings in inode 7 and its associated data blocks from the disk,
to search for the entry for vi. Having found that vi is described by inode 9, the
system can fetch this inode and the blocks that contain the vi binary.

Sectiori 7.3 Naming 251

Links

Each file has a single inode, but multiple directory entries in the same filesystem
may reference that inode (i.e., the inode may have multiple names). Each direc-
tory entry creates a hard link of a filename to the inode that describes the file's
contents. The link concept is fundamental; inodes do not reside in directories, but
rather exist separately and are referenced by links. When all the links to an inode
are removed, the inode is deallocated. If one link to a file is removed and the file-
name is recreated with new contents, the other links will continue to point to the
old inode. Figure 7.7 shows two different directory entries, foo and bar, that ref-
erence the same file; thus, the inode for the file shows a reference count of 2.

The system also supports a symbolic link, or soft link. A symbolic link is
implemented as a file that contains a pathname. When the system encounters a
symbolic link while looking up a component of a pathname, the contents of the
symbolic link are prepended to the rest of the pathname; the lookup continues
with the resulting pathname. If a symbolic link contains an absolute pathname,
that absolute pathname is used; otherwise, the contents of the symbolic link are
evaluated relative to the location of the link in the file hierarchy (not relative to the
current working directory of the calling process).

An example symbolic link is shown in Fig. 7.8 (on page 252). Here, there is a
hard link, foo, that points to the file. The other reference, bar, points to a different
inode whose contents are a pathname of the referenced file. When a process
opens bar, the system interprets the contents of the symbolic link as a pathname
to find the file the link references. Symbolic links are treated like data files by the
system, rather than as part of the filesystem structure; thus, they can point at direc-
tories or files on other filesystems. If a filename is removed and replaced, any
symbolic links that point to it will access the new file. Finally, if the filename is
not replaced, the symbolic link will point at nothing, and any attempt to access it
will be an error.

Figure 7.7 Hard links to a file.

/usr/joe

reference count = 2

file
inode

directories



/usr/joe
reference count = 1

description
of file

reference count = 1

/usr/joe/foo

directories

Figure 7.8 Symbolic link to a file.

When open is applied to a symbolic link, it returns a file descriptor for the file
pointed to, not for the link itself. Otherwise, it would be necessary to use indirec-
tion to access the file pointed to—and that file, rather than the link, is what is usu-
ally wanted. For the same reason, most other system calls that take pathname
arguments also follow symbolic links. Sometimes, it is useful to be able to detect
a symbolic link when traversing a filesystem or when making an archive tape. So,
the Istat system call is available to get the status of a symbolic link, instead of the
object at which that link points.

A symbolic link has several advantages over a hard link. Since a symbolic
link is maintained as a pathname, it can refer to a directory or to a file on a differ-
ent filesystem. So that loops in the filesystem hierarchy are prevented, unprivi-
leged users are not permitted to create hard links (other than . and ..) that refer to
a directory. The implementation of hard links prevents hard links from referring
to files on a different filesystem.

There are several interesting implications of symbolic links. Consider a pro-
cess that has current working directory /usr/keith and does cd src, where src is a
symbolic link to directory /usr/src. If the process then does a cd .., then the cur-
rent working directory for the process will be in /usr instead of in /usr/keith, as it
would have been if src was a normal directory instead of a symbolic link. The
kernel could be changed to keep track of the symbolic links that a process has tra-
versed, and to interpret .. differently if the directory has been reached through a
symbolic link. There are two problems with this implementation. First, the kernel
would have to maintain a potentially unbounded amount of information. Second,
no program could depend on being able to use .., since it could not be sure how
the name would be interpreted.

Many shells keep track of symbolic-link traversals. When the user changes
directory through .. from a directory that was entered through a symbolic link, the
shell returns the user to the directory from which they came. Although the shell
might have to maintain an unbounded amount of information, the worst that will
happen is that the shell will run out of memory. Having the shell fail will affect
only the user silly enough to traverse endlessly through symbolic links. Tracking
of symbolic links affects only change-directory commands in the shell; programs
can continue to depend on .. referencing its true parent. Thus, tracking symbolic
links outside of the kernel in a shell is reasonable.

Since symbolic links may cause loops in the filesystem, the kernel prevents
looping by allowing at most eight symbolic link traversals in a single pathname
translation. If the limit is reached, the kernel produces an error (ELOOP).

Quotas

Resource sharing always has been a design goal for the BSD system. By default,
any single user can allocate all the available space in the filesystem. In certain
environments, uncontrolled use of disk space is unacceptable. Consequently,
4.4BSD includes a quota mechanism to restrict the amount of filesystem resources
that a user or members of a group can obtain. The quota mechanism sets limits on
both the number of files and the number of disk blocks that a user or members of a
group may allocate. Quotas can be set separately for each user and group on each
filesystem.

Quotas support both hard and soft limits. When a process exceeds its soft
limit, a warning is printed on the user's terminal; the offending process is not pre-
vented from allocating space unless it exceeds its hard limit. The idea is that users
should stay below their soft limit between login sessions, but may use more
resources while they are active. If a user fails to correct the problem for longer
than a grace period, the soft limit starts to be enforced as the hard limit. The grace
period is set by the system administrator and is 7 days by default. These quotas
are derived from a larger resource-limit package that was developed at the Univer-
sity of Melbourne in Australia by Robert Elz [Elz, 1984].

Quotas connect into the system primarily as an adjunct to the allocation rou-
tines. When a new block is requested from the allocation routines, the request is
first validated by the quota system with the following steps:

1. If there is a user quota associated with the file, the quota system consults the
quota associated with the owner of the file. If the owner has reached or
exceeded their limit, the request is denied.

2. If there is a group quota associated with the file, the quota system consults the
quota associated with the group of the file. If the group has reached or
exceeded its limit, the request is denied.



3. If the quota tests pass, the request is permitted and is added to the usage statis-
tics for the file.

When either a user or group quota would be exceeded, the allocator returns a fail-
ure as though the filesystem were full. The kernel propagates this error up to the
process doing the write system call.

Quotas are assigned to a filesystem after it has been mounted. A system call
associates a file containing the quotas with the mounted filesystem. By conven-
tion, the file with user quotas is named quota.user, and the file with group quotas
is named quota.group. These files typically reside either in the root of the
mounted filesystem or in the /var/quotas directory. For each quota to be imposed,
the system opens the appropriate quota file and holds a reference to it in the
mount-table entry associated with the mounted filesystem. Figure 7.9 shows the
mount-table reference. Here, the root filesystem has a quota on users, but has
none on groups. The /usr filesystem has quotas imposed on both users and
groups. As quotas for different users or groups are needed, they are taken from
the appropriate quota file.

Quota files are maintained as an array of quota records indexed by user or
group identifiers; Fig. 7.10 shows a typical record in a user quota file. To find the
quota for user identifier /, the system seeks to location i x sizeof (quota structure)
in the quota file and reads the quota structure at that location. Each quota struc-
ture contains the limits imposed on the user for the associated filesystem. These
limits include the hard and soft limits on the number of blocks and inodes that the
user may have, the number of blocks and inodes that the user currently has allo-
cated, and the amount of time that the user has remaining before the soft limit is
enforced as the hard limit. The group quota file works in the same way, except
that it is indexed by group identifier.

Figure 7.9 References to quota files.

struct
mount
for /

*
struct
mount

for /usr

struct
ufs_mount

struct
ufs_mount

vnoae for /quota.user

vnode for /usr/quota.user

vnode for /usr/quota.group

uidO:
uidl:

uid i:

uid n:

quota.user file

Figure 7.10 Contents of a quota record.

block quota (soft limit)
block limit (hard limit)
current number of blocks
time to begin enforcing block quota
inode quota (soft limit)
inode limit (hard limit)
current number of inodes
time to begin enforcing inode quota

quota block for uid i

Active quotas are held in system memory in a data structure known as a dquot
entry, Fig. 7.11 shows two typical entries. In addition to the quota limits and
usage extracted from the quota file, the dquot entry maintains information about
the quota while the quota is in use. This information includes fields to allow fast
access and identification. Quotas are checked by the chkdq( ) routine. Since quo-
tas may have to be updated on every write to a file, chkdq( ) must be able to find
and manipulate them quickly. Thus, the task of finding the dquot structure associ-
ated with a file is done when the file is first opened for writing. When an access

Figure 7.11 Dquot entries.

inode entries dquot entries



check is done to check for writing, the system checks to see whether there is either
a user or a group quota associated with the file. If one or more quotas exist, the
inode is set up to hold a reference to the appropriate dquot structures for as long as
the inode is resident. The chkdq() routine can determine that a file has a quota
simply by checking whether the dquot pointer is nonnull; if it is, all the necessary
information can be accessed directly. If a user or a group has multiple files open
on the same filesystem, all inodes describing those files point to the same dquot
entry. Thus, the number of blocks allocated to a particular user or a group can
always be known easily and consistently.

The number of dquot entries in the system can grow large. To avoid doing a
linear scan of all the dquot entries, the system keeps a set of hash chains keyed on
the filesystem and on the user or group identifier. Even with hundreds of dquot
entries, the kernel needs to inspect only about five entries to determine whether a
requested dquot entry is memory resident. If the dquot entry is not resident, such
as the first time a file is opened for writing, the system must reallocate a dquot
entry and read in the quota from disk. The dquot entry is reallocated from the
least recently used dquot entry. So that it can find the oldest dquot entry quickly,
the system keeps unused dquot entries linked together in an LRU chain. When the
reference count on a dquot structure drops to zero, the system puts that dquot onto
the end of the LRU chain. The dquot structure is not removed from its hash chain,
so if the structure is needed again soon, it can still be located. Only when a dquot
structure is recycled with a new quota record is it removed and relinked into the
hash chain. The dquot entry on the front of the LRU chain yields the least recently
used dquot entry. Frequently used dquot entries are reclaimed from the middle of
the LRU chain and are relinked at the end after use.

The hashing structure allows dquot structures to be found quickly. However,
it does not solve the problem of how to discover that a user has no quota on a par-
ticular filesystem. If a user has no quota, a lookup for the quota will fail. The cost
of going to disk and reading the quota file to discover that the user has no quota
imposed would be prohibitive. To avoid doing this work each time that a new file
is accessed for writing, the system maintains nonquota dquot entries. When an
inode owned by a user or group that does not already have a dquot entry is first
accessed, a dummy dquot entry is created that has infinite values filled in for the
quota limits. When the chkdq() routine encounters such an entry, it will update
the usage fields, but will not impose any limits. When the user later writes other
files, the same dquot entry will be found, thus avoiding additional access to the
on-disk quota file. Ensuring that a file will always have a dquot entry improves
the performance of the writing data, since chkdq() can assume that the dquot
pointer is always valid, rather than having to check the pointer before every use.

Quotas are written back to the disk when they fall out of the cache, whenever
the filesystem does a sync, or when the filesystem is unmounted. If the system
crashes, leaving the quotas in an inconsistent state, the system administrator must
run the quotacheck program to rebuild the usage information in the quota files.

File Locking
Locks may be placed on any arbitrary range of bytes within a file. These seman-
tics are supported in 4.4BSD by a list of locks, each of which describes a lock of a
specified byte range. An example of a file containing several range locks is shown
in Fig. 7.12. The list of currently held or active locks appears across the top of the
figure, headed by the i_lockf field in the inode, and linked together through the
lf_next field of the lock structures. Each lock structure identifies the type of the
lock (exclusive or shared), the byte range over which the lock applies, and the
identity of the lock holder. A lock may be identified either by a pointer to a pro-
cess entry or by a pointer to a file entry. A process pointer is used for POSIX-style
range locks; a file-entry pointer is used for BSD-style whole file locks. The exam-
ples in this section show the identity as a pointer to a process entry. In this exam-
ple, there are three active locks: an exclusive lock held by process 1 on bytes 1 to
3, a shared lock held by process 2 on bytes 7 to 12, and a shared lock held by pro-
cess 3 on bytes 7 to 14.

In addition to the active locks, there are other processes that are sleeping wait-
ing to get a lock applied. Pending locks are headed by the lf_block field of the

Figure 7.12 A set of range locks on a file.



active lock that prevents them from being applied. If there are multiple pending
locks, they are linked through their lf_block fields. New lock requests are placed
at the end of the list; thus, processes tend to be granted locks in the order that they
requested the locks. Each pending lock uses its lf_next field to identify the active
lock that currently blocks it. In the example in Fig. 7.12, the first active lock has
two other locks pending. There is also a pending request for the range 9 to 12 that
is currently linked onto the second active entry. It could equally well have been
linked onto the third active entry, since the third entry also blocks it. When an
active lock is released, all pending entries for that lock are awakened, so that they
can retry their request. If the second active lock were released, the result would be
that its currently pending request would move over to the blocked list for the last
active entry.

A problem that must be handled by the locking implementation is the detec-
tion of potential deadlocks. To see how deadlock is detected, consider the addi-
tion of the lock request by process 2 outlined in the dashed box in Fig. 7.12. Since
the request is blocked by an active lock, process 2 must sleep waiting for the
active lock on range 1 to 3 to clear. We follow the lf_next pointer from the
requesting lock (the one in the dashed box), to identify the active lock for the
l-to-3 range as being held by process 1. The wait channel for process 1 shows
that that process too is sleeping, waiting for a lock to clear, and identifies the
pending lock structure as the pending lock (range 9 to 12) hanging off the lf_block
field of the second active lock (range 7 to 12). We follow the lf_next field of this
pending lock structure (range 9 to 12) to the second active lock (range 7 to 12) that
is held by the lock requester, process 2. Thus, the lock request is denied, as it
would lead to a deadlock between processes 1 and 2. This algorithm works on
cycles of locks and processes of arbitrary size.

As we note, the pending request for the range 9 to 12 could equally well have
been hung off the third active lock for the range 7 to 14. Had it been, the request
for adding the lock in the dashed box would have succeeded, since the third active
lock is held by process 3, rather than by process 2. If the next lock request on this
file were to release the third active lock, then deadlock detection would occur
when process 1's pending lock got shifted to the second active lock (range 7 to
12). The difference is that process 1, instead of process 2, would get the deadlock
error.

When a new lock request is made, it must first be checked to see whether it is
blocked by existing locks held by other processes. If it is not blocked by other
processes, it must then be checked to see whether it overlaps any existing locks
already held by the process making the request. There are five possible overlap
cases that must be considered; these possibilities are shown in Fig. 7.13. The
assumption in the figure is that the new request is of a type different from that of
the existing lock (i.e., an exclusive request against a shared lock, or vice versa); if
the existing lock and the request are of the same type, the analysis is a bit simpler.
The five cases are as follows:

new:

becomes:

Figure 7.13 Five types of overlap considered by the kernel when a range lock is added.

1. The new request exactly overlaps the existing lock. The new request replaces
the existing lock. If the new request downgrades from exclusive to shared, all
requests pending on the old lock are awakened.

2. The new request is a subset of the existing lock. The existing lock is broken
into three pieces (two if the new lock begins at the beginning or ends at the
end of the existing lock). If the type of the new request differs from that of the
existing lock, all requests pending on the old lock are awakened, so that they
can be reassigned to the correct new piece, blocked on a lock held by some
other process, or granted.

3. The new request is a superset of an existing lock. The new request replaces
the existing lock. If the new request downgrades from exclusive to shared, all
requests pending on the old lock are awakened.

4. The new request extends past the end of an existing lock. The existing lock is
shortened, and its overlapped piece is replaced by the new request. All
requests pending on the existing lock are awakened, so that they can be reas-
signed to the correct new piece, blocked on a lock held by some other process,
or granted.

5. The new request extends into the beginning of an existing lock. The existing
lock is shortened, and its overlapped piece is replaced by the new request. All
requests pending on the existing lock are awakened, so that they can be reas-
signed to the correct new piece, blocked on a lock held by some other process,
or granted.

In addition to the five basic types of overlap outlined, a request may span several
existing locks. Specifically, a new request may be composed of zero or one of
type 4, zero or more of type 3, and zero or one of type 5.



To understand how the overlap is handled, we can consider the example
shown in Fig. 7.14. This figure shows a file that has all its active range locks held
by process 1, plus a pending lock for process 2.

Now consider a request by process 1 for an exclusive lock on the range 3 to
13. This request does not conflict with any active locks (because all the active
locks are already held by process 1). The request does overlap all three active
locks, so the three active locks represent a type 4, type 3, and type 5 overlap
respectively. The result of processing the lock request is shown in Fig. 7.15. The
first and third active locks are trimmed back to the edge of the new request, and
the second lock is replaced entirely. The request that had been held pending on
the first lock is awakened. It is no longer blocked by the first lock, but is blocked
by the newly installed lock. So, it now hangs off the blocked list for the second
lock. The first and second locks could have been merged, because they are of the
same type and are held by the same process. However, the current implementation
makes no effort to do such merges, because range locks are normally released over
the same range that they were created. If the merger were done, it would probably
have to be split again when the release was requested.

Lock-removal requests are simpler than addition requests; they need only to
consider existing locks held by the requesting process. Figure 7.16 shows the
five possible ways that a removal request can overlap the locks of the requesting
process:

1. The unlock request exactly overlaps an existing lock. The existing lock is
deleted, and any lock requests that were pending on that lock are awakened.

2. The unlock request is a subset of an existing lock. The existing lock is broken
into two pieces (one if the unlock request begins at the beginning or ends at

Figure 7.14 Locks before addition of exclusive-lock request by process 1 on range 3..13.

inode

Figure 7.15 Locks after addition of exclusive-lock request by process 1 on range 3..13.

the end of the existing lock). Any locks that were pending on that lock are
awakened, so that they can be reassigned to the correct new piece, blocked on
a lock held by some other process, or granted.

3. The unlock request is a superset of an existing lock. The existing lock is
deleted, and any locks that were pending on that lock are awakened.

4. The unlock request extends past the end of an existing lock. The end of the
existing lock is shortened. Any locks that were pending on that lock are awak-
ened, so that they can be reassigned to the shorter lock, blocked on a lock held
by some other process, or granted.

5. The unlock request extends into the beginning of an existing lock. The begin-
ning of the existing lock is shortened. Any locks that were pending on that

Figure 7.16 Five types of overlap considered by the kernel when a range lock is deleted.
case: 1 2 3 4 5

unlock:

becomes: none none



lock are awakened, so that they can be reassigned to the shorter lock, blocked
on a lock held by some other process, or granted.

In addition to the five basic types of overlap outlined, an unlock request may span
several existing locks. Specifically, a new request may be composed of zero or
one of type 4, zero or more of type 3, and zero or one of type 5.

7.6 Other Filesystem Semantics

Two major new filesystem features were introduced in 4.4BSD. The first of these
features was support for much larger file sizes. The second was the introduction
of file metadata.

Large File Sizes
Traditionally, UNIX systems supported a maximum file and filesystem size of 231

bytes. When the filesystem was rewritten in 4.2BSD, the inodes were defined to
allow 64-bit file sizes. However, the interface to the filesystem was still limited to
31-bit sizes. With the advent of ever-larger disks, the developers decided to
expand the 4.4BSD interface to allow larger files. Export of 64-bit file sizes from
the filesystem requires that the defined type off_t be a 64-bit integer (referred to as
long long or quad in most compilers).

The number of affected system calls is surprisingly low:

• Iseek has to be able to specify 64-bit offsets

• stat,fstat, and lstat have to return 64-bit sizes

• truncate and ftruncate have to set 64-bit sizes

• mmap needs to start a mapping at any 64-bit point in the file

• getrlimit and setrlimit need to get and set 64-bit filesize limits

Changing these interfaces did cause applications to break. No trouble was
encountered with the stat family of system calls returning larger data values;
recompiling with the redefined stat structure caused applications to use the new
larger values. The other system calls are all changing one of their parameters to
be a 64-bit value. Applications that fail to cast the 64-bit argument to off_t may
get an incorrect parameter list. Except for Iseek, most applications do not use
these system calls, so they are not affected by their change. However, many appli-
cations use lseek and cast the seek value explicitly to type long. So that there is no
need to make changes to many applications, a prototype for lseek is placed in the
commonly included header file <sys/types.h>. After this change was made, most
applications recompiled and ran without difficulty.

For completeness, the type of size_t also should have been changed to be a
64-bit integer. This change was not made because it would have affected too

many system calls. Also, on 32-bit address-space machines, an application cannot
read more than can be stored in a 32-bit integer. Finally, it is important to mini-
mize the use of 64-bit arithmetic that is slow on 32-bit processors.

File Flags
4.4BSD added two new system calls, chflags and fchflags, that set a 32-bit flags
word in the inode. The flags are included in the stat structure so that they can be
inspected.

The owner of the file or the superuser can set the low 16 bits. Currently, there
are flags defined to mark a file as append-only, immutable, and not needing to be
dumped. An immutable file may not be changed, moved, or deleted. An append-
only file is immutable except that data may be appended to it. The user append-
only and immutable flags may be changed by the owner of the file or the superuser.

Only the superuser can set the high 16 bits. Currently, there are flags defined
to mark a file as append-only and immutable. Once set, the append-only and
immutable flags in the top 16 bits cannot be cleared when the system is secure.

The kernel runs with four different levels of security. Any superuser process
can raise the security level, but only the init process can lower that level (the init
program is described in Section 14.6). Security levels are defined as follows:

-1. Permanently insecure mode: Always run system in level 0 mode (must be
compiled into the kernel).

0. Insecure mode: Immutable and append-only flags may be turned off.
devices can be read or written, subject to their permissions.

All

1. Secure mode: The superuser-settable immutable and append-only flags cannot
be cleared; disks for mounted filesystems and kernel memory (/dev/mem and
/dev/kmem) are read-only.

2. Highly secure mode: This mode is the same as secure mode, except that disks
are always read-only whether mounted or not. This level precludes even a
superuser process from tampering with filesystems by unmounting them, but
also inhibits formatting of new filesystems.

Normally, the system runs with level 0 security while in single-user mode, and
with level 1 security while in multiuser mode. If level 2 security is desired while
the system is running in multiuser mode, it should be set in the /etc/re startup
script (the /etc/rc script is described in Section 14.6).

Files marked immutable by the superuser cannot be changed, except by some-
one with physical access to either the machine or the system console. Files
marked immutable include those that are frequently the subject of attack by
intruders (e.g., login and su). The append-only flag is typically used for critical
system logs. If an intruder breaks in, he will be unable to cover his tracks.
Although simple in concept, these two features improve the security of a system
dramatically.



Exercises

7.1

CHAPTER 8

What are the seven classes of operations handled by the hierarchical
filesystem?

7.2 What is the purpose of the inode data structure?

7.3 How does the system select an inode for replacement when a new inode
must be brought in from disk?

7.4 Why are directory entries not allowed to span chunks?

7.5 Describe the steps involved in looking up a pathname component.

7.6 Why are hard links not permitted to span filesystems?

7.7 Describe how the interpretation of a symbolic link containing an absolute
pathname is different from that of a symbolic link containing a relative
pathname.

7.8 Explain why unprivileged users are not permitted to make hard links to
directories, but are permitted to make symbolic links to directories.

7.9 How can hard links be used to gain access to files that could not be
accessed if a symbolic link were used instead?

7.10 How does the system recognize loops caused by symbolic links? Suggest
an alternative scheme for doing loop detection.

7.11 How do quotas differ from the file-size resource limits described in
Section 3.8?

7.12 How does the kernel determine whether a file has an associated quota?

7.13 Draw a picture showing the effect of processing an exclusive-lock request
by process 1 on bytes 7 to 10 to the lock list shown in Fig. 7.14. Which of
the overlap cases of Fig. 7.13 apply to this example?

*7.14 Give an example where the file-locking implementation is unable to detect
a potential deadlock.

**7.15 Design a system that allows the security level of the system to be lowered
while the system is still running in multiuser mode.

References
Elz, 1984.

K. R. Elz, "Resource Controls, Privileges, and Other MUSH," USENIX
Association Conference Proceedings, pp. 183-191, June 1984.

Local Filestores

This chapter describes the organization and management of data on storage media.
4.4BSD provides three different filestore managers: the traditional Berkeley Fast
Filesystem (FFS), the recently added Log-Structured Filesystem (LFS), and the
Memory-based Filesystem (MFS) that uses much of the FFS code base. The FFS
filestore was designed on the assumption that buffer caches would be small and
thus that files would need to be read often. It tries to place files likely to be
accessed together in the same general location on the disk. It is described in Sec-
tion 8.2. The LFS filestore was designed for fast machines with large buffer
caches. It assumes that writing data to disk is the bottleneck, and it tries to avoid
seeking by writing all data together in the order in which they were created. It
assumes that active files will remain in the buffer cache, so is little concerned with
the time that it takes to retrieve files from the filestore. It is described in Section
8.3. The MFS filestore was designed as a fast-access repository for transient data.
It is used primarily to back the /tmp filesystem. It is described in Section 8.4.

Overview of the Filestore

The vnode operations defined for doing the datastore filesystem operations are
shown in Table 8.1 (on page 266). These operators are fewer and semantically
simpler than are those used for managing the name space.

There are two operators for allocating and freeing objects. The valloc opera-
tor creates a new object. The identity of the object is a number returned by the
operator. The mapping of this number to a name is the responsibility of the name-
space code. An object is freed by the vfree operator. The object to be freed is
identified by only its number.

The attributes of an object are changed by the update operator. This layer
does no interpretation of these attributes; they are simply fixed-size auxiliary data

265



Table 8.1 Datastore filesystem operations.

Operation done
object creation and deletion
attribute update
object read and write
change in space allocation

Operator names
valloc, vfree
update
vget, blkatoff, read, write, fsync
truncate

stored outside the main data area of the object. They are typically file attributes,
such as the owner, group, permissions, and so on.

There are five operators for manipulating existing objects. The vget operator
retrieves an existing object from the filestore. The object is identified by its num-
ber and must have been created previously by valloc. The read operator copies
data from an object to a location described by a uio structure. The blkatoff opera-
tor is similar to the read operator, except that the blkatoff operator simply returns a
pointer to a kernel memory buffer with the requested data, instead of copying the
data. This operator is designed to increase the efficiency of operations where the
name-space code interprets the contents of an object (i.e., directories), instead of
just returning the contents to a user process. The write operator copies data to an
object from a location described by a uio structure. The fsync operator requests
that all data associated with the object be moved to stable storage (usually by their
all being written to disk). There is no need for an analog of blkatoff for writing, as
the kernel can simply modify a buffer that it received from blkatoff, mark that
buffer as dirty, and then do an fsync operation to have the buffer written back.

The final datastore operation is truncate. This operation changes the amount
of space associated with an object. Historically, it could be used only to decrease
the size of an object. In 4.4BSD, it can be used both to increase and to decrease
the size of an object.

Each disk drive has one or more subdivisions, or partitions. Each such parti-
tion can contain only one filestore, and a filestore never spans multiple partitions.

The filestore is responsible for the management of the space within its disk
partition. Within that space, its responsibility is the creation, storage, retrieval,
and removal of files. It operates in a flat name space. When asked to create a new
file, it allocates an inode for that file and returns the assigned number. The nam-
ing, access control, locking, and attribute manipulation for the file are all handled
by the hierarchical filesystem-management layer above the filestore.

The filestore also handles the allocation of new blocks to files as the latter
grow. Simple filesystem implementations, such as those used by early microcom-
puter systems, allocate files contiguously, one after the next, until the files reach
the end of the disk. As files are removed, holes occur. To reuse the freed space,
the system must compact the disk to move all the free space to the end. Files can

be created only one at a time; for the size of a file other than the final one on the
disk to be increased, the file must be copied to the end, then expanded.

As we saw in Section 7.2, each file in a filestore is described by an inode; the
locations of its data blocks are given by the block pointers in its inode. Although
the filestore may cluster the blocks of a file to improve I/O performance, the inode
can reference blocks scattered anywhere throughout the partition. Thus, multiple
files can be written simultaneously, and all the disk space can be used without the
need for compaction.

The filestore implementation converts from the user abstraction of a file as an
array of bytes to the structure imposed by the underlying physical medium. Con-
sider a typical medium of a magnetic disk with fixed-sized sectoring. Although
the user may wish to write a single byte to a file, the disk supports reading and
writing only in multiples of sectors. Here, the system must read in the sector con-
taining the byte to be modified, replace the affected byte, and write the sector back
to the disk. This operation—converting random access to an array of bytes to
reads and writes of disk sectors—is called block I/O.

First, the system breaks the user's request into a set of operations to be done
on logical blocks of the file. Logical blocks describe block-sized pieces of a file.
The system calculates the logical blocks by dividing the array of bytes into file-
store-sized pieces. Thus, if a filestore's block size is 8192 bytes, then logical
block 0 would contain bytes 0 to 8191, logical block 1 would contain bytes 8192
to 16,383, and so on.

The data in each logical block are stored in a physical block on the disk. A
physical block is the location on the disk to which the system maps a logical
block. A physical disk block is constructed from one or more contiguous sectors.
For a disk with 512-byte sectors, an 8192-byte filestore block would be built up
from 16 contiguous sectors. Although the contents of a logical block are contigu-
ous on disk, the logical blocks of the file do not need to be laid out contiguously.
The data structure used by the system to convert from logical blocks to physical
blocks was described in Section 7.2.

Figure 8.1 (on page 268) shows the flow of information and work required to
access the file on the disk. The abstraction shown to the user is an array of bytes.
These bytes are collectively described by a file descriptor that refers to some loca-
tion in the array. The user can request a write operation on the file by presenting
the system with a pointer to a buffer, with a request for some number of bytes to
be written. As shown in Fig. 8.1, the requested data do not need to be aligned
with the beginning or end of a logical block. Further, the size of the request is not
constrained to a single logical block. In the example shown, the user has
requested data to be written to parts of logical blocks 1 and 2. Since the disk can
transfer data only in multiples of sectors, the filestore must first arrange to read in
the data for any part of the block that is to be left unchanged. The system must
arrange an intermediate staging area for the transfer. This staging is done through
one or more system buffers, as described in Section 6.6.

In our example, the user wishes to modify data in logical blocks 1 and 2. The
operation iterates over five steps:



user: write (fd, buffer, cnt);

buffer:

logical file:

tern buffers:

logical file blocks: 0 1 2 3

disk:

Figure 8.1 The block I/O system.

1. Allocate a buffer.

2. Determine the location of the corresponding physical block on the disk.

3. Request the disk controller to read the contents of the physical block into the
system buffer and wait for the transfer to complete.

4. Do a memory-to-memory copy from the beginning of the user's I/O buffer to
the appropriate portion of the system buffer.

5. Write the block to the disk and continue without waiting for the transfer to
complete.

If the user's request is incomplete, the process is repeated with the next logical
block of the file. In our example, the system fetches logical block 2 of the file and
is able to complete the user's request. Had an entire block been written, the sys-
tem could have skipped step 3 and have simply written the data to the disk without
first reading in the old contents. This incremental filling of the write request is
transparent to the user's process because that process is blocked from running dur-
ing the entire procedure. The filling is transparent to other processes; because the
inode is locked during the process, any attempted access by any other process will
be blocked until the write has completed.

The Berkeley Fast Filesystem

A traditional UNIX filesystem is described by its superblock, which contains the
basic parameters of the filesystem. These parameters include the number of data
blocks in the filesystem, a count of the maximum number of files, and a pointer to
the free list, which is a list of all the free blocks in the filesystem.

A 150-Mbyte traditional UNIX filesystem consists of 4 Mbyte of inodes fol-
lowed by 146 Mbyte of data. That organization segregates the inode information
from the data; thus, accessing a file normally incurs a long seek from the file's
inode to its data. Files in a single directory typically are not allocated consecutive
slots in the 4 Mbyte of inodes, causing many nonconsecutive disk blocks to be
read when many inodes in a single directory are accessed.

The allocation of data blocks to files also is suboptimal. The traditional
filesystem implementation uses a 512-byte physical block size. But the next
sequential data block often is not on the same cylinder, so seeks between 512-byte
data transfers are required frequently. This combination of small block size and
scattered placement severely limits filesystem throughput.

The first work on the UNIX filesystem at Berkeley attempted to improve both
the reliability and the throughput of the filesystem. The developers improved reli-
ability by staging modifications to critical filesystem information so that the modi-
fications could be either completed or repaired cleanly by a program after a crash
[McKusick & Kowalski, 1994]. Doubling the block size of the filesystem
improved the performance of the 4.0BSD filesystem by a factor of more than 2
when compared with the 3BSD filesystem. This doubling caused each disk trans-
fer to access twice as many data blocks and eliminated the need for indirect blocks
for many files. In the remainder of this section, we shall refer to the filesystem
with these changes as the old filesystem.

The performance improvement in the old filesystem gave a strong indication
that increasing the block size was a good method for improving throughput.
Although the throughput had doubled, the old filesystem was still using only about
4 percent of the maximum disk throughput. The main problem was that the order
of blocks on the free list quickly became scrambled, as files were created and
removed. Eventually, the free-list order became entirely random, causing files to
have their blocks allocated randomly over the disk. This randomness forced a
seek before every block access. Although the old filesystem provided transfer
rates of up to 175 Kbyte per second when it was first created, the scrambling of
the free list caused this rate to deteriorate to an average of 30 Kbyte per second
after a few weeks of moderate use. There was no way of restoring the perfor-
mance of an old filesystem except to recreate the system.

Organization of the Berkeley Fast Filesystem
The first version of the current BSD filesystem appeared in 4.2BSD [McKusick et
al, 1984]. In the 4.4BSD filesystem organization (as in the old filesystem organi-
zation), each disk drive contains one or more filesystems. A 4.4BSD filesystem is
described by its superblock, located at the beginning of the filesystem's disk



partition. Because the superblock contains critical data, it is replicated to protect
against catastrophic loss. This replication is done when the filesystem is created;
since the superblock data do not change, the copies do not need to be referenced
unless a disk failure causes the default superblock to be corrupted.

So that files as large as 232 bytes can be created with only two levels of indi-
rection, the minimum size of a filesystem block is 4096 bytes. The block size can
be any power of 2 greater than or equal to 4096. The block size is recorded in the
filesystem's superblock, so it is possible for filesystems with different block sizes
to be accessed simultaneously on the same system. The block size must be
selected at the time that the filesystem is created; it cannot be changed subse-
quently without the filesystem being rebuilt.

The BSD filesystem organization divides a disk partition into one or more
areas, each of which is called a cylinder group. Figure 8.2 shows a set of cylinder
groups, each comprising one or more consecutive cylinders on a disk. Each cylin-
der group contains bookkeeping information that includes a redundant copy of the
superblock, space for inodes, a bitmap describing available blocks in the cylinder
group, and summary information describing the usage of data blocks within the
cylinder group. The bitmap of available blocks in the cylinder group replaces the
traditional filesystem's free list. For each cylinder group, a static number of
inodes is allocated at filesystem-creation time. The default policy is to allocate
one inode for each 2048 bytes of space in the cylinder group, with the expectation
that this amount will be far more than will ever be needed. The default may be
changed at the time that the filesystem is created.

Figure 8.2 Layout of cylinder groups.

disk-head
assembly

cylinder group 1
cylinder group 2

00

The rationale for using cylinder groups is to create clusters of inodes that are
spread over the disk close to the blocks that they reference, instead of them all
being located at the beginning of the disk. The filesystem attempts to allocate file
blocks close to the inodes that describe them to avoid long seeks between getting
the inode and getting its associated data. Also, when the inodes are spread out,
there is less chance of losing all of them in a single disk failure.

All the bookkeeping information could be placed at the beginning of each
cylinder group. If this approach were used, however, all the redundant informa-
tion would be on the same platter of a disk. A single hardware failure could then
destroy all copies of the superblock. Thus, the bookkeeping information begins at
a varying offset from the beginning of the cylinder group. The offset for each suc-
cessive cylinder group is calculated to be about one track farther from the begin-
ning than in the preceding cylinder group. In this way, the redundant information
spirals down into the pack, so that any single track, cylinder, or platter can be lost
without all copies of the superblock also being lost. Except for the first cylinder
group, which leaves space for a boot block, the space between the beginning of the
cylinder group and the beginning of the cylinder-group information is used for
data blocks.

Optimization of Storage Utilization
Data are laid out such that large blocks can be transferred in a single disk opera-
tion, greatly increasing filesystem throughput. A file in the new filesystem might
be composed of 8192-byte data blocks, as compared to the 1024-byte blocks of
the old filesystem; disk accesses would thus transfer up to 8 times as much infor-
mation per disk transaction. In large files, several blocks can be allocated consec-
utively, so that even larger data transfers are possible before a seek is required.

The main problem with larger blocks is that most BSD filesystems contain pri-
marily small files. A uniformly large block size will waste space. Table 8.2

Table 8.2 Amount of space wasted as a function of block size.

Percent Percent Percent
total
waste

0.0
1.1
7.4
8.8

11.7
15.4
29.4
62.0

data
waste

0.0
1.1
1.1
2.5
5.4

12.3
27.8
61.2

inode
waste

0.0
0.0
6.3
6.3
6.3
3.1
1.6
0.8

Organization
data only, no separation between files
data only, files start on 512-byte boundary
data + inodes, 512-byte block
data + inodes, 1024-byte block
data + inodes, 2048-byte block
data + inodes, 4096-byte block
data + inodes, 8192-byte block
data + inodes, 16384-byte block



shows the effect of filesystem block size on the amount of wasted space in the
filesystem. The measurements used to compute this table were collected from a
survey of the Internet conducted in 1993 [Irlam, 1993]. The survey covered 12
million files residing on 1000 filesystems with a total size of 250 Gbyte. The
investigators found that the median file size was under 2048 bytes; the average file
size was 22 Kbyte. The space wasted is calculated to be the percentage of disk
space not containing user data. As the block size increases, the amount of space
reserved for inodes decreases, but the amount of unused data space at the end of
blocks rises quickly to an intolerable 29.4 percent waste with a minimum alloca-
tion of 8192-byte filesystem blocks.

For large blocks to be used without significant waste, small files must be
stored more efficiently. To increase space efficiency, the filesystem allows the divi-
sion of a single filesystem block into one or more fragments. The fragment size is
specified at the time that the filesystem is created; each filesystem block optionally
can be broken into two, four, or eight fragments, each of which is addressable. The
lower bound on the fragment size is constrained by the disk-sector size, which is
typically 512 bytes. The block map associated with each cylinder group records
the space available in a cylinder group in fragments; to determine whether a block
is available, the system examines aligned fragments. Figure 8.3 shows a piece of a
block map from a filesystem with 4096-byte blocks and 1024-byte fragments,
hereinafter referred to as a 4096/1024 filesystem.

On a 4096/1024 filesystem, a file is represented by zero or more 4096-byte
blocks of data, possibly plus a single fragmented block. If the system must frag-
ment a block to obtain space for a small number of data, it makes the remaining
fragments of the block available for allocation to other files. As an example, con-
sider an 11000-byte file stored on a 4096/1024 filesystem. This file would use two
full-sized blocks and one three-fragment portion of another block. If no block
with three aligned fragments were available at the time that the file was created, a
full-sized block would be split, yielding the necessary fragments and a single
unused fragment. This remaining fragment could be allocated to another file as
needed.

Figure 8.3 Example of the layout of blocks and fragments in a 4096/1024 filesystem.
Each bit in the map records the status of a fragment; a "-" means that the fragment is in
use, whereas a "1" means that the fragment is available for allocation. In this example,
fragments 0 through 5, 10, and 11 are in use, whereas fragments 6 through 9 and 12
through 15 are free. Fragments of adjacent blocks cannot be used as a full block, even if
they are large enough. In this example, fragments 6 through 9 cannot be allocated as a full
block; only fragments 12 through 15 can be coalesced into a full block.

bits in map
fragment numbers
block numbers

0-3
0

--11
4-7

1

11-
8-11

2

1111
12-15

3

Reading and Writing to a File
Having opened a file, a process can do reads or writes on it. The procedural path
through the kernel is shown in Fig. 8.4. If a read is requested, it is channeled
through theffs_read() routine. Ffs_read() is responsible for converting the read
into one or more reads of logical file blocks. A logical block request is then
handed off to ufs_bmap(). Ufs_bmap( ) is responsible for converting a logical
block number to a physical block number by interpreting the direct and indirect
block pointers in an inode. Ffs_read() requests the block I/O system to return a
buffer filled with the contents of the disk block. If two or more logically sequen-
tial blocks are read from a file, the process is assumed to be reading the file
sequentially. Here, ufs_bmap() returns two values: first, the disk address of the
requested block; then, the number of contiguous blocks that follow that block on
disk. The requested block and the number of contiguous blocks that follow it are
passed to the cluster() routine. If the file is being accessed sequentially, the
cluster() routine will do a single large I/O on the entire range of sequential blocks.
If the file is not being accessed sequentially (as determined by a seek to a different
part of the file preceding the read), only the requested block or a subset of the
cluster will be read. If the file has had a long series of sequential reads, or if the
number of contiguous blocks is small, the system will issue one or more requests
for read-ahead blocks in anticipation that the process will soon want those blocks.
The details of block clustering are described at the end of this section.

Figure 8.4 Procedural interface to reading and writing.

write () read()

ffs_alloc()

chkdq() q

vn_write()

ffs_write()

V
ffs_balloc()

llocation of
lesystem blocks

uota check

c

vnode
filesys

offset
logical bloc

logical to fi
block nu

cluster ()

bio()

dev()

to
tem

to
k number

lesystem
imber

identifica
aggregati

buffer all
filesystem

physical
disk <cyl

vn_read()

ffs_read()

ufs_bmap( )

tion of contiguous blocks and
on of single block buffers

ocation and
to physical block number

lock number to
inder, track, offset>

isk read-write



Each time that a process does a write system call, the system checks to see
whether the size of the file has increased. A process may overwrite data in the
middle of an existing file, in which case space would usually have been allocated
already (unless the file contains a hole in that location). If the file needs to be
extended, the request is rounded up to the next fragment size, and only that much
space is allocated (see "Allocation Mechanisms" later in this section for the
details of space allocation). The write system call is channeled through the
ffs_write() routine. Ffs_write() is responsible for converting the write into one or
more writes of logical file blocks. A logical block request is then handed off to
ffs_balloc(). Ffs_balloc() is responsible for interpreting the direct and indirect
block pointers in an inode to find the location for the associated physical block
pointer. If a disk block does not already exist, theffs_alloc() routine is called to
request a new block of the appropriate size. After calling chkdq() to ensure that
the user has not exceeded their quota, the block is allocated, and the address of the
new block is stored in the inode or indirect block. The address of the new or
already-existing block is returned. Ffs_write() allocates a buffer to hold the con-
tents of the block. The user's data are copied into the returned buffer, and the
buffer is marked as dirty. If the buffer has been filled completely, it is passed to
the cluster() routine. When a maximally sized cluster has been accumulated, a
noncontiguous block is allocated, or a seek is done to another part of the file, and
the accumulated blocks are grouped together into a single I/O operation that is
queued to be written to the disk. If the buffer has not been filled completely, it is
not considered immediately for writing. Rather, the buffer is held in the expecta-
tion that the process will soon want to add more data to it. It is not released until
it is needed for some other block—that is, until it has reached the head of the free
list, or until a user process does a sync system call. There is normally a user pro-
cess called update that does a sync every 30 seconds.

Repeated small write requests may expand the file one fragment at a time.
The problem with expanding a file one fragment at a time is that data may be
copied many times as a fragmented block expands to a full block. Fragment real-
location can be minimized if the user process writes a full block at a time, except
for a partial block at the end of the file. Since filesystems with different block
sizes may reside on the same system, the filesystem interface provides application
programs with the optimal size for a read or write. This facility is used by the
standard I/O library that many application programs use, and by certain system
utilities, such as archivers and loaders, that do their own I/O management.

If the layout policies (described at the end of this section) are to be effective, a
filesystem cannot be kept completely full. A parameter, termed the free-space
reserve, gives the minimum percentage of filesystem blocks that should be kept
free. If the number of free blocks drops below this level, only the superuser is
allowed to allocate blocks. This parameter can be changed any time that the
filesystem is unmounted. When the number of free blocks approaches zero, the
filesystem throughput tends to be cut in half because the filesystem is unable to
localize blocks in a file. If a filesystem's throughput drops because of overfilling,
it can be restored by removal of files until the amount of free space once again

reaches the minimum acceptable level. Users can restore locality to get faster
access rates for files created during periods of little free space by copying the file
to a new one and removing the original one when enough space is available.

Filesystem Parameterization
Except for the initial creation of the free list, the old filesystem ignores the param-
eters of the underlying hardware. It has no information about either the physical
characteristics of the mass-storage device or the hardware that interacts with the
filesystem. A goal of the new filesystem is to parameterize the processor capabili-
ties and mass-storage characteristics so that blocks can be allocated in an optimum
configuration-dependent way. Important parameters include the speed of the pro-
cessor, the hardware support for mass-storage transfers, and the characteristics of
the mass-storage devices. These parameters are summarized in Table 8.3. Disk
technology is constantly improving, and a given installation can have several dif-
ferent disk technologies running on a single processor. Each filesystem is parame-
terized so that it can be adapted to the characteristics of the disk on which it is
located.

For mass-storage devices such as disks, the new filesystem tries to allocate a
file's new blocks on the same cylinder and rotationally well positioned. The dis-
tance between rotationally optimal blocks varies greatly; optimal blocks can be
consecutive or rotationally delayed, depending on system characteristics. For
disks attached to a dedicated I/O processor or accessed by a track-caching con-
troller, two consecutive disk blocks often can be accessed without time lost
because of an intervening disk revolution. Otherwise, the main processor must
field an interrupt and prepare for a new disk transfer. The expected time to service
this interrupt and to schedule a new disk transfer depends on the speed of the main
processor.

The physical characteristics of each disk include the number of blocks per
track and the rate at which the disk spins. The allocation routines use this infor-
mation to calculate the number of milliseconds required to skip over a block. The

Table 8.3 Important parameters maintained by the filesystem.

Name Meaning
maxbpg maximum blocks per file in a cylinder group
maxcontig maximum contiguous blocks before a rotdelay gap
minfree minimum percentage of free space
nsect sectors per track
rotdelay rotational delay between contiguous blocks
rps revolutions per second
tracks tracks per cylinder
trackskew track skew in sectors



characteristics of the processor include the expected time to service an interrupt
and to schedule a new disk transfer. Given a block allocated to a file, the alloca-
tion routines calculate the number of blocks to skip over such that the next block
in the file will come into position under the disk head in the expected amount of
time that it takes to start a new disk-transfer operation. For sequential access to
large numbers of data, this strategy minimizes the amount of time spent waiting
for the disk to position itself.

The parameter that defines the minimum number of milliseconds between the
completion of a data transfer and the initiation of another data transfer on the same
cylinder can be changed at any time. If a filesystem is parameterized to lay out
blocks with a rotational separation of 2 milliseconds, and the disk is then moved to
a system that has a processor requiring 4 milliseconds to schedule a disk opera-
tion, the throughput will drop precipitously because of lost disk revolutions on
nearly every block. If the target machine is known, the filesystem can be parame-
terized for that machine, even though it is initially created on a different processor.
Even if the move is not known in advance, the rotational-layout delay can be
reconfigured after the disk is moved, so that all further allocation is done based on
the characteristics of the new machine.

Layout Policies
The filesystem layout policies are divided into two distinct parts. At the top level
are global policies that use summary information to make decisions regarding the
placement of new inodes and data blocks. These routines are responsible for
deciding the placement of new directories and files. They also calculate rotation-
ally optimal block layouts and decide when to force a long seek to a new cylinder
group because there is insufficient space left in the current cylinder group to do
reasonable layouts. Below the global-policy routines are the local-allocation rou-
tines. These routines use a locally optimal scheme to lay out data blocks. The
original intention was to bring out these decisions to user level so that they could
be ignored or replaced by user processes. Thus, they are definitely policies, rather
than simple mechanisms.

Two methods for improving filesystem performance are to increase the local-
ity of reference to minimize seek latency [Trivedi, 1980], and to improve the lay-
out of data to make larger transfers possible [Nevalainen & Vesterinen, 1977].
The global layout policies try to improve performance by clustering related infor-
mation. They cannot attempt to localize all data references, but must instead try to
spread unrelated data among different cylinder groups. If too much localization is
attempted, the local cylinder group may run out of space, forcing further related
data to be scattered to nonlocal cylinder groups. Taken to an extreme, total local-
ization can result in a single huge cluster of data resembling the old filesystem.
The global policies try to balance the two conflicting goals of localizing data that
are concurrently accessed while spreading out unrelated data.

One allocatable resource is inodes. Inodes of files in the same directory fre-
quently are accessed together. For example, the list-directory command, Is, may
access the inode for each file in a directory. The inode layout policy tries to place

all the inodes of files in a directory in the same cylinder group. To ensure that
files are distributed throughout the filesystem, the system uses a different policy to
allocate directory inodes. New directories are placed in cylinder groups with a
greater-than-average number of free inodes and with the smallest number of direc-
tories. The intent of this policy is to allow inode clustering to succeed most of the
time. The filesystem allocates inodes within a cylinder group using a next-free
strategy. Although this method allocates the inodes randomly within a cylinder
group, all the inodes for a particular cylinder group can be accessed with 10 to 20
disk transfers. This allocation strategy puts a small and constant upper bound on
the number of disk transfers required to access the inodes for all the files in a
directory. In contrast, the old filesystem typically requires one disk transfer to
fetch the inode for each file in a directory.

The other major resource is data blocks. Data blocks for a file typically are
accessed together. The policy routines try to place data blocks for a file in the
same cylinder group, preferably at rotationally optimal positions in the same
cylinder. The problem with allocating all the data blocks in the same cylinder
group is that large files quickly use up the available space, forcing a spillover to
other areas. Further, using all the space causes future allocations for any file in the
cylinder group also to spill to other areas. Ideally, none of the cylinder groups
should ever become completely full. The heuristic chosen is to redirect block
allocation to a different cylinder group after every few Mbyte of allocation. The
spillover points are intended to force block allocation to be redirected when any
file has used about 25 percent of the data blocks in a cylinder group. In day-to-
day use, the heuristics appear to work well in minimizing the number of com-
pletely filled cylinder groups. Although this heuristic appears to benefit small files
at the expense of the larger files, it really aids both file sizes. The small files are
helped because there are nearly always blocks available in the cylinder group for
them to use. The large files benefit because they are able to use rotationally well
laid out space and then to move on, leaving behind the blocks scattered around the
cylinder group. Although these scattered blocks are fine for small files that need
only a block or two, they slow down big files that are best stored on a single large
group of blocks that can be read in a few disk revolutions.

The newly chosen cylinder group for block allocation is the next cylinder
group that has a greater-than-average number of free blocks left. Although big files
tend to be spread out over the disk, several Mbyte of data typically are accessible
before a seek to a new cylinder group is necessary. Thus, the time to do one long
seek is small compared to the time spent in the new cylinder group doing the I/O.

Allocation Mechanisms
The global-policy routines call local-allocation routines with requests for specific
blocks. The local-allocation routines will always allocate the requested block if it
is free; otherwise, they will allocate a free block of the requested size that is rota-
tionally closest to the requested block. If the global layout policies had complete
information, they could always request unused blocks, and the allocation routines
would be reduced to simple bookkeeping. However, maintaining complete



278 Chapter 8 Local Filestores

information is costly; thus, the global layout policy uses heuristics based on the
partial information that is available.

If a requested block is not available, the local allocator uses a four-level allo-
cation strategy:

1. Use the next available block rotationally closest to the requested block on the
same cylinder. It is assumed that head-switching time is zero. On disk con-
trollers where this assumption is not valid, the time required to switch between
disk platters is incorporated into the rotational layout tables when they are
constructed.

2. If no blocks are available on the same cylinder, choose a block within the same
cylinder group.

3. If the cylinder group is full, quadratically hash the cylinder-group number to
choose another cylinder group in which to look for a free block. Quadratic
hash is used because of its speed in finding unused slots in nearly full hash
tables [Knuth, 1975]. Filesystems that are parameterized to maintain at least
10 percent free space rarely need to use this strategy. Filesystems used with-
out free space typically have so few free blocks available that almost any allo-
cation is random; the most important characteristic of the strategy used under
such conditions is that it be fast.

4. Apply an exhaustive search to all cylinder groups. This search is necessary
because the quadratic rehash may not check all cylinder groups.

The task of managing block and fragment allocation is done by ffs_balloc()
If the file is being written and a block pointer is zero or points to a fragment that is
too small to hold the additional data,ffs_balloc() calls the allocation routines to
obtain a new block. If the file needs to be extended, one of two conditions exists:

1. The file contains no fragmented blocks (and the final block in the file contains
insufficient space to hold the new data). If space exists in a block already allo-
cated, the space is filled with new data. If the remainder of the new data con-
sists of more than a full block, a full block is allocated and the first full block
of new data is written there. This process is repeated until less than a full
block of new data remains. If the remaining new data to be written will fit in
less than a full block, a block with the necessary number of fragments is
located; otherwise, a full block is located. The remaining new data are written
into the located space. However, to avoid excessive copying for slowly grow-
ing files, the filesystem allows only direct blocks of files to refer to fragments.

2. The file contains one or more fragments (and the fragments contain insuffi-
cient space to hold the new data). If the size of the new data plus the size of
the data already in the fragments exceeds the size of a full block, a new block
is allocated. The contents of the fragments are copied to the beginning of the
block, and the remainder of the block is filled with new data. The process then
continues as in step 1. Otherwise, a set of fragments big enough to hold the

Section 8.2 The Berkeley Fast Filesystem 279

ffs__balloc() ]—^ ffs_blkpref() | layout policy

| ffs_realloccg() \—*\ffsjragextend()\ extend a fragment

ffs_alloc() allocate a new block or fragment

ffs_hashalloc( ) find a cylinder group

allocate a fragment

\ffs_alloccgblk()\ allocate a block

Figure 8.5 Procedural interface to block allocation.

data is located; if enough of the rest of the current block is free, the filesystem
can avoid a copy by using that block. The contents of the existing fragments,
appended with the new data, are written into the allocated space.

Ffs_balloc() is also responsible for allocating blocks to hold indirect pointers. It
must also deal with the special case in which a process seeks past the end of a file
and begins writing. Because of the constraint that only the final block of a file
may be a fragment, ffs_balloc() must first ensure that any previous fragment has
been upgraded to a full-sized block.

On completing a successful allocation, the allocation routines return the block
or fragment number to be used; ffs_balloc() then updates the appropriate block
pointer in the inode. Having allocated a block, the system is ready to allocate a
buffer to hold the block's contents so that the block can be written to disk.

The procedural description of the allocation process is shown in Fig. 8.5.
Ffs_balloc() is the routine responsible for determining when a new block must be
allocated. It first calls the layout-policy routine ffs_blkpref() to select the most
desirable block based on the preference from the global-policy routines that were
described earlier in this section. If a fragment has already been allocated and
needs to be extended, ffs_balloc() calls ffs_realloccg(). If nothing has been allo-
cated yet,ffs_balloc() calls ffs_alloc().

Ffs_realloccg() first tries to extend the current fragment in place. Consider
the sample block of an allocation map with two fragments allocated from it, shown
in Fig. 8.6. The first fragment can be extended from a size 2 fragment to a size 3 or
a size 4 fragment, since the two adjacent fragments are unused. The second

Figure 8.6 Sample block with two allocated fragments.

entry in table
allocated fragments

1 - - 1
size 2

1 - - -
size 3



280 Chapter 8 Local Filestores

fragment cannot be extended, as it occupies the end of the block, and fragments are
not allowed to span blocks. If ffs_realloccg() is able to expand the current frag-
ment in place, the map is updated appropriately and it returns. If the fragment can-
not be extended, ffs_realloccg() calls theffs_alloc() routine to get a new fragment.
The old fragment is copied to the beginning of the new fragment, and the old frag-
ment is freed.

The bookkeeping tasks of allocation are handled by ffs_alloc(). It first veri-
fies that a block is available in the desired cylinder group by checking the filesys-
tem summary information. If the summary information shows that the cylinder
group is f u l l , f f s _ a l l o c ( ) quadratically rehashes through the summary information
looking for a cylinder group with free space. Having found a cylinder group with
space, ffs_alloc() calls either the fragment-allocation routine or the block-alloca-
tion routine to acquire a fragment or block.

The block-allocation routine is given a preferred block. If that block is avail-
able, it is returned. If the block is unavailable, the allocation routine tries to find
another block on the same cylinder that is rotationally close to the requested
block. So that the task of locating rotationally optimal blocks is simplified, the
summary information for each cylinder group includes a count of the available
blocks at different rotational positions. By default, eight rotational positions are
distinguished; that is, the resolution of the summary information is 2 milliseconds
for a 3600 revolution-per-minute drive. The superblock contains an array of lists
called the rotational-layout table. The array is indexed by rotational position.
Each entry in the array lists the index into the block map for every data block con-
tained in its rotational position. When searching for a block to allocate, the sys-
tem first looks through the summary information for a rotational position with a
nonzero block count. It then uses the index of the rotational position to find the
appropriate list of rotationally optimal blocks. This list enables the system to limit
its scan of the free-block map to only those parts that contain free, rotationally
well-placed blocks.

The fragment-allocation routine is given a preferred fragment. If that frag-
ment is available, it is returned. If the requested fragment is not available, and the
filesystem is configured to optimize for space utilization, the filesystem uses a
best-fit strategy for fragment allocation. The fragment-allocation routine checks
the cylinder-group summary information, starting with the entry for the desired
size, and scanning larger sizes until an available fragment is found. If there are no
fragments of the appropriate size or larger, then a full-sized block is allocated and
is broken up.

If an appropriate-sized fragment is listed in the fragment summary, then the
allocation routine expects to find it in the allocation map. To speed up the process

Figure 8.7 Map entry for an 8192/1024 filesystem.

bits in map
-111-11

decimal value
115

Section 8.2 The Berkeley Fast Filesystem 281

of scanning the potentially large allocation map, the filesystem uses a table-driven
algorithm. Each byte in the map is treated as an index into a fragment-descriptor
table. Each entry in the fragment-descriptor table describes the fragments that are
free for that corresponding map entry. Thus, by doing a logical AND with the bit
corresponding to the desired fragment size, the allocator can determine quickly
whether the desired fragment is contained within a given allocation-map entry. As
an example, consider the entry from an allocation map for the 8192/1024 filesys-
tem shown in Fig. 8.7. The map entry shown has already been fragmented, with a
single fragment allocated at the beginning and a size 2 fragment allocated in the
middle. Remaining unused is another size 2 fragment, and a size 3 fragment.
Thus, if we look up entry 115 in the fragment table, we find the entry shown in
Fig. 8.8. If we were looking for a size 3 fragment, we would inspect the third bit
and find that we had been successful; if we were looking for a size 4 fragment, we
would inspect the fourth bit and find that we needed to continue. The C code that
implements this algorithm is as follows:

for (i = 0; i < MAPSIZE; i++)
if (fragtbl[allocmapti]] &

break;
(1 << (size - 1 ) )

Using a best-fit policy has the benefit of minimizing disk fragmentation; how-
ever, it has the undesirable property that it maximizes the number of fragment-to-
fragment copies that must be made when a process writes a file in many small
pieces. To avoid this behavior, the system can configure filesystems to optimize
for time, rather than for space. The first time that a process does a small write on
a filesystem configured for time optimization, it is allocated a best-fit fragment.
On the second small write, however, a full-sized block is allocated, with the
unused portion being freed. Later small writes are able to extend the fragment in
place, rather than requiring additional copy operations. Under certain circum-
stances, this policy can cause the disk to become heavily fragmented. The system
tracks this condition, and automatically reverts to optimizing for space if the per-
centage of fragmentation reaches one-half of the minimum free-space limit.

Block Clustering
Most machines running 4.4BSD do not have separate I/O processors. The main
CPU must take an interrupt after each disk I/O operation; if there is more disk I/O
to be done, it must select the next buffer to be transferred and must start the opera-
tion on that buffer. Before the advent of track-caching controllers, the filesystem

Figure 8.8 Fragment-table entry for entry 115.

entry in table
available fragment size

0
8

0
7

0
6

0
5

0
4

1
3

1
2

0
1



282 Chapter 8 Local Filestores

obtained its highest throughput by leaving a gap after each block to allow time for
the next I/O operation to be scheduled. If the blocks were laid out without a gap,
the throughput would suffer because the disk would have to rotate nearly an entire
revolution to pick up the start of the next block.

Track-caching controllers have a large buffer in the controller that continues
to accumulate the data coming in from the disk even after the requested data have
been received. If the next request is for the immediately following block, the con-
troller will already have most of the block in its buffer, so it will not have to wait a
revolution to pick up the block. Thus, for the purposes of reading, it is possible to
nearly double the throughput of the filesystem by laying out the files contiguously,
rather than leaving gaps after each block.

Unfortunately, the track cache is less useful for writing. Because the kernel
does not provide the next data block until the previous one completes, there is still
a delay during which the controller does not have the data to write, and it ends up
waiting a revolution to get back to the beginning of the next block. One solution
to this problem is to have the controller give its completion interrupt after it has
copied the data into its cache, but before it has finished writing them. This early
interrupt gives the CPU time to request the next I/O before the previous one com-
pletes, thus providing a continuous stream of data to write to the disk.

This approach has one seriously negative side effect. When the I/O comple-
tion interrupt is delivered, the kernel expects the data to be on stable store.
Filesystem integrity and user applications using the fsync system call depend on
these semantics. These semantics will be violated if the power fails after the I/O
completion interrupt but before the data are written to disk. Some vendors elimi-
nate this problem by using nonvolatile memory for the controller cache and pro-
viding microcode restart after power fail to determine which operations need to be
completed. Because this option is expensive, few controllers provide this func-
tionality.

The 4.4BSD system uses I/O clustering to avoid this dilemma. Clustering was
first done by Santa Cruz Operations [Peacock, 1988] and Sun Microsystems
[McVoy & Kleiman, 1991]; the idea was later adapted to 4.4BSD [Seltzer et al,
1993]. As a file is being written, the allocation routines try to allocate up to 64
Kbyte of data in contiguous disk blocks. Instead of the buffers holding these
blocks being written as they are filled, their output is delayed. The cluster is com-
pleted when the limit of 64 Kbyte of data is reached, the file is closed, or the clus-
ter cannot grow because the next sequential block on the disk is already in use by
another file. If the cluster size is limited by a previous allocation to another file,
the filesystem is notified and is given the opportunity to find a larger set of con-
tiguous blocks into which the cluster may be placed. If the reallocation is success-
ful, the cluster continues to grow. When the cluster is complete, the buffers mak-
ing up the cluster of blocks are aggregated and passed to the disk controller as a
single I/O request. The data can then be streamed out to the disk in a single unin-
terrupted transfer.

A similar scheme is used for reading. If the ffs_read() discovers that a file is
being read sequentially, it inspects the number of contiguous blocks returned by

Section 8.2 The Berkeley Fast Filesystem 283

ufs_bmap() to look for clusters of contiguously allocated blocks. It then allocates
a set of buffers big enough to hold the contiguous set of blocks and passes them to
the disk controller as a single I/O request. The I/O can then be done in one opera-
tion. Although read clustering is not needed when track-caching controllers are
available, it reduces the interrupt load from systems that have them, and it speeds
low-cost systems that do not have them.

For clustering to be effective, the filesystem must be able to allocate large
clusters of contiguous blocks to files. If the filesystem always tried to begin allo-
cation for a file at the beginning of a large set of contiguous blocks, it would soon
use up its contiguous space. Instead, it uses an algorithm similar to that used for
the management of fragments. Initially, file blocks are allocated via the standard
algorithm described in the previous two subsections. Reallocation is invoked
when the standard algorithm does not result in a contiguous allocation. The real-
location code searches a cluster map that summarizes the available clusters of
blocks in the cylinder group. It allocates the first free cluster that is large enough
to hold the file, then moves the file to this contiguous space. This process contin-
ues until the current allocation has grown to a size equal to the maximum permis-
sible contiguous set of blocks (typically 16 blocks). At that point, the I/O is done,
and the process of allocating space begins again.

Unlike fragment reallocation, block reallocation to different clusters of blocks
does not require extra I/O or memory-to-memory copying. The data to be written
are held in delayed write buffers. Within that buffer is the disk location to which
the data are to be written. When the location of the block cluster is relocated, it
takes little time to walk the list of buffers in the cluster and to change the disk
addresses to which they are to be written. When the I/O occurs, the final destina-
tion has been selected and will not change.

To speed the operation of finding clusters of blocks, the filesystem maintains
a cluster map with 1 bit per block (in addition to the map with 1 bit per fragment).
It also has summary information showing how many sets of blocks there are for
each possible cluster size. The summary information allows it to avoid looking
for cluster sizes that do not exist. The cluster map is used because it is faster to
scan than is the much larger fragment bitmap. The size of the map is important
because the map must be scanned bit by bit. Unlike fragments, clusters of blocks
are not constrained to be aligned within the map. Thus, the table-lookup opti-
mization done for fragments cannot be used for look up of clusters.

The filesystem relies on the allocation of contiguous blocks to achieve high
levels of performance. The fragmentation of free space may increase with time or
with filesystem utilization. This fragmentation can degrade performance as the
filesystem ages. The effects of utilization and aging were measured on over 50
filesystems at Harvard University. The measured filesystems ranged in age since
initial creation from 1 to 3 years. The fragmentation of free space on most of the
measured filesystems caused performance to degrade no more than 10 percent
from that of a newly created empty filesystem. The most severe degradation mea-
sured was 30 percent on a highly active filesystem that had many small files and
was used to spool USENET news [Seltzer et al, 1995].



284 Chapter 8 Local Filestores Section 8.3 The Log-Structured Filesystem 285

Synchronous Operations
If the system crashes or stops suddenly because of a power failure, the filesystem
may be in an inconsistent state. To ensure that the on-disk state of the filesystem
can always be returned deterministically to a consistent state, the system must do
three operations synchronously:

1. Write a newly allocated inode to disk before its name is entered into a directory.

2. Remove a directory name before the inode is deallocated.

3. Write a deallocated inode to disk before its blocks are placed into the cylinder-
group free list.

These synchronous operations ensure that directory names always reference valid
inodes, and that no block is ever claimed by more than one inode. Because the
filesystem must do two synchronous operations for each file that it creates, and for
each file that it deletes, the filesystem throughput is limited to the disk-write speed
when many files are created or deleted simultaneously.

Three techniques have been used to eliminate these synchronous operations:

1. Put stable store (battery-backed-up memory) on the disk-controller board.
Filesystem operations can then proceed as soon as the block to be written is
copied into the stable store. If the system fails, unfinished disk operations can
be completed from the stable store when the system is rebooted [Moran et al,
1990].

2. Keep a log of filesystem updates on a separate disk or in stable store. Filesys-
tem operations can then proceed as soon as the operation to be done is written
into the log. If the system fails, unfinished filesystem operations can be com-
pleted from the log when the system is rebooted [Chutani et al, 1992].

3. Maintain a partial ordering on filesystem update operations. Before commit-
ting a change to disk, ensure that all operations on which it depends have been
completed. For example, an operation that would write an inode with a newly
allocated block to disk would ensure that a deallocated inode that previously
owned the block had been written to disk first. Using a technique of partial
rollback to break circular dependencies, this algorithm can eliminate 95 per-
cent of the synchronous writes [Ganger & Patt, 1994].

The first technique ensures that the filesystem is always consistent after a crash
and can be used as soon as the system reboots. The second technique ensures that
the filesystem is consistent as soon as a log rollback has been done. The third
technique still requires that the filesystem-check program be run to restore the
consistency of the filesystem; however, it does not require any specialized hard-
ware or additional disk space to do logging. All these techniques have been devel-
oped in derivatives of the FFS, although none of them are currently part of the
4.4BSD distribution.

8.3 The Log-Structured Filesystem

The factors that limited the performance of the implementation of the FFS found
in historic versions of 4BSD are the FFS's requirement for synchronous I/O during
file creation and deletion, and the seek times between I/O requests for different
files. The synchronous I/O used during file creation and deletion is necessary for
filesystem recoverability after failures. The worst-case example is that it normally
takes five separate disk I/O's (two synchronous, three asynchronous), each pre-
ceded by a seek, to create a new file in the FFS: The file inode is written twice, the
containing directory is written once, the containing directory's inode is written
once, and, of course, the file's data are written. This synchronous behavior is
rarely an issue. Unimaginative benchmarks to the contrary, few applications cre-
ate large numbers of files, and fewer still immediately delete those files.

Seek times between I/O requests to a single file are significant only when the
file has been allocated poorly on disk. The FFS does an excellent job of laying out
files on disk, and, as long as the disk remains empty enough to permit good alloca-
tion, it can read and write individual files at roughly 50 percent of the disk band-
width, skipping one disk block for every one read or written. In 4.4BSD, where
clustering has been added, or when using a disk controller that supports track
caching, the FFS can transfer at close to the full bandwidth of the disk. For these
reasons, the seek times between I/O requests for different files will often dominate
performance. (As an example, on a typical disk, an average seek takes only
slightly less time than a disk rotation, so many blocks can be written in the time
that it takes to seek to a new location on the disk.)

As the main-memory buffer cache has become larger over the past decade,
applications have tended to experience this problem only when writing to the disk.
Repeated reads of data will go to the disk only the first time, after which the data
are cached and no further I/O is required. In addition, doing read-ahead further
amends this problem, as sequential reads of a file will wait for only the first data
block to transfer from disk. Later reads will find the data block already in the
cache, although a separate I/O will still have been done. In summary, the problem
to be solved in modern filesystem design is that of writing a large volume of data,
from multiple files, to the disk. If the solution to this problem eliminates any syn-
chronous I/O, so much the better.

The LFS, as proposed by Ousterhout and Douglis [Ousterhout & Douglis,
1989], attempted to address both the problem and the issue of synchronous I/O.
The fundamental idea of the LFS is to improve filesystem performance by storing
all filesystem data in a single, contiguous log. The LFS is optimized for writing,
and no seek is required between writes, regardless of the file to which the writes
belong. It is also optimized for reading files written in their entirety over a brief
period (as is the norm in workstation environments) because the files are placed
contiguously on disk.

The FFS provides logical locality, as it attempts to place related files (e.g.,
files from the same directory) in the same cylinder group. The LFS provides tem-
poral locality, as it places files created at about the same time together on disk,
relying on the buffer cache to protect the application from any adverse effects of



286 Chapter 8 Local Filestores

this decision. It is important to realize that no performance characteristics of the
disk or processor are taken into account by the LFS. The assumption that the LFS
makes is that reads are cached, and that writes are always contiguous. Therefore,
a simpler model of disk activity suffices.

Organization of the Log-Structured Filesystem
The LFS is described by a superblock similar to the one used by the FFS. In addi-
tion, to minimize the additional software needed for the LFS, FFS index structures
(inodes) and directories are used almost without change, making tools written to
analyze the FFS immediately applicable to the LFS (a useful result in itself).
Where the LFS differs from the FFS is in the layout of the inode, directory and file
data blocks on disk.

The underlying structure of the LFS is that of a sequential, append-only log.
The disk is statically partitioned into fixed-sized contiguous segments, (which are
generally 0.5 to 1 Mbyte), as shown by the disk-layout column of Fig. 8.9. The
initial superblock is in the same location as in the FFS, and is replicated through-
out the disk in selected segments. All writes to the disk are appended to the logi-
cal end of the log. Although the log logically grows forever, portions of the log
that have already been written must be made available periodically for reuse
because the disk is not infinite in length. This process is called cleaning, and the

Figure 8.9 Log-Structured Filesystem layout.

file information

segment summary

disk layout partial segment

Section 8.3 The Log-Structured Filesystem 287

utility that performs this reclamation is called the cleaner. The need for cleaning
is the reason that the disk is logically divided into segments. Because the disk is
divided into reasonably large static areas, it is easy to segregate the portions of the
disk that are currently being written from those that are currently being cleaned.
The logical order of the log is not fixed, and the log should be viewed as a linked
list of segments, with segments being periodically cleaned, detached from their
current position in the log, and reattached after the end of the log.

In ideal operation, the LFS accumulates dirty blocks in memory. When
enough blocks have been accumulated to fill a segment, they are written to the
disk in a single, contiguous I/O operation. Since it makes little sense to write data
blocks contiguously and continue to require seeks and synchronous writes to
update their inode-modification times, the modified inodes are written into the
segment at the same time as the data. As a result of this design goal, inodes are no
longer in fixed locations on the disk, and the LFS requires an additional data struc-
ture called the inode map, which maps inode numbers to the current disk
addresses of the blocks containing them. So that fast recovery after crashes is
facilitated, the inode map is also stored on disk (the inode map would be time con-
suming to recreate after system failure).

As the LFS writes dirty data blocks to the logical end of the log (that is, into
the next available segment), modified blocks will be written to the disk in locations
different from those of the original blocks. This behavior is called a no-overwrite
policy, and it is the responsibility of the cleaner to reclaim space resulting from
deleted or rewritten blocks. Generally, the cleaner reclaims space in the filesystem
by reading a segment, discarding dead blocks (blocks that belong to deleted files or
that have been superseded by rewritten blocks), and rewriting any live blocks to the
end of the log.

In a workstation environment, the LFS usually will not accumulate many dirty
data blocks before having to write at least some portion of the accumulated data.
Reasons that writes must happen include the requirement of the Network Filesys-
tem (NFS) that write operations be flushed to the disk before the write call returns,
and that UNIX filesystems (and POSIX standards) have historically guaranteed that
closing a file descriptor both updates the inode and flushes pending write opera-
tions to the disk.

Because the LFS can only rarely write full segments, each segment is further
partitioned into one or more partial segments. A partial segment can be thought
of as the result of a single write operation to disk. Each partial segment is com-
posed of a single partial-segment summary, and inode blocks and data blocks, as
shown by the partial-segment column of Fig. 8.9. The segment summary
describes the inode and data blocks in the partial segment, and is shown by the
segment-summary column of Fig. 8.9. The partial-segment summary contains the
following information:

• Checksums for the summary information and for the entire partial segment

• The time that the partial segment was written (not shown in Fig. 8.9)



288
Chapter 8 Local Filestores

• Directory-operation information (not shown in Fig. 8.9)

• The disk address of the segment to be written immediately after this segment

• The number of file-information structures and the number of inode disk addresses
that follow

• A file-information structure for each separate file for which blocks are included
in this partial segment (described next)

• A disk address for each block of inodes included in this partial segment

The checksums are necessary for the recovery agent to determine that the par-
tial segment is complete. Because disk controllers do not guarantee that data are
written to disk in the order that write operations are issued, it is necessary to be
able to determine that the entire partial segment has been written to the disk suc-
cessfully. Writing a single disk sector's worth of the partial-segment summary
after the rest of the partial segment was known to have been written successfully
would largely avoid this problem; however, it would have a catastrophic effect on
filesystem performance, as there would be a significant rotational latency between
the two writes. Instead, a checksum of 4 bytes in each block of the partial segment
is created and provides validation of the partial segment, permitting the filesystem
to write multiple partial segments without an intervening seek or rotation.

The file-information structures and inode disk addresses describe the rest of
the partial segment. The number of file-information structures and blocks of
inodes in the partial segment is specified in the segment-summary portion of the
partial segment. The inode blocks are identical to the FFS inode blocks. The disk
address of each inode block is also specified in the partial-segment summary
information, and can be retrieved easily from that structure. Blocks in the partial
segment that are not blocks of inodes are file data blocks, in the order listed in the
partial-segment summary information.

The file-information structures are as shown by the file-information column of
Fig. 8.9. They contain the following information:

• The number of data blocks for this file contained in this partial segment

• A version number for the file, intended for use by the cleaner

• The file's inode number
• The size of the block written most recently to the file in this partial segment

• The logical block number for the data blocks in this partial segment

Index File
The final data structure in the LFS is known as the index file (shown in Fig. 8.10),
because it contains a mapping from the inode number to the disk address of the
block that contains the inode. The index file is maintained as a regular, read-only
file visible in the filesystem, named ifile by convention.

Section 8.3 The Log-Structured Filesystem 289

# dirty segments

# clean segments

segment info 1

segment info 2

segment info n

inode info 1

inode info 2

inode info n

live byte count

timestamp

dirty?

active?

superblock?

version number

disk address

free list pointer

version number

disk address

free-list pointer

Figure 8.10 Log-Structured Filesystem index-file structure.

There are two reasons for the index file to be implemented as a regular file.
First, because the LFS does not allocate a fixed position for each inode when cre-
ated, there is no reason to limit the number of inodes in the filesystem, as is done
in the FFS. This feature permits the LFS to support a larger range of uses because
the filesystem can change from being used to store a few, large files (e.g., an X11
binary area) to storing many files (e.g., a home directory or news partition) with-
out the filesystem being recreated. In addition, there is no hard limit to the num-
ber of files that can be stored in the filesystem. However, this lack of constraints
requires that the inode map be able to grow and shrink based on the filesystem's
inode usage. Using an already established mechanism (the kernel file code) mini-
mizes the special-case code in the kernel.



290 Chapter 8 Local Filestores

Second, the information found in the index file is used by the cleaner. The
LFS cleaner is implemented as a user-space process, so it is necessary to make the
index-file information accessible to application processes. Again, because the
index file is visible in the filesystem, no additional mechanism is required, mini-
mizing the special-case code in both the kernel and the cleaner.

Because the index file's inode and data blocks are themselves written to new
locations each time that they are written, there must be a fixed location on the disk
that can be used to find them. This location is the superblock. The first
superblock is always in the same position on the disk and contains enough infor-
mation for the kernel to find the disk address of the block of inodes that contains
the index file's inode.

In addition to the inode map, the index file includes the other information that
is shared between the kernel and the cleaner. The index file contains information:

• It contains the number of clean and dirty segments.

• It records segment-usage information, one entry per segment (rather than per
partial segment) on the disk. The segment-usage information includes the
number of live bytes currently found in the segment; the most recent modifica-
tion time of the segment; and flags that show whether the segment is currently
being written, whether the segment was written since the most recent check-
point (checkpoints are described in the writing to the log subsection), whether
the segment has been cleaned, and whether the segment contains a copy of the
superblock. Because segment-based statistics are maintained on the amount of
useful information that is currently in the segment, it is possible to clean seg-
ments that contain a high percentage of useless data, so that the maximum
amount of space is made available for reuse with the minimal amount of
cleaning.

• It maintains inode information, one entry per current inode in the filesystem.
The inode information includes the current version number of the inode, the disk
address of the block of inodes that contains the inode, and a pointer if the inode
is unused and is on the current list of free inodes.

So that calculations are simplified, segment-summary-information entries and
inode-map entries are block aligned and are not permitted to span block bound-
aries, resulting in a fixed number of each type of entry per block. This alignment
makes it possible for the filesystem to calculate easily the logical block of the
index file that contains the correct entry.

Reading of the Log
To clarify the relationships among these structures, we shall consider the steps
necessary to read a single block of a file if the file's inode number is known and
there is no other information available.

Section 8.3 The Log-Structured Filesystem 291

1. Read in the superblock. The superblock contains the index file's inode num-
ber, and the disk address of the block of inodes that contains the index file's
inode.

2. Read in the block of inodes that contains the index file's inode. Search the
block and find the index file's inode. Inode blocks are searched linearly. No
more complicated search or data structure is used, because, on the average, in
an 8-Kbyte-block filesystem, only 32 or so memory locations need to be
checked for any given inode in a block to be located.

3. Use the disk addresses in the index file's inode and read in the block of the
index file that contains the inode-map entry for the requested file's inode.

4. Take the disk address found in the inode-map entry and use it to read in the
block of inodes that contains the inode for the requested file. Search the block
to find the file's inode.

5. Use the disk addresses found in the file's inode to read in the blocks of the
requested file.

Normally, all this information would be cached in memory, and the only real
I/O would be a single I/O operation to bring the file's data block into memory.
However, it is important to minimize the information stored in the index file to
ensure that the latter does not reserve unacceptable amounts of memory.

Writing to the Log

When a dirty block must be flushed to the disk for whatever reason (e.g., because
of a fsync or sync system call, or because of closing a file descriptor), the LFS
gathers all the dirty blocks for the filesystem and writes them sequentially to the
disk in one or more partial segments. In addition, if the number of currently dirty
buffers approaches roughly one-quarter of the total number of buffers in the sys-
tem, the LFS will initiate a segment write regardless.

The filesystem does the write by traversing the vnode lists linked to the
filesystem mount point and collecting the dirty blocks. The dirty blocks are sorted
by file and logical block number (so that files and blocks within files will be writ-
ten as contiguously as possible), and then are assigned disk addresses. Their asso-
ciated meta-data blocks (inodes and indirect blocks) are updated to reflect the new
disk addresses, and the meta-data blocks are added to the information to be writ-
ten. This information is formatted into one or more partial segments, partial seg-
ment summaries are created, checksums are calculated, and the partial segments
are written into the next available segment. This process continues until all dirty
blocks in the filesystem have been written.

Periodically, the LFS synchronizes the information on disk, such that all disk
data structures are completely consistent. This state is known as a filesystem
checkpoint. Normally, a checkpoint occurs whenever the sync system call is made



292 Chapter 8 Local Filestores

by the update utility, although there is no reason that it cannot happen more or less
often. The only effect of changing how often the filesystem checkpoints is that the
time needed to recover the filesystem after system failure is inversely proportional
to the frequency of the checkpoints. The only requirement is that the filesystem be
checkpointed between the time that a segment is last written and the time that the
segment is cleaned, to avoid a window where system failure during cleaning of a
segment could cause the loss of data that the kernel has already confirmed as
being written safely to disk.

For the filesystem to be checkpointed, additional data structures must be writ-
ten to disk. First, because each file inode is written into a new location each time
that it is written, the index file must also be updated and its dirty meta-data blocks
written. The flags in the segment usage information that note if each segment was
written since the most recent checkpoint must be toggled and written as part of
this update. Second, because the index-file inode will have been modified, it too
must be written, and the superblock must be updated to reflect its new location.
Finally, the superblock must be written to the disk. When these objects have been
updated and written successfully, the filesystem is considered checkpointed.

The amount of information needing to be written during a filesystem check-
point is proportional to the amount of effort the recovery agent is willing to make
after system failure. For example, it would be possible for the recovery agent to
detect that a file was missing an indirect block, if a data block existed for which
there was no appropriate indirect block, in which case, indirect blocks for files
would not have to be written during normal writes or checkpoints. Or, the recov-
ery agent could find the current block of inodes that contains the latest copy of the
index file inode by searching the segments on the disk for a known inode number,
in which case the superblock would not need to be updated during checkpoint.
More aggressively, it would be possible to rebuild the index file after system fail-
ure by reading the entire disk, so the index file would not have to be written to
complete a checkpoint. Like the decision of how often to checkpoint, the determi-
nation of the tradeoff between what is done by the system during filesystem
checkpoint and what is done by the recovery agent during system recovery is a
flexible decision.

Writes to a small fragment of a LFS are shown in Fig. 8.11. Note that the no-
overwrite policy of the LFS results in the latter using far more disk space than is
used by the FFS, a classic space-time tradeoff: Although more space is used,
because the disk I/O is contiguous on disk, it requires no intermediate seeks.

Block Accounting
Block accounting in the LFS is far more complex than in the FFS. In the FFS,
blocks are allocated as needed, and, if no blocks are available, the allocation fails.
The LFS requires two different types of block accounting.

The first form of block accounting is similar to that done by the FFS. The
LFS maintains a count of the number of disk blocks that do not currently contain
useful data. The count is decremented whenever a newly dirtied block enters the
buffer cache. Many files die in the cache, so this number must be incremented

Section 8.3 The Log-Structured Filesystem 293

V V

SS Fll F12 F21 I

partial segment 1

segment 1

SS F31 F32 F33 F34

partial segment 2

clean segment

segment 2

SS F11 F12 F21 I

partial segment 1

SS F31 F32 F33 F34

partial segment 2

segment 1

ss F22 ][ F41 F42 F11 IF

segment 2

Figure 8.11 Log-Structured Filesystem fragment. In the first snapshot, the first partial
segment contains a segment summary (SS), two blocks from file 1 (Fll and F12), a single
block from file 2 (F21), and a block of inodes (I). The block of inodes contains the inodes
(and therefore the disk addresses) for files F1 and F2. The second partial segment contains
a segment summary and four blocks from file 3. In the second snapshot, a block has been
appended to file 2 (F22); a new file, file 4, has been written that has two blocks (F41 and
F42); and the first block of file 1 (F11) has been modified and therefore rewritten. Because
the disk addresses for files 1 and 2 have changed, and the inodes for files 3 and 4 have not
yet been written, those files' inodes are written (I). Note that this inode block still refer-
ences disk addresses in the first and second partial segments, because blocks F12 and F21,
and the blocks from file 3, are still live. Since the locations of the files' inodes have
changed, if the filesystem is to be consistent on disk, the modified blocks from the index
file (IF) must be written as well.

whenever blocks are deleted, even if the blocks were never written to disk. This
count provides a system-administration view of how much of the filesystem is
currently in use. However, this count cannot be used to authorize the acceptance
of a write from an application because the calculation implies that blocks can be
written successfully into the cache that will later fail to be written to disk. For
example, this failure could be caused by the disk filling up because the additional
blocks necessary to write dirty blocks (e.g., meta-data blocks and partial-segment
summary blocks) were not considered in this count. Even if the disk were not
full, all the available blocks might reside in uncleaned segments, and new data
could not be written.

The second form of block accounting is a count of the number of disk blocks
currently available for writing—that is, that reside in segments that are clean and
ready to be written. This count is decremented whenever a newly dirtied block



294 Chapter 8 Local Filestores

enters the cache, and the count is not incremented until the block is discarded or
the segment into which it is written is cleaned. This accounting value is the value
that controls cleaning initiation. If an application attempts to write data, but there
is no space currently available for writing, the application will block until space is
available. Using this pessimistic accounting to authorize writing guarantees that,
if the operating system accepts a write request from the user, it will be able to do
that write, barring system failure.

The accounting support in the LFS is complex. This complexity arises
because allocation of a block must also consider the allocation of any necessary
meta-data blocks and any necessary inode and partial-segment summary blocks.
Determining the actual disk space required for any block write is difficult because
inodes are not collected into inode blocks, and indirect blocks and segment sum-
maries are not created until the partial segments are actually written. Every time
an inode is modified in the inode cache, a count of inodes to be written is incre-
mented. When blocks are dirtied, the number of available disk blocks is decre-
mented. To decide whether there is enough disk space to allow another write into
the cache, the system computes the number of segment summaries necessary to
write the dirty blocks already in the cache, adds the number of inode blocks neces-
sary to write the dirty inodes, and compares that number to the amount of space
currently available to be written. If insufficient space is available, either the
cleaner must run or dirty blocks in the cache must be deleted.

The Buffer Cache
Before the integration of the LFS into 4BSD, the buffer cache was thought to be
filesystem-independent code. However, the buffer cache contained assumptions
about how and when blocks are written to disk. The most significant problem was
that the buffer cache assumed that any single dirty block could be flushed to disk
at any time to reclaim the memory allocated to the block. There are two problems
with this assumption:

1. Flushing blocks a single block at a time would destroy any possible perfor-
mance advantage of the LFS, and, because of the modified meta-data and par-
tial-segment summary blocks, the LFS would use enormous amounts of disk
space.

2. Also because of the modified meta-data and partial-segment summary blocks,
the LFS requires additional memory to write: If the system were completely
out of memory, it would be impossible for the LFS to write anything at all.

For these reasons, the LFS needs to guarantee that it can obtain the additional
buffers that it needs when it writes a segment, and that it can prevent the buffer
cache from attempting to flush blocks backed by a LFS. To handle these prob-
lems, the LFS maintains its dirty buffers on the kernel LOCKED queue, instead of
on the traditional LRU queue, so that the buffer cache does not attempt to reclaim
them. Unfortunately, maintaining these buffers on the LOCKED queue exempts

Section 8.3 The Log-Structured Filesystem 295

most of the dirty LFS blocks from traditional buffer-cache behavior, which
undoubtedly alters system performance in unexpected ways. To prevent the LFS
from locking down all the available buffers and to guarantee that there are always
additional buffers available when they are needed for segment writing, the LFS
begins segment writing as described previously, when the number of locked-down
buffers exceeds a threshold. In addition, the kernel blocks any process attempting
to acquire a block from a LFS if the number of currently locked blocks is above a
related access threshold. Buffer allocation and management will be much more
reasonably handled by systems with better integration of the buffer cache and vir-
tual memory.

Another problem with the historic buffer cache was that it was a logical buffer
cache, hashed by vnode and file logical block number. In the FFS, since indirect
blocks did not have logical block numbers, they were hashed by the vnode of the
raw device (the file that represents the disk partition) and the disk address. Since
the LFS does not assign disk addresses until the blocks are written to disk, indirect
blocks have no disk addresses on which to hash. So that this problem could be
solved, the block name space had to incorporate meta-data block numbering.
Block numbers were changed to be signed integers, with negative block numbers
referencing indirect blocks and zero and positive numbers referencing data blocks.
Singly indirect blocks take on the negative block number of the first data block to
which they point. Doubly and triply indirect blocks take the next-lower negative
number of the singly or doubly indirect block to which they point. This approach
makes it possible for the filesystem to traverse the indirect block chains in either
direction, facilitating reading a block or creating indirect blocks. Because it was
possible for the FFS also to use this scheme, the current hash chains for both
filesystems are done in this fashion.

Directory Operations
Directory operations include those system calls that affect more than one inode
(typically a directory and a file). They include create, link, mkdir, mknod, remove,
rename, rmdir, and symlink. These operations pose a special problem for the LFS.
Since the basic premise of the LFS is that small I/O operations can be postponed
and then coalesced to provide larger I/O operations, retaining the synchronous
behavior of directory operations would make little sense. In addition, the UNIX
semantics of directory operations are defined to preserve ordering (e.g., if the cre-
ation of one file precedes the creation of another, any recovery state of the filesys-
tem that includes the second file must also include the first). This semantic is used
in UNIX filesystems to provide mutual exclusion and other locking protocols.
Since directory operations affect multiple inodes, we must guarantee that either all
inodes and associated changes are written successfully to the disk, or that any par-
tially written information is ignored during recovery.

The basic unit of atomicity in LFS is the partial segment because the check-
sum information guarantees that either all or none of the partial segment will be
considered valid. Although it would be possible to guarantee that the inodes for
any single directory operation would fit into a partial segment, that would require



296 Chapter 8 Local Filestores

each directory operation to be flushed to the disk before any vnode participating in
it is allowed to participate in another directory operation, or a potentially
extremely complex graph of vnode interdependencies has to be maintained.
Instead, a mechanism was introduced to permit directory operations to span multi-
ple partial segments. First, all vnodes participating in any directory operation are
flagged. When the partial segment containing the first of the flagged vnodes is
written, the segment summary flag SS_DIROP is set. If the directory-operation
information spans multiple partial segments, the segment summary flag SS_CONT
also is set. So that the number of partial segments participating in a set of direc-
tory operations is minimized, vnodes are included in partial segments based on
whether they participated in a directory operation. Finally, so that directory opera-
tions are prevented from being only partially reflected in a segment, no new direc-
tory operations are begun while the segment writer is writing a partial segment
containing directory operations, and the segment writer will not write a partial
segment containing directory operations while any directory operation is in
progress.

During recovery, partial segments with the SS_DIROP or SS_CONT flag set are
ignored unless the partial segment completing the directory operation was written
successfully to the disk. For example, if the recovery agent finds a segment with
both SS_DIROP and SS_CONT set, it ignores all such partial segments until it finds
a later partial segment with SS_DIROP set and SS_CONT unset (i.e. the final partial
segment including any part of this set of directory operations). If no such partial
segment is ever found, then all the segments from the initial directory operation on
are discarded.

Creation of a File
Creating a file in the LFS is a simple process. First, a new inode must be allocated
from the filesystem. There is a field in the superblock that points to the first free
inode in the linked list of free inodes found in the index file. If this pointer refer-
ences an inode, that inode is allocated in the index file, and the pointer is updated
from that inode's free-list pointer. Otherwise, the index file is extended by a
block, and the block is divided into index-file inode entries. The first of these
entries is then allocated as the new inode.

The inode version number is then incremented by some value. The reason for
this increment is that it makes the cleaner's task simpler. Recall that there is an
inode version number stored with each file-information structure in the segment.
When the cleaner reviews a segment for live data, mismatching version numbers
or an unallocated index file inode makes detection of file removal simple.

Conversely, deleting a file from the LFS adds a new entry to the index file's
free-inode list. Contrasted to the multiple synchronous operations required by the
FFS when a file is created, creating a file in LFS is conceptually simple and blind-
ingly fast. However, the LFS pays a price for avoiding the synchronous behavior:
It cannot permit segments to be written at the same time as files are being created,
and the maintenance of the allocation information is significantly more complex.

Section 8.3 The Log-Structured Filesystem

Reading and Writing to a File

297

Having created a file, a process can do reads or writes on it. The procedural path
through the kernel is largely identical to that of the FFS, as shown by Fig. 8.4 with
the ffs_ routines changed to lfs_. The code for ffs_read() and lfs_read(), and that
for ffs_write() and lfs_write(), is the same, with some C preprocessing #defines
added for minor tailoring. As in the FFS, each time that a process does a write
system call, the system checks to see whether the size of the file has increased. If
the file needs to be extended, the request is rounded up to the next fragment size,
and only that much space is allocated. A logical block request is handed off to
lfs_balloc(), which performs the same functions as ffs_balloc(), allocating any
necessary indirect blocks and the data block if it has not yet been allocated, and
reallocating and rewriting fragments as necessary.

Filesystem Cleaning

Because the disk is not infinite, cleaning must be done periodically to make new
segments available for writing. Cleaning is the most challenging aspect of the
LFS, in that its effect on performance and its interactions with other parts of the
system are still not fully understood.

Although a cleaner was simulated extensively in the original LFS design
[Rosenblum & Ousterhout, 1992], the simulated cleaner was never implemented,
and none of the implemented cleaners (including the one in 4BSD) have ever been
simulated. Cleaning must be done often enough that the filesystem does not fill
up; however, the cleaner can have a devastating effect on performance. Recent
research [Seltzer et al, 1995] shows that cleaning segments while the LFS is active
(i.e., writing other segments) can result in a performance degradation of about 35
to 40 percent for some transaction-processing-oriented applications. This degra-
dation is largely unaffected by how full the filesystem is; it occurs even when the
filesystem is half empty. However, even at 40-percent degradation, the LFS per-
forms comparably to the FFS on these applications. Recent research also shows
that typical workstation workloads can permit cleaning during disk idle periods
[Blackwell et al, 1995], without introducing any user-noticeable latency.

Cleaning in the LFS is implemented by a user utility named lfs_cleanerd.
This functionality was placed in user space for three major reasons.

First, experimentation with different algorithms, such as migrating rarely
accessed data to the same segment or restricting cleaning to disk idle times, prob-
ably will prove fruitful, and making this experimentation possible outside the
operating system will encourage further research. In addition, a single cleaning
algorithm is unlikely to perform equally well for all possible workloads. For
example, coalescing randomly updated files during cleaning should dramatically
improve later sequential-read performance for some workloads.

Second, the cleaner may potentially require large amounts of memory and
processor time, and previous implementations of the cleaner in the kernel have
caused noticeable latency problems in user response. When the cleaner is moved



298 Chapter 8 Local Filestores

to user space, it competes with other processes for processor time and virtual
memory, instead of tying down a significant amount of physical memory.

Third, given the negative effect that the cleaner can have on performance, and
the many possible algorithms for deciding when and what segments to clean, run-
ning the cleaner is largely a policy decision, always best implemented outside the
kernel.

The number of live bytes of information in a segment, as determined from the
segment-usage information in the index file, is used as a measure of cleaning
importance. A simple algorithm for cleaning would be always to clean the seg-
ment that contains the fewest live bytes, based on the argument that this rule
would result in the most free disk space for the least effort. The cleaning algo-
rithm in the current LFS implementation is based on the simulation in Rosenblum
and Ousterhout, 1992. This simulation shows that selection of segments to clean
is an important design parameter in minimizing cleaning overhead, and that the
cost-benefit policy defined there does well for the simulated workloads. Briefly
restated, each segment is assigned a cleaning cost and benefit. The I/O cost to
clean a segment is equal to

1 + utilization,

where 1 represents the cost to read the segment to be cleaned, and utilization is the
fraction of live data in the segment that must be written back into the log. The
benefit of cleaning a segment is

free bytes generated x age of segment,

where free bytes generated is the fraction of dead blocks in the segment (1 - uti-
lization) and age of segment is the number of seconds since the segment was
written to disk. The selection of the age of segment metric can have dramatic
effects on the frequency with which the cleaner runs (and interferes with system
performance).

When the filesystem needs to reclaim space, the cleaner selects the segment
with the largest benefit-to-cost ratio:

benefit (1 - utilization) x age of segment
cost 1 + utilization

Once a segment has been selected for cleaning, by whatever mechanism,
cleaning proceeds as follows:

1. Read one (or more) target segments.

2. Determine the blocks that contain useful data. For the cleaner to determine the
blocks in a segment that are live, it must be able to identify each block in a
segment; so, the summary block of each partial segment identifies the inode
and logical block number of every block in the partial segment.

3. Write the live blocks back into the filesystem.

4. Mark the segments as clean.

Section 8.3 The Log-Structured Filesystem 299

The cleaner shares information with the kernel via four new system calls and
the index file. The new system calls interface to functionality that was used by the
kernel (e.g., the translation of file logical block numbers to disk addresses done by
ufs__bmap()) and to functionality that must be in the kernel to avoid races between
the cleaner and other processes.

The four system calls added for the cleaner are as follows:

1. lfs_bmapv: Take an array of inode number and logical block number pairs, and
return the current disk address, if any, for each block. If the disk address
returned to the cleaner is the one in the segment that it is considering, the
block is live.

2. lfs_markv: Take an array of inode number and logical block number pairs and
write their associated data blocks into the filesystem in the current partial seg-
ment. Although it would be theoretically possible for the cleaner to accom-
plish this task itself, the obvious race with other processes writing or deleting
the same blocks, and the need to do the write without updating the inode's
access or modification times, made it simpler for this functionality to be in the
kernel.

3. lfs_segclean: Mark a segment clean. After the cleaner has rewritten all the live
data in the segment, this system call marks the segment clean for reuse. It is a
system call so that the kernel does not have to search the index file for new
segments and so that the cleaner does not have to modify the index file.

4. lfs_segwait: Make a special-purpose sleep call. The calling process is put to
sleep until a specified timeout period has elapsed or, optionally, until a seg-
ment has been written. This operation lets the cleaner pause until there may
be a requirement for further cleaning.

When a segment is selected and read into memory, the cleaner processes each
partial segment in the segment sequentially. The segment summary specifies the
blocks that are in the partial segment. Periodically, the cleaner constructs an array
of pairs consisting of an inode number and a logical block number, for file blocks
found in the segment, and uses the lfs_bmapv system call to obtain the current
disk address for each block. If the returned disk address is the same as the loca-
tion of the block in the segment being examined, the block is live. The cleaner
uses the lfs_markv system call to rewrite each live block into another segment in
the filesystem.

Before rewriting these blocks, the kernel must verify that none of the blocks
have been superseded or deleted since the cleaner called Ifs_bmapv. Once the call
to Ifs_markv begins, only blocks specified by the cleaner are written into the log,
until the lfs_markv call completes, so that, if cleaned blocks die after the lfs_markv
call verifies that they are alive, the partial segments written after the lfs_markv par-
tial segments will update their status properly.

The separation of the Ifs_bmapv and lfs_markv functionality was done delib-
erately to make it easier for LFS to support new cleaning algorithms. There is no



300 Chapter 8 Local Filestores

requirement that the cleaner always call lfs_markv after each call to lfs_bmapv, or
that it call lfs_markv with the same arguments. For example, the cleaner might
use lfs_markv to do block coalescing from several segments.

When the cleaner has written the live blocks using lfs_markv, the cleaner calls
lfs__segclean to mark the segment clean. When the cleaner has cleaned enough
segments, it calls lfs_segwait, sleeping until the specified timeout elapses or a new
segment is written into the filesystem.

Since the cleaner is responsible for producing free space, the blocks that it
writes must get preference over all other dirty blocks to be written, so that the sys-
tem avoids running out of free space. In addition, there are degenerative cases
where cleaning a segment can consume'more space than it reclaims. So that the
cleaner can always run and will eventually generate free space, all writing by any
process other than the cleaner is blocked by the kernel when the number of clean
segments drops below 3.

Filesystem Parameterization
Parameterization in the LFS is minimal. At filesystem-creation time, it is possible
to specify the filesystem block and fragment size, the segment size, and the per-
centage of space reserved from normal users. Only the last of these parameters
may be altered after filesystem creation without recreation of the filesystem.

Filesystem-Crash Recovery
Historic UNIX systems spend a significant amount of time in filesystem checks
while rebooting. As disks become ever larger, this time will continue to increase.
There are two aspects to filesystem recovery: bringing the filesystem to a physi-
cally consistent state and verifying the logical structure of the filesystem. When
the FFS or the LFS adds a block to a file, there are several different pieces of infor-
mation that may be modified: the block itself, its inode, indirect blocks, and, of
course, the location of the most recent allocation. If the system crashes between
any of the operations, the filesystem is likely to be left in a physically inconsistent
state.

There is currently no way for the FFS to determine where on the disk or in the
filesystem hierarchy an inconsistency is likely to occur. As a result, it must
rebuild the entire filesystem state, including cylinder-group bitmaps and all meta-
data after each system failure. At the same time, the FFS verifies the filesystem
hierarchy. Traditionally, fsck is the utility that performs both of these functions.
Although the addition of filesystem-already-clean flags and tuning fsck has pro-
vided a significant decrease in the time that it takes to reboot in 4BSD, it can still
take minutes per filesystem before applications can be run.

Because writes are localized in the LFS, the recovery agent can determine
where any filesystem inconsistencies caused by the system crash are located, and
needs to check only those segments, so bringing a LFS to a consistent state nor-
mally requires only a few seconds per filesystem. The minimal time required to
achieve filesystem consistency is a major advantage for the LFS over the FFS.
However, although fast recovery from system failure is desirable, reliable recovery
from media failure is necessary. The high level of robustness that fsck provides

Section 8.3 The Log-Structured Filesystem 301

for the FFS is not maintained by this consistency checking. For example, fsck is
capable of recovering from the corruption of data on the disk by hardware, or by
errant software overwriting filesystem data structures such as a block of inodes.

Recovery in the LFS has been separated into two parts. The first part involves
bringing the filesystem into a consistent state after a system crash. This part of
recovery is more similar to standard database recovery than to fsck. It consists of
three steps:

1. Locate the most recent checkpoint—the last time at which the filesystem was
consistent on disk.

2. Initialize all the filesystem structures based on that checkpoint.

3. Roll forward, reading each partial segment from the checkpoint to the end of
the log, in write order, and incorporating any modifications that occurred,
except as noted previously for directory operations.

Support for rolling forward is the purpose of much of the information
included in the partial-segment summary. The next-segment pointers are provided
so that the recovery agent does not have to search the disk to find the next segment
to read. The recovery agent uses the partial-segment checksums to identify valid
partial segments (ones that were written completely to the disk). It uses the partial
segment time-stamps to distinguish partial segments written after the checkpoint
from those that were written before the checkpoint and that were later reclaimed
by the cleaner. It uses the file and block numbers in the file-information structures
to update the index file (the inode map and segment-usage information) and the
file inodes, to make the blocks in the partial segment appear in the file. The latter
actions are similar to those taken in cleaning. As happens in database recovery,
the filesystem-recovery time is proportional to the interval between filesystem
checkpoints.

The second part of recovery in the LFS involves the filesystem-consistency
checks performed for the FFS by fsck. This check is similar to the functionality of
fsck, and, like fsck, will take a long time to run. (This functionality has not been
implemented in 4.4BSD.)

The LFS implementation permits fast recovery, and applications are able to
start running as soon as the roll forward has been completed, while basic sanity
checking of the filesystem is done in the background. There is the obvious prob-
lem of what to do if the sanity check fails. If that happens, the filesystem must be
downgraded forcibly to read-only status, and fixed. Then, writes can be enabled
once again. The only applications affected by this downgrade are those that were
writing to the filesystem. Of course, the root filesystem must always be checked
completely after every reboot, to avoid a cycle of reboot followed by crash fol-
lowed by reboot if the root has become corrupted,

Like the FFS, the LFS replicates the superblock, copying the latter into several
segments. However, no cylinder placement is taken into account in this replica-
tion, so it is theoretically possible that all copies of the superblock would be on the



8.4 The Memory-Based Filesystem

Memory-based filesystems have existed for a long time; they have generally been
marketed as random-access-memory disks (RAM-disk) or sometimes as software
packages that use the machine's general-purpose memory. A RAM disk is
designed to appear like any other disk peripheral connected to a machine. It is
normally interfaced to the processor through the I/O bus, and is accessed through
a device driver similar or sometimes identical to the device driver used for a nor-
mal magnetic disk. The device driver sends requests for blocks of data to the de-
vice, and the hardware then transfers the requested data to or from the requested
disk sectors. Instead of storing its data on a rotating magnetic disk, the RAM disk
stores its data in a large array of RAM or bubble memory. Thus, the latency of
accessing the RAM disk is nearly zero, whereas 15 to 50 milliseconds of latency
are incurred when rotating magnetic media are accessed. RAM disks also have the
benefit of being able to transfer data at the memory bandwidth of the system,
whereas magnetic disks are typically limited by the rate at which the data pass
under the disk head.

Software packages simulating RAM disks operate by allocating a fixed parti-
tion of the system memory. The software then provides a device-driver interface
similar to the one used by disk hardware. Because the memory used by the RAM
disk is not available for other purposes, software RAM-disk solutions are used pri-
marily for machines with limited addressing capabilities, such as 16-bit computers
that do not have an effective way to use the extra memory.

Most software RAM disks lose their contents when the system is powered
down or rebooted. The system can save the contents either by using bat-
tery-backed-up memory, or by storing critical filesystem data structures in the
filesystem and running a consistency-check program after each reboot. These
conditions increase the hardware cost and potentially slow down the speed of the
disk. Thus, RAM-disk filesystems are not typically designed to survive power fail-
ures; because of their volatility, their usefulness is limited to storage of transient or
easily recreated information, such as might be found in /tmp. Their primary bene-
fit is that they have higher throughput than do disk-based filesystems [Smith,
1981]. This improved throughput is particularly useful for utilities that make
heavy use of temporary files, such as compilers. On fast processors, nearly one-
half of the elapsed time for a compilation is spent waiting for synchronous opera-
tions required for file creation and deletion. The use of the MFS nearly eliminates
this waiting time.

Use of dedicated memory to support a RAM disk exclusively is a poor use of
resources. The system can improve overall throughput by using the memory for
the locations with high access rates. These locations may shift between support-
ing process virtual address spaces and caching frequently used disk blocks. Mem-
ory dedicated to the filesystem is used more effectively in a buffer cache than as a
RAM disk. The buffer cache permits faster access to the data because it requires
only a single memory-to-memory copy from the kernel to the user process. The
use of memory in a RAM-disk configuration may require two memory-to-memory

copies: one from the RAM disk to the buffer cache, then another from the buffer
cache to the user process.

The 4.4BSD system avoids these problems by building its RAM-disk filesys-
tem in pageable memory, instead of in dedicated memory. The goal is to provide
the speed benefits of a RAM disk without paying the performance penalty inherent
in dedicating to the RAM disk part of the physical memory on the machine. When
the filesystem is built in pageable memory, it competes with other processes for
the available memory. When memory runs short, the paging system pushes its
least recently used pages to backing store. Being pageable also allows the filesys-
tem to be much larger than would be practical if it were limited by the amount of
physical memory that could be dedicated to that purpose. The /tmp filesystem can
be allocated a virtual address space that is larger than the physical memory on the
machine. Such a configuration allows small files to be accessed quickly, while
still allowing /tmp to be used for big files, although at a speed more typical of nor-
mal, disk-based filesystems.

An alternative to building a MFS would be to have a filesystem that never did
operations synchronously, and that never flushed its dirty buffers to disk. How-
ever, we believe that such a filesystem either would use a disproportionately large
percentage of the buffer-cache space, to the detriment of other filesystems, or
would require the paging system to flush its dirty pages. Waiting for other filesys-
tems to push dirty pages subjects all filesystems to delays while they are waiting
for the pages to be written [Ohta & Tezuka, 1990].

Organization of the Memory-Based Filesystem

The implementation of the MFS in 4.4BSD was done before the FFS had been split
into semantic and filestore modules. Thus, to avoid rewriting the semantics of the
4.4BSD filesystem, it instead used the FFS in its entirety. The current design does
not take advantage of the memory-resident nature of the filesystem. A future
implementation probably will use the existing semantic layer, but will rewrite the
filestore layer to reduce its execution expense and to make more efficient use of
the memory space.

The user creates a filesystem by invoking a modified version of the newfs util-
ity, with an option telling newfs to create a MFS. The newfs utility allocates a sec-
tion of virtual address space of the requested size, and builds a filesystem in the
memory, instead of on a disk partition. When the filesystem has been built, newfs
does a mount system call specifying a filesystem type of MFS. The auxiliary data
parameter to the mount call specifies a pointer to the base of the memory in which
it has built the filesystem. The mount call does not return until the filesystem is
unmounted. Thus, the newfs process provides the context to support the MFS.

The mount system call allocates and initializes a mount-table entry, and then
calls the filesystem-specific mount routine. The filesystem-specific routine is
responsible for doing the mount and for initializing the filesystem-specific portion
of the mount-table entry. It allocates a block-device vnode to represent the mem-
ory disk device. In the private area of this vnode, it stores the base address of the



304 Chapter 8 Local Filestores

filesystem and the process identifier of the newfs process for later reference when
doing I/O. It also initializes an I/O list that it uses to record outstanding I/O
requests. It can then call the normal FFS mount system call, passing the special
block-device vnode that it has created, instead of the usual disk block-device
vnode. The mount proceeds just like any other local mount, except that requests
to read from the block device are vectored through the MFS block-device vnode,
instead of through the usual block-device I/O function. When the mount is com-
pleted, mount does not return as most other filesystem mount system calls do;
instead, it sleeps in the kernel awaiting I/O requests. Each time an I/O request is
posted for the filesystem, a wakeup is issued for the corresponding newfs process.
When awakened, the process checks for requests on its I/O list. The filesystem
services a read request by copying to a kernel buffer data from the section of the
newfs address space corresponding to the requested disk block. Similarly, the
filesystem services a write request by copying data to the section of the newfs
address space corresponding to the requested disk block from a kernel buffer.
When all the requests have been serviced, the newfs process returns to sleep to
await more requests.

Once the MFS is mounted, all operations on files are handled by the FFS code
until they get to the point where the filesystem needs to do I/O on the device.
Here, the filesystem encounters the second piece of the MFS. Instead of calling
the special-device strategy routine, it calls the memory-based strategy routine.
Usually, the filesystem services the request by linking the buffer onto the I/O list
for the MFS vnode, and issuing a wakeup to the newfs process. This wakeup
results in a context switch to the newfs process, which does a copyin or copyout,
as described previously. The strategy routine must be careful to check whether the
I/O request is coming from the newfs process itself, however. Such requests hap-
pen during mount and unmount operations, when the kernel is reading and writing
the superblock. Here, the MFS strategy routine must do the I/O itself, to avoid
deadlock.

The final piece of kernel code to support the MFS is the close routine. After
the filesystem has been unmounted successfully, the device close routine is called.
This routine flushes any pending I/O requests, then sets the I/O list head to a spe-
cial value that is recognized by the I/O servicing loop as an indication that the
filesystem is unmounted. The mount system call exits, in turn causing the newfs
process to exit, resulting in the filesystem vanishing in a cloud of dirty pages.

The paging of the filesystem does not require any additional code beyond that
already in the kernel to support virtual memory. The newfs process competes with
other processes on an equal basis for the machine's available memory. Data pages
of the filesystem that have not yet been used are zero-fill-on-demand pages that do
not occupy memory. As long as memory is plentiful, the entire contents of the
filesystem remain memory resident. When memory runs short, the oldest pages of
newfs are pushed to backing store as part of the normal paging activity. The pages
that are pushed usually hold the contents of files that have been created in the
MFS, but that have not been accessed recently (or have been deleted).

Section 8.4 The Memory-Based Filesystem

Filesystem Performance

305

The performance of the current MFS is determined by the memory-to-memory
copy speed of the processor. Empirically, the throughput is about 45 percent of
this memory-to-memory copy speed. The basic set of steps for each block written
is as follows:

1. Memory-to-memory copy from the user process doing the write to a kernel
buffer

2. Context switch to the newfs process

3. Memory-to-memory copy from the kernel buffer to the newfs address space

4. Context switch back to the writing process

Thus, each write requires at least two memory-to-memory copies, accounting for
about 90 percent of the CPU time. The remaining 10 percent is consumed in the
context switches and in the filesystem-allocation and block-location code. The
actual context-switch count is only about one-half of the worst case outlined previ-
ously because read-ahead and write-behind allow multiple blocks to be handled
with each context switch.

The added speed of the MFS is most evident for processes that create and
delete many files. The reason for the speedup is that the filesystem must do two
synchronous operations to create a file: first, writing the allocated inode to disk;
then, creating the directory entry. Deleting a file similarly requires at least two
synchronous operations. Here, the low latency of the MFS is noticeable compared
to that of a disk-based filesystem because a synchronous operation can be done
with just two context switches, instead of incurring the disk latency.

Future Work

The most obvious shortcoming of the current implementation is that filesystem
blocks are copied twice: once between the newfs process address space and the
kernel buffer cache, and once between the kernel buffer and the requesting pro-
cess. These copies are done in different process contexts, necessitating two con-
text switches per group of I/O requests. When the MFS was built, the virtual-
memory system did not support paging of any part of the kernel address space.
Thus, the only way to build a pageable filesystem was to do so in the context of a
normal process. The current virtual-memory system allows parts of the kernel
address space to be paged. Thus, it is now possible to build a MFS that avoids the
double copy and context switch. One potential problem with such a scheme is that
many kernels are limited to a small address space (usually a few Mbyte). This
restriction limits the size of MFS that such a machine can support. On such a
machine, the kernel can describe a MFS that is larger than its address space and
can use a window to map the larger filesystem address space into its limited



306 Chapter 8 Local Filestores

address space. The window maintains a cache of recently accessed pages. The
problem with this scheme is that, if the working set of active pages is greater than
the size of the window, then much time is spent remapping pages and invalidating
translation buffers. Alternatively, a separate address space could be constructed
for each MFS, as in the current implementation. The memory-resident pages of
each address space could be mapped exactly as other cached pages are accessed.

The current system uses the existing local filesystem structures and code to
implement the MFS. The major advantages of this approach are the sharing of
code and the simplicity of the approach. There are several disadvantages, how-
ever. One is that the size of the filesystem is fixed at mount time. Thus, only a
fixed number of files and data blocks can be supported. Currently, this approach
requires enough swap space for the entire filesystem and prevents expansion and
contraction of the filesystem on demand. The current design also prevents the
filesystem from taking advantage of the memory-resident character of the filesys-
tem. For example, the current filesystem structure is optimized for magnetic
disks. It includes replicated control structures, cylinder groups with separate allo-
cation maps and control structures, and data structures that optimize rotational lay-
out of files. None of these optimizations are useful in a MFS (at least when the
backing store for the filesystem is allocated dynamically and is not contiguous on
a single disk type). Alternatively, directories could be implemented using dynami-
cally allocated memory organized as linked lists or trees, rather than as files stored
in disk blocks. Allocation and location of pages for file data might use virtual-
memory primitives and data structures, rather than direct and indirect blocks.

Exercises

8.1 What are the four classes of operations handled by the datastore filesystem?

8.2 Under what circumstances can a write request avoid reading a block from
the disk?

8.3 What is the difference between a logical block and a physical block? Why
is this distinction important?

8.4 Give two reasons why increasing the basic block size in the old filesystem
from 512 bytes to 1024 bytes more than doubled the system's throughput.

8.5 Why is the per-cylinder group information placed at varying offsets from
the beginning of the cylinder group?

8.6 How many blocks and fragments are allocated to a 31,200-byte file on a
FFS with 4096-byte blocks and 1024-byte fragments? How many blocks
and fragments are allocated to this file on a FFS with 4096-byte blocks and
512-byte fragments? Also answer these two questions assuming that an
inode had only six direct block pointers, instead of 12.

References 307

8.7 Explain why the FFS maintains a 5 to 10 percent reserve of free space.
What problems would arise if the free-space reserve were set to zero?

8.8 What is a quadratic hash? Describe for what it is used in the FFS, and why
it is used for that purpose.

8.9 Why are the allocation policies for inodes different from those for data
blocks?

8.10 Under what circumstances does block clustering provide benefits that can-
not be obtained with a disk-track cache?

8.11 What are the FFS performance bottlenecks that the LFS filesystem attempts
to address?

8.12 Why does the LFS provide on-disk checksums for partial segments?

8.13 Why does the LFS segment writer require that no directory operations occur
while it runs?

8.14 Which three FFS operations must be done synchronously to ensure that the
filesystem can always be recovered deterministically after a crash (barring
unrecoverable hardware errors)?

*8.15 What problems would arise if files had to be allocated in a single contigu-
ous piece of the disk? Consider the problems created by multiple pro-
cesses, random access, and files with holes.

*8.16 Construct an example of an LFS segment where cleaning would lose, rather
than gain, free blocks.

**8.17 Inodes could be allocated dynamically as part of a directory entry. Instead,
inodes are allocated statically when the filesystem is created. Why is the
latter approach used?

**8.18 The no-overwrite policy of the LFS offers the ability to support new fea-
tures such as unrm, which offers the ability to un-remove a file. What
changes would have to be made to the system to support this feature?

**8.19 The LFS causes wild swings in the amount of memory used by the buffer
cache and the filesystem, as compared to the FFS. What relationship should
the LFS have with the virtual-memory subsystem to guarantee that this
behavior does not cause deadlock?

References
Blackwell et al, 1995.

T. Blackwell, J. Harris, & M. Seltzer, "Heuristic Cleaning Algorithms in
Log-Structured File Systems," USENIX Association Conference
Proceedings, pp. 277-288, January 1995.



308 Chapter 8 Local Filestores

Chutani et al, 1992.
S. Chutani, O. Anderson, M. Kazar, W. Mason, & R. Sidebotham, "The
Episode File System," USENIX Association Conference Proceedings, pp.
43-59, January 1992.

Ganger & Patt, 1994.
G. Ganger & Y. Patt, "Metadata Update Performance in File Systems,"
USENIX Symposium on Operating Systems Design and Implementation, pp.
49-60, November 1994.

Irlam, 1993.
G. Mam, Unix File Size Survey—1993, http://www.base.com/gordoni/-
Ms93.html, email:<gordoni@home.base.com>, November 1993.

Knuth, 1975.
D. Knuth, The Art of Computer Programming, Volume 3—Sorting and
Searching, pp. 506-549, Addison-Wesley, Reading, MA, 1975.

McKusick et al, 1984.
M. K. McKusick, W. N. Joy, S. J. Leffler, & R. S. Fabry, "A Fast File System
for UNIX," ACM Transactions on Computer Systems, vol. 2, no. 3, pp.
181-197, Association for Computing Machinery, August 1984.

McKusick & Kowalski, 1994.
M. K. McKusick & T. J. Kowalski, "Fsck: The UNIX File System Check
Program," in 4.4BSD System Manager's Manual, pp. 3:1-21, O'Reilly &
Associates, Inc., Sebastopol, CA, 1994.

McVoy & Kleiman, 1991.
L. McVoy & S. Kleiman, "Extent-Like Performance from a Unix File Sys-
tem," USENIX Association Conference Proceedings, pp. 33-44, January
1991.

Moran et al, 1990.
J. Moran, R. Sandberg, D. Coleman, J. Kepecs, & B. Lyon, "Breaking
Through the NFS Performance Barrier," Proceedings of the Spring 1990
European UNIX Users Group Conference, pp. 199-206, April 1990.

Nevalainen & Vesterinen, 1977.
O. Nevalainen & M. Vesterinen, "Determining Blocking Factors for Sequen-
tial Files by Heuristic Methods," The Computer Journal, vol. 20, no. 3, pp.
245-247, August 1977.

Ohta & Tezuka, 1990.
M. Ohta & H. Tezuka, "A Fast /tmp File System by Async Mount Option,"
USENIX Association Conference Proceedings, pp. 145-150, June 1990.

Ousterhout & Douglis, 1989.
J. Ousterhout & F. Douglis, "Beating the I/O Bottleneck: A Case for Log-
Structured File Systems," Operating Systems Review, vol. 23, 1, pp. 11-27,
January 1989.

Peacock, 1988.
J. Peacock, "The Counterpoint Fast File System," USENIX Association
Conference Proceedings, pp. 243-249, January 1988.

References 309

Rosenblum & Ousterhout, 1992.
M. Rosenblum & J. Ousterhout, "The Design and Implementation of a Log-
Structured File System," ACM Transactions on Computer Systems, vol. 10,
no. 1, pp. 26-52, Association for Computing Machinery, February 1992

Seltzer et al, 1993.
M. Seltzer, K. Bostic, M. K. McKusick, & C. Staelin, "An Implementation
of a Log-Structured File System for UNIX," USENIX Association Confer-
ence Proceedings, pp. 307-326, January 1993.

Seltzer et al, 1995.
M. Seltzer, K. Smith, H. Balakrishnan, J. Chang, S. McMains, & V. Padman-
abhan, "File System Logging Versus Clustering: A Performance Compari-
son," USENIX Association Conference Proceedings, pp. 249-264 Januarv
1995.

Smith, 1981.
A. J. Smith, "Bibliography on File and I/O System Optimizations and
Related Topics," Operating Systems Review, vol. 14, no 4 pp 39-54 Octo-
ber 1981.

Trivedi, 1980.
K. Trivedi, "Optimal Selection of CPU Speed, Device Capabilities, and File
Assignments," Journal of the ACM, vol. 27, no. 3, pp. 457-473, July 1980.



CHAPTER 9

The Network Filesystem

This chapter is divided into three main sections. The first gives a brief history of
remote filesystems. The second describes the client and server halves of NFS and
the mechanics of how they operate. The final section describes the techniques
needed to provide reasonable performance for remote filesystems in general, and
NFS in particular.

9.1 History and Overview

When networking first became widely available in 4.2BSD, users who wanted to
share files all had to log in across the net to a central machine on which the shared
files were located. These central machines quickly became far more loaded than
the user's local machine, so demand quickly grew for a convenient way to share
files on several machines at once. The most easily understood sharing model is
one that allows a server machine to export its filesystems to one or more client
machines. The clients can then import these filesystems and present them to the
user as though they were just another local filesystem.

Numerous remote-filesystem protocol designs and protocols were proposed
and implemented. The implementations were attempted at all levels of the kernel.
Remote access at the top of the kernel resulted in semantics that nearly matched
the local filesystem, but had terrible performance. Remote access at the bottom of
the kernel resulted in awful semantics, but great performance. Modern systems
place the remote access in the middle of the kernel at the vnode layer. This level
gives reasonable performance and acceptable semantics.

An early remote filesystem, UNIX United, was implemented near the top of
the kernel at the system-call dispatch level. It checked for file descriptors repre-
senting remote files and sent them off to the server. No caching was done on the

311



312 Chapter 9 The Network Filesystem

client machine. The lack of caching resulted in slow performance, but in
semantics nearly identical to a local filesystem. Because the current directory and
executing files are referenced internally by vnodes rather than by descriptors,
UNIX United did not allow users to change directory into a remote filesystem and
could not execute files from a remote filesystem without first copying the files to a
local filesystem.

At the opposite extreme was Sun Microsystem's network disk, implemented
near the bottom of the kernel at the device-driver level. Here, the client's entire
filesystem and buffering code was used. Just as in the local filesystem, recently
read blocks from the disk were stored in the buffer cache. Only when a file access
requested a block that was not already in the cache would the client send a request
for the needed physical disk block to the server. The performance was excellent
because the buffer cache serviced most of the file-access requests just as it does
for the local filesystem. Unfortunately, the semantics suffered because of inco-
herency between the client and server caches. Changes made on the server would
not be seen by the client, and vice versa. As a result, the network disk could be
used only by a single client or as a read-only filesystem.

The first remote filesystem shipped with System V was RFS [Rifkin et al,
1986]. Although it had excellent UNIX semantics, its performance was poor, so it
met with little use. Research at Carnegie-Mellon lead to the Andrew filesystem
[Howard, 1988]. The Andrew filesystem was commercialized by Transarc and
eventually became part of the Distributed Computing Environment promulgated
by the Open Software Foundation, and was supported by many vendors. It is
designed to handle widely distributed servers and clients and also to work well
with mobile computers that operate while detached from the network for long
periods.

The most commercially successful and widely available remote-filesystem
protocol is the network filesystem (NFS) designed and implemented by Sun
Microsystems [Walsh et al, 1985; Sandberg et al, 1985]. There are two important
components to the success of NFS. First, Sun placed the protocol specification for
NFS in the public domain. Second, Sun sells that implementation to all people
who want it, for less than the cost of implementing it themselves. Thus, most ven-
dors chose to buy the Sun implementation. They are willing to buy from Sun
because they know that they can always legally write their own implementation if
the price of the Sun implementation is raised to an unreasonable level. The
4.4BSD implementation was written from the protocol specification, rather than
being incorporated from Sun, because of the developers desire to be able to redis-
tribute it freely in source form.

NFS was designed as a client-server application. Its implementation is
divided into a client part that imports filesystems from other machines and a server
part that exports local filesystems to other machines. The general model is shown
in Fig. 9.1. Many goals went into the NFS design:

• The protocol is designed to be stateless. Because there is no state to maintain or
recover, NFS can continue to operate even during periods of client or server fail-
ures. Thus, it is much more robust than a system that operates with state.

Section 9.1 History and Overview 313

disk store

server

network

Figure 9.1 The division of NFS between client and server.

• NFS is designed to support UNIX filesystem semantics. However, its design also
allows it to support the possibly less rich semantics of other filesystem types,
such as MS-DOS.

• The protection and access controls follow the UNIX semantics of having the pro-
cess present a UID and set of groups that are checked against the file's owner,
group, and other access modes. The security check is done by filesystem-depen-
dent code that can do more or fewer checks based on the capabilities of the
filesystem that it is supporting. For example, the MS-DOS filesystem cannot
implement the full UNIX security validation and makes access decisions solely
based on the UID.

• The protocol design is transport independent. Although it was originally built
using the UDP datagram protocol, it was easily moved to the TCP stream proto-
col. It has also been ported to run over numerous other non-IP-based protocols.

Some of the design decisions limit the set of applications for which NFS is appro-
priate:

• The design envisions clients and servers being connected on a locally fast net-
work. The NFS protocol does not work well over slow links or between clients
and servers with intervening gateways. It also works poorly for mobile comput-
ing that has extended periods of disconnected operation.

• The caching model assumes that most files will not be shared. Performance suf-
fers when files are heavily shared.

• The stateless protocol requires some loss of traditional UNIX semantics. Filesys-
tem locking (flock) has to be implemented by a separate stateful daemon. Defer-
ral of the release of space in an unlinked file until the final process has closed the
file is approximated with a heuristic that sometimes fails.

Despite these limitations, NFS proliferated because it makes a reasonable
tradeoff between semantics and performance; its low cost of adoption has now
made it ubiquitous.



314 Chapter 9 The Network Filesystem Section 9.2 NFS Structure and Operation 315

9.2 NFS Structure and Operation
NFS operates as a typical client-server application. The server receives remote-
procedure-call (RPC) requests from its various clients. An RPC operates much
like a local procedure call: The client makes a procedure call, then waits for the
result while the procedure executes. For a remote procedure call, the parameters
must be marshalled together into a message. Marshalling includes replacing
pointers by the data to which they point and converting binary data to the canoni-
cal network byte order. The message is then sent to the server, where it is unmar-
shalled (separated out into its original pieces) and processed as a local filesystem
operation. The result must be similarly marshalled and sent back to the client.
The client splits up the result and returns that result to the calling process as
though the result were being returned from a local procedure call [Birrell & Nel-
son, 1984]. The NFS protocol uses the Sun's RPC and external data-representation
(XDR) protocols [Reid, 1987]. Although the kernel implementation is done by
hand to get maximum performance, the user-level daemons described later in this
section use Sun's public-domain RPC and XDR libraries.

The NFS protocol can run over any available stream- or datagram-oriented
protocol. Common choices are the TCP stream protocol and the UDP datagram
protocol. Each NFS RPC message may need to be broken into multiple packets to
be sent across the network. A big performance problem for NFS running under
UDP on an Ethernet is that the message may be broken into up to six packets; if
any of these packets are lost, the entire message is lost and must be resent. When
running under TCP on an Ethernet, the message may also be broken into up to six
packets; however, individual lost packets, rather than the entire message, can be
retransmitted. Section 9.3 discusses performance issues in greater detail.

The set of RPC requests that a client can send to a server is shown in Table
9.1. After the server handles each request, it responds with the appropriate data,
or with an error code explaining why the request could not be done. As noted in
the table, most operations are idempotent. An idempotent operation is one that
can be repeated several times without the final result being changed or an error
being caused. For example, writing the same data to the same offset in a file is
idempotent because it will yield the same result whether it is done once or many
times. However, trying to remove the same file more than once is nonidempotent
because the file will no longer exist after the first try. Idempotency is an issue
when the server is slow, or when an RPC acknowledgment is lost and the client
retransmits the RPC request. The retransmitted RPC will cause the server to try to
do the same operation twice. For a nonidempotent request, such as a request to
remove a file, the retransmitted RPC, if undetected by the server recent-request
cache [Juszczak, 1989], will cause a "no such file" error to be returned, because
the file will have been removed already by the first RPC. The user may be con-
fused by the error, because they will have successfully found and removed the file.

Each file on the server can be identified by a unique file handle. A file handle
is the token by which clients refer to files on a server. Handles are globally unique
and are passed in operations, such as read and write, that reference a file. A file

RPC request
GETATTR
SETATTR
LOOKUP
READLINK
READ
WRITE
CREATE
REMOVE
RENAME
LINK
SYMLINK
MKDIR
RMDIR
READDIR
STATES

Action
get file attributes
set file attributes
look up file name
read from symbolic link
read from file
write to file
create file
remove file
rename file
create link to file
create symbolic link
create directory
remove directory
read from directory
get filesystem attributes

Idempotent
yes
yes
yes
yes
yes
yes
yes
no
no
no
yes
no
no
yes
yes

Table 9.1 NFS, Version 2, RPC requests.

handle is created by the server when a pathname-translation request (lookup) is
sent from a client to the server. The server must find the requested file or directory
and ensure that the requesting user has access permission. If permission is
granted, the server returns a file handle for the requested file to the client. The file
handle identifies the file in future access requests by the client. Servers are free to
build file handles from whatever information they find convenient. In the 4.4BSD
NFS implementation, the file handle is built from a filesystem identifier, an inode
number, and a generation number. The server creates a unique filesystem identi-
fier for each of its locally mounted filesystems. A generation number is assigned
to an inode each time that the latter is allocated to represent a new file. Each gen-
eration number is used only once. Most NFS implementations use a random-num-
ber generator to select a new generation number; the 4.4BSD implementation
selects a generation number that is approximately equal to the creation time of the
file. The purpose of the file handle is to provide the server with enough informa-
tion to find the file in future requests. The filesystem identifier and inode provide
a unique identifier for the inode to be accessed. The generation number verifies
that the inode still references the same file that it referenced when the file was first
accessed. The generation number detects when a file has been deleted, and a new
file is later created using the same inode. Although the new file has the same
filesystem identifier and inode number, it is a completely different file from the
one that the previous file handle referenced. Since the generation number is
included in the file handle, the generation number in a file handle for a previous



316 Chapter 9 The Network Filesystem

use of the inode will not match the new generation number in the same inode.
When an old-generation file handle is presented to the server by a client, the server
refuses to accept it, and instead returns the "stale file handle" error message.

The use of the generation number ensures that the file handle is time stable.
Distributed systems define a time-stable identifier as one that refers uniquely to
some entity both while that entity exists and for a long time after it is deleted. A
time-stable identifier allows a system to remember an identity across transient fail-
ures and allows the system to detect and report errors for attempts to access
deleted entities.

The NFS Protocol

The NFS protocol is stateless. Being stateless means that the server does not need
to maintain any information about which clients it is serving or about the files that
they currently have open. Every RPC request that is received by the server is com-
pletely self-contained. The server does not need any additional information
beyond that contained in the RPC to fulfill the request. For example, a read
request will include the credential of the user doing the request, the file handle on
which the read is to be done, the offset in the file to begin the read, and the num-
ber of bytes to be read. This information allows the server to open the file, verify-
ing that the user has permission to read it, to seek to the appropriate point, to read
the desired contents, and to close the file. In practice, the server caches recently
accessed file data. However, if there is enough activity to push the file out of the
cache, the file handle provides the server with enough information to reopen the
file.

In addition to reducing the work needed to service incoming requests, the
server cache also detects retries of previously serviced requests. Occasionally, a
UDP client will send a request that is processed by the server, but the acknowledg-
ment returned by the server to the client is lost. Receiving no answer, the client
will timeout and resend the request. The server will use its cache to recognize that
the retransmitted request has already been serviced. Thus, the server will not
repeat the operation, but will just resend the acknowledgment. To detect such
retransmissions properly, the server cache needs to be large enough to keep track
of at least the most recent few seconds of NFS requests.

The benefit of the stateless protocol is that there is no need to do state recov-
ery after a client or server has crashed and rebooted, or after the network has been
partitioned and reconnected. Because each RPC is self-contained, the server can
simply begin servicing requests as soon as it begins running; it does not need to
know which files its clients have open. Indeed, it does not even need to know
which clients are currently using it as a server.

There are drawbacks to the stateless protocol. First, the semantics of the local
filesystem imply state. When files are unlinked, they continue to be accessible
until the last reference to them is closed. Because NFS knows neither which files
are open on clients nor when those files are closed, it cannot properly know when

Section 9.2 NFS Structure and Operation 317

to free file space. As a result, it always frees the space at the time of the unlink of
the last name to the file. Clients that want to preserve the freeing-on-last-close
semantics convert unlink's of open files to renames to obscure names on the
server. The names are of the form .nfsAxxxx4.4, where the xxxx is replaced with
the hexadecimal value of the process identifier, and the A is successively incre-
mented until an unused name is found. When the last close is done on the client,
the client sends an unlink of the obscure filename to the server. This heuristic
works for file access on only a single client; if one client has the file open and
another client removes the file, the file will still disappear from the first client at
the time of the remove. Other stateful semantics include the advisory locking
described in Section 7.5. The locking semantics cannot be handled by the NFS
protocol. On most systems, they are handled by a separate lock manager; the
4.4BSD version of NFS does not implement them at all.

The second drawback of the stateless protocol is related to performance. For
version 2 of the NFS protocol, all operations that modify the filesystem must be
committed to stable-storage before the RPC can be acknowledged. Most servers
do not have battery-backed memory; the stable store requirement means that all
written data must be on the disk before they can reply to the RPC. For a growing
file, an update may require up to three synchronous disk writes: one for the inode
to update its size, one for the indirect block to add a new data pointer, and one for
the new data themselves. Each synchronous write takes several milliseconds; this
delay severely restricts the write throughput for any given client file.

Version 3 of the NFS protocol eliminates some of the synchronous writes by
adding a new asynchronous write RPC request. When such a request is received
by the server, it is permitted to acknowledge the RPC without writing the new data
to stable storage. Typically, a client will do a series of asynchronous write
requests followed by a commit RPC request when it reaches the end of the file or it
runs out of buffer space to store the file. The commit RPC request causes the
server to write any unwritten parts of the file to stable store before acknowledging
the commit RPC. The server benefits by having to write the inode and indirect
blocks for the file only once per batch of asynchronous writes, instead of on every
write RPC request. The client benefits from having higher throughput for file
writes. The client does have the added overhead of having to save copies of all
asynchronously written buffers until a commit RPC is done, because the server
may crash before having written one or more of the asynchronous buffers to stable
store. When the client sends the commit RPC, the acknowledgment to that RPC
tells which of the asynchronous blocks were written to stable store. If any of the
asynchronous writes done by the client are missing, the client knows that the
server has crashed during the asynchronous-writing period, and resends the unac-
knowledged blocks. Once all the asynchronously written blocks have been
acknowledged, they can be dropped from the client cache.

The NFS protocol does not specify the granularity of the buffering that should
be used when files are written. Most implementations of NFS buffer files in
8-Kbyte blocks. Thus, if an application writes 10 bytes in the middle of a block,



318 Chapter 9 The Network Filesystem

the client reads the entire block from the server, modifies the requested 10 bytes,
and then writes the entire block back to the server. The 4.4BSD implementation
also uses 8-Kbyte buffers, but it keeps additional information that describes which
bytes in the buffer are modified. If an application writes 10 bytes in the middle of
a block, the client reads the entire block from the server, modifies the requested 10
bytes, but then writes back only the 10 modified bytes to the server. The block
read is necessary to ensure that, if the application later reads back other unmodi-
fied parts of the block, it will get valid data. Writing back only the modified data
has two benefits:

1. Fewer data are sent over the network, reducing contention for a scarce
resource.

2. Nonoverlapping modifications to a file are not lost. If two different clients
simultaneously modify different parts of the same file block, both modifica-
tions will show up in the file, since only the modified parts are sent to the
server. When clients send back entire blocks to the server, changes made by
the first client will be overwritten by data read before the first modification
was made, and then will be written back by the second client.

The 4.4BSD NFS Implementation
The NFS implementation that appears in 4.4BSD was written by Rick Macklem at
the University of Guelph using the specifications of the Version 2 protocol pub-
lished by Sun Microsystems [Sun Microsystems, 1989; Macklem, 1991]. This
NFS Version 2 implementation had several 4.4BSD-only extensions added to it; the
extended version became known as the Not Quite NFS (NQNFS) protocol [Mack-
lem, 1994a]. This protocol provides

• Sixty-four-bit file offsets and sizes
• An access RPC that provides server permission checking on file open, rather than

having the client guess whether the server will allow access

• An append option on the write RPC

• Extended file attributes to support 4.4BSD filesystem functionality more fully

• A variant of short-term leases with delayed-write client caching that give dis-
tributed cache consistency and improved performance [Gray & Cheriton, 1989]

Many of the NQNFS extensions were incorporated into the revised NFS Version 3
specification [Sun Microsystems, 1993; Pawlowski et al, 1994]. Others, such as
leases, are still available only with NQNFS. The NFS implementation distributed
in 4.4BSD supports clients and servers running the NFS Version 2, NFS Version 3,
or NQNFS protocol [Macklem, 1994b]. The NQNFS protocol is described in Sec-
tion 9.3.

Section 9.2 NFS Structure and Operation 319

The 4.4BSD client and server implementations of NFS are kernel resident.
NFS interfaces to the network with sockets using the kernel interface available
through sosend() and soreceive() (see Chapter 11 for a discussion of the socket
interface). There are connection-management routines for support of sockets
using connection-oriented protocols; there are timeout and retransmit support for
datagram sockets on the client side.

The less time-critical operations, such as mounting and unmounting, as well
as determination of which filesystems may be exported and to what set of clients
they may be exported are managed by user-level system daemons. For the server
side to function, the portmap, mountd, and nfsd daemons must be running. The
portmap daemon acts as a registration service for programs that provide RPC-
based services. When an RPC daemon is started, it tells the portmap daemon to
what port number it is listening and what RPC services it is prepared to serve.
When a client wishes to make an RPC call to a given service, it will first contact
the portmap daemon on the server machine to determine the port number to
which RPC messages should be sent.

The interactions between the client and server daemons when a remote
filesystem is mounted are shown in Fig. 9.2. The mountd daemon handles two
important functions:

1. On startup and after a hangup signal, mountd reads the /etc/exports file and
creates a list of hosts and networks to which each local filesystem may be
exported. It passes this list into the kernel using the mount system call; the

Figure 9.2 Daemon interaction when a remote filesystem is mounted. Step 1: The client's
mount process sends a message to the well-known port of the server's portmap daemon,
requesting the port address of the server's mountd daemon. Step 2: The server's portmap
daemon returns the port address of its server's mountd daemon. Step 3: The client's
mount process sends a request to the server's mountd daemon with the pathname of the
filesystem that it wants to mount. Step 4: The server's mountd daemon requests a file han-
dle for the desired mount point from its kernel. If the request is successful, the file handle
is returned to the client's mount process. Otherwise, the error from the file-handle request
is returned. If the request is successful, the client's mount process does a mount system
call, passing in the file handle that it received from the server's mountd daemon,

client

mount

V

user

kernel

portmap mountd

® (2) 0
user

kernel



320 Chapter 9 The Network Filesystem

kernel links the list to the associated local filesystem mount structure so that
the list is readily available for consultation when an NFS request is received.

2. Client mount requests are directed to the mountd daemon. After verifying
that the client has permission to mount the requested filesystem, mountd
returns a file handle for the requested mount point. This file handle is used by
the client for later traversal into the filesystem.

The nfsd master daemon forks off children that enter the kernel using the
nfssvc system call. The children normally remain kernel resident, providing a pro-
cess context for the NFS RPC daemons. Typical systems run four to six nfsd dae-
mons. If nfsd is providing datagram service, it will create a datagram socket
when it is started. If nfsd is providing stream service, connected stream sockets
will be passed in by the master nfsd daemon in response to connection-oriented
connection requests from clients, When a request arrives on a datagram or stream
socket, there is an upcall from the socket layer that invokes the nfsrv_rcv() rou-
tine. The nfsrv_rcv() call takes the message from the socket receive queue and
dispatches that message to an available nfsd daemon. The nfsd daemon verifies
the sender, and then passes the request to the appropriate local filesystem for pro-
cessing. When the result returns from the filesystem, it is returned to the request-
ing client. The nfsd daemon is then ready to loop back and to service another
request. The maximum degree of concurrency on the server is determined by the
number of nfsd daemons that are started.

For connection-oriented transport protocols, such as TCP, there is one connec-
tion for each client-to-server mount point. For datagram-oriented protocols, such
as UDP, the server creates a fixed number of incoming RPC sockets when it starts
its nfsd daemons; clients create one socket for each imported mount point. The
socket for a mount point is created by the mount command on the client, which
then uses it to communicate with the mountd daemon on the server. Once the
client-to-server connection is established, the daemon processes on a connection-
oriented protocol may do additional verification, such as Kerberos authentication.
Once the connection is created and verified, the socket is passed into the kernel. If
the connection breaks while the mount point is still active, the client will attempt a
reconnect with a new socket.

The client side can operate without any daemons running, but the system
administrator can improve performance by running several nfsiod daemons
(these daemons provide the same service as the Sun biod daemons). The purpose
of the nfsiod daemons is to do asynchronous read-aheads and write-behinds.
They are typically started when the kernel begins running multiuser. They enter
the kernel using the nfssvc system call, and they remain kernel resident, providing
a process context for the NFS RPC client side. In their absence, each read or write
of an NFS file that cannot be serviced from the local client cache must be done in
the context of the requesting process. The process sleeps while the RFC is sent to
the server, the RPC is handled by the server, and a reply sent back. No read-
aheads are done, and write operations proceed at the disk-write speed of the

Section 9.2 NFS Structure and Operation 321
client

write ( )

© I t ©
nfsiod

user

kernel
nfsd

user

kernel

disk
Figure 9.3 Daemon interaction when I/O is done. Step 1: The client's process does a
write system call. Step 2: The data to be written are copied into a kernel buffer on the
client, and the write system call returns. Step 3: An nfsiod daemon awakens inside the
client's kernel, picks up the dirty buffer, and sends the buffer to the server. Step 4: The in-
coming write request is delivered to the next available nfsd daemon running inside the ker-
nel on the server. The server's nfsd daemon writes the data to the appropriate local disk,
and waits for the disk I/O to complete. Step 5: After the I/O has completed, the server's
nfsd daemon sends back an acknowledgment of the I/O to the waiting nfsiod daemon on
the client. On receipt of the acknowledgment, the client's nfsiod daemon marks the buffer
as clean.

server. When present, the nfsiod daemons provide a separate context in which to
issue RPC requests to a server. When a file is written, the data are copied into the
buffer cache on the client. The buffer is then passed to a waiting nfsiod that does
the RPC to the server and awaits the reply. When the reply arrives, nfsiod updates
the local buffer to mark that buffer as written. Meanwhile, the process that did the
write can continue running. The Sun Microsystems reference port of the NFS pro-
tocol flushes all the blocks of a file to the server when that file is closed. If all the
dirty blocks have been written to the server when a process closes a file that it has
been writing, it will not have to wait for them to be flushed. The NQNFS protocol
does not flush all the blocks of a file to the server when that file is closed.

When reading a file, the client first hands a read-ahead request to the nfsiod
that does the RPC to the server. It then looks up the buffer that it has been
requested to read. If the sought-after buffer is already in the cache because of a
previous read-ahead request, then it can proceed without waiting. Otherwise, it
must do an RPC to the server and wait for the reply. The interactions between the
client and server daemons when I/O is done are shown in Fig. 9.3.

Client-Server Interactions

A local filesystem is unaffected by network service disruptions. It is always avail-
able to the users on the machine unless there is a catastrophic event, such as a disk
or power failure. Since the entire machine hangs or crashes, the kernel does not
need to concern itself with how to handle the processes that were accessing the
filesystem. By contrast, the client end of a network filesystem must have ways to



322 Chapter 9 The Network Filesystem

handle processes that are accessing remote files when the client is still running,
but the server becomes unreachable or crashes. Each NFS mount point is provided
with three alternatives for dealing with server unavailability:

1. The default is a hard mount that will continue to try to contact the server "for-
ever" to complete the filesystem access. This type of mount is appropriate
when processes on the client that access files in the filesystem do not tolerate
I/O system calls that return transient errors. A hard mount is used for pro-
cesses for which access to the filesystem is critical for normal system opera-
tion. It is also useful if the client has a long-running program that simply
wants to wait for the server to resume operation (e.g., after the server is taken
down to run dumps).

2. The other extreme is a soft mount that retries an RPC a specified number of
times, and then the corresponding system call returns with a transient error.
For a connection-oriented protocol, the actual RPC request is not retransmitted;
instead, NFS depends on the protocol retransmission to do the retries. If a
response is not returned within the specified time, the corresponding system
call returns with a transient error. The problem with this type of mount is that
most applications do not expect a transient error return from I/O system calls
(since they never occur on a local filesystem). Often, they will mistakenly
interpret the transient error as a permanent error, and will exit prematurely.
An additional problem is deciding how long to set the timeout period. If it is
set too low, error returns will start occurring whenever the NFS server is slow
because of heavy load. Alternately, a large retry limit can result in a process
hung for a long time because of a crashed server or network partitioning.

3. Most system administrators take a middle ground by using an interruptible
mount that will wait forever like a hard mount, but checks to see whether a ter-
mination signal is pending for any process that is waiting for a server
response. If a signal (such as an interrupt) is sent to a process waiting for an
NFS server, the corresponding I/O system call returns with a transient error.
Normally, the process is terminated by the signal. If the process chooses to
catch the signal, then it can decide how to handle the transient failure. This
mount option allows interactive programs to be aborted when a server fails,
while allowing long-running processes to await the server's return.

The original NFS implementation had only the first two options. Since neither of
these two options was ideal for interactive use of the filesystem, the third option
was developed as a compromise solution.

RPC Transport Issues
The NFS Version 2 protocol runs over UDP/IP transport by sending each request-
reply message in a single UDP datagram. Since UDP does not guarantee datagram
delivery, a timer is started, and if a timeout occurs before the corresponding RPC

Section 9.2 NFS Structure and Operation 323

reply is received, the RPC request is retransmitted. At best, an extraneous RPC
request retransmit increases the load on the server and can result in damaged files
on the server or spurious errors being returned to the client when nonidempotent
RPCs are redone. A recent-request cache normally is used on the server to mini-
mize the negative effect of redoing a duplicate RPC request [Juszczak, 1989].

The amount of time that the client waits before resending an RPC request is
called the round-trip timeout (RTT). Figuring out an appropriate value for the RTT
is difficult. The RTT value is for the entire RPC operation, including transmitting
the RPC message to the server, queuing at the server for an nfsd, doing any
required I/O operations, and sending the RPC reply message back to the client. It
can be highly variable for even a moderately loaded NFS server. As a result, the
RTT interval must be a conservative (large) estimate to avoid extraneous RPC
request retransmits. Adjusting the RTT interval dynamically and applying a con-
gestion window on outstanding requests has been shown to be of some help with
the retransmission problem [Nowicki, 1989].

On an Ethernet with the default 8-Kbyte read-write data size, the read-write
reply-request will be an 8+-Kbyte UDP datagram that normally must be broken
into at least six fragments at the IP layer for transmission. For IP fragments to be
reassembled successfully into the IP datagram at the receive end, all fragments
must be received at the destination. If even one fragment is lost or damaged in
transit, the entire RPC message must be retransmitted, and the entire RPC redone.
This problem can be exaggerated if the server is multiple hops away from the
client through routers or slow links. It can also be nearly fatal if the network inter-
face on the client or server cannot handle the reception of back-to-back network
packets [Kent & Mogul, 1987].

An alternative to all this madness is to run NFS over TCP transport, instead of
over UDP. Since TCP provides reliable delivery with congestion control, it avoids
the problems associated with UDP. Because the retransmissions are done at the
TCP level, instead of at the RPC level, the only time that a duplicate RPC will be
sent to the server is when the server crashes or there is an extended network parti-
tion that causes the TCP connection to break after an RPC has been received but
not acknowledged to the client. Here, the client will resend the RPC after the
server reboots, because it does not know that the RPC has been received.

The use of TCP also permits the use of read and write data sizes greater than
the 8-Kbyte limit for UDP transport. Using large data sizes allows TCP to use the
full duplex bandwidth of the network effectively, before being forced to stop and
wait for RPC response from the server. NFS over TCP usually delivers comparable
to significantly better performance than NFS over UDP, unless the client or server
processor is slow. For processors running at less than 10 million instructions per
second (MIPS), the extra CPU overhead of using TCP transport becomes significant.

The main problem with using TCP transport with Version 2 of NFS is that it is
supported between only BSD and a few other vendors clients and servers. How-
ever, the clear superiority demonstrated by the Version 2 BSD TCP implementation
of NFS convinced the group at Sun Microsystems implementing NFS Version 3 to



324 Chapter 9 The Network Filesystem Section 9.3 Techniques for Improving Performance 325

make TCP the default transport. Thus, a Version 3 Sun client will first try to
connect using TCP; only if the server refuses will it fall back to using UDP.

Security Issues
NFS is not secure because the protocol was not designed with security in mind.
Despite several attempts to fix security problems, NFS security is still limited.
Encryption is needed to build a secure protocol, but robust encryption cannot be
exported from the United States. So, even if building a secure protocol were pos-
sible, doing so would be pointless, because all the file data are sent around the net
in clear text. Even if someone is unable to get your server to send them a sensitive
file, they can just wait until a legitimate user accesses it, and then can pick it up as
it goes by on the net.

NFS export control is at the granularity of local filesystems. Associated with
each local filesystem mount point is a list of the hosts to which that filesystem
may be exported. A local filesystem may be exported to a specific host, to all
hosts that match a subnet mask, or to all other hosts (the world). For each host or
group of hosts, the filesystem can be exported read-only or read-write. In addi-
tion, a server may specify a set of subdirectories within the filesystem that may be
mounted. However, this list of mount points is enforced by only the mountd dae-
mon. If a malicious client wishes to do so, it can access any part of a filesystem
that is exported to it.

The final determination of exportability is made by the list maintained in the
kernel. So, even if a rogue client manages to snoop the net and to steal a file han-
dle for the mount point of a valid client, the kernel will refuse to accept the file
handle unless the client presenting that handle is on the kernel's export list. When
NFS is running with TCP, the check is done once when the connection is estab-
lished. When NFS is running with UDP, the check must be done for every RPC
request.

The NFS server also permits limited remapping of user credentials. Typically,
the credential for the superuser is not trusted and is remapped to the low-privilege
user "nobody." The credentials of all other users can be accepted as given or also
mapped to a default user (typically "nobody"). Use of the client UID and GID list
unchanged on the server implies that the UID and GID space are common between
the client and server (i.e., UID N on the client must refer to the same user on the
server). The system administrator can support more complex UID and GID map-
pings by using the umapfs filesystem described in Section 6.7.

The system administrator can increase security by using Kerberos credentials,
instead of accepting arbitrary user credentials sent without encryption by clients of
unknown trustworthiness [Steiner et al, 1988]. When a new user on a client wants
to begin accessing files in an NFS filesystem that is exported using Kerberos, the
client must provide a Kerberos ticket to authenticate the user on the server. If suc-
cessful, the system looks up the Kerberos principal in the server's password and
group databases to get a set of credentials, and passes in to the server nfsd a local
translation of the client UID to these credentials. The nfsd daemons run entirely

within the kernel except when a Kerberos ticket is received. To avoid putting all
the Kerberos authentication into the kernel, the nfsd returns from the kernel tem-
porarily to verify the ticket using the Kerberos libraries, and then returns to the
kernel with the results.

The NFS implementation with Kerberos uses encrypted timestamps to avert
replay attempts. Each RPC request includes a timestamp that is encrypted by the
client and decrypted by the server using a session key that has been exchanged as
part of the initial Kerberos authentication. Each timestamp can be used only once,
and must be within a few minutes of the current time recorded by the server. This
implementation requires that the client and server clocks be kept within a few
minutes of synchronization (this requirement is already imposed to run Kerberos).
It also requires that the server keep copies of all timestamps that it has received
that are within the time range that it will accept, so that it can verify that a times-
tamp is not being reused. Alternatively, the server can require that timestamps
from each of its clients be monotonically increasing. However, this algorithm will
cause RPC requests that arrive out of order to be rejected. The mechanism of
using Kerberos for authentication of NFS requests is not well defined, and the
4.4BSD implementation has not been tested for interoperability with other ven-
dors. Thus, Kerberos can be used only between 4.4BSD clients and servers.

9.3 Techniques for Improving Performance

Remote filesystems provide a challenging performance problem: Providing both a
coherent networkwide view of the data and delivering that data quickly are often
conflicting goals. The server can maintain coherency easily by keeping a single
repository for the data and sending them out to each client when the clients need
them; this approach tends to be slow, because every data access requires the client
to wait for an RPC round-trip time. The delay is further aggravated by the huge
load that it puts on a server that must service every I/O request from its clients. To
increase performance and to reduce server load, remote filesystem protocols
attempt to cache frequently used data on the clients themselves. If the cache is
designed properly, the client will be able to satisfy many of the client's I/O
requests directly from the cache. Doing such accesses is faster than communicat-
ing with the server, reducing latency on the client and load on the server and net-
work. The hard part of client caching is keeping the caches coherent—that is,
ensuring that each client quickly replaces any cached data that are modified by
writes done on other clients. If a first client writes a file that is later read by a sec-
ond client, the second client wants to see the data written by the first client, rather
than the stale data that were in the file previously. There are two main ways that
the stale data may be read accidentally:

1. If the second client has stale data sitting in its cache, the client may use those
data because it does not know that newer data are available.



326 Chapter 9 The Network Filesystem

2. The first client may have new data sitting in its cache, but may not yet have
written those data back to the server. Here, even if the second client asks the
server for up-to-date data, the server may return the stale data because it does
not know that one of its clients has a newer version of the file in that client's
cache.

The second of these problems is related to the way that client writing is done.
Synchronous writing requires that all writes be pushed through to the server dur-
ing the write system call. This approach is the most consistent, because the server
always has the most recently written data. It also permits any write errors, such as
"filesystem out of space," to be propagated back to the client process via the write
system-call return. With an NFS filesystem using synchronous writing, error
returns most closely parallel those from a local filesystem. Unfortunately, this
approach restricts the client to only one write per RPC round-trip time.

An alternative to synchronous writing is delayed writing, where the write sys-
tem call returns as soon as the data are cached on the client; the data are written to
the server sometime later. This approach permits client writing to occur at the rate
of local storage access up to the size of the local cache. Also, for cases where file
truncation or deletion occurs shortly after writing, the write to the server may be
avoided entirely, because the data have already been deleted. Avoiding the data
push saves the client time and reduces load on the server.

There are some drawbacks to delayed writing. To provide full consistency,
the server must notify the client when another client wants to read or write the file,
so that the delayed writes can be written back to the server. There are also prob-
lems with the propagation of errors back to the client process that issued the write
system call. For example, a semantic change is introduced by delayed-write
caching when the file server is full. Here, delayed-write RPC requests can fail
with an "out of space" error. If the data are sent back to the server when the file
is closed, the error can be detected if the application checks the return value from
the close system call. For delayed writes, written data may not be sent back to the
server until after the process that did the write has exited—long after it can be
notified of any errors. The only solution is to modify programs writing an impor-
tant file to do an fsync system call and to check for an error return from that call,
instead of depending on getting errors from write or close. Finally, there is a risk
of the loss of recently written data if the client crashes before the data are written
back to the server.

A compromise between synchronous writing and delayed writing is asyn-
chronous writing. The write to the server is started during the write system call,
but the write system call returns before the write completes. This approach mini-
mizes the risk of data loss because of a client crash, but negates the possibility of
reducing server write load by discarding writes when a file is truncated or deleted.

The simplest mechanism for maintaining full cache consistency is the one
used by Sprite that disables all client caching of the file whenever concurrent write
sharing might occur [Nelson et al, 1988]. Since NFS has no way of knowing when

Section 9.3 Techniques for Improving Performance 327

write sharing might occur, it tries to bound the period of inconsistency by writing
the data back when a file is closed. Files that are open for long periods are written
back at 30-second intervals when the filesystem is synchronized. Thus, the NFS
implementation does a mix of asynchronous and delayed writing, but always
pushes all writes to the server on close. Pushing the delayed writes on close
negates much of the performance advantage of delayed writing, because the delays
that were avoided in the write system calls are observed in the close system call.
With this approach, the server is always aware of all changes made by its clients
with a maximum delay of 30 seconds and usually sooner, because most files are
open only briefly for writing.

The server maintains read consistency by always having a client verify the
contents of its cache before using that cache. When a client reads data, it first
checks for the data in its cache. Each cache entry is stamped with an attribute that
shows the most recent time that the server says that the data were modified. If the
data are found in the cache, the client sends a timestamp RPC request to its server
to find out when the data were last modified. If the modification time returned by
the server matches that associated with the cache, the client uses the data in its
cache; otherwise, it arranges to replace the data in its cache with the new data.

The problem with checking with the server on every cache access is that the
client still experiences an RPC round-trip delay for each file access, and the server
is still inundated with RPC requests, although they are considerably quicker to
handle than are full I/O operations. To reduce this client latency and server load,
most NFS implementations track how recently the server has been asked about
each cache block. The client then uses a tunable parameter that is typically set at
a few seconds to delay asking the server about a cache block. If an I/O request
finds a cache block and the server has been asked about the validity of that block
within the delay period, the client does not ask the server again, but rather just
uses the block. Because certain blocks are used many times in succession, the
server will be asked about them only once, rather than on every access. For exam-
ple, the directory block for the /usr/include directory will be accessed once for
each #include in a source file that is being compiled. The drawback to this
approach is that changes made by other clients may not be noticed for up to the
delay number of seconds.

A more consistent approach used by some network filesystems is to use a
callback scheme where the server keeps track of all the files that each of its clients
has cached. When a cached file is modified, the server notifies the clients holding
that file so that they can purge it from their cache. This algorithm dramatically
reduces the number of queries from the client to the server, with the effect of
decreasing client I/O latency and server load [Howard et al, 1988]. The drawback
is that this approach introduces state into the server because the server must
remember the clients that it is serving and the set of files that they have cached. If
the server crashes, it must rebuild this state before it can begin running again.
Rebuilding the server state is a significant problem when everything is running
properly; it gets even more complicated and time consuming when it is aggravated



328 Chapter 9 The Network Filesystem

by network partitions that prevent the server from communicating with some of its
clients [Mogul, 1993].

The 4.4BSD NFS implementation uses asynchronous writes while a file is
open, but synchronously waits for all data to be written when the file is closed.
This approach gains the speed benefit of writing asynchronously, yet ensures that
any delayed errors will be reported no later than the point at which the file is
closed. The implementation will query the server about the attributes of a file at
most once every 3 seconds. This 3-second period reduces network traffic for files
accessed frequently, yet ensures that any changes to a file are detected with no
more than a 3-second delay. Although these heuristics provide tolerable seman-
tics, they are noticeably imperfect. More consistent semantics at lower cost are
available with the NQNFS lease protocol described in the next section.

Leases
The NQNFS protocol is designed to maintain full cache consistency between
clients in a crash-tolerant manner. It is an adaptation of the NFS protocol such that
the server supports both NFS and NQNFS clients while maintaining full consis-
tency between the server and NQNFS clients. The protocol maintains cache con-
sistency by using short-term leases instead of hard-state information about open
files [Gray & Cheriton, 1989]. A lease is a ticket permitting an activity that is
valid until some expiration time. As long as a client holds a valid lease, it knows
that the server will give it a callback if the file status changes. Once the lease has
expired, the client must contact the server if it wants to use the cached data.

Leases are issued using time intervals rather than absolute times to avoid the
requirement of time-of-day clock synchronization. There are three important time
constants known to the server. The maximum_lease_term sets an upper bound on
lease duration—typically, 30 seconds to 1 minute. The clock_skew is added to all
lease terms on the server to correct for differing clock speeds between the client
and server. The write_slack is the number of seconds that the server is willing to
wait for a client with an expired write-caching lease to push dirty writes.

Contacting the server after the lease has expired is similar to the NFS tech-
nique for reducing server load by checking the validity of data only every few sec-
onds. The main difference is that the server tracks its clients' cached files, so
there are never periods of time when the client is using stale data. Thus, the time
used for leases can be considerably longer than the few seconds that clients are
willing to tolerate possibly stale data. The effect of this longer lease time is to
reduce the number of server calls almost to the level found in a full callback
implementation such as the Andrew Filesystem [Howard et al, 1988]. Unlike the
callback mechanism, state recovery with leases is trivial. The server needs only to
wait for the lease's expiration time to pass, and then to resume operation. Once all
the leases have expired, the clients will always communicate with the server
before using any of their cached data. The lease expiration time is usually shorter
than the time it takes most servers to reboot, so the server can effectively resume
operation as soon as it is running. If the machine does manage to reboot more

Section 9.3 Techniques for Improving Performance 329

quickly than the lease expiration time, then it must wait until all leases have
expired before resuming operation.

An additional benefit of using leases rather than hard state information is that
leases use much less server memory. If each piece of state requires 64 bytes, a
large server with hundreds of clients and a peak throughput of 2000 RPC requests
per second will typically only use a few hundred Kbyte of memory for leases, with
a worst case of about 3 Mbyte. Even if a server has exhausted lease storage, it can
simply wait a few seconds for a lease to expire and free up a record. By contrast,
a server with hard state must store records for all files currently open by all clients.
The memory requirements are 3 to 12 Mbyte of memory per 100 clients served.

Whenever a client wishes to cache data for a file, it must hold a valid lease.
There are three types of leases: noncaching, read caching, and write caching. A
noncaching lease requires that all file operations be done synchronously with the
server. A read-caching lease allows for client data caching, but no file modifica-
tions may be done. A write-caching lease allows for client caching of writes for
the period of the lease. If a client has cached write data that are not yet written to
the server when a write-cache lease has almost expired, it will attempt to extend
the lease. If the extension fails, the client is required to push the written data.

If all the clients of a file are reading it, they will all be granted a read-caching
lease. A read-caching lease allows one or more clients to cache data, but they may
not make any modifications to the data. Figure 9.4 shows a typical read-caching
scenario. The vertical solid black lines depict the lease records. Note that the
time lines are not drawn to scale, since a client-server interaction will normally
take less than 100 milliseconds, whereas the normal lease duration is 30 seconds.

Figure 9.4 Read-caching leases. Solid vertical lines represent valid leases.

client
read syscall

read syscalls
(from cache)

lease times out
read syscall

modification time
match, cache valid

read syscalls
(from cache)

lease times out

A serv
read + lease request

reply
read request
(cache miss) ~

reply

get lease request

reply with same
modification time

read request
(cache miss)

reply

er cli

read-caching lease
for client A

lease expires

read + lease request

r ep ly^^c l i en tB
added to lease

read request
(cache miss)

reply

entB

TIME

\

read syscall

read syscalls
(from cache)

lease times out



330 Chapter 9 The Network Filesystem

Every lease includes the time that the file was last modified. The client can use
this timestamp to ensure that its cached data are still current. Initially, client A
gets a read-caching lease for the file. Later, client A renews that lease and uses it
to verify that the data in its cache are still valid. Concurrently, client B is able to
obtain a read-caching lease for the same file.

If a single client wants to write a file and there are no readers of that file, the
client will be issued a write-caching lease. A write-caching lease permits delayed
write caching, but requires that all data be pushed to the server when the lease
expires or is terminated by an eviction notice. When a write-caching lease has
almost expired, the client will attempt to extend the lease if the file is still open, but
is required to push the delayed writes to the server if renewal fails (see Fig. 9.5).
The writes may not arrive at the server until after the write lease has expired on the
client. A consistency problem is avoided because the server keeps its write lease
valid for write_slack seconds longer than the time given in the lease issued to the
client. In addition, writes to the file by the lease-holding client cause the lease
expiration time to be extended to at least write_slack seconds. This write_slack
period is conservatively estimated as the extra time that the client will need to write
back any written data that it has cached. If the value selected for write_slack is too
short, a write RPC may arrive after the write lease has expired on the server.
Although this write RPC will result in another client seeing an inconsistency, that
inconsistency is no more problematic than the semantics that NFS normally pro-
vides.

Figure 9.5 Write-caching lease. Solid vertical lines represent valid leases.

server client B

write-caching lease
for client B

lease renewed

lease times out

expiration delayed
due to write activity

expires write_slack seconds
after most recent write

get write lease

reply
(write-caching lease)

get write lease

reply
(write-caching lease)

write
reply
write _______

write syscall

write syscall
(delayed writes
being cached)
lease-renewal request
before expiration

close syscall
lease expires

TIME

Section 9.3 Techniques for Improving Performance 331

The server is responsible for maintaining consistency among the NQNFS
clients by disabling client caching whenever a server file operation would cause
inconsistencies. The possibility of inconsistencies occurs whenever a client has a
write-caching lease and any other client or a local operation on the server tries to
access the file, or when a modify operation is attempted on a file being read
cached by clients. If one of these conditions occurs, then all clients will be issued
noncaching leases. With a noncaching lease, all reads and writes will be done
through the server, so clients will always get the most recent data. Figure 9.6
shows how read and write leases are replaced by a noncaching lease when there is
the potential for write sharing. Initially, the file is read by client A. Later, it is
written by client B. While client B is still writing, client A issues another read
request. Here, the server sends an "eviction notice" message to client B, and then
waits for lease termination. Client B writes back its dirty data, then sends a
"vacated" message. Finally, the server issues noncaching leases to both clients.
In general, lease termination occurs when a "vacated" message has been received
from all the clients that have signed the lease or when the lease has expired. The
server does not wait for a reply for the message pair "eviction notice" and

Figure 9.6 Write-sharing leases. Solid vertical lines represent valid leases.

client

read syscall

read syscalls
(from cache)

lease times out

read syscall

read data
(not cached)

\ serv
read + lease request

reply
read request
(cacne miss)

reply

get lease request

(noncaching lease)
read request

reply data

er client B

TIME

read-caching lease
for client A

lease expires
get write lease

r e p l y
(write-caching lease)

eviction notice
write

___ write _____ ——

vacated message

get write lease

(noncaching lease)
___ write ___

write syscall

write syscall
(delayed writes
being cached)

delayed writes
being flushed
to server

write syscall

synchronous writes
(not cached)



332 Chapter 9 The Network Filesystem

"vacated," as it does for all other RPC messages; they are sent asynchronously to
avoid the server waiting indefinitely for a reply from a dead client.

A client gets leases either by doing a specific lease RPC or by including a
lease request with another RPC. Most NQNFS RPC requests allow a lease request
to be added to them. Combining lease requests with other RPC requests mini-
mizes the amount of extra network traffic. A typical combination can be done
when a file is opened. The client must do an RPC to get the handle for the file to
be opened. It can combine the lease request, because it knows at the time of the
open whether it will need a read or a write lease. All leases are at the granularity
of a file, because all NFS RPC requests operate on individual files, and NFS has no
intrinsic notion of a file hierarchy. Directories, symbolic links, and file attributes
may be read cached but are not write cached. The exception is the file-size
attribute that is updated during cached writing on the client to reflect a growing
file. Leases have the advantage that they are typically required only at times when
other I/O operations occur. Thus, lease requests can almost always be piggy-
backed on other RPC requests, avoiding some of the overhead associated with the
explicit open and close RPC required by a long-term callback implementation.

The server handles operations from local processes and from remote clients
that are not using the NQNFS protocol by issuing short-term leases for the duration
of each file operation or RPC. For example, a request to create a new file will get a
short-term write lease on the directory in which the file is being created. Before
that write lease is issued, the server will vacate the read leases of all the NQNFS
clients that have cached data for that directory. Because the server gets leases for
all non-NQNFS activity, consistency is maintained between the server and NQNFS
clients, even when local or NFS clients are modifying the filesystem. The NFS
clients will continue to be no more or less consistent with the server than they
were without leases.

Crash Recovery
The server must maintain the state of all the current leases held by its clients. The
benefit of using short-term leases is that, maximum_lease_term seconds after the
server stops issuing leases, it knows that there are no current leases left. As such,
server crash recovery does not require any state recovery. After rebooting, the
server simply refuses to service any RPC requests except for writes (predomi-
nantly from clients that previously held write leases) until write_slack seconds
after the final lease would have expired. For machines that cannot calculate the
time that they crashed, the final-lease expiration time can be estimated safely as

boot_time + maximum _lease_term + write_slack + clock_skew

Here, boot_time is the time that the kernel began running after the kernel was
booted. With a maximum_lease_term 30 to 60 seconds, and clock_skew and
write_slack at most a few seconds, this delay amounts to about 1 minute, which
for most systems is taken up with the server rebooting process. When this time
has passed, the server will have no outstanding leases. The clients will have had at

Exercises 333

least write_slack seconds to get written data to the server, so the server should be
up to date. After this, the server resumes normal operation.

There is another failure condition that can occur when the server is congested.
In the worst-case scenario, the client pushes dirty writes to the server, but a large
request queue on the server delays these writes for more than write_slack seconds.
In an effort to minimize the effect of these recovery storms, the server replies "try
again later" to the RPC requests that it is not yet ready to service [Baker & Ouster-
hout, 1991]. The server takes two steps to ensure that all clients have been able to
write back their written data. First, a write-caching lease is terminated on the
server only when there are have been no writes to the file during the previous
write_slack seconds. Second, the server will not accept any requests other than
writes until it has not been overloaded during the previous write_slack seconds. A
server is considered overloaded when there are pending RPC requests and all its
nfsd processes are busy.

Another problem that is solved by short-term leases is how to handle a
crashed or partitioned client that holds a lease that the server wishes to vacate.
The server detects this problem when it needs to vacate a lease so that it can issue
a lease to a second client, and the first client holding the lease fails to respond to
the vacate request. Here, the server can simply wait for the first client's lease to
expire before issuing the new one to the second client. When the first client
reboots or gets reconnected to the server, it simply reacquires any leases it now
needs. If a client-to-server network connection is severed just before a write-
caching lease expires, the client cannot push the dirty writes to the server. Other
clients that can contact the server will continue to be able to access the file and
will see the old data. Since the write-caching lease has expired on the client, the
client will synchronize with the server as soon as the network connection has been
re-established. This delay can be avoided with a write-through policy.

A detailed comparison of the effects of leases on performance is given in
[Macklem, 1994a]. Briefly, leases are most helpful when a server or network is
loaded heavily. Here, leases allow up to 30 to 50 percent more clients to use a net-
work and server before beginning to experience a level of congestion equal to
what they would on a network and server that were not using leases. In addition,
leases provide better consistency and lower latency for clients, independent of the
load. Although leases are new enough that they are not widely used in commer-
cial implementations of NFS today, leases or a similar mechanism will need to be
added to commercial versions of NFS if NFS is to be able to compete effectively
against other remote filesystems, such as Andrew.

Exercises

9.1 Describe the functions done by an NFS client.

9.2 Describe the functions done by an NFS server.



334 Chapter 9 The Network Filesystem References 335

9.3 Describe three benefits that NFS derives from being stateless.

9.4 Give two reasons why TCP is a better protocol to use than is UDP for han-
dling the NFS RPC protocol.

9.5 Describe the contents of a file handle in 4.4BSD. How is a file handle used?

9.6 When is a new generation number assigned to a file? What purpose does
the generation number serve?

9.7 Describe the three ways that an NFS client can handle filesystem-access
attempts when its server crashes or otherwise becomes unreachable.

9.8 Give two reasons why leases are given a limited lifetime.

9.9 What is a callback? When is it used?

9.10 A server may issue three types of leases: noncaching, read caching, and
write caching. Describe what a client can do with each of these leases.

9.11 Describe how an NQNFS server recovers after a crash.

*9.12 Suppose that there is a client that supports both versions 2 and 3 of the NFS
protocol running on both the TCP and UDP protocols, but a server that sup-
ports only version 2 of NFS running on UDP. Show the protocol negotia-
tion between the client and server, assuming that the client prefers to run
using version 3 of NFS using TCP.

**9.13 Assume that leases have an unlimited lifetime. Design a system for recov-
ering the lease state after a client or server crash.

References
Baker & Ousterhout, 1991.

M. Baker & J. Ousterhout, "Availability in the Sprite Distributed File Sys-
tem," ACM Operating System Review, vol. 25, no. 2, pp. 95-98, April 1991.

Birrell & Nelson, 1984.
A. D. Birrell & B. J. Nelson, "Implementing Remote Procedure Calls,"
ACM Transactions on Computer Systems, vol. 2, no. 1, pp. 39-59, Associa-
tion for Computing Machinery, February 1984.

Gray & Cheriton, 1989.
C. Gray & D. Cheriton, "Leases: An Efficient Fault-Tolerant Mechanism
for Distributed File Cache Consistency," Proceedings of the Twelfth Sympo-
sium on Operating Systems Principles, pp. 202-210, December 1989.

Howard, 1988.
J. Howard, "An Overview of the Andrew File System," USENIX Association
Conference Proceedings, pp. 23-26, January 1988.

Howard et al, 1988.
J. Howard, M. Kazar, S. Menees, D. Nichols, M. Satyanarayanan, R.

Sidebotham, & M. West, "Scale and Performance in a Distributed File
System," ACM Transactions on Computer Systems, vol. 6, no. 1, pp. 51-81,
Association for Computing Machinery, February 1988.

Juszczak, 1989.
C. Juszczak, "Improving the Performance and Correctness of an NFS Ser-
ver," USENIX Association Conference Proceedings, pp. 53-63, January
1989.

Kent & Mogul, 1987.
C. Kent & J. Mogul, "Fragmentation Considered Harmful," Research
Report 87/3, Digital Equipment Corporation Western Research Laboratory,
Palo Alto, CA, December 1987.

Macklem, 1991.
R. Macklem, "Lessons Learned Tuning the 4.3BSD-Reno Implementation
of the NFS Protocol," USENIX Association Conference Proceedings, pp.
53-64, January 1991.

Macklem, 1994a.
R. Macklem, "Not Quite NFS, Soft Cache Consistency for NFS," USENIX
Association Conference Proceedings, pp. 261-278, January 1994.

Macklem, 1994b.
R. Macklem, "The 4.4BSD NFS Implementation," in 4.4BSD System Man-
ager's Manual, pp. 6:1-14, O'Reilly & Associates, Inc., Sebastopol, CA,
1994.

Mogul, 1993.
J. Mogul, "Recovery in Spritely NFS," Research Report 93/2, Digital
Equipment Corporation Western Research Laboratory, Palo Alto, CA, June
1993.

Nelson et al, 1988.
M. Nelson, B. Welch, & J. Ousterhout, "Caching in the Sprite Network File
System," ACM Transactions on Computer Systems, vol. 6, no. 1, pp.
134-154, Association for Computing Machinery, February 1988.

Nowicki, 1989.
B. Nowicki, "Transport Issues in the Network File System," Computer
Communications Review, vol. 19, no. 2, pp. 16-20, April 1989.

Pawlowski et al, 1994.
B. Pawlowski, C. Juszczak, P. Staubach, C. Smith, D. Lebel, & D. Hitz,
"NFS Version 3: Design and Implementation," USENIX Association Confer-
ence Proceedings, pp. 137-151, June 1994.

Reid, 1987.
Irving Reid, "RPCC: A Stub Compiler for Sun RPC," USENIX Association
Conference Proceedings, pp. 357-366, June 1987.

Rifkinetal, 1986.
A. Rifkin, M. Forbes, R. Hamilton, M. Sabrio, S. Shah, & K. Yueh, "RFS
Architectural Overview," USENIX Association Conference Proceedings, pp.
248-259, June 1986.



336 Chapter 9 The Network Filesystem

Sandberg et al, 1985.
R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, & B. Lyon, "Design and
Implementation of the Sun Network Filesystem," USENIX Association Con-
ference Proceedings, pp. 119-130, June 1985.

Steineretal, 1988.
J. Steiner, C. Neuman, & J. Schiller, "Kerberos: An Authentication Service
for Open Network Systems," USENIX Association Conference Proceedings,
pp. 191-202, February 1988.

Sun Microsystems, 1989.
Sun Microsystems, "NFS: Network File System Protocol Specification,"
RFC 1094, available by anonymous FTP from ds.internic.net, March 1989.

Sun Microsystems, 1993.
Sun Microsystems, NFS: Network File System Version 3 Protocol Specifica-
tion, Sun Microsystems, Mountain View, CA, June 1993.

Walsh et al, 1985.
D. Walsh, B. Lyon, G. Sager, J. Chang, D. Goldberg, S. Kleiman, T. Lyon,
R. Sandberg, & P. Weiss, "Overview of the Sun Network File System,"
USENIX Association Conference Proceedings, pp. 117-124, January 1985.

CHAPTER 10

Terminal Handling

A common type of peripheral device found on 4.4BSD systems is a hardware
interface supporting one or more terminals. The most common type of interface is
a terminal multiplexer, a device that connects multiple, asynchronous RS-232
serial lines, which may be used to connect terminals, modems, printers, and simi-
lar devices. Unlike the block storage devices described in Section 6.2 and the net-
work devices to be considered in Chapter 11, terminal devices commonly process
data one character at a time. Like other character devices described in Section 6.3,
terminal multiplexers are supported by device drivers specific to the actual hard-
ware.

Terminal interfaces interrupt the processor asynchronously to present input,
which is independent of process requests to read user input. Data are processed
when they are received, and then are stored until a process requests them, thus
allowing type-ahead. Many terminal ports attach local or remote terminals on
which users may log in to the system. When used in this way, terminal input rep-
resents the keystrokes of users, and terminal output is printed on the users' screens
or printers. We shall deal mostly with this type of terminal line usage in this chap-
ter. Asynchronous serial lines also connect modems for computer-to-computer
communications or serial-interface printers. When serial interfaces are used for
these purposes, they generally use a subset of the system's terminal-handling
capability. Sometimes, they use special processing modules for higher efficiency.
We shall discuss alternate terminal modules at the end of this chapter.

The most common type of user session in 4.4BSD uses a pseudo-terminal, or
pty. The pseudo-terminal driver provides support for a device-pair, termed the
master and slave devices. The slave device provides a process an interface identi-
cal to the one described for terminals in this chapter. However, whereas all other
devices that provide this interface are supported by a hardware device of some
sort, the slave device has, instead, another process manipulating it through the
master half of the pseudo-terminal. That is, anything written on the master device



338 Chapter 10 Terminal Handling

is provided to the slave device as input, and anything written on the slave device is
presented to the master device as input. The driver for the master device emulates
all specific hardware support details described in the rest of this chapter.

10.1 Terminal-Processing Modes

4.4BSD supports several modes of terminal processing. Much of the time, termi-
nals are in canonical mode (also commonly referred to as cooked mode or line
mode), in which input characters are echoed by the operating system as they are
typed by the user, but are buffered internally until a newline character is received.
Only after the receipt of a newline character is the entire line made available to the
shell or other process reading from the terminal. If the process attempts to read
from the terminal line before a complete line is ready, the process will sleep until a
newline character is received, regardless of a partial line already having been
received. (The common case where a carriage return behaves like a newline char-
acter and causes the line to be made available to the waiting process is imple-
mented by the operating system, and is configurable by the user or process.) In
canonical mode, the user may correct typing errors, deleting the most recently
typed character with the erase character, deleting the most recent word with the
word-erase character, or deleting the entire current line with the kill character.
Other special characters generate signals sent to processes associated with the ter-
minal; these signals may abort processing or may suspend it. Additional characters
start and stop output, flush output, or prevent special interpretation of the succeed-
ing character. The user can type several lines of input, up to an implementation-
defined limit, without waiting for input to be read and then removed from the input
queue. The user can specify the special processing characters or can selectively
disable them.

Screen editors and programs that communicate with other computers generally
run in noncanonical mode (also commonly referred to as raw mode or character-at-
a-time mode). In this mode, the system makes each typed character available to be
read as input as soon as that character is received. All special-character input pro-
cessing is disabled, no erase or other line-editing processing is done, and all charac-
ters are passed to the program reading from the terminal.

It is possible to configure the terminal in thousands of combinations between
these two extremes. For example, a screen editor that wanted to receive user inter-
rupts asynchronously might enable the special characters that generate signals, but
otherwise run in noncanonical mode.

In addition to processing input characters, terminal interface drivers must do
certain processing on output. Most of the time, this processing is simple: Newline
characters are converted to a carriage return plus a line feed, and the interface
hardware is programmed to generate appropriate parity bits on output characters.
In addition to doing character processing, the terminal output routines must man-
age flow control, both with the user (using stop and start characters) and with the

Section 10.2 Line Disciplines 339

process. Because terminal devices are slow in comparison with other computer
peripherals, a program writing to the terminal may produce output much faster
than that output can be sent to the terminal. When a process has filled the terminal
output queue, it will be put to sleep; it will be restarted when enough output has
drained.

10.2 Line Disciplines

Most of the character processing done for terminal interfaces is independent of the
type of hardware device used to connect the terminals to the computer. Therefore,
most of this processing is done by common routines in the tty driver or terminal
handler. Each hardware interface type is supported by a specific device driver.
The hardware driver is a device driver like those described in Chapter 6; it is
responsible for programming the hardware multiplexer. It is responsible for
receiving and transmitting characters, and for handling some of the synchroniza-
tion with the process doing output. The hardware driver is called by the tty driver
to do output; in turn, it calls the tty driver with input characters as they are
received. Because serial lines may be used for more than just connection of termi-
nals, a modular interface between the hardware driver and the tty driver allows
either part to be replaced with alternate versions. The tty driver interfaces with the
rest of the system as a line discipline. A line discipline is a processing module
used to provide semantics on an asynchronous serial interface (or, as we shall see,
on a software emulation of such an interface). It is described by a procedural
interface, the linesw (line-switch) structure.

The linesw structure specifies the entry points of a line discipline, much as the
character-device switch cdevsw lists the entry points of a character-device driver.
The entry points of a line discipline are listed in Table 10.1. Like all device
drivers, a terminal driver is divided into the top half, which runs synchronously

Table 10.1 Entry points of a line discipline.

Routine
l_open
l_close
l_read
l_write
l_ioctl
l_rint
l_start
l_modem

Called from
above
above
above
above
above
below
below
below

Usage
initial entry to discipline
exit from discipline
read from line
write to line
control operations
received character
completion of transmission
modem carrier transition



340 Chapter 10 Terminal Handling

when called to process a system call, and the bottom half, which runs
asynchronously when device interrupts occur. The line discipline provides rou-
tines that do common terminal processing for both the top and bottom halves of a
terminal driver.

Device drivers for serial terminal interfaces support the normal set of char-
acter-device-driver entry points specified by the character-device switch. Several
of the standard driver entry points (read, write, and ioctl) immediately transfer
control to the line discipline when called. (The standard tty select routine
ttselect() usually is used as the device driver select entry in the character-device
switch.) The open and close routines are similar; the line-discipline open entry is
called when a line first enters a discipline, either at initial open of the line or when
the discipline is changed. Similarly, the discipline close routine is called to exit
from a discipline. All these routines are called from above, in response to a corre-
sponding system call. The remaining line-discipline entries are called by the bot-
tom half of the device driver to report input or status changes detected at interrupt
time. The l_rint (receiver interrupt) entry is called with each character received on
a line. The corresponding entry for transmit-complete interrupts is the l__start rou-
tine, which is called when output operations complete. This entry gives the line
discipline a chance to start additional output operations. For the normal terminal
line discipline, this routine simply calls the driver's output routine to start the next
block of output. Transitions in modem-control lines (see Section 10.7) may be
detected by the hardware driver, in which case the l_modem routine is called with
an indication of the new state.

The system includes several different types of line disciplines. Most lines use
the terminal-oriented discipline described in Section 10.3. Other disciplines in the
system support graphics tablets on serial lines and asynchronous serial network
interfaces.

10.3 User Interface
The terminal line discipline used by default on most terminal lines is derived from
a discipline that was present in System V, as modified by the POSIX standard, and
then was modified further to provide reasonable compatibility with previous
Berkeley line disciplines. The base structure used to describe terminal state in
System V was the termio structure. The base structure used by POSIX and by
4.4BSD is the termios structure.

The standard programmatic interface for control of the terminal line discipline
is the ioctl system call. This call changes disciplines, sets and gets values for spe-
cial processing characters and modes, sets and gets hardware serial line parame-
ters, and performs other control operations. Most ioctl operations require one
argument in addition to a file descriptor and the command; the argument is the
address of an integer or structure from which the system gets parameters, or into
which information is placed. Because the POSIX Working Group thought that the
ioctl system call was difficult and undesirable to specify—because of its use of

Section 10.3 User Interface 341

arguments that varied in size, in type, and in whether they were being read or
written—the group members chose to introduce new interfaces for each of the
ioctl calls that they believed were necessary for application portability. Each of
these calls is named with a tc prefix. In the 4.4BSD system, each of these calls is
translated (possibly after preprocessing) into an ioctl call.

The following set of ioctl commands apply specifically to the standard termi-
nal line discipline, although all line disciplines must support at least the first two.
Other disciplines generally support other ioctl commands. This list is not exhaus-
tive, although it presents all the commands that are used commonly.

TIOCGETD
TIOCSETD

TIOCGETA
TIOCSETA

TIOCSETAW

TIOCSETAF

TIOCFLUSH

TIOCDRAIN

TIOCEXCL
TIOCNXCL

TIOCCBRK
TIOCSBRK

TIOCCDTR
TIOCSDTR

TIOCGPGRP
TIOCSPGRP

TIOCOUTQ

TIOCSTI

TIOCNOTTY

TIOCSCTTY

Get (set) the line discipline for this line.

Get (set) the termios parameters for this line, including line
speed, behavioral parameters, and special characters (e.g., erase
and kill characters).

Set the termios parameters for this line after waiting for the out-
put buffer to drain (but without discarding any characters from
the input buffer).

Set the termios parameters for this line after waiting for the out-
put buffer to drain and discarding any characters from the input
buffer.

Discard all characters from the input and output buffers.

Wait for the output buffer to drain.

Get (release) exclusive use of the line.

Clear (set) the terminal hardware BREAK condition for the line.

Clear (set) data terminal ready on the line.

Get (set) the process group associated with this terminal (see
Section 10.5).

Return the number of characters in the terminal's output buffer.

Enter characters into the terminal's input buffer as though they
were typed by the user.

Disassociate the current controlling terminal from the process
(see Section 10.5).

Make the terminal the controlling terminal for the process (see
Section 10.5).



342

TIOCSTART
TIOCSTOP

TIOCGWINSZ
TIOCSWINSZ

Chapter 10 Terminal Handling

Start (stop) output on the terminal.

Get (set) the terminal or window size for the terminal line; the
window size includes width and height in characters and
(optionally, on graphical displays) in pixels.

10.4 The tty Structure

Each terminal hardware driver has a data structure to contain the state of each line
that it supports. This structure, the tty structure (see Table 10.2), contains state
information, the input and output queues, the modes and options set by the ioctl
operations listed in Section 10.3, and the line-discipline number. The tty structure
is shared by the hardware driver and the line discipline. The calls to the line disci-
pline all require a tty structure as a parameter; the driver locates the correct tty
according to the minor device number. This structure also contains information
about the device driver needed by the line discipline.

The sections of the tty structure include:

• State information about the hardware terminal line. The t_state field includes
line state (open, carrier present, or waiting for carrier) and major file options
(e.g., signal-driven I/O). Transient state for flow control and synchronization is
also stored here.

Table 10.2 The tty structure.

Type
character queues

hardware parameters

selecting

state

Description
raw input queue
canonical input queue
device output queue
high/low watermarks
device number
start/stop output functions
set hardware state function
process selecting for reading
process selecting for writing
termios state
process group
session
terminal column number
number of rows and columns

Section 10.5 Process Groups, Sessions, and Terminal Control 343

• Input and output queues. The hardware driver transmits characters placed in the
output queue, t_outq. Line disciplines generally use the t_rawq and t_canq
(noncanonical and canonical queues) for input; in line mode, the canonical queue
contains full lines, and the noncanonical queue contains any current partial line.
In addition, t_hiwat and t_lowat provide boundaries where processes attempting
to write to the terminal will be put to sleep, waiting for the output queue to drain.

• Hardware and software modes and parameters, and special characters. The
t_termios structure contains the information set by TIOCSETA, TIOCSETAF and
TIOCSETAW. Specifically, line speed appears in the c_ispeed and c_ospeed fields
of the t_termios structure, control information in the c_iflag, c_oflag, c_cflag and
c_lflag fields, and special characters (end-of-file, end-of-line, alternate end-of-
line, erase, word-erase, kill, reprint, interrupt, quit, suspend, start, stop, escape-
next-character, status-interrupt, flush-output and VMIN and VTIME information)
in the c_cc field.

• Hardware driver information. This information includes t_oproc and t_stop, the
driver procedures that start (stop) transmissions after data are placed in the out-
put queue; t_param, the driver procedure that sets the hardware state; and t_dev,
the device number of the terminal line.

• Terminal line-discipline software state. This state includes the terminal column
number and counts for tab and erase processing (t_column, t_rocount and
t_rocol), the process group of the terminal (t_pgrp), the session associated with
the terminal (t_session), and information about any processes selecting for input
or output (t_rsel and t_wsel).

• Terminal or window size (t_winsize). This information is not used by the kernel,
but it is stored here to present consistent and correct information to applications.
In addition, 4.4BSD supplies the SIGWINCH signal (derived from Sun Microsys-
tems' SunOS) that can be sent when the size of a window changes. This signal
is useful for windowing packages such as X Window System [Scheifler & Get-
tys, 1986] that allow users to resize windows dynamically; programs such as text
editors running in such a window need to be informed that something has
changed and that they should recheck the window size.

The tty structure is initialized by the hardware terminal driver's open routine and
by the line-discipline open routine.

10.5 Process Groups, Sessions, and Terminal Control
The process-control (job-control) facilities described in Section 4.8 depend on the
terminal I/O system to control access to the terminal. Each job (a process group
that is manipulated as a single entity) is known by a process-group ID.

Each terminal structure contains a pointer to an associated session. When a
process creates a new session, that session has no associated terminal. To acquire



344 Chapter 10 Terminal Handling

an associated terminal, the session leader must make an ioctl system call using a
file descriptor associated with the terminal and specifying the TIOCSCTTY flag.
When the ioctl succeeds, the session leader is known as the controlling process.
In addition, each terminal structure contains the process group ID of the fore-
ground process group. When a session leader acquires an associated terminal, the
terminal process group is set to the process group of the session leader. The termi-
nal process group may be changed by making an ioctl system call using a file
descriptor associated with the terminal and specifying the TIOCSPGRP flag. Any
process group in the session is permitted to become the foreground process group
for the terminal.

Signals that are generated by characters typed at the terminal are sent to all
the processes in the terminal's foreground process group. By default, some of
those signals cause the process group to stop. The shell creates jobs as process
groups, setting the process group ID to be the PID of the first process in the pro-
cess group. Each time it places a new job in the foreground, the shell sets the ter-
minal process group to the new process group. Thus, the terminal process group
is the identifier for the process group that is currently in control of the terminal—
that is, for the process group running in the foreground. Other process groups may
run in the background. If a background process attempts to read from the termi-
nal, its process group is sent another signal, which stops the process group.
Optionally, background processes that attempt terminal output may be stopped as
well. These rules for control of input and output operations apply to only those
operations on the controlling terminal.

When carrier is lost for the terminal—for example, at modem disconnect—the
session leader of the session associated with the terminal is sent a SIGHUP signal.
If the session leader exits, the controlling terminal is revoked, and that invalidates
any open file descriptors in the system for the terminal. This revocation ensures
that processes holding file descriptors for a terminal cannot still access the terminal
after the terminal is acquired by another user. The revocation operates at the vnode
layer. It is possible for a process to have a read or write sleeping for some rea-
son—for example, it was in a background process group. Since such a process
would have already resolved the file descriptor through the vnode layer, a single
read or write by the sleeping process could complete after the revoke system call.
To avoid this security problem, the system checks a tty generation number when a
process wakes up from sleeping on a terminal, and, if the number has changed,
restarts the read or write system call.

10.6 C-lists
The terminal I/O system deals with data in blocks of widely varying sizes. Most
input and output operations deal with single characters (typed input characters and
their output echoes). Input characters are usually aggregated with previous input
to form lines of varying sizes. Some output operations involve larger numbers of
data, such as screen updates or other command output. The data structures

Section 10.6 C-lists 345

character
count

first
character

last
character

118
1
I

the castor oil
Documentation is

Managers know it must be good
because the programmers hate

it so much.

Figure 10.1 A C-list structure.

originally designed for terminal drivers, the character block, C-block, and
character list, C-list, are still in use in 4.4BSD. Each C-block is a fixed-size buffer
that contains a linkage pointer and space for buffered characters and quoting infor-
mation. Its size is a power of 2, and it is aligned such that the system can compute
boundaries between blocks by masking off the low-order bits of a pointer. 4.4BSD
uses 64-byte C-blocks, storing 52 characters and an array of quoting flags (1-bit
per character). A queue of input or output characters is described by a C-list,
which contains pointers to the first and final characters, and a count of the number
of characters in the queue (see Fig. 10.1). Both of the pointers point to characters
stored in C-blocks. When a character is removed from a C-list queue, the count is
decremented, and the pointer to the first character is incremented. If the pointer
has advanced beyond the end of the first C-block on the queue, the pointer to the
next C-block is obtained from the forward pointer at the start of the current C-
block. After the forward pointer is updated, the empty C-block is placed on a free
chain. A similar process adds a character to a queue. If there is no room in the
current buffer, another buffer is allocated from the free list, the linkage pointer of
the last buffer is set to point at the new buffer, and the tail pointer is set to the first
storage location of the new buffer. The character is stored where indicated by the
tail pointer, the tail pointer is incremented, and the character count is incremented.
A set of utility routines manipulates C-lists: getc() removes the next character
from a C-list and returns that character; putc() adds a character to the end of a C-
list. The getc() routine returns an integer, and the putc() routine takes an integer
as an argument. The lower 8 bits of this value are the actual character. The upper
bits are used to provide quoting and other information. Groups of characters may
be added to or removed from C-lists with b_to_q( ) and q_to_b(), respectively, in
which case no additional information (e.g., quoting information) can be specified
or returned. The terminal driver also requires the ability to remove a character
from the end of a queue with unputc() to examine characters in the queue with
nextc(), and to concatenate queues with catq().



346 Chapter 10 Terminal Handling

When UNIX was developed on computers with small address spaces, the
design of buffers for the use of terminal drivers was a challenge. The C-list and
C-block provided an elegant solution to the problem of storing arbitrary-length
queues of data for terminal input and output queues when the latter were designed
for machines with small memories. On modern machines that have far larger
address spaces, it would be better to use a data structure that uses less CPU time
per character at a cost of reduced space efficiency. 4.4BSD still uses the original
C-list data structure because of the high labor cost of converting to a new data
structure; a change to the queue structure would require changes to all the line dis-
ciplines and to all the terminal device drivers, which would be a substantial
amount of work. The developers could just change the implementations of the
interface routines, but the routines would still be called once per character unless
the actual interface was changed, and changing the interface would require chang-
ing the drivers.

10.7 RS-232 and Modem Control

Most terminals and modems are connected via asynchronous RS-232 serial ports.
This type of connection supports several lines, in addition to those that transmit and
receive data. The system typically supports only a few of these lines. The most
commonly used lines are those showing that the equipment on each end is ready for
data transfer. The RS-232 electrical specification is asymmetrical: Each line is
driven by one of the two devices connected and is sampled by the other device.
Thus, one end in any normal connection must be wired as data-terminal equipment
(DTE), such as a terminal, and the other as data-communications equipment (DCE),
such as a modem. Note that terminal in DTE means endpoint: A terminal on which
people type is a DTE, and a computer also is a DTE. The data-terminal ready (DTR)
line is the output of the DTE end that serves as a ready indicator. In the other direc-
tion, the data-carrier detect (DCD) line indicates that the DCE device is ready for
data transfer. Historically, VAX terminal interfaces were all wired as DTE (they
may be connected directly to modems, or connected to local terminals with null
modem cables). The terminology used in the 4.4BSD terminal drivers and com-
mands reflects this orientation, even though many computers incorrectly use the
opposite convention.

When terminal devices are opened, the DTR output is asserted so that the con-
nected modem or other equipment may begin operation. If modem control is sup-
ported on a line, the open does not complete unless the O_NONBLOCK option was
specified or the CLOCAL control flag is set for the line, and no data are transferred
until the DCD input carrier is detected or the CLOCAL flag is set. Thus, an open
on a line connected to a modem will block until a connection is made; the connec-
tion commonly occurs when a call is received from a remote modem. Data then
can be transferred for as long as carrier remains on. If the modem loses the con-
nection, the DCD line is turned off, and subsequent reads and writes fail.

Section 10.8 Terminal Operations 347

Ports that are used with local terminals or other DTE equipment are connected
with a null-modem cable that connects DTR on each end to DCD on the other end.
Alternatively, the DTR output on the host port can be looped back to the DCD
input. If the cable or device does not support modem control, the system will
ignore the state of the modem control signals when the CLOCAL control flag is set
for the line, Finally, some drivers may be configured to ignore modem-control
inputs.

10.8 Terminal Operations

Now that we have examined the overall structure of the terminal I/O system and
have described that system's data structures, as well as the hardware that the sys-
tem controls, we continue with a description of the terminal I/O system operation.
We shall examine the operation of a generalized terminal hardware device driver
and the usual terminal line discipline. We shall not cover the autoconfiguration
routines present in each driver; they function in the same way as do those
described in Section 14.4.

Open

Each time that the special file for a terminal-character device is opened, the hard-
ware driver's open routine is called. The open routine checks that the requested
device was configured into the system and was located during autoconfiguration,
then initializes the tty structure. If the device was not yet open, the default modes
and line speed are set. The tty state is set to TS_WOPEN, waiting for open. Then,
if the device supports modem-control lines, the open routine enables the DTR out-
put line. If the CLOCAL control flag is not set for the terminal and the open call
did not specify the O_NONBLOCK flag, the open routine blocks awaiting assertion
of the DCD input line. Some drivers support device flags to override modem con-
trol; these flags are set in the system-configuration file and are stored in the driver
data structures. If the bit corresponding to a terminal line number is set in a de-
vice's flags, modem-control lines are ignored on input. When a carrier signal is
detected on the line, the TS_CARR_ON bit is set in the terminal state. The driver
then passes control to the initial (or current) line discipline through its open entry.

The default line discipline when a device is first opened is the termios termi-
nal-driver discipline. If the line was not already open, the terminal-size informa-
tion for the line is set to zero, indicating an unknown size. The line is then marked
as open (state bit TS_OPEN).

Output Line Discipline
After a line has been opened, a write on the resulting file descriptor produces out-
put to be transmitted on the terminal line. Writes to character devices result in
calls to the device write entry, d_write, with a device number, a uio structure



348 Chapter 10 Terminal Handling

describing the data to be written, and a flag specifying whether the I/O is
nonblocking. Terminal hardware drivers use the device number to locate the cor-
rect tty structure, then call the line discipline l_write entry with the tty structure
and uio structure as parameters.

The line-discipline write routine does most of the work of output translation
and flow control. It is responsible for copying data into the kernel from the user
process calling the routine and for placing the translated data onto the terminal's
output queue for the hardware driver. The terminal-driver write routine, ttwrite(),
first checks that the terminal line still has carrier asserted (or that modem control
is being ignored). If carrier is significant and not asserted, the process will be put
to sleep awaiting carrier if the terminal has not yet been opened, or an error will be
returned. If carrier is being ignored or is asserted, ttwrite() then checks whether
the current process is allowed to write to the terminal at this time. The user may
set a tty option to allow only the foreground process (see Section 10.5) to do out-
put. If this option is set, and if the terminal line is the controlling terminal for the
process, then the process should do output immediately only if it is in the fore-
ground process group (i.e., if the process groups of the process and of the. terminal
are the same). If the process is not in the foreground process group, and a SIGT-
TOU signal would cause the process to be suspended, a SIGTTOU signal is sent to
the process group of the process. In this case, the write will be attempted again
when the user moves the process group to the foreground. If the process is in the
foreground process group, or a SIGTTOU signal would not suspend the process,
the write proceeds as usual.

When ttwrite() has confirmed that the write is permitted, it enters a loop that
copies the data to be written into the kernel, checks for any output translation that
is required, and places the data on the output queue for the terminal. It prevents
the queue from becoming overfull by blocking if the queue fills before all charac-
ters have been processed. The limit on the queue size, the high watermark, is
dependent on the output line speed; the difference between the low watermark and
high watermark is approximately 1 second's worth of output. When forced to
wait for output to drain before proceeding, ttwrite() sets a flag in the tty structure

Figure 10.2 Pseudocode for checking the output queue in a line discipline,

struct tty *tp;

ttstart(tp);
s = spltty();
if (tp->t_outq.c_cc > high-water-mark) {

tp->t_state |= TS_ASLEEP;
ttysleep(&tp->t_outq);

}
splx(s);

Section 10.8 Terminal Operations 349

state, TS_ASLEEP, so that the transmit-complete interrupt handler will awaken it
when the queue is reduced to the low watermark. The check of the queue size and
subsequent sleep must be ordered such that any interrupt is guaranteed to occur
after the sleep. See Fig. 10.2 for an example, presuming a uniprocessor machine.

Once errors, permissions, and flow control have been checked, ttwrite()
copies the user's data into a local buffer in chunks of at most 100 characters using
uiomove(). (A value of 100 is used because the buffer is stored on the stack, and
so cannot be large.) When the terminal driver is configured in noncanonical
mode, no per-character translations are done, and the entire buffer is processed at
once. In canonical mode, the terminal driver locates groups of characters requir-
ing no translation by scanning through the output string, looking up each character
in turn in a table that marks characters that might need translation (e.g., newline),
or characters that need expansion (e.g., tabs). Each group of characters that
requires no special processing is placed into the output queue using b_to_q().
Trailing special characters are output with tty output (). In either case, ttwrite()
must check that enough C-list blocks are available; if they are not, it waits for a
short time (by sleeping on lbolt for up to 1 second), then retries.

The routine that does output with translation is ttyoutput(), which accepts a
single character, processes that character as necessary, and places the result on the
output queue. The following translations may be done, depending on the terminal
mode:

• Tabs may be expanded to spaces.

• Newlines may be replaced with a carriage return plus a line feed.

As soon as data are placed on the output queue of a tty, ttstart() is called to
initiate output. Unless output is already in progress or has been suspended by
receipt of a stop character, ttstart() calls the hardware-driver start routine specified
in the tty's t_oproc field. Once all the data have been processed and have been
placed into the output queue, ttwrite() returns an indication that the write com-
pleted successfully, and the actual serial character transmission is managed asyn-
chronously by the device driver.

Output Top Half
The device driver handles the hardware-specific operation of character transmis-
sion, as well as synchronization and flow control for output. The structure of the
start 0 routine varies little from one driver to another. There are two general
classes of output mechanisms, depending on the type of hardware device. The
first class operates on devices that are capable of direct-memory-access (DMA)
output, which can fetch the data directly from the C-list block. For this class of
device, the device fetches the data from main memory, transmits each of the char-
acters in turn, and interrupts the CPU when the transmission is complete. Because
the hardware fetches data directly from main memory, there may be additional
requirements on where the C-lists can be located in physical memory.



350 Chapter 10 Terminal Handling

The other extreme for terminal interfaces are those that do programmed I/O,
potentially on a character-by-character basis. One or more characters are loaded
into the device's output-character register for transmission. The CPU must then
wait for the transmit-complete interrupt before sending more characters. Because
of the many interrupts generated in this mode of operation, several variants have
been developed to minimize the overhead of terminal I/O.

One approach is to compute in advance as much as possible of the informa-
tion needed at interrupt time. (Generally, the information needed is a pointer to
the next character to be transmitted, the number of characters to be transmitted,
and the address of the hardware device register that will receive the next charac-
ter.) This strategy is known as pseudo-DMA; the precomputed information is
stored in a pdma structure. A small assembly-language routine receives each
hardware transmit-complete interrupt, transmits the next character, and returns.
When there are no characters left to transmit, it calls a C-language interrupt rou-
tine with an indication of the line that completed transmission. The normal driver
thus has the illusion of DMA output, because it is not called until the entire block
of characters has been transmitted.

Another approach is found on hardware that supports periodic polling inter-
rupts instead of per-character interrupts. Usually, the period is settable based on
the line speed. A final variation is found in hardware that can buffer several char-
acters at a time in a silo and that will interrupt only when the silo has been emp-
tied completely. In addition, some hardware devices are capable of both DMA and
a variant of character-at-a-time I/O, and can be programmed by the operating sys-
tem to operate in either mode.

After an output operation is started, the terminal state is marked with
TS_BUSY so that new transmissions will not be attempted until the current one
completes.

Output Bottom Half
When transmission of a block of characters has been completed, the hardware
multiplexer interrupts the CPU; the transmit interrupt routine is then called with
the unit number of the device. Usually, the device has a register that the driver can
read to determine which of the device's lines have completed transmit operations.
For each line that has finished output, the interrupt routine clears the TS_BUSY
flag. The characters that have been transmitted were removed from the C-list
when copied to a local buffer by the device driver using getc() or q_to_b(); or if
they were not, the driver removes them from the output queue using ndflush().
These steps complete one section of output.

The line-discipline start routine is called to start the next operation; as noted,
this routine generally does nothing but call the driver start routine specified in the
terminal t_oproc field. The start routine now checks to see whether the output
queue has been reduced to the low watermark, and, if it has been, whether the top
half is waiting for space in the output queue. If the TS_ASLEEP flag is set, the out-
put process is awakened. In addition, selwakeup() is called, and, if a process is
recorded in t_wsel as selecting for output, that process is notified. Then, if the

Section 10.8 Terminal Operations 351

Input Bottom Half

Unlike output, terminal input is not initiated by a system call, but rather arrives
asynchronously when the terminal line receives characters from the keyboard or
other input device. Thus, the input processing in the terminal system occurs
mostly at interrupt time. Most hardware multiplexers interrupt each time that a
character is received on any line. They usually provide a silo that stores received
characters, along with the line number on which the characters were received and
any associated status information, until the device handler retrieves the characters.
Use of the silo prevents characters from being lost if the CPU has not processed a
received-character interrupt by the time that the next character arrives. On many
devices, the system can avoid per-character interrupts by programming the device
to interrupt only after the silo is partially or completely full. However, the driver
must then check the device periodically so that characters do not stagnate in the
silo if additional input does not trigger an interrupt. If the device can also be pro-
grammed to interrupt a short time after the first character enters the silo, regardless
of additional characters arriving, these periodic checks of the device by the driver
can be avoided. Characters cannot be allowed to stagnate because input flow-con-
trol characters must be processed without much delay, and users will notice any
significant delay in character echo as well. The drivers in 4.4BSD for devices with
such timers always use the silo interrupts. Other terminal drivers use per-character
interrupts until the input rate is high enough to warrant the use of the silo alarm
and a periodic scan of the silo.

When a device receiver interrupt occurs, or when a timer routine detects
input, the receiver-interrupt routine reads each character from the input silo, along
with the latter's line number and status information. Normal characters are passed
as input to the terminal line discipline for the receiving tty through the latter's
l_rint entry:

(*linesw[tp->t_line].l_rint)(input-character, tp);

The input character is passed to the l_rint routine as an integer. The bottom 8 bits
of the integer are the actual character. Characters received with hardware-detected
parity errors, break characters, or framing errors have flags set in the upper bits of
the integer to indicate these conditions.

The receiver-interrupt (l_rinf) routine for the normal terminal line discipline
is tty input (). When a break condition is detected (a longer-than-normal character
with only 0 bits), it is ignored, or an interrupt character or a null is passed to the
process, depending on the terminal mode. The interpretation of terminal input
described in Section 10.1 is done here. Input characters are echoed if desired. In
noncanonical mode, characters are placed into the raw input queue without inter-
pretation. Otherwise, most of the work done by ttyinput() is to check for charac-
ters with special meanings and to take the requested actions. Other characters are
placed into the raw queue. In canonical mode, if the received character is a car-
riage return or another character that causes the current line to be made available
to the program reading the terminal, the contents of the raw queue are added to the



input. In noncanonical mode, ttwakeup() is called when each character is
processed. It will awaken any process sleeping on the raw queue awaiting input
for a read and will notify processes selecting for input. If the terminal has been
set for signal-driven I/O using fcntl and the FASYNC flag, a SIGIO signal is sent to
the process group controlling the terminal.

Ttyinput() must also check that the input queue does not become too large,
exhausting the supply of C-list blocks; input characters are discarded when the
limit (1024 characters) is reached. If the IXOFF termios flag is set, end-to-end
flow control is invoked when the queue reaches half full by output of a stop char-
acter (normally XOFF or control-S).

Up to this point, all processing is asynchronous, and occurs independent of
whether a read call is pending on the terminal device. In this way, type-ahead is
allowed to the limit of the input queues.

Input Top Half
Eventually, a read call is made on the file descriptor for the terminal device. Like
all calls to read from a character-special device, this one results in a call to the de-
vice driver's d_read entry with a device number, a uio structure describing the
data to be read, and a flag specifying whether the I/O is nonblocking. Terminal
device drivers use the device number to locate the tty structure for the device, then
call the line discipline l_read entry to process the system call.

The l_read entry for the terminal driver is ttread(). Like ttwrite() ttread()
first checks that the terminal line still has carrier (and that carrier is significant); if
not, it goes to sleep or returns an error. It then checks to see whether the process
is part of the session and the process group currently associated with the terminal.
If the process is a member of the session currently associated with the terminal, if
any, and is a member of the current process group, the read proceeds. Otherwise,
if a SIGTTIN would suspend the process, a SIGTTIN is sent to that process group.
In this case, the read will be attempted again when the user moves the process
group to the foreground. Otherwise, an error is returned. Finally, ttread() checks
for data in the appropriate queue (the canonical queue in canonical mode, the raw
queue in noncanonical mode). If no data are present, ttread() returns the error
EWOULDBLOCK if the terminal is using nonblocking I/O; otherwise, it sleeps on
the address of the raw queue. When ttread() is awakened, it restarts processing
from the beginning because the terminal state or process group might have
changed while it was asleep.

When characters are present in the queue for which ttread() is waiting, they
are removed from the queue one at a time with getc() and are copied out to the
user's buffer with ureadc(). In canonical mode, certain characters receive special
processing as they are removed from the queue: The delayed-suspension character
causes the current process group to be stopped with signal SIGTSTP, and the end-
of-file character terminates the read without being passed back to the user pro-
gram. If there was no previous character, the end-of-file character results in the
read returning zero characters, and that is interpreted by user programs as indicat-
ing end-of-file. However, most special processing of input characters is done

when the character is entered into the queue. For example, translating carriage
returns to newlines based on the ICRNL flag must be done when the character is
first received because the newline character wakes up waiting processes in canoni-
cal mode. In noncanonical mode, the characters are not examined as they are pro-
cessed.

Characters are processed and returned to the user until the character count in
the uio structure reaches zero, the queue is exhausted, or, if in canonical mode, a
line terminator is reached. When the read() call returns, the returned character
count will be the amount by which the requested count was decremented as char-
acters were processed.

After the read completes, if terminal output was blocked by a stop character
being sent because the queue was filling up, and the queue is now less than 20-per-
cent full, a start character (normally XON, control-Q) is sent.

The stop Routine
Character output on terminal devices is done in blocks as large as possible, for
efficiency. However, there are two events that should cause a pending output oper-
ation to be stopped. The first event is the receipt of a stop character, which should
stop output as quickly as possible; sometimes, the device receiving output is a
printer or other output device with a limited buffer size. The other event that stops
output is the receipt of a special character that causes output to be discarded, pos-
sibly because of a signal. In either case, the terminal line discipline calls the char-
acter device driver's d_stop entry to stop any current output operation. Two
parameters are provided: a tty structure and a flag that indicates whether output is
to be flushed or suspended. Theoretically, if output is flushed, the terminal disci-
pline removes all the data in the output queue after calling the device stop routine.
More practically, the flag is ignored by most current device drivers.

The implementation of the d_stop routine is hardware dependent. Different
drivers stop output by disabling the transmitter, thus suspending output, or by
changing the current character count to zero. Drivers using pseudo-DMA may
change the limit on the current block of characters so that the pseudo-DMA routine
will call the transmit-complete interrupt routine after the current character is trans-
mitted. Most drivers set a flag in the tty state, TS_FLUSH, when a stop is to flush
data, and the aborted output operation will cause an interrupt. When the transmit-
complete interrupt routine runs, it checks the TS_FLUSH flag, and avoids updating
the output-queue character count (the queue has probably already been flushed by
the time the interrupt occurs). If output is to be stopped but not flushed, the
TS_TTSTOP flag is set in the tty state; the driver must stop output such that it may
be resumed from the current position.

The ioctl Routine
Section 10.3 described the user interface to terminal drivers and line disciplines,
most of which is accessed via the ioctl system call. Most of these calls manipulate
software options in the terminal line discipline; some of them also affect the



354 Chapter 10 Terminal Handling

error = (*linesw[tp->t_line].l_ioctl)(tp, cmd, data, flag);
if (error >= 0)

return (error);
error = ttioctl(tp/ cmd, data, flag);
if (error >= 0)

return (error);
switch (cmd) {
case TIOCSBRK: /* hardware specific commands */

return (0) ;
case TIOCCBRK:

return (0);
default:

return (KNOTTY);

Figure 10.3 Handling of an error return from a line discipline.

operation of the asynchronous serial port hardware. In particular, the hardware
line speed, word size, and parity are derived from these settings. So, ioctl calls are
processed both by the current line discipline and by the hardware driver.

The device driver d_ioctl routine is called with a device number, an ioctl com-
mand, and a pointer to a data buffer when an ioctl is done on a character-special
file, among other arguments. Like the read and write routines, most terminal-
driver ioctl routines locate the tty structure for the device, then pass control to the
line discipline. The line-discipline ioctl routine does discipline-specific actions,
including change of line discipline. If the line-discipline routine fails, the driver
will immediately return an error, as shown in Fig. 10.3. Otherwise, the driver will
then call the ttioctl() routine that does most common terminal processing, includ-
ing changing terminal parameters. If ttioctl() fails, the driver will immediately
return an error. Otherwise, some drivers implement additional ioctl commands
that do hardware specific processing—for example, manipulating modem-control
outputs. These commands are not recognized by the line discipline, or by com-
mon terminal processing, and thus must be handled by the driver. The ioctl rou-
tine returns an error number if an error is detected, or returns zero if the command
has been processed successfully. The errno variable is set to ENOTTY if the com-
mand is not recognized.

Modem Transitions
The way in which the system uses modem-control lines on terminal lines was
introduced in Section 10.7. Most terminal multiplexers support at least the set of
modem-control lines used by 4.4BSD; those that do not act instead as though

Section 10.9 Other Line Disciplines 355

carrier were always asserted. When a device is opened, the DTR output is enabled,
and then the state of the carrier input is checked. If the state of the carrier input
changes later, this change must be detected and processed by the driver. Some
devices have a separate interrupt that reports changes in modem-control status;
others report such changes along with other status information with received char-
acters. Some devices do not interrupt when modem-control lines change, and the
driver must check their status periodically. When a change is detected, the line
discipline is notified by a call to its l_modem routine with the new state of the car-
rier input.

The normal terminal-driver modem routine, ttymodem(), maintains the state
of the TS_CARR_ON flag in the tty structure and processes corresponding state
changes. When carrier establishment is detected, a wakeup is issued for any pro-
cess waiting for an open to complete. When carrier drops on an open line, the
leader of the session associated with the terminal (if any) is sent a hangup signal,
SIGHUP, and the terminal queues are flushed. The return value of ttymodem()
indicates whether the driver should maintain its DTR output. If the value is zero,
DTR should be turned off. Ttymodem() also implements an obscure terminal
option to use the carrier line for flow-control handshaking, stopping output when
carrier drops and resuming when it returns.

Closing of Terminal Devices

When the final reference to a terminal device is closed, or the revoke system call is
made on the device, the device-driver close routine is called. Both the line discipline
and the hardware driver may need to close down gracefully. The device-driver rou-
tine first calls the line-discipline close routine. The standard line-discipline close
entry, ttylclose() waits for any pending output to drain (if the terminal was not
opened with the O_NONBLOCK flag set and the carrier is still on), then flushes the
input and output queues. (Note that the close may be interrupted by a signal while
waiting for output to complete.) The hardware driver may clear any pending opera-
tions, such as transmission of a break. If the state bit TS_HUPCLS has been set with
the TIOCHPCL ioctl, DTR is disabled to hang up the line. Finally, the device-driver
routine calls tty close (), which flushes all the queues, increments the generation
number so that pending reads and writes can detect reuse of the terminal, and clears
the terminal state.

Other Line Disciplines

We have examined the operation of the terminal I/O system using the standard ter-
minal-oriented line-discipline routines. For completeness, we now describe two
other line disciplines in the system. Note that the preceding discussion of the
operation of the terminal multiplexer drivers applies when these disciplines are
used, as well as when the terminal-oriented disciplines are used.



356 Chapter 10 Terminal Handling References 357

Serial Line IP Discipline
The serial line IP (SLIP) line discipline is used by networking software to encapsu-
late and transfer Internet Protocol (IP) datagrams over asynchronous serial lines
[Romkey, 1988]. (See Chapter 13 for information about IP.) The slattach pro-
gram opens a serial line, sets the line's speed, and enters the SLIP line discipline.
The SLIP line discipline's open routine associates the terminal line with a precon-
figured network interface and prepares to send and receive network packets. Once
the interface's network address is set with the ifconfig program, the network will
route packets through the SLIP line to the system to which it connects. Packets are
framed with a simple scheme; a framing character (0300 octal) separates packets.
Framing characters that occur within packets are quoted with an escape character
(0333 octal) and are transposed (to 0334 octal). Escape characters within the
packet are escaped and transposed (to 0335 octal).

The output path is started every time a packet is output to the SLIP interface.
Packets are enqueued on one of two queues: one for interactive traffic and one for
other traffic. Interactive traffic takes precedence over other traffic. The SLIP disci-
pline places the framing character and the data of the next packet onto the output
queue of the tty, escaping the framing and the escape characters as needed, and in
some cases compressing packet headers. It then starts transmission by calling
ttstart( ), which in turn calls the device's start routine referenced in the tty t_oproc
field. It may place multiple packets onto the output queue before returning, as
long as the system is not running short of C-list blocks. However, it stops moving
packets into the tty output queue when the character count has reached a fairly low
limit (60 bytes), so that future interactive traffic is not blocked by noninteractive
traffic already in the output queue. When transmission completes, the device
driver calls the SLIP start routine, which continues to place data onto the output
queue until all packets have been sent or the queue hits the limit again.

When characters are received on a line that is using the SLIP discipline, the
escaped characters are translated and data characters are placed into a network
buffer. When a framing character ends the packet, the packet header is uncom-
pressed if necessary, the packet is presented to the network protocol, and the
buffer is reinitialized.

The SLIP discipline allows moderate-speed network connections to machines
without specialized high-speed network hardware. It has a simple design, but has
several limitations. A newer protocol, the point-to-point protocol (or PPP),
addresses some of the limitations [Simpson, 1994]. However, PPP is not included
in 4.4BSD.

Graphics Tablet Discipline
The tablet line discipline connects graphic devices, such as digitizing tablets, to
the system using a serial line. Once the discipline is entered, it receives graphics
data from the device continuously, and allows the application program to poll for
the most recent information by reading from the line. The format of the informa-
tion returned is dependent on that provided by the device; several different formats

two general modes of terminal input? Which mode is most
use when users converse with an interactive screen editor?

Exercises
10 1 What are the two

commonly in use when
10.2 Explain why there are two character queues for dealing with terminal input.

Describe the use of
10 3 What do we mean when we say that modem control is supported on a ter-

minal line? How are terminal lines of this sort typically used?

10.4 What signal is sent to what process associated with a terminal if a user dis-
connects the modem line in the middle of a session?

10.5 How is the high watermark on a terminal's output queue determined?
10 6 Describe two methods to reduce the overhead of a hardware device that

transmits a single character at a time. List the hardware requirements of
each.

*10.7 Consider & facility that allowed a tutor on one terminal to monitor and
assist students working on other terminals. Everything the students typed
would be transmitted both to the system as input and to the tutor's terminal
as output Everything the tutor typed would be directed to the students' ter-
minals as input. Describe how this facility might be implemented with a
special-purpose line. Describe further useful generalizations of
this facility.

*10.8 The terminal line discipline supports logical erasure of input text when
characters words, and lines are erased. Remembering that other system
activities continue while a user types an input line, explain what complica-
tions must be considered in the implementation of this feature. Name three
exceptional cases and describe their effects on the implementation.

**10.9 What are the advantages of the use of line disciplines by device drivers for
terminal multiplexers? What are the limitations? Propose an alternative
approach to the current structure of the terminal I/O system.

**10. 10 Propose another buffering scheme to replace C-lists.

Nonstandard for Transmission of IP Datagrams Over Serial
1055, available by anonymous FTP from ds.internic.net,

References
Romkey, 1988.

J. Romkey,
Lines: SLIP
June 1988.

Scheifler & Gettys, 1986.
R.. W. Scheifler & J. Gettys, "The X Window System," ACM Transactions
on Graphics, vol. 5, no. 2, pp. 79-109, April 1986.

Simpson, 1994.
W. Simpson. "The Point-to-Point Protocol (PPP)," RFC 1661, available by
anonymous FTP from ds.internic.net, July 1994.



PART4

Interprocess
Communication



CHAPTER 11

Interprocess Communication

Historically, UNIX systems were weak in the area of interprocess communication.
Before the release of 4.2BSD, the only standard interprocess-communication facil-
ity found in UNIX was the pipe—a reliable, flow-controlled, byte stream that could
be established only between two related processes on the same machine. The lim-
iting nature of pipes inspired many experimental facilities, such as the Rand Cor-
poration UNIX system's ports [Sunshine, 1977], multiplexed files that were an
experimental part of Version 7 UNIX [UPMV7, 1983], and the Accent IPC facility
developed at Carnegie-Mellon University [Rashid, 1980]. Some communication
facilities were developed for use in application-specific versions of UNIX—for
example, the shared memory, semaphores, and message queues that were part of
the Columbus UNIX System. The requirements of the DARPA research community,
which drove much of the design and development of 4.2BSD, resulted in a signifi-
cant effort to address the lack of a comprehensive set of interprocess-communica-
tion facilities in UNIX. The facilities designed and implemented in 4.2BSD were
refined following that version's release. As a result, 4.4BSD provides a rich set of
interprocess-communication facilities intended to support the construction of dis-
tributed programs built on top of communications primitives.

The interprocess-communication facilities are described in this chapter. The
layer of software that implements these facilities is strongly intertwined with the
network subsystem. The architecture of the network system is described in Chap-
ter 12, and the networking protocols themselves are examined in Chapter 13. You
will find it easiest to understand the material in these three chapters if you first
read Chapter 11, and then Chapters 12 and 13. At the end of Chapter 13 is a sec-
tion devoted to tying everything together.

361



362 Chapter 11 Interprocess Communication

11.1 Interprocess-Communication Model

There were several goals in the design of the interprocess-communication enhance-
ments to UNIX. The most immediate need was to provide access to communication
networks such as the DARPA Internet [Cerf, 1978]. Previous work in providing net-
work access had focused on the implementation of the network protocols, exporting
the transport facilities to applications via special-purpose—and often awkward—
character-device interfaces [D. Cohen, 1977; Gurwitz, 1981]. As a result, each new
network implementation resulted in a different application interface, requiring most
existing programs to be altered significantly or rewritten completely. The 4.2BSD
interprocess-communication facilities were intended to provide a sufficiently gen-
eral interface to allow network-based applications to be constructed independently
of the underlying communication facilities.

The second goal was to allow multiprocess programs, such as distributed
databases, to be implemented. The UNIX pipe requires all communicating pro-
cesses to be derived from a common parent process. The use of pipes forced sys-
tems such as the Ingres database system to be designed with a somewhat contorted
structure [Kalash et al, 1986]. New communication facilities were needed to sup-
port communication between unrelated processes residing locally on a single host
computer and residing remotely on multiple host machines.

Finally, the emerging networking and workstation technology required that
the new communication facilities allow construction of local-area network ser-
vices, such as file servers. The intent was to provide facilities that could be used
easily in supporting resource sharing in a distributed environment; the intention
was not to build a distributed UNIX system.

The interprocess-communication facilities were designed to support the fol-
lowing:

• Transparency: Communication between processes should not depend on
whether the processes are on the same machine.

• Efficiency: The applicability of any interprocess-communication facility is lim-
ited by the performance of the facility. In 4.2BSD, interprocess communication
was layered on top of network communication for performance reasons. The
alternative is to provide network communication as a service accessed via the
interprocess-communication facilities. Although this design is more modular, it
would have required that network-communication facilities be accessed through
one or more server processes. At the time that 4.2BSD was designed, the
prevalent hardware on which the system ran had such a slow process context-
switch time that the performance of the communication facilities in a distributed
environment would have been seriously constrained. Thus, the most efficient
implementation of interprocess-communication facilities layers interprocess
communication on top of network-communication facilities. Although current
hardware is much faster than was the hardware used at the time of the initial
design, the desire for maximal network performance is no less.

Section 11.1 Interprocess-Communication Model 363

• Compatibility: Existing naive processes should be usable in a distributed envi-
ronment without change. A naive process is characterized as a process that per-
forms its work by reading from the standard input file and writing to the standard
output file. A sophisticated process is one that manages other processes or uses
knowledge about specific devices, such as a terminal. A major reason why UNIX
has been successful is the operating system's support for modularity by naive
processes that act as byte-stream filters. Although sophisticated applications
such as shells and screen editors exist, they are far outnumbered by the collection
of naive application programs.

While designing the interprocess-communication facilities, the developers identi-
fied the following requirements to support these goals, and they developed a unify-
ing concept for each:

• The system must support communication networks that use different sets of pro-
tocols, different naming conventions, different hardware, and so on. The notion
of a communication domain was defined for these reasons. A communication
domain embodies the standard semantics of communication and naming. Differ-
ent networks almost always have different standards for specifying the name of a
communication endpoint. Names may also vary in their properties. In one net-
work, a name may be a fixed address for a communication endpoint, whereas in
another it may be used to locate a process that can move between locations. The
semantics of communication can include the cost associated with the reliable
transport of data, the support for multicast transmissions, the ability to pass
access rights or capabilities, and so on. By distinguishing communication prop-
erties, applications can select a domain appropriate to their needs.

• A unified abstraction for an endpoint of communication is needed that can be
manipulated with a file descriptor. The socket is the abstract object from which
messages are sent and received. Sockets are created within a communication
domain, just as files are created within a filesystem. Unlike files, however, sock-
ets exist only as long as they are referenced.

• The semantic aspects of communication must be made available to applications
in a controlled and uniform way. That is, applications must be able to request
styles of communication, such as virtual circuits or datagrams, but these styles
must be provided consistently across all communication domains. All sockets
are typed according to their communication semantics. Types are defined by the
subset of semantic properties that a socket supports. These properties are

1. In-order delivery of data

2. Unduplicated delivery of data

3. Reliable delivery of data

4. Connection-oriented communication



364 Chapter 11 Interprocess Communication

5. Preservation of message boundaries

6. Support for out-of-band messages

Pipes have the first four properties, but not the fifth or sixth. An out-of-band
message is one that is delivered to the receiver outside the normal stream of
incoming, in-band data. It usually is associated with an urgent or exceptional con-
dition. A connection is a mechanism that protocols use to avoid having to trans-
mit the identity of the sending socket with each packet of data. Instead, the iden-
tity of each endpoint of communication is exchanged before transmission of any
data, and is maintained at each end so that it can be presented at any time. On the
other hand, connectionless communications require a source and destination
address associated with each transmission. A datagram socket models potentially
unreliable, connectionless packet communication; a stream socket models a reli-
able connection-based byte stream that may support out-of-band data transmis-
sion; and a sequenced packet socket models sequenced, reliable, unduplicated con-
nection-based communication that preserves message boundaries. In the latter
case, a message is also known as a record. Other types of sockets are desirable
and can be added.

• Processes must be able to locate endpoints of communication so that they can
rendezvous without being related; hence, sockets can be named. A socket's
name is meaningfully interpreted only within the context of the communication
domain in which the socket is created. The names used by most applications are
human-readable strings. However, the name for a socket that is used within a
communication domain is usually a low-level address. Rather than placing
name-to-address translation functions in the kernel, 4.4BSD provides functions
for application programs to use in translating names to addresses. In the remain-
der of this chapter, we refer to the name of a socket as an address.

Use of Sockets
Use of sockets is reasonably straightforward. First, a socket must be created with
the socket system call:

s = socket(domain, type, protocol);
int s, domain, type, protocol;

The type of socket is selected according to the characteristic properties required by
the application. For example, if reliable communication is required, a stream
socket might be selected. The type parameter is a socket type defined in a system
header file. The domain parameter specifies the communication domain (or proto-
col family, see Section 11.4) in which the socket should be created; this domain is
dependent on the environment in which the application is working. The most com-
mon domain for intermachine communication is the Internet communication
domain because of the many hosts that support the Internet communication
protocols. The final parameter, the protocol, can be used to indicate a specific

Section 11.1 Interprocess-Communication Model 365

communication protocol for use in supporting the socket's operation. Protocols are
indicated by well-known (standard) constants specific to each communication
domain. If the protocol is specified as zero, the system picks an appropriate proto-
col. The socket system call returns a file descriptor (a small integer number; see
Section 6.4) that is then used in later socket operations. The socket call is similar
to open, except that it creates a new instance of an object of the specified type,
whereas open creates a new reference to an existing object, such as a file or device.

After a socket has been created, the next step depends on the type of socket
being used. The most commonly used type of socket requires a connection before
it can be used. Creation of a connection between two sockets usually requires that
each socket have an address bound to it. Applications may explicitly specify a
socket's address or may permit the system to assign one. A socket's address is
normally immutable, although some protocols refine an under-specified address as
needed. Socket addresses may be reused if the communication domain permits,
although domains normally ensure that a socket address is unique on each host, so
that the association between two sockets is unique within the communication
domain. The address to be bound to a socket must be formulated in a socket
address structure. Applications find addresses of well-known services by looking
up their names in a database. The format of addresses can vary among domains;
to permit a wide variety of different formats, the system treats addresses as vari-
able-length byte arrays, which are prefixed with a length and a tag that identifies
their format. The call to bind an address to a socket is

error = bind(s, addr, addrlen);
int error, s;
struct sockaddr *addr;
int addrlen;

where s is the descriptor returned from a previous socket system call.
For several reasons, binding a name to a socket was separated from creating a

socket. First, sockets are potentially useful without names. If all sockets had to
be named, users would be forced to devise meaningless names without reason.
Second, in some communication domains, it may be necessary to supply addi-
tional, nonstandard information to the system before binding a name to a socket—
for example, the "type of service" required when a socket is used. If a socket's
name had to be specified at the time that the socket was created, supplying this
information would not be possible without further complicating the interface.

In connection-based communication, the process that initiates a connection
normally is termed a client process, whereas the process that receives, or responds
to, a connection is termed a server process. In the client process, a connection is
initiated with a connect system call:

error = connect(s, serveraddr, serveraddrlen);
int error, s;
struct sockaddr *serveraddr;
int serveraddrlen;



366 Chapter 11 Interprocess Communication

In the server process, the socket is first marked to specify that incoming connec-
tions are to be accepted on it:

error = listen(s, backlog);
int error, s, backlog;

Connections are then received, one at a time, with

snew = accept(s, clientaddr, clientaddrlen);
int snew, s;
struct sockaddr *clientaddr;
int *clientaddrlen;

The backlog parameter in the listen call specifies an upper bound on the number of
pending connections that should be queued for acceptance. Processes can obtain a
new connected socket with the accept call, and can also obtain the address of the
client by specifying the clientaddr and clientaddrlen parameters. Note that accept
returns a file descriptor associated with a new socket. This new socket is the
socket through which client-server communication can take place. The original
socket s is used solely for managing the queue of connection requests in the
server.

Sockets that are not connection based may also use the connect system call to
fix a peer's address, although this step is not required. The system calls available
for sending and receiving data (described later in this subsection) permit connec-
tionless sockets to be used without a fixed peer address via specification of the
destination with each transmitted message. Likewise, connectionless sockets do
not need to bind an address to a socket before using the socket to transmit data.
However, in some communication domains, addresses are assigned to sockets
when the latter are first used, if no specific address was bound.

A variety of calls is available for sending and receiving data. The usual read
(readv) and write (writev) system calls, as well as the newer send and recv calls,
can be used with sockets that are in a connected state. Send and recv differ from
the more common interface in that they both support an additional flags parameter.
The flags can be used to peek at incoming data on reception (MSG_PEEK), to send
or receive out-of-band data (MSG_OOB), and to send data without network routing
(MSG_DONTROUTE). The sendto and recvfrom system calls have all the capabili-
ties of send and recv and, in addition, permit callers to specify or receive the
address of the peer with whom they are communicating; these calls are most use-
ful for connectionless sockets, where the peer may vary on each message transmit-
ted or received. (The send and recv calls were originally system calls; they are
now implemented as library routines using sendto and recvfrom with null
addresses.) Finally, the sendmsg and recvmsg system calls support the full inter-
face to the interprocess-communication facilities. Besides scatter-gather opera-
tions being possible, an address may be specified or received, the optional flags
described previously are available, and specially interpreted ancillary data or

Section 11.1 Interprocess-Communication Model 367

struct msghdr

msg_name
msg_ namelen
msg_iov
msg_iovlen

msg_ controllen
msg_flags

msg_control

iov_base

iov_len

iov_base

iov_len

iov_base

iov_len

struct iov[]

Figure 11.1 Data structures for the sendmsg and recvmsg system calls.

control information may be passed (see Fig. 11.1). Ancillary data may include
protocol-specific data, such as addressing or options, and also specially interpreted
data, called access rights.

In addition to these system calls, several other calls are provided to access
miscellaneous services. The socketpair call provides a mechanism by which two
connected sockets can be created without binding addresses. This facility is
almost identical to a pipe, except for the potential for bidirectional flow of data;
pipes are implemented internally as a pair of sockets. The getsockname call
returns the locally bound address of a socket, whereas the getpeername call
returns the address of the socket at the remote end of a connection. The shutdown
call terminates data transmission or reception at a socket, and two ioctl-style
calls—setsockopt and getsockopt—can be used to set and retrieve various parame-
ters that control the operation of a socket or of the underlying network protocols.
These options include the ability to transmit broadcast messages, to set the size of
a socket's send and receive data buffers, and to await the transmission of queued
data when a socket is destroyed. Sockets are discarded with the normal close sys-
tem call.

The interface to the interprocess-communication facilities was purposely
designed to be orthogonal to the existing standard system interfaces—that is, to
the open, read, and write system calls. This decision was made to avoid overload-
ing the familiar interface with undue complexity. In addition, the developers
thought that using an interface that was completely independent of the filesystem
would improve the portability of software, because, for example, pathnames
would not be involved. Backward compatibility, for the sake of naive processes,



368 Chapter 11 Interprocess Communication

was still deemed important; thus, the familiar read-write interface was augmented
to permit access to the new communication facilities wherever that made sense
(e.g., when connected stream sockets were used).

11.2 Implementation Structure and Overview

The interprocess-communication facilities are layered on top of the networking
facilities, as shown in Fig. 11.2. Data flows from the application through the
socket layer to the networking support, and vice versa. State required by the
socket level is fully encapsulated in the socket layer, whereas any protocol-related
state is maintained in auxiliary data structures that are specific to the supporting
protocols. Responsibility for storage associated with transmitted data is passed
from the socket level to the network level. Consistent adherence to this rule
assists in simplifying details of storage management. Within the socket layer, the
socket data structure is the focus of all activity. The system-call interface routines
manage the actions related to a system call, collecting the system-call parameters
(see Section 3.2) and converting user data into the format expected by the second-
level routines. Most of the socket abstraction is implemented within the second-
level routines. All second-level routines have names with a so prefix, and directly
manipulate socket data structures and manage the synchronization between asyn-
chronous activities; these routines are listed in Table 11.1.

The remainder of this chapter focuses on the implementation of the socket
layer. Section 11.3 discusses how memory is managed at the socket level and
below in the networking subsystem; Section 11.4 covers the socket and related
data structures; Section 11.5 presents the algorithms for connection setup; Section
11.6 discusses data transfer; and Section 11.7 describes connection shutdown.
Throughout this chapter, references to the supporting facilities provided by the
network-communication protocols are made with little elaboration; a complete
description of the interaction between the network protocols and the socket layer
appears in Chapter 12, and the internals of the network protocols are presented in
Chapter 13.

Figure 11.2 Interprocess-communication implementation layering. The boxes on the left
name the standard layers; the boxes on the right name specific examples of the layers that
might be used by an individual socket.

socket layer

network protocols

network interfaces

stream socket

TCP/IP protocols

10 Mbit/s Ethernet

Section 11.3 Memory Management 369

Table 11.1 Socket-layer support routines.

Routine Function
socreate() create a new socket
sobind() bind a name to a socket
solisten() mark a socket as listening for connection requests
soclose () close a socket
soabort() abort connection on a socket
soaccept() accept a pending connection on a socket
soconnect() initiate a connection to another socket
soconnect2() create a connection between two sockets
sodisconnect( ) initiate a disconnect on a connected socket
so send () send data
soreceive ( ) receive data
soshutdown() shut down data transmission or reception
sosetopt() set the value of a socket option
sogetopt() get the value of a socket option

11.3 Memory Management

The requirements placed on a memory-management scheme by interprocess-com-
munication and network protocols tend to be substantially different from those of
other parts of the operating system. Although all require the efficient allocation
and reclamation of memory, communication protocols in particular need memory
in widely varying sizes. Memory is needed for variable-sized structures such as
communication protocol packets. Protocol implementations must frequently
prepend headers or remove headers from packetized data. As packets are sent and
received, buffered data may need to be divided into packets, and received packets
may be combined into a single record. In addition, packets and other data objects
must be queued when awaiting transmission or reception. A special-purpose
memory-management facility was created for use by the interprocess-communica-
tion and networking systems to address these needs.

Mbufs
The memory-management facilities revolve around a data structure called an mbuf
(see Fig. 11.3 on page 370). Mbufs, or memory buffers, are 128 bytes long, with
100 or 108 bytes of this space reserved for data storage. For large messages, the
system can associate larger sections of data with an mbuf by referencing an exter-
nal mbuf cluster from a private virtual memory area. The size of an mbuf cluster
may vary by architecture, and is specified by the macro MCLBYTES (traditionally
1 Kbyte).



370 Chapter 11 Interprocess Communication

m next
m_nextpkt
m_len
m_data
m_type
m_flags
pkt.len
pkt. rcvif
ext.buf
ext.free
ext.size

m _dat

108 bytes

Figure 11.3 Memory-buffer (mbuf) data structure.

There are three sets of header fields that might be present in an mbuf. The
first set is always present and resides at the beginning of the mbuf structure. The
second set of header fields is optional. The third set of header fields is used when
an external mbuf cluster is associated with an mbuf.

Data are stored either in the internal data area or in the external cluster, but
never in both. Data in either location are accessed via a data pointer within the
mbuf, and thus may begin at a location other than the beginning of the buffer area.
In addition to the data-pointer field used to reference the data associated with an
mbuf, a length field also is maintained. The length field shows the number of
bytes of valid data to be found at the data-pointer location. The data and length
fields allow routines to trim data efficiently at the start or end of an mbuf. In dele-
tion of data at the start of an mbuf, the pointer is incremented and the length is
decremented. In deletion of data at the end of an mbuf, only the length is decre-
mented. When space is available within an mbuf, data can be added at either end.
This flexibility to add and delete space without copying is particularly useful in
communication-protocol implementation. Protocols routinely strip protocol infor-
mation off the front or back of a message before the message's contents are
handed to a higher-level processing module, or add protocol information as a mes-
sage is passed to lower levels.

The ability to refer to mbuf clusters from an mbuf permits data to be copied
without a memory-to-memory copy operation. When multiple copies of a block
of data are required, the same mbuf cluster can be referenced from multiple mbufs
to avoid physical copies. An array of reference counts is maintained for a virtual
array of mbuf clusters to support this style of sharing (see the next subsection).

Multiple mbufs can be linked to hold an arbitrary quantity of data. This link-
age is done with the m_next field of the mbuf. By convention, a chain of mbufs

Section 11.3 Memory Management 371

linked in this way is treated as a single object. For example, the communication
protocols build packets from chains of mbufs. A second field, m_nextpkt, links
objects built from chains of mbufs into lists of objects. (This field was previously
known as m__act.) Throughout our discussions, a collection of mbufs linked
together with the m_next field will be called a chain; chains of mbufs linked
together with the m__nextpkt field will be called a queue.

The mbuf structure also contains a type field. Each mbuf is typed according
to its use. The mbuf type serves two purposes. The only operational use of the
type is to distinguish optional components of a message in an mbuf chain that is
queued for reception on a socket data queue. Otherwise, the type information is
used in maintaining statistics about storage use and, if there are problems, as an
aid in tracking mbufs.

The final header component of the standard mbuf structure is the flags field.
The flags are logically divided into two sets: flags that describe the usage of an
individual mbuf and those that describe an object stored in an mbuf chain. The
flags describing an mbuf specify whether the mbuf references external storage
(M_EXT), whether the second set of header fields is present (M_PKTHDR), and
whether the mbuf completes a record (M_EOR). A packet normally would be
stored in an mbuf chain (of one or more mbufs) with the M_PKTHDR flag set on
the first mbuf of the chain. The mbuf flags describing the packet would be set in
the first mbuf and could include either the broadcast flag (M_BCAST) or the multi-
cast flag (M_MCAST). The latter flags specify that a transmitted packet should be
sent as a broadcast or multicast, respectively, or that a received packet was sent in
that manner.

If the M_PKTHDR flag is set on an mbuf, the mbuf has a second set of header
fields immediately following the standard header. This addition causes the mbuf
data area to shrink from 108 bytes to 100 bytes. The second header is used on
only the first mbuf of a chain. It includes two fields: the total length of the object
in the mbuf chain, and, for received packets, a field that identifies the network
interface on which the packet was received.

An mbuf that uses external storage is marked with the M_EXT flag. Here, a
third header area overlays the internal data area of an mbuf. The fields in this
header describe the external storage, including the start of the buffer and its size.
A third field is designated to point to a routine to free the buffer, in theory allow-
ing various types of buffers to be mapped by mbufs. In the current implementa-
tion, however, the free function is not used, and the external storage is assumed to
be a standard mbuf cluster.

Mbufs have fixed-sized, rather than variable-sized, data areas for several rea-
sons. First, the fixed size minimizes memory fragmentation. This consideration
was important at the time the networking software was designed originally, as a
targeted machine was the BBN C70, which had a 20-bit physical address space.
Second, communication protocols are frequently required to prepend or append
headers to existing data areas, to split data areas, or to trim data from the begin-
ning or end of a data area. The mbuf facilities are designed to handle such
changes without reallocation or copying whenever possible. Finally, the dtom()



372 Chapter 11 Interprocess Communication

function, described in the subsection on mbuf utility routines later in this section,
would be much more expensive if mbufs were not fixed in size. (Note, however,
that the dtom() function is now deprecated.)

The mbuf structure has changed substantially since its initial design. The
flags field and the two optional sets of header fields were added since 4.3BSD. In
addition, the data pointer replaces a field used as an offset in the initial version of
the mbuf. The use of an offset was not portable when the data referenced could be
in an mbuf cluster. The addition of a flags field allowed the use of a flag indicat-
ing external storage; earlier versions tested the magnitude of the offset to see
whether the data were in the internal mbuf data area. The addition of the broad-
cast flag allowed network-level protocols to know whether packets were received
as link-level broadcasts, as was required for standards conformance.

The two new headers were designed to avoid redundant calculations of the
size of an object, to make it easier to identify the incoming network interface of a
received packet, and to generalize the use of external storage by an mbuf. The
design has not been completely successful. The packet header contains only two
fields (8 bytes), although we anticipated that a timestamp or other fields would be
added. It is probably not worth the complexity of having a variable-sized header
on an mbuf for the packet header; instead, those fields probably should have been
included in all mbufs, even if they were not used. Also, as we noted, the header
describing the external storage includes a pointer to a free function. The header
file includes an unused sample macro to use that function, in theory allowing other
types of external storage. However, the example is incorrect. The problem is that
the code continues to use the array of mbuf-cluster reference counts, which is one
for one with mbuf clusters. If an mbuf mapped some other external buffer, index-
ing into this array of reference counts would be incorrect. Rather than providing a
function to free the buffer, the mbuf header should have a function to adjust the
reference count, freeing the buffer when the final reference is removed.

Storage-Management Algorithms
The system allocates mbuf structures with the standard memory allocator, the
malloc( ) function. Mbuf clusters are managed differently, via three central
resources: a pool of pages allocated from the system memory allocator, a fixed-
sized area of kernel virtual memory for mapping pages used for mbuf clusters, and
an array of counters used in maintaining reference counts on mbuf clusters. A free
list is maintained for mbuf clusters. When additional mbuf clusters are required,
the system allocates a page of memory, maps the page into the reserved area of
kernel virtual memory, and divides the page into one or more mbuf clusters,
depending on the page size. The array of reference counts is large enough for
every mbuf cluster that could be allocated within this area of virtual memory, and
is one for one with the virtual array of clusters. When the system is booted, the
mbuf-allocation routines initialize the free list by allocating 4 Kbyte of physical
memory for mbuf clusters. Further memory may be allocated as the system oper-
ates, up to a compile-time configurable limit (256 Kbyte by default, or 512 Kbyte

Section 11.3 Memory Management 373

if the GATEWAY configuration option is enabled). Once memory is allocated for
mbuf clusters, it is never freed.

Mbuf-allocation requests indicate either that they must be fulfilled immedi-
ately or that they can wait for available resources. If a request is marked as "can
wait" and the requested resources are unavailable, the process is put to sleep to
await available resources. The nonblocking allocation request is necessary for
code that executes at interrupt level. If mbuf allocation has reached its limit or
kernel memory is unavailable, the mbuf-allocation routines ask the network-proto-
col modules to give back any available resources that they can spare. A nonblock-
ing request will fail if no resources are available.

An mbuf-allocation request is made through a call to m_get(), m_gethdr(), or
through an equivalent macro used for efficiency purposes. Space for the mbuf is
allocated by the malloc() function and is then initialized. For m_gethdr(), the
mbuf is initialized with the optional packet header. The MCLGET macro adds an
mbuf cluster to an mbuf.

Release of mbuf resources is straightforward; m_free() frees a single mbuf,
and m_freem( ) frees a chain of mbufs. When an mbuf that references an mbuf
cluster is freed, the reference count for the cluster is decremented. Mbuf clusters
are placed onto the free list when their reference counts reach zero.

Mbuf Utility Routines

Many useful utility routines exist for manipulating mbufs within the kernel net-
working subsystem. Those routines that will be used in Chapter 12 are described
briefly here.

The m_copym() routine makes a copy of an mbuf chain starting at a logical
offset, in bytes, from the start of the data. This routine may be used to copy all or
only part of a chain of mbufs. If an mbuf is associated with an mbuf cluster, the
copy will reference the same data by incrementing the reference count on the clus-
ter; otherwise, the data portion is copied as well. The m_copydata() function is
similar, but copies data from an mbuf chain into a caller-provided buffer.

The m_adj() routine adjusts the data in an mbuf chain by a specified number
of bytes, shaving data off either the front or back. No data are ever copied;
m__adj() operates purely by manipulating the offset and length fields in the mbuf
structures.

The mtod() macro takes a pointer to an mbuf header and a data type and
returns a pointer to the data in the buffer, cast to the given type. The dtom( ) func-
tion is the inverse: It takes a pointer to an arbitrary address in the data of an mbuf,
and returns a pointer to the mbuf header (rather than to the head of the mbuf
chain). This operation is done through simple truncation of the data address to an
mbuf-sized boundary. This function works only when data reside within the mbuf.
In part because this restriction may force extra data copies, this function has been
deprecated; it is no longer used in the main code paths of the network.

The m__pullup() routine rearranges an mbuf chain such that a specified num-
ber of bytes of data resides in a contiguous data area within the mbuf (not in



374 Chapter 11 Interprocess Communication

external storage). This operation is used so that objects such as protocol headers
are contiguous and can be treated as normal data structures, and so that dtom()
will work when the object is freed. (If the dtom() macro is eventually removed,
m_pullup() will no longer be forced to move data from mbuf clusters.) If there is
room, m_pullup() will increase the size of the contiguous region up to the maxi-
mum size of a protocol header in an attempt to avoid being called in the future.

The M_PREPEND() macro adjusts an mbuf chain to prepend a specified num-
ber of bytes of data. If possible, space is made in place, but an additional mbuf
may have to be allocated at the beginning of the chain. It is not currently possible
to prepend data within an mbuf cluster because different mbufs might refer to data
in different portions of the cluster.

11.4 Data Structures

Sockets are the basic objects used by communicating processes. A socket's type
defines the basic set of communication semantics, whereas the communication
domain defines auxiliary properties important to the use of the socket, and may
refine the set of available communication semantics. Table 11.2 shows the four
types of sockets currently supported by the system. To create a new socket, appli-
cations must specify the socket type and communication domain in which the
socket is to be created. The request may also indicate a specific network protocol
to be used by the socket. If no protocol is specified, the system selects an appro-
priate protocol from the set of protocols supported by the communication domain.
If the communication domain is unable to support the type of socket requested
(i.e., no suitable protocol is available), the request will fail.

Sockets are described by a socket data structure that is dynamically created at
the time of a socket system call. Communication domains are described by a

Table 11.2 Socket types supported by the system.

Name
SOCK_STREAM

SOCK_DGRAM

Type
stream

datagram

SOCK_SEQPACKET sequenced packet

SOCK_RAW

Properties
reliable, sequenced, data transfer;
may support out-of-band data
unreliable, unsequenced, data transfer,
with message boundaries preserved

reliable, sequenced, data transfer,
with message boundaries preserved

direct access to the underlying
communication protocols

Section 11.4 Data Structures 375

domain data structure that is statically defined within the system based on the
system's configuration (see Section 14.5). Communication protocols within a
domain are described by a protosw structure that is also statically defined within
the system for each protocol implementation configured. When a request is made
to create a socket, the system uses the value of the communication domain to
search linearly the list of configured domains. If the domain is found, the domain's
table of supported protocols is consulted for a protocol appropriate for the type of
socket being created or for a specific protocol requested. (A wildcard entry may
exist for a raw socket.) Should multiple protocol entries satisfy the request, the
first is selected. We shall begin discussion of the data structures by examining the
domain structure. The protosw structure is discussed in Section 12.1.

Communication Domains

The domain structure is shown in Fig. 11.4. The dom_name field is the ASCII
name of the communication domain. (In the original design, communication
domains were to be specified with ASCII strings; they are now specified with man-
ifest constants.) The dom_family field identifies the protocol family used by the
domain; possible values are shown in Table 11.3 (on page 376). Protocol families
refer to the suite of communication protocols of a domain used to support the
communication semantics of a socket. A protocol family generally has an associ-
ated address family defining an addressing structure, although it can use other
addressing formats. The dom_protosw field points to the table of protocols sup-
ported by the communication domain, and the dom_NPROTOSW pointer marks the
end of the table. The remaining entries contain pointers to domain-specific rou-
tines used in the management and transfer of access rights (described in Section
11.6) and fields relating to routing initialization for the domain.

Figure 11.4 Communication-domain data structure.

dom_family
dom_name
dom_init
dom_externalize
dom_dispose
dom_protosw
dom_protoswNPROTOSW
dom_rtattach
dom_rtoffset
dom_maxrtkey
dom_next

PF_UNIX
"unix"

unp_externalize()
unp_dispose()

&unixsw[3]



376 Chapter 11 Interprocess Communication

Table 11.3 Protocol families.

Name Description
PF_LOCAL (PF_UNIX) local communication
PF_INET DARPA Internet (TCP/IP)
PF_IMPLINK old 1822 Interface Message Processor link layer
PF_PUP old Xerox network
PF_CHAOS MIT Chaos network
PF_NS Xerox Network System (XNS) architecture
PF_ISO OSI network protocols
PF_ECMA European Computer Manufacturers network
PF_DATAKIT AT&T Datakit network
PF_CCITT CCITT protocols, e.g., X.25
PF_SNA IBM System Network Architecture (SNA)
PF_DECnet DEC network
PF_DLI direct link interface
PF_LAT local-area-network terminal interface
PF_HYLINK Network Systems Corporation Hyperchannel (raw)
PF_APPLETALK AppleTalk network
PF_ROUTE communication with kernel routing layer
PF_LINK raw link-layer access
PF_XTP eXpress Transfer Protocol
PF_COIP Connection-oriented IP (STII)
PF_CNT Computer Network Technology
PF_IPX Novell Internet protocol

Sockets
The socket data structure is shown in Fig. 11.5. Storage for the socket structure is
allocated dynamically via the malloc() routine. Sockets contain information
about their type, the supporting protocol in use, and their state (Table 11.4). Data
being transmitted or received are queued at the socket as a list of mbuf chains.
Various fields are present for managing queues of sockets created during connec-
tion establishment. Each socket structure also holds a process-group identifier.
The process-group identifier is used in delivering the SIGURG and SIGIO signals;
SIGURG is sent when an urgent condition exists for a socket, and SIGIO is used by
the asynchronous I/O facility (see Section 6.4). The socket contains an error field,
which is needed for storing asynchronous errors to be reported to the owner of the
socket.

Sockets are located through a process's file descriptor via the file table. When
a socket is created, thef_data field of the file structure is set to point at the socket

Section 11.4 Data Structures 377

receive sockbuf
sb._cc

sb_hiwat
nbcnt

sb mb

sb_flags sb_timeo

\
\
\
\
\
\
\
\
\

/

so_type

so_linger
so_options
so_state

so_pcb
so_proto
so_head
so_qO

so_q0len
so_qlimit

-q
so_qlen
sojtimeo

so_error
so_pgid

so_oobmark
so_rcv...
so_snd...

so_upcallarg
\ \ \ \

send sockbuf
sb_cc

sb_hiwat
sb_mbcnt
sb_mbmax
sb_lowat
sb_mb

sb_sel
sb_flags sb_timeo

socket
Figure 1 1 .5 Socket data structure.

structure, and thef_ops field to point to the set of routines defining socket-specific
file operations. In this sense, the socket structure is a direct parallel of the vnode
structure used by the filesystems.

The socket structure acts as a queueing point for data being transmitted and
received. As data enter the system as a result of system calls, such as write or
send, the socket layer passes the data to the networking subsystem as a chain of
mbufs for immediate transmission. If the supporting protocol module decides to

Table 11.4 Socket states.

State
SS_NOFDREF
SS_ISCONNECTED
SS_ISCONNECTING
SS_ISDISCONNECTING
SS_CANTSENDMORE
SS_CANTRCVMORE
SS_RCVATMARK
SS_ISCONFIRMING

Description
no file-table reference
connected to a peer
in process of connecting to peer
in process of disconnecting from peer
cannot send more data to peer
cannot receive more data from peer
at out-of-band mark on input
peer awaiting connection confirmation



378 Chapter 11 Interprocess Communication

postpone transmission of the data, or if a copy of the data is to be maintained until
an acknowledgment is received, the data are queued in the socket's transmit buffer.
When the network has consumed the data, it discards them from the outgoing
queue. On reception, the network passes data up to the socket layer, also in mbuf
chains, where they are then queued until the application makes a system call to
request them. The socket layer can also make an upcall to an internal kernel client
of the network when data arrive, allowing the data to be processed without a con-
text switch. Upcalls are used by the NFS server (see Chapter 9).

To avoid resource exhaustion, sockets impose upper bounds on the number of
bytes of data that can be queued in a socket data buffer, and also on the amount of
storage space that can be used for data. This high watermark is initially set by the
protocol, although an application can change the value up to a system maximum,
normally 256 Kbyte. The network protocols can examine the high watermark and
use the value in flow-control policies. A low watermark also is present in each
socket data buffer. The low watermark allows applications to control data flow by
specifying a minimum number of bytes required to satisfy a reception request,
with a default of 1 byte and a maximum of the high watermark. For output, the
low watermark sets the minimum amount of space available before transmission
can be attempted; the default is the size of an mbuf cluster. These values also con-
trol the operation of the select system call when it is used to test for ability to read
or write the socket.

When connection indications are received at the communication-protocol
level, the connection may require further processing to complete. Depending on
the protocol, that processing may be done before the connection is returned to the
listening process, or the listening process may be allowed to confirm or reject the
connection request. Sockets used to accept incoming connection requests maintain
two queues of sockets associated with connection requests. The list of sockets
headed by the so_q0 field represents a queue of connections that must be com-
pleted at the protocol level before being returned. The so_q field heads a list of
sockets that are ready to be returned to the listening process. Like the data queues,
the queues of connections also have an application-controllable limit. The limit
applies to both queues. Because the limit may include sockets that cannot yet be
accepted, the system enforces a limit 50-percent larger than the nominal limit.

Note that, although a connection may be established by the network protocol,
the application may choose not to accept the established connection, or may close
down the connection immediately after discovering the identity of the client. It is
also possible for a network protocol to delay completion of a connection until after
the application has obtained control with the accept system call. The application
might then accept or reject the connection explicitly with a protocol-specific mech-
anism. Otherwise, if the application does a data transfer, the connection is con-
firmed; if the application closes the socket immediately, the connection is rejected.

Socket Addresses
Sockets may be labeled so that peers can connect to them. The socket layer treats
an address as an opaque object. Applications supply and receive addresses as

Section 11.4 Data Structures 379

sa_len sa_family sa_jdata
1 byte 1 byte - variable -

Figure 11.6 Socket-address template structure.

socket layer. A structure called a sockaddr, shown in Fig. 11.6, may be used as a
template for referring to the identifying tag and length of each address. Most pro-
tocol layers support a single address type as identified by the tag, known as the
address family. In general, the address-family values are one-for-one with proto-
col family values.

It is common for addresses passed in by an application to reside in mbufs only
long enough for the socket layer to pass them to the supporting protocol for trans-
fer into a fixed-sized address structure, for example, when a protocol records an
address in a protocol state block. The sockaddr structure is the common means by
which the socket layer and network-support facilities exchange addresses. The
size of the generic data array was chosen to be large enough to hold many
addresses directly, although generic code cannot depend on having sufficient space
in a sockaddr structure for an arbitrary address. The local communication domain
(formerly known as the UNIX domain), for example, stores filesystem pathnames
in mbufs and allows socket names as large as 104 bytes, as shown in Fig. 11.7.
The Internet communication domain, on the other hand, uses a fixed-size structure
that combines a DARPA Internet address and a port number. The Internet proto-
cols reserve space for addresses in an Internet control-block data structure, and
free up mbufs that contain addresses after copying the addresses. The ISO (OSI)
domain uses a variable-sized structure with a fixed-size initial component. The
initial portion has space for a network-level address plus a local transport selector.

Figure 11.7 Network system, Internet, and local-domain address structures.

Network-System
socket name

sns_len

AF_NS

sns_net

sns_host

sns_port

sns_zero

14 bytes

Internet-domain
socket name

sin_len

AF_INET

sin_port

sin_addr

sin_zero

14 bytes

Local-domain
socket name

sun_len

AF_LOCAL

sun_path

104 bytes



380 Chapter 11 Interprocess Communication

A larger space may be needed for larger transport selectors or for higher-level
selectors. Another example of a variable-length structure is the link-layer address
format, which includes an optional network interface name as a string, an optional
interface index, and an optional link-layer address.

11.5 Connection Setup
For two processes to pass information between them, an association must be estab-
lished. The steps involved in creating an association (socket, connect, listen, accept,
etc.) were described in Section 11.1. In this section, we shall study the operation of
the socket layer in establishing associations. As the state associated with a connec-
tionless transfer of data is fully encapsulated in each message that is sent, our dis-
cussion will focus on connection-based associations established with the connect,
listen, and accept system calls.

Connection establishment in the client-server model is asymmetric. A client
process actively initiates a connection to obtain service, whereas a server process
passively accepts connections to provide service. Fig. 11.8 shows the state-transi-
tion diagram for a socket used to initiate or accept connections. State transitions
are initiated either by user actions (i.e., system calls) or by protocol actions that
result from receiving network messages or servicing timers that expire.

Sockets are normally used to send and receive data. When they are used in
establishing a connection, they are treated somewhat differently. If a socket is to
be used to accept a connection, a listen system call must be used. The listen call

Figure 11.8 Socket state transitions during process rendezvous.

Section 11.5 Connection Setup

socreate()

listen()
solisten() sodisconnect() 1

passive

sonewconn1()

connect()
soconnect()

active

sonewconn1()

so_q0len != 0

soisconnected()

so_qlen != 0

accept()
soaccept() I

soisconnected() soisconnectu

SS_ISCONNECTING

soisconnected()

SS_ISCONNECTED

381

invokes solisten( ), which notifies the supporting protocol that the socket will be
receiving connections, establishes an empty list of pending connections at the
socket (through the so_q field), and then marks the socket as accepting connec-
tions, SO_ACCEPTCON. At the time a listen is done, a backlog parameter is speci-
fied by the application. This parameter sets a limit on the number of incoming
connections that the system will queue awaiting acceptance by the application.
(The system enforces a maximum on this limit.) Once a socket is set up to receive
connections, the remainder of the work in creating connections is managed by the
protocol layers. For each connection established at the server side, a new socket is
created with the sonewconn 1() routine. These new sockets may be placed on the
socket's queue of partially established connections while the connections are
being completed, or they may be placed directly into the queue of connections
ready to be passed to the application via the accept call. The new sockets might
be ready to be passed to the application either because no further protocol action is
necessary to establish the connection, or because the protocol allows the listening
process to confirm or reject the connection request. In the latter case, the socket is
marked as confirming (state bit SS_CONFIRMING), so that the pending connection
request will be confirmed or rejected as needed. Once sockets on the queue of
partly established connections are ready, they are moved to the queue of connec-
tions completed and pending acceptance by an application (see Fig. 11.9). When
an accept system call is made to obtain a connection, the system verifies that a
connection is present on the socket's queue of ready connections. If no connec-
tion is ready to be returned, the system puts the process to sleep until one arrives
(unless nonblocking I/O is being used with the socket, in which case an error is
returned). When a connection is available, the associated socket is removed from
the queue, a new file descriptor is allocated to reference the socket, and the result
is returned to the caller. If the accept call indicates that the peer's identity is to be
returned, the peer's address is obtained from the protocol layer and is copied into
the supplied buffer.

Figure 11.9 Connections queued at a socket awaiting an accept() call.

SOCK_STREAM

SO_ACCEPTCON
•
•
•

so_head —

so_q —
•
•
•

7

SOCK_STREAM

•
•
•

so_head

so_q —
•
•
•

SOCK_STREAM

•
•
•

so_head —

so_q —
•
•
•



382 Chapter 11 Interprocess Communication

On the client side, an application requests a connection with the connect sys-
tem call, supplying the address of the peer socket to which to connect. The sys-
tem verifies that a connection attempt is not already in progress for that socket,
then invokes soconnect() to initiate the connection. The soconnect() routine first
checks the socket to see whether the latter is already connected. If the socket is
already connected, the existing connection is first terminated (this disconnection is
done with datagram sockets only). With the socket in an unconnected state,
soconnect() then marks the state as connecting, and makes a request to the proto-
col layer to initiate the new connection. Once the connection request has been
passed to the protocol layer, if the connection request is incomplete, the system
puts the process to sleep to await notification by the protocol layer that a com-
pleted connection exists. A nonblocking connect may return at this point, but a
process awaiting a completed connection will awaken only when the connection
request has been completed—either successfully or with an error condition.

A socket's state during connection establishment is managed jointly by the
socket layer and the supporting protocol layer. The socket's state value is never
altered directly by a protocol; to promote modularity, all modifications are per-
formed by surrogate socket-layer routines, such as soisconnected(). These rou-
tines modify the socket state as indicated and notify any waiting processes. The
supporting protocol layers never use process synchronization or signaling facilities
directly. Errors that are detected asynchronously are communicated to a socket in
its so_error field. For example, if a connection request fails because the protocol
layer detects that the requested service is unavailable, the so_error field usually is
set to ECONNREFUSED before the requesting process is awakened. The socket
layer always inspects the value of so_error on return from a call to tsleep()\ this
field is used to report errors detected asynchronously by the protocol layers.

11.6 Data Transfer
Most of the work done by the socket layer lies in sending and receiving data.
Note that the socket layer itself explicitly refrains from imposing any structure on
data transmitted or received via sockets other than optional record boundaries.
This policy is in contrast to that of other interprocess-communication facilities
[Fitzgerald & Rashid, 1986]. Within the overall interprocess-communication
model, any data interpretation or structuring is logically isolated in the implemen-
tation of the communication domain. An example of this logical isolation is the
ability to pass file descriptors between processes using local-domain sockets.

Sending and receiving of data can be done with any one of several system
calls. The system calls vary according to the amount of information to be trans-
mitted and received, and according to the state of the socket doing the operation.
For example, the write system call may be used with a socket that is in a con-
nected state, as the destination of the data is implicitly specified by the connection;
but the sendto or sendmsg system calls allow the process to specify the destination
for a message explicitly. Likewise, when data are received, the read system call

Section 11.6 Data Transfer 383

allows a process to receive data on a connected socket without receiving the
sender's address; the recvfrom and recvmsg system calls allow the process to
retrieve the incoming message and the sender's address. The recvmsg and
sendmsg system calls allow scatter-gather I/O with multiple user-provided buffers.
In addition, recvmsg reports additional information about a received message,
such as whether it was expedited (out of band), whether it completes a record, or
whether it was truncated because a buffer was too small. The decision to provide
many different system calls, rather than to provide only a single general interface,
is debatable. It would have been possible to implement a single system-call inter-
face and to provide simplified interfaces to applications via user-level library rou-
tines. However, the single system call would have to be the most general call,
which has somewhat higher overhead. Internally, all transmission and reception
requests are converted to a uniform format and are passed to the socket-layer
sendit() and recvit() routines, respectively.

Transmitting Data

The sendit() routine is responsible for gathering all system-call parameters that
the application has specified into the kernel's address space (except the actual
data), and then for invoking the sosend( ) routine to do the transmission. The
parameters may include the following components, illustrated in Fig. 11.1:

• An address to which data will be sent, if the socket has not been connected

• Optional ancillary data (control data) associated with the message; ancillary data
can include protocol-specific data associated with a message, protocol option
information, or access rights

• Normal data, specified as an array of buffers (see Section 6.4)

• Optional flags, including out-of-band and end-of-record flags

The sosend() routine handles most of the socket-level data-transmission options,
including requests for transmission of out-of-band data and for transmission with-
out network routing. This routine is also responsible for checking socket state—
for example, seeing whether a required connection has been made, whether trans-
mission is still possible on the socket, and whether a pending error should be
reported rather than transmission attempted. In addition, sosend( ) is responsible
for putting processes to sleep when their data transmissions exceed the buffering
available in the socket's send buffer. The actual transmission of data is done by the
supporting communication protocol; sosend() copies data from the user's address
space into mbufs in the kernel's address space, and then makes calls to the protocol
to transfer the data.

Most of the work done by sosend( ) lies in checking the socket state, handling
flow control, checking for termination conditions, and breaking up an applica-
tion's transmission request into one or more protocol transmission requests. The
request must be broken up only when the size of the user's request plus the



384 Chapter 11 Interprocess Communication

number of data queued in the socket's send data buffer exceeds the socket's high
watermark. It is not permissible to break up a request if the protocol is atomic,
because each request made by the socket layer to the protocol modules implicitly
indicates a boundary in the data stream. Most datagram protocols are of this type.
Honoring each socket's high watermark ensures that a protocol will always have
space in the socket's send buffer to enqueue unacknowledged data. It also ensures
that no process, or group of processes, can monopolize system resources.

For sockets that guarantee reliable data delivery, a protocol will normally
maintain a copy of all transmitted data in the socket's send queue until receipt is
acknowledged by the receiver. Protocols that provide no assurance of delivery
normally accept data from sosend( ) and directly transmit the data to the destina-
tion without keeping a copy. But sosend( ) itself does not distinguish between reli-
able and unreliable delivery.

Sosend() always ensures that a socket's send buffer has enough space avail-
able to store the next section of data to be transmitted. If a socket has insufficient
space in its send buffer to hold all the data to be transmitted, sosend( ) uses the fol-
lowing strategy. If the protocol is atomic, sosend( ) verifies that the message is no
larger than the send buffer size; if the message is larger, it returns an EMSGSIZE
error. If the available space in the send queue is less then the send low watermark,
the transmission is deferred; if the process is not using nonblocking I/O, the pro-
cess is put to sleep until more space is available in the send buffer; otherwise, an
error is returned. When space is available, a protocol transmit request is formu-
lated according to the available space in the send buffer. Sosend( ) copies data
from the user's address space into mbuf clusters whenever the data would fill more
than two mbufs, on the theory that two allocations are required for an mbuf plus a
cluster. If a transmission request for a nonatomic protocol is large, each protocol
transmit request will normally contain a full mbuf cluster. Although additional
data could be appended to the mbuf chain before delivery to the protocol, it is
preferable to pass the data to lower levels immediately. This strategy allows better
pipelining, as data reach the bottom of the protocol stack earlier, and can begin
physical transmission sooner. This procedure is repeated until insufficient space
remains; it resumes each time that additional space becomes available.

This strategy tends to preserve the application-specified message size and
helps to avoid fragmentation at the network level. The latter benefit is important,
because system performance is significantly improved when data-transmission
units are large, e.g. the mbuf cluster size.

The sosend( ) routine, in manipulating a socket's send data buffer, takes care
to ensure that access to the buffer is synchronized among multiple sending pro-
cesses. It does so by bracketing accesses to the data structure with calls to
sblock( ) and sbunlock( ). Interlocking against asynchronous network activity is
also a concern here, as the network-protocol modules that operate at network-
interrupt level cannot wait for access to a data structure such as a socket data
buffer. Thus, they do not honor the locking protocol used between processes. To
block network-protocol modules, sosend( ) must raise the processor priority level
to spinet to ensure that no protocol processing takes place that might alter the state
of a socket being manipulated while it is testing that state.

Section 11.6 Data Transfer 385

Receiving Data
The soreceive( ) routine receives data queued at a socket. As the counterpart to
sosend( ), soreceive( ) appears at the same level in the internal software structure
and does similar tasks. Three types of data may be queued for reception at a
socket: in-band data, out-of-band data, and ancillary data such as access rights.
In-band data may also be tagged with the sender's address. Handling of out-of-
band data varies by protocol. They may be placed at the beginning of the receive
buffer, may be placed at the end of the buffer to appear in order with other data, or
may be managed in the protocol layer separate from the socket's receive buffer. In
the first two cases, they are returned by normal receive operations. In the final
case, they are retrieved through a special interface when requested by the user.
These options allow varying styles of urgent data transmission.

Soreceive( ) checks the socket's state, including the received data buffer, for
incoming data, errors, or state transitions, and processes queued data according to
their type and the actions specified by the caller. A system-call request may spec-
ify that only out-of-band data should be retrieved (MSG_OOB), or that data should
be returned but not removed from the data buffer (by specifying the MSG_PEEK
flag). Receive calls normally return as soon as the low watermark is reached; thus,
by default, the call returns when any data are present. The MSG_WAITALL flag
specifies that the call should block until it can return all the requested data if pos-
sible. On the other hand, the MSG_DONTWAIT flag causes the call to act as
though the socket was in nonblocking mode, returning EWOULDBLOCK rather
than blocking.

Data present in the receive data buffer are organized in one of several ways,
depending on whether message boundaries are preserved. There are three common
cases, for stream, datagram, and sequenced-packet sockets. In the general case, the
receive data buffer is organized as a list of messages (see Fig. 11.10 on page 386).
Each message can include a sender's address (for datagram protocols), ancillary
data, and normal data. Depending on the protocol, it is also possible for expedited
or out-of-band data to be placed into the normal receive buffer. Each mbuf chain
on a list represents a single message or, for the final chain, a possibly incomplete
record. Protocols that supply the sender's address with each message place a sin-
gle mbuf containing the address at the front of message. Immediately following
any address is an optional mbuf containing any ancillary data. Regular data mbufs
follow the ancillary data. Names and ancillary data are distinguished by the type
field in an mbuf; addresses are marked as MT_SONAME, whereas ancillary data are
tagged as MT_CONTROL. Each message other than the final one is considered to
be terminated. The final message is terminated implicitly when an atomic protocol
is used, such as most datagram protocols. Sequenced packet protocols could treat
each message as an atomic record, or they could support records that could be arbi-
trarily long (as is done in OSI). In the latter case, the final record in the buffer
might or might not be complete, and a flag on the final mbuf, M_EOR, marks the
termination of a record. Record boundaries (if any) are generally ignored by a
stream protocol. However, transition from out-of-band data to normal data in the
buffer, or presence of ancillary data, causes logical boundaries. A single receive
operation never returns data that cross a



386 Chapter 11 Interprocess Communication

socket

m_next ~

m_nextpkt —

MT_SONAME

m__data, m_len

m_dat

message

m_next ~

m_nextpkt

MT_SONAME

m_data, m_len

m_dat

m_next

m_nextpkt

MT_DATA

m_data, m_len

m_dat

m_next ~

m_nextpkt

MT_DATA

m_data, m_len

m_dat

i

i
message

Figure 11.10 Data queueing for datagram socket.

scheme used by sockets allows them to compact data of the same type into the
minimal number of mbufs required to hold those data.

On entry to soreceive( ), a check is made to see whether out-of-band data are
being requested. If they are, the protocol layer is queried to see whether any such
data are available; if the data are available, they are returned to the caller. As reg-
ular data cannot be retrieved simultaneously with out-of-band data, soreceive( )
then returns. Otherwise, data from the normal queue have been requested. The
soreceive( ) function first checks whether the socket is in confirming state, with the
peer awaiting confirmation of a connection request. If it is, no data can arrive
until the connection is confirmed, and the protocol layer is notified that the con-
nection should be completed. Soreceive( ) then checks the receive-data-buffer
character count to see whether data are available. If they are, the call returns with
at least the data currently available. If no data are present, soreceive( ) consults
the socket's state to find out whether data might be forthcoming. Data may no
longer be received because the socket is disconnected (and a connection is
required to receive data), or because the reception of data has been terminated
with a shutdown by the socket's peer. In addition, if an error from a previous
operation was detected asynchronously, the error needs to be returned to the user;

Section 11.6 Data Transfer 387

soreceive( ) checks the so_error field after checking for data. If no data or error
exists, data might still arrive, and if the socket is not marked for nonblocking I/O,
soreceive( ) puts the process to sleep to await the arrival of new data.

When data arrive for a socket, the supporting protocol notifies the socket layer
by calling sorwakeup( ). Soreceive( ) can then process the contents of the receive
buffer, observing the data-structuring rules described previously. Soreceive( ) first
removes any address that must be present, then optional ancillary data, and finally
normal data. If the application has provided a buffer for the receipt of ancillary
data, they are passed to the application in that buffer; otherwise, they are discarded.
The removal of data is slightly complicated by the interaction between in-band and
out-of-band data managed by the protocol. The location of the next out-of-band
datum can be marked in the in-band data stream and used as a record boundary
during in-band data processing. That is, when an indication of out-of-band data is
received by a protocol that holds out-of-band data separately from the normal
buffer, the corresponding point in the in-band data stream is marked. Then, when a
request is made to receive in-band data, only data up to the mark will be returned.
This mark allows applications to synchronize the in-band and out-of-band data
streams, so that, for example, received data can be flushed up to the point at which
out-of-band data are received. Each socket has a field, so_oobmark, that contains
the character offset from the front of the receive data buffer to the point in the data
stream at which the last out-of-band message was received. When in-band data are
removed from the receive buffer, the offset is updated, so that data past the mark
will not be mixed with data preceding the mark. The SS_RCVATMARK bit in a
socket's state field is set when so_oobmark reaches zero to show that the out-of-
band data mark is at the beginning of the socket receive buffer. An application can
test the state of this bit with the SIOCATMARK ioctl call to find out whether all in-
band data have been read up to the point of the mark.

Once data have been removed from a socket's receive buffer, soreceive( )
updates the state of the socket and notifies the protocol layer that data have been
received by the user. The protocol layer can use this information to release inter-
nal resources, to trigger end-to-end acknowledgment of data reception, to update
flow-control information, or to start a new data transfer. Finally, if any access
rights were received as ancillary data, soreceive( ) passes them to a communica-
tion-domain-specific routine to convert them from their internal representation to
the external representation.

The soreceive( ) function returns a set of flags that are supplied to the caller of
the recvmsg system call via the msg_flags field of the msghdr structure (see Fig.
11.1). The possible flags include MSG_EOR to specify that the received data com-
plete a record for a nonatomic sequenced packet protocol, MSG_OOB to specify
that expedited (out-of-band) data were received from the normal socket receive
buffer, MSG_TRUNC to specify that an atomic record was truncated because the
supplied buffer was too small, and MSG_CTRUNC to specify that ancillary data
were truncated because the control buffer was too small.



388 Chapter 11 Interprocess Communication

Passing Access Rights
In addition to the transmission and reception of uninterpreted data, the system also
supports the passage of typed ancillary data that have special meaning, either to a
protocol layer or to an application. Access rights are one such type of ancillary
data. These data normally represent the right to do operations on associated
objects. The data used to represent access rights, or capabilities, normally are
meaningful only within the context of the process that created or obtained the
right; thus, their transmission requires system support to make them meaningful in
a receiving process's context. For example, in 4.4BSD, access rights to files in the
filesystem or sockets are encapsulated as file descriptors. A file descriptor is a
small integer number that is meaningful only in the context of the process that
opened or created the associated file. To pass a file descriptor from one process to
another, the system must create a reference to the associated file-table structure in
the receiving process's user structure.

Access rights, or capabilities, are categorized as internalized or externalized.
Internalized capabilities require the support of trusted agents to be useful. Keys
associated with these capabilities are created by a trusted agent, and, when pre-
sented for accessing a protected object, are deemed valid according to their inter-
pretation in the context of the presenter.

Externalized capabilities, on the other hand, use keys that require no specific
trusted agent for their use. That is, the validation of the right to access an object is
based solely on the possession and presentation of the requisite key. Systems that
use externalized capabilities frequently use a public-key encryption algorithm.
Keys for externalized capabilities normally have the properties that they are long
lived and that they may be stored in locations such as a filesystem without losing
their usefulness.

No specific system support is required to support externalized capabilities. To
support internalized capabilities, however, the operating system, acting as a trusted
agent, must verify and translate keys when transmitting them as messages between
processes. The interprocess-communication system provides facilities, on a per-
communication domain basis, to process all access rights transmitted and received
in messages, and to dispose of rights that are not received.

Sending and receiving of access rights requires the internalization and exter-
nalization of these rights. Internalization converts a key held by a sending process
into an internal form that can be passed as data in a message. Externalization
reverses this process, converting the internal form into an external form that is
meaningful in the context of the receiving process. Internalization of access rights
is done at the protocol layer when the sosend() routine requests transmission of
data containing access rights. The access rights to be transmitted are passed as an
mbuf chain separate from the regular data. When soreceive() encounters access
rights on the receive data queue, it invokes the communication domain's
dom_externalize routine to externalize the rights. The socket layer implicitly pre-
sumes that access rights stored in socket data queues will be valid as long as the
system remains up. That is, there are no mechanisms to expedite the delivery of
access rights, or to time out or invalidate rights stored on a socket data queue.

Section 11.6 Data Transfer 389

Passing Access Rights in the Local Domain

In the local domain, the internalization of file descriptors results in their conver-
sion to system file-table pointers, whereas externalization requires allocation of
new file descriptors for the receiving process. File descriptors passed in messages
are really duplicates of the ones held by the sending process (as though they had
been created by dup). The sending process must explicitly close a file descriptor
after that descriptor has been sent to give the descriptor away.

A garbage-collection facility is provided to reclaim resources associated with
access rights that are not delivered properly. Access rights may not be delivered
for several reasons: because the receiving socket has insufficient space, because
the user does not request them with the proper system call when receiving data
from the socket, or because the socket is closed while access rights are still present
in the receive buffer. In addition, it is possible for access rights in a socket receive
buffer to become inaccessible because the socket itself is not accessible. For
example, if a socket pair is created, each socket of the pair is sent as access rights
on one of the sockets, and then both sockets are closed; then all the remaining ref-
erences to the two sockets will be in access rights that can never be received.
Garbage collection is used because of this problem, and because normal message
processing does not permit a protocol to access a message after the protocol has
passed on that message for delivery. This inability to access a message after it has
been transmitted means that, if access rights in a message are not delivered, these
rights will be discarded without being reclaimed. In the local domain, reclamation
of access rights ensures that files associated with these rights are closed, so that
system resources, such as file-table entries, are not depleted.

For garbage collection to be implemented, each file-table entry must contain a
count of references held by file descriptors present in socket receive queues,
f_msgcount. Another variable, unp_rights, tracks the number of file descriptors
held in all the local-domain sockets in use. When a file descriptor is internalized
to a file-table pointer for transmission, the f_msgcount for the file is incremented.
On reception, when the file descriptor is externalized, f_msgcount is decremented.
When a local-domain socket is reclaimed and unp_rights is nonzero, the garbage-
collection routine, unp_gc(), is invoked to scan the file table and all local-domain
sockets to reclaim unaccounted-for file-table references.

Unp_gc() uses a mark-and-sweep algorithm in doing its duties [J. Cohen,
1981]. The basic strategy is to locate all references to files that are accessible and
to mark them. Files in a process's open file array have a reference not in a mes-
sage, and are thus accessible. If the file is a socket that is accessible, access rights
held in its receive buffer can be accessed once received, and thus the files to which
they refer are marked as well. This search is repeated while there are newly
marked files whose buffers have not been scanned, accounting for sockets that are
reachable only via receipt of access rights, which in turn contain other access
rights. The garbage collector can then reclaim lost references by searching the file

I f a listening socket is accessible, then any queued connections that it holds are also accessible; the
garbage collector in 4.4BSD fails to take this fact into account.



390 Chapter 11 Interprocess Communication

table for unmarked entries for which all references are indicated as being in socket
receive queues.

Note that the garbage collector is invoked only when a local-domain socket is
closed and file descriptors are known to be queued awaiting reception; thus, the
overhead associated with the garbage collector is limited. Also, the garbage col-
lector reclaims only those file-table entries that were lost while being passed in
messages; references that might be lost in other parts of the system are not
reclaimed.

11.7 Socket Shutdown

Although closing a socket and reclaiming its resources at first glance appears to be
a straightforward operation, it can be complicated. The complexity arises because
of the implicit semantics of the close system call. In certain situations (e.g., when
a process exits), a close call is never expected to fail. However, when a socket
promising reliable delivery of data is closed with data still queued for transmission
or awaiting acknowledgment of reception, the socket must attempt to transmit the
data, perhaps indefinitely, for the close call to maintain the socket's advertised
semantics. If the socket discards the queued data to allow the close to complete
successfully, it violates its promise to deliver data reliably. Discarding data can
cause naive processes, which depend on the implicit semantics of close, to work
unreliably in a network environment. However, if sockets block until all data have
been transmitted successfully, then, in some communication domains, a close may
never complete!

The socket layer compromises in an effort to address this problem yet to
maintain the semantics of the close system call. Figure 11.11 shows the possible
state transitions for a socket from a connected to a closed state. In normal

Figure 11.11 Socket-state transitions during shutdown.

sowakeup() sowakeup()
| queued data
I sent

and
sbwait()

SS

\

SS_

ISCONNECTED

close ( )
soclose ( )
sodisconnect()

SDISCONNECTING

sofree()

and
sbwait()

SO_ LINGER and
not disconnected and
linger time not expired

Exercises 391

operation, closing a socket causes any queued but unaccepted connections to be
discarded. If the socket is in a connected state, a disconnect is initiated. The
socket is marked to indicate that a file descriptor is no longer referencing it, and
the close operation returns successfully. When the disconnect request completes,
the network support notifies the socket layer and the socket resources are
reclaimed. The network layer may attempt to transmit any data queued in the
socket's send buffer, although there is no guarantee that it will. However, com-
monly used connection-oriented protocols generally attempt to transmit any
queued data asynchronously after the close call returns, preserving the normal
semantics of close on a file.

Alternatively, a socket may be marked explicitly to force the application pro-
cess to linger when closing until pending data have drained and the connection has
shut down. This option is marked in the socket data structure using the setsockopt
system call with the SO_LINGER option. When an application indicates that a
socket is to linger, it also specifies a duration for the lingering period. The applica-
tion can then block for as long as the specified duration while waiting for pending
data to drain. If the lingering period expires before the disconnect is completed,
the socket layer then notifies the network that it is closing, possibly discarding any
data still pending. Some protocols handle the linger option differently; in particu-
lar, if the linger option is set with a duration of zero, the protocol may discard
pending data, rather than attempt to deliver them asynchronously.

Exercises

11.1 What limitation in the use of pipes inspired the developers to design alter-
native interprocess-communication facilities?

11.2 Why are the 4.4BSD interprocess-communication facilities designed to be
independent of the filesystem for naming sockets?

11.3 Why is interprocess communication layered on top of networking in
4.4BSD, rather than the other way around?

11.4 Would a screen editor be considered a naive or a sophisticated program,
according to the definitions given in this chapter? Explain your answer.

11.5 What are out-of-band data? What types of socket support the communica-
tion of out-of-band data? Describe one use for out-of-band data.

11.6 Give two requirements that interprocess communication places on a mem-
ory-management facility.

11.7 How many mbufs and mbuf clusters would be needed to hold a 3024-byte
message? Draw a picture of the necessary mbuf chain and any associated
mbuf clusters.



392 Chapter 11 Interprocess Communication

11.8 Why does an mbuf have two link pointers? For what is each pointer used?

11.9 Each socket's send and receive data buffers have high and low watermarks.
For what are these watermarks used?

11.10 Consider a socket with a network connection that is queued at the socket
awaiting an accept system call. Is this socket on the queue headed by the
so_q or by the so_q0 field in the socket structure? What is the use of the
queue that does not contain the socket?

11.11 Describe two types of protocols that would immediately place incoming
connection requests into the queue headed by the so_q field in the socket
structure.

11.12 How does the protocol layer communicate an asynchronous error to the
socket layer?

11.13 Sockets explicitly refrain from interpreting the data that they send and
receive. Do you believe that this approach is correct? Explain your
answer.

11.14 Why does the sosend() routine ensure there is enough space in a socket's
send buffer before making a call to the protocol layer to transmit data?

11.15 How is the type information in each mbuf used in the queueing of data at a
datagram socket? How is this information used in the queueing of data at a
stream socket?

11.16 Why does the soreceive() routine optionally notify the protocol layer when
data are removed from a socket's receive buffer?

11.17 Describe an application where the ability to pass file descriptors is useful.
Is there another way to simulate this facility in 4.4BSD?

11.18 What is the difference between an internalized capability and an external-
ized capability? Would file descriptors be considered externalized or inter-
nalized capabilities, according to the definitions given in this chapter?

11.19 What might cause a connection to linger forever when closing?

* 11.20 What effect might storage compaction have on the performance of network-
communication protocols?

**11.21 Why is releasing mbuf-cluster storage back to the system complicated?
Explain why it might be desirable.

**11.22 In the original design of the interprocess-communication facilities, a refer-
ence to a communication domain was obtained with a domain system call,

int d; d = domain("inet");

(where d is a descriptor, much like a file descriptor), and sockets then were
created with

References 393

s = socket(type, d, protocol);
int s, type, protocol;

What advantages and disadvantages does this scheme have compared to the
one that is used in 4.4BSD? What effect does the introduction of a domain
descriptor type have on the management and use of descriptors within the
kernel?

References
Cerf, 1978.

V. Cerf, "The Catenet Model for Internetworking," Technical Report IEN
48, SRI Network Information Center, Menlo Park, CA, July 1978.

D. Cohen, 1977.
D. Cohen, "Network Control Protocol (NCP) Software," University of Illi-
nois Software Distribution, University of Illinois, Champaign-Urbana, IL,
1977.

J. Cohen, 1981.
J. Cohen, "Garbage Collection of Linked Data Structures," Computing Sur-
veys, vol. 13, no. 3, pp. 341-367, September 1981.

Fitzgerald & Rashid, 1986.
R. Fitzgerald & R. F. Rashid, "The Integration of Virtual Memory Manage-
ment and Interprocess Communication in Accent," ACM Transactions on
Computer Systems, vol. 4, no. 2, pp. 147-177, May 1986.

Gurwitz, 1981.
R. F. Gurwitz, "VAX-UNIX Networking Support Project—Implementation
Description," Technical Report IEN 168, SRI Network Information Center,
Menlo Park, CA, January 1981.

Kalash et al, 1986.
J. Kalash, L. Rodgin, Z. Fong, & J, Anton, "Ingres Version 8 Reference
Manual," in UNIX Programmer's Supplementary Documents, Volume 2, 4.3
Berkeley Software Distribution, Virtual VAX-11 Version, pp. 10:1-88,
USENIX Association, Berkeley, CA, 1986.

Rashid, 1980.
R. F. Rashid, "An Inter-Process Communication Facility for UNIX," Tech-
nical Report, Carnegie-Mellon University, Pittsburgh, PA, August 14, 1980.

Sunshine, 1977.
C. Sunshine, "Interprocess Communication Extensions for the UNIX Oper-
ating System: Design Considerations," Technical Report R-2064/1-AF,
Rand Corporation, Santa Monica, CA, June 1977.

UPMV7, 1983.
UPMV7, UNIX Programmer's Manual, Seventh ed, Volumes 1 and 2, Holt,
Rinehart & Winston, New York, NY, 1983.



CHAPTER 12

Network Communication

In this chapter, we shall study the internal structure of the network subsystem pro-
vided in 4.4BSD. The networking facilities provide a framework within which
many network architectures may coexist. A network architecture comprises a set
of network-communication protocols, the protocol family; conventions for naming
communication endpoints, the address family or address format; and any addi-
tional facilities that may fall outside the realm of connection management and data
transfer. Networking facilities are accessed through the socket abstraction
described in Chapter 11. The network subsystem provides a general-purpose
framework within which network services are implemented. These facilities
include

• A structured interface to the socket level that allows the development of net-
work-independent application software

• A consistent interface to the hardware devices used to transmit and receive data

• Network-independent support for message routing

• Memory management

We describe the internal structure of the network subsystem in Section 12.1.
Then, we discuss the interface between the socket layer and the network facilities,
and examine the interfaces between the layers of software that make up the net-
work subsystem. In Section 12.5, we discuss the routing services used by the net-
work protocols; in Section 12.6, we describe the mechanisms provided to manage
buffering and to control congestion. We present the raw-socket interface that pro-
vides direct access to lower-level network protocols in Section 12.7. Finally, in
Section 12.8, we discuss an assortment of issues and facilities, including out-of-
band data, subnetwork addressing, and the Address Resolution Protocol.

395



396 Chapter 12 Network Communication Section 12.1 Internal Structure 397

After we have discussed the framework in which the network protocols fit, we
shall examine the implementations of several existing network protocols in Chap-
ter 13. A detailed description of the internal data structures and functions of the
network layers and protocols can be found in [Wright & Stevens, 1995].

12.1 Internal Structure

The network subsystem is logically divided into three layers. These three layers
manage the following tasks:

1. Interprocess data transport

2. Internetwork addressing and message routing

3. Transmission-media support

The first two layers are made up of modules that implement communication proto-
cols. The software in the third layer generally includes a protocol sublayer, as
well as a sublayer that is structurally much like a device driver (see Section 6.3).

The topmost layer in the network subsystem is termed the transport layer.
The transport layer must provide an addressing structure that permits communica-
tion between sockets and any protocol mechanisms necessary for socket seman-
tics, such as reliable data delivery. The second layer, the network layer, is
responsible for the delivery of data destined for remote transport or for network-
layer protocols. In providing internetwork delivery, the network layer must man-
age a private routing database or use the systemwide facility for routing messages
to their destination host. The bottom layer, the network-interface layer, or link
layer, is responsible for transporting messages between hosts connected to a com-
mon transmission medium. The network-interface layer is mainly concerned with
driving the transmission media involved and doing any necessary link-level proto-
col encapsulation and decapsulation.

The transport, network, and network-interface layers of the network subsys-
tem most closely resemble the bottom three levels (2 through 0) of the Xerox
Network System (XNS) architecture. These layers correspond to the transport,
network, and link layers of the ISO Open Systems Interconnection Reference
Model [ISO, 1984], respectively. The internal structure of the networking soft-
ware is not directly visible to users. Instead, all networking facilities are accessed
through the socket layer described in Chapter 11. Each communication protocol
that permits access to its facilities exports a user request routine to the socket
layer. This routine is used by the socket layer in providing access to network ser-
vices.

The layering described here is a logical layering. The software that imple-
ments network services may use more or fewer communication protocols accord-
ing to the design of the network architecture being supported. For example, raw
sockets often use a null implementation at one or more layers. At the opposite

extreme, tunneling of one protocol through another uses one network protocol to
encapsulate and deliver packets for another protocol, and involves multiple
instances of some layers.

Data Flow
Data flow down to the network subsystem from the socket layer through calls to
the transport-layer modules that support the socket abstraction. Data received at a
network interface flow upward through communication protocols until they are
placed in the receive queue of the destination socket. The downward flow of data
typically is started by system calls. Data flowing upward are received asyn-
chronously, and are passed from the network-interface layer to the appropriate
communication protocol through per-protocol input message queues, as shown in
Fig. 12.1. The system schedules network protocol processing from the network-
interface layer by marking a bit assigned to the protocol in the system's network-
interrupt status word, and posting a software interrupt reserved for triggering

Figure 12.1 Example of upward flow of a data packet in the network subsystem.
ETHER—Ethernet header; IP—Internet Protocol header; TCP—Transmission Control Proto-
col header.

socket layer
DATA

soreceive ()

transport layer

network layer

TCP DATA

IP TCP DATA

software
interrupt

Network-Interface Layer

ETHER IP TCP DATA

device
interrupt

ETHERNET



398 Chapter 12 Network Communication

network activity. Software interrupts are used to schedule asynchronous network
activity, rather than protocols being run as independent processes, to avoid con-
text-switching overhead. If a message received by a communication protocol is
destined for a higher-level protocol, this protocol is invoked directly at software-
interrupt level to process the message. Alternatively, if the message is destined for
another host and the system is configured as a router, the message may be
returned to the network-interface layer for retransmission.

Communication Protocols

A network protocol is defined by a set of conventions, including packet formats,
states, and state transitions. A communication-protocol module implements a pro-
tocol, and is made up of a collection of procedures and private data structures.
Protocol modules are described by a protocol-switch structure that contains the set
of externally visible entry points and certain attributes, shown in Fig. 12.2. The
socket layer interacts with a communication protocol solely through the latter's
protocol-switch structure, recording the structure's address in a socket's so_proto
field. This isolation of the socket layer from the networking subsystem is impor-
tant in ensuring that the socket layer provides users with a consistent interface to
all the protocols supported by a system. When a socket is created, the socket layer
looks up the domain for the protocol family to find the array of protocol-switch
structures for the family (see Section 11.4). A protocol is selected from the array
based on the type of socket supported (the pr_type field) and optionally a specific
protocol number (the pr_protocol field). The protocol switch has a back pointer to
the domain (pr_domain). Within a protocol family, every protocol capable of sup-
porting a socket directly (for example, most transport protocols) must provide a

Figure 12.2 Protocol-switch structure.

/
protocol /
identifiers \

protocol-protocol /
interface \

\
/

utility /
routines /

\
\

type
domain
protocol

flags
user request
data input

data output
control input
control output
initialization
fast timeout
slow timeout

drain
sysctl

Section 12.1 Internal Structure 399

protocol-switch structure describing the protocol. Lower-level protocols such as
network-layer protocols may also have protocol-switch entries, although whether
they do can depend on conventions within the family.

Before a protocol is first used, the protocol's initialization routine is invoked.
Thereafter, the protocol will be invoked for timer-based actions every 200 mil-
liseconds if the pr_fasttimo() entry is present, and every 500 milliseconds if the
pr_slowtimo() entry point is present. In general, protocols use the slower timer
for most timer processing; the major use of the fast timeout is for delayed-
acknowledgment processing. The pr_drain() entry is provided so that the system
can notify the protocol if the system is low on space and would like any noncriti-
cal data to be discarded. Finally, the pr_sysctl() entry implements sysctl configu-
ration operations specific to the protocol.

Protocols may pass data among themselves in chains of mbufs (see Section
11.3) using the pr_input() and pr_output() routines. The pr_input() routine
passes data up toward the user, whereas the pr_output(} routine passes data down
toward the network. Similarly, control information passes up and down via the
pr_ctlinput() and pr_ctloutput() routines. The user request routine, pr_usrreq(),
is the interface between a protocol and the socket level; it is described in detail in
Section 12.2.

In general, a protocol is responsible for storage space occupied by any of the
arguments passed downward via these procedures and must either pass the space
onward or dispose of it. On output, the lowest level reached must free space
passed as arguments; on input, the highest level is responsible for freeing space
passed up to it. Auxiliary storage needed by protocols is allocated from the mbuf
store. This space is used temporarily to formulate messages or to hold variable-
sized socket addresses. (Some protocols also use mbufs for data structures such as
state control blocks, although many such uses have been converted to use malloc()
directly.) Mbufs allocated by a protocol for private use must be freed by that pro-
tocol when they are no longer in use.

The pr_flags field in a protocol's protocol-switch structure describes the pro-
tocol's capabilities and certain aspects of its operation that are pertinent to the
operation of the socket level; the flags are listed in Table 12.1. Protocols that are

Table 12.1 Protocol flags.

Flag
PR_ATOMIC
PR_ADDR
PR_CONNREQUIRED
PR_WANTRCVD

PR_RIGHTS

Description
messages sent separately, each in a single packet
protocol presents address with each message
connection required for data transfer
protocol notified on user receipt of data
protocol supports passing access rights



400 Chapter 12 Network Communication

connection based specify the PR_CONNREQUIRED flag, so that socket routines
will never attempt to send data before a connection has been established. If the
PR_WANTRCVD flag is set, the socket routines will notify the protocol when the
user has removed data from a socket's receive queue. This notification allows a
protocol to implement acknowledgment on user receipt, and also to update flow-
control information based on the amount of space available in the receive queue.
The PR_ADDR field indicates that any data placed in a socket's receive queue by
the protocol will be preceded by the address of the sender. The PR_ATOMIC flag
specifies that each user request to send data must be done in a single protocol send
request; it is the protocol's responsibility to maintain record boundaries on data to
be sent. This flag also implies that messages must be received and delivered to
processes atomically. The PR_RIGHTS flag indicates that the protocol supports the
transfer of access rights; this flag is currently used by only those protocols in the
local communication domain (see Section 11.6).

Network Interfaces
Each network interface configured in a system defines a link-layer path through
which messages can be sent and received. A link-layer path is a path that allows a
message to be sent via a single transmission to its destination, without network-
level forwarding. Normally, a hardware device is associated with this interface,
although there is no requirement that one be (e.g., all systems have a software
loopback interface used for most network traffic sent to local sockets). In addition
to manipulating the hardware device, a network-interface module is responsible
for encapsulation and decapsulation of any link-layer protocol header required to
deliver a message to its destination. For common interface types, the link-layer
protocol is implemented in a separate sublayer that is shared by various hardware
drivers. The selection of the interface to use in delivering a packet is a routing
decision carried out at the network-protocol layer. An interface may have
addresses in one or more address families. Each address is set at boot time using
an ioctl system call on a socket in the appropriate domain; this operation is imple-
mented by the protocol family after the network interface verifies the operation
with an ioctl entry point provided by the network interface. The network-interface
abstraction provides protocols with a consistent interface to all hardware devices
that may be present on a machine.

An interface and its addresses are defined by the structures shown in Fig.
12.3. As interfaces are found at startup time, the ifnet structures are initialized and
are placed on a linked list. The network-interface module generally maintains the
ifnet interface data structure as part of a larger structure that also contains informa-
tion used in driving the underlying hardware device. Similarly, the ifaddr inter-
face address structure is often part of a larger structure containing additional pro-
tocol information about the interface or its address. Because network socket
addresses are variable in size, the protocol is responsible for allocating the space
referenced by the address, mask, and broadcast or destination address pointers in
the ifaddr structure.

Section 12.1 Internal Structure 401

interface
identifier

interface
properties

interface
routines

if data

index
name
unit

next network interface
< flags

watchdog timer
address list
packet filter

( output
start
done
ioctl

watchdog timeout
initialization

reset
interface type
address length
header length

maximum transmission unit
line speed

packet statistics
byte statistics
error statistics

send queue

local address

broadcast/point-point
address

network mask
route request

reference count
network interface

next address

local address

broadcast/point-point
address

network mask
route request

reference count
network interface

next address
interface addresses (ifaddr)

network interface (ifnet)

Figure 12.3 Network-interface data structures.

Each network interface contains identification of the interface in two forms: a
character string identifying the driver plus a unit number for the driver (e.g. en0)
and a binary systemwide index number. The index is used as a shorthand identi-
fier—for example, when a route that refers to the interface is established. As each
interface is found during system startup, the system creates an array of pointers to
the ifnet structures for the interfaces. It can thus locate an interface quickly given
an index number, whereas the lookup using a string name is less efficient. Some
operations, such as interface address assignment, name the interface with a string
for convenience because performance is not critical. Other operations, such as
route establishment, pass a newer style of identifier that can use either a string or
an index. The new identifier uses a sockaddr structure in a new address family,
AF_LINK, indicating a link-layer address. The family-specific version of the



402 Chapter 12 Network Communication

20
AF_ LINK

1

IFT_ETHER

0

'e' "n" '0' 00:00:c0:c2:59:Ob
struct sockaddr_dl example struct sockaddr_dl

Figure 12.4 Link-layer address structure. The box on the left names the elements of the
sockaddr_dl structure. The box on the right shows sample values for these elements for an
Ethernet interface. The sdl_data array may contain a name (if sdl_nlen is nonzero, a link-
layer address (if sdl_alen is nonzero), and an address selector (if sdl_slen is nonzero). For
an Ethernet, sdl_data contains a three-character name, en0, followed by a 6-byte Ethernet
address.

structure is a sockaddr_dl structure, shown in Fig. 12.4, which may contain up to
three identifiers. It includes an interface name as a string plus a length, with a
length of zero denoting the absence of a name. It also includes an interface index
as an integer, with a value of zero indicating that the index is not set. Finally, it
may include a binary link-level address, such as an Ethernet address, and the
length of the address. An address of this form is created for each network inter-
face as the interface is configured by the system, and is returned in the list of local
addresses for the system along with network protocol addresses (see later in this
subsection). Figure 12.4 shows a structure describing an Ethernet interface that is
the second interface on the system; the structure contains the interface name, the
index, and the link-layer (Ethernet) address.

The interface data structure includes an if_data structure, which contains the
externally visible description of the interface. It includes the link-layer type of the
interface, the maximum network-protocol packet size that is supported, and the
sizes of the link-layer header and address. It also contains numerous statistics,
such as packets and bytes sent and received, input and output errors, and other
data required by network-management protocols.

The state of an interface and certain externally visible characteristics are stored
in the if_flags field described in Table 12.2. The first set of flags characterizes an
interface. If an interface is connected to a network that supports transmission of
broadcast messages, the IFF_BROADCAST flag will be set, and the interface's
address list will contain a broadcast address to be used in sending and receiving
such messages. If an interface is associated with a point-to-point hardware link
(e.g., a serial interface to a telephone circuit), the IFF_POINTOPOINT flag will be
set, and the interface's address list will contain the address of the host on the other
side of the connection. (Note that the broadcast and point-to-point attributes are

Section 12.1 Internal Structure 403

Table 12.2 Network interface flags.

Flag
IFF_UP

IFF_BROADCAST
IFF_DEBUG
IFF_LOOPBACK
IFF_POINTOPOINT
IFF_RUNNING
IFF_PROMISC
IFF_ALLMULTI
IFF_OACTIVE
IFF_SIMPLEX
IFF_LINKO
IFF_LINK1
IFF_LINK2
IFF MULTICAST

Description
interface is available for use
broadcast is supported
enable debugging in the interface software
this is a software loopback interface
interface is for a point-to-point link
interface resources have been allocated
interface receives packets for all destinations
interface receives all multicast packets
interface is busy doing output
interface cannot receive its own transmissions
link-layer specific
link-layer specific
link-layer specific
multicast is supported

mutually exclusive, and that the two addresses share storage in the interface address
structure.) These addresses and the local address of an interface are used by net-
work-layer protocols in filtering incoming packets. The IFF_MULTICAST flag is set
by interfaces that support multicast packets in addition to IFF_BROADCAST. Multi-
cast packets are sent to one of several group addresses, and are intended for all
members of the group.

Additional interface flags describe the operational state of an interface. An
interface sets the IFF_RUNNING flag after it has allocated system resources and
has posted an initial read on the device that it manages. This state bit avoids mul-
tiple allocation requests when an interface's address is changed. The IFF_UP flag
is set when the interface is configured and is ready to transmit messages. The
IFF_OACTIVE flag is used to coordinate between the if_output and if_start rou-
tines, described later in this subsection; it is set when no additional output may be
attempted. The IFF_PROMISC flag is set by network-monitoring programs to
enable promiscuous reception: when they wish to receive packets for all destina-
tions, rather than for just the local system. Packets addressed to other systems are
passed to the monitoring packet filter but are not delivered to network protocols.
The IFF_ALLMULTI flag is similar, but applies to only multicast packets; it can be
used by a multicast forwarding agent. The IFF_SIMPLEX flag is set by Ethernet
drivers whose hardware cannot receive packets that they send; here, the output
function simulates reception of broadcast and (depending on the protocol) multi-
cast packets that have been sent. Finally, the IFF_DEBUG flag can be set to enable
any optional driver-level diagnostic tests or messages. In addition to these



404 Chapter 12 Network Communication Section 12.2 Socket-to-Protocol Interface 405

interface flags, three additional flags are defined for use by individual link-layer
drivers (IFF_LINKO, IFF_LINKl, and IFF_LINK2). They can be used to select link-
layer options, such as Ethernet medium type.

Interface addresses and flags are set with ioctl requests. The requests specific
to a network interface pass the name of the interface as a string in the input data
structure, with the string containing the name for the interface type plus the unit
number. Either the SIOCSIFADDR request or the SIOCAIFADDR request is used
initially to define each interface's addresses. The former sets a single address for
the protocol on this interface. The latter adds an address, with an associated
address mask and broadcast address. It allows an interface to support multiple
addresses for the same protocol. In either case, the protocol allocates an ifaddr
structure and sufficient space for the addresses and any private data, and links the
structure onto the list of addresses for the network interface. In addition, most
protocols keep a list of the addresses for the protocol. The result appears some-
what like a two-dimensional linked list, as shown in Fig. 12.5. An address can be
deleted with the SIOCDIFADDR request.

The SIOCSIFFLAGS request can be used to change an interface's state and to
do site-specific configuration. The destination address of a point-to-point link is
set with the SIOCSIFDSTADDR request. Corresponding operations exist to read
each value. Protocol families also can support operations to set and read the
broadcast address. Finally, the SIOCGIFCONF request can be used to retrieve a list
of interface names and protocol addresses for all interfaces and protocols config-
ured in a running system. Similar information is returned by a newer mechanism
based on the sysctl system call with a request in the routing protocol family (see
Sections 12.5 and 14.7). These requests permit developers to construct network
processes such as the routing daemon without detailed knowledge of the system's
internal data structures.

Figure 12.5 Network-interface and protocol data structures. The linked list of ifnet struc-
tures appears on the left side of the figure. The ifaddr structures storing the addresses for
each interface are on a linked list headed in the ifnet structure and shown as a horizontal
list. The ifaddr structures for most protocols are linked together as well, shown in the verti-
cal lists headed by pfl_addr and pf2_addr.

ifnet pfl_addr pf2_addr

if_

if_

en0
next

enl
next

lo0

if addrlist
ia_

if addrlist
ia_

if _addrlist

PFladdr
next

PFladdr
next

PFladdr

ifa next
ia_

ifa next
ia_

ifa_ next

PF2addr

PF2addr
next

PF2addr

Each interface has a queue of messages to be transmitted and routines used
for initialization and output. The if_output() routine accepts a packet for trans-
mission, and normally handles link-layer encapsulation and queueing that are
independent of the specific hardware driver in use. If the IFF_OACTIVE flag is not
set, the output routine may then invoke the driver's if_start() function to begin
transmission. The start function then sets the IFF_OACTIVE flag if it is unable to
accept additional packets for transmission; the flag will be cleared when transmis-
sion completes. The if_done() entry point is provided as a callback function for
use when the output queue is emptied. This facility is not yet used, but is intended
to support striping of data for a single logical interface across multiple physical
interfaces.

If the interface resides on a system bus, a reset routine will be invoked after a
bus reset has been done, so that the driver may reinitialize the interface. (This
function was used on only the VAX, and should be removed or moved to a
machine-dependent data structure.) An interface may also specify a watchdog
timer routine and a timer value that (if it is nonzero) the system will decrement
once per second, invoking the timer routine when the value expires. The timeout
mechanism is typically used by interfaces to implement watchdog schemes for
unreliable hardware, and to collect statistics that reside on the hardware device.

12.2 Socket-to-Protocol Interface

The interface from the socket routines to the communication protocols is through
the user request, pr_usrreq(), and control output, pr_ctloutput(), routines, which
are defined in the protocol-switch table for each protocol. When the socket layer
requires services of a supporting protocol, it makes a call to one of these two rou-
tines. The control-output routine implements the getsockopt and setsockopt sys-
tem calls; the user-request routine is used for all other operations. Calls to
pr_usrreq() specify one of the requests shown in Table 12.3 (on page 406). Calls
to pr_ctloutput() specify PRCO_GETOPT to get the current value of an option, or
PRCO_SETOPT to set the value of an option.

Protocol User-Request Routine
Given a pointer to a protocol-switch entry, pr, a call on the user-request routine is
of the form

error = (*pr->pr_usrreq)(so, req, m, addr, control);
struct socket *so;
int req;
struct mbuf *m, *addr/ *control;

The so parameter specifies the socket for which the operation is requested, and req
names the operation that is requested. The mbuf data chain m is supplied for



406 Chapter 12 Network Communication

Table 12.3 pr_usrreq routine requests.

Request
PRU_ABORT
PRU_ACCEPT
PRU_ATTACH
PRU_BIND
PRU_CONNECT
PRU_CONNECT2
PRU_CONTROL
PRU_DETACH
PRU_DISCONNECT
PRU_FASTTIMO*
PRU_LISTEN
PRU_PEERADDR
PRU_PROTORCV*
PRU_PROTOSEND*
PRU_RCVD
PRU_RCVOOB
PRU_SEND
PRU_SENDOOB
PRU_SENSE
PRU_SHUTDOWN

PRU_SLOWTIMO*
PRU_SOCKADDR

* Request used only internally by protocols.

Description
abort connection and detach
accept connection from peer
attach protocol to socket
bind name to socket
establish connection to peer
connect two sockets
control protocol operation (ioctl)
detach protocol from socket
disconnect from peer
service 200-millisecond timeout
listen for connections
fetch peer's address
receive from below
send to below
have taken data; more room now
retrieve out-of-band data
send these data
send out-of-band data
sense socket status (fstat)
will not send any more data
service 500-millisecond timeout
fetch socket's address

output operations and for certain other operations where a result is to be returned.
The addr parameter is supplied for address-oriented requests, such as PRU_BIND,
PRU_CONNECT, and PRU_SEND (when an address is specified—e.g., the sendto
call). The address is stored in an mbuf as a sockaddr structure. The control
parameter is a pointer to an optional mbuf chain containing protocol-specific con-
trol information passed via the sendmsg call, such as user-specified access rights
(see Section 11.6). Each protocol is responsible for disposal of the data mbuf
chains on output operations. A nonzero return value from the user-request routine
indicates an error number that should be passed to higher-level software. A
description of each of the possible requests follows.

• PRU_ATTACH: Attach protocol to socket When a protocol is first bound to
a socket (with the socket system call), the protocol module is called with the

Section 12.2 Socket-to-Protocol Interface 407

PRU_ATTACH request. It is the responsibility of the protocol module to allocate
any resources necessary. The attach request will always precede any of the other
requests, and will occur only once per socket.

• PRU_DETACH: Detach protocol from socket This operation is the inverse
of the attach request, and is used at the time that a socket is deleted. The proto-
col module may deallocate any resources assigned to the socket.

• PRU_BIND: Bind address to socket When a socket is initially created, it has
no address bound to it. This request indicates that an address should be bound to
an existing socket. The protocol module must verify that the requested address
is valid and is available for use.

• PRU_LISTEN: Listen for incoming connections The listen request indicates
that the user wishes to listen for incoming connection requests on the associated
socket. The protocol module should make any state changes needed to meet this
request (if possible). A listen request always precedes any request to accept a
connection.

• PRU_CONNECT: Connect socket to peer The connect request indicates that
the user wants to a establish an association. The addr parameter describes the
peer to which a connection is desired. The effect of a connect request may vary
depending on the protocol. Virtual-circuit protocols use this request to initiate
establishment of a network connection. Datagram protocols simply record the
peer's address in a private data structure. They use it as the destination address
of all outgoing packets and as a source filter for incoming packets. There are no
restrictions on how many times a connect request may be used after an attach,
although most stream protocols allow only one connect call.

• PRU_ACCEPT: Accept pending connection Following a successful listen
request and the arrival of one or more connections, this request is made to indi-
cate that the user is about to accept a socket from the queue of sockets ready to
be returned. The socket supplied as a parameter is the socket that is being
accepted; the protocol module is expected to fill in the supplied buffer with the
address of the peer connected to the socket.

• PRU_DISCONNECT: Disconnect connected socket This request eliminates
an association created with a connect request. It is used with datagram sockets
before a new association is created; it is used with connection-oriented protocols
only when the socket is closed.

• PRU_SHUTDOWN: Shut down socket data transmission This call indicates
that no more data will be sent. The protocol may, at its discretion, deallocate any
data structures related to the shutdown and may notify a connected peer of the
shutdown.

• PRU_RCVD: Data were received by user This request is made only if the
protocol entry in the protocol-switch table includes the PR_WANTRCVD flag.
When the socket layer removes data from the receive queue and passes them to the



408 Chapter 12 Network Communication

user, this request will be sent to the protocol module. This request may be used by
the protocol to trigger acknowledgments, to refresh windowing information, to
initiate data transfer, and so on. This request is also made when an application
attempts to receive data on a socket that is in the confirming state, indicating that
the protocol must accept the connection request before data can be received (see
Section 11.5).

• PRU_SEND: Send user data Each user request to send data is translated into
one or more PRU_SEND requests. A protocol may indicate that a single user
send request must be translated into a single PRU_SEND request by specifying
the PR_ATOMIC flag in its protocol description. The data to be sent are pre-
sented to the protocol as a chain of mbufs, and an optional address is supplied in
the addr parameter. The protocol is responsible for preserving the data in the
socket's send queue if it is not able to send them immediately or if it may need
them at some later time (e.g., for retransmission). The protocol must eventually
pass the data to a lower level or free the mbufs.

• PRU_ABORT: Abnormally terminate service This request indicates an
abnormal termination of service. The protocol should delete any existing associ-
ations.

• PRU_CONTROL: Do control operation The control request is generated
when a user does an ioctl system call on a socket and the ioctl is not intercepted
by the socket routines. This request allows protocol-specific operations to be
provided outside the scope of the common socket interface. The addr parameter
contains a pointer to a kernel data area where relevant information may be
obtained or returned. The m parameter contains the actual ioctl request code.
The control parameter contains a pointer to a network-interface structure if the
ioctl operation pertains to a particular network interface. This case illustrates the
most serious problem with the pr_usrreq entry point: for some requests, the
parameters are overloaded with completely different data types.

• PRU_SENSE: Sense socket status The sense request is generated when the
user makes an fstat system call on a socket; it requests the status of the associ-
ated socket. This call returns a standard stat structure that typically contains
only the optimal transfer size for the connection (based on buffer size, window-
ing information, and maximum packet size).

• PRU_RCVOOB: Receive out-of-band data This operation requests that any
out-of-band data now available are to be returned. An mbuf is passed to the pro-
tocol module, and the protocol should either place data in the mbuf or attach new
mbufs to the one supplied if there is insufficient space in the single mbuf. An
error may be returned if out-of-band data are not (yet) available or have already
been consumed. The addr parameter contains any options, such as MSG_PEEK,
that should be observed while this request is carried out.

• PRU_SENDOOB: Send out-of-band data This request is like the send
request, but is used for out-of-band data.

Section 12.2 Socket-to-Protocol Interface 409

• PRU_SOCKADDR: Retrieve local socket address This request indicates that
the local address of the socket is to be returned, if one has been bound to the
socket. The address (stored in a sockaddr structure in an address-family-specific
format) is returned in the mbuf passed in the addr parameter.

• PRU_PEERADDR: Retrieve peer socket address This request indicates that
the address of the peer to which the socket is connected is to be returned. The
socket must be in a connected state for this request to be made to the protocol.
The address (stored in a sockaddr structure in an address-family-specific format)
is returned in the mbuf pointed to by the addr parameter.

• PRU_CONNECT2: Connect two sockets without binding addresses In this
request, the protocol module is supplied two sockets, and is asked to establish a
connection between the two without binding any addresses, if possible. The sys-
tem uses this call in implementing the socketpair system call.

Internal Requests

The following requests are used internally by the protocol modules and are never
generated by the socket routines. In certain instances, they are used solely for
convenience in tracing a protocol's operation (e.g., the slow timeout request).

• PRU_FASTTIMO: Service fast timeout A fast timeout has occurred. This
request is made when a timeout occurs in the protocol's pr_fasttimo() routine.
The addr parameter indicates which timer expired.

• PRU_SLOWTIMO: Service slow timeout A slow timeout has occurred. This
request is made when a timeout occurs in the protocol's pr_slowtimo() routine.
The addr parameter indicates which timer expired.

• PRU_PROTORCV: Receive data for protocol This request is used between
protocols, rather than by the socket layer; it requests reception of data destined
for a protocol and not for the user. No protocols currently use this facility.

• PRU_PROTOSEND: Send data to protocol This request allows a protocol to
send data destined for another protocol module, rather than for a user. The
details of how data are marked addressed-to-protocol instead of addressed-to-
user are left to the protocol modules. No protocols currently use this facility.

Protocol Control-Output Routine
A call on the control-output routine is of the form

error = (*pr->pr_ctloutput)(op, so, level, optname, mp);
int op;
struct socket *so;
int level, optname;
struct mbuf **mp;



410 Chapter 12 Network Communication

where op is PRCO_SETOPT when an option's value is set, and is PRCO_GETOPT
when an option's value is retrieved. The level parameter indicates the layer of
software that should interpret the option request. A level of SOL_SOCKET is spec-
ified to control an option at the socket layer. When the option is to be processed
by a protocol module below the socket layer, level is set to the appropriate proto-
col number (the same number used in the socket system call.) Each level has its
own set of option names; this name is interpreted by only the targeted layer of
software. The final parameter is a pointer to a pointer to an mbuf; the preexisting
mbuf contains an option's new value when setting, and the pointer is used to
return an mbuf that contains an option's value when getting. Mbufs passed to the
control-output routine when the socket layer is setting an option value must be
freed by the protocol. When the socket layer is getting an option value, mbufs
used to return an option value are allocated by the protocol and are returned to the
socket layer, where they are freed after data are copied to the user.

In supporting the getsockopt and setsockopt system calls, the socket layer
always invokes the control-output routine of the protocol attached to the socket.
To access lower-level protocols, each control-output routine must pass control-out-
put requests that are not for itself downward to the next protocol in the protocol
hierarchy. Chapter 13 describes some of the options provided by the protocols in
the Internet communication domain.

12.3 Protocol-Protocol Interface

The interface between protocol modules uses the pr_usrreq(), pr_input(),
pr_output(), pr_ctlinput(), and pr_ctloutput() routines. The pr_usrreq() and
pr_ctloutput() routines are used by the socket layer to communicate with protocols
and have standard calling conventions. The remaining routines are not normally
accessed outside a protocol family, and therefore different calling conventions have
evolved.

Although imposing a standard calling convention for all of a protocol's entry
points might theoretically permit an arbitrary interconnection of protocol modules,
it would be difficult in practice. Crossing of a protocol-family boundary would
require a network address to be converted from the format of the caller's domain
to the format of the receiver's domain. Consequently, connection of protocols in
different communication domains is not generally supported, and calling conven-
tions for the routines listed in the preceding paragraph are typically standardized
on a per-domain basis. (However, the system does support encapsulation of pack-
ets from one protocol into packets of a protocol in another family to tunnel one
protocol through another.)

In this section, we briefly examine the general framework and calling conven-
tions of protocols. In Chapter 13, we examine specific protocols to see how they
fit into this framework.

Section 12.3 Protocol-Protocol Interface 411

pr_output

The protocol output routine often uses a calling convention designed to send a sin-
gle message on a connection; for example,

error = (*pr_output)(pcb, m);
struct pcb *pcb;
struct mbuf *m;

would send a message contained in m on a connection described by protocol con-
trol block pcb. Lower-level protocol output routines may not always have proto-
col control blocks, and thus may require more explicit parameters.

pr_input

Upper-level protocol input routines are usually called at software-interrupt level
once the network-level protocol has located the protocol identifier. They generally
have stricter conventions than do output routines because they are often called via
a protocol switch. Depending on the protocol family, they may receive a pointer
to a control block identifying the connection, or they may have to locate the con-
trol block from information in the received packet. A typical calling convention is

(void) (*pr_input)(m, hlen);
struct mbuf *m;
int hlen;

In this example, the incoming packet is passed to a transport protocol in an mbuf
m with the network protocol header still in place for the transport protocol to use,
as well as the length of the header, hlen, so that the header can be removed. The
protocol does the connection-level demultiplexing based on information in the net-
work and transport headers.

pr_ctlinput

This routine passes control information (i.e., information that might be passed to
the user, but does not consist of data) upward from one protocol module to
another. The common calling convention for this routine is

(void) (*pr_ctlinput)(req, addr);
int req;
struct sockaddr *addr;

The req parameter is one of the values shown in Table 12.4 (on page 412). The
addr parameter is the remote address to which the condition applies. Many of the
requests have been derived from the Internet Control Message Protocol (ICMP)



412 Chapter 12 Network Communication

Table 12.4 Control-input routine requests.

Request
PRC_IFDOWN
PRC_ROUTEDEAD
PRC_MSGSIZE
PRC_HOSTDEAD
PRC_HOSTUNREACH
PRC_UNREACH_NET
PRC_UNREACH_HOST
PRC_UNREACH_PROTOCOL
PRC_UNREACH_PORT
PRC_UNREACH_NEEDFRAG
PRC_UNREACH_SRCFAIL
PRC_REDIRECT_NET
PRC_REDIRECT_HOST
PRC_REDIRECT_TOSNET
PRC_REDIRECT_TOSHOST
PRC_TIMXCEED_INTRANS
PRC_TIMXCEED_REASS
PRC_PARAMPROB

Description
network interface transition
select new route if possible
message size forced packet to be dropped
remote host is down
remote host is unreachable
no route to network
no route to host
protocol not supported by destination
port number not in use at destination
fragmentation needed but not allowed
source route failed
routing redirect for a network
routing redirect for a host
routing redirect for type of service and network
routing redirect for type of service and host
packet lifetime expired in transit
lifetime expired on reassembly queue
header-parameter problem detected

[Postel, 1981], and from error messages defined in the 1822 host/IMP convention
[BBN, 1978]. Some protocols may pass additional parameters internally, such as
local addresses or more specific information.

12.4 Interface between Protocol and Network Interface
The lowest layer in the set of protocols that constitutes a protocol family must
interact with one or more network interfaces to transmit and receive packets. It is
assumed that any routing decisions have been made before a packet is sent to a net-
work interface; a routing decision is necessary to locate any interface at all, unless
a single hardwired interface is used. There are two cases with which we should be
concerned in the interaction between protocols and network interfaces: transmis-
sion of a packet and receipt of a packet. We shall consider each separately.

Packet Transmission
If a protocol has chosen an interface identified by ifp, a pointer to a network inter-
face structure, the protocol transmits a fully formatted network-level packet with
the following call:

Section 12.4 Interface between Protocol and Network Interface 413

error = (*ifp->if_output)(ifp, m, dst, rt);
struct ifnet *ifp;
struct mbuf *m;
struct sockaddr *dst;
struct rtentry *rt;

The output routine for the network interface transmits the packet m to the protocol
address specified in dst, or returns an error number. In reality, transmission may
not be immediate or successful; typically, the output routine validates the destina-
tion address, queues the packet on its send queue, and primes an interrupt-driven
routine to transmit the packet if the interface is not busy. For unreliable media,
such as the Ethernet, successful transmission simply means that the packet has
been placed on the cable without a collision. In contrast, an X.25 interface guar-
antees proper delivery or an error indication for each message transmitted. The
model employed in the networking system attaches no promise of delivery to the
packets presented to a network interface, and thus corresponds most closely to the
Ethernet. Errors returned by the output routine are only those that can be detected
immediately and are normally trivial in nature (network down, no buffer space,
address format not handled, etc.). If errors are detected after the call has returned,
the protocol is not notified.

When messages are transmitted, each network interface usually must formulate
a link-layer address for each outgoing packet.* The interface layer must understand
each protocol address format that it supports to formulate corresponding link-layer
addresses. The network layer for each protocol family selects a destination address
for each message, and then uses that address to select the appropriate network inter-
face to use. This destination address is passed to the interface's output routine as a
sockaddr structure. Presuming that the address format is supported by the inter-
face, the interface must map the destination protocol address into an address for the
link-layer protocol associated with the transmission medium that the interface sup-
ports. This mapping may be a simple algorithm, it may require a table lookup, or it
may require more involved techniques, such as use of the Address Resolution Pro-
tocol described in Section 12.8.

Packet Reception

Network interfaces receive packets, and dispatch packets to the appropriate net-
work-layer protocol according to information encoded in the link-layer protocol
header. Each protocol family must have one or more protocols that constitute the
network layer described in Section 12.1. In this system, each network-layer pro-
tocol has an input-packet queue assigned to it. Incoming packets received by a
network interface are queued in a protocol's input packet queue, and a software
interrupt is posted to initiate network-layer processing; see Fig. 12.6 (on page
414). Similar queues are used to store packets awaiting transmission by network-
interface modules.

*A link-layer address may not be required for a point-to-point link.



414 Chapter 12 Network Communication

protocol
A

input queue

protocol
B

input queue

Figure 12.6 Input packets dispatched to protocol input queues.

Several macros are available for manipulating packet queues:

• IF_ENQUEUE(ifq, m) Place the packet m at the tail of the queue ifq.

• IF_DEQUEUE(ifq, m) Place a pointer to the packet at the head of queue ifq in
m, and remove the packet from the queue; m will be
zero if the queue is empty.

• IF_PREPEND(ifq, m) Place the packet m at the head of the queue ifq.

Packet queues have a maximum length associated with them as a simple form of
congestion control. The macro IF_QFULL() can be used to determine whether a
queue is full; if it is, another macro, IF_DROP(), can then be used to record the
event in statistics kept for the queue. For example, the following code fragment
could be used in a network interface's output routine:

if (IF_QFULL(ifp->if_snd)) {
IF_DROP(ifp->if_snd);
m_freem(m); /* discard packet */
error = ENOBUFS;

} else
IF_ENQUEUE(ifp->if_snd/ m);

On receiving a packet, a network interface decodes the packet type, strips the
link-layer protocol header, records the identity of the receiving interface, and then
dispatches the packet to the appropriate protocol. For example, packets are
enqueued for the Internet domain with

Section 12.4 Interface between Protocol and Network Interface 415
s = splimp();
if (IF_QFULL(&ipintrq)) {

IF_DROP(&ipintrq);
ifp->if_iqdrops++;
m_freem(m);

} else {
schednetisr(NETISR_IP);
IF_ENQUEUE(&ipintrq, m)

}
splx(s);

schedule IP input routine */
place message on IP's queue */

The schednetisr () macro marks a bit in a global status word, and then posts a soft-
ware interrupt. When the software interrupt occurs, the interrupt handler scans the
status word, and, for each preassigned bit that is set, invokes the associated proto-
col input routine. Note that multiple interfaces can place packets into the same
queue, and thus interrupts from other interfaces must be blocked. Bits in the sta-
tus word are assigned according to the value of their protocol-family identifiers,
shown in Table 12.5.

Entries on a protocol's input queue are mbuf chains with a valid packet header
containing the packet's length and a pointer to the network interface on which the
packet was received. The pointer to the interface has many potential uses, such as
deciding when to generate routing redirect messages. Input-handling routines that
run at software-interrupt level are typically of the form

for (;;) {
s = splimp(); /* block network from queue */
IF_DEQUEUE(&xxintrq, m);
splx(s);
if (m == 0) /* all packets processed */

break;
/* process packet and determine receiving protocol */
(*pr_input)(m, hlen); /* invoke protocol */

Table 12.5 Network-interrupt status- word bit assignments.

Status bit
NETISR_IP

NETISR_NS
NETISR_ISO
NETISR_CCITT
NETISR_ARP

Value
PF_INET
PF_NS
PF_ISO
PF_CCITT
PF_ARP

Input queue
ipintrq
nsintrq
clnlintrq
llcintrq
arpintrq

Use
Internet IP protocol input
Xerox NS protocol input
ISO/OSI connectionless network
X.25 packet level
ARP input



416 Chapter 12 Network Communication

While an entry is dequeued from an input queue, a protocol blocks all network-
interface input handling by raising the processor's priority level with splimp() to
ensure that pointers in the queue data structure are not altered. Once a message is
dequeued, it is processed; if there is information in the packet for a higher-level
protocol, the message is passed upward.

12.5 Routing

The networking system was designed for an internetwork environment in which a
collection of local-area networks is connected at one or more points through net-
work nodes with multiple network interfaces, as shown in the example in Fig.
12.7. Nodes with multiple network interfaces—one on each local-area or long-
haul network—may act as routers.* In such an environment, issues related to
gatewaying and packet routing are important. Certain of these issues, such as con-
gestion control, are handled simplistically in 4.4BSD (see Section 12.6). For oth-
ers, the network system provides simple mechanisms on which more involved
policies can be implemented. These mechanisms ensure that, as these problems
become better understood, their solutions can be incorporated into the system.

This section describes the facilities provided for packet routing. The routing
facilities were designed for use by singly connected and multiply connected hosts,
as well as for routers. There are several components involved in routing, illus-
trated in Fig. 12.8. The design of the routing system places some components
within the operating system and others at user level. The routing facilities
included in the kernel do not impose routing policies, but instead support a rout-
ing mechanism by which externally defined policies can be implemented. By a
routing mechanism, we mean a table lookup that provides a first-hop route (a spe-
cific network interface and immediate destination) for each destination. Routing
policies include all the components involved in choosing the first-hop routes, such
as discovery of the local network topology, implementation of various routing
protocols, and configuration information specifying local policies. The routing
design places enough information in the kernel for packets to be sent on their way
without external help; all other components are outside the kernel. User-level
processes can be used to implement policies ranging from simple static routing to
complex dynamic algorithms. These processes communicate with the kernel via
a routing socket to manipulate the kernel routing table and to listen for internal
routing events. Each of these components is described in this section. Although
there is nothing in the system that prevents protocols from managing their own
routing information, the facilities described here were designed to support most
needs.

* At the time of the original design of this part of the system, a network node that forwarded network-
level packets was generally known as a gateway. The current Internet term is router. We use both
terms interchangeably, in part because the system data structures continue to use the name gateway.

Section 12.5 Routing

local backbone network

417

local- I local-
area / area

network/ network

local backbone network

local- 1 local-
area area

network/ network

- gateway

- workstation

Figure 12.7 Example of the topology for which routing facilities were designed.

Kernel Routing Tables

The kernel routing mechanism implements a routing table for looking up first-hop
routes (or next hop, when forwarding packets). It includes two distinct portions: a
data structure describing each specific route (a routing entry) and a lookup algo-
rithm to find the correct route for each possible destination. This subsection
describes the entries in the routing table, and the next subsection explains the
lookup algorithm. A destination is described by a sockaddr structure with an
address family, a length, and a value. Routes are typed in two ways: as either host
or network routes, and as either direct or indirect. The host-network distinction
determines whether the route applies to a specific host, or to a group of hosts with
a portion of their addresses in common—usually a prefix of the address. For host
routes, the destination address of a route must exactly match the desired destina-
tion; the address family, length, and bit pattern of the destination must match those

Figure 12.8 Routing design.

routing
information routing

information

user
kernel routing socket

routing table



418 Chapter 12 Network Communication

in the route. For network routes, the destination address in the route is paired with
a mask. The route matches any address that contains the same bits as the destina-
tion in the positions indicated by bits set in the mask. A host route is a special
case of a network route, in which the mask bits are set for the whole address, and
thus no bits are ignored in the comparison. Another special case is a wildcard
route: a network route with an empty mask. Such a route matches every destina-
tion and serves as a default route for destinations not otherwise known. This fall-
back network route can be pointed to an intelligent gateway that can then make
more informed routing decisions.

The other major distinction between types of routes is either direct or indirect.
A direct route is one that leads directly to the destination: The first hop of the path
is the entire path, and the destination is on a network shared with the source. Most
routes are indirect: The route specifies a gateway on a local network that is the
first-hop destination for the route. Much of the literature (especially for Internet
protocols) refers to a local-remote decision, where an implementation checks first
whether a destination is local to an attached network or is remote; in the first case,
a packet is sent locally (via the link layer) to the destination; in the latter case, it is
sent locally to the gateway to the destination. In the implementation, the
local-remote decision is made as part of the routing lookup. If the best route is
direct, then the destination is local. Otherwise, the route is indirect, the destina-
tion is remote, and the route entry specifies the gateway to the destination. In
either case, the route specifies a first-hop route: a link-level interface to be used in
sending packets, and the destination for the packets in this hop if different from
the final destination. This information allows a packet to be sent via a local inter-
face to a destination directly reachable via that interface-either the final destina-
tion or a router on the path to the destination. This distinction is needed when the

Table 12.6 Elements of a routing-table entry (rtentry) structure.

Element Description
rt_nodes[2] internal and leaf radix nodes

(with references to destination and mask)
rt_gateway reference to gateway address
rt_flags flags; see Table 12.7
rt_refcnt reference count
rt_use raw number of packets forwarded
rt_ifp reference to interface, ifnet
rt_ifa reference to interface address, ifaddr
rt_genmask mask for cloning
rt_llinfo pointer to link-layer private data
rt_rmx route metrics (e.g. MTU)
rt_gwroute if indirect, route to gateway

Section 12.5 Routing 419

link-layer encapsulation is done. If a packet is destined for a peer at a host or
network that is not directly connected to the source, the internetwork packet
header will contain the address of the eventual destination, whereas the link-layer
protocol header will address the intervening gateway.

The network system maintains a set of routing tables that is used by protocols
in selecting a network interface to use in delivering a packet to its destination.
These tables are composed of entries of the form shown in Table 12.6.

Routing entries are stored in an rtentry structure, which contains a reference
to the destination address and mask (unless the route is to a host, in which case the
mask is implicit). The destination address, the address mask, and the gateway
address are variable in size, and thus are placed in separately allocated memory.
Routing entries also contain a reference to a network interface, a set of flags that
characterize the route, and optionally a gateway address. The flags indicate a
route's type (host or network, direct or indirect) and the other attributes shown in
Table 12.7. The route entry also contains a count of the number of packets sent
via the route, a field for use by the link-layer driver, and a set of metrics. The
RTF_HOST flag in a routing-table entry indicates that the route applies to a single
host, using an implicit mask containing all the bits of the address. The
RTF_GATEWAY flag in a routing-table entry indicates that the route is to an indi-
rect gateway agent, and that the link-layer header should be filled in from the
rt_gateway field, instead of from the final internetwork destination address. The
route entry contains a field that can be used by the link layer to cache a reference

Table 12.7 Route entry flags.

Flag
RTF_UP

RTF_GATEWAY
RTF_HOST
RTF_REJECT

RTF_DYNAMIC
RTF_MODIFIED
RTF_DONE
RTF_MASK
RTF_CLONING
RTF_XRESOLVE
RTF_LLINFO
RTF_STATIC
RTF_BLACKHOLE
RTF_PROTO2
RTF_PROTO1

Description
route is valid
destination is a gateway
host entry (net otherwise)
host or net unreachable
created dynamically (by redirect)
modified dynamically (by redirect)
message confirmed
subnet mask present
generate new routes on use
external daemon resolves name
generated by link layer
manually added by administrator
just discard packets (during updates)
protocol-specific routing flag
protocol-specific routing flag



420 Chapter 12 Network Communication

to the direct route for the gateway. The RTF_UP flag is set when a route is
installed. When a route is removed, the RTF_UP flag is cleared, but the route entry
is not freed until all users of the route have noticed the failure and have released
their references. The route entry contains a reference count because it is allocated
dynamically and cannot be freed until all references have been released. The
RTF_CLONING flag indicates that a route is a generic route that must be cloned
and made more specific before use. This flag is usually used for link-layer routes
that apply to a directly attached network, and the cloned routes are generally host
routes for hosts on that network that contain some link-level information about
that host. When a route is cloned, an external agent may be invoked to complete
the link-layer information needed for a destination. Other flags (RTF_REJECT and
RTF_BLACKHOLE) mark the destination of the route as being unreachable, caus-
ing either an error or a silent failure when an attempt is made to send to the desti-
nation. Reject routes are useful when a router receives packets for a cluster of
addresses from the outside, but may not have routes for all hosts or networks in
the cluster at all times. It is undesirable for packets with unreachable destinations
to be sent outside the cluster via a default route, because the default router would
send back such packets for delivery within the cluster. Black-hole routes are used
during routing transients when a new route may become available shortly.

Network protocols often send to the same destination repeatedly and may
desire information about the path. Some of this information can be estimated
dynamically for each connection, such as the round-trip time. It is useful to cache
such information so that the estimation does not need to begin anew for each con-
nection. The routing entry contains a set of route metrics stored in a rt_metrics
structure that may be set externally, or may be determined dynamically by the pro-
tocols. These metrics include the maximum packet size for the path, called the
maximum transmission unit (MTU); the hop count; the round-trip time and vari-
ance; the send and receive buffering requirements implied by the bandwidth-delay
product; and congestion-avoidance parameters. Individual metrics can be locked,
in which case they cannot be updated with dynamic estimates.

When a route is added or created by cloning, and when a route is deleted, the
link layer is called via the ifa_rtrequest entry point stored in the ifaddr structure
for this interface address. The link layer can allocate private storage associated
with the route entry. This feature is used with direct routes to networks that are
marked as cloning routes; the link layer can use this mechanism to manage link-
layer address-translation information for each host. The address translation can be
arranged within the system—for example, with a dynamic mechanism—or it can
be handled outside the kernel when the RTF_XRESOLVE flag is set.

Routing Lookup
Given a set of routing entries describing various destinations, from specific hosts
to a wildcard route, a routing lookup algorithm is required. Earlier versions of the
system used a hash lookup in a pair of routing tables: one for host routes and one
for network routes. However, this algorithm required the ability to determine the

Section 12.5 Routing 421

network part of each address to be looked up, which could be expensive or
impossible. Not all protocols encode the address with a network part and a host
part, and many protocols use multilevel addressing hierarchies. It is useful to cre-
ate routes at any level of a hierarchy, allowing aggregation of the largest group of
hosts for which the next-hop route is the same. Therefore, a new routing lookup
algorithm was needed. The lookup algorithm in 4.4BSD uses a modification of the
radix search trie [Sedgewick, 1990]. (The initial design was to use a PATRICIA
search, also described in [Sedgewick, 1990], which differs only in the details of
storage management.) The radix search algorithm provides a way to find a bit
string, such as a network address, in a set of known strings. Although the modi-
fied search was implemented for routing lookups, the radix code is implemented
in a more general way so that it can be used for other purposes. For example, the
filesystem code uses a radix tree to manage information about clients to which
filesystems can be exported. Each kernel route entry begins with the data struc-
tures for the radix tree, including an internal radix node and a leaf node that refers
to the destination address and mask.

The radix search algorithm uses a binary tree of nodes beginning with a root
node for each address family. Fig. 12.9 shows an example radix tree. A search
begins at the root node, and descends through some number of internal nodes until
a leaf node is found. Each internal node requires a test of a specific bit in the
string, and the search descends in one of two directions depending on the value of
that bit. The internal nodes contain an index of the bit to be tested, as well as a

Figure 12.9 Example radix tree. This simplified example of a radix tree contains routes
for one protocol family using 32-bit addresses. The circles represent internal nodes, begin-
ning with the head of the tree at the top. The bit position to be tested is shown within the
circle. Leaf nodes are shown as rectangles containing a key (a destination address, listed as
four decimal bytes separated by dots) and the corresponding mask (in hexadecimal). Some
interior nodes are associated with masks found lower in the tree, as indicated by dashed ar-
rows.

mask head

key = 128.32.33.5
(host)



422 Chapter 12 Network Communication

precomputed byte index and mask for use in the test. A leaf node is marked with
a bit index of -1, which terminates the search. For example, a search for the
address 127.0.0.1 with the tree in Fig. 12.9 would start at the head, and would
branch left when testing bit 0, right at the node for bit 1, and right on testing bit
31. This search leads to the leaf node containing a host route specific to that host;
such a route does not contain a mask, but uses an implicit mask with all bits set.

This lookup technique tests the minimum number of bits required to distin-
guish among a set of bit strings. Once a leaf node is found, either it specifies the
specific bit string in question, or that bit string is not present in the table. This
algorithm allows a minimal number of bits to be tested in a string to look up an
unknown, such as a host route; however, it does not provide for partial matching
as required by a routing lookup for a network route. Thus, the routing lookup uses
a modified radix search, in which each network route includes a mask, and nodes
are inserted into the tree such that longer masks are found earlier in the search
[Sklower, 1991]. Interior nodes for subtrees with a common prefix are marked
with a mask for that prefix. (Masks generally select a prefix from an address,
although the mask does not need to specify a contiguous portion of the address.)
As the routing lookup proceeds, the internal nodes that are passed are associated
with masks that increase in specificity. If the route that is found at the leaf after
the lookup is a network route, the destination is masked before comparison with
the key, thus matching any destination on that network. If the leaf node does not
match the destination, one of the interior nodes visited during the route lookup
should refer to the best match. After a lookup that does not find a match at the
leaf node, the lookup procedure iterates backward through the tree, using a parent
pointer in each node. At each interior node that contains a mask, a search is made
for the part of the destination under that mask from that point. For example, a
search for the address 128.32.33.7 in the table in Fig. 12.9 would test bits 0, 18,
and 29 before arriving at the host route on the right (128.32.33.5). Because this
address is not a match, the search moves up one level, where a mask is found. The
mask is a 24-bit prefix, and is associated with the route to 128.32.33.0, which is
the best match. If the mask was not a prefix (in the code, a route with a mask
specifying a prefix is called a normal route), a search would have been required
for the value 128.32.33.7 starting from this point.

The first match found is the best match for the destination; that is, it has the
longest mask for any matching route. Matches are thus found by a combination of
a radix search, testing 1 bit per node on the way down the tree, plus a full compar-
ison under a mask at the leaf node. If the leaf node (either host or network) does
not match, the search backtracks up the tree, checking each parent with a mask
until a match is found. This algorithm avoids a complete comparison at each step
when searching down the tree, which would eliminate the efficiency of the radix
search algorithm. It is optimized for matches to routes with longer masks, and
performs least efficiently when the best match is the default route (the route with
the shortest mask).

Another complication of using a radix search is that a radix tree does not
allow duplicated keys. There are two possible reasons for a key to be duplicated

Section 12.5 Routing 423

in the routing table: either multiple routes exist to the same destination or the same
key is present with different masks. The latter case is not a complete duplicate,
but the two routes would occupy the same location in the tree. The routing code
does not support completely duplicate routes, but it supports multiple routes that
differ in only the mask. When the addition of a route causes a key to be dupli-
cated, the affected routes are chained together from a single leaf node. The routes
are chained in order of mask significance, most specific mask first. If the masks
are contiguous, longer masks are considered to be more specific (with a host route
considered to have the longest possible mask). If a routing lookup visits a node
with a duplicated key when doing a masked comparison (either at the leaf node, or
while moving back up the tree), the comparison is repeated for each duplicate
node on the chain, with the first successful comparison producing the best match.

As we noted, 4.4BSD does not support multiple routes to the same destination
(identical key and mask). The main reason to support multiple paths would be to
allow the load to be split among the paths. However, most network protocols in
4.4BSD cache a reference to a route, using it as long as the destination is the same
and the route is valid. Similarly, when acting as a router, a network protocol may
cache references to routes. In either case, interleaving of traffic across the avail-
able paths would often be suboptimal. A better design would be to add a pointer
to an output function in each route. Most routes would copy the output pointer for
the interface used by the route. Routes for which multiple paths were available
would be represented by a virtual route containing references to the individual
routes, which would not be placed in the radix tree. The virtual route would inter-
pose an intermediate output function that would distribute packets to the output
functions for the individual routes. This scheme would allow good packet inter-
leaving even when a path was used by a single connection.

Routing Redirects
A routing redirect is a control request from a protocol to the routing system to
modify an existing routing-table entry or to create a new routing-table entry. Pro-
tocols usually generate such requests in response to routing-redirect messages that
they receive from routers. Routers generate routing-redirect messages when they
recognize that a better route exists for a packet that they have been asked to for-
ward. For example, if two hosts A and B are on the same network, and host A
sends a packet to host B via a router C, then C will send a routing-redirect mes-
sage to A indicating that A should send packets to B directly.

On hosts where exhaustive routing information is too expensive to maintain
(e.g., small workstations), the combination of wildcard routing entries and rout-
ing-redirect messages can be used to provide a simple routing-management
scheme without the use of a higher-level policy process. Current connections can
be rerouted after notification of the protocols by the protocols' pr_ctlinput()
entries. Statistics are kept by the routing-table routines on the use of routing-redi-
rect messages and on the latter's effect on the routing tables. A redirect causes the
gateway for a route to be changed if the redirect applies to all destinations to
which the route applies; otherwise a new, more specific route is added.



424 Chapter 12 Network Communication

Routing-Table Interface
A protocol accesses the routing tables through three routines: one to allocate a
route, one to free a route, and one to process a routing-redirect control message.
The routine rtalloc() allocates a route; it is called with a pointer to a route struc-
ture, which contains the desired destination, as shown in Fig. 12.10, and a pointer
that will be set to reference the routing entry that is the best match for the destina-
tion. The destination is recorded so that subsequent output operations can check
whether the new destination is the same as the previous one, allowing the same
route to be used. The route returned is assumed to be held by the caller until
released with a call to rtfree(). Protocols that implement virtual circuits, such as
the Transmission Control Protocol (TCP), hold onto routes for the duration of the
circuit's lifetime; connectionless protocols, such as the User Datagram Protocol
(UDP), allocate and free routes whenever the routes' destination address changes.
The rtalloc() routine simply checks whether the route already contains a reference
to a valid route. If no route is referenced or the route is no longer valid, rtalloc()
calls the rtallocl () routine to look up a routing entry for the destination, passing a
flag indicating whether the route will be used or is simply being checked. If pack-
ets will be sent, the route is created by cloning if necessary.

The rtredirect() routine is called to process a routing-redirect control mes-
sage. It is called with a destination address and mask, the new gateway to that
destination, and the source of the redirect. Redirects are accepted from only the
current router for the destination. If a nonwildcard route exists to the destination,
the gateway entry in the route is modified to point at the new gateway supplied.
Otherwise, a new routing-table entry is inserted that reflects the information sup-
plied. Routes to interfaces and routes to gateways that are not directly accessible
from the host are ignored.

Figure 12.10 Data structures used in route allocation.

route pointer
destination
struct route

route pointer
destination
struct route

radix nodes
(with destination and mask)

gateway
flags

reference count
usage

interface pointer
interface address pointer

link-layer private
metrics

route to gateway

•
•
•

struct ifnet

•
•
•

struct ifaddr

private data

struct rtentry

Section 12.5 Routing 425

User-Level Routing Policies
The kernel routing facilities deliberately refrain from making policy decisions.
Instead, routing policies are determined by user processes, which then add, delete,
or change entries in the kernel routing tables. The decision to place policy deci-
sions in a user process implies that routing-table updates may lag a bit behind the
identification of new routes, or the failure of existing routes. This period of insta-
bility is normally short if the routing process is implemented properly. Internet-
specific advisory information, such as ICMP error messages and IMP diagnostic
messages, may also be read from raw sockets (described in Section 12.7).

Several routing-policy processes have been implemented. The system standard
routing daemon, routed (8), uses a variant of the Xerox NS Routing Information
Protocol [Xerox, 1981] to maintain up-to-date routing tables in a local environ-
ment. This protocol has become known as the Routing Information Protocol (RIP)
[Hedrick, 1988]. Many sites that require the use of other routing protocols or more
configuration options than are provided by routed (8) use a multiprotocol routing
process called gated [Hallgren & Honig, 1993].

User-Level Routing Interface: Routing Socket
User-level processes that implement routing policy and protocols require an inter-
face to the kernel routing table so that they can add, delete, and change kernel
routes. In older versions of the system, route addition and deletion were imple-
mented as ioctl commands that passed a kernel route entry as data. In those ver-
sions of the system, the route entry contained fixed-sized sockaddr structures for
the destination and gateway values. However, it is no longer possible to use fixed-
sized structures, and changes to the routing entry may require other components
such as a mask for network routes, a mask for cloning operations, or an identifica-
tion of the interface to be used by the route. A new interface was designed to
accommodate these changes. Another design goal was to allow a routing process
such as gated to learn of routing changes due to redirects, and of changes made by
other processes.

The interface to the kernel routing layer in 4.4BSD uses a socket in a new pro-
tocol family to communicate with the kernel routing layer. A privileged process
creates a raw socket in the routing protocol family, and then passes messages to
and from the kernel routing layer. This socket operates like a normal datagram
socket, including queueing of messages received at the socket, except that commu-
nication takes place between a user process and the kernel. Messages include a
header with a message type identifying the action, as listed in Table 12.8 (on page
426). Messages to the kernel are requests to add, modify, or delete a route, or are
requests for information about the route to a specific destination. The kernel sends
a message in reply with the original request, an indication that the message is a
reply, and an error number in case of failure. Because routing sockets are raw
sockets, each open routing socket receives a copy of the reply. The message
header includes a process ID and a sequence number so that each process can
determine whether this message is a reply to its own request and can match replies



426 Chapter 12 Network Communication

Table 12.8 Routing message types.

Message type
RTM_ADD
RTM_DELETE
RTM_CHANGE
RTM_GET
RTM_LOSING
RTM_REDIRECT
RTM_MISS
RTM_LOCK
RTM_OLDADD
RTM_OLDDEL
RTM_RESOLVE
RTM_NEWADDR
RTM_DELADDR
RTM_IFINFO

Description

add route
delete route
change metrics or flags
report route and metrics
kernel suspects partitioning
told to use different route
lookup failed on this address
lock specified metrics
caused by SIOCADDRT
caused by SIOCDELRT
request to resolve link address
address added to interface
address removed from interface
interface going up or down

with requests. The kernel also sends messages as indications of asynchronous
events, such as redirects and changes in local interface state. These messages
allow a daemon to monitor changes in the routing table made by other processes,
events detected by the kernel, and changes to the local interface addresses and
state. The routing socket is also used to deliver requests for external resolution of
a link-layer route when the RTF_XRESOLVE flag is set on a route entry.

Requests to add or change a route include all the information needed for the
route. The header has a field for the route flags listed in Table 12.7, and contains a
rt_metrics structure of metrics that may be set or locked. The header also carries a
bit vector that describes the set of addresses carried in the message; the addresses
follow the header as an array of variable-sized sockaddr structures. A destination
address is required, as is a mask for network routes. A gateway address is gener-
ally required as well. The system normally determines the interface to be used by
the route from the gateway address, using the interface shared with that gateway.
By convention, direct routes contain the local address of the interface to be used.
In some cases, the gateway address is not sufficient to determine the interface, and
an interface address can be passed as well, generally using a sockaddr-_dl structure
containing the interface name or index (see Section 12.1).

12.6 Buffering and Congestion Control
A major factor affecting the performance of a protocol is the buffering policy.
Lack of a proper buffering policy can force packets to be dropped, cause false

Section 12.6 Buffering and Congestion Control 427

windowing information to be emitted by protocols, fragment host memory, and
degrade the overall host performance. Because of problems such as these, most
systems allocate a fixed pool of memory to the networking system and impose a
policy optimized for normal network operation.

The 4.4BSD networking system is not dramatically different in this respect.
Mbuf structures are allocated as needed via the general allocator malloc() up to
the per-type limit for the network, and are eventually freed for reuse. At boot
time, a small, fixed amount of memory is allocated by the networking system for
mbuf clusters. At later times, more system memory may be requested for mbuf
clusters as the need arises, up to a preconfigured limit; at no time, however, is this
memory ever returned to the system. It would be possible to reclaim memory
from the network. In the environments where the system has been used, storage
use has not been an issue, and thus storage reclamation has been left unimple-
mented.

Protocol Buffering Policies

When a socket is created, the protocol reserves some amount of buffer space for
send and receive queues. These amounts define the high watermarks used by the
socket routines in deciding when to block and unblock a process. The reservation
of space does not currently result in any action by the memory-management rou-
tines.

Protocols that provide connection-level flow control base their decisions on
the amount of space in the associated socket queues. That is, windows sent to
peers are calculated based on the amount of free space in the socket's receive
queue, whereas utilization of the send window received from a peer is dependent
on the high watermark of the send queue.

Queue Limiting

Incoming packets from the network are always received unless memory allocation
fails. However, each network-layer protocol input queue has an upper bound on
the queue's length, and any packets exceeding that bound are discarded. It is pos-
sible for a host to be overwhelmed by excessive network traffic (e.g., if the host is
acting as a gateway from a high-bandwidth network to a low-bandwidth network).
As a defense mechanism, the queue limits can be adjusted to throttle network-traf-
fic load on a host. Discarding packets is not always a satisfactory solution to a
problem such as this (simply dropping packets is likely to increase the load on a
network); the queue lengths were incorporated mainly as a safeguard mechanism.
On the other hand, limiting output queue lengths can be valuable on hosts that
gateway traffic from a high-bandwidth network to a low-bandwidth network. The
queue limit should be sufficiently high that transient overload can be handled by
buffering, but allowing the queue to be too large causes network delays to increase
to unacceptable levels.



428 Chapter 12 Network Communication

12.7 Raw Sockets
A raw socket allows privileged users direct access to a protocol other than those
normally used for transport of user data—for example, network-level protocols.
Raw sockets are intended for knowledgeable processes that wish to take advantage
of some protocol feature not directly accessible through the normal interface, or
for the development of protocols built atop existing protocols. For example, the
ping (8) program is implemented using a raw ICMP socket (see Section 13.8). The
raw IP socket interface attempts to provide an identical interface to the one a pro-
tocol would have if it were resident in the kernel.

The raw socket support is built around a generic raw socket interface, possi-
bly augmented by protocol-specific processing routines. This section describes
only the core of the raw socket interface; details specific to particular protocols are
not discussed. Some protocol families (including Internet) use private versions of
the routines and data structures described here.

Control Blocks
Every raw socket has a protocol control block of the form shown in Fig. 12.11.
All control blocks are kept on a doubly linked list for performing lookups during
packet dispatch. Associations may be recorded in fields referenced by the control
block and may be used by the output routine in preparing packets for transmission.
The rcb_proto field contains the protocol family and protocol number with which
the raw socket is associated. The protocol, family, and addresses are used to filter
packets on input, as described in the next subsection.

A raw socket interface is datagram oriented: Each send or receive on the
socket requires a destination address. Destination addresses may be supplied by
the user, or referenced via pointers to sockaddr structures in the control block and

Figure 12.11 Raw-socket control block.

socket protocol ctrlblk-
socket

protocol ctrlblk-
socket

( 2 ) previous
next

rawcb

socket
next

previous
foreign address
local address

multicast options
protocol identifier

rawcb

socket
next

previous
foreign address
local address

multicast options
protocol identifier

rawcb

Section 12.8 Additional Network-Subsystem Topics 429

automatically installed in the outgoing packet by the output routine. If routing is
necessary, it must be performed by an underlying protocol.

Input Processing
Input packets are assigned to raw sockets based on a simple pattern-matching
scheme. Each protocol (and potentially some network interfaces) gives unas-
signed packets to the raw input routine with the call

raw_input(m, proto, src, dst)
struct mbuf *m;
struct sockproto *proto;
struct sockaddr *src, *dst;

This call must be made at software-interrupt level (e.g., from a network-level pro-
tocol handler), rather than directly from hardware interrupt level. Input packets
are placed into the input queues of all raw sockets that match the header according
to the following rules:

1. The protocol family of the socket and header agree.

2. If the protocol number in the socket is nonzero, then it agrees with that found
in the packet header.

3. If a local address is defined for the socket, the address format of the socket's
local address is the same as the packet's destination address, and the two
addresses agree exactly.

4. Rule 3 is applied to the socket's foreign address and the packet's source
address.

A basic assumption in the pattern-matching scheme is that addresses present in the
control block and packet header (as constructed by the network interface and any
raw input-protocol module) are in a canonical form that can be compared on a bit-
for-bit basis. If multiple sockets match the incoming packet, the packet is copied
as needed.

Output Processing
On output, each send request results in a call to the raw socket's user request rou-
tine, which is specific to the protocol or protocol family. Any necessary process-
ing is done before the packet is delivered to the appropriate network interface.

12.8 Additional Network-Subsystem Topics
In this section, we shall discuss several aspects of the network subsystem that are
not easy to categorize.



430

Out-of-Band Data

Chapter 12 Network Communication

The ability to process out-of-band data is a facility specific to the stream-socket
and sequenced-packet-socket abstractions. Little agreement appears to exist on
what out-of-band data's semantics should be. TCP defines a notion called urgent
data, in which in-line data are marked for urgent delivery. The protocol provides
a mark on the data stream delimiting urgent data from subsequent normal data.
The ISO/OSI protocols [Burruss, 1980] and numerous other protocols provide a
fully independent logical transmission channel along which out-of-band data are
sent. In addition, the number of data that can be sent in an out-of-band message
varies from protocol to protocol, from 1 bit to 512 bytes or more.

A stream socket's notion of out-of-band data has been defined as the lowest
reasonable common denominator. Out-of-band data are expected to be transmitted
out of the normal sequencing and flow-control constraints of the data stream. A
minimum of 1 byte of out-of-band data and one outstanding out-of-band message
is expected to be provided by protocols supporting out-of-band messages. It is a
protocol's prerogative to support larger-sized messages or more than one outstand-
ing out-of-band message at a time.

Out-of-band data may be maintained by the protocol, stored separately from
the socket's receive queue. They may also be prepended to the normal receive
queue marked as out-of-band data. A socket-level option, SO_OOBINLINE, is pro-
vided to force all out-of-band data to be placed in the normal receive queue when
urgent data are received. This option is provided because the 4.2BSD TCP imple-
mentation removed 1 byte of data from the data stream at the urgent mark for sep-
arate presentation. However, this removal caused problems when additional
urgent data were sent before the first such byte was received by the application.

Placement of out-of-band data in the normal data stream can permit a proto-
col to hold several out-of-band messages simultaneously. This mechanism can
avoid the loss of out-of-band messages caused by a process that responds slowly.

Address Resolution Protocol
The Address Resolution Protocol (ARP) is a link-level protocol that provides a
dynamic address-translation mechanism for networks that support broadcast or
multicast communication [Plummer, 1982]. ARP is used in 4.4BSD to map 32-bit
Internet addresses to 48-bit Ethernet addresses. Although ARP is not specific
either to Internet protocol addresses or to Ethernet, the 4.4BSD network subsystem
supports only that combination, although it makes provision for additional combi-
nations to be added. ARP is incorporated into the network-interface layer,
although it logically sits between the network and network-interface layers.

The general idea of ARP is simple. A set of translations from network
addresses to link-layer addresses is maintained. When an address-translation
request is made to the ARP service by a network interface and the requested
address is not in ARP's set of known translations, an ARP message is created that
specifies the requested network address and an unknown link-layer address. This
message is then broadcast by the interface in the expectation that a host attached

Section 12.8 Additional Network-Subsystem Topics 431

to the network will know the translation—usually because the host is the intended
target of the original message. If a response is received in a timely fashion, the
ARP service uses the response to update its translation tables and to resolve the
pending request, and the requesting network interface is then called to transmit the
original message.

In practice, the simplicity of this algorithm is complicated by the necessity to
avoid stale translation data, to minimize broadcasts when a target host is down,
and to deal with failed translation requests. In addition, it is necessary to deal
with packets for which transmission is attempted before the translation is com-
pleted. The ARP translation tables are implemented as a part of the routing table.
The route to a local Ethernet is set up as a cloning route so that individual host
routes will be created for each local host when referenced. When the route is
cloned, the link layer creates an empty ARP entry associated with the route. Older
versions of the system used a separate ARP hash table, but the use of the routing
table avoids a separate lookup. The network output routine normally requires a
routing lookup or a cached route, and it now passes a reference to the route to the
interface output function.

A request is made to resolve an Internet address to an Ethernet address for an
outgoing message by the call

result = arpresolve(ac, rt, m, destip, desten);
struct arpcom *ac;
struct rtentry *rt;
struct mbuf *m;
struct sockaddr *destip;
u_char *desten;

ARP first checks its tables to see whether the destination address is a broadcast or
multicast address, in which cases the Ethernet address can be calculated directly.
Otherwise, it checks whether the route entry that was passed already contains a
complete translation that has not timed out. If so, the gateway value in the route
entry is a link-layer address for the destination, and its value is returned in desten
for use as the destination address of the outgoing packet. If the link-layer address
is not known or has timed out, ARP must queue the outgoing message for future
transmission, and must broadcast a message requesting the Internet address trans-
lation. The time is recorded in the ARP entry when a request is broadcast, and no
further broadcasts are made within the same second if additional transmissions are
attempted. If another translation request is made before a reply is received, the
queued message is discarded and only the newer one is saved. After some number
of broadcasts without a reply (normally 5, in no less than 5 seconds), the route is
changed to a reject route with an expiration time after 20 seconds, causing host-
down errors to be returned in response to attempts to reach the host within that
time.

At a later time—preferably before the timer has expired on the queued mes-
sage—ARP will receive a response to its translation request. The received message



432 Chapter 12 Network Communication

is processed first by the ether_input() routine, as invoked from the Ethernet device
driver. Because the packet has a packet type of ARP, it is enqueued for the ARP
software-interrupt routine, analogous to other network-level protocol input inter-
rupts. The ARP packet is processed to locate the translation entry in the routing
table. If the message completes a pending translation, the entry is updated and the
original message is passed back to the network interface for transmission. This
time, the resultant call to arpresolve() will succeed without delay.

ARP input handling must cope with requests for the host's own address, as
well as responses to translation requests that the host generated. The input module
also watches for responses from other hosts that advertise a translation for its own
Internet address. This monitoring is done to ensure that no two hosts on the same
network believe that they have the same Internet address (although this error may
be detected, ARP's only recourse is to log a diagnostic message).

ARP normally times out completed translation entries in its cache after 20
minutes, and incomplete translation entries after about 5 seconds. Entries may be
marked permanent, however, in which case they are never removed. Entries may
also be marked published, allowing one host to act as a surrogate for other hosts
that do not support ARP, or to act as a proxy for a host that is not on the Ethernet,
but is reached via a router.

Exercises
12.1 Name two key data structures used in the networking subsystem that are

important in ensuring that the socket-layer software is kept independent of
the networking implementation.

12.2 Why are software interrupts used to trigger network protocol processing on
receipt of data, rather than the protocol processing being encapsulated in
separate processes?

12.3 Which routines in the protocol switch are called by the socket layer?
Explain why each of these routines is called.

12.4 Assume that a reliably-delivered-message socket (SOCK_RDM) is a con-
nectionless socket that guarantees reliable delivery of data and that pre-
serves message boundaries. Which flags would a protocol that supported
this type of socket have set in the pr_flags field of its protocol-switch entry?

12.5 Give an example of a network interface that is useful without an underlying
hardware device.

12.6 Give two reasons why the addresses of a network interface are not in the
network-interface data structure.

12.7 Why is the name or address of a socket kept at the network layer, rather
than at the socket layer?

References 433

12.8 Why does 4.4BSD not attempt to enforce a rigid protocol-protocol interface
structure?

12.9 Describe two tasks performed by a network-interface output routine.

12.10 Why is the identity of the network interface on which each message is
received passed upward with the message?

12.11 Which routing policies are implemented in the kernel?

12.12 Describe three types of routes that can be found in the routing table that
differ by the type of destination to which they apply.

12.13 What routing facility is designed mainly to support workstations?

12.14 What is a routing redirect? For what is it used?

12.15 Why do the output-packet queues for each network interface have limits on
the number of packets that may be queued?

12.16 What does the SO_OOBINLINE socket option do? Why does it exist?

*12.17 Explain'why it is impossible to use the raw socket interface to support par-
allel protocol implementations—some in the kernel and some in user
mode. What modifications to the system would be necessary to support
this facility?

*12.18 Why are ancillary data, such as access rights, provided to the user request
routine at the same time as any associated data are provided, instead of
being sent in a separate call?

*12.19 Previous versions of the system used a hashed routing lookup for a destina-
tion as a host or as a network. Name two ways in which the radix search
algorithm in 4.4BSD is more capable.

References
BBN, 1978.

BBN, "Specification for the Interconnection of Host and IMP," Technical
Report 1822, Bolt, Beranek, and Newman, Cambridge, MA, May 1978.

Burruss, 1980.
J. Burruss, "Features of the Transport and Session Protocols," Report No.
ICST/HLNP-80-1, National Bureau of Standards, Washington, D.C., March
1980.

Hallgren & Honig, 1993.
M. Hallgren & J. Honig, "GateD and the GateD Consortium," Connexions,
vol. 7, no. 9, pp. 61-66, Interop Company, Mountain View, CA, September
1993.



434 Chapter 12 Network Communication

Hedrick, 1988.
C. Hedrick, "Routing Information Protocol," RFC 1058, available by
anonymous FTP from ds.internic.net, June 1988.

ISO, 1984.
ISO, "Open Systems Interconnection: Basic Reference Model," ISO 7498,
International Organization for Standardization, 1984. available from the:
American National Standards Institute, 1430 Broadway, New York, NY
10018.

Plummer, 1982.
D. Plummer, "An Ethernet Address Resolution Protocol," RFC 826, avail-
able by anonymous FTP from ds.internic.net, September 1982.

Postel, 1981.
J. Postel, "Internet Control Message Protocol," RFC 792, available by
anonymous FTP from ds.internic.net, September 1981.

Sedgewick, 1990.
R. Sedgewick, Algorithms in C, Addison-Wesley, Reading, MA, 1990.

Sklower, 1991.
K. Sklower, "A Tree-Based Packet Routing Table for Berkeley UNIX,"
USENIX Association Conference Proceedings, pp. 93-99, January 1991.

Wright & Stevens, 1995.
G. R. Wright & W. R. Stevens, TCP/IP Illustrated, Volume 2, The Imple-
mentation, Addison-Wesley, Reading, MA, 1995.

Xerox, 1981.
Xerox, "Internet Transport Protocols," Xerox System Integration Standard
028112, Xerox Corporation, Stamford, CT, December 1981.

CHAPTER 13

Network Protocols

Chapter 12 presented the network-communications architecture of 4.4BSD. In this
chapter, we examine the network protocols implemented within this framework.
The 4.4BSD system supports four major communication domains: DARPA Inter-
net, Xerox Network Systems (NS), ISO/OSI, and local domain (formerly known as
the UNIX domain). The local domain does not include network protocols because
it operates entirely within a single system. The Internet protocol suite was the first
set of protocols implemented within the network architecture of 4.2BSD. Follow-
ing the release of 4.2BSD, several proprietary protocol families were implemented
by vendors within the network architecture. However, it was not until the addition
of the Xerox NS protocols in 4.3BSD that the system's ability to support multiple
network-protocol families was visibly demonstrated. Although some parts of the
protocol interface were previously unused and thus unimplemented, the changes
required to add a second network-protocol family did not substantially modify the
network architecture. The implementation of the ISO OSI networking protocols,
as well as other changing requirements, led to a further refinement of the network
architecture in 4.4BSD.

In this chapter, we shall concentrate on the organization and implementation
of the Internet protocols. This protocol implementation is used widely, both in
4BSD systems and in many other systems, because it was publicly available when
many vendors were looking for tuned and reliable communication protocols.
Developers have implemented other protocols, including Xerox NS and OSI, by
following the same general framework set forth by the Internet protocol routines.
After describing the overall architecture of the Internet protocols, we shall ex-
amine their operation according to the structure defined in Chapter 12. We shall
also describe the significant algorithms used by the Internet protocols. We then
shall discuss changes that the developers made in the system motivated by aspects
of the OSI protocols and their implementation.



436 Chapter 13 Network Protocols

13.1 Internet Network Protocols

The Internet network protocols were developed under the sponsorship of DARPA,
for use on the ARPANET [McQuillan & Walden, 1977; DARPA, 1983]. They are
commonly known as TCP/IP, although TCP and IP are only two of the many proto-
cols in the family. Unlike earlier protocols used within the ARPANET (the
ARPANET Host-to-Host Protocol, sometimes called the Network Control Program
(NCP)) [Carr et al, 1970], these protocols do not assume a reliable subnetwork that
ensures delivery of data. Instead, the Internet protocols were devised for a model
in which hosts were connected to networks with varying characteristics, and the
networks were interconnected by routers (generally called gateways at the time).
Such a model is called a catenet [Cerf, 1978]. The Internet protocols were
designed for packet-switching networks ranging from the ARPANET or X.25,
which provide reliable message delivery or notification of failure, to pure datagram
networks such as Ethernet, which provide no indication of datagram delivery.

This model leads to the use of at least two protocol layers. One layer operates
end to end between two hosts involved in a conversation. It is based on a lower-
level protocol that operates on a hop-by-hop basis, forwarding each message
through intermediate routers to the destination host. In general, there exists at
least one protocol layer above the other two: it is the application layer. This three-
level layering has been called the ARPANET Reference Model [Padlipsky, 1985].
The three layers correspond roughly to levels 3 (network), 4 (transport), and 7
(application) in the ISO Open Systems Interconnection reference model [ISO,
1984].

The Internet communications protocols that support this model have the lay-
ering illustrated in Fig. 13.1. The Internet Protocol (IP) is the lowest-level proto-
col in the ARPANET Reference Model; this level corresponds to the ISO network
layer. IP operates hop by hop as a datagram is sent from the originating host to the

Figure 13.1 Internet protocol layering. TCP—Transmission Control Protocol; UDP—Us-
er Datagram Protocol; IP—Internet Protocol; ICMP—Internet Control Message Protocol.

transport layer

network layer

TCP UDP

IP

I

ICMP

network interface

Section 13.1 Internet Network Protocols 437

destination via any intermediate routers. It provides the network-level services of
host addressing, routing, and, if necessary, packet fragmentation and reassembly if
intervening networks cannot send an entire packet in one piece. All the other pro-
tocols use the services of IP. (The version of IP used in 4.4BSD is version 4. The
next generation of IP, version 6, was in development about the time of the release
of 4.4BSD.) The Transmission Control Protocol (TCP) and User Datagram Proto-
col (UDP) are transport-level protocols that provide additional facilities to IP.
Each protocol adds a port identifier to IP's host address so that local and remote
sockets can be identified. TCP provides reliable, unduplicated, and flow-con-
trolled transmission of data; it supports the stream socket type in the Internet
domain. UDP provides a data checksum for checking integrity in addition to a
port identifier, but otherwise adds little to the services provided by IP. UDP is the
protocol used by datagram sockets in the Internet domain. The Internet Control
Message Protocol (ICMP) is used for error reporting and for other network-man-
agement tasks; it is logically a part of IP, but like the transport protocols is layered
above IP. It is usually not accessed by users. Raw access to the IP and ICMP pro-
tocols is possible through raw sockets; see Section 12.7 for information on this
facility.

The Internet protocols were designed to support heterogeneous host systems
and architectures. These systems use a wide variety of internal data representa-
tions. Even the basic unit of data, the byte, was not the same on all host systems;
one common type of host supported variable-sized bytes. The network protocols,
however, require a standard representation. This representation is expressed in
terms of the octet—an 8-bit byte. We shall use this term as it is used in the proto-
col specifications to describe network data, although we continue to use the term
byte to refer to data or storage within the system. All fields in the Internet proto-
cols that are larger than an octet are expressed in network byte order, with the
most significant octet first. The 4.4BSD network implementation uses a set of rou-
tines or macros to convert 16-bit and 32-bit integer fields between host and net-
work byte order on hosts (such as the VAX and i386-compatible systems) that have
a different native ordering.

Internet Addresses

An Internet host address is a 32-bit number that identifies both the network on
which a host is located and the host on that network. Network identifiers are
assigned by a central agency, whereas host identifiers are assigned by each net-
work's administrator. It follows that a host with network interfaces attached to
multiple networks has multiple addresses. Figure 13.2 shows the original address-
ing scheme that was tied to the subnetwork addressing used on the ARPANET;
each host was known by the number of the ARPANET IMP to which it was
attached and by its host port number on that IMP (Interface Message Processor).
The IMP and host numbers each occupied one octet of the address. One remaining
octet was used to designate the network and the other was available for uses such
as multiplexed host connections—thus the name logical host. This encoding of



438

most
significant
bit

most
significant
bit

network host logical
host IMP

ARPANET address

0 network
8 bits

host
24 bits

Chapter 13 Network Protocols

least
significant
bit

least
significant
bit

class A address

10 network host
16 bits

class B address

1 10 network
—— 24 bits ——————

host
8 bits

class C address

Figure 13.2 Internet addresses. IMP—Interface Message Processor.

the address limits the number of networks to 255, a number that quickly proved to
be too small. Figure 13.2 shows how the network portion of the address was
encoded such that it could be variable in size. The most significant bits of the net-
work part of the address determine the class of an address. Three classes of net-
work address are defined, A, B and C, with high-order bits of 0, 10, and 110; they
use 8, 16, and 24 bits, respectively, for the network part of the address. Each class
has fewer bits for the host part of each address, and thus supports fewer hosts than
do the higher classes. This form of frequency encoding supports a larger number
of networks of varying size, yet is compatible with the old encoding of ARPANET
addresses.

Subnets
The basic Internet addressing scheme uses a 32-bit address that contains both a
network and a host identifier. All interconnected networks must be known to a
central collection of routing agents for full connectivity. This scheme does not
handle a large number of interconnected networks well because of the excessive
routing information necessary to ensure full connectivity. Furthermore, when net-
works are installed at a rapid pace, the administrative overhead is significant.
However, many networks are installed at organizations such as universities, com-
panies, and research centers that have many interconnected local-area networks
with only a few points of attachment to external networks. To handle these prob-
lems, the notion of a subnet addressing scheme was added [Mogul & Postel,
1985]; it allows a collection of networks to be known by a single network number.

Section 13.1 Internet Network Protocols 439

Subnets allow the addition of another level of hierarchy to the Internet address
space. They partition a network assigned to an organization into multiple address
spaces (see Fig. 13.3). This partitioning, each part of which is termed a subnet, is
visible to only those hosts and routers on the subnetted network. To hosts that are
not on the subnetted network, the subnet structure is not visible. Instead, all hosts
on subnets of a particular network are perceived externally as being on a single
network. The scheme allows Internet routing to be done on a site-by-site basis, as
all hosts on a site's subnets appear to off-site hosts and routers to be on a single
Internet network. This partitioning scheme also permits sites to have greater local
autonomy over the network topology at their site.

When a subnet addressing scheme is set up at a site, a partitioning of the
assigned Internet address space for that site must be chosen. Consider Fig. 13.3:
If a site has a class B network address assigned to it, it has 16 bits of the address in
which to encode a subnet number and the identifier of a host on that subnet. An
arbitrary subdivision of the 16 bits is permitted, but sites must balance the number
of subnets they will need against the number of hosts that may be addressed on
each subnet. To inform the system of the desired partitioning scheme, the site
administrator specifies a network mask for each network interface. This mask
shows which bits in the Internet address specify the network part of the local
address. The mask includes the normal network portion, as well as the subnet
field. This mask also is used when the host part of an address is extracted. When
interpreting an address that is not local, the system uses the mask corresponding to
the class of the address. The mask does not need to be uniform throughout a sub-
netted network, although uniformity is common.

The implementation of subnets is isolated, for the most part, to the routines
that manipulate Internet addresses. Each Internet address assigned to a network
interface is maintained in an in_ifaddr structure that contains an interface address
structure and additional information for use in the Internet domain (see Fig. 13.4
on page 440). When an interface's network mask is specified, it is recorded in the
ia_subnetmask field of the address structure. The network mask, ia_netmask, is
calculated based on the type of the network number (class A, B, or C) when the

Figure 13.3 Example of subnet address partitioning.

network
16 bits -

host
16 bits-

class B address

network mask -

10 network
— 16 bits ————

subnet
n bits -

host
- 16-n bits-



440 Chapter 13 Network Protocols

in_ifaddr ifa_addr
ifs_broadaddr
ifs_netmask

ifa_next
ifa_rtrequest
ifs_flags
ifs_refcnt
ifs_metric

ia_ net
ia_ netmask
ia_ subnet
ia_subnetmask
ia_broadcast
ia_ next
ia_ multiaddrs

ifa_addr
ifs_broadaddr
ifs_netmask
ifs_ifp
ifa_next
ifa_rtrequest
ifs_flags
ifs_refcnt
ifs_metric

ia_ net
ia_netmask
ia_subnet
ia_subnetmask
ia_ broadcast
ia_next
ia_ multiaddrs

Figure 13.4 Internet interface address structure (injfaddr).

interface's address is assigned. For nonsubnetted networks, the two masks are
identical. The system then interprets local Internet addresses using these values.
An address is considered to be local to the subnet if the field under the subnetwork
mask matches the subnetwork field of an interface address. The system can also
determine whether an address is on the logical network using the network mask
and number.

As the number of Internet networks has grown, it has become necessary to
generalize the handling of Internet addresses to avoid exhausting the set of avail-
able network numbers. The new scheme is based on Classless Inter-Domain
Routing (CIDR) [Fuller et al, 1993]. The allocation of network addresses does not
necessarily follow the boundaries according to class (A, B or C). Instead, an
organization may be assigned a contiguous group of addresses described by a sin-
gle value and mask, such as a group of 16 class C networks (using a 20-bit mask),
or one-half of a class C network (using a 25-bit mask). This group of addresses
may in turn be subnetted within the organization. In addition, these blocks of
addresses are often assigned from a larger block by an Internet service provider,
allowing aggregation of routes to clients of the provider. In general, 4.4BSD han-
dles classless addressing in the same fashion as subnets, setting the local network
mask along with each address. The local network mask can be set to a value
either longer or shorter than that of the mask associated with the network class (A,
B, or C). When such a network is subnetted, it would sometimes be desirable to
set both the network and subnet masks, although the network mask has little

Section 13.1 Internet Network Protocols 441

remaining significance. As network routes now include explicit masks (see
Section 12.5), the system can route to subnets, traditional network classes, and
clusters of networks using the same mechanism.

Broadcast Addresses
On networks capable of supporting broadcast datagrams, 4.2BSD used the address
with a host part of zero for broadcasts. After 4.2BSD was released, the Internet
broadcast address was defined as the address with a host part of all ls [Mogul,
1984]. This change and the introduction of subnets both complicated the recogni-
tion of broadcast addresses. Hosts may use a host part of 0 or ls to signify broad-
cast, and some may understand the presence of subnets, whereas others may not.
For these reasons, 4.3BSD and later systems set the broadcast address for each
interface to be the host value of all ls, but allow the alternate address to be set for
backward compatibility. If the network is subnetted, the subnet field of the broad-
cast address contains the normal subnet number. The logical broadcast address
for the network also is calculated when the address is set; this address would be
the standard broadcast address if subnets were not in use. This address is needed
by the IP input routine to filter input packets. On input, 4.4BSD recognizes and
accepts subnet and network broadcast addresses with host parts of 0s or 1s, as well
as the address with 32 bits of 1 ("broadcast on this physical network").

Internet Multicast
Many link-layer networks, such as the Ethernet, provide a multicast capability that
can address groups of hosts, but is more selective than broadcast because it provides
a number of different multicast group addresses. IP provides a similar facility at the
network-protocol level, using link-layer multicast where available [Deering, 1989].
IP multicasts are sent using class D destination addresses with high-order bits 1110.
Unlike host addresses in classes A, B, and C, class D addresses do not contain net-
work and host portions; instead, the entire address names a group, such as a group
of hosts using a particular service. These groups can be created dynamically, and
the members of the group can change over time. IP multicast addresses map
directly to physical multicast addresses on networks such as the Ethernet, using the
low 24 bits of the IP address along with a constant 24-bit prefix to form a 48-bit
link-layer address.

For a socket to use multicast, it must join a multicast group using the setsock-
opt system call. This call informs the link layer that it should receive multicasts
for the corresponding link-layer address, and also sends a multicast membership
report using the Internet Group Management Protocol (IGMP). Multicast agents
on the network can thus keep track of the members of each group. Multicast
agents receive all multicast packets from directly attached networks and forward
multicast datagrams as needed to group members on other networks. This func-
tion is similar to the role of routers that forward normal (unicast) packets, but the
criteria for packet forwarding are different, and a packet can be forwarded to
multiple neighboring networks.



442

Internet Ports and Associations

Chapter 13 Network Protocols

At the IP level, packets are addressed to a host, rather than to a process or commu-
nications port. However, each packet contains an 8-bit protocol number that iden-
tifies the next protocol that should receive the packet. Internet transport protocols
use an additional identifier to designate the connection or communications port on
the host. Most protocols (including TCP and UDP) use a 16-bit port number for
this purpose. Each protocol maintains its own mapping of port numbers to pro-
cesses or descriptors. Thus, an association, such as a connection, is fully specified
by the tuple <source address, destination address, protocol number, source port,
destination port>. Connection-oriented protocols, such as TCP, must enforce the
uniqueness of associations; other protocols generally do so as well. When the
local part of the address is set before the remote part, it is necessary to choose a
unique port number to prevent collisions when the remote part is specified.

Protocol Control Blocks
For each TCP- or UDP-based socket, an Internet protocol control block (an inpcb
structure) is created to hold Internet network addresses, port numbers, routing
information, and pointers to any auxiliary data structures. TCP, in addition,

Figure 13.5 Internet Protocol data structures.

SOCKET

next
previous

port prototype

protocol Ctrl blk — —
socket

socket
next

previous
local port

local address
foreign port

foreign address
route

options
mcast options

protocol ctrl blk -| —
socket

socket
next

previous
local port

local address
foreign port

foreign address
route

options
mcast options

TCP

inpcb

•••

inpcb

•••
tcpcb tcpcb

Section 13.2 User Datagram Protocol (UDP) 443

creates a TCP control block (a tcpcb structure) to hold the wealth of protocol state
information necessary for its implementation. Internet control blocks for use with
TCP are maintained on a doubly linked list private to the TCP protocol module.
Internet control blocks for use with UDP are kept on a similar list private to the
UDP protocol module. Two separate lists are needed because each protocol in the
Internet domain has a distinct space of port identifiers. Common routines are used
by the individual protocols to add new control blocks to a list, to fix the local and
remote parts of an association, to locate a control block by association, and to
delete control blocks. IP demultiplexes message traffic based on the protocol iden-
tifier specified in its protocol header, and each higher-level protocol is then
responsible for checking its list of Internet control blocks to direct a message to
the appropriate socket. Figure 13.5 shows the linkage between the socket data
structure and these protocol-specific data structures.

The implementation of the Internet protocols is rather tightly coupled, as
befits the strong intertwining of the protocols. For example, the transport proto-
cols send and receive packets including not only their own header, but also an IP
pseudoheader containing the source and destination address, the protocol identi-
fier, and a packet length. This pseudoheader is included in the transport-level
packet checksum.

We are now ready to examine the operation of the Internet protocols. We
begin with UDP, as it is far simpler than TCP.

13.2 User Datagram Protocol (UDP)

The User Datagram Protocol (UDP) [Postel, 1980] is a simple unreliable data-
gram protocol that provides only peer-to-peer addressing and optional data check-
sums.* Its protocol headers are extremely simple, containing only the source and
destination port numbers, the datagram length, and the data checksum. The host
addresses for a datagram are provided by the IP pseudoheader.

Initialization

When a new datagram socket is created in the Internet domain, the socket layer
locates the protocol-switch entry for UDP and calls the udp_usrreq() routine
PRU_ATTACH entry with the socket as a parameter. UDP uses in_pcballoc() to
create a new protocol control block on its list of current sockets. It also sets the
default limits for the socket send and receive buffers. Although datagrams are
never placed in the send buffer, the limit is set as an upper limit on datagram size;
the UDP protocol-switch entry contains the flag PR_ATOMIC, requiring that all
data in a send operation be presented to the protocol at one time.

* In 4.4BSD, checksums are enabled or disabled on a system-wide basis and cannot be enabled or dis-
abled on individual sockets.



444 Chapter 13 Network Protocols

If the application program wishes to bind a port number—for example, the
well-known port for some datagram service—it calls the bind system call. This
request reaches UDP as the PRU_BIND request to udp_usrreq(). The binding may
also specify a specific host address, which must be an address of an interface on
this host. Otherwise, the address will be left unspecified, matching any local
address on input, and with an address chosen as appropriate on each output opera-
tion. The binding is done by in_pcbbind(), which verifies that the chosen port
number (or address and port) is not in use, then records the local part of the asso-
ciation.

To send datagrams, the system must know the remote part of an association.
A program can specify this address and port with each send operation using
sendto or sendmsg, or can do the specification ahead of time with the connect sys-
tem call. In either case, UDP uses the in_pcbconnect() function to record the des-
tination address and port. If the local address was not bound, and if a route for the
destination is found, the address of the outgoing interface is used as the local
address. If no local port number was bound, one is chosen at this time.

Output
A system call that sends data reaches UDP as a call to udp_usrreq() with the
PRU_SEND request and a chain of mbufs containing the data for the datagram. If
the call provided a destination address, the address is passed as well; otherwise,
the address from a prior connect call is used. The actual output operation is done
by udp_output(),

error = udp_output(inp, m, addr, control);
struct inpcb *inp;
struct mbuf *m;
struct mbuf *addr;
struct mbuf *control;

where inp is an Internet protocol control block, m is an mbuf chain that contains
the data to be sent, and addr is an optional mbuf containing the destination
address. Any ancillary data in control are discarded. The destination address
could have been prespecified with a connect call; otherwise, it must be provided in
the send call. UDP simply prepends its own header, fills in the UDP header fields
and those of a prototype IP header, and calculates a checksum before passing the
packet on to the IP module for output:

error = ip_output(m, opt, ro, flags, imo);
struct mbuf *m, *opt;
struct route *ro;
int flags;
struct ip__moptions *imo;

Section 13.2 User Datagram Protocol (UDP) 445

The call to IP's output routine is more complicated than is that to UDP's because
the IP routine cannot depend on having a protocol control block that contains
information about the current sender and destination. The m parameter indicates
the data to be sent, and the opt parameter may specify a list of IP options that
should be placed in the IP packet header. For multicast destinations, the imo
parameter may reference multicast options, such as the choice of interface and hop
count for multicast packets. IP options may be set for a socket with the setsockopt
system call specifying the IP protocol level and option IP_OPTIONS. These
options are stored in a separate mbuf, and a pointer to this mbuf is stored in the
protocol control block for a socket; the pointer is passed to ip_output() with each
packet sent. The ro parameter is optional; UDP passes a pointer to the route struc-
ture in the protocol control block for the socket. IP will determine a route and
leave it in the control block, so that it can be reused on later calls. The flags
parameter indicates whether the user is allowed to transmit a broadcast message,
and whether routing is to be bypassed for the message being sent (see Section
13.3). The broadcast flag may be inconsequential if the underlying hardware does
not support broadcast transmissions. The flags also indicate whether the packet
includes an IP pseudoheader or a completely initialized IP header, as when IP for-
wards packets.

Input

All Internet transport protocols that are layered directly on top of IP use the fol-
lowing calling convention when receiving input packets from IP:

(void) (*pr_input)(m, hlen);
struct mbuf *m;
int hlen;

Each mbuf chain passed is a single packet to be processed by the protocol module.
The packet includes the IP header in lieu of a pseudoheader, and the IP header
length is passed as the second parameter. The UDP input routine udp_input() is
typical of protocol input routines. It first verifies that the length of the packet is at
least as long as the IP plus UDP headers, and it uses m_pullup() to make the
header contiguous. It then checks that the packet is the correct length and check-
sums the data if a checksum is present. If any of these tests fail, the packet is sim-
ply discarded. Finally, the protocol control block for the socket that is to receive
the data is located by in_pcblookup() from the addresses and port numbers in the
packet. There might be multiple control blocks with the same local port number,
but different local or remote addresses; if so, the control block with the best match
is selected. An exact association matches best; but if none exists, a socket with
the correct local port number but unspecified local address, remote port number, or
remote address will match. A control block with unspecified local or remote
addresses thus acts as a wildcard that receives packets for its port if no exact



446 Chapter 13 Network Protocols

match is found. If a control block is located, the data and the address from which
the packet was received are placed in the receive buffer of the indicated socket
with sbappendaddr(). If the destination address is a multicast address, copies of
the packet are delivered to each socket with matching addresses. Otherwise, if no
receiver is found and if the packet was not addressed to a broadcast or multicast
address, an ICMP port unreachable error message is sent to the originator of the
datagram.*

Control Operations
UDP supports few control operations. It supports no options in 4.4BSD, and
passes calls to its pr_ctloutput() entry directly to IP. It has a simple pr_ctlinput()
routine that receives notification of any asynchronous errors. Some errors simply
cause cached routes to be flushed. Other errors are passed to any datagram socket
with the indicated destination; only sockets with a destination fixed by a connect
call may be notified of errors asynchronously. Such errors are simply noted in the
appropriate socket, and socket wakeups are issued in case the process is selecting
or sleeping while waiting for input.

When a UDP datagram socket is closed, the udp_usrreq() is called with the
PRU_DETACH request. The protocol control block and its contents are simply
deleted with in_pcbdetach()\ no other processing is required.

13.3 Internet Protocol (IP)
Having examined the operation of a simple transport protocol, we continue with a
discussion of the network-layer protocol [Postel, 198la; Postel et al, 1981]. The
Internet Protocol (IP) is the level responsible for host-to-host addressing and rout-
ing, packet forwarding, and packet fragmentation and reassembly. Unlike the
transport protocols, it does not always operate on behalf of a socket on the local
host; it may forward packets, receive packets for which there is no local socket, or
generate error packets in response to these situations.

The functions done by IP are illustrated by the contents of its packet header,
shown in Fig. 13.6. The header identifies source and destination hosts and the
destination protocol, and contains header and packet lengths. The identification
and fragment fields are used when a packet or fragment must be broken into
smaller sections for transmission on its next hop, and to reassemble the fragments
when they arrive at the destination. The fragmentation flags are Don't Fragment
and More Fragments; the latter flag plus the offset are sufficient to assemble the
fragments of the original packet at the destination.

*This error message normally has no effect, as the sender typically connects to this destination only
temporarily, and destroys the association before new input is processed. However, if the sender still
has a fully specified association, it may receive notification of the error. The host-name lookup routine
in 4.4BSD uses this mechanism to detect the absence of a nameserver at boot time, allowing the lookup
routine to fall back to the local host file.

Section 13.3 Internet Protocol (IP)

34 78 15 16

447

31
version IHL

time to live

type of service

ID

protocol

total length

fragment flags and offset

header checksum

source address

destination address

options

Figure 13.6 Internet Protocol header. IHL is the Internet header length specified in units
of four octets. Options are delimited by IHL.

IP options are present in an IP packet if the header length field has a value
larger than the minimum. The no-operation option and the end-of-option-list
option are each one octet in length. All other options are self-encoding, with a
type and length preceding any additional data. Hosts and routers are thus able to
skip over options that they do not implement. Examples of existing options are
the timestamp and record-route options, which are updated by each router that for-
wards a packet, and the source-route options, which supply a complete or partial
route to the destination.

Output
We have already seen the calling convention for the IP output routine, which is

error = ip__output (m, opt, ro, flags, imo);
struct mbuf *m, *opt;
struct route *ro;
int flags;
struct ip_moptions *imo;

As described in the subsection on output in the previous section, the parameter m
is an mbuf chain containing the packet to be sent, including a skeletal IP header;
opt is an optional mbuf containing IP options to be inserted after the header. If the
route ro is given, it may contain a reference to a routing entry (rtentry structure),
which specifies a route to the destination from a previous call, and in which any
new route will be left for future use. The flags may allow the use of broadcast or
may indicate that the routing tables should be bypassed. If present, imo includes
options for multicast transmissions.

The outline of the work done by ip_output() is as follows:

• Insert any IP options.

• Fill in the remaining header fields (IP version, zero offset, header length, and a
new packet identification) if the packet contains an IP pseudoheader.



448 Chapter 13 Network Protocols

• Determine the route (i.e., outgoing interface and next-hop destination).

• Check whether the destination is a multicast address. If it is, determine the out-
going interface and hop count.

• Check whether the destination is a broadcast address; if it is, check whether
broadcast is permitted.

• If the packet size is no larger than the maximum packet size for the outgoing
interface, compute the checksum and call the interface output routine.

• If the packet size is larger than the maximum packet size for the outgoing inter-
face, break the packet into fragments and send each in turn.

We shall examine the routing step in more detail. First, if no route reference is
passed as a parameter, an internal routing reference structure is used temporarily.
A route structure that is passed from the caller is checked to see that it is a route to
the same destination, and that it is still valid. If either test fails, the old route is
freed. After these checks, if there is no route, rtalloc() is called to allocate a
route. The route returned includes a pointer to the outgoing interface information.
This information includes the maximum packet size, flags including broadcast and
multicast capability, and the output routine. If the route is marked with the
RTF_GATEWAY flag, the address of the next-hop gateway (router) is given by the
route; otherwise, the packet's destination is the next-hop destination. If routing is
to be bypassed because of a MSG_DONTROUTE option (see Section 11.1) or a
SO_DONTROUTE option, a directly attached network shared with the destination
is found; if there is no directly attached network, an error is returned. Once the
outgoing interface and next-hop destination are found, enough information is
available to send the packet.

As described in Chapter 12, the interface output routine normally validates
the destination address and places the packet on its output queue, returning errors
only if the interface is down, the output queue is full, or the destination address is
not understood.

Input
In Chapter 12, we described the reception of a packet by a network interface, and
the packet's placement on the input queue for the appropriate protocol. The net-
work-interface handler then schedules the protocol to run by setting a correspond-
ing bit in the network status word and scheduling a software interrupt. The IP
input routine is invoked via this software interrupt when network interfaces
receive messages for an Internet protocol; consequently, it is called without any
parameters. The input routine, ipintr(), removes packets from its input queue one
at a time and processes them to completion. A packet's processing is completed
in one of four ways: it is passed as input to a higher-level protocol, it encounters
an error that is reported back to the source, it is dropped because of an error, or it
is forwarded along the path to its destination. In outline form, the steps in the pro-
cessing of an IP packet on input are as follows:

Section 13.3 Internet Protocol (IP) 449

1. Verify that the packet is at least as long as an IP header, and ensure that the
header is contiguous.

2. Checksum the header of the packet, and discard the packet if there is an error.

3. Verify that the packet is at least as long as the header indicates, and drop the
packet if it is not. Trim any padding from the end of the packet.

4. Process any IP options in the header.

5. Check whether the packet is for this host. If it is, continue processing the
packet. If it is not, and if doing IP packet forwarding, try to forward the
packet. Otherwise, drop the packet.

6. If the packet has been fragmented, keep it until all its fragments are received
and reassembled, or until it is too old to keep.

7. Pass the packet to the input routine of the next-higher-level protocol.

When the incoming packet is removed from the input queue, it is accompa-
nied by an indication of the interface on which the packet was received. This
information is passed to the next protocol, to the forwarding function, or to the
error-reporting function. If any error is detected and is reported to the packet's
originator, the source address of the error message will be set according to the
packet's destination and the incoming interface.

The decision whether to accept a received packet for local processing by a
higher-level protocol is not as simple as we might think. If a host has multiple
addresses, the packet is accepted if its destination matches one of those addresses.
If any of the attached networks support broadcast and the destination is a broadcast
address, the packet is also accepted. (For reasons that are given in Section 13.1,
there may be as many as five possible broadcast addresses for a given network.)

The IP input routine uses a simple and efficient scheme for locating the input
routine for the receiving protocol of an incoming packet. The protocol field in the
IP packet is 8 bits long; thus, there are 256 possible protocols. Fewer than 256 pro-
tocols are defined or implemented, and the Internet protocol switch has far fewer
than 256 entries. Therefore, IP input uses a 256-element mapping array to map
from the protocol number to the protocol-switch entry of the receiving protocol.
Each entry in the array is initially set to the index of a raw IP entry in the protocol
switch. Then, for each protocol with a separate implementation in the system, the
corresponding map entry is set to the index of the protocol in the IP protocol
switch. When a packet is received, IP simply uses the protocol field to index into
the mapping array, and uses the value at that location as the index into the protocol-
switch table for the receiving protocol.

Forwarding

Implementations of IP traditionally have been designed for use by either hosts or
routers, rather than by both. That is, a system was either an endpoint for IP pack-
ets (as source or destination) or a router (which forwards packets between hosts on



450 Chapter 13 Network Protocols

different networks, but only uses upper-level protocols for maintenance functions).
Traditional host systems do not incorporate packet-forwarding functions; instead,
if they receive packets not addressed to them, they simply drop the packets.
4.2BSD was the first common IP implementation that attempted to provide both
host and router services in normal operation. This approach had advantages and
disadvantages. It meant that 4.2BSD hosts connected to multiple networks could
serve as routers as well as hosts, reducing the requirement for dedicated router
machines. Early routers were neither inexpensive nor especially powerful. On the
other hand, the existence of router-function support in ordinary hosts made it more
likely for misconfiguration errors to result in problems on the attached networks.
The most serious problem had to do with forwarding of a broadcast packet
because of a misunderstanding by either the sender or the receiver of the packet's
destination. The packet-forwarding router functions are disabled by default in
4.4BSD. They may be enabled when a kernel binary is configured, and can be
enabled at run time with the sysctl call. Hosts not configured as routers never
attempt to forward packets or to return error messages in response to misdirected
packets. As a result, far fewer misconfiguration problems are capable of causing
synchronized or repetitive broadcasts on a local network, called broadcast storms.

The procedure for forwarding IP packets received at a router but destined for
another host is the following:

1. Check that forwarding is enabled. If it is not, drop the packet.

2. Check that the destination address is one that allows forwarding. Packets des-
tined for network 0, network 127 (the official loopback network), or illegal
network addresses cannot be forwarded.

3. Save at most 64 octets of the received message, in case an error message must
be generated in response.

4. Determine the route to be used in forwarding the packet.

5. If the outgoing route uses the same interface as that on which the packet was
received, and if the originating host is on that network, send an ICMP redirect
message to the originating host. (ICMP is described in Section 13.8.)

6. Call ip_output() to send the packet to its destination or to the next-hop gateway.

7. If an error is detected, send an ICMP error message to the source host.

Multicast transmissions are handled separately from other packets. Systems
may be configured as multicast agents independently from other routing functions.
Multicast agents receive all incoming multicast packets, and forward those packets
to local receivers and group members on other networks according to group mem-
berships and the remaining hop count of incoming packets.

Section 13.4 Transmission Control Protocol (TCP) 451

13.4 Transmission Control Protocol (TCP)

The major protocol of the Internet protocol suite is the Transmission Control Pro-
tocol (TCP) [Postel, 1981b; Cerf & Kahn, 1974]. TCP is the reliable connection-
oriented stream transport protocol on which most application protocols are based.
It includes several features not found in the other transport and network protocols
described so far:

• Explicit and acknowledged connection initiation and termination

• Reliable, in-order, unduplicated delivery of data
• Flow control

• Out-of-band indication of urgent data

• Congestion avoidance

Because of these features, the TCP implementation is much more complicated
than are those of UDP and IP. These complications, along with the prevalence of
the use of TCP, make the details of TCP's implementation both more critical and
more interesting than are the implementations of the simpler protocols. We shall
begin with an examination of the TCP itself, then continue with a description of its
implementation in 4.4BSD.

A TCP connection may be viewed as a bidirectional, sequenced stream of data
octets transferred between two peers. The data may be sent in packets of varying
sizes and at varying intervals—for example, when they are used to support a login
session over the network. The stream initiation and termination are explicit events
at the start and end of the stream, and they occupy positions in the sequence space
of the stream so that they can be acknowledged in the same manner as data are.
Sequence numbers are 32-bit numbers from a circular space; that is, comparisons
are made modulo 232, so that zero is the next sequence number after 232 - 1. The
sequence numbers for each direction start with an arbitrary value, called the initial
sequence number, sent in the initial packet for a connection. In accordance with
the TCP specification, the TCP implementation selects the initial sequence number
by sampling a software counter that increments at about 250 KHz, then increment-
ing the counter so that later connections choose a different starting point, reducing
the chance that an old duplicate packet will match the sequence space of a current
connection. 4.4BSD includes a random component in the counter value so that the
initial sequence number is somewhat less predictable, making it harder to "spoof"
a network connection. Each packet of a TCP connection carries the sequence
number of its first datum and (except during connection establishment) an ac-
knowledgment of all contiguous data received. A TCP packet is known as a seg-
ment because it begins at a specific location in the sequence space and has a



452 Chapter 13 Network Protocols

specific length. Acknowledgments are specified as the sequence number of the
next sequence number not yet received. Acknowledgments are cumulative, and
thus may acknowledge data received in more than one (or part of one) packet. A
packet may or may not contain data, but always contains the sequence number of
the next datum to be sent.

Flow control in TCP is done with a sliding-window scheme. Each packet with
an acknowledgment contains a window, which is the number of octets of data that
the receiver is prepared to accept, beginning with the sequence number in the ac-
knowledgment. The window is a 16-bit field, limiting the window to 65535 octets
by default; however, the use of a larger window may be negotiated (see the next
subsection). Urgent data are handled similarly; if the flag indicating urgent data is
set, the urgent-data pointer is used as a positive offset from the sequence number
of the packet to indicate the extent of urgent data. Thus, TCP can send notification
of urgent data without sending all intervening data, even if the flow-control win-
dow would not allow the intervening data to be sent.

The complete header for a TCP packet is shown in Fig. 13.7. The flags
include SYN and FIN, denoting the initiation (synchronization) and completion of
a connection. Each of these flags occupies a sequence space of one. A complete
connection thus consists of a SYN, zero or more octets of data, and a FIN sent
from each peer and acknowledged by the other peer. Additional flags indicate
whether the acknowledgment field (ACK) and urgent fields (URG) are valid, and
include a connection-abort signal (RST). The header includes a header-length
field so that the header can be extended with optional fields. Options are encoded
in the same way as are IP options: the no-operation and end-of-options options are
single octets, and all other options include a type and a length. The only option in
the initial specification of TCP indicates the maximum segment (packet) size that a
correspondent is willing to accept; this option is used only during initial connec-
tion establishment. Several other options have been defined. To avoid confusion,

Figure 13.7 TCP packet header.

0 1516 31
source port destination port

sequence number

acknowledgment number

data U A P
reserved R C S

offset G K H

checksum

R S F
S Y I
T N N

window

urgent pointer

options padding

data

Section 13.4 Transmission Control Protocol (TCP) 453

the protocol standard allows these options to be used in data packets only if both
endpoints include them during establishment of the connection.

TCP Connection States
The connection-establishment and connection-completion mechanisms of TCP are
designed for robustness. They serve to frame the data that are transferred during a
connection, so that not only the data but also their extent are communicated reli-
ably. In addition, the procedure is designed to discover old connections that have
not terminated correctly because of a crash of one peer or loss of network connec-
tivity. If such a half-open connection is discovered, it is aborted. Hosts choose
new initial sequence numbers for each connection to lessen the chances that an old
packet may be confused with a current connection.

The normal connection-establishment procedure is known as a three-way
handshake. Each peer sends a SYN to the other, and each in turn acknowledges
the other's SYN with an ACK. In practice, a connection is normally initiated by
one of the two (the client) attempting to connect to the other (a server listening on
a well-known port). The client chooses a port number and initial sequence num-
ber and uses these selections in the initial packet with a SYN. The server creates a
new connection block for the pending connection and sends a packet with its ini-
tial sequence number, a SYN, and an ACK of the client's SYN. The client responds
with an ACK of the server's SYN, completing connection establishment. As the
ACK of the first SYN is piggybacked on the second SYN, this procedure requires
three packets, leading to the term three-way handshake. (The protocol still oper-
ates correctly if both peers initiate the connection simultaneously, although it
requires four packets in that case.)

4.4BSD includes three options along with SYN when initiating a connection.
One contains the maximum segment size that the system is willing to accept. The
other two options are more recent additions [Jacobson et al, 1992]. The first of
these options specifies a window-scaling value expressed as a binary shift value,
allowing the window to exceed 65535 octets. If both peers include this option dur-
ing the three-way handshake, both scaling values take effect; otherwise, the win-
dow value remains in octets. The third option is a timestamp option. If this option
is sent in both directions during connection establishment, it will also be sent in
each packet during data transfer. The data field of the timestamp option includes a
timestamp associated with the current sequence number, and also echoes a times-
tamp associated with the current acknowledgment. Like the sequence space, the
timestamp uses a 32-bit field and modular arithmetic. The unit of the timestamp
field is not defined, although it must fall between 1 millisecond and 1 second. The
value sent by each system must be monotonically nondecreasing during a connec-
tion. 4.4BSD uses the value of a counter that is incremented twice per second.
These timestamps can be used to implement round-trip timing. They also serve as
an extension of the sequence space to prevent old duplicate packets from being
accepted; this extension is valuable when a large window or a fast path is used.

After a connection is established, each peer includes an acknowledgment and
window information in each packet. Each may send data according to the window



454 Chapter 13 Network Protocols

Table 13.1 TCP connection states.

State Description
States involved while a connection becomes established
CLOSED closed
LISTEN listening for connection
SYN SENT
SYN RECEIVED

active, have sent SYN
have sent and received SYN

State during an established connection
ESTABLISHED established

States involved when the remote end initiates a connection shutdown
CLOSE WAIT have received FIN, waiting for close
LAST ACK have received FIN and close; awaiting FIN ACK
CLOSED closed

States involved when the local end initiates a connection shutdown
FIN WAIT 1
CLOSING
FIN WAIT 2
TIME WAIT
CLOSED

*2MSL—twice maximum segment lifetime.

have closed, sent FIN
closed, exchanged FIN; awaiting FIN ACK
have closed, FIN is acknowledged; awaiting FIN
in 2MSLt quiet wait after close
closed

that it receives from its peer. As data are sent by one end, the window becomes
filled. As data are received by the peer, acknowledgments may be sent so that the
sender can discard the data from its send queue. If the receiver is prepared to
accept additional data, perhaps because the receiving process has consumed the
previous data, it will also advance the flow-control window. Data, acknowledg-
ments, and window updates may all be combined in a single message.

If a sender does not receive an acknowledgment within some reasonable time,
it retransmits data that it presumes were lost. Duplicate data are discarded by the
receiver but are acknowledged again in case the retransmission was caused by loss
of the acknowledgment. If the data are received out of order, the receiver gener-
ally retains the out-of-order data for use when the missing segment is received.
Out-of-order data cannot be acknowledged, because acknowledgments are cumu-
lative.*

Each peer may terminate data transmission at any time by sending a packet
with the FIN bit. A FIN represents the end of the data (like an end-of-file indica-
tion). The FIN is acknowledged, advancing the sequence number by 1. The con-
nection may continue to carry data in the other direction until a FIN is sent in that

*A selective acknowledgment mechanism was introduced in [Jacobson et al, 1992], but is not imple-
mented in 4.4BSD.

Section 13.4 Transmission Control Protocol (TCP) 455

direction. The acknowledgment of that FIN terminates the connection. To
guarantee synchronization at the conclusion of the connection, the peer sending
the last ACK of a FIN must retain state long enough that any retransmitted FIN
packets would have reached it or have been discarded; otherwise, if the ACK were
lost and a retransmitted FIN were received, the receiver would be unable to repeat
the acknowledgment. This interval is arbitrarily set to twice the maximum
expected segment lifetime (known as 2MSL).

The TCP input-processing module and timer modules must maintain the state
of a connection throughout that connection's lifetime. Thus, in addition to pro-
cessing data received on the connection, the input module must process SYN and
FIN flags and other state transitions. The list of states for one end of a TCP con-
nection is given in Table 13.1. Figure 13.8 shows the finite-state machine made up
by these states, the events that cause transitions, and the actions during the transi-
tions. An earlier version of the TCP implementation was implemented as an
explicit state machine.

If a connection is lost because of a crash or timeout on one peer, but is still
considered established by the other, then any data sent on the connection and

Figure 13.8 TCP state diagram. TCB—TCP control block; 2MSL—twice maximum seg-
ment lifetime.

CLOSED

passive OPEN
(create TCB)

CLOSE
(delete TCB)

LISTEN
receive SYN

(send SYN, ACK)

SYN RECEIVED

SEND
(send SYN)

receive SYN (send ACK)

active OPEN
(create TCB,
send SYN)

SYN SENT

receive ACK of SYN
(no action)

CLOSE
(send FIN)

ESTABLISHED

FIN WAIT 1

receive ACK of FIN
1 (no action)

FIN WAIT 2

CLOSE
(send FIN)

receive SYN, ACK
(send ACK)

receive FIN
(send ACK)

CLOSE WAIT

receive FIN
1 (send ACK)

CLOSING

receive FIN
(send ACK)

CLOSE
(send FIN)

LAST ACK

TIME WAIT

receive ACK of FIN
(no action)

timeout at 2MSL
(delete TCB)

receive ACK of FIN
(no action)

CLOSED



456 Chapter 13 Network Protocols

received at the other end will cause the half-open connection to be discovered.
When a half-open connection is detected, the receiving peer sends a packet with
the RST flag and a sequence number derived from the incoming packet to signify
that the connection is no longer in existence.

Sequence Variables
Each TCP connection maintains a large set of state variables in the TCP control
block. This information includes the connection state, timers, options and state
flags, a queue that holds data received out of order, and several sequence number
variables. The sequence variables are used to define the send and receive
sequence space, including the current window for each. The window is the range
of data sequence numbers that are currently allowed to be sent, from the first octet
of data not yet acknowledged up to the end of the range that has been offered in
the window field of a header. The variables used to define the windows in 4.4BSD
are a superset of those used in the protocol specification [Postel, 1981b]. The send
and receive windows are shown in Fig. 13.9. The meanings of the sequence vari-
ables are listed in Table 13.2.

The area between snd_una and snd_una + snd_wnd is known as the send win-
dow. Data for the range snd_una to snd_max have been sent but not yet acknowl-
edged, and are kept in the socket send buffer along with data not yet transmitted.
The snd_nxt field indicates the next sequence number to be sent, and is incre-
mented as data are transmitted. The area from snd_nxt to snd_una + snd_wnd is
the remaining usable portion of the window, and its size determines whether addi-
tional data may be sent. The snd_nxt and snd_max values are normally main-
tained together except when TCP is retransmitting.

The area between rcv_nxt and rcv_nxt + rcv_wnd is known as the receive win-
dow. These variables are used in the output module to decide whether data can be

Figure 13.9 TCP sequence space.

send window

_ unacknowledged _
data

usable send
window

snd_una snd_nxt, snd_una +
snd_max snd_wnd

send sequence space

receive
window

rcv_ nxt rcv_nxt +
rcv_ wnd

Section 13.5 TCP Algorithms 457

Table 13.2 TCP sequence variables.

Variable
snd_una
snd_nxt
snd_wnd
snd_max

rcv_nxt
rcv_wnd
rcv_adv
ts_recent
ts_recentage

Description
lowest send sequence number not yet acknowledged
next data sequence to be sent
number of data octets peer will receive, starting with snd_una
highest sequence number sent

next receive sequence number expected
number of octets past rcv_nxt that may be accepted
last octet of receive window advertised to peer
most recent timestamp received from peer
time when ts_recent was received

receive sequence space

sent, and in the input module to decide whether data that are received can be
accepted. When the receiver detects that a packet is not acceptable because the
data are all outside the window, it drops the packet, but sends a copy of its most
recent acknowledgment. If the packet contained old data, the first acknowledg-
ment may have been lost, and thus it must be repeated. The acknowledgment also
includes a window update, synchronizing the sender's state with the receiver's
state.

If the TCP timestamp option is in use for the connection, the tests to see
whether an incoming packet is acceptable are augmented with checks on the
timestamp. Each time that an incoming packet is accepted as the next expected
packet, its timestamp is recorded in the ts_recent field in the TCP protocol control
block. If an incoming packet includes a timestamp, the timestamp is compared to
the most recently received timestamp. If the timestamp is less than the previous
value, the packet is discarded as being an old duplicate and a current acknowledg-
ment is sent in response. In this way, the timestamp serves as an extension to the
sequence number, avoiding accidental acceptance of an old duplicate when the
window is large or sequence numbers can be reused quickly. However, because of
the granularity of the timestamp value, a timestamp received more than 24 days
ago cannot be compared to a new value, and this test is bypassed. The current
time is recorded when ts_recent is updated from an incoming timestamp to make
this test. Of course, connections are seldom idle for longer than 24 days.

13.5 TCP Algorithms

Now that we have introduced TCP, its state machine, and its sequence space, we
can begin to examine the implementation of the protocol in 4.4BSD. Several
aspects of the protocol implementation depend on the overall state of a



458 Chapter 13 Network Protocols

connection. The TCP connection state, output state, and state changes depend on
external events and timers. TCP processing occurs in response to one of three
events:

1. A request from the user, such as sending data, removing data from the socket
receive buffer, or opening or closing a connection

2. The receipt of a packet for the connection

3. The expiration of a timer

These events are handled in the routines tcp_usrreq(), tcp_input() and
tcp_timers() respectively. Each routine processes the current event and makes
any required changes in the connection state. Then, for any transition that may
require output, the tcp_output() routine is called to do any output that is necessary.

The criteria for sending a packet with data or control information are compli-
cated, and therefore the TCP send policy is the most interesting and important part
of the protocol implementation. For example, depending on the state- and flow-
control parameters for a connection, any of the following may allow to be sent
data that could not be sent previously:

• A user send call that places new data in the send queue

• The receipt of a window update from the peer TCP

• The expiration of the retransmission timer

• The expiration of the window-update (persist) timer

In addition, the tcp_output() routine may decide to send a packet with control
information, even if no data may be sent, for any of these reasons:

• A change in connection state (e.g., open request, close request)

• Receipt of data that must be acknowledged

• A change in the receive window because of removal of data from the receive
queue

• A send request with urgent data

• A connection abort

We shall consider most of these decisions in greater detail after we have described
the states and timers involved. We begin with algorithms used for timing, connec-
tion setup, and shutdown; they are distributed through several parts of the code.
We continue with the processing of new input and an overview of output process-
ing and algorithms.

Section 13.5 TCP Algorithms

Timers

459

Unlike a UDP socket, a TCP connection maintains a significant amount of state
information, and, because of that state, some operations must be done asyn-
chronously. For example, data might not be sent immediately when a process pre-
sents them, because of flow control. The requirement for reliable delivery implies
that data must be retained after they are first transmitted so that they can be
retransmitted if necessary. To prevent the protocol from hanging if packets are
lost, each connection maintains a set of timers used to recover from losses or fail-
ures of the peer TCP. These timers are stored in the protocol control block for a
connection. Whenever they are set, they are decremented every 500 milliseconds
by the tcp_slowtimo() routine (called as the TCP protocol switch pr_slowtimo rou-
tine) until they expire, triggering a call to tcp_timers().

Two timers are used for output processing. One is the retransmit timer
(TCPT_REXMT). Whenever data are sent on a connection, the retransmit timer is
started, unless it is already running. When all outstanding data are acknowledged,
the timer is stopped. If the timer expires, the oldest unacknowledged data are
resent (at most one full-sized packet) and the timer is restarted with a longer value.
The rate at which the timer value is increased (the timer backoff) is determined by
a table of multipliers that provides an exponential increase in timeout values up to
a ceiling.

The other timer used for maintaining output flow is the persist timer
(TCPT_PERSIST). This timer protects against the other type of packet loss that
could cause a connection to constipate: the loss of a window update that would
allow more data to be sent. Whenever data are ready to be sent, but the send win-
dow is too small to bother sending (zero, or less than a reasonable amount), and no
data are already outstanding (the retransmit timer is not set), the persist timer is
started. If no window update is received before the timer expires, the output rou-
tine sends as large a segment as the window allows. If that size is zero, it sends a
window probe (a single octet of data) and restarts the persist timer. If a window
update was lost in the network, or if the receiver neglected to send a window
update, the acknowledgment will contain current window information. On the
other hand, if the receiver is still unable to accept additional data, it should send an
acknowledgment for previous data with a still-closed window. The closed window
might persist indefinitely; for example, the receiver might be a network-login
client, and the user might stop terminal output and leave for lunch (or vacation).

The third timer used by TCP is a keepalive timer (TCPT_KEEP). The
keepalive timer has two different purposes at different phases of a connection.
During connection establishment, this timer limits the time for the three-way
handshake to complete. If it expires, the connection is timed out. Once the con-
nection completes, the keepalive timer monitors idle connections that might no
longer exist on the correspondent TCP because of timeout or a crash. If a socket-
level option is set and the connection has been idle since the most recent keepalive
timeout, the timer routine will send a keepalive packet designed to produce either



460 Chapter 13 Network Protocols

an acknowledgment or a reset (RST) from the peer TCP. If a reset is received, the
connection will be closed; if no response is received after several attempts, the
connection will be dropped. This facility is designed so that network servers can
avoid languishing forever if the client disappears without closing. Keepalive
packets are not an explicit feature of the TCP protocol. The packets used for this
purpose by 4.4BSD set the sequence number to 1 less than snd_una, which should
elicit an acknowledgment from the correspondent TCP if the connection still
exists.*

The final TCP timer is known as the 2MSL timer (TCPT_2MSL; "twice the
maximum segment lifetime"). TCP starts this timer when a connection is com-
pleted by sending an acknowledgment for a FIN (from FIN_WAIT_2) or by receiv-
ing an ACK for a FIN (from CLOSING state, where the send side is already closed).
Under these circumstances, the sender does not know whether the acknowledg-
ment was received. If the FIN is retransmitted, it is desirable that enough state
remain that the acknowledgment can be repeated. Therefore, when a TCP connec-
tion enters the TIME_WAIT state, the 2MSL timer is started; when the timer
expires, the control block is deleted. If a retransmitted FIN is received, another
ACK is sent and the timer is restarted. To prevent this delay from blocking a pro-
cess closing the connection, any process close request is returned successfully
without the process waiting for the timer. Thus, a protocol control block may con-
tinue its existence even after the socket descriptor has been closed. In addition,
4.4BSD starts the 2MSL timer when FIN_WAIT_2 state is entered after the user has
closed; if the connection is idle until the timer expires, it will be closed. Because
the user has already closed, new data cannot be accepted on such a connection in
any case. This timer is set because certain other TCP implementations (incor-
rectly) fail to send a FIN on a receive-only connection. Connections to such hosts
would remain in FIN_WAIT_2 state forever if the system did not have a timeout.

In addition to the four timers implemented by the TCP tcp_slowtimo() rou-
tine, TCP uses the protocol switch pr_fasttimo entry. The tcp_fasttimo() routine,
called every 200 milliseconds, processes delayed acknowledgment requests.
These functions will be described in Section 13.6.

Estimation of Round-Trip Time
When connections must traverse slow networks that lose packets, an important
decision determining connection throughput is the value to be used when the
retransmission timer is set. If this value is too large, data flow will stop on the
connection for an unnecessarily long time before the dropped packet is resent.
Another round-trip time interval is required for the sender to receive an acknowl-
edgment of the resent segment and a window update, allowing it to send new
data. (With luck, only one segment will have been lost, and the acknowledgment

* In 4.4BSD, the keepalive packet contains no data unless the system is configured with a kernel option
for compatibility with 4.2BSD, in which case a single null octet is sent. A bug prevented 4.2BSD from
responding to a keepalive packet unless the packet contained data. This option should no longer be
necessary.

Section 13.5 TCP Algorithms 461

will include the other segments that had been sent.) If the timeout value is too
small, however, packets will be retransmitted needlessly. If the cause of the net-
work slowness or packet loss is congestion, then unnecessary retransmission only
exacerbates the problem. The traditional solution to this problem in TCP is for the
sender to estimate the round-trip time (rtt) for the connection path by measuring
the time required to receive acknowledgments for individual segments. The sys-
tem maintains an estimate of the round-trip time as a smoothed moving average,
srtt [Postel, 1981b], using

srtt = (ALPHA x srtt) + ((1 - ALPHA) x rtt).

Older versions of the system set the initial retransmission timeout to a constant
multiple (BETA) of the current smoothed round-trip time, with a smoothing factor
ALPHA of 0.9 (retaining 90 percent of the previous average) and a variance factor
BETA of 2. BSD versions, beginning with the 4.3BSD Tahoe release, use a more
sophisticated algorithm. In addition to a smoothed estimate of the round-trip time,
TCP keeps a smoothed variance (estimated as mean difference, to avoid square-
root calculations in the kernel). It employs an ALPHA value of 0.875 for the
round-trip time and a corresponding smoothing factor of 0.75 for the variance.
These values were chosen in part so that the system could compute the smoothed
averages using shift operations on fixed-point values, instead of using floating-
point values, as the earlier system did. (On many hardware architectures, it is
expensive to use floating-point arithmetic in interrupt routines, because doing so
forces floating-point registers and status to be saved and restored.) The initial
retransmission timeout is then set to the current smoothed round-trip time plus
four times the smoothed variance. This algorithm is substantially more efficient
on long-delay paths with little variance in delay, such as satellite links, because it
computes the BETA factor dynamically [Jacobson, 1988].

For simplicity, the variables in the TCP protocol control block allow measure-
ment of the round-trip time for only one sequence value at a time. This restriction
prevents accurate time estimation when the window is large; only one packet per
window can be timed. However, if the TCP timestamps option is supported by
both peers, a timestamp is sent with each data packet and is returned with each ac-
knowledgment. In this case, estimates of round-trip time can be obtained with
each new acknowledgment; the quality of the smoothed average and variance is
thus improved, and the system can respond more quickly to changes in network
conditions.

Connection Establishment

There are two ways in which a new TCP connection can be established. An active
connection is initiated by a connect call, whereas a passive connection is created
when a listening socket receives a connection request. We consider each in turn.

The initial steps of an active connection attempt are similar to the actions
taken during the creation of a UDP socket. The process creates a new socket,
resulting in a call to tcp_usrreq() with the PRU_ATTACH request. TCP creates an
inpcb protocol control block just as does UDP, then creates an additional control



462 Chapter 13 Network Protocols

block (a tcpcb structure), as described in Section 13.1. Some of the flow-control
parameters in the tcpcb are initialized at this time. If the process explicitly binds
an address or port number to the connection, the actions are identical to those for a
UDP socket. Then, a connect call initiates the actual connection. The first step is
to set up the association with in_pcbconnect(), again identically to this step in
UDP. A packet-header template is created for use in construction of each output
packet. An initial sequence number is chosen from a sequence-number prototype,
which is then advanced by a substantial amount. The socket is then marked with
soisconnectingQ, the TCP connection state is set to TCPS_SYN_SENT, the
keepalive timer is set (to 75 seconds) to limit the duration of the connection
attempt, and tcp_output() is called for the first time.

The output-processing module tcp_output() uses an array of packet control
flags indexed by the connection state to determine which control flags should be
sent in each state. In the TCPS_SYN_SENT state, the SYN flag is sent. Because it
has a control flag to send, the system sends a packet immediately using the proto-
type just constructed and including the current flow-control parameters. The
packet normally contains three option fields: a maximum-segment-size option, a
window-scale option and a timestamps option (see Section 13.4). The maximum-
segment-size option communicates the largest segment size that TCP is willing to
accept. To compute this value, the system locates a route to the destination. If the
route specifies a maximum transmission unit (MTU), the system uses that value
after allowing for packet headers. If the connection is to a destination on a local
network (or a subnet of a local network—see Section 13.1), the maximum trans-
mission unit of the outgoing network interface is used, possibly rounding down to
a multiple of the mbuf cluster size for efficiency of buffering. If the destination is
not local and nothing is known about the intervening path,* the default segment
size (512 octets) is used. The retransmit timer is set to the default value (6 sec-
onds), because no round-trip time information is available yet.

With a bit of luck, a responding packet will be received from the target of the
connection before the retransmit timer expires. If not, the packet is retransmitted
and the retransmit timer is restarted with a greater value. If no response is
received before the keepalive timer expires, the connection attempt is aborted with
a "Connection timed out" error. If a response is received, however, it is checked
for agreement with the outgoing request. It should acknowledge the SYN that was
sent, and should include a SYN. If it does both, the receive sequence variables are
initialized, and the connection state is advanced to TCPS_ESTABLISHED. If a
maximum-segment-size option is present in the response, the maximum segment
size for the connection is set to the minimum of the offered size and the maximum
transmission unit of the outgoing interface; if the option is not present, the default
size (512 data bytes) is recorded. The flag TF_ACKNOW is set in the TCP control
block before the output routine is called, so that the SYN will be acknowledged
immediately. The connection is now ready to transfer data.

*TCP should use Path MTU Discovery as described in [Mogul & Deering, 1990]. However, this fea-
ture is not implemented in 4.4BSD.

Section 13.5 TCP Algorithms 463

The events that occur when a connection is created by a passive open are dif-
ferent. A socket is created and its address is bound as before. The socket is then
marked by the listen call as willing to accept connections. When a packet arrives
for a TCP socket in TCPS_LISTEN state, a new socket is created with sonewconn()
which calls the TCP PRU_ATTACH request to create the protocol control blocks for
the new socket. The new socket is placed on the queue of partial connections
headed by the listening socket. If the packet contains a SYN and is otherwise
acceptable, the association of the new socket is bound, both the send and the
receive sequence numbers are initialized, and the connection state is advanced to
TCPS_SYN_RECEIVED. The keepalive timer is set as before, and the output rou-
tine is called after TF_ACKNOW has been set to force the SYN to be acknowl-
edged; an outgoing SYN is sent as well. If this SYN is acknowledged properly, the
new socket is moved from the queue of partial connections to the queue of com-
pleted connections. If the owner of the listening socket is sleeping in an accept
call or does a select, the socket will indicate that a new connection is available.
Again, the socket is finally ready to send data. Up to one window of data may
have already been received and acknowledged by the time that the accept call
completes.

Connection Shutdown
A TCP connection is symmetrical and full-duplex, so either side may initiate dis-
connection independently. As long as one direction of the connection can carry
data, the connection remains open. A socket may indicate that it has completed
sending data with the shutdown system call, which results in a call to the
tcp_usrreq() routine with request PRU_SHUTDOWN. The response to this request
is that the state of the connection is advanced; from the ESTABLISHED state, the
state becomes FIN_WAIT_1. The ensuing output call will send a FIN, indicating an
end-of-file. The receiving socket will advance to CLOSE_WAIT, but may continue
to send. The procedure may be different if the process simply closes the socket; in
that case, a FIN is sent immediately, but if new data are received, they cannot be
delivered. Normally, higher-level protocols conclude their own transactions such
that both sides know when to close. If they do not, however, TCP must refuse new
data; it does so by sending a packet with RST set if new data are received after the
user has closed. If data remain in the send buffer of the socket when the close is
done, TCP will normally attempt to deliver them. If the socket option SO_LINGER
was set with a linger time of zero, the send buffer is simply flushed; otherwise, the
user process is allowed to continue, and the protocol waits for delivery to con-
clude. Under these circumstances, the socket is marked with the state bit SS_NOF-
DREF (no file-descriptor reference). The completion of data transfer and the final
close can take place an arbitrary amount of time later. When TCP finally com-
pletes the connection (or gives up because of timeout or other failure), it calls
tcp_close(). The protocol control blocks and other dynamically allocated struc-
tures are freed at this time. The socket also is freed if the SS_NOFDREF flag has
been set. Thus, the socket remains in existence as long as either a file descriptor
or a protocol control block refers to it.



464 Chapter 13 Network Protocols

13.6 TCP Input Processing

Although TCP input processing is considerably more complicated than is UDP
input handling, the preceding sections have provided the background that we need
to examine the actual operation. As always, the input routine is called with
parameters

(void) tcp_input (m, hlen) ;
struct mbuf *m;
int hlen;

The first few steps probably are beginning to sound familiar:

1. Locate the TCP header in the received IP datagram. Make sure that the packet
is at least as long as a TCP header, and use m_pullup() if necessary to make it
contiguous.

2. Compute the packet length, set up the IP pseudoheader, and checksum the TCP
header and data. Discard the packet if the checksum is bad.

3. Check the TCP header length; if it is larger than a minimal header, make sure
that the whole header is contiguous.

4. Locate the protocol control block for the connection with the port number
specified. If none exists, send a packet containing the reset flag RST and drop
the packet.

5. Check whether the socket is listening for connections; if it is, follow the proce-
dure described for passive connection establishment.

6. Process any TCP options from the packet header.

7. Clear the idle time for the connection, and set the keepalive timer to its normal
value.

At this point, the normal checks have been made, and we are prepared to deal with
data and control flags in the received packet. There are still many consistency
checks that must be made during normal processing; for example, the SYN flag
must be present if we are still establishing a connection, and must not be present if
the connection has been established. We shall omit most of these checks from our
discussion, but the tests are important to prevent wayward packets from causing
confusion and possible data corruption.

The next step in checking a TCP packet is to see whether the packet is accept-
able according to the receive window. It is important that this step be done before
control flags — in particular RST — are examined, because old or extraneous pack-
ets should not affect the current connection unless they are clearly relevant in the
current context. A segment is acceptable if the receive window has nonzero size,
and if at least some of the sequence space occupied by the packet falls within the

window If the pa data some of the data must fall within

Section 13.6 TCP Input Processing 465

window; portions of the data that precede the window are trimmed, as they have
already been received, and portions that exceed the window also are discarded, as
they have been sent prematurely. If the receive window is closed (rcv_wnd is
zero), then only segments with no data and with a sequence number equal to
rcv_nxt are acceptable. If an incoming segment is not acceptable, it is dropped
after an acknowledgment is sent.

The processing of incoming TCP packets must be fully general, taking into
account all the possible incoming packets and possible states of receiving end-
points. However, the bulk of the packets processed falls into two general cate-
gories. Typical packets contain either the next expected data segment for an
existing connection or an acknowledgment plus a window update for one or more
data segments, with no additional flags or state indications. Rather than consider-
ing each incoming segment based on first principles, tcp_input() checks first for
these common cases. This algorithm is known as header prediction. If the
incoming segment matches a connection in the ESTABLISHED state, if it contains
the ACK flag but no other flags, if the sequence number is the next value expected
(and the timestamp, if any, is nondecreasing), if the window field is the same as in
the previous segment, and if the connection is not in a retransmission state, then
the incoming segment is one of the two common types. The system processes
any timestamp option that the segment contains, recording the value received to
be included in the next acknowledgment. If the segment contains no data, it is a
pure acknowledgment with a window update. In the usual case, round-trip-timing
information is sampled if it is available, acknowledged data are dropped from the
socket send buffer, and the sequence values are updated. The packet is discarded
once the header values have been checked. The retransmit timer is canceled if all
pending data have been acknowledged; otherwise, it is restarted. The socket layer
is notified if any process might be waiting to do output. Finally, tcp_output() is
called because the window has moved forward, and that operation completes the
handling of a pure acknowledgment.

If a packet meeting the tests for header prediction contains the next expected
data, if no out-of-order data are queued for the connection, and if the socket
receive buffer has space for the incoming data, then this packet is a pure in-
sequence data segment. The sequencing variables are updated, the packet headers
are removed from the packet, and the remaining data are appended to the socket
receive buffer. The socket layer is notified so that it can notify any interested pro-
cess, and the control block is marked with a flag indicating that an acknowledg-
ment is needed. No additional processing is required for a pure data packet.

For packets that are not handled by the header-prediction algorithm, the pro-
cessing steps are as follows:

1. Process the timestamp option if it is present, rejecting any packets for which
the timestamp has decreased, first sending a current acknowledgment.

2. Check whether the packet begins before rcv_nxt. If it does, ignore any SYN in
the packet, and trim any data that fall before rcv_nxt. If no data remain, send a
current acknowledgment and drop the packet. (The packet is presumed to be a
duplicate transmission )



466 Chapter 13 Network Protocols

3. If the packet still contains data after trimming, and the process that created the
socket has already closed the socket, send a reset (RST) and drop the connec-
tion. This reset is necessary to abort connections that cannot complete; it typi-
cally is sent when a remote-login client disconnects while data are being
received.

4. If the end of the segment falls after the window, trim any data beyond the win-
dow. If the window was closed and the packet sequence number is rcv_nxt,
the packet is treated as a window probe; TF_ACKNOW is set to send a current
acknowledgment and window update, and the remainder of the packet is pro-
cessed. If SYN is set and the connection was in TIME_WAIT state, this packet
is really a new connection request, and the old connection is dropped; this pro-
cedure is called rapid connection reuse. Otherwise, if no data remain, send an
acknowledgment and drop the packet.

The remaining steps of TCP input processing check the following flags and
fields and take the appropriate actions: RST, ACK, window, URG, data, and FIN.
Because the packet has already been confirmed to be acceptable, these actions can
be done in a straightforward way:

5. If a timestamp option is present, and the packet includes the next sequence
number expected, record the value received to be included in the next ac-
knowledgment.

6. If RST is set, close the connection and drop the packet.

7. If ACK is not set, drop the packet.

8. If the acknowledgment-field value is higher than that of previous acknowledg-
ments, new data have been acknowledged. If the connection was in
SYN_RECEIVED state and the packet acknowledges the SYN sent for this con-
nection, enter ESTABLISHED state. If the packet includes a timestamp option,
use it to compute a round-trip time sample; otherwise, if the sequence range
that was newly acknowledged includes the sequence number for which the
round-trip time was being measured, this packet provides a sample. Average
the time sample into the smoothed round-trip time estimate for the connection.
If all outstanding data have been acknowledged, stop the retransmission timer;
otherwise, set it back to the current timeout value. Finally, drop from the send
queue in the socket the data that were acknowledged. If a FIN has been sent
and was acknowledged, advance the state machine.

9. Check the window field to see whether it advances the known send window.
First, check whether this packet is a new window update. If the sequence
number of the packet is greater than that of the previous window update, or the
sequence number is the same but the acknowledgment-field value is higher, or

Section 13.6 TCP Input Processing 467

if both sequence and acknowledgment are the same but the window is larger,
record the new window.

10. If the urgent-data flag URG is set, compare the urgent pointer in the packet to
the last-received urgent pointer. If it is different, new urgent data have been
sent. Use the urgent pointer to compute so_oobmark, the offset from the begin-
ning of the socket receive buffer to the urgent mark (Section 11.6), and notify
the socket with sohasoutofband(). If the urgent pointer is less than the packet
length, the urgent data have all been received. TCP normally removes the final
data octet sent in urgent mode (the last octet before the urgent pointer), and
places that octet in the protocol control block until it is requested with a
PRU_RCVOOB request. (The end of the urgent data is a subject of disagree-
ment; the BSD interpretation follows the original TCP specification.) A socket
option, SO_OOBINLINE, may request that urgent data be left in the queue with
the normal data, although the mark on the data stream is still maintained.

11. At long last, examine the data field in the received packet. If the data begin
with rcv_nxt, then they can be placed directly into the socket receive buffer
with sbappend(). The flag TF_DELACK is set in the protocol control block to
indicate that an acknowledgment is needed, but the latter is not sent immedi-
ately in hope that it can be piggybacked on any packets sent soon (presumably
in response to the incoming data) or combined with acknowledgment of other
data received soon; see the subsection on delayed acknowledgments and win-
dow updates in Section 13.7. If no activity causes a packet to be returned
before the next time that the tcp_fasttimo() routine runs, it will change the
flag to TF_ACKNOW and call the tcp_output() routine to send the acknowl-
edgment. Acknowledgments can thus be delayed by no more than 200 mil-
liseconds. If the data do not begin with rcv_nxt, the packet is retained in a
per-connection queue until the intervening data arrive, and an acknowledg-
ment is sent immediately.

12. As the final step in processing a received packet, check for the FIN flag. If it is
present, the connection state machine may have to be advanced, and the socket
is marked with socantrcvmore () to convey the end-of-file indication. If the
send side has already closed (a FIN was sent and acknowledged), the socket is
now considered closed, and it is so marked with soisdisconnected(). The
TF_ACKNOW flag is set to force immediate acknowledgment.

Step 10 completes the actions taken when a new packet is received by tcp_input().
However, as noted earlier in this section, receipt of input may require new output.
In particular, acknowledgment of all outstanding data or a new window update
requires either new output or a state change by the output module. Also, several
special conditions set the TF_ACKNOW flag. In these cases, tcp_output() is called
at the conclusion of input processing.



468 Chapter 13 Network Protocols

13.7 TCP Output Processing
We are finally ready to investigate the most interesting part of the TCP implemen-
tation—the send policy. As we saw earlier, a TCP packet contains an acknowledg-
ment and a window field as well as data, and a single packet may be sent if any of
these three fields change. A naive TCP send policy might send many more packets
than necessary. For example, consider what happens when a user types one char-
acter to a remote-terminal connection that uses remote echo. The server-side TCP
receives a single-character packet. It might send an immediate acknowledgment
of the character. Then, milliseconds later, the login server would read the charac-
ter, removing the character from the receive buffer; the TCP might immediately
send a window update noting that one additional octet of send window was avail-
able. After another millisecond or so, the login server would send an echoed char-
acter back to the client, necessitating a third packet sent in response to the single
character of input. It is obvious that all three responses (the acknowledgment, the
window update, and the data return) could be sent in a single packet. However, if
the server were not echoing input data, the acknowledgment could not be withheld
for too long a time or the client-side TCP would begin to retransmit. The algo-
rithms used in the send policy to minimize network traffic yet to maximize
throughput are the most subtle part of a TCP implementation. The send policy
used in 4.4BSD includes several standard algorithms, as well as a few approaches
suggested by the network research community. We shall examine each part of the
send policy.

As we saw in the previous section, there are several different events that may
trigger the sending of data on a connection; in addition, packets must be sent to
communicate acknowledgments and window updates (consider a one-way connec-
tion!).

Sending of Data
The most obvious reason that the tcp output module tcp_output() is called is that
the user has written new data to the socket. Write operations are done with a call
to tcp_usrreq() with the PRU_SEND request. (Recall that sosend() waits for
enough space in the socket send buffer if necessary, then copies the user's data
into a chain of mbufs that is passed to the protocol with the PRU_SEND request.)
The action in tcp_usrreq() is simply to place the new output data in the socket's
send buffer with sbappend() ,and to call tcp_output(). If flow control permits,
tcp_output() will send the data immediately.

The actual send operation is not substantially different from one for a UDP
datagram socket. The differences are that the header is more complicated, and
additional fields must be initialized, and that the data sent are simply a copy of the
user's data.* A copy must be retained in the socket's send buffer in case retrans-
mission is required. Also, if the number of data octets is larger than the size of a

*However, for send operations large enough for sosend() to place the data in external mbuf clusters,
the copy is done by creation of a new reference to the data cluster.

Section 13.7 TCP Output Processing 469

single maximum-sized segment, multiple packets will be constructed and sent in a
single call.

The tcp_output() routine allocates an mbuf to contain the output packet
header, and copies the contents of the header template into that mbuf. If the data
to be sent (if any) fit into the same mbuf as the header, tcp_output() copies them
into place from the socket send buffer using the m_copydata() routine. Other-
wise, tcp_output() adds the data to be sent as a separate chain of mbufs obtained
with an m_copy() operation from the appropriate part of the send buffer. The
sequence number for the packet is set from snd_nxt, and the acknowledgment is
set from rcv_nxt. The flags are obtained from an array containing the flags to be
sent in each connection state. The window to be advertised is computed from the
amount of space remaining in the socket's receive buffer; however, if that amount
is small (less than one-fourth of the buffer and less than one segment), it is set to
zero. The window is never allowed to end at a smaller sequence number than the
one in which it ended in the previous packet. If urgent data have been sent, the
urgent pointer and flag are set accordingly. One other flag must be set: The PUSH
flag on a packet indicates that data should be passed to the user; it is like a buffer-
flush request. This flag is generally considered obsolete, but is set whenever all
the data in the send buffer have been sent; 4.4BSD ignores this flag on input. Once
the header is filled in, the packet is checksummed. The remaining parts of the IP
header are initialized, including the type-of-service and time-to-live fields, and the
packet is sent with ip__output(). The retransmission timer is started if it it is not
already running, and the snd_nxt and snd_max values for the connection are
updated.

Avoidance of the Silly-Window Syndrome
Silly-window syndrome is the name given to a potential problem in a window-
based flow-control scheme in which a system sends several small packets, rather
than waiting for a reasonable-sized window to become available [Clark, 1982].
For example, if a network-login client program has a total receive buffer size of
4096 octets, and the user stops terminal output during a large printout, the buffer
will become nearly full as new full-sized segments are received. If the remaining
buffer space dropped to 10 bytes, it would not be useful for the receiver to volun-
teer to receive an additional 10 octets. If the user then allowed a few characters to
print and stopped output again, it still would not be useful for the receiving TCP to
send a window update allowing another 14 octets. Instead, it is desirable to wait
until a reasonably large packet can be sent, as the receive buffer already contains
enough data for the next several pages of output. Avoidance of the silly-window
syndrome is desirable in both the receiver and the sender of a flow-controlled con-
nection, as either end can prevent silly small windows from being used. We
described receiver avoidance of the silly-window syndrome in the previous sub-
section; when a packet is sent, the receive window is advertised as zero if it is less
than one packet and less than one-fourth of the receive buffer. For sender avoid-
ance of the silly-window syndrome, an output operation is delayed if at least a full
packet of data is ready to be sent, but less than one full packet can be sent because



470 Chapter 13 Network Protocols

of the size of the send window. Instead of sending, tcp_output() sets the output
state to persist state by starting the persist timer. If no window update has been
received by the time that the timer expires, the allowable data are sent in the hope
that the acknowledgment will include a larger window. If it does not, the connec-
tion stays in persist state, sending a window probe periodically until the window is
opened.

An initial implementation of sender avoidance of the silly-window syndrome
produced large delays and low throughput over connections to hosts using TCP
implementations with tiny buffers. Unfortunately, those implementations always
advertised receive windows less than the maximum segment size, which behavior
was considered silly by this implementation. As a result of this problem, the
4.4BSD TCP keeps a record of the largest receive window offered by a peer in the
protocol-control-block variable max_sndwnd. When at least one-half of max_snd-
wnd may be sent, a new segment is sent. This technique improved performance
when a system was communicating with these primitive hosts.

Avoidance of Small Packets
Network traffic exhibits a bimodal distribution of sizes. Bulk data transfers tend
to use the largest possible packets for maximum throughput. Network-login
services tend to use small packets, however, often containing only a single data
character. On a fast local-area network, such as an Ethernet, the use of single-
character packets generally is not a problem, as the network bandwidth usually is
not saturated. On long-haul networks interconnected by slow or congested links,
it is desirable to collect input over some period and then to send it in a single net-
work packet. Various schemes have been devised for collecting input over a fixed
time—usually about 50 to 100 milliseconds—and then sending it in a single
packet. These schemes noticeably slow character echo times on fast networks,
however, and often save few packets on slow networks. In contrast, a simple and
elegant scheme for reducing small-packet traffic was suggested by Nagle [Nagle,
1984]. This scheme allows the first octet output to be sent alone in a packet with
no delay. Until this packet is acknowledged, however, no new small packets may
be sent. If enough new data arrive to fill a maximum-sized packet, another packet
is sent. As soon as the outstanding data are acknowledged, the input that was
queued while waiting for the first packet may be sent. Only one small packet may
ever be outstanding on a connection at one time. The net result is that data from
small output operations are queued during one round-trip time. If the round-trip
time is less than the intercharacter arrival time, as it is in a remote-terminal session
on a local-area network, transmissions are never delayed, and response time
remains low. When a slow network intervenes, input after the first character is
queued, and the next packet contains the input received during the preceding
round-trip time. This algorithm is attractive both because of its simplicity and
because of its self-tuning nature.

Eventually, people discovered that this algorithm did not work well for certain
classes of network clients that sent streams of small requests that could not be
batched. One such client was the network-based X Window System [Scheifler &

Section 13.7 TCP Output Processing 471

Gettys, 1986], which required immediate delivery of small messages to get real-
time feedback for user interfaces such as rubber-banding to sweep out a new win-
dow. Hence, the developers added an option to TCP, TCP_NODELAY, to defeat
this algorithm on a connection. This option can be set with a setsockopt call,
which reaches TCP via the tcp_ctloutput() routine.*

Delayed Acknowledgments and Window Updates
TCP packets must be sent for reasons other than data transmission. On a one-way
connection, the receiving TCP must still send packets to acknowledge received
data and to advance the sender's send window. The mechanism for delaying
acknowledgments in hope of piggybacking or coalescing them with data or win-
dow updates was described in Section 13.6. In a bulk data transfer, the time at
which window updates are sent is a determining factor for network throughput.
For example, if the receiver simply set the TF_DELACK flag each time that data
were received on a bulk-data connection, acknowledgments would be sent every
200 milliseconds. If 8192-octet windows are used on a 10-Mbit/s Ethernet, this
algorithm will result in a maximum throughput of 320 Kbit/s, or 3.2 percent of the
physical network bandwidth. Clearly, once the sender has filled the send window
that it has been given, it must stop until the receiver acknowledges the old data
(allowing them to be removed from the send buffer and new data to replace them)
and provides a window update (allowing the new data to be sent).

Because TCP's window-based flow control is limited by the space in the
socket receive buffer, TCP has the PR_RCVD flag set in its protocol-switch entry so
that the protocol will be called (via the PRU_RCVD request of tcp_usrreqO) when
the user has done a receive call that has removed data from the receive buffer. The
RU_RCVD entry simply calls tcp_output(). Whenever tcp_output() determines

that a window update sent under the current circumstances would provide a new
send window to the sender large enough to be worthwhile, it sends an acknowl-
edgment and window update. If the receiver waited until the window was full, the
sender would already have been idle for some time when it finally received a win-
dow update. Furthermore, if the send buffer on the sending system was smaller
than the receiver's buffer, and thus than the receiver's window, the sender would
be unable to fill the receiver's window without receiving an acknowledgment.
Therefore, the window-update strategy in 4.4BSD is based on only the maximum
segment size. Whenever a new window update would move the window forward
by at least two full-sized segments, the window update is sent. This window-
update strategy produces a two-fold reduction in acknowledgment traffic and a
two-fold reduction in input processing for the sender. However, updates are sent
often enough to give the sender feedback on the progress of the connection and to
allow the sender to continue sending additional segments.

Note that TCP is called at two different stages of processing on the receiving
side of a bulk data transfer: It is called on packet reception to process input, and it

*Unfortunately, the X Window System library sets the TCP_NODELAY flag always, rather than only
when the client is using mouse-driven positioning.



472 Chapter 13 Network Protocols

is called after each receive operation removing data from the input buffer. At the
first call, an acknowledgment could be sent, but no window update could be sent.
After the receive operation, a window update also is possible. Thus, it is impor-
tant that the algorithm for updates run in the second half of this cycle.

Retransmit State
When the retransmit timer expires while a sender is awaiting acknowledgment of
transmitted data, tcp_output() is called to retransmit. The retransmit timer is first
set to the next multiple of the round-trip time in the backoff series. The variable
snd_nxt is moved back from its current sequence number to snd_una. A single
packet is then sent containing the oldest data in the transmit queue. Unlike some
other systems, 4.4BSD does not keep copies of the packets that have been sent on a
connection; it retains only the data. Thus, although only a single packet is retrans-
mitted, that packet may contain more data than does the oldest outstanding packet.
On a slow connection with small send operations, such as a remote login, this
algorithm may cause a single-octet packet that is lost to be retransmitted with all
the data queued since the initial octet was first transmitted.

If a single packet was lost in the network, the retransmitted packet will elicit
an acknowledgment of all data transmitted thus far. If more than one packet was
lost, the next acknowledgment will include the retransmitted packet and possibly
some of the intervening data. It may also include a new window update. Thus,
when an acknowledgment is received after a retransmit timeout, any old data that
were not acknowledged will be resent as though they had not yet been sent, and
some new data may be sent as well.

Slow Start
Many TCP connections traverse several networks between source and destination.
When some of the networks are slower than others, the entry router to the slowest
network often is presented with more traffic than it can handle. It may buffer
some input packets to avoid dropping packets because of sudden changes in flow,
but eventually its buffers will fill and it must begin dropping packets. When a
TCP connection first starts sending data across a fast network to a router forward-
ing via a slower network, it may find that the router's queues are already nearly
full. In the original send policy used in BSD, a bulk-data transfer would start out
by sending a full window of packets once the connection was established. These
packets could be sent at the full speed of the network to the bottleneck router, but
that router could transmit them at only a much slower rate. As a result, the initial
burst of packets was highly likely to overflow the router's queue, and some of the
packets would be lost. If such a connection used an expanded window size in an
attempt to gain performance—for example, when traversing a satellite-based net-
work with a long round-trip time—this problem would be even more severe.
However, if the connection could once reach steady state, a full window of data
often could be accommodated by the network if the packets were spread evenly

Section 13.7 TCP Output Processing 473

throughout the path. At steady state, new packets would be injected into the
network only when previous packets were acknowledged, and the number of
packets in the network would be constant. In addition, even if packets arrived at
the outgoing router in a cluster, they would be spread out when the network was
traversed by at least their transmission times in the slowest network. If the
receiver sent acknowledgments when each packet was received, the acknowledg-
ments would return to the sender with approximately the correct spacing. The
sender would then have a self-clocking means for transmitting at the correct rate
for the network without sending bursts of packets that the bottleneck could not
buffer.

An algorithm named slow start brings a TCP connection to this steady state
[Jacobson, 1988]. It is called slow start because it is necessary to start data trans-
mission slowly when traversing a slow network. The scheme is simple: A con-
nection starts out with a limit of just one outstanding packet. Each time that an
acknowledgment is received, the limit is increased by one packet. If the acknowl-
edgment also carries a window update, two packets can be sent in response. This
process continues until the window is fully open. During the slow-start phase of
the connection, if each packet was acknowledged separately, the limit would be
doubled during each exchange, resulting in an exponential opening of the win-
dow. Delayed acknowledgments might cause acknowledgments to be coalesced if
more than one packet could arrive at the receiver within 200 milliseconds, slow-
ing the window opening slightly. However, the sender never sends bursts of more
than two or three packets during the opening phase, and sends only one or two
packets at a time once the window has opened.

The implementation of the slow-start algorithm uses a second window, like
the send window but maintained separately, called the congestion window
(snd_cwnd). The congestion window is maintained according to an estimate of
the data that the network is currently able to buffer for this connection. The send
policy is modified so that new data are sent only if allowed by both the normal and
congestion send windows. The congestion window is initialized to the size of one
packet, causing a connection to begin with a slow start. It is set to one packet
whenever transmission stops because of a timeout. Otherwise, once a retransmit-
ted packet was acknowledged, the resulting window update might allow a full
window of data to be sent, which would once again overrun intervening routers.
This slow start after a retransmission timeout eliminates the need for a test in the
output routine to limit output to one packet on the initial timeout. In addition, the
timeout may indicate that the network has become slower because of congestion,
and temporary reduction of the window may help the network to recover from its
condition. The connection is forced to reestablish its clock of acknowledgments
after the connection has come to a halt, and the slow start has this effect as well.
A slow start is also forced if a connection begins to transmit after an idle period of
at least the current retransmission value (a function of the smoothed round-trip
time and variance estimates).



474

Source-Quench Processing

Chapter 13 Network Protocols

If a router along the route used by a connection receives more packets than it can
send along this path, it will eventually be forced to drop packets. When packets
are dropped, the router may send an ICMP source quench error message to hosts
whose packets have been dropped, to indicate that the senders should slow their
transmissions. Although this message indicates that some change should be made,
it provides no information on how much of a change must be made or for how
long the change should take effect. In addition, not all routers send source-quench
messages for each packet dropped. The use of the slow-start algorithm after
retransmission timeouts allows a connection to respond correctly to a dropped
packet, whether or not a source quench is received to indicate the loss. The action
on receipt of a source quench for a TCP connection is simply to anticipate the
timeout because of the dropped packet, setting the congestion window to one
packet. This action prevents new packets from being sent until the dropped packet
is resent at the next timeout. At that time, the slow start will begin again.

Buffer and Window Sizing

The performance of a TCP connection is obviously limited by the bandwidth of the
path that the connection must transit. The performance is also affected by the
round-trip time for the path. For example, paths that traverse satellite links have a
long intrinsic delay, even though the bandwidth may be high, but the throughput is
limited to one window of data per round-trip time. After filling the receiver's win-
dow, the sender must wait for at least one round-trip time for an acknowledgment
and window update to arrive. To take advantage of the full bandwidth of a path,
both the sender and receiver must use buffers at least as large as the bandwidth-
delay product to allow the sender to transmit during the entire round-trip time. In
steady state, this buffering allows the sender, receiver, and intervening parts of the
network to keep the pipeline filled at each stage. For some paths, using slow start
and a large window can lead to much better performance than could be achieved
previously.

The round-trip time for a network path includes two components: transit time
and queuing time. The transit time comprises the propagation, switching, and for-
warding time in the physical layers of the network, including the time to transmit
packets bit by bit after each store-and-forward hop. Ideally, queuing time would
be negligible, with packets arriving at each node of the network just in time to be
sent after the preceding packet. This ideal flow is possible when a single connec-
tion using a suitable window size is synchronized with the network. However, as
additional traffic is injected into the network by other sources, queues build up in
routers, especially at the entrance to the slower links in the path. Although queu-
ing delay is part of the round-trip time observed by each network connection that
is using a path, it is not useful to increase the operating window size for a connec-
tion to a value larger than the product of the limiting bandwidth for the path times
the transit delay. Sending additional data beyond that limit causes the additional
data to be queued, increasing queuing delay without increasing throughput.

Section 13.7 TCP Output Processing 475

Avoidance of Congestion with Slow Start

The addition of the slow-start algorithm to TCP allows a connection to send pack-
ets at a rate that the network can tolerate, reaching a steady state at which packets
are sent only when another packet has exited the network. A single connection
may reasonably use a large window without flooding the entry router to the slow
network on startup. As a connection opens the window during a slow start, it
injects packets into the network until the network links are kept busy. During this
phase, it may send packets at up to twice the rate at which the network can deliver
data, because of the exponential opening of the window. If the window is chosen
appropriately for the path, the connection will reach steady state without flooding
the network. However, with multiple connections sharing a path, the bandwidth
available to each connection is reduced. If each connection uses a window equal
to the bandwidth-delay product, the additional packets in transit must be queued,
increasing delay. If the total offered load is too high, routers must drop packets
rather than increasing the queue sizes and delay. Thus, the appropriate window
size for a TCP connection depends not only on the path, but also on competing
traffic. A window size large enough to give good performance when a long-delay
link is in the path will overrun the network when most of the round-trip time is in
queuing delays. It is highly desirable for a TCP connection to be self-tuning, as
the characteristics of the path are seldom known at the endpoints and may change
with time. If a connection expands its window to a value too large for a path, or if
additional load on the network collectively exceeds the capacity, router queues
will build until packets must be dropped. At this point, the connection will close
the congestion window to one packet and will initiate a slow start. If the window
is simply too large for the path, however, this process will repeat each time that
the window is opened too far.

The connection can learn from this problem, and can adjust its behavior
accordingly with another algorithm associated with the slow-start algorithm. This
algorithm keeps a new state variable for each connection, t_ssthresh (slow-start
threshold), which is an estimate of the usable window for the path. When a packet
is dropped, as evidenced by a retransmission timeout, this window estimate is set
to one-half the number of the outstanding data octets. The current window is
obviously too large at the moment, and the decrease in window utilization must be
large enough that congestion will decrease rather than stabilizing. At the same
time, the slow-start window (snd_cwnd) is set to one segment to restart. The con-
nection starts up as before, opening the window exponentially until it reaches the
t_ssthresh limit. At this point, the connection is near the estimated usable window
for the path. It enters steady state, sending data packets as allowed by window
updates. To test for improvement in the network, it continues to expand the win-
dow slowly; as long as this expansion succeeds, the connection can continue to
take advantage of reduced network load. The expansion of the window in this
phase is linear, with one additional full-sized segment being added to the current
window for each full window of data transmitted. This slow increase allows the
connection to discover when it is safe to resume use of a larger window while
reducing the loss in throughput because of the wait after the loss of a packet



476 Chapter 13 Network Protocols Section 13.8 Internet Control Message Protocol (ICMP) 477

before transmission can resume. Note that the increase in window size during this
phase of the connection is linear as long as no packets are lost, but the decrease in
window size when signs of congestion appear is exponential (it is divided by 2 on
each timeout). With the use of this dynamic window-sizing algorithm, it is possi-
ble to use larger default window sizes for connection to all destinations without
overrunning networks that cannot support them.

Fast Retransmission

Packets can be lost in the network for two reasons: congestion and corruption. In
either case, TCP detects lost packets by a timeout causing a retransmission. When
a packet is lost, the flow of packets on a connection comes to a halt while waiting
for the timeout. Depending on the round-trip time and variance, this timeout can
result in a substantial period during which the connection makes no progress.
Once the timeout occurs, a single packet is retransmitted as the first phase of a
slow start, and the slow-start threshold is set to one-half previous operating win-
dow. If later packets are not lost, the connection goes through a slow start up to
the new threshold, and it then gradually opens the window to probe whether any
congestion has disappeared. Each of these phases lowers the effective throughput
for the connection. The result is decreased performance, even though congestion
may have been brief.

When a connection reaches steady state, it sends a continuous stream of data
packets in response to a stream of acknowledgments with window updates. If a
single packet is lost, the receiver sees packets arriving out of order. Most TCP
receivers, including 4.4BSD, respond to an out-of-order segment with a repeated
acknowledgment for the in-order data. If one packet is lost while enough packets
to fill the window are sent, each packet after the lost packet will provoke a dupli-
cate acknowledgment with no data, window update, or other new information.
The receiver can infer the out-of-order arrival of packets from these duplicate
acknowledgments. Given sufficient evidence of reordering, the receiver can
assume that a packet has been lost. The 4.4BSD TCP implements fast retransmis-
sion based on this signal. After detecting four identical acknowledgments, the
tcp_input() function saves the current connection parameters, simulates a retrans-
mission timeout to resend one segment of the oldest data in the send queue, and
then restores the current transmit state. Because this indication of a lost packet is
a congestion signal, the estimate of the network buffering limit, t_ssthresh, is set
to one-half of the current window. However, because the stream of acknowledg-
ments has not stopped, a slow start is not needed. If a single packet has been lost,
doing fast retransmission fills in the gap more quickly than would waiting for the
retransmission timeout. An acknowledgment for the missing segment, plus all
out-of-order segments queued before the retransmission, will then be received, and
the connection can continue normally.

Even with fast retransmission, it is likely that a TCP connection that suffers a
lost segment will reach the end of the send window and be forced to stop transmis-
sion while awaiting an acknowledgment for the lost segment. However, after the
fast retransmission, duplicate acknowledgments are received for each additional

packet received by the peer after the lost packet. These duplicate
acknowledgments imply that a packet has left the network and is now queued by
the receiver. In that case, the packet does not need to be considered as within the
network congestion window, possibly allowing additional data to be sent if the
receiver's window is large enough. Each duplicate acknowledgment after a fast
retransmission thus causes the congestion window to be moved forward artificially
by the segment size. If the receiver's window is large enough, it allows the con-
nection to make forward progress during a larger part of the time that the sender
awaits an acknowledgment for the retransmitted segment. For this algorithm to
have effect, the sender and receiver must have additional buffering beyond the nor-
mal bandwidth-delay product; twice that amount is needed for the algorithm to
have full effect.

13.8 Internet Control Message Protocol (ICMP)

The Internet Control Message Protocol (ICMP) [Postel, 1981c] is the control- and
error-message protocol for IP. Although it is layered above IP for input and output
operations, much like in UDP, it is really an integral part of IP. Unlike those of
UDP, most ICMP messages are received and implemented by the kernel. ICMP
messages may also be sent and received via a raw IP socket (see Section 12.7).

ICMP messages fall into three general classes. One class includes various
errors that may occur somewhere in the network and that may be reported back to
the originator of the packet provoking the error. Such errors include routing fail-
ures (network or host unreachable), expiration of the time-to-live field in a packet,
or a report by the destination host that the target protocol or port number is not
available. Error packets include the IP header plus at least eight additional octets
of the packet that encountered the error. The second message class may be con-
sidered as router-to-host control messages. The two instances of such messages
are the source-quench message, which reports excessive output and packet loss,
and the routing redirect, which informs a host that a better route is available for a
host or network via a different router. The final message class includes network
management, testing, and measurement packets. These packets include a net-
work-address request and reply, a network-mask request and reply, an echo
request and reply, and a timestamp request and reply.

All the actions and replies required by an incoming ICMP message are done
by the kernel ICMP layer. ICMP packets are received from IP via the normal proto-
col-input entry point because ICMP has its own IP protocol number. The ICMP
input routine formulates responses to any requests and passes the reply to
ip_output() to be returned to the sender. When error indications or source
quenches are received, a generic address is constructed in a sockaddr structure.
The address and error code are reported to each network protocol's control-input
entry, pr_ctlinput(), by pfctlinput() which is passed a pointer to the returned IP
header in case additional information is needed about the source or destination
associated with the error. For example, an ICMP port unreachable message causes
errors for only those connections with the indicated remote port and protocol.



478 Chapter 13 Network Protocols

Routing changes indicated by redirect messages are processed by the
rtredirect( ) routine. It verifies that the router from which the message was
received was the next-hop gateway in use for the destination, and it checks that the
new gateway is on a directly attached network. If these tests succeed, the kernel
routing tables are modified accordingly. If the new route is of equivalent scope to
the previous route (e.g., both are for the destination network), the gateway in the
route is changed to the new gateway. If the scope of the new route is smaller than
that of the original route (either a host redirect is received when a network route
was used, or the old route used a wildcard route), a new route is created in the ker-
nel table. Routes that are created or modified by redirects are marked with the
flags RTF_DYNAMIC and RTF_MODIFIED, respectively. Once the routing tables
are updated, the protocols are notified by pfctlinput() using a redirect code, rather
than an error code. TCP and UDP simply flush any cached route from the protocol
control block when a redirect is received. The next packet sent on the socket will
thus reallocate a route, choosing the new route if that one is now the best route.

Once an incoming ICMP message has been processed by the kernel, it is
passed to rip_input() for reception by any ICMP raw sockets. The raw sockets can
also be used to send ICMP messages. The low-level network test program ping
works by sending ICMP echo requests on a raw socket and listening for corre-
sponding replies.

ICMP is also used by other Internet network protocols to generate error mes-
sages. UDP sends only ICMP port unreachable error messages, and TCP uses
other means to report such errors. However, many different errors may be
detected by IP, especially on systems used as IP gateways. The icmp_error()
function constructs an error message of a specified type in response to an IP
packet. Most error messages include a portion of the original packet that caused
the error, as well as the type and code for the error. The source address for the
error packet is selected according to the context. If the original packet was sent to
a local system address, that address is used as the source. Otherwise, an address is
used that is associated with the interface on which the packet was received, as
when forwarding is done; the source address of the error message can then be set
to the address of the router on the network closest to (or shared with) the originat-
ing host. Also, when IP forwards a packet via the same network interface on
which that packet was received, it may send a redirect message to the originating
host if that host is on the same network. The icmp_error() routine accepts an
additional parameter for redirect messages: the address of the new router to be
used by the host.

13.9 OSI Implementation Issues

4.4BSD includes an ISO networking domain that contains implementations of sev-
eral of the ISO OSI protocols. The domain supports the Connectionless Network
Protocol (CLNP), class 4 of the Transport Protocol (TP-4), the Connectionless
Transport Protocol (CLTP), and several supporting protocols. A description of

Section 13.9 OSI Implementation Issues 479

these protocols is given in [Rose, 1990]. It also supports the Connection-Oriented
Network Service (CONS) over X.25. Despite support for these OSI protocols in
4.4BSD and the earlier 4.3BSD Reno release, OSI networking has not become pop-
ular, and these implementations have not seen much use.

Although the OSI protocols have not been used widely, their implementation
in BSD drove several changes in the networking framework. This section summa-
rizes features of the OSI protocols that required these changes, as well as dis-
cussing the changes in the socket interface and framework.

The OSI networking protocols were designed with a layering similar to other
protocols already running in the BSD network, and thus they generally fit into the
existing framework. The following features of the OSI protocols, in contrast, did
not fit easily into the existing (4.3BSD) framework:

• Long addresses (network addresses of 20 octets)

• Multilevel routing hierarchy

• Server confirmation of incoming connections

• Receipt of protocol information with connections

• Record marks

We discuss each of these features in turn, along with changes made to the socket
interface and layering designed to accommodate them.

At the network level, ISO addresses can be as long as 20 octets. Transport-
level selectors, analogous to TCP ports during connection establishment, can be up
to 64 octets long. The sockaddr structure in 4.3BSD allowed only 14 bytes for net-
work and transport addresses. The socket system-call interface allows variable-
sized addresses to be passed to and from the kernel, but internal data structures,
such as routing entries and interface addresses, did not allow longer addresses.
The fixed-sized sockaddr structure was also used in system-management inter-
faces, such as the ioctl to set a route.

The problems with longer addresses led to a change in the sockaddr structure
in 4.4BSD. The developers divided the sa_family field in the sockaddr to make
space for a new sa_len field containing the total length of the sockaddr, which is
now truly variable. Within the kernel, storage for sockaddr structures is allocated
dynamically, except within a protocol family within which the structures are
known to be fixed in size. This change was not necessary outside of the kernel,
because the basic socket system calls convey the length of each sockaddr passed
with a system call, but the new structure is more convenient within the kernel and
in the more complicated interfaces, such as the routing socket (see Section 12.5).

Network addresses in ISO are variable in size, up to 20 octets. The first few
octets specify the addressing authority and address format. The interpretation of
the remainder of the address depends on the authority. The routing tables in
4.3BSD supported a two-level routing hierarchy, with network routes and host
routes. However, ISO addresses are not divided into network and host parts in any



480 Chapter 13 Network Protocols

standard way, and it is not simple to determine the longest prefix of an address for
which a route might exist. These problems were the initial motivation for the
redesign of the routing table and lookup algorithm to use a radix tree, described in
Section 12.5. These changes have since proved to be useful with IP as well, espe-
cially when using addressing based on CIDR (see Section 13.1).

The ISO transport service uses a notion of connection establishment for
servers that was somewhat different from the model used in the socket interface
and implementation in 4.3BSD. The major difference is that the ISO service defi-
nition specifies a connection indication to the server, possibly including data asso-
ciated with the connection request; the server can then choose whether to accept or
reject the request.

The biggest obstacle to graceful implementation of this connection paradigm
in BSD is the name of the accept system call, which waits for a new connection on a
listening socket, then returns another socket associated with the new connection.
This call has been redefined in 4.4BSD to allow the returned socket to be associated
either with a connection indication or with a fully established connection. Proto-
cols such as TCP continue to complete connections before they are returned via
accept, but the ISO transport allows connections to be returned immediately on
receipt of a connection request. The server receiving the request can confirm or
reject the connection explicitly. If the server begins normal input or output opera-
tions without confirming the connection, the connection is confirmed automatically.

The final two items on the list of problems posed by the OSI protocols are
receipt of protocol data with connections and record marks; they were both
addressed with the same mechanism. The recvmsg system call was changed to
allow receipt of protocol-specific data, including data from a connection request,
as well as new flags describing any data returned. The msghdr structure used by
recvmsg has a new field that supplies a buffer for ancillary data, which can
include connection data or other protocol-dependent information associated with
received data (see Section 11.1). The msghdr structure also contains new flags,
including a flag to indicate the end of a record. This flag supports the use of arbi-
trarily long records for protocols such as ISO transport. Internally, records are
delimited with the new M_EOR flag on mbuf structures in the socket receive buffer
(described in section Section 11.6).

The developers made the changes described in this section motivated initially
by requirements of the OSI protocol implementations. The changes are not spe-
cific to OSI, however; they generalize the socket interface and internal framework
to allow support for a wider variety of protocols. Several of the changes are useful
with Internet protocols, as well as with OSI and other protocols.

13.10 Summary of Networking and Interprocess Communication
In this section, we shall tie together much of the material presented in the Chap-
ters 11 through 13. For this purpose, we shall describe the operation of the socket
and network layers during normal use.

Section 13.10 Summary of Networking and Interprocess Communication 481

There are three stages in the lifetime of a socket. Initially, the socket is cre-
ated and is associated with a communication domain. During its lifetime, data
passes through it to one or more other sockets. When the socket is no longer
needed, it must go through an orderly shutdown process in which its resources are
freed.

Creation of a Communication Channel

Sockets are created by users with the socket system call and internally with the
socreate( ) routine. To create a socket, the user must supply a communication
domain and socket type, and also may request a specific communication protocol
within that domain. The socket routines first locate the domain structure for the
communication domain from a global list initialized at boot time for each config-
ured domain. The table of those protocols that constitute the domain's protocol
family is located in the domain structure. This table of protocol-switch entries is
then scanned for an appropriate protocol to support the type of socket being cre-
ated (or for a specific protocol, if one was specified). The socket routine does this
search by examining the pr_type field, which contains a possible socket type (e.g.,
SOCK_STREAM), and the pr_protocol field, which contains the protocol number
of the protocol—normally a well-known value. If a suitable protocol is found, a
reference to the protocol's protocol-switch entry is then recorded in the socket's
so_proto field, and all requests for network services are made through the appro-
priate procedure identified in the structure.

After locating a handle on a protocol, socreateO allocates space for the socket
data structure and initializes the socket for the initial state. To complete the cre-
ation process, socreate( ) makes a PRU_ATTACH request to the protocol's user
request routine so that the protocol can attach itself to the new socket.

Next, an address may be bound to a socket. Binding of an address is done
internally by sobind(), which makes a PRU_BIND request to the socket's support-
ing protocol. Each domain provides a routine that manages its address space.
Addresses in the local (UNIX) domain are names in the filesystem name space,
and consequently name requests go through the filesystem name-lookup routine,
namei().

For a socket to be ready to accept connections, the socket layer must inform
the protocols with a PRU_LISTEN request. This request obviously has no meaning
for connectionless protocols such as UDP. For connection-oriented protocols such
as TCP, however, a listen request causes a protocol state transition. Before effect-
ing this state change, protocols verify that the socket has an address bound to it; if
there is no address bound, the protocol module chooses one for the socket.

In the local domain, a listen request causes no state change, but a check is
made to ensure that the socket has a name. Unlike the other protocols, however,
the local domain will not select a name for the socket.

Soconnect() is invoked to establish a connection, generating a PRU_CONNECT
request to the protocol. For connectionless protocols, the address is recorded as a
default address to be used when data are sent on the socket (i.e., the process does a



482 Chapter 13 Network Protocols

write or send, instead of a sendto). Setting the address does not require any peer
communication, and the protocol module returns immediately.

For a connection-based protocol, the peer's address is verified, and a local
address is assigned for unbound sockets. Instead of the socket entering a con-
nected state immediately, it is marked as connecting with soisconnecting() The
protocol then initiates a handshake with the peer by transmitting a connection-
request message. When a connection request of this sort is completed—usually,
on receipt of a message by the protocol input routine—the socket's state is
changed with a call to soisconnected().

From a user's perspective, all connection requests appear synchronous
because the connect system call invokes soconnect() to initiate a connection, and
then, at the socket level, puts the calling process to sleep if the connection request
has not been completed. Alternatively, if the socket has been made nonblocking
with fcntl, connect returns the error EINPROGRESS once the connection has been
initiated successfully. The caller may test the completion of the connection with a
select call testing for ability to write to the socket.

For connection-based communication, a process must accept an incoming
connection request on a listening socket by calling accept, which in turn calls
soaccept(). This call returns the next completed connection from the socket
receive queue.

Sending and Receiving of Data

Once a socket has been created, data can begin to flow through it. A typical
TCP/IP connection is shown in Fig. 13.10. The sosend() routine is responsible for
copying data from the sending process's address space into mbufs. It then pre-
sents the data to the network layer with one or more calls to the protocol's
PRU_SEND request. The network may choose to send the data immediately, or to
wait until a more auspicious time. If the protocol delays, or if it must retain a
copy of the data for possible retransmission, it may store the data in the socket's
send buffer. Eventually, the data are passed down through TCP and IP as one or
more packets to the interface driver selected by a routing lookup; at each layer, an
appropriate header is added. Each packet is sent out over the network to its desti-
nation machine.

On receipt at the destination machine, the interface driver's receiver-interrupt
handler verifies and removes its own header, and places the packet onto an appro-
priate network-protocol input queue. Later, the network-level input-processing
module (e.g., IP) is invoked by a software interrupt; it runs at a lower interrupt-pri-
ority level than that of the hardware network-interface interrupt. In this example,
the packets on the input queue are processed first by IP and then by TCP, each of
which verifies and removes its own header. If they are received in order, the data
are then placed on the appropriate socket's input queue, ready to be copied out by
soreceive() on receipt of a read request.

Section 13.10 Summary of Networking and Interprocess Communication 483

output
send(DATA) user input

recv(DATA)

copyin () copy out ()

DATA kernel

tcp_usrreq ( )

tcp_output()

PIP TCP

p_output()
IP TCP

network
nterface \

ETHER IP TCP

DATA

DATA

DATA

soreceive()
DATA

tcp_input()

PIP TCP DATA

IP

ipintr()
TCP DATA

software
interrupt

network
interface

ETHER IP TCP DATA

Ethernet

device
interrupt

Figure 13.10 Data flow through a TCP/IP connection over an Ethernet. ETHER—Ethernet
header; PIP—pseudo IP header; IP—IP header; TCP—TCP header; IF—interface.

Termination of Data Transmission or Reception

The soshutdown() routine stops data flow at a socket. Shutting down a socket for
reading is a simple matter of flushing the receive queue and marking the socket as
unable to receive more data; this action is done with a call to sorflush() which in
turn invokes socantrcvmore( ) to change the socket state, and then releases any
resources associated with the receive queue. Shutting down a socket for writing,
however, involves notifying the protocol with a PRU.SHUTDOWN request. For
reliable connections, any data remaining in the send queue must be drained before
the connection can finish shutting down. If a protocol supports the notion of a
unidirectional connection (i.e., a connection in which unidirectional data flow is
possible), the socket may continue to be usable; otherwise, the protocol may start
a disconnect sequence. Once a socket has been shut down in both directions, the
protocol starts a disconnect sequence. When the disconnect completes, first the
resources associated with the protocol, and then those associated with the socket,
are freed.



484 Chapter 13 Network Protocols

Exercises

13.1 Is TCP a transport-, network-, or link-layer protocol?

13.2 How does IP identify the next-higher-level protocol that should process an
incoming message? How might this dispatching differ in other networking
architectures?

13.3 How many hosts can exist on a class C Internet network? Is it possible to
use subnet addressing with a class C network? Explain your answer.

13.4 What is a broadcast message? How are IP broadcast messages identified in
the Internet?

13.5 Why are TCP and UDP protocol control blocks kept on separate lists?

13.6 Why does the IP output routine, rather than the socket-layer send routine
(sosend( )), check the destination address of an outgoing packet to see
whether the destination address is a broadcast address?

13.7 Why does 4.4BSD not forward broadcast messages?

13.8 Why does the TCP header include a header-length field even though it is
always encapsulated in an IP packet that contains the length of the TCP
message?

13.9 What is the flow-control mechanism used by TCP to limit the rate at which
data are transmitted?

13.10 How does TCP recognize messages from a host that are directed to a con-
nection that existed previously, but that has since been shut down (such as
after a machine is rebooted)?

13.11 When is the size of the TCP receive window for a connection not equal to
the amount of space available in the associated socket's receive buffer?
Why are these values not equal at that time?

13.12 What are keepalive messages? For what does TCP use them? Why are
keepalive messages implemented in the kernel rather than, say, in each
application that wants this facility?

13.13 Why is calculating a smoothed round-trip time important, rather than, for
example, just averaging calculated round-trip times?

13.14 Why does TCP delay acknowledgments for received data? What is the
maximum time that TCP will delay an acknowledgment?

13.15 Explain what the silly-window syndrome is. Give an example in which its
avoidance is important to good protocol performance. Explain how the
4.4BSD TCP avoids this problem.

Exercises 485

13.16 What is meant by small-packet avoidancel Why is small-packet avoidance
bad for clients (e.g., the X Window System) that exhibit one-way data flow
and that require low latency for good interactive performance?

*13.17 A directed broadcast is a message that is to be broadcast on a network one
or more hops away from the sender. Describe a scheme for supporting
directed-broadcast messages in the Internet domain.

*13.18 Why is the initial sequence number for a TCP connection selected at ran-
dom, rather than being, say, always set to zero?

*13.19 In the TCP protocol, why do the SYN and FIN flags occupy space in the
sequence-number space?

*13.20 Describe a typical TCP packet exchange during connection setup. Assume
that an active client initiated the connection to a passive server. How would
this scenario change if the server tried simultaneously to initiate a connec-
tion to the client?

*13.21 Sketch the TCP state transitions that would take place if a server process
accepted a connection and then immediately closed that connection before
receiving any data. How would this scenario be altered if 4.4BSD TCP sup-
ported a mechanism whereby a server could refuse a connection request
before the system completed the connection?

* 13.22 At one time, the 4BSD TCP used a strict exponential backoff strategy for
transmission. Explain how this nonadaptive algorithm can adversely affect
performance across networks that are very lossy, but that have high band-
width (e.g., some networks that use satellite connections).

* 13.23 Why does UDP match the completely specified destination addresses of
incoming messages to sockets with incomplete local and remote destination
addresses?

* 13.24 Why might a sender set the Don't Fragment flag in the header of an IP
packet?

*13.25 The maximum segment lifetime (MSL) is the maximum time that a message
may exist in a network—that is, the maximum time that a message may be
in transit on some hardware medium, or queued in a gateway. What does
TCP do to ensure that TCP messages have a limited MSL? What does IP do
to enforce a limited MSL? See [Fletcher & Watson, 1978] for another
approach to this issue.

**13.26 Why does TCP use the timestamp option, in addition to the sequence num-
ber, in detecting old duplicate packets? Under what circumstances is this
detection most desirable?



486 Chapter 13 Network Protocols

**13.27 Describe a protocol for calculating a bound on the maximum segment life-
time of messages in an internet environment. How might TCP use a bound
on the MSL (see Exercise 13.25) for a message to minimize the overhead
associated with shutting down a TCP connection?

References
Carr et al, 1970.

S. Carr, S. Crocker, & V. Cerf, "Host-Host Communication Protocol in the
ARPA Network," Proceedings of the AFIPS Spring Joint Computer Confer-
ence, p. 589-597, 1970.

Cerf, 1978.
V. Cerf, "The Catenet Model for Internetworking," Technical Report IEN
48, SRI Network Information Center, Menlo Park, CA, July 1978.

Cerf &Kahn, 1974.
V. Cerf & R. Kahn, "A Protocol for Packet Network Intercommunication,"
IEEE Transactions on Communications, vol. 22, no. 5, p. 637-648, May
1974.

Clark, 1982.
D. D. Clark, "Window and Acknowledgment Strategy in TCP," RFC 813,
available by anonymous FTP from ds.internic.net, July 1982.

DARPA, 1983.
DARPA, "A History of the ARPANET: The First Decade," Technical
Report, Bolt, Beranek, and Newman, Cambridge, MA, April 1983.

Deering, 1989.
S. Deering, "Host Extensions for IP Multicasting," RFC 1112, available by
anonymous FTP from ds.internic.net, August 1989.

Fletcher & Watson, 1978.
J. Fletcher & R. Watson, "Mechanisms for a Reliable Timer-Based Proto-
col," in Computer Networks 2, p. 271-290, North-Holland, Amsterdam,
The Netherlands, 1978.

Fuller et al, 1993.
V. Fuller, T. Li, J. Yu, & K. Varadhan, "Classless Inter-Domain Routing
(CIDR): An Address Assignment and Aggregation Strategy," RFC 1519,
available by anonymous FTP from ds.internic.net, September 1993.

ISO, 1984.
ISO, "Open Systems Interconnection: Basic Reference Model," ISO 7498,
International Organization for Standardization, 1984. available from the:
American National Standards Institute, 1430 Broadway, New York, NY
10018.

Jacobson, 1988.
V. Jacobson, "Congestion Avoidance and Control," Proceedings of the
ACM SIGCOMM Conference, p. 314-329, August 1988.

References 487

Jacobson et al, 1992.
V. Jacobson, R. Braden, & D. Borman, "TCP Extensions for High Perfor-
mance," RFC 1323, available by anonymous FTP from ds.internic.net, May
1992.

McQuillan & Walden, 1977.
J. M. McQuillan & D. C. Walden, "The ARPA Network Design Decisions,"
Computer Networks, vol. 1, no. 5, pp. 243-289, 1977.

Mogul, 1984.
J. Mogul, "Broadcasting Internet Datagrams," RFC 919, available by
anonymous FTP from ds.internic.net, October 1984.

Mogul & Deering, 1990.
J. Mogul & S. Deering, "Path MTU Discovery," RFC 1191, available by
anonymous FTP from ds.internic.net, November 1990.

Mogul & Postel, 1985.
J. Mogul & J. Postel, "Internet Standard Subnetting Procedure," RFC 950,
available by anonymous FTP from ds.internic.net, August 1985.

Nagle, 1984.
J. Nagle, "Congestion Control in IP/TCP Internetworks," RFC 896, avail-
able by anonymous FTP from ds.internic.net, January 1984.

Padlipsky, 1985.
M. A. Padlipsky, The Elements of Networking Style, Prentice-Hall, Engle-
wood Cliffs, NJ, 1985.

Postel, 1980.
J. Postel, "User Datagram Protocol," RFC 768, available by anonymous
FTP from ds.internic.net, August 1980.

Postel, 198 la.
J. Postel, "Internet Protocol," RFC 791, available by anonymous FTP from
ds.internic.net, September 1981.

Postel, 1981b.
J. Postel, "Transmission Control Protocol," RFC 793, available by anony-
mous FTP from ds.internic.net, September 1981.

Postel, 1981c.
J. Postel, "Internet Control Message Protocol," RFC 792, available by
anonymous FTP from ds.internic.net, September 1981.

Postel etal, 1981.
J. Postel, C. Sunshine, & D. Cohen, "The ARPA Internet Protocol," Com-
puter Networks, vol. 5, no. 4, pp. 261-271, July 1981.

Rose, 1990.
M. Rose, The Open Book: A Practical Perspective on OSI, Prentice-Hall,
Englewood Cliffs, NJ, 1990.

Scheifler & Gettys, 1986.
R. W. Scheifler & J. Gettys, "The X Window System," ACM Transactions
on Graphics, vol. 5, no. 2, pp. 79-109, April 1986.



PART 5

System Operation



CHAPTER 14

System Startup

When a computer is powered on, there is nothing running on the CPU. For a pro-
gram to be set running, the binary image of the program must first be loaded into
memory from a storage device. Many microprocessor systems automatically start
programs that reside in nonvolatile storage devices such as programmable read-
only memories (PROMs). Once the image of the program is loaded, the CPU must
be directed to start execution at the first memory location of the loaded program.
This process of bootstrapping a program into execution starts a program running
on a CPU.

In this chapter, we examine how the 4.4BSD kernel, or any other similar pro-
gram, is bootstrapped. We then study the operation of the system during the ini-
tialization phase, which takes the system from a cold start to the point at which
user-mode programs can be run. A final section examines topics that are related to
the startup procedure. These topics include configuring the kernel load image,
shutting down a running system, and debugging system failures.

14.1 Overview

The 4.4BSD kernel is only a program, albeit a complex one. Like any 4.4BSD pro-
gram, its binary image resides in a file on a filesystem until it is loaded and set
running. 4.4BSD presumes that the executable image of the kernel resides in a file
named /vmunix on a filesystem that is designated as the root filesystem. The ini-
tial bootstrap mechanism is machine dependent. In many cases, a small bootstrap
program is placed in a reserved area near the start of the primary disk. Often, this
program is limited to a small area—as little as one 512-byte disk sector—and sim-
ply loads a larger program from the following area of the disk. This program, or
some other mechanism, is usually used to load and run a special program, named
boot. The boot program's task is to load and initialize the executable image of a

491



492 Chapter 14 System Startup

program and to start that program running. Boot may come from the same storage
device as the file that it bootstraps, or it may be loaded from a storage device sup-
ported by the machine's console processor specifically for bootstrapping purposes.

The boot program reads the binary image of a program to be bootstrapped
into main memory, and then initializes the CPU so that the loaded program can
be started. Programs loaded by boot are set running with virtual-address transla-
tion and hardware interrupts disabled. The loaded program is responsible for
enabling these facilities and any additional hardware, such as I/O devices, that it
intends to use.

When the 4.4BSD kernel is loaded by the boot program, the kernel goes
through several stages of hardware and software initialization in preparation for
normal system operation. The first stage is responsible for initializing the state of
the CPU, including the run-time stack and virtual-memory mapping. Memory
mapping, including virtual-address translation, is enabled early in the startup pro-
cedure to minimize the amount of special-purpose assembly-language code that
those porting the kernel must write. Once virtual-memory mapping is enabled, the
system does machine-dependent initializations, and then machine-independent ini-
tializations. The machine-dependent operations include setting up virtual-memory
page tables and configuring I/O devices; the machine-independent actions include
mounting the root filesystem and initializing the myriad system data structures.
This order is necessary because many of the machine-independent initializations
depend on the I/O devices being initialized properly.

Following the setup of the machine-independent portions of the kernel, the
system is in operational status. System processes are created and made runnable,
and user-level programs are brought in from the filesystems to execute. At this
point, the system is ready to run normal applications.

14.2 Bootstrapping
Bootstrapping a program is a machine-dependent operation. On most machines,
this operation is supported either by a secondary processor termed the console
processor, or by a console monitor. The console-monitor program is resident in
nonvolatile storage and is invoked automatically when the CPU is reset. The con-
sole facilities are expected to support the bootstrap of standalone programs. Most
console processors and monitors also execute diagnostic operations when a
machine is reset to ensure that the hardware is functioning properly.

The boot Program
The console processor or console monitor usually does not understand the format
of the 4.4BSD filesystem. Instead, the startup procedure interprets a vendor's pro-
prietary filesystem format, or reads a program from a reserved area of the boot
disk. This procedure ultimately results in the execution of the 4.4BSD boot pro-
gram. This program is a general-purpose standalone program that the system can
use to load and execute other standalone programs. A standalone program is a
program that is capable of operating without the assistance of the 4.4BSD kernel.

Section 14.3 Kernel Initialization 493

high
memory

addresses

low
memory
addresses

boot relocated

boot initially loaded

Figure 14.1 Placement of the boot program in memory.

Standalone programs usually are linked with the standalone I/O library, a library
that supports a 4.4BSD-like I/O interface on a variety of hardware devices. The
standalone I/O library provides these facilities through a collection of standalone
device drivers and a library of routines that support reading of files from 4.4BSD
filesystems that reside on the devices. The boot program is stored in a location
accessible to the console monitor. This location may be the first few sectors of a
system disk or a PROM managed by the console processor.

Once the boot program has been loaded and started, it must load the file con-
taining the executable image of the program to be bootstrapped, and then must
start the loaded program running. To load the appropriate file, boot must know
the pathname of the file to be loaded and the hardware device on which the file
resides. The boot program usually has a default device and program name from
which it tries to load. Often, this default is stored in the console processor PROM.
The console processor communicates the bootstrapping information to the boot
program by initializing the run-time stack, and then placing the parameters on the
stack in the same way that the 4.4BSD kernel passes arguments to programs.
Alternatively, a user may type in the device and program name to be used.

Boot always loads programs at memory location 0. Since boot is initially
loaded in memory at location 0, it must copy its own image to another place in
memory to avoid loading on top of itself the image of the program that it boot-
straps (see Fig. 14.1). This relocation implies that the boot program must be cre-
ated with its starting address set to the memory location at which it will be copied;
otherwise, references to data structures in the boot program will access the wrong
memory locations after boot is copied (remember that boot operates with virtual-
address translation disabled).

14.3 Kernel Initialization
When the 4.4BSD kernel is started by the boot program, it does an initialization in
preparation for the execution of application programs. The initialization process
is roughly divided into three stages. The first stage is written entirelv in assemblv



494 Chapter 14 System Startup

language and does the work necessary for non-assembly-language code to
operate. The second stage does machine-dependent operations, including the con-
figuration and initialization of the I/O devices on the machine. The third stage
does machine-independent operations, completing its work by starting up the sys-
tem-resident processes that compose the foundation for the normal 4.4BSD run-
time environment.

Assembly-Language Startup
The first steps taken by the system during initialization are carried out by assem-
bly-language code. This work is highly machine dependent; it includes

• Setting up the run-time stack

• Identifying the type of CPU on which the system is executing

• Calculating the amount of physical memory on the machine

• Enabling the virtual-address-translation hardware

• Initializing the memory-management hardware

• Grafting the hardware context for process 0

• Invoking the initial C-based entry point of the system

Although the details of these steps vary from architecture to architecture, the
broad outline described here is applicable to any machine on which 4.4BSD runs.

When the boot program starts the 4.4BSD kernel running, it sets up only two
components of the machine state:

1. The interrupt priority is set at its highest level so that all hardware interrupts
are blocked.

2. The hardware address-translation facility is disabled so that all memory refer-
ences are to physical memory locations.

The boot program also passes to the kernel the identity of the boot device and a
set of boot flags. The 4.4BSD kernel presumes nothing else about the state of the
machine on which it is running.

The kernel is loaded into physical memory at a known location—often, at the
lowest physical address. In normal operation, the address-translation hardware is
enabled, and the kernel image is mapped into virtual memory starting at an
address near the top of the address space. Before the address translation has been
enabled, the assembly-language startup code must convert all absolute addresses
from their virtual-memory location to their physical-memory location. The kernel
is usually loaded into contiguous physical memory, so the translation is simply a
constant offset that can be saved in an index register.

Section 14.3 Kernel Initialization 495

A second task of the startup code is to identify the type of CPU on which the
system is executing. Often, older versions of the CPU support only a subset of the
complete instruction set. For these machines, the kernel must emulate the missing
hardware instructions in software. For most architectures, 4.4BSD can be config-
ured such that a single kernel load image can support all the models in an architec-
ture family. The startup code may also call machine-dependent code to initialize the
CPU or virtual-memory subsystem. Most architectures have a pmap_bootstrap()
function that is called at this time.

Machine-Dependent Initialization
After the assembly-language code has completed its work, it calls the first
machine-independent kernel routine written in C, the main() routine. One param-
eter is passed to this routine: a typeless pointer intended for use in setting up an
initial stack frame. The main() routine initializes several subsystems, beginning
with the console and virtual-memory system. It then calls the cpu_startup() rou-
tine to do machine-dependent initializations. The tasks of the cpu_startup() rou-
tine include

• Initialization of the error-message buffer

• Allocation of memory for system data structures

• Initialization of the kernel's memory allocator

• Autoconfiguration and initialization of I/O devices

A few other hard ware-specific parts of the machine are initialized after the call to
cpu_startup() returns; these operations are described later, in our discussion of the
machine-independent startup code.

Message Buffer

The message buffer is a 4-Kbyte circular buffer located at the top of physical
memory. Diagnostic messages displayed on the console with the printf( ) routine
(or with one of its variants) are kept in this buffer as an aid in tracking problems.
Before 4.3BSD, the message buffer was accessible only through the /dev/kmem
special device. Furthermore, utilities such as the dmesg program that read the
message buffer and copy the buffer's contents to an administrative log file were
unable to synchronize their activities properly with the generation of new diagnos-
tic messages. For these reasons, 4.3BSD added a special device, /dev/log. This
device provides a read-only interface to the message buffer that supports the select
system call. In addition, most system diagnostics are now generated in a format
that is interpreted by the syslogd program. These changes ensure that system
diagnostics are saved reliably in log files.

Initialization of the message buffer is straightforward. First, the system allo-
cates memory for the buffer by deducting the size of the message buffer from the



496 Chapter 14 System Startup

size of physical memory. Then, this page is mapped into the kernel address space,
and msgbufp is initialized to reference the memory just allocated.

System Data Structures
Allocation of memory for the system data structures is easy at this point in the
startup procedure. The identity of the first available page of physical memory that
follows the resident kernel, firstaddr, is known. The starting virtual address for
the kernel also is known. Thus, to allocate space for contiguous data structures,
the system simply assigns the virtual address of the next available block of physi-
cal memory to each data structure:

base = VM_MIN_KERNEL_ADDRESS | (firstaddr * NBPG)

it then increments the value of firstaddr by the size of the data structure. Memory
allocated to data structures in this way is not necessarily initialized to zero; initial-
ization routines called from main() ensure that the contents of each data structure
are set up properly.

The technique just described allocates memory for each contiguous system
data structure. Most of these data structures are sized at the time that the system is
configured, with the sizes based on the peak number of users expected. The buffer
cache and vm_page structures, however, are sized according to the amount of
physical memory available on the machine. The buffer-cache size is calculated as
10 percent of the first 2 Mbyte of physical memory plus 5 percent of the remain-
ing memory. The system ensures that there is a minimum of 16 buffers, although
this lower limit should never be a problem unless the system is configured with
very large filesystem block sizes. In addition to the buffers dedicated to the buffer
cache, the system must also allocate buffer headers for raw I/O and swapping
operations: one-half of the number of file I/O buffer headers is allocated for use in
raw I/O, swap, and paging operations. The system must calculate the number of
vm_page structures after allocating the buffer cache and static data structures,
because that value maps all the physical memory not otherwise allocated to the
system. Once the vm_page structures and system-memory allocator have been ini-
tialized (described in Section 14.5), the normal system memory-allocation mecha-
nisms must be used.

14.4 Autoconfiguration
Autoconfiguration is the procedure carried out by the system to recognize and
enable the hardware devices present in a system. Autoconfiguration works by sys-
tematically probing the possible I/O buses on the machine. Depending on the
architecture, these buses may include proprietary buses, such as the SPARC-based
SBUS, or industry-standard buses, such as SCSI, EISA, and PCI. For each I/O bus
that is found, the type of device attached to it is interpreted and, depending on this
type, the necessary actions are taken to initialize and configure the device.

Section 14.4 Autoconfiguration 497

4.4BSD includes a new implementation of autoconfiguration. Only the
SPARC version of the system uses the new scheme; other architectures continue to
use the old version. The newer version includes machine-independent routines
and data structures for use by machine-dependent layers, and provides a frame-
work for dynamic allocation of data structures for each device. The older version
is implemented entirely in machine-dependent functions, although there is sub-
stantial similarity in the functions for various architectures.

Some hardware devices, such as the interface to the console terminal, are
required for system operation. Other devices, however, may not be needed, and
their inclusion in the system may needlessly waste system resources. Devices that
might be present in different numbers, at different addresses, or in different com-
binations are difficult to configure in advance, however, and the system must sup-
port them if they are present, and must fail gracefully if they are not present. To
address these problems, 4.4BSD supports both a static configuration procedure
that is done when a bootable system image is created and a dynamic autoconfigu-
ration phase that is done when the system is bootstrapped.

The static configuration procedure is done by the /usr/sbin/config program.
A configuration file is created by the system administrator that defines the set of
hardware devices that might be present on a machine. This file identifies not only
the types of devices, but also where each device might be located on the machine.
For example, a system might be configured with two SCSI host adapters (con-
trollers) and four disk drives that are connected in any of the configurations shown
in Fig. 14.2. The configuration procedure generates several files that define the

Figure 14.2 Alternative drive configurations.

SCSI
controller

SCSI
controller

SCSI
controller

configuration 1 configuration 2 configuration 3



498 Chapter 14 System Startup

hardware topology. These files are compiled into the system for use in the
autoconfiguration phase.

The autoconfiguration phase is done during system initialization to identify
the set of configured devices that are present on a machine. In general, autocon-
figuration recurses through a tree of device interconnections, such as buses and
controllers to which other devices attach. Autoconfiguration works in one of two
ways at each level in the tree: by probing for configured devices at each of the
possible locations where the device might be attached or by checking each possi-
ble location to see what type of device (if any) is present. The second mechanism
can be used only when a fixed number of locations are possible and when devices
at those locations are self-identifying. Devices that are recognized during the
autoconfiguration phase are attached and are made available for use. Devices that
are present but not recognized remain unavailable until the system is rebooted.
The attach function for a bus or controller must initiate a probe for devices that
might be attached at that location.

Although this scheme requires that all the device drivers for hardware devices
that might potentially be present on a machine be configured into a system, it per-
mits device drivers to allocate system resources for only those devices that are pre-
sent in a running system. It allows the physical device topology to be changed
without requiring the system load image to be regenerated. It also prevents
crashes resulting from attempts to access a nonexistent device. In the remainder
of this section, we consider the autoconfiguration facilities from the perspective of
the device-driver writer. We examine the device-driver support required to iden-
tify hardware devices that are present on a machine, and the steps needed to attach
a device once its presence has been noted. The available facilities depend on the
version of autoconfiguration in use, on the hardware architecture, and on the layer
in the device hierarchy.

Device Probing
During the autoconfiguration phase, a device-driver probe routine is called for
each configured hardware device controller. The description of a controller loca-
tion depends on the I/O bus; it might include details such as I/O register location,
memory location, and interrupt vectors. The system passes to the probe routine a
description of the controller's location, and expects the routine both to verify that
the device is present and, if possible, to force the device to interrupt the host to
identify the controller's interrupt vector. If the probe routine is successful in forc-
ing an interrupt, then the system will trap the interrupt, and will use the value of
the vector to initialize the appropriate entries in the interrupt-vector table, so that
the interrupt service routines for the device driver will be invoked on later inter-
rupts. For some hardware devices, it is impossible to force an interrupt reliably.
In these instances, the system allows the probe routine to force a device to be con-
figured by returning a known interrupt vector. If no interrupt is received and none
is returned, the system assumes that the controller is not present at the supplied
location.

Section 14.4 Autoconfiguration 499

In addition to probing for device controllers, a device driver may also be
asked to probe for devices that may be attached to a controller. For example, the
system will first probe to see whether a SCSI host adapter is present. For each
adapter found, the system will then probe for each possible target that might be
attached, such as disk drives. The mechanism for this probe depends on whether
the new or old autoconfiguration mechanism is in use, as well as on what type of
controller is used. In the old mechanism, devices attached to a controller are
termed slave devices. Disk drives and tape transports are two possible types of
slave devices. Bus controllers that may have slave devices attached to them must
provide a slave routine to probe for slave devices. The slave routine does not have
to force an interrupt for each slave device; it needs only to indicate whether the
slave device is present. The new autoconfiguration mechanism provides greater
flexibility, allowing a controller to determine the appropriate manner in which to
probe for additional devices attached to the controller.

Device Attachment

Once a device is found by a probe, the autoconfiguration code must attach it.
Attaching a device is separated from probing so that the system can initialize data
structures used by the bus-controller routines. Most device drivers use the attach
routine to initialize the hardware device and any software state. For disk devices,
for example, the attach routine identifies the geometry of the disk drive and may
initialize the partition table that defines the placement of filesystems on the drive.

New Autoconfiguration Data Structures

The new version of autoconfiguration in 4.4BSD includes machine-independent
data structures and support routines. The previous autoconfiguration data struc-
tures were machine dependent, and often were bus dependent as well. This
machine dependency presented a design challenge. The new data structures allow
machine- and bus-dependent information to be stored in a general way, and allow
the autoconfiguration process to be driven by the configuration data, rather than by
compiled-in rules. The new version of the /usr/sbin/config program constructs
many of the tables from information in the kernel-configuration file and from a
machine-description file. The new config program is thus data driven as well, and
contains no machine-dependent code. Figure 14.3 shows the data structures intro-
duced with this version of autoconfiguration, which we describe in this subsection.
The data structures fall into three categories, shown in the figure separated by
dashed lines: those generated by the config program are shown in the left-hand
section, those statically initialized in each driver are shown in the center, and those
allocated dynamically by the autoconfiguration routines are shown on the right.

The major data structure used during autoconfiguration is the cfdata structure.
The config program constructs a cfdata structure for each possible device attach-
ment in the kernel-configuration file. Because the addressing information depends
on the type of bus and system, location information is stored in a variable-length
array of integers called a locator. The machine-description file controls the



500

-1
parents

Chapter 14 System Startup

cf_driver
cf_loc
cf_parent
cf_unit

• • •

cf_loc
cf_parent

• • •

l

truct cfdata []

ronfig generated

ocators
cd devs

• • •

struct cfdriver
ocators

driver, static

dv_xname = "xxO"
dv_unit = 0

struct device
inside

struct xx_softc

dv_xname = "xx2"
dv_unit - 2

• • •

struct device
inside

struct xx_softc

autoconfiguration, dynamic

Figure 14.3 New autoconfiguration data structures.

mapping from location keywords, such as slot or port, to indices in the locator
used by each type of bus. The cfdata structure contains a reference to a cfdriver
structure, which the driver initializes and exports, and which has references to the
driver entry points for autoconfiguration. The cfdata structure also contains a
pointer to a list of possible parent devices and a unit number, which can be a wild-
card value to allow cloning of the entry to match multiple units.

The new autoconfiguration scheme introduces another new data structure,
which is now the central data structure for most device drivers. The device struc-
ture contains the basic description of a specific device. This structure includes the
name, unit number, and class of a device, as well as a pointer to the configuration
data (cfdata) for the device and a pointer to the parent device. The device struc-
ture is allocated dynamically, when the device is found during autoconfiguration.
When the structure for each unit is created, its location is recorded in a dynami-
cally allocated array referenced by the cfdriver structure. The cfdriver structure
also contains the size of this array. This arrangement allows the kernel to find the
device structure for a unit by checking the array size, then indexing into the array
if the unit number is within range.

Most drivers require additional information for each unit: thus, the cfdriver
structure specifies the amount of storage to be allocated. For example, Figure 14.3
shows an xx_softc structure containing the information about each xx unit. The
device structure is placed first in this area. In fact, the device structure is the
description of a base class, and the larger driver data structure describes a derived
class that inherits from the base class. Some drivers use multiple levels of

Section 14.4 Autoconfiguration 501

inheritance—for example, a SCSI disk device that is based on a disk device,
which in turn is based on a generic device.

New Autoconfiguration Functions

The new autoconfiguration data structures make it possible to implement machine-
independent support routines for much of the autoconfiguration process. Location
of the primary bus (the device or devices at the root of the device tree) is machine
dependent. Once this device is identified, it is attached, and its attach function is
called. Like attach functions for other buses or controllers, this function must ini-
tiate a probe for devices on that bus. Generic functions are provided for the two
primary methods of autoconfiguration described in the previous subsection. If it is
possible to scan the bus, searching for devices and identifying them, the bus attach
function will call the config_found() routine with a description of each device that
it finds. The config_found() routine looks for a matching device-configuration
entry (cfdata structure), and attaches the device if an entry is found. On a bus or
controller for which it is not reasonable to search for all possible devices, another
mechanism is available. The config_search() function will search for all devices
that might be attached to this parent device, and will call the probe function for
each of them. If the probe is successful, the device is then attached. The
config_attach() routine is responsible for allocation and initialization of the device
structure, recording the pointer to the device structure for this unit via the cfdriver
structure, and then calling the driver's attach function to allow the driver to initial-
ize its portion of the device structure.

Device Naming

The autoconfiguration facilities support flexible placement of hardware on a
machine by imposing a level of indirection in the naming of devices. Applications
reference devices through block and character special files placed in the filesys-
tem. The inode associated with a special file contains the major and minor device
numbers of the associated hardware device. The major device number identifies
the type of the device, whereas the minor device number identifies a logical device
unit. For example, suppose that the file /dev/sdla was created with the command

/sbin/mknod /dev/sdla b 2 8

This file would refer to a block device with major device number 2 and minor de-
vice number of 8. Internally, the major device number would indicate a disk drive
supported by the sd device driver. The minor device number would be passed to
the device driver, where it would be interpreted according to the formula

minor = (8 x logical unit) + logical partition

or, in this instance, partition 0 on logical unit (drive) 1. The logical unit for each
device is assigned during the autoconfiguration phase and is distinct from hardware
unit numbers used to identify devices. That is, whereas a tape unit or disk drive
might have a hardware unit plug that identifies the device as physical unit x on a



502 Chapter 14 System Startup Section 14.5 Machine-Independent Initialization 503

controller, to the system that device would be identified by a possibly different
logical unit y. A logical unit may refer to different hardware devices each time that
a system is initialized, or, more interesting, a specific hardware device may map to
the same logical unit no matter where it is placed on the machine. This logical-to-
physical mapping of device names within the system permits, for example, a disk
drive to be shifted from one disk controller to another without rebuilding of the
operating system. Flexibility in device naming is important in simplifying system
maintenance in environments where redundant hardware is maintained for reliabil-
ity. It also allows logical numbering to span controllers: There may be more than
one hardware unit 0, whereas there can be only one logical unit 0.

Although some versions of UNIX can load device drivers after the system is
completely booted, 4.4BSD cannot load device drivers because

• The 4.4BSD kernel does not have the ability to load modules dynamically.

• The 4.4BSD device-driver data structures are not all dynamically extensible

• A new device might interrupt at the same location as an existing device, leading
to confusion

These problems are all well understood and are easy to fix. However, allowing
code to be loaded dynamically into the kernel raises many security problems.
Code running outside the kernel is limited in the damage that it can do because it
does not run in privileged mode, so cannot directly access the hardware. The ker-
nel runs with full privilege and access to the hardware. Thus, if it loads a module
that contains a virus, it can inflict wide-ranging damage within the system. Ker-
nels can be loaded across the network from a central server; if the kernel allowed
dynamic loading of modules, they too could come across the network, so there are
numerous added points for malfeasance. An important goal of adding dynamic-
loading functionality to 4.4BSD is to develop a scheme to verify the source of and
lack of corruption in any code before that code is permitted to be loaded and used.

14.5 Machine-Independent Initialization
With the static system data structures allocated and the I/O devices configured and
initialized, the system is ready to complete the initialization procedure and to start
up the first few processes. The first action of the main() routine on return from
cpu_startup() is to set up the context for process 0; the process that will eventu-
ally implement the swapping policy of the virtual-memory system. A process
entry is declared statically for process 0, and the process is marked runnable and is
installed as the currently running process (see Chapter 4). The user structure, run-
time stack, and process control block for this process were initialized in the
assembly-language startup code, so only minor work is required to complete the
initialization. On architectures that support read-only kernel memory, the final
page of the run-time stack is marked read-only to act as a red zone this unwritable

page ensures that the process will not expand its stack beyond the fixed space
allocated to it without causing a system trap. The substructures associated with
the process entry are also declared statically and are linked into the process 0
entry. The system default parameters in the process entry that are inherited across
a fork system call are established. The latter include the resource limits, the file-
creation mask, and the group-identifier array.

When process 0 has been crafted, various routines are called to initialize each
system data structure:

• The vm_mem_init() routine sets up the parameters used by the paging system.
These parameters are dependent on the amount of available physical memory.
The resource limits on a process's stack and data segments, as well as on the res-
ident-set size, are installed in the limits substructure of process 0. These limits
will then be inherited automatically by all other processes because the latter are
descendents of process 0.

• The vfsinit( ) routine allocates the global filesystem structures, such as the vnode-
and name-cache-management structures. Next, it builds the operation vectors
for each of the filesystem types that is configured in the kernel. Finally, it calls
the filesystem-specific initialization routine for each of configured filesystems.
Typically, these initialization routines allocate hash tables and other data struc-
tures that the filesystem will need to operate.

• The real-time clock is started through a call to initclocks(). This routine primes
the necessary hardware that supplies regular interrupts to the system. It also
starts any other clocks that the system uses, such as a profiling or statistics-gath-
ering clock. The clock rate, if programmable, is set according to the hz variable
that is defined at the time the system is configured. By default, 4.4BSD runs with
a 100-hertz real-time clock. This value can be altered, but selecting a frequency
of less than 50 hertz degrades the system's response time to I/O devices that are
polled. For some hardware terminal multiplexers, lowering the clock frequency
can permit high data-flow rates to swamp input buffers. A poorly chosen clock
frequency can also cause roundoff errors in certain calculations. For example,
with a 60-hertz clock rate, integer calculations involving the clock frequency will
skew. A final consideration in choosing a clock frequency is that the frequency
defines the minimal observable time interval in the system. This interval is
important for statistical calculations, such as for program profiling and account-
ing, where entire clock ticks are charged to a process- or program-counter value
at the time that a real-time clock interrupt is serviced. In general, the clock fre-
quency should be selected to be as high as possible without too much system
overhead being incurred.

Following the initialization of the clock, the network memory-management system
is initialized with a call to mbinit() (see Section 11.3). The character-list data
structures used by the terminal I/O facilities are set up through a call to
clist_init(), and later calls are then made to initialize



504 Chapter 14 System Startup

• The communication domains and network-communication protocols

• The process-management-data structures

• The swap-space management data structures

Before the system can reach single-user operation, it must still mount the root
filesystem, and create process 1 (the process that executes /sbin/init) and process
2 (the process that selects pages of memory to be replaced, copying to secondary
storage if needed, in support of the virtual-memory system). The root filesystem
may be supplied by any filesystem type that provides a mountroot function. The
default is to use the 4.4BSD filesystem, but the kernel can be configured to give the
user a list of choices. For example, a diskless machine can choose to use an NFS
filesystem as its root. If a local filesystem is selected, its identity is defined by the
value of the rootdev variable. This value is initially defined at configuration time,
although users may change it at boot time by bootstrapping the system from a de-
vice other than the configured one (see the discussion of autoconfiguration in Sec-
tion 14.4).

The root inode of the mounted root filesystem is needed to initialize the cur-
rent working directory and root directory for process 0. In addition, the kernel
may use the most recent modification date in the superblock of the root filesystem
to initialize the system's time of day. The timestamp from the superblock is com-
pared to any current value for the time of day available in hardware, and the cur-
rent time of day is constrained to be within 6 months of the time in the filesystem
(unless the filesystem time is completely unbelievable). This consistency check
ensures that the system will be bootstrapped with a reasonably accurate time of
day. User-level facilities—such as timed or ntpd—support time synchronization
and recalibration in a network environment.

Finally, the system is ready to execute user-mode programs. Process 1 is cre-
ated with a call to fork(), then the kernel calls the start_init() function to start the
init process. Start_init() creates the argument vector for init, then internally calls
the standard system exec() function. If the exec() fails, it tries several backup
locations for init until it finds one that works, or until the list is exhausted. Find-
ing an operational init program is critical to operation: If init does not run cor-
rectly, if it is not there, or if the parts of the filesystem necessary to reach it are
damaged, the system cannot be booted from that filesystem. This error is more
serious than is an incorrect /vmunix, because the bootstrap allows naming of a
different object file for the kernel, but there is no direct way to specify a different
init program without recompiling the kernel with additions to the list of possible
names and locations. The best protection against losing a critical binary such as
init is to keep a copy of the root filesystem in a spare disk partition.

The second process to be started is the pagedaemon, with process identifier 2.
This process executes entirely in kernel mode by invoking the vm_pageout() rou-
tine—a procedure that never returns. Like process 0, the pagedaemon marks its
process structure to ensure that that structure will not be removed from memory.
The pagedaemon also expands its data segment to provide itself room to map the
pages of memory that it will be writing to secondary storage (see Section 5.12).

Section 14.6 User-Level Initialization 505

The final action of main() is to call the scheduler() routine within process 0.
Like the pagedaemon, this process executes entirely in kernel mode, and the call
to scheduler() never returns. The scheduler() routine implements the scheduling
policy of the system; it is described in Section 4.4.

14.6 User-Level Initialization

With the start of process 1, most of the system is operating and functional. There
are several additional steps taken between this point and the time a user sees a
prompt to sign on to the system. All these actions are done by user-level programs
that use the standard 4.4BSD system-call interface that has been described in previ-
ous chapters. We shall briefly examine the steps that take place in a typical system.

/sbin/init

The /sbin/init program is invoked as the final step in the bootstrapping procedure.
The parameters specified at the time 4.4BSD was boostrapped are passed to init in
a machine-dependent fashion. Init uses the values of these flags to determine
whether it should bring up the system to single-user or to multiuser operation. In
single-user operation, init forks a process that invokes the standard shell, /bin/sh.
The standard input, output, and error descriptors of the process are directed to the
system's console terminal, /dev/console. This shell then operates normally, but
with superuser privileges, until it terminates.

In multiuser operation, init first spawns a shell to interpret the commands in
the file /etc/re. These commands do filesystem-consistency checks, start up sys-
tem processes, and initialize database files, such as the name-list cache used by ps.
If the /etc/re script completes successfully, init then forks a copy of itself for each
terminal device that is marked for use in the file /etc/ttys. These copies of init
invoke other system programs, such as /usr/libexec/getty, to manage the standard
sign on procedure. Process 1 always acts as the master coordinating process for
system operation. It is responsible for spawning new processes as terminal ses-
sions are terminated, and for managing the shutdown of a running system.

/etc/rc

The /etc/rc command script first checks the integrity of the filesystems. This check
is necessary to ensure that any damage that might have occurred from a previous
system failure is repaired. The filesystem support within the kernel is concerned
solely with reading and writing existing filesystems. Any inconsistencies in a
filesystem are repaired by user-level programs.

The program /sbin/fsck is the major tool used in checking filesystem consis-
tency and in repairing damaged filesystems. Normally, fsck is invoked from the
/etc/re script to examine and repair each filesystem before the latter is mounted.
When the system is initially booted, the root filesystem is mounted read-only. If
the root filesystem requires repairs, 4.4BSD does a variant of the mount system



506 Chapter 14 System Startup

call that requests the kernel to reload all its root-filesystem data structures.
Reloading ensures consistency between the data in the kernel memory and any
data in the filesystem that were modified by fsck. Having the root filesystem
mounted read-only ensures that the kernel will not have any modified data in
memory that cannot be reloaded.

Following the filesystem checks, the filesystems are mounted, the root filesys-
tem is updated to be writable, and any devices that are to be used for swapping
and paging are enabled. Disk quotas are then checked and enabled, and the sys-
tem starts the background processes that implement various system services.
These processes include /usr/sbin/update, the program that flushes the disk writes
from the buffer cache every 30 seconds; /usr/sbin/cron, the program that executes
commands at periodic intervals; /usr/sbin/accton, the program that enables sys-
tem accounting; and /usr/sbin/syslogd, the system error-logging process. Some
of these processes are started from the command script /etc/rc.local. The com-
mands in /etc/rc.local are tailored according to the needs of each host, whereas the
commands in /etc/rc are common to all hosts. For example, processes that pro-
vide nonstandard services are typically started up from the /etc/rc.local command
file [Nemeth et al, 1995].

/usr/libexec/getty
The /usr/libexec/getty program is spawned by init for each hardware terminal line
on a system. This program is responsible for opening and initializing the terminal
line. As a precaution against another process opening the line and snooping on
the user's input, getty uses the revoke system call to revoke access to any open
descriptors on the line (see Section 6.6). It then creates a new session for the line
and requests that the terminal be made the controlling terminal for the session.
The getty program sets the initial parameters for a terminal line and establishes
the type of terminal attached to the line. For lines attached to a modem, getty can
be directed to accept connections at a variety of baud rates. Getty selects this
baud rate by changing the speed of the terminal line in response to a break charac-
ter or a framing error, typically generated as a result of the user hitting a break
key. A user can hit successive break keys to cycle through several line speeds
until the proper one is found. Getty's actions are driven by a terminal-configura-
tion database that is located in the file /etc/gettytab.

Getty finally reads a login name and invokes the /usr/bin/login program to
complete a login sequence.

/usr/bin/login
The login program is responsible for signing a user onto the system; it is usually
invoked by /usr/libexec/getty with the name of the user who wishes to log into the
system. Login prompts the user for a password (after turning off terminal echoing
if possible). If the password supplied by the user encrypts to the same value as
that stored in the master password file /etc/master.passwd, login writes a record
of the sign on in various accounting files, initializes the user and group identifiers

Section 14.7 System-Startup Topics 507

to those specified in the password and /etc/group files, and changes to the user's
login directory. The user's login name is stored in the session structure using the
setlogin system call, so that it can be obtained reliably via the getlogin system call
by programs that want to know the login name associated with a given process.
Finally, login uses exec to overlay itself with the user's shell.

The login program is also invoked when a user enters the system through a
network connection. Getty and init are bypassed for such connections; their func-
tionality is subsumed by the daemon spawned when the network connection is
established.

14.7 System-Startup Topics

In this section, we consider topics that are related to the system-startup procedure.

Kernel Configuration

The software that makes up a 4.4BSD kernel is defined by a configuration file that
is interpreted by the /usr/sbin/config program. Configuration files specify the
hardware and software components that should be supported by a kernel. The
configuration file is used by config to generate several output files, some of which
are compiled, and are linked into the kernel's load image:

• A file that describes the hardware-device topology and the devices that might be
present on the machine

• A file that includes assembly-language routines that connect the hardware inter-
rupt-vector entry points to the device-driver interrupt handlers specified in the
configuration file

• A file that defines the devices to use for the root filesystem and for swapping and
paging

• Several small header files that control conditional compilations of source code

• A file for the make program that compiles and links the kernel load image

A complete description of the configuration process and of config is given in [Lef-
fler&Karels, 1994].

System Shutdown and Autoreboot

4.4BSD provides several utility programs to halt or reboot a system, or to bring a
system from multiuser to single-user operation. Safe halting and rebooting of a
system require support from the kernel. This support is provided by a reboot sys-
tem call.

The reboot system call is a privileged call. A single parameter specifies how
the system should be shut down and rebooted. This parameter is a superset of the



508 Chapter 14 System Startup

flags passed by the boot program to the system when the latter is initially
bootstrapped. A system can be brought to a halt (typically by its being forced to
execute an infinite loop), or it can be rebooted to single-user or multiuser opera-
tion. There are additional controls that can be used to force a crash dump before
rebooting (see the next subsection for information about crash dumps) and to dis-
able the writing of data that are in the buffer cache to disk (in case the information
in the buffer cache is wrong).

On most hardware, rebooting requires support from the console processor or
monitor. Typically, a reboot operation is started by a command being passed to the
console processor. This command causes the system to be rebooted as though
someone had typed the appropriate commands on the console terminal. Automatic
rebooting is also commonly done by the console processor when a catastrophic
failure is recognized. The system will reboot itself automatically if it recognizes
an unrecoverable failure during normal operation. Failures of this sort, termed
panics, are all handled by the panic() subroutine. 4.1BSD was among the first
UNIX systems to be able to recover automatically from catastrophic failures by
rebooting, repairing any filesystem damage, and then restarting normal operation.
Facilities to checkpoint the state of active processes and automatically to resume
the processes' execution after a system reboot have been added by certain vendors,
such as by Cray Research.

System Debugging
4.4BSD provides several facilities for debugging system failures. The most com-
monly used facility is the crash dump; a copy of memory that is saved on second-
ary storage by the kernel when a catastrophic failure occurs. Crash dumps are cre-
ated by the doadump() routine. They occur if a reboot system call is made in
which the RB_DUMP flag is specified, or if the system encounters an unrecover-
able—and unexpected—error.

The doadump() routine disables virtual-address translation, raises the proces-
sor priority level to the highest value to block out all device interrupts, and then
invokes the dumpsys( ) routine to write the contents of physical memory to
secondary storage. The precise location of a crash dump is configurable; most
systems place the information at the end of the primary swap partition. The de-
vice driver's dump entry point does this operation.

A crash dump is retrieved from its location on disk after the system is
rebooted and the filesystems have been checked. The /sbin/savecore program
exists solely for this purpose. It creates a file into which the crash-dump image is
copied. Savecore also makes a copy of the initial kernel load image, /vmunix, for
use in debugging. The system administrator can examine crash dumps with the
standard 4.4BSD debugging program, gdb. The kernel is also set up so that a gdb
debugger running on one machine can attach itself across a serial line to a kernel
running on another machine. Once attached, it can set breakpoints, examine and
modify kernel data structures, and invoke kernel routines on the machine being
debugged.

Section 14.7 System-Startup Topics 509

Passage of Information To and From the Kernel
In 4.3BSD and earlier systems, utilities that needed to get information from the
kernel would open the special device /dev/kmem, which gave access to the ker-
nel's memory. Using the name list from the kernel binary, the utility would seek
to the address of the symbol being sought and would read the value at that loca-
tion. Utilities with superuser privilege could also use this technique to modify
kernel variables. .Although this approach worked, it had four problems:

1. Applications did not have a way to find the binary for the currently running
kernel reliably. Using an incorrect binary would result in looking at the wrong
location in /dev/kmem, resulting in turn in wildly incorrect output. For pro-
grams that modified the kernel, using the wrong binary would usually result in
crashing the system by trashing some unrelated data structure.

2. Reading and interpreting the kernel name list is time consuming. Thus, appli-
cations that had to read kernel data structures ran slowly.

3. Applications given access to the kernel memory could read the entire kernel
memory. Malicious programs could snoop the terminal or network input
queues looking for users who were typing sensitive information such as pass-
words.

4. As more of the kernel data structures became dynamically allocated, it became
difficult to extract the desired information reliably. For example, in 4.3BSD,
the process structures were all contained in a single statically allocated table
that could be read in a single operation. In 4.4BSD, process structures are allo-
cated dynamically and are referenced through a linked list. Thus, they can be
read out only one process entry at a time. Because a process entry is subdi-
vided into many separate pieces, each of which resides in a different part of
the kernel memory, every process entry takes several seeks and reads to extract
through /dev/kmem.

To resolve these problems, 4.4BSD introduced the sysctl system call. This
extensible kernel interface allows controlled access to kernel data structures. The
problems enumerated previously are resolved as follows:

1. Applications do not need to know which kernel binary they are running. The
running kernel responds to their request and knows where its data structures
are stored. Thus, the correct data structure is always returned or modified.

2. No time is spent reading or interpreting name lists. Accessing kernel data
structures takes only a few system calls.

3. Sensitive data structures cannot be accessed. The kernel controls the set of
data structures that it will return. Nothing else in the kernel is accessible. The
kernel can impose its own set of access restrictions on a data-struc-
ture-by-data-structure basis.



510 Chapter 14 System Startup

4. The kernel can use its standard mechanisms for ensuring consistent access to
distributed data structures. When requesting process entries, the kernel can
collect the relevant information without blocking, to ensure that no intervening
operations can be done that would modify the process state.

Additional benefits of the interface include these:

• Values to be changed can be validated before the data structure is updated. If
modification of the data structure requires exclusive access, an appropriate lock
can be obtained before the update is done. Thus, an element can be added to a
linked list without danger of another process traversing the list while the update
is in progress.

• Information can be computed only on demand. Infrequently requested informa-
tion can be computed only when it is requested, rather than being computed con-
tinually. For example, many of the virtual-memory statistics are computed only
when a system-monitoring program requests them.

• The interface allows the superuser to change kernel parameters even when the
system is running in secure mode (secure mode is described in Section 7.6). To
prevent malfeasance, the kernel does not allow /dev/kmem to be opened for
writing while the system is running in secure mode. Even when the system run-
ning in secure mode, the sysctl interface will still allow a superuser to modify
kernel data structures that do not affect security.

The sysctl system call describes the kernel name space using a management
information base (MIB). An MIB is a hierarchical name space much like the filesys-
tem name space, except that each component is described with an integer value,
rather than with a string name. A hierarchical name space has several benefits:

• New subtrees can be added without existing applications being affected.

• If the kernel omits support for a subsystem, the sysctl information for that part of
the system can be omitted.

• Each kernel subsystem can define its own naming conventions. Thus, the net-
work can be divided into protocol families. Each protocol family can be divided
into protocol specific information, and so on.

• The name space can be divided into those parts that are machine independent
and are available on every architecture, and those parts that are machine depen-
dent and are defined on an architecture-by-architecture basis.

The use of the MIB interface should allow sysctl to be integrated easily into the
emerging network-management protocols.

References 511

Exercises

14.1 What is the purpose of the boot program?

14.2 What is the job of the machine-language startup? Why is this program
written in machine language?

14.3 What is the purpose of the kernel's message buffer?

14.4 What are the first three processes started when the system is booted?

14.5 Assume that /boot is read in from the console media. Name the three other
files that must be present for the system to boot to single-user mode.

14.6 The reboot system call causes the system to halt or reboot. Give two rea-
sons why this system call is useful.

*14.7 Suppose that a machine does not have a battery-backup time-of-day clock.
Propose a method for determining that the time-of-day clock is incorrect.
Describe a way to initialize the clock's time of day. What are the limita-
tions of your method?

References
Leffler & Karels, 1994.

S. J. Leffler & M. J. Karels, "Building 4.4BSD Kernels with Config," in
4.4BSD System Manager's Manual, pp. 2:1-24, O'Reilly & Associates,
Inc., Sebastopol, CA, 1994.

Nemethetal, 1995.
E. Nemeth, G. Snyder, S. Seebass, & T. Hein, UNIX System Administration
Handbook Prentice-Hall, Englewood Cliffs, NJ, 1995.



Glossary

absolute pathname See pathname.
access rights In an operating system, the rights of processes to access system-

maintained objects. For example, the ability to write data into a file. Rights
are recognized and enforced by the system, and typically are associated with
capabilities. The passing of access rights in messages is supported by the
4.4BSD interprocess-communication facilities. For example, the local com-
munication domain supports the transmission of file descriptors and their
associated access rights.

address family A collection of related address formats, as found in a communi-
cation domain.

address format A set of rules used in creating network addresses of a particular
format. For example, in the Internet communication domain, a version 4 IP
host address is a 32-bit value that is encoded with one of four rules, according
to the type of network on which the host resides.

Address Resolution Protocol (ARP) A communication protocol used to map
one network address to another dynamically. For example, ARP is used in
4.4BSD to map Internet addresses into Ethernet addresses dynamically.

address translation A mechanism, typically implemented in hardware, that
translates memory addresses supplied by a program into physical memory
addresses. This facility is important in supporting multiprogramming because
it allows an operating system to load programs into different areas of memory,
and yet to have each program execute as though it were loaded at a single,
fixed memory location.

advisory lock A lock that is enforced only when a process explicitly requests its
enforcement. An advisory lock is contrasted with a mandatory lock, which is
always enforced. See also mandatory lock.

513



514 Glossary

AGE buffer list A list in the filesystem buffer cache. This list holds buffers
whose contents have not yet proved useful—for example, read-ahead blocks.
See also buffer cache; least recently used.

ancillary data Specially interpreted data sent on a network connection. Ancil-
lary data may include protocol-specific data, such as addressing or options,
and also specially interpreted data, called access rights.

anonymous object An anonymous object represents a region of transient back-
ing storage. Pages of an anonymous object are zero-filled on first reference,
and modified pages will be stored in the swap area if memory becomes tight.
The object is destroyed when no references remain.

ARP See Address Resolution Protocol.
association In the interprocess-communication facilities, a logical binding

between two communication endpoints that must be established before com-
munication can take place. Associations may be long lived, such as in virtual-
circuit-based communication, or short lived, such as in a datagram-based
communication paradigm.

AST See asynchronous system trap.
asynchronous system trap (AST) A software-initiated interrupt to a service rou-

tine. ASTs enable a process to be notified of the occurrence of a specific event
asynchronously with respect to its execution. In 4.4BSD, ASTs are used to
initiate process rescheduling.

autoconfiguration phase A phase of operation that the system goes through
when bootstrapping itself into operation. In the autoconfiguration phase, the
system probes for hardware devices that might be present in the machine and
attaches each device that it locates. See also attach routine; probe routine;
slave routine.

background process In job-control-oriented process-management systems, a
process whose process group is different from that of its controlling terminal;
thus, this process is currently blocked from most terminal access. Otherwise,
a background process is one for which the command interpreter is not wait-
ing; that is, the process was set running with the "&" operator. The opposite
of a background process is a foreground process.

backing storage Storage that is used to hold objects that are removed from main
memory during paging and swapping operations. See also secondary storage.

block In the filesystem, a unit of allocation. The filesystem allocates space in
block-size units, or in fragments of block-size units.

block accounting The process of maintaining a count of the number of disk
blocks available for writing in the Log-Structured Filesystem or for the storage
of new data in either the Fast Filesystem or the Log-Structured Filesystem.

block device A random-access mass-storage device that supports a block-ori-
ented interface—for example, a disk drive. See also character device.

Glossary 515

block-device interface The conventions established for accessing block devices
within the kernel. These conventions include the set of procedures that can be
called to do I/O operations, as well as the parameters that must be passed in
each call. See also character device interface.

block-device table A table within the kernel in which the device-driver routines
that support the block-device interface for each device are recorded. The
ordering of entries in the block-device table is important, because it defines
the major-device number for block devices. See also character-device table.

block I/O I/O to a block device.
block size The natural unit of space allocated to a file (filesystem block size), or

the smallest unit of I/O that a block device can do (for disk devices, usually
the sector size). In 4.4BSD, the filesystem block size is a parameter of the
filesystem that is fixed at the time that the filesystem is created.

bootstrapping The task of bringing a system up into an operational state. When
a machine is first powered on, it is typically not running any program. Boot-
strapping initializes the machine, loads a program from secondary storage
into main memory, and sets that program running.

bottom half With regard to system operation, the collection of routines in the
kernel that is invoked as a result of interrupts. These routines cannot depend
on any per-process state, and, as a result, cannot block by calling the sleep ()
routine. See also top half.

breakpoint fault A hardware trap that is generated when a process executes a
breakpoint instruction.

broadcast A transmission to all parties. In a network, a broadcast message is
transmitted to all stations attached to a common communication medium.

bss segment The portion of a program that is to be initialized to zero at the time
the program is loaded into memory. The name bss is an abbreviation for
"block started by symbol." See also data segment; stack segment; text seg-
ment.

buffer cache A cache of recently used disk blocks. In 4.4BSD, approximately 10
percent of the main memory on the machine is used for the buffer cache.
Most cache entries are maintained on a least-recently used list; some are kept
on a separate AGE buffer list. See also AGE buffer list; least recently used.

buffered As in "buffered I/O"; a technique whereby data are held, or buffered,
to minimize the number of I/O operations that are done. For example, the
standard I/O library buffers output to files by accumulating data to be written
until there is a full filesystem block to write, or until the application requests
that the data be flushed to disk.

bus A standardized electrical and mechanical interconnection for components of
a computer.

byte A unit of measure applied to data. A byte is almost always 8 bits. See also
octet.



516 Glossary

callback A scheme where a server keeps track of all the objects that each of its
clients has cached. When a cached object is held by two or more clients and
one of them modifies it, the server sends an eviction notice to all the other
clients holding that object so that they can purge it from their cache. See also
eviction notice; lease.

canonical mode A terminal mode. Characters input from a terminal or a
pseudo-terminal that is running in canonical mode are processed to provide
standard line-oriented editing functions, and input is presented to a process on
a line-by-line basis. When the terminal is processing in noncanonical mode,
input is passed through to the reading process immediately and without inter-
pretation. Canonical mode is also known as cooked mode, and noncanonical
mode is also known as raw mode. Cbreak mode is similar to raw mode,
although some input processing is done.

capability Data presented by a process to gain access to an object. See also
access rights.

catenet A network in which hosts are connected to networks with varying char-
acteristics, and the networks are interconnected by gateways. The Internet is
an example of a catenet.

cathode ray tube (CRT) A screen-display device commonly used in computer
terminals. A terminal that includes a CRT is often called a CRT.

caught signal A signal the delivery of which to a process results in a signal-han-
dler procedure being invoked. A signal handler is installed by a process with
the sigaction system call.

C-block The buffer that holds the actual data in a C-list data structure.
cbreak mode A mode of operation for a terminal device whereby processes

reading from the terminal receive input immediately as it is typed. This mode
differs from raw mode in that certain input processing, such as interpreting
the interrupt character, is still performed by the system. See also canonical
mode.

central processing unit (CPU) The primary computational unit in a computer.
The CPU is the processing unit that executes applications. Additional pro-
cessing units may be present in a computer—for example, for handling I/O.

character A datum that represents a single printable or control symbol. Charac-
ters are usually 8 or 16 bits long. See also byte; octet.

character device A device that provides either a character-stream oriented I/O
interface or, alternatively, an unstructured (raw) interface. For example, a ter-
minal multiplexer is a character device that exhibits a character-oriented I/O
interface, whereas all magnetic-tape devices support a character-device inter-
face that provides a raw interface to the hardware. Devices that are not char-
acter devices are usually block devices. See also block device.

character-device interface The conventions established for accessing character-
oriented devices within the kernel. These conventions include the set of pro-
cedures that can be called to do I/O operations, as well as the parameters that
must be passed in each call. See also block-device interface.

Glossary 517

character-device table A table within the kernel in which the device-driver rou-
tines that support the character-device interface for each device are recorded.
The ordering of entries in the character-device table is important because it
defines the major-device number for character devices. See also block-device
table.

checkpoint The task of writing all modified information stored in volatile mem-
ory to stable storage. A filesystem does a checkpoint by writing all modified
information in main memory to disk so that the filesystem data structures are
consistent.

checksum The value of a mathematical function computed for a block of data;
used to detect corruption of the data block.

child process A process that is a direct descendent of another process as a result
of being created with a fork system call.

cleaning The process of garbage collection used by the Log-Structured Filesys-
tem to reclaim space. Logical file blocks that were written to disk but have
been deleted or superseded are periodically reclaimed and used for future
filesystem writes.

client process In the client-server model of communication, a process that con-
tacts a server process to request services. A client process is usually unrelated
to a server process; the client process's only association with the server pro-
cess is through a communication channel. See also server process.

C-list A linked-list data structure, used by the system in supporting serial line I/O.
cloning route A routing entry that is not used directly, but that causes a new

instance of a route to be created. For example, the route to a local Ethernet is
set up as a cloning route so that individual host routes will be created for each
local host when referenced.

cluster The logical grouping of contiguous physical pages of memory. In
4.4BSD, this grouping is used by the virtual-memory system to simulate
memory pages with sizes larger than the physical page size supported by the
hardware.

cold start The initial phase of a bootstrap procedure. The term is derived from
the fact that the software assumes nothing about the state of the machine—as
though the machine had just been turned on and were cold.

communication domain An abstraction used by the interprocess-communication
facilities to organize the properties of a communication network or similar
facility. A communication domain includes a set of protocols, termed the pro-
tocol family; rules for manipulating and interpreting names; the address fam-
ily; and, possibly, other intrinsic properties, such as the ability to transmit
access rights. The facilities provided by the system for interprocess communi-
cation are defined such that they are independent of the communication
domains supported by the system. This design makes it possible for applica-
tions to be written in a communication-domain-independent manner.

communication protocol A set of conventions and rules used by two communi-
cating processes.



518 Glossary

configuration file A file that contains parameters for the system-configuration
program /usr/sbin/config. This file describes the hardware devices and topol-
ogy that the system should be able to support, as well as miscellaneous
parameters, such as the maximum number of users that are expected to use
the system simultaneously.

configuration procedure The procedure followed by a system administrator in
configuring a kernel for a machine, or for a collection of machines. The con-
figuration procedure requires a configuration file, which is then supplied to
the /usr/sbin/config program to create the necessary data files for building a
kernel.

connect request A request passed to the user-request routine of a communica-
tion-protocol module as a result of a process making a connect system call on
a socket. The request causes the system to attempt to establish an association
between a local and a remote socket.

console monitor The terminal attached to a console-terminal interface.
console processor An auxiliary processor to the main CPU that allows an opera-

tor to start and stop the system, to monitor system operation, and to run hard-
ware diagnostics.

context switching The action of interrupting the currently running process and
of switching to another process. Context switching occurs as one process
after another is scheduled for execution. An interrupted process's context is
saved in that process's process control block, and another process's context is
loaded.

continue signal Signal 19 (SIGCONT). A signal that, when delivered to a
stopped or sleeping process, causes that process to resume execution.

controlling process The session leader that established the connection to the
controlling terminal. See also session leader.

controlling terminal The terminal device associated with a process's session
from which keyboard-related signals may be generated. The controlling ter-
minal for a process is normally inherited from the process's parent.

control request A request passed to the user-request routine of a communica-
tion-protocol module as a result of a process making an ioctl or setsockopt
system call on a socket.

cooked mode See canonical mode.
copy-on-write A technique whereby multiple references to a common object are

maintained until the object is modified (written). Before the object is written,
a copy is made; the modification is made to the copy, rather than to the origi-
nal. In virtual-memory management, copy-on-write is a common scheme that
the kernel uses to manage pages shared by multiple processes. All the page-
table entries mapping a shared page are set such that the first write reference
to the page causes a page fault. When the page fault is serviced, the faulted
page is replaced with a private copy, which is writable.

Glossary 519

core file A file (named core) that is created by the system when certain signals
are delivered to a process. The file contains a record of the state of the pro-
cess at the time the signal occurred. This record includes the contents of the
process's virtual address space and, on most systems, the user structure.

CPU See central processing unit.
crash Among computer scientists, an unexpected system failure.
crash dump A record of the state of a machine at the time of a crash. This

record is usually written to a place on secondary storage that is thought to be
safe, so that it can be saved until the information can be recovered.

CRT See cathode ray tube.
current working directory The directory from which relative pathnames are

interpreted for a process. The current working directory for a process is set
with the chdir or fchdir system call.

cylinder The tracks of a disk that are accessible from one position of the head
assembly.

cylinder group In the Fast Filesystem, a collection of cylinders on a disk drive
that is grouped together for the purpose of localizing information. That is, the
filesystem allocates inodes and data blocks on a per-cylinder-group basis.

daemon A long-lived process that provides a system-related service. There are
daemon processes that execute in kernel mode (e.g., the pagedaemon), and
daemon processes that execute in user mode (e.g., the routing daemon). The
old English term, daemon, means "a deified being," as distinguished from the
term, demon, which means an "evil spirit."

DARPA Defense Advanced Research Projects Agency. An agency of the U.S.
Department of Defense that is responsible for managing defense-sponsored
research in the United States.

datagram socket A type of socket that models potentially unreliable connection-
less packet communication.

data segment The segment of a process's address space that contains the initial-
ized and uninitialized data portions of a program. See also bss segment; stack
segment; text segment.

decapsulation In network communication, the removal of the outermost header
information on a message. The inverse of encapsulation.

demand paging A memory-management technique in which memory is divided
into pages and the pages are provided to processes as needed—that is, on
demand. See also pure demand paging.

demon See daemon.
descriptor An integer assigned by the system when a file is referenced by the

open system call, or when a socket is created with the socket, pipe, or
socketpair system calls. The integer uniquely identifies an access path to the



520 Glossary Glossary 521

file or socket from a given process, or from any of that process's children.
Descriptors can also be duplicated with the dup and fcntl system calls.

descriptor table A per-process table that holds references to objects on which
I/O may be done. I/O descriptors are indices into this table.

device In UNIX, a peripheral connected to the CPU.
device driver A software module that is part of the kernel and that supports

access to a peripheral device.
device flags Data specified in a system configuration file and passed to a device

driver. The use of these flags varies across device drivers. Device drivers for
terminal devices use the flags to indicate the terminal lines on which the
driver should ignore modem-control signals on input.

device number A number that uniquely identifies a device within the block- or
character-device classes. A device number comprises two parts: a major-de-
vice number and a minor-device number.

device special file A file through which processes can access hardware devices
on a machine. For example, a tape drive is accessed through such a file.

directed broadcast A message that is to be broadcast on a network to which the
sender is not connected directly.

direct memory access (DMA) A facility whereby a peripheral device can access
main memory without the assistance of the CPU. DMA is typically used to
transfer contiguous blocks of data between main memory and a peripheral
device.

directory In UNIX, a special type of file that contains entries that are references
to other files. By convention, a directory contains at least two entries: dot (.)
and dot-dot (..). Dot refers to the directory itself; dot-dot refers to the parent
directory.

directory entry An entry that is represented by a variable-length record structure
in the directory file. Each structure holds an ASCII string that represents the
filename, the number of bytes of space provided for the string, the number of
bytes of space provided for the entry, the type of the file referenced by the
entry, and the number of the inode associated with the filename. By conven-
tion, a directory entry with a zero inode number is treated as unallocated, and
the space held by the entry is available for use.

dirty In computer systems, modified. A system usually tracks whether or not an
object has been modified—is dirty—because it needs to save the object's con-
tents before reusing the space held by the object. For example, in the filesys-
tem, a buffer in the buffer cache is dirty if its contents have been modified.
Dirty buffers must be written back to the disk before they are reused.

disk partition A contiguous region of a disk drive that is used as a swap area or
to hold a filesystem.

distributed program A program that is partitioned among multiple processes,
possibly spread across multiple machines.

DMA See direct memory access.
double indirect block See indirect block.

effective GID See effective group identifier.
effective group identifier (effective GID) The first entry in the groups array.

The effective GID, along with the other GIDs in the groups array, is used by
the filesystem to check group access permission. The effective GID is set
when a set-group-identifier program is executed. See also group identifier;
real group identifier; saved group identifier.

effective UID See effective user identifier.
effective user identifier (effective UID) The UID that the system uses to check

many user permissions. For example, the effective UID is used by the filesys-
tem to check owner access permission on files. The effective UID is set when
a set-user-identifier program is executed. See also user identifier; real user
identifier; saved user identifier.

elevator sorting algorithm An algorithm used by the device drivers for I/O
requests for moving head disks. The algorithm sorts requests into a cyclic
ascending order based on the cylinder number of the request. The name is
derived from the fact that the algorithm orders disk requests in a manner simi-
lar to the way ride requests for an elevator would be handled most efficiently.

emulate To simulate. Many ports of 4.4BSD can emulate the system-call inter-
face of the UNIX operating system provided by the hardware vendor. For
example, the HP300 version of 4.4BSD can run binaries compiled for HP-UX.

encapsulation In network communication, the procedure by which a message is
created that has an existing message enclosed in it as data. A protocol
normally encapsulates a message by crafting a leading protocol header that
indicates that the original message is to be treated as data. The inverse of
decapsulation.

erase character The character that is recognized by the terminal handler, when
the latter is running in canonical mode, to mean "delete the last character in
the line of input." Each terminal session can have a different erase character,
and that erase character can be changed at any time with a tcsetattr system
call. The terminal handler does not recognize the erase character on terminals
that are in noncanonical mode. See also word-erase character; kill character.

errno The global variable in C programs that holds an error code that indicates
why a system call failed. The value to be placed in errno is returned by the
kernel in the standard return register; it is moved from this return register to
errno by code in the C run-time library.

error-message buffer See message buffer.
eviction notice A call-back message from a server to a client notifying the client

that its lease for an object is being terminated. A lease is usually terminated
because another client wants to modify the object that the lease represents.
See also callback; lease.



522 Glossary

fault rate The rate at which a process generates page faults. For a reference
string, the fault rate is defined to be time independent by its being specified as
the number of page faults divided by the length of the reference string.

fetch policy The policy used by a demand-paged virtual-memory-management
system in processing page faults. Fetch policies differ primarily in the way
that they handle prepaging of data.

FIFO file In the filesystem, a type of file that can be used for interprocess com-
munication. Data written by one process to a FIFO are read by another in the
order in which they were sent. The name refers to the fact that data are trans-
ferred in a first-in, first-out fashion.

file An object in the filesystem that is treated as a linear array of bytes. A file has
at least one name, and it exists until all its names are deleted explicitly.

file handle A globally unique token created by an NFS server and passed back to
an NFS client. The client can then use the file handle to refer to the associated
file on the server. A handle is created when a file is first opened; it is passed
to the server by the client in later operations, such as read and write, that ref-
erence the open file.

filename A string of ASCII characters that is used to name an ordinary file, spe-
cial file, or directory. The characters in a filename cannot include null (0) or
the ASCII code for slash (V).

file offset A byte offset associated with an open file descriptor. The file offset for
a file descriptor is set explicitly with the lseek system call, or implicitly as a
result of a read or write system call.

file structure The data structure used by the kernel to hold the information asso-
ciated with one or more open file descriptors that reference a file. In most
cases, each open file descriptor references a unique file structure. File struc-
tures may be shared, however, when open descriptors are duplicated with the
dup and dup2 system calls, inherited across a fork system call, or received in a
message through the interprocess-communication facilities.

filesystem A collection of files. The UNIX filesystem is hierarchical, with files
organized into directories, and filesystems, in most cases, restricted to a single
physical hardware device, such as a disk drive. Filesystems typically include
facilities for naming files and for controlling access to files.

fill-on-demand page fault The first page fault for an individual page; it must be
resolved by retrieval of data from the filesystem or by allocation of a zero-
filled page.

first-level bootstrap The initial code that is executed in a multilevel bootstrap-
ping operation. Usually, the first-level bootstrap is limited in size and does
little more than bootstrap into operation a larger, more intelligent, program.
Typically, the first-level bootstrap loads the /boot program, so that /boot can,
in turn, bootstrap the kernel.

foreground process In job-control-oriented process-management systems, a pro-
cess whose process group is the same as that of its controlling terminal; thus,
the process is allowed to read from and to write to the terminal. Otherwise, a

Glossary 523

foreground process is one for which the command interpreter is currently wait-
ing. The opposite of a foreground process is a background process.

forward-mapped page table A large contiguous array indexed by the virtual
address that contains one element, or page-table entry, for each virtual page in
the address space. This element contains the physical page to which the vir-
tual page is mapped, as well as access permissions and status bits telling
whether the page has been referenced or modified, and a bit indicating
whether the entry contains valid information. Most current memory-manage-
ment-unit designs use some variant of a forward-mapped page table. See also
inverted page table.

fragment In the filesystem, a part of a block. The filesystem allocates new disk
space to a file as a full block or as one or more fragments of a block. The
filesystem uses fragments, rather than allocating space in only full block-size
units, to reduce wasted space when the size of a full block is large.

fragment-descriptor table A data structure in the Fast Filesystem that describes
the fragments that are free in an entry of the allocation map. The filesystem
uses the fragment-descriptor table by taking a byte in the allocation map and
using the byte to index into the fragment-descriptor table. The value in the
fragment-descriptor table indicates how many fragments of a particular size
are available in the entry of the allocation map. By doing a logical AND with
the bit corresponding to the desired fragment size, the system can determine
quickly whether a desired fragment is contained within the allocation-map
entry.

free list In the memory-management system, the list of available clusters of
physical memory (also called the memory free list). There is a similar free list
in the system for dynamically allocated kernel memory. Many kernel data
structures are dynamically allocated, including vnodes, file-table entries, and
disk-quota structures.

free-space reserve A percentage of space in a filesystem that is held in reserve
to ensure that certain allocation algorithms used by the filesystem will work
well. By default, 10 percent of the available space in the Fast Filesystem and
2 clean segments in the Log-Structured Filesystem, are held in reserve.

garbage collection A memory-management facility in which unused portions of
memory are reclaimed without an application having to release them ex-
plicitly.

gateway See router.
generation number The number assigned to an inode each time that the latter is

allocated to represent a new file. Each generation number is used only once.
Most NFS implementations use a random-number generator to select a new
generation number; the 4.4BSD implementation selects a generation number
that is approximately equal to the creation time of the file.

GID See group identifier.



524 Glossary

global page-replacement algorithm An algorithm that does page replacement
according to systemwide criteria. A global-page-replacement strategy tends
to make the most efficient use of the system memory. However, a single pro-
cess can thrash the entire system by trying to use all the available memory.

group identifier (GID) An integer value that uniquely identifies a collection of
users. GIDs are used in the access-control facilities provided by the filesys-
tem. See also effective group identifier; real group identifier; saved group
identifier; set-group-identifier program.

half-open connection A connection that is thought to be open by only one of the
two endpoints. For example, a connection that is lost because of a crash or
timeout on one peer, but is still considered established by the other, is half-
open.

handler A procedure that is invoked in response to an event such as a signal.
hard limit A limit that cannot be exceeded. See also soft limit.
hard link A directory entry that directly references an inode. If there are multi-

ple hard links to a single inode and if one of the links is deleted, the remain-
ing links still reference the inode. By contrast, a symbolic link is a file that
holds a pathname that is used to reference a file.

header prediction A heuristic used by TCP on incoming packets to detect two
common cases: the next expected data segment for an existing connection, or
an acknowledgment plus a window update for one or more data segments.
When one of these two cases arise, and the packet has no additional flags or
state indications, the fully general TCP input processing is skipped.

heap The region of a process that can be expanded dynamically with the sbrk
system call (or malloc C library call). The name is derived from the disor-
derly fashion in which data are placed in the region.

high watermark An upper bound on the number of data that may be buffered.
In the interprocess-communication facilities, each socket's data buffer has a
high watermark that specifies the maximum number of data that may be
queued in the data buffer before a request to send data will block the process
(or will return an error if nonblocking I/O is being used). See also low water-
mark.

hole In a file, a region that is part of the file, but that has no associated data
blocks. The filesystem returns zero-valued data when a process reads from a
hole in a file. A hole is created in a file when a process positions the file
pointer past the current end-of-file, writes some data, and then closes the file.
The hole appears between the previous end-of-file and the beginning of the
newly written data.

home directory The current working directory that is set for a user's shell when
the user logs into a system. This directory is usually private to the user. The
home directory for a user is specified in a field in the password-file entry for
the user.

Glossary 525

host-unreachable message An ICMP message that indicates that the host to
which a previous message was directed is unavailable because there is no
known path to the desired host.

ICMP See Internet Control Message Protocol.
idempotent An operation that can be repeated several times without changing

the final result or causing an error. For example, writing the same data to the
same offset in a file is idempotent, because it will yield the same result
whether it is done once or many times. However, trying to remove the same
file more than once is nonidempotent because the file will no longer exist
after the first try.

idle loop The block of code inside the kernel that is executed when there is noth-
ing else to run. In 4.4BSD, the idle loop waits for a process to be added to the
run queue.

index file The Log-Structured Filesystem read-only file, visible in the filesystem,
that contains segment-usage information and the inode number to disk-block
address mapping. By convention, the index file is named ifile.

indirect block In the filesystem, an auxilliary data block that holds the number
of a data block. The first 12 blocks of a file are pointed to directly by the
inode. Additional data blocks are described with a pointer from the inode to
an indirect data block; the system must first fetch the indirect block that holds
the number of the data block. In 4.4BSD, the kernel may have to fetch as
many as three indirect blocks to locate the desired data block. An indirect
block that contains data-block numbers is termed a single-level indirect block;
an indirect block that contains block numbers of single-level indirect blocks is
called a double-level indirect block; an indirect block that contains block
numbers of double-level indirect blocks is called a triple-level indirect block.

init The first user program (/sbin/init) that runs when the system is booted.
initial sequence number See sequence space.
inode A data structure used by the filesystem to describe a file. The contents of

an inode include the file's type, the UID of the file's owner, and a list of the
disk blocks and fragments that make up the file. Note that inodes do not have
names; directory entries are used to associate a name with an inode.

input/output (I/O) The transfer of data between the computer and its peripheral
devices.

intelligent gateway A gateway machine that is capable of making intelligent
decisions about routing network data. Such machines usually participate in a
scheme whereby routing information is updated dynamically to reflect
changes in network topology. An intelligent gateway is also expected to
respond with routing redirect messages to hosts that make poor routing deci-
sions.

interactive program A program that must periodically obtain user input to do its
work. A screen-oriented text editor is an example of an interactive program.



526 Glossary

Internet Control Message Protocol (ICMP) A host-to-host communication pro-
tocol used in the Internet for reporting errors and controlling the operation of IP.

Internet domain A communication domain in the interprocess-communication
facilities that supports the Internet architecture. This architecture supports
both stream- and datagram-oriented styles of communication between pro-
cesses on machines on an Internet.

Internet host address In the Internet, a number that identifies both the network
on which a host is located and the host on that network. For version 4 of IP,
the address is 32 bits.

Internet Protocol (IP) The network-layer communication protocol used in the
Internet. IP is responsible for host-to-host addressing and routing, packet for-
warding, and packet fragmentation and reassembly.

interpreter A program that parses and executes a descriptive language in a sin-
gle step, rather than using the more common two-stage process of compiling
the language and executing the resulting binary. The shell is an example of an
interpreter; it parses and executes a shell script, rather than first compiling it.

interprocess communication (IPC) The transfer of data between processes.
Most facilities for interprocess communication are designed such that data are
transferred between objects other than processes. An interprocess-communi-
cation model that is not directly process oriented is advantageous because it is
possible to model scenarios in which communication endpoints are location
independent and, possibly, are migrated dynamically. For example, in
4.4BSD, communication is between sockets, rather than between processes.

interrupt In computer systems, an event external to the currently executing pro-
cess that causes a change in the normal flow of instruction execution. Inter-
rupts usually are generated by hardware devices that are external to the CPU.

interrupt priority level The priority that is associated with a device interrupt.
This value is usually defined by switches or jumpers located on a device con-
troller and transmitted with each interrupt request made by the hardware de-
vice. See also processor priority level.

interrupt stack A run-time stack that is used by procedures that are invoked to
respond to interrupts and traps. On most architectures, a systemwide interrupt
stack is provided that is independent of the normal kernel run-time stack
located in the user structure of each process.

inverted page table (reverse-mapped page table) A hardware-maintained
memory-resident table that contains one entry per physical page, and that is
indexed by physical address instead of by virtual address. An entry contains
the virtual address to which the physical page is currently mapped; the entry
also includes protection and status attributes. The hardware does virtual-to-
physical address translation by computing a hash function on the virtual
address to select an entry in the table. The hardware handles collisions by
linking together table entries, and making a linear search of this chain until it
finds the matching virtual address. See also forward-mapped page table.

Glossary 527

I/O See input/output.
I/O redirection The redirection of an I/O stream from the default assignment.

For example, all the standard shells permit users to redirect the standard out-
put stream to a file or process.

I/O stream A stream of data directed to, or generated from, a process. Most I/O
streams in UNIX have a single common data format that permits users to write
programs in a tool-oriented fashion, and to combine these programs in
pipelines by directing the standard output stream of one program to the stan-
dard input stream of another.

iovec A data structure used to specify user I/O requests made to the kernel. Each
structure holds the address of a data buffer and the number of bytes of data to
be read or written. Arrays of such structures are passed to the kernel in readv
and writev system calls.

I/O vector See iovec.
IP See Internet Protocol.
IPC See interprocess communication.

job In UNIX, a set of processes that all have the same process-group identifier.
Jobs that have multiple processes are normally created with a pipeline. A job
is the fundamental object that is manipulated with job control.

job control A facility for managing jobs. With job control, a job may be started,
stopped, and killed, as well as moved between the foreground and the back-
ground. The terminal handler provides facilities for automatically stopping a
background job that tries to access the controlling terminal, and for notifying
a job's controlling process when such an event occurs.

keepalive packet A type of packet used by TCP to maintain information about
whether or not a destination host is up. Keepalive packets are sent to a remote
host, which, if it is up, must respond. If a response is not received in a rea-
sonable time to any of several keepalive packets, then the connection is termi-
nated. Keepalive packets are used on only those TCP connections that have
been created for sockets that have the SO_KEEPALIVE option set on them.

keepalive timer A timer used by the TCP protocol in conjunction with keepalive
packets. The timer is set when a keepalive packet is transmitted. If a
response to the packet is not received before the timer expires several times,
then the connection is shut down.

kernel The central controlling program that provides basic system facilities. The
4.4BSD kernel creates and manages processes, provides functions to access
the filesystem, and supplies communication facilities. The 4.4BSD kernel is
the only part of 4.4BSD that a user cannot replace.

kernel mode The most privileged processor-access mode. The 4.4BSD kernel
operates in kernel mode.



528 Glossary

kernel process A process that executes with the processor in kernel mode. The
pagedaemon and swapper processes are examples of kernel processes.

kernel state The run-time execution state for the kernel. This state, which includes
the program counter, general-purpose registers, and run-time stack, must be
saved and restored on each context switch.

kill character The character that is recognized by the terminal handler in canon-
ical mode to mean "delete everything typed on this terminal after the most
recent end-of-line character." Each terminal session can have a different kill
character, and the user can change that kill character at any time with an tcse-
tattr system call. The terminal handler does not recognize the kill character
on terminals that are in noncanonical mode. See also erase character; word-
erase character.

lease A ticket permitting an activity that is valid until a specified expiration time.
In the NQNFS protocol, a client gets a lease from its server to read, write, or
read and write a file. As long the client holds a valid lease, it knows that the
server will notify it if the file status changes. Once the lease has expired, the

c l i e n t must contact the server to request a new lease before using any data that
it has cached for the file. See also callback; eviction notice.

least recently used (LRU) A policy of reuse whereby the least recently used
items are reused first. For example, in the filesystem, there is a fixed number
of data buffers available for doing I/O. Buffers that hold valid data are reallo-
cated in an LRU order on the LRU buffer list, in the hope that the data held in
the buffer may be reused by a subsequent read request. See also AGE buffer
list; buffer cache.

line discipline A processing module in the kernel that provides semantics for an
asynchronous serial interface or for a software emulation of such an interface.
Line disciplines are described by a procedural interface whose entry points
are stored in the linesw data structure.

line mode See canonical mode.
link layer Layer 2 in the ISO Open Systems Interconnection Reference Model.

In this model, the link layer is responsible for the (possibly unreliable) deliv-
ery of messages within a single physical network. The link layer corresponds
most closely to the network-interface layer of the 4.4BSD network subsystem.

listen request A request passed to the user-request routine of a communication-
protocol module as a result of a process making a listen system call on a
socket. This request indicates that the system should listen for requests to
establish a connection to the socket. Otherwise, the system will reject any
connection requests that it receives for the socket.

load average A measure of the CPU load on the system. The load average in
4.4BSD is defined as an average of the number of processes ready to run or
waiting for disk I/O to complete, as sampled over the previous 1-minute inter-
val of system operation.

Glossary 529

local domain A communication domain in the interprocess-communication
facilities that supports stream.- and datagram-oriented styles of communica-
tion between processes on a single machine.

locality of reference A phenomenon whereby memory references of a running
program are localized within the virtual address space over short periods.
Most programs tend to exhibit some degree of locality of reference. This
locality of reference makes it worthwhile for the system to prefetch pages that
are adjacent to a page that is faulted, to reduce the fault rate of a running pro-
gram.

local page-replacement algorithm An algorithm for page replacement that first
chooses a process from which to replace a page, and then chose a page within
that process based on per-process criteria. Usually, a process is given a fixed
number of pages, and must then select from among its own pages when it
needs a new page.

log An append-only file. A file where existing data are never overwritten; the
kernel thus modifies the file only by appending new data. The Log-Structured
Filesystem implements an abstraction of a log on the disk. See also no-over-
write policy.

logical block A block defined by dividing a file's linear extent by the underlying
filesystem block size. Each logical block of a file is mapped into a physical
block. This additional level of mapping permits physical blocks to be placed
on disk without concern for the linear organization of the logical blocks in a
file.

logical drive partitions A software scheme that divides a disk drive into one or
more linear extents or partitions.

logical unit An integer that specifies the unit number of a hardware device. The
hardware device and unit number are specified in terms of logical devices and
units as discovered by the system during the autoconfiguration phase of its
bootstrap sequence. For example, a reference to "partition 1 on disk drive 2"
typically refers to partition 1 on the third disk drive identified at boot time
(devices are numbered starting at 0). The actual mapping between logical
unit numbers and physical devices is defined by the configuration file that is
used to build a kernel. For flexibility, most systems are configured to support
a reasonably dynamic mapping between physical and logical devices. This
dynamic mapping permits, for example, system administrators to move a disk
drive from one controller to another without having to reconfigure a new ker-
nel or to reconstruct the associated special files for the device.

long-term-scheduling algorithm See short-term-scheduling algorithm.
lossy A communication medium that has a high rate of data loss.
low watermark A lower bound that specifies the minimum number of data that

must be present before an action can be taken. In the interprocess-communi-
cation facilities, each socket's data buffer has a low watermark that specifies
the minimum number of data that must be present in the data buffer before a
reception request will be satisfied. See also high watermark.



530

LRU See least recently used.

Glossary

machine check An exceptional machine condition that indicates that the CPU
detected an error in its operation. For example, a machine check is generated
if a parity error is detected in a cache memory.

magic number The number located in the first few bytes of an executable file
that specifies the type of the executable file.

main memory The primary memory system on a machine.
major-device number An integer number that uniquely identifies the type of a

device. This number is defined as the index into the array of device-driver
entry points for the device. It is used, for example, when a user creates a de-
vice special file with the mknod system call.

mandatory lock A lock that cannot be ignored or avoided. A mandatory lock is
contrasted with an advisory lock, which is enforced only when a process
explicitly requests its enforcement. See also advisory lock.

mapped object An object whose pages are mapped into a process address space.
Processes map objects into their virtual address space using the mmap system
call.

mapping structure The machine-dependent state required to describe the trans-
lation and access rights of a single page. See also page-table entry.

mark and sweep algorithm A garbage-collection algorithm that works by
sweeping through the set of collectable objects, marking each object that is
referenced. If, after this marking phase, there are any objects that are
unmarked, they are reclaimed.

marshalling Preparing a set of parameters to be sent across a network. Mar-
shalling includes replacing pointers by the data to which they point, and con-
verting binary data to the canonical network byte order. See also remote
procedure call.

masked signal A signal blocked in a sigprocmask system call. When a signal is
masked, its delivery is delayed until it is unmasked. In addition, in 4.4BSD, the
system automatically masks a caught signal while that signal is being handled.

master device See slave device.
maximum segment lifetime (MSL) The maximum time that a segment of data

may exist in the network. See also 2MSL timer.
mbuf A data structure that describes a block of data; mbufs are used in the inter-

process-communication facilities. "Mbuf" is shorthand for "memory buffer."
memory address A number that specifies a memory location. Memory

addresses are often categorized as physical or virtual according to whether
they reference physical or virtual memory.

memory free list See free list.
memory-management system The part of the operating system that is responsi-

ble for the management of memory resources available on a machine.

Glossary 531

memory-management unit A hardware device that implements memory-man-
agement-related tasks, such as address translation and memory protection.
Most contemporary memory-management units also provide support for
demand-paged virtual-memory management.

message buffer A circular buffer in which the system records all kernel mes-
sages directed to the console terminal. The device /dev/klog can be used by a
user program to read data from this buffer in a manner that ensures that no
data will be lost. On most systems, the message buffer is allocated early in
the bootstrapping of the system; it is placed in high memory so that it can be
located after a reboot, allowing messages printed out just before a crash to be
saved.

minor-device number An integer number that uniquely identifies a subunit of a
device. For example, the minor-device number for a disk device specifies a
subunit termed a partition, whereas the minor-device number for a terminal
multiplexer identifies a specific terminal line. The minor-device number is
interpreted on a per-device basis and is used, for example, when a user creates
a device special file with the mknod system call.

modem control For data-communication equipment, the support of a set of sig-
nals used to ensure reliable initiation and termination of connections over
asynchronous serial lines, defined by the RS-232 standard. Support for
modem control is normally important for only serial lines that are accessed
via dialup modems.

MSL See maximum segment lifetime.
multilevel feedback queue A queueing scheme in which requests are partitioned

into multiple prioritized subqueues, with requests moving between subqueues
based on dynamically varying criteria. The 4.4BSD kernel uses a multilevel-
feedback-queueing scheme for scheduling the execution of processes.

multiplexed file A type of file used for interprocess communication that was
supported in the Seventh Edition UNIX system.

network address A number that specifies a host machine.
network architecture The collection of protocols, facilities, and conventions

(such as the format of a network address) that define a network. Like
machine architectures, network architectures may be realized in different
ways. For example, some network architectures are specifically designed to
permit their implementation in hardware devices.

network byte order The order defined by a network for the transmission of pro-
tocol fields that are larger than one octet. In the Internet protocols, this order
is "most significant octet first."

network-interface layer The layer of software in the 4.4BSD network subsystem
that is responsible for transporting messages between hosts connected to a
common transmission medium. This layer is mainly concerned with driving
the transmission media involved, and with doing any necessary link-level pro-
tocol encapsulation and decapsulation.



532 Glossary

network layer The layer of software in the 4.4BSD network subsystem that is
responsible for the delivery of data destined for remote transport or network-
layer protocols.

network mask A value that is used in the subnet addressing scheme of the Inter-
net. A network mask specifies which bits in a local Internet address the sys-
tem should include when extracting a network identifier from a local address.

network virtual terminal A terminal device that receives and transmits data
across a network connection.

nice A user-controllable process-scheduling parameter. The value of a process's
nice variable is used in calculating that process's scheduling priority. Positive
values of nice mean that the process is willing to receive less than its share of
the processor. Negative values of nice mean that the process requests more
than its share of the processor.

nonblocking I/O A mode in which a descriptor may be placed, whereby the sys-
tem will return an error if any I/O operation on the descriptor would cause the
process to block. For example, if a read system call is done on a descriptor
that is in nonblocking I/O mode, and no data are available, the system will
return the error code EWOULDBLOCK, rather than block the process until
data arrive. See also polling I/O; signal-driven I/O.

noncanonical mode See canonical mode.
nonlocal goto A transfer in control that circumvents the normal flow of execu-

tion in a program across routine boundaries. For example, if procedure A
calls procedure B, and B calls C, then a direct transfer of control from C back
to A (bypassing B) would be a nonlocal goto.

nonresident object An object that is not present in main memory. For example,
a page in the virtual address space of a process may be nonresident if it has
never been referenced.

no-overwrite policy A policy such that, when existing data are modified, new
copies of the data are created, rather than the data being overwritten in place.
The Log-Structured Filesystem implements a no-overwrite policy for files.
See also log.

object See virtual-memory object.
object cache A cache in the virtual-memory system for inactive objects. Inac-

tive file objects are retained in a least-recently-used cache so that future uses
of the associated file can reuse the object and that object's associated cached
physical pages.

octet A basic unit of data representation; an 8-bit byte. The term octet is used
instead of byte in the definition of many network protocols because some
machines use other byte sizes.

optimal replacement policy A replacement policy that optimizes the perfor-
mance of a demand-paging virtual-memory system. In this book, a policy
whereby the full reference string of a program is known in advance, and
pages are selected such that the number of page faults is minimized.

Glossary 533

orphaned process group A process group in which the parent of every member
is either itself a member of the group or is not a member of the group's ses-
sion. Such a parent would normally be a job-control shell capable of resum-
ing stopped child processes.

out-of-band data Data transmitted and received out of the normal flow of data.
Stream sockets support a logically separate out-of-band data channel through
which at least one message of at least 1 octet of data may be sent. The system
immediately notifies a receiving process of the presence of out-of-band data,
and out-of-band data may be retrieved out of received order.

overlay In computer systems, a region of code or data that may be replaced with
other such regions on demand. Overlays are usually loaded into a process's
address space on demand, possibly on top of another overlay. Overlays are a
commonly used scheme for programs that are too large to fit in the address
space of a machine that does not support virtual memory.

page In memory management, the fixed-sized unit of measure used to divide a
physical or virtual address space. See also demand paging.

pagedaemon In 4.4BSD, the name of the kernel process that is responsible for
writing parts of the address space of a process to secondary storage, to sup-
port the paging facilities of the virtual-memory system. See also swapper.

page fault An exception generated by a process's reference to a page of that pro-
cess's virtual address space that is not marked as resident in memory.

pagein An operation done by the virtual-memory system in which the contents
of a page are read from secondary storage.

pageout An operation done by the virtual-memory system in which the contents
of a page are written to secondary storage.

page push A pageout of a dirty page.
pager A kernel module responsible for providing the data to fill a page, and for

providing a place to store that page when it has been modified and the mem-
ory associated with it is needed for another purpose.

page reclaim A page fault, where the page that was faulted is located in mem-
ory, usually on the inactive list.

page-table entry (PTE) The machine-dependent data structure that identifies the
location and status of a page of a virtual address space. When a virtual page
is in memory, the PTE contains the page-frame number that the hardware
needs to map the virtual page to a physical page.

page-table pages The second level of a three-level hierarchy of data structures
used by a forward-mapped page-table algorithm to describe the virtual
address space of a process. Page-table pages are pointed to by entries in the
top-level segment table; each entry in a page-table page points to a page of
bottom-level page-table entries. See also forward-mapped page table; page-
table entry; segment table.



534 Glossary

paging The actions of bringing pages of an executing process into main memory
when they are referenced, and of removing them from memory when they are
replaced. When a process executes, all its pages are said to reside in virtual
memory. Only the actively used pages, however, need to reside in main mem-
ory. The remaining pages can reside on disk until they are needed.

panic In UNIX, an unrecoverable system failure detected by the kernel. 4.4BSD
automatically recovers from a panic by rebooting the machine, repairing any
filesystem damage, and then restarting normal operation. See also crash
dump.

parent process A process that is a direct relative of another process as a result of
a fork system call.

partition See disk partition.
pathname A null-terminated character string starting with an optional slash

("/"), followed by zero or more directory names separated by slashes, and
optionally followed by a filename. If a pathname begins with a slash, it is
said to be an absolute pathname, and the path search begins at the root direc-
tory. Otherwise, the pathname is said to be a relative pathname, and the path
search begins at the current working directory of the process. A slash by
itself names the root directory. A null pathname refers to the current working
directory.

PCB See process control block.
persist timer A timer used by TCP for maintaining output flow on a connection.

This timer is started whenever data are ready to be sent, but the send window
is too small to bother sending and no data are already outstanding. If no win-
dow update is received before the timer expires, a window probe is sent.

physical block One or more contiguous disk sectors to which the system maps a
logical block.

physical mapping (pmap) The software state, also referred to as the pmap struc-
ture, needed to manage the machine-dependent translation and access tables
that are used either directly or indirectly by the memory-management hard-
ware. This mapping state includes information about access rights, in addi-
tion to address translation.

PID See process identifier.
pipe An interprocess-communication facility that supports the unidirectional

flow of data between related processes. Data transfer is stream-oriented, reli-
able, and flow controlled. A pipe is specified to the shell with the "I" symbol.
For example, to connect the standard output of program a to the standard
input of program b, the user would type the command "a 1 b".

pipeline A collection of processes in which the standard output of one process is
connected to the standard input of the next with a pipe.

placement policy The policy used by the virtual-memory system to place pages
in main memory when servicing a page fault.

pmap See physical mapping.

Glossary 535

polling I/O The normal mode for a descriptor whereby the system will block if a
read request has no data available or a write request has no buffering avail-
able. A process can determine whether an I/O operation will block by polling
the kernel using the select system call. The select system call can be
requested to return immediately with the information or to block until at least
one of the requested I/O operations can be completed. See also nonblocking
I/O; signal-driven I/O.

POSIX The standards group for PI003, the portable operating-system interfaces
established by the IEEE. Its first established standard was the kernel interface,
1003.1, which was ratified in 1988.

prefetching The retrieval of data before they are needed. Many machines
prefetch machine instructions so that they can overlap the time spent fetching
instructions from memory with the time spent decoding instructions.

prepaging The prefetching of pages of memory. Prepaging is a technique used
by virtual-memory systems to reduce the number of page faults.

probing The operation of checking to see whether a hardware device is present
on a machine. Each different type of hardware device usually requires its
own technique for probing.

process In operating systems, a task or thread of execution. In UNIX, user pro-
cesses are created with the fork system call.

process control block (PCB) A data structure used to hold process context. The
hardware-defined PCB contains the hardware portion of this context. The
software PCB contains the software portion, and is located in memory imme-
diately after the hardware PCB.

process group A collection of processes on a single machine that all have the
same process-group identifier. The kernel uses this grouping to arbitrate
among multiple jobs contending for the same terminal.

process-group identifier A positive integer used to identify uniquely each active
process group in the system. Process-group identifiers are typically defined to
be the PID of the process-group leader. Process-group identifiers are used by
command interpreters in implementing job control, when the command inter-
preter is broadcasting signals with the killpg system call, and when the com-
mand interpreter is altering the scheduling priority of all processes in a pro-
cess group with the setpriority system call.

process-group leader The process in a process group whose PID is used as the
process-group identifier. This process is typically the first process in a
pipeline.

process identifier (PID) A nonnegative integer used to identify uniquely each
active process in the system.

process open-file table See descriptor table.
processor priority level A priority that the kernel uses to control the delivery of

interrupts to the CPU. Most machines support multiple priority levels at
which the processor may execute. Similarly, interrupts also occur at multiple



536 Glossary

levels. When an interrupt is posted to the processor, if the priority level of the
interrupt is greater than that of the processor, then the interrupt is recognized
by the processor and execution is diverted to service the interrupt. Otherwise,
the interrupt is not acknowledged by the CPU and is held pending until the
processor priority drops to a level that permits the interrupt to be ac-
knowledged. Changing the processor priority level is usually a privileged
operation that can be done only when the processor is executing in kernel
mode.

process priority A parameter used by the kernel to schedule the execution of
processes. The priority for a process changes dynamically according to the
operation of the process. In addition, the nice parameter can be set for a pro-
cess to weight the overall scheduling priority for the process.

process structure A data structure maintained by the kernel for each active pro-
cess in the system. The process structure for a process is always resident in
main memory, as opposed to the user structure, which is moved to secondary
storage when the process is swapped out.

/proc filesystem A filesystem-based interface to active processes that provides
process-debugging facilities. Each process is represented by a directory entry
in a pseudodirectory named /proc. Applications access the virtual address
space of a process by opening the file in /proc that is associated with the pro-
cess, and then using the read and write system calls as though the process
were a regular file.

programmed I/O Input or output to a device that is unable to do direct-memory
access. Each character must be loaded into the device's output-character reg-
ister for transmission. Depending on the device, the CPU may then have to
wait after each character for the transmit-complete interrupt before sending
the next character.

protocol family A collection of communication protocols, the members of
which are related by being part of a single network architecture. For example,
the TCP, UDP, IP, and ICMP protocols are part of the protocol family for the
Internet.

protocol switch structure A data structure that holds all the entry points for a
communication protocol supported by the kernel.

PTE See page-table entry.
pure demand paging Demand paging without prepaging.

race condition A condition in which two or more actions for an operation occur
in an undefined order. Trouble arises if there exists a possible order that
results in an incorrect outcome.

raw-device interface The character-device interface for block-oriented devices
such as disks and tapes. This interface provides raw access to the underlying
device, arranging for direct I/O between a process and the device.

Glossary 537

raw mode See canonical mode.
raw socket A socket that provides direct access to a lower-level communication

protocol.
real GID See real group identifier.
real group identifier (real GID) The GID that is recorded in the accounting

record when a process terminates. The real GID for a process is initially set at
the time that a user logs into a system, and is then inherited by child processes
across subsequent fork and execve system calls (irrespective of whether or not
a program is set-group-identifier). See also effective group identifier; set-
group-identifier program; saved group identifier.

real UID See real user identifier.
real user identifier (real UID) With respect to a process, the true identity of the

user that is running the process. The real UID for a process is initially set at
the time a user logs into a system, and is then inherited by child processes
across subsequent fork and execve system calls (irrespective of whether or not
a program is set-user-identifier). The real UID is recorded in the accounting
record when a process terminates. See also effective user identifier; set-user-
identifier program; saved user identifier.

receive window In TCP, the range of sequence numbers that defines the data that
the system will accept for a connection. Any data with sequence numbers
outside this range that are received are dropped. See also sliding-window
scheme.

reclaim See page reclaim.
reclaim from inactive A page reclaim from the inactive list. A page can be

reclaimed from the inactive list if that page is freed by the page-replacement
algorithm, but the page is not reassigned before a process faults on it.

record In networking, a message that is delimited from other messages on a
communication channel. The message boundaries are created by the sender,
and are communicated to the receiver. A write or read operation transfers
data from a single record, but certain protocols allow a record to be trans-
ferred via multiple write or read operations.

recovery storm A failure condition that can occur when a server is congested on
returning to service after a period of being unavailable. If there is heavy pent-
up demand for the server, it may be with requests. If the server simply
ignores requests that it cannot handle, the clients will quickly resend them.
So, the server typically replies "try again later" to the requests that it is not
yet ready to service. Clients receiving such a response will wait considerably
longer than a typical timeout period before resending their request.

red zone A read-only region of memory immediately below the last page of the
per-process kernel-mode run-time stack. The red zone is set up by the system
so that a fault will occur if a process overflows the space allocated for its ker-
nel stack.



538 Glossary

referenced page In the virtual-memory system, a page that is read or written.
reference string A dataset that describes the pages referenced by a process over

the time of the process's execution. This description represents the memory-
related behavior of the process at discrete times during that process's lifetime.

region A range of memory that is being treated in the same way. For example,
the text of a program is a region that is read-only and is demand paged from
the file on disk that contains it.

relative pathname See pathname.
reliably-delivered-message socket A type of socket that guarantees reliable

data delivery and preservation of message boundaries, and that is not connec-
tion based.

relocation The copying of a program's contents from one place in an address
space to another. This copying may be accompanied by modifications to the
image of the program, so that memory references encoded in the program
remain correct after that program is copied. Code that is not bound to a par-
ticular starting memory address is said to be relocatable.

remote procedure call (RPC) A procedure call made from a client process to a
subroutine running in a different server process. Typically, the client and
server processes are running on different machines. A remote procedure call
operates much like a local procedure call: the client makes a procedure call,
then waits for the result while the procedure executes. See also marshalling.

replacement policy The policy that a demand-paged virtual-memory-manage-
ment system uses to select pages for reuse when memory is otherwise unavail-
able.

resident object An object that is present in main memory. For example, a page
in the virtual address space of a process is resident if its contents are present
in main memory.

resident-set size The number of pages of physical memory held by a process. In
a well-tuned system, the resident-set size of a process will be that process's
working set. Usually, the precise working set cannot be calculated, so a pro-
cess will have additional pages beyond that needed for its working set.

resource map A data structure used by the system to manage the allocation of a
resource that can be described by a set of linear extents.

retransmit timer A timer used by TCP to trigger the retransmission of data.
This timer is set each time that data are transmitted to a remote host. It is set
to a value that is expected to be greater than the time that it will take the
receiving host to receive the data and return an acknowledgment.

reverse-mapped page table See inverted page table.
roll forward The double act of reading a log of committed operations, beginning

at a checkpoint, and of reapplying any operations that are not reflected in the
underlying storage system.

Glossary 539

root directory The directory that the kernel uses in resolving absolute path-
names. Each process has a root directory that can be set with the chroot sys-
tem call, and the system has a unique root directory, the identity of which is
set at the time that the system is bootstrapped.

root filesystem The filesystem containing the root directory that is considered
the root of all filesystems on a machine. The identity of a default root filesys-
tem is compiled into a kernel, although the actual root filesystem used by a
system may be set to some other filesystem at the time that a system is boot-
strapped.

rotational-layout table A Fast Filesystem data structure that describes the rota-
tional position of blocks in the filesystem. The Fast Filesystem uses the rota-
tional-layout table in selecting rotationally optimal blocks for allocation to a
file.

round robin In queueing, an algorithm in which each requester is serviced for a
fixed time in a first-come first-served order; requests are placed at the end of
the queue if they are incomplete after service.

route In packet-switched-network communication, a route to a destination speci-
fies the host or hosts through which data must be transmitted to reach the des-
tination.

router A machine, also known as a gateway, that has two or more network inter-
faces, and that forwards packets between the networks to which it has access.
Typically, a router runs a routing process that gathers information on the net-
work topology; it uses that information to devise a set of next-hop routes that
it installs in the kernel's routing table. See also routing mechanism; routing
policy.

routing daemon The process in 4.4BSD that provides a routing-management ser-
vice for the system. This service uses a protocol that implements a distributed
database of routing information that is updated dynamically to reflect changes
in topological connectivity.

routing mechanism The routing facilities included in the kernel that implement
externally defined policies. The routing mechanism uses a lookup mechanism
that provides a first-hop route (a specific network interface and immediate
destination) for each destination. See also router; routing policies.

routing policies The routing facilities provided in a user-level process that define
external policies. Routing policies include all the components that the routing
daemon uses in choosing the first-hop routes, such as discovery of the local
network topology, implementation of various routing protocols, and configura-
tion information specifying local policies. See also router; routing mechanism.

routing redirect message A message generated by a gateway when the latter
recognizes that a message that it has received can be delivered via a more
direct route.



540 Glossary

RPC See remote procedure call.
run queue The queue of those processes that are ready to execute.

saved GID A mechanism that records the identity of a setgid program by copy-
ing the value of the effective GID at the time that the program is exec'ed.
During its execution, the program may temporarily revoke its setgid privilege
by setting is effective GID to its real GID. It can later recover its setgid privi-
lege by setting its effective GID back to its saved GID. See also effective
group identifier.

saved UID A mechanism that records the identity of a setuid program by copying
the value of the effective UID at the time that the program is exec'ed. During
its execution, the program may temporarily revoke its setuid privilege by set-
ting is effective UID to its real UID. It can later recover its setuid privilege by
setting its effective UID back to its saved UID. See also effective user identifier.

scheduling In operating systems, the planning used to share a resource. For
example, process scheduling is used to share the CPU and main memory.

scheduling priority A per-process parameter maintained by the kernel that spec-
ifies the priority with which the latter will schedule the execution of a process.
When a process is executing in user mode, the system periodically calculates
the scheduling priority, using the process priority and the nice parameter.

secondary storage Storage that is used to hold data that do not fit in main mem-
ory. Secondary storage is usually located on rotating magnetic media, such as
disk drives. See also backing storage.

sector The smallest contiguous region on a disk that can be accessed with a sin-
gle I/O operation.

segment A contiguous range of data defined by a base and an extent. In memory
management, a segment describes a region of a process's address space. In
communication protocols, a segment is defined by a contiguous range of
sequence numbers for which there are associated data. In the Log-Structured
Filesystem, a segment is the logical unit of cleaning.

segment table The top level of a three-level hierarchy of data structures used by
a forward-mapped page-table algorithm to describe the virtual address space
of a process. Each entry in a segment-table points to a page of middle-level
page-table pages. A three-level mapping hierarchy is used on the PC and
Motorola 68000 architectures. See also forward-mapped page table; page-
table entry; page-table pages.

send window In TCP, the range of sequence numbers that defines the data that
the system can transmit on a connection and be assured that the receiving
party has space to hold the data on receipt. Any data with sequence numbers
prior to the start of the send window have already been sent and ac-
knowledged. Any data with sequence numbers after the end of the window
will not be sent until the send window changes to include them. See also slid-
ing-window scheme.

Glossary 541

sense request A request passed to the user-request routine of a communication-
protocol module as a result of a process making a stat system call on a socket.

sequenced-packet socket A type of socket that models sequenced, reliable, undu-
plicated, connection-based communication that preserves message boundaries.

sequence space The range of sequence numbers that are assigned to data trans-
mitted over a TCP connection. In TCP, sequence numbers are taken from a
32-bit circular space that starts with an arbitrary value called the initial
sequence number.

serial-line IP (SLIP) An encapsulation used to transfer IP datagrams over asyn-
chronous serial lines. Also, the line discipline that implements this encapsu-
lation.

server process A process that provides services to client processes via an inter-
process-communication facility. See also client process.

session A collection of process groups established for job control purposes. Nor-
mally, a session is created for each login shell. All processes started by that
login shell are part of its session.

session leader A process that has created a session. The session leader is the
controlling process for the session and is permitted to allocate and assign the
controlling terminal for the session. Normally, a session is created for each
login shell. All processes started by that login shell are part of its session.

set-group-identifier program A program that runs with an additional group
privilege. Set-group-identifier programs are indicated by a bit in the inode of
the file. When a process specifies such a file in an execve system call, the GID
of the file is made the effective GID of the process.

set-priority-level (SPL) A request that sets the current processor priority level.
In 4.4BSD, all such requests are made with calls to routines that have a name
with the prefix "spl." For example, to set the processor priority level high
enough to block interrupts that cause terminal processing, the kernel would
call the spltty( ) routine. See also processor priority level.

set-user-identifier program A program that runs with an UID different from that
of the process that started it running. Set-user-identifier programs are indi-
cated by a bit in the inode of the file. When a process specifies such a file in an
execve system call, the UID of the file is made the effective UID of the process.

shadow object An anonymous object that is interposed between a process and
an underlying object to prevent changes made by the process from being
reflected back to the underlying object. A shadow object is used when a pro-
cess makes a private mapping of a file, so that changes made by the process
are not reflected in the file.

shell A program that interprets and executes user commands. When a user logs
into a UNIX system, a shell process is normally created with its standard
input, standard output, and standard error descriptors directed to the terminal
or network virtual terminal on which the user logged in.



542 Glossary

short-term-scheduling algorithm The algorithm used by the system to select
the next process to run from among the set of processes that are deemed run-
nable. The long-term-scheduling algorithm, on the other hand, can influence
the set of runnable processes by swapping processes in and out of main mem-
ory (and thus in and out of the set of runnable processes).

signal In UNIX, a software event. In 4.4BSD, this event is modeled after a hard-
ware interrupt.

signal-driven I/O A mode in which a descriptor can be placed, whereby the sys-
tem will deliver a SIGIO signal to a process whenever I/O is possible on the
descriptor. See also nonblocking I/O; polling I/O.

signal handler A procedure that is invoked in response to a signal.
signal post A notification to a process that a signal is pending for that process.

Since most of the actions associated with a signal are done by the receiving
process, a process that is posting a signal usually does little more than to
record the pending signal in the receiving process's process structure and to
arrange for the receiving process to be run.

signal-trampoline code A piece of code that is used to invoke a signal handler.
The signal-trampoline code contains instructions that set up parameters for
calling a signal handler, do the actual call to the signal handler, and, on return,
do a sigreturn system call to reset kernel state and resume execution of the
process after the signal is handled.

silly-window syndrome A condition observed in window-based flow-control
schemes in which a receiver sends several small (i.e., silly) window alloca-
tions, rather than waiting for a reasonable-sized window to become available.

single indirect block See indirect block.
slave device A hardware device that is controlled by a master device. For exam-

ple, a disk drive is a slave device to a SCSI bus controller. The distinction
between master and slave devices is used by the autoconfiguration system. A
slave device is assumed to be accessible only if its corresponding master de-
vice is present.

slave routine A device-driver routine that is responsible for deciding whether or
not a slave device is present on a machine. Slave routines are never called
unless the master device for the slave has been probed successfully.

sleep queue The queue of those processes that are blocked awaiting an event.
The name is derived from the sleep () routine that places processes on this
queue.

sliding-window scheme A flow-control scheme in which the receiver limits the
number of data that it is willing to receive. This limit is expressed as a con-
tiguous range of sequence numbers termed the receive window. It is periodi-
cally communicated to the sender, who is expected to transmit only those data
that are within the window. As data are received and acknowledged, the win-
dow slides forward in the sequence space. See also sequence space; receive
window; send window.

SLIP See serial-line IP.

Glossary 543

small-packet avoidance In networking, avoiding the transmission of a packet so
small that its transmission would be inefficient.

socket In the 4.4BSD interprocess-communication model, an endpoint of com-
munication. Also, the data structure that is used to implement the socket
abstraction, and the system call that is used to create a socket.

soft limit A limit that may be temporarily exceeded, or exceeded a limited num-
ber of times. A soft limit is typically used in conjunction with a hard limit.
See also hard limit.

soft link See symbolic link.
software interrupt A software-initiated interrupt. It is requested with an asyn-

chronous system trap.
software-interrupt process A process that is set running in response to a soft-

ware interrupt. In 4.4BSD, input processing for each transport-layer commu-
nication protocol is embodied in a software-interrupt process.

special file See device special file.
spin loop A sequence of instructions that causes the processor to do a specific

operation repeatedly. Standalone device drivers use spin loops to implement
real-time delays.

SPL See set-priority-level.
stack An area of memory set aside for temporary storage, or for procedure and

interrupt-service linkages. A stack uses the last-in, first-out (LIFO) concept.
On most architectures, the stack grows from high memory addresses to low
memory addresses. As items are added to (pushed onto) the stack, the stack
pointer decrements; as items are retrieved from (popped off) the stack, the
stack pointer increments.

stack segment A segment that holds a stack. See also bss segment; data seg-
ment; text segment.

stale translation A translation or mapping that was true previously, but that is no
longer valid. For example, on machines that have a translation lookaside
buffer, if a page-table entry in memory is changed to alter the mapping, any
address translation for that page that is present in the translation lookaside
buffer must be flushed to avoid a stale translation.

standalone Software that can run without the support of an operating system.
standalone device driver A device driver that is used in a standalone program.

A standalone device driver usually differs from a device driver used in an
operating system in that it does not have interrupt services, memory manage-
ment, or full support for virtual-memory mapping. In the 4.4BSD standalone
I/O library, for example, a standalone device driver polls a device to decide
when an operation has completed, and is responsible for setting up its own
memory mapping when doing transfers between the device and main memory.

standalone I/O library A library of software that is used in writing standalone
programs. This library includes standalone device drivers that are used to
do I/O.



544 Glossary

standard error The I/O stream on which error messages are conventionally
placed. This stream is usually associated with descriptor 2 in a process.

standard input The I/O stream on which input is conventionally received. This
stream is usually associated with descriptor 0 in a process.

standard output The I/O stream to which output is conventionally directed.
This stream is usually associated with descriptor 1 in a process.

start routine A device-driver routine that is responsible for starting a device
operation after the system has acquired all the resources that are required for
the operation.

stateless server A server that does not need to maintain any information about
which clients it is serving or which data have been passed to them. Every
request that is received by such a server must be completely self-contained,
providing all information needed to fulfill it.

sticky bit The bit in an inode representing a directory that indicates that an
unprivileged user may not delete or rename files of other users in that direc-
tory. The sticky bit may be set by any user on a directory that the user owns
or for which she has appropriate permissions. Historically, the bit in an inode
that indicated that the text segment of the program was to be shared and kept
memory or swap-space resident because of expected future use. That bit is no
longer needed for this purpose because the virtual-memory system tracks
recently used executables.

stream I/O system A facility in System V Release 4 that permits the flexible
configuration of processing for streams of data. In this system, it is possible
to connect kernel-resident modules dynamically in a stack-oriented fashion,
and to have these modules process data sent and received on an I/O stream.

stream socket A type of socket that models a reliable, connection-based, byte
stream that can support out-of-band data transmission.

subnetwork A physical network that is a part of a larger logical network with a
single shared network address. The subnet is assigned a subset of the logical
network's address space.

superblock A data structure in the on-disk filesystem that specifies the basic
parameters of the filesystem.

superuser The user whose UID is 0. Processes owned by the superuser are
granted special privileges by UNIX. The superuser's login name is usually
root.

swap area A region on secondary storage that is used for swapping and paging.
swap device A device on which a swap area resides.
swapper In 4.4BSD, the name of the kernel process that implements the swap-

ping portion of the memory-management facilities. Historically, the swapper
is process 0. See also pagedaemon.

swapping A memory-management algorithm in which entire processes are
moved to and from secondary storage when main memory is in short supply.

Glossary 545

swap space See swap area.
symbolic link A file whose contents are interpreted as a pathname when it is

supplied as a component of a pathname. Also called a soft link.
synchronous Synchronized with the currently running process. For example, in

UNIX, all I/O operations appear to be synchronous: The read and write sys-
tem calls do not return until the operation has been completed. (For a write,
however, the data may not actually be written to their final destination until
some time later—for example, in writing to a disk file.)

system activity An entry into the kernel. System activities can be categorized
according to the event or action that initiates them: system calls, hardware
interrupts, hardware traps, and software-initiated traps or interrupts.

system call In operating systems, a request to the system for service; also called
a system service request.

system clock The device that is used to maintain the system's notion of time of
day. On most systems, this device is an interval timer that periodically inter-
rupts the CPU. The system uses these interrupts to maintain the current time
of day, as well as to do periodic functions such as process scheduling.

system mode See kernel mode.

TCP See Transmission Control Protocol.
terminal In computer systems, a device used to enter and receive data interac-

tively from a computer. Most terminals include a CRT, which displays data
that are received from a computer. In the Electrical Industry Association
(EIA) standard RS-232-C for connecting computers and data-terminal equip-
ment (DTE), a terminal is a device that is placed at the other end of a wire that
is connected to data-communications equipment (DCE). In this standard, a
terminal might be any kind of device, rather than only a device on which peo-
ple type.

terminal multiplexer A hardware device that connects multiple serial lines to a
computer. These serial lines can be used to connect terminals, modems, print-
ers, and similar devices.

termios structure The structure used to describe terminal state. Terminal state
includes special characters, such as the erase, kill, and word-erase characters;
modes of operation, such as canonical or noncanonical; and hardware serial-
line parameters, such as parity and baud rate.

text segment The segment of a program that holds machine instructions. The
system usually makes a program's text segment read-only and shareable by
multiple processes when the program image is loaded into memory. See also
bss segment; data segment; stack segment.

thrashing A condition where requested memory utilization far exceeds the
memory availability. When a machine is thrashing, it usually spends more
time doing system-related tasks than executing application code in user mode.



546 Glossary

thread The unit of execution of a process. A thread requires an address space
and other resources, but it can shared many of those resources with other
threads. Threads sharing an address space and other resources are scheduled
independently, and can all do system calls simultaneously.

three-level mapping hierarchy See segment table.
tick An interrupt by the system clock.
time quantum In a timesharing environment, the period of time that the process

scheduler gives a process to run before it preempts that process so that
another process can execute. Also called a time slice.

timer backoff The rate at which a timer value is increased. For example, in
TCP, the value of the retransmit timer is determined by a table of multipliers
that provide a near-exponential increase in timeout values.

time slice See time quantum.
time-stable identifier An identifier that refers uniquely to some entity both

while it exists and for a long time after it is deleted. A time-stable identifier
allows a system to remember an identity across transient failures, and to
detect and report errors for attempts to access deleted entities.

TLB See translation lookaside buffer.
top half With regard to system operation, the routines in the kernel that are invoked

synchronously as a result of a system call or trap. These routines depend on per-
process state and can block by calling sleep (). See also bottom half.

trace trap A trap used by the system to implement single-stepping in program
debuggers. On architectures that provide trace-bit support, the kernel sets the
hardware-defined trace bit in the context of the process being debugged, and
places the process on the run queue. When the process next runs, the trace bit
causes a trap to be generated after the process executes one instruction. This
trap is fielded by the kernel, which stops the process and returns control to the
debugging process.

track In computer systems, the sectors of a disk that are accessible by one head
at one of its seek positions.

track cache When the kernel is reading from a disk, memory associated with the
disk that holds data that are passing under the disk heads regardless of
whether they have been requested explicitly. When the kernel is writing to a
disk, memory associated with the disk in which data are stored until the disk
heads reach the correct position for writing them.

translation lookaside buffer (TLB) A processor cache containing translations
for recently used virtual addresses.

Transmission Control Protocol (TCP) A connection-oriented transport protocol
used in the Internet. TCP provides for the reliable transfer of data, as well as
for the out-of-band indication of urgent data.

transport layer The layer of software in the network subsystem that provides
the addressing structure required for communication between sockets, as well
as any protocol mechanisms necessary for socket semantics such as reliable

Glossary 547

triple indirect block See indirect block.
tty driver The software module that implements the semantics associated with a

terminal device. See also line discipline.
2MSL timer A timer used by the TCP protocol during connection shutdown. The

name refers to the fact that the timer is set for twice the maximum time that a
segment may exist in the network. This value is chosen to ensure that future
shutdown actions on the connection are done only after all segments associ-
ated with the connection no longer exist. See also maximum segment lifetime.

type-ahead Transmission of data to a system, usually by a user typing at a
keyboard, before the data are requested by a process.

u-dot See user structure.
UDP See User Datagram Protocol.
UID See user identifier.
uio A data structure used by the system to describe an I/O operation. This struc-

ture contains an array of iovec structures; the file offset at which the operation
should start; the sum of the lengths of the I/O vectors; a flag showing whether
the operation is a read or a write; and a flag showing whether the source and
destination are both in the kernel's address space, or whether the source and
destination are split between user and kernel address spaces.

urgent data In TCP, data that are marked for urgent delivery.
user area See user structure.
User Datagram Protocol (UDP) A simple, unreliable, datagram protocol used in

the Internet. UDP provides only peer-to-peer addressing and optional data
checksums.

user identifier (UID) A nonnegative integer that identifies a user uniquely. UIDs
are used in the access-control facilities provided by the filesystem. See also
effective user identifier; real user identifier; saved user identifier; set-user-
identifier program.

user mode The least privileged processor-access mode. User processes run in
user mode.

user-request routine A routine provided by each communication protocol that
directly supports a socket (a protocol that indirectly supports a socket is lay-
ered underneath a protocol that directly supports a socket). This routine
serves as the main interface between the layer of software that implements
sockets and the communication protocol. The interprocess-communication
facilities make calls to the user-request routine for most socket-related system
calls. See also connect request; control request; listen request; sense request.

user structure A data structure maintained by the kernel for each active process
in the system. The user structure contains the process control block, process
statistics, signal actions, and kernel-mode run-time stack. Unlike the process
structure, the user structure for a process is moved to secondary storage if the
process is swapped out Also referred to as the u-dot area



548 Glossary

virtual address An address that references a location in a virtual address space.
virtual-address aliasing Two or more processes mapping the same physical

page at different virtual addresses. When using an inverted page table, there
can only be one virtual address mapping any given physical page at any one
time. Here, the kernel must invalidate the page-table entry for the aliased
page whenever it switches between the processes with the conflicting virtual
addresses for that page. See also inverted page table.

virtual address space A contiguous range of virtual-memory locations.
virtual machine A machine whose architecture is emulated in software.
virtual memory A facility whereby the effective range of addressable memory

locations provided to a process is independent of the size of main memory;
that is, the virtual address space of a process is independent of the physical
address space of the CPU.

virtual-memory object A kernel data structure that represents a repository of
data—for example, a file. An object contains a pager to get and put the data
from and to secondary storage, and a list of physical pages that cache pieces
of the repository in memory.

vnode An extensible object-oriented interface containing generic information
about a file. Each active file in the system is represented by a vnode, plus
filesystem-specific information associated with the vnode by the filesystem
containing the file. The kernel maintains a single systemwide table of vnodes
that is always resident in main memory. Inactive entries in the table are
reused on a least-recently used basis.

wait The system call that is used to wait for the termination of a descendent
process.

wait channel A value used to identify an event for which a process is waiting.
In most situations, a wait channel is defined as the address of a data structure
related to the event for which a process is waiting. For example, if a process
is waiting for the completion of a disk read, the wait channel is specified as
the address of the buffer data structure supplied to the block I/O system.

wildcard route A route that is used if there is no explicit route to a destination.
window probe In TCP, a message that is transmitted when data are queued for

transmission, the send window is too small for TCP to bother sending data,
and no message containing an update for the send window has been received
in a long time. A window-probe message contains a single octet of data.

wired page Memory that is not subject to replacement by the pageout daemon.
A nonpageable range of virtual addresses has physical memory assigned
when the addresses are allocated. Wired pages must never cause a page fault
that might result in a blocking operation. Wired pages are typically used in
the kernel's address space.

Glossary 549

word-erase character The character that is recognized by the terminal handler
in canonical mode to mean "delete the most recently typed word on this ter-
minal." By default, preceding whitespace and then a maximal sequence of
non-whitespace characters are erased. Alternatively, an alternate erase algo-
rithm tuned to deleting pathname components may be specified. Each termi-
nal session can have a different word-erase character, and the user can change
that character at any time with an tcsetattr system call. The terminal handler
does not recognize the word-erase character on terminals that are in non-
canonical mode. See also erase character; kill character.

working directory See current working directory.
working set The set of pages in a process's virtual address space to which mem-

ory references have been made over the most recent few seconds. Most pro-
cesses exhibit some locality of reference, and the size of their working set is
typically less than one-half of their total virtual-memory size.

zombie process A process that has terminated, but whose exit status has not yet
been received by its parent process (or by init).



Index

., 247, 252

.., 92, 225, 247, 252-253
#!,60

abortop vnode operator, 243
absolute pathname, 37, 513, 534
Accent operating system, 361, 382
accept system call, 366, 378, 380-381, 392,

463, 480, 482
definition, 366

access control, filesystem, 39
access rights, 43, 363, 367, 375, 385, 513

passing, 388-390
receiving, 387

access system call, 233
access vnode operator, 242
accounting, process resource, 58, 71-72,

100
accton, 506
active page list, 167, 169-170
address family, 379, 395, 513
address format, 395, 513
Address Resolution Protocol, 413, 430-432,

513-514
implementation of, 430-432
purpose of, 430

address, socket, 378-380
address space. See virtual address space

address structure
Internet, 379
local domain, 379
socket, 364-365

address translation, 118, 513
adjtime system call, 64
advisory locking, 210, 242, 513
advlock vnode operator, 242
AGE buffer list, 229-231, 239, 514-515
agent, IP multicast, 450
algorithm

for disksort() 199
elevator sorting, 198
mark-and-sweep garbage collection, 389
mbuf storage-management, 372-373
for physical I/O, 203
TCP, 457-463
TCP slow-start, 472-476

Allman, Eric, xi, xv
allocation

descriptor, 381
directory space, 248
FFS file block, 274, 278-281
FFS fragment, 280-281
inode, 244
kernel address space, 128-132
kernel memory, 31
kernel resource, 147-148
PID, 99
virtual memory map, 181-184

551



552 Index

allocbuf() 230-231
ancillary data, 366, 383, 385, 480, 514
Andrew Filesystem, 312
anonymous object, 133, 135, 514
a.out, 60
append-only file, 263
application, client-server, 41
arguments, marshalling of, 314, 530
ARP. See Address Resolution Protocol
ARPANET, 9, 13, 436-438

Reference Model, 436
arpresolve() 432
assembly-language startup, 494-495
assembly language in the kernel, 24, 53, 97,

196
AST. See asynchronous system trap
asynchronous I/O, 206

in,pageout(), 170
asynchronous system trap, 50, 97, 514
attribute manipulation, filesystem, 242
attribute update, filestore, 265
autoconfiguration, 45, 496-502

alternative schemes for, 502
classes, 500
contribution of, 11
data structures, 499-501
device driver support for, 195, 497-502
functions, 501
of interrupt vector, 498
phase, 497-498, 514

B
B programming language, 7
Babaoglu, Ozalp, 8
background process, 110, 344, 514, 523
backing storage, 117, 514
bawrite(), 228
bcopy(), 186
BCPL, 7
bdwrite( ), 228
Bell Laboratories, 3-4, 7, 15
benefit of global vnode table, 224
Berkeley Software Design Inc., 3, 10, 16
bind system call, 444

definition, 365
biod, 320
blkatoff vnode operator, 266

block accounting, 514
LFS, 292-294

block clustering, 273-274, 281-283
block device, 34, 196-200, 514

operations, 197
table, 194,515

block-device interface, 193-194, 197-198,
203,515

block I/O, 196, 267-268, 515
block size, 194,270,515
Bolt Beranek and Newman, 8, 44, 371
boot, 491-494, 508, 522

flags, 493
operation of, 492-493

bootstrapping, 24, 45, 198, 491-493, 497,
515

setting time when, 63
see also boot

boot_time, 332
bottom half of, 50, 515

device driver, 195
kernel, 50-52, 91
terminal driver, 340
terminal driver input, 351-352
terminal driver output, 350

bread(\ 197, 228, 230
breadn() 230
break character, 351
breakpoint fault, 112, 515
brelse() 228
bremfree() 230
broadcast message, 402, 445-446, 450, 485,

515
address, 402, 441
IP handling of, 448

broadcast storms, 450
BSD/OS operating system, 10
BSDI. See Berkeley Software Design Inc.
bss segment, 60, 515
b_to_q(), 345, 349
buffer cache, 193-194, 196-197, 201-202,

226,245,285,515
consistency, 231
effectiveness, 226
implementation of, 229-231
interface, 227-228
LFS usage of, 294-295
management, 226-231

Index 553

memory allocation, 230-231
structure of, 228-229

buffer list
AGE, 229-231, 239, 514-515
EMPTY, 229-231
LOCKED, 228, 294
LRU, 228-229, 239

buffering
filesystem, 196-197, 226-227
network, 426-427
policy, protocol, 427
terminal, 344-346

bwrite() 197, 228
bzero() 186

C-block, 345-346,516
C library, 64

system calls in the, 54
C-list, 344-346, 349-350, 352, 356-357,

517
C programming language, 3-4, 7, 17, 26, 54
C++ programming language, 7
C70, 371
cache

directory offset, 249
filename, 225-226
inode, 246-247
object, 136-137, 532

callback, 327, 516
callout queue, 59-60
canonical mode, 42, 338, 516
capability, 225, 388, 516
Carnegie-Mellon University, 361
castor oil, 345
catq( ), 345
caught signal, 27, 102, 516
CD-ROM, 36, 237
CD9660 filesystem, viii, 238
character device, 34, 200-204, 516

driver, 201
ioctl, 204
operations, 203
table, 194,517

character device interface, 193-194, 201,
203-204,339,516

character-oriented device, 202-204
character processing, 42-43
chdir system call, 38, 519
checkalias() 226
checkpoint, 290, 517
checksum, 437, 443-445, 448, 464, 469, 517
chflags system call, 263
child process, 26, 83, 98, 517
chkdq( ),255-256, 274
chmod system call, 39
Chorus operating system, 22
chown system call, 39
chroot system call, 38, 539
CIDR. See Classless Inter-Domain Routing
Classless Inter-Domain Routing, 440, 480

Internet addresses, 440-441
cleaner, LFS, 287, 290, 297-300, 517
client, 41

process, 365, 517
server application, 41
server interaction, NFS, 321-322

clist_init( ), 503
clock

alternate, 58
initialization, real-time, 503
interrupt handling, 57-58
interrupt rate, 58, 503
real-time, 50

clock_skew, 328, 332
cloning route, 431, 517
close-on-exec, 207-208
close system call, 32, 207, 210, 224, 232,

326-327, 340, 367, 390-391, 463
close vnode operator, 242
closedir() 248
cluster, 273-274, 517
clustering, block, 273-274, 281-283
cold start, 491, 517
communication domain, 43, 363, 374-375,

517
data structures, 375

communication protocol. See protocol
Computer Consoles, Inc., 14
Computer Systems Research Group, vii, xv,

xvi, 3, 9-13, 15-17, 44
config, 497, 499, 507,518

files generated by, 507
functions, 501



554 Index

configuration
device, 497
file, 507, 518
kernel, 507
procedure, 497, 518

congestion control
network, 426-421
TCP, 472-176
see also network buffering

connect request, 407, 518
connect system call, 365-366, 380, 382,

444,446,461^62,482,518
definition, 365

connection
queueing, socket, 378, 381
setup, TCP, 453, 461-463
shutdown, TCP, 454-455, 463
states, TCP, 453-456

console
monitor, 492, 518
processor, 492, 518

contents update, filestore, 266
context switching, 55, 78, 87-92, 518

involuntary, 87, 97
process state, 87-88
voluntary, 87-91

control-output routine, protocol, 409-410
control request, 408, 518
controlling process, 68, 109, 518
controlling terminal, 28, 68, 109, 518

revocation of, 224
cooked mode, 338
copy object, 135, 145-146
copy-on-write, 8, 30, 149, 188, 518
core file, 28, 102,519
coredump(), 106
Cornell University, 45
cpu_exit() 100
cpu_startup() 495, 502
cpu_switch(), 96-97

operation of, 96
crash, 197,519
crash dump, 195, 198, 508, 519
crash recovery, NFS, 332-333
create system call, 295
create vnode operator, 242-243
creation and deletion, filestore, 265
cron, 506

csh shell, 110
CSRG. See Computer Systems Research

Group
CTSS operating system, 4
curproc, 97, 100
current working directory, 38, 251, 519
CURSIG, 104, 106

D
daemon

NFS, 319-321
process, 211, 519
routing, 425
T-shirt, xi

DARPA. See Defense Advanced Research
Projects Agency

data-carrier detect, 346-347
data-communications equipment, 346, 545
data segment, 29, 60-61, 151, 519

expansion, 152
data structures

autoconfiguration, 499-501
communication domain, 375
interprocess communication, 374-380
socket, 376-378

data-terminal equipment, 346-347, 545
data-terminal ready, 346-347, 355
datagram socket, 364, 519
DCD. See data-carrier detect
DCE. See data-communications equipment
dead filesystem, 224
deadlock avoidance

during fork system call, 148
when locking resources, 92

deadlock detection, 258
debugging

gdb, 112,508
information in exec header, 61
process, 105, 112-114
system, 508
see also ptrace system call

decapsulation, 396, 400, 519
default pager, 160
Defense Advanced Research Projects

Agency, 9, 11, 13, 44, 361-362, 379,
435-136,519

steering committee, 9

Index 555

demand paging. See paging
dependencies, virtual memory machine,

173-187
descriptor, 32, 519

allocation, 381
duplication, 208
management of, 33-34, 205-209
multiplexing, 211-213
passing in local domain, 207
table, 33, 205, 520
use of, 32-33

design
4.2BSD, 13-14
4.2BSD IPC, 11,362-363
4.2BSD network, 16,44
4.3BSD, 14
4.4BSD, 15-16
4BSD, 12-16
I/O system, 31-36
mbuf, 371-372
memory-management, 29-31
NFS, 312-313

/dev/console, 505
/dev/fd, 238
/dev/klog, 495, 531
/dev/kmem, 239, 263, 495, 509-510
/dev/mem, 200, 204, 263
/dev/null, 200
device, 34-35

character-oriented, 202-204
configuration, 497
flags, 347, 520
interrupt, 55-56
interrupt handler, 56
number, 194, 520
pager, 159
probing, 195
raw, 201-202
special file, 34, 520
swap, 122, 544

device driver, 34, 193-194, 520
attach routine, 498-499, 501
bottom half of, 195
code for select system call, 215
interrupt handling, 196
maximum transfer size, 201
naming, 501-502
probe routine, 498, 501

sections of a, 195
slave routine, 499, 542
support for autoconfiguration, 195,

497-502
support for select system call, 204,

213-216
top half of, 195

Digital Equipment Corporation, 8
direct memory access, 202, 349-350, 353,

520-521
directed broadcast, 485, 520
directory, 37, 247, 520

entry, 37, 244, 520
offset cache, 249
operations, 38-39
operations, LFS, 295-296
space allocation, 248
structure, 247-249

disk geometry, FFS use of, 275
disk label, 199-200
disk partition, 198, 266, 520, 531
disk structure

FFS, 269-271
LFS, 286-288

disksort() 198-199
algorithm for, 199

distributed filesystem, 39
DMA. See direct memory access
dmesg, 495
doadump(), 508
domain. See communication domain
double indirect block, 245, 521, 525
dquot entry, 255-256
DTE. See data-terminal equipment
dtom(), 371-374
DTR. See data-terminal ready
dumpsys(), 508
dup system call, 34, 40, 207-208, 389, 520,

522
implementation of, 208

dup2 system call, 34, 208, 522
duplication, process virtual memory,

148-150

E
effective GID. See effective group identifier
effective group identifier, 66, 521



556

effective UID. See effective user identifier
effective user identifier, 66, 521
Eighth Edition UNIX, 7, 15, 44, 113
elevator sorting algorithm, 198, 521
Elz, Robert, 12, 253
EMPTY buffer list, 229-231
encapsulation, 396, 400, 521
entry to kernel, 52-53
environment, location of process, 62
epoch, 64
erase character, 338, 521
errno, 26, 54, 354, 521
error-message buffer, 495, 521
/etc/exports, 319
/etc/gettytab, 506
/etc/group, 507
/etc/master.passwd, 506
/etc/re, 263, 505-506
/etc/rc.local, 506
/etc/ttys, 505
ether_input(), 432
Ethernet, 9, 14, 44, 397, 436
eviction notice, 330, 521
exec header, 61
exec system call, 27, 33, 65, 67, 71, 77, 98,

108-109,113, 128, 146, 149-152, 155,
157, 182, 188, 207-208, 504, 507, 537,
540-541

operation of, 150-151
exit(\ 100, 106, 155
exit system call, 27, 85, 98-99, 150, 154,

156, 158
operation of, 100, 154-156
status, 27, 83, 100

exported filesystem services, 222-223
external data representation, 314

Fast Filesystem, 41, 265, 269-286, 288-289,
292, 295-297, 300-301, 303-304,
306-307

cluster map, 283
cylinder group, 270-271,519
disk structure, 269-271
ffs_balloc() 274, 278-280, 297
ffs_read() 273, 282, 297
ffs_realloccg (), 279-280
ffs_write(), 274, 297
file block allocation, 274, 278-281

Index

file block extension, 279
file I/O, 273-275
fragment allocation, 280-281
fragment-descriptor table, 281, 523
fragmentation, 271-274
free-space reserve, 274, 523
implementation of, 269-272, 275-284
layout policies, 276-277
local allocation routines, 277-278
organization, 269-271
parameterization, 275-276
redesign, 269-272
redundant information in, 271
rotational delay, 276
rotational-layout table, 280, 539
storage optimization, 271-275
synchronous operations, 284
use of disk geometry, 275

fast retransmission, TCP, 476-477
fault rate, 120, 522
fchdir system call, 519
fchflags system call, 263
fchmod system call, 39
fchown system call, 39
fcntl system call, 11, 207-208, 352, 482, 520
fdesc filesystem, 238
Federal Information Processing Standard, 11
fetch policy, 120,522
FFS. See Fast Filesystem
FIFO file, 32, 35, 219, 226, 242, 522
FIFO. See FIFO file
file, 32, 247, 522

access validation, 65
append-only, 263
control, filesystem, 242
creation, LFS, 296
deactivation, 223
descriptor locking, 209-211
executable, 60
flags, 263
handle, NFS, 314, 522
hole in, 40, 524
I/O, FFS, 273-275
I/O, LFS, 297
immutable, 263
interpretation, filesystem, 242
large, 262-263
management, filesystem, 242
mapping, 152-154
offset, 33, 206, 522

Index 557

permission bits, 65
reclaim, 223-224
size distribution, 271

file block
allocation, FFS, 274, 278-281
locality of reference, 277
reading, 273
writing, 274

file entry, 205-207
flag, 206-208
handling during fork system call, 207
implementation of, 206-207
object oriented, 205-206, 208
operations, 205

file locking, 207, 209-211, 257-262
implementation of, 210-211, 258-262
NFS, 313
semantics of, 257-258

file structure, 205, 376, 522
file-table flag, 352
filename, 37, 522

cache, 225-226
negative caching of, 225
whiteout, 236

filestore
abstraction, 266-268
attribute update, 265
contents update, 266
creation and deletion, 265
implementation of, 266-268
operations, 265-266
overview, 40-41
size update, 266

filesystem, 193, 522
access control, 39
attribute manipulation, 242
buffering, 196-197, 226-227
CD9660, viii, 238
deficiencies, 15
distributed, 39
fdesc, 238
file control, 242
file interpretation, 242
file management, 242
independent services, 223-231
initialization, 503-505
kernfs, 238
layer, 234-235
links, 251-253
MS-DOS, 39

name creation, 242
name deletion, 242
name length, 40
name lookup, 249
name translation, 38, 249-250
naming, 247-253
nullfs, 234-235
old, 269
operations, 241-243
overview, 36^4-0
portal, 222, 237-238
/proc, 36, 113-114,238,536
procfs, 238
quotas, 11,253-256
resource locking, 92
stackable, 231-238
support for multiple, 15, 36
umapfs, 234-235, 324
union, 235-237
see also buffer cache, quotas

filter, packet, 403
First Edition UNIX, 77
first-level bootstrap, 200
flags, file, 263
floating point in the kernel, use of, 461
flock system call, 313
flow control in TCP, 452
foreground process, 109-111, 344, 514, 522
fork system call, 4, 26, 33, 40, 71, 77, 82,

85, 88, 98-99, 108-109, 113, 141,
146-149, 169, 182, 184, 188, 207-208,
503-504, 517, 522, 534-535, 537

deadlock avoidance during, 148
file entry handling during, 207
implementation of, 147-148
implementation issues, 148-149
see also process creation

Fortran programming language, 17, 39
forward-mapped page table, 173, 523
4.0BSD, 9
4.1aBSD, 17
4.1BSD, 9-10
4.2BSD, 9-10

design, 13-14
IPC design, 11,362-363
network design, 16, 44
virtual-memory interface, 10

4.3BSD, 9-10
compatibility of, 14-15
design, 14



558

network additions in, 45
Reno release, 9, 14, 479
Tahoe release, 9, 12, 14, 461
virtual-memory system deficiencies, 15

4.4BSD, 4
as a real-time system, 79-80, 97, 140-141
design, 15-16
kernel, division of software in, 24
Lite, xi, 9
obtaining, xi
portability of, 23
supported architectures, 9, 15

4BSD design, 12-16
fragmentation, FFS, 271-274
free(),31, 129, 187
free page list, 168
FreeBSD, xi, 3, 10, 16, 36
free_min, 169
free_target, 168
fsck, 200, 202, 269, 300-301, 505-506
fseek(), 17
fstat system call, 39, 262, 408
fsync system call, 197, 219-220, 228, 282,

291, 326
fsync vnode operator, 266
ftruncate system call, 262
functions, autoconfiguration, 501

garbage collection, 389, 523
gateway, 416, 523

handling, 418-420
intelligent, 418
kernel configuration, 373

gdb, 112,508
generation number, 315, 523
GENIE operating system, 4
getattr vnode operator, 242
getblk(), 230
getc() 345, 350, 352
getdirentries system call, 248
getfsstat system call, 223
getlogin system call, 507
getnewbuf( ), 230-231
getnewvnode( ), 224-225
getpeername system call, 367
getrlimit system call, 262
getrusage system call, 69

Index

getsockname system call, 367
getsockopt system call, 367, 405, 410
gettimeofday system call, 63-64
getty, 505-507
GID. See group identifier
global page-replacement algorithm, 167, 524
global vnode table, benefit of, 224
Greenwich time. See Universal Coordinated

Time
group identifier, 65-67, 71, 234, 324, 521,

523-524, 537, 540-541
use in file-access validation, 65

gsignal (), 104

H
hard limit, 70, 524
hard link, 251,524
hardclock() 57-59, 64, 69, 95
Harris, Guy, 12
Harvard University, 8
header prediction, TCP, 465, 524
heap, 62, 524
Hibler, Mike, xi
high watermark on, 524

socket, 378, 384, 427
terminal, 348

history of
job control, 10
process management, 77
remote filesystems, 311-312
UNIX, 3-10

home directory, 38, 524
host identifier, 67-68
host name, 67
host unreachable message, 477, 525
HP300, ix, 24-25, 51-54, 56-58, 63, 161,

175-179, 182-188
stack growth on, 62

Hyperchannel, 14

I/O, 525
asynchronous, 206
nonblocking, 208, 212, 346-347, 355,

381-382, 384, 387, 532
physical, 202
queueing, 195

Index

redirection, 33, 527
scatter/gather, 35-36, 46, 218, 383
signal driven, 208, 212, 542
system design, 31-36
types of kernel, 193-194

I/O buffer, 197-198
I/O stream, 32, 527
I/O vector, 216-218
ICMP. See Internet Control Message

Protocol
icmp_error(), 478
idempotent, 314,525
idle loop, 97, 525
idle swap time, 171
IEEE. See Institute of Electrical and

Electronic Engineers
ifaddr structure, 400, 404, 420
ifconfig, 356
if_data structure, 402
if_done (),405
ifnet structure, 400-401, 404
if_output(), 405
if_start ( ),405
IGMP. See Internet Group Management

Protocol
ignored signal, 27
immutable file, 263
IMP. See Interface Message Processor
implementation of

ARP, 430-432
buffer cache, 229-231
dup system call, 208
FFS, 269-272, 275-284
file entry, 206-207
file locking, 210-211, 258-262
filestore, 266-268
fork system call, 147-148
ioctl system call, 209
kernel malloc, 130-131
LFS, 286-290, 294-301
MFS, 303-304
munmap system call, 152-153
NFS, 318-321
pipe, 33
pmap_enter(), 181-183
pmap_remove(), 183-184
quotas, 253-256
select system call, 213-216
sleep(), 84-85, 88-90

559

sysctl system call, 509-510
uiomove (), 216-218
wakeup(), 90-91

improvements to MFS, 305-306
inactive page list, 136, 167-171, 185
inactive vnode operator, 223-224, 242, 246
inactive_target, 169
Ingres database system, 362
ink, 27, 49, 83, 169, 263, 504-507, 525, 549

initial startup of, 504
initclocks(), 503
initial sequence number, 451, 525, 541
initial startup of init, 504
initialization

filesystem, 503-505
kernel, 493-505
machine-dependent, 495-502
machine-independent, 502-505
mbuf, 503
pagedaemon, 504
paging system, 503
real-time clock, 503
system data structures, 496
system processes, 502-504
user-level system, 505-507
virtual memory, 179-181, 186
see also bootstrapping

inode, 218, 267, 286, 306-307, 501, 504,
525

allocation, 244
cache, 246-247
contents, 243
definition, 243-245
locality of reference, 276
management, 245-247

in_pcballoc(), 443
in_pcbbind(), 444
in_pcbconnect(), 444, 462
in_pcbdetach(), 446
in_pcblookup(), operation of, 445
insecure mode, 263
Institute of Electrical and Electronic

Engineers, 11, 535
intelligent gateway, 418, 525
interactive program, 79, 525
Interdata 8/32, 7
interface

addFesses, network, 401-402
buffer cache, 227-228



560 Index Index 561

capabilities, network, 402-404
character device, 193-194, 201, 203-204,

339,516
line switch, 339, 528
mmap system call, 139-141
network, 400-405
output, network, 404-405
pager, 156-162
protocol, 375
protocol-network-interface, 412-416
protocol-protocol, 410-412
socket-to-protocol, 405-410
virtual-filesystem, 218-223

Interface Message Processor, 412, 425,
437-438

internal requests, protocol, 409
International Organization for

Standardization, 238, 528
domain, 478-480
implementation issues, 478-480
model, 396, 436
protocol suite, viii, 14-16, 43, 45, 379,

385,430,435,478-480
Internet addresses

broadcast, 441
CIDR, 440-441
host, 437-441, 526
multicast, 441
packet demultiplexing, 442
structure, 379
subnet, 438-440

Internet Control Message Protocol, 425,
428, 436-437, 446, 450, 474, 477-^78,
525-526, 536

interaction with routing, 478
port unreachable message, 446

Internet domain, 9, 12, 17, 43, 526
Internet Group Management Protocol, 441
Internet Protocol, viii, 3, 9, 44-45, 322-323

356, 397,428,436-452,464,469,
477-478, 480,482-485, 526-527, 536

control block, 442-443
fragmentation, 436, 446-449
handling of broadcast message, 448
input processing, 448-450
multicast agent, 450
options, 447
output processing, 447-448
packet demultiplexing, 443

packet forwarding, 449-450, 478
protocol header, 447
pseudoheader, 443, 445, 464
responsibilities of, 446

interpreter, 60, 526
interprocess communication, 8, 14-15, 21,

33, 35, 43-44, 70, 361-391, 526-527
connection setup, 380-382
data structures, 374-380
data transfer, 382-390
design, 4.2BSD, 11, 362-363
facilities, interface design, 367
layers, 368
memory management in, 369-374
model of, 362-368
receiving data, 385-387
reliable delivery, 384
socket shutdown, 390-391
summary of, 480-483
transmitting data, 383-384

interrupt, 526
device, 55-56
priority level, 51, 91, 526
stack, 86, 103, 526

interrupt handling, 55-57
clock, 57-58
device driver, 196

interruptable sleep(\ 84, 105
interrupt vector, autoconfiguration of, 498
interrupted system call, 54, 103
interval time, 64
inverted page table, 174
involuntary context switching, 87, 97
ioctl, character device, 204
ioctl system call, 34, 110, 206, 209,

340-342, 344, 353-355, 387, 400, 404,
408,425,479,518

implementation of, 209
, ioctl vnode operator, 242

iovec structure, 216-218, 527
IP. See Internet Protocol
IPC. See interprocess communication
ipintr() operation of, 448-450
ip_output(\ 444-445, 447, 450, 469, 477

operation of, 447-448
ISO. See International Organization for

Standardization
is signal (), operation of, 106
ITS operating system, 10

job control, 28-29, 110-112, 527
history of, 10
signals in 4.4BSD, 28
terminal driver support for, 343-344, 348,

352
use of process group, 28

Joy, William, 8

K
keepalive packet, 459, 527
keepalive timer, 459, 527
Kerberos authentication, 320, 324-325
/kern, 238
kernel, 22, 527

address space allocation, 128-132
assembly language in the, 24, 53, 97, 196
bottom half of, 50-52, 91
configuration, 507
configuration, gateway, 373
entry to, 52-53
I/O, types of, 193-194
initialization, 493-505
loading of, 179
memory allocation, 31
memory management, 126-132
mode, 77, 122, 527
organization, 23-25
partitioning, reason for, 22
preemption, 52
process, 49, 528
resource allocation, 147-148
return from, 53
security level, 263
state, 78, 528
top half of, 50-52,91

kernel malloc, 129-132
implementation of, 130-131
requirements, 129-130

kernel stack location, 62, 86
kernfs filesystem, 238
kill character, 338, 528
kill system call, 102
killpg system call, 110, 535
kmem_alloc() 128
kmem_alloc_pageable(), 128-129
kmem_alloc_wait(), 128-129, 178
kmem_free(), 129

kmem_free_wakeup(), 129
kmem_malloc(), 128

large file, 262-263
layout, virtual memory, 123-124
Ibolt, 88, 349
lease, 528

NFS, 318, 328-332
noncaching, 329, 331
obtaining an, NFS, 332
read-caching, 329
write-caching, 329-330

least recently used, 136, 229, 256, 294, 528,
530

buffer list, 228-229, 239
LFS. See Log-structured Filesystem
Ifsjbmapv system call, 299-300
lfs_markv system call, 299-300
lfs_segclean system call, 299-300
lfs_segwait system call, 299-300
lightweight process, 80, 116
limits in system, 253
line discipline, 339-340, 347, 355-356, 528

close (), 355
output(\ 347-349
SLIP, 356
tablet, 356

line mode, 338, 528
line switch interface, 339, 528
link layer, 396, 528
link system call, 38, 295. See also filesystem

links
link vnode operator, 242
LINUX operating system, 10
LISP programming language, 9
listen request, 407, 528
listen system call, 366, 380-381, 463, 528

definition, 366
load average, 94-95, 528
local domain, 43, 242, 529

address structure, 379
descriptor passing in, 207
passing access rights in the, 389-390

local page-replacement algorithm, 167, 529
locality of reference, 121, 276-277, 529
lock vnode operator, 242
LOCKED buffer list, 228, 294



562

locking
advisory, 210, 242, 513
file descriptor, 209-211
mandatory, 210, 530
resources on a shared-memory

multiprocessor, 92
resources, deadlock avoidance when, 92
semantics of, file, 257-258
socket data buffer, 384

log, 286, 529
LFS, 290-295

Log-structured Filesystem, 41, 236, 265,
285-301, 307

block accounting, 292-294
checkpoint, 291-292
cleaner, 287, 290, 297-300, 517
directory operations, 295-296
disk structure, 286-288
file creation, 296
file I/O, 297
implementation of, 286-290, 294-301
index file, 288-290, 525
inode map, 287
lfs_balloc( ), 297
lfs_read() 297
lfs_write(\ 297
log, 290-295
log reading, 290-291
log writing, 291-292
organization, 286-288
parameterization, 300
performance, 285-286
recovery, 300-301
roll forward, 301
segment summary, 287-288
usage of buffer cache, 294-295

logical
block, 267, 529
device unit, 501
drive partitions, 529
unit, 529

login, 65-66, 263, 506-507
login name, 68
login shell, 22
long-term scheduling algorithm, 93
lookup vnode operator, 222, 242
low watermark on, 529

socket, 378
terminal, 348-350

Index

LRU. See least recently used
ls, 276
lseek system call, 33, 206, 262, 522
lstat system call, 252, 262

M
Mach operating system, 10, 22, 30, 123, 142,

156, 160, 176-177, 184
machine-dependent initialization, 495-502
machine-independent initialization, 502-505
Macklem, Rick, xi, 318
m_adj() 373
magic number, 60, 530
main(), 495-496, 502, 505
main memory, 117, 530
major-device number, 194, 501, 530
malloc( ), 31, 62, 123-124, 128-129, 151,

155, 187, 372-373, 376, 399, 427, 524
Management Information Base, 510
mandatory locking, 210, 530
mapping, 176

physical to virtual, 180-181
structure, 176, 530

maps, virtual memory, 127-128
mark-and-sweep algorithm, 389, 530
marshalling of arguments, 314, 530
Massachusetts Institute of Technology, 4, 10
MAXBSIZE, 227, 230
maximum segment lifetime, 455, 485-486,

530-531. See also 2MSL timer
maximum-segment-size option, TCP, 453,

462
maximum transmission unit, 420, 462
maximum_lease_term, 328, 332
mbuf, 127, 369-372, 530

allocation of, 373
cluster, 369-374
data structure description, 369-371
design, 371-372
initialization, 503
storage-management algorithm, 372-373
utility routines, 373-374

m_copy(], 469
m_copydata(), 373, 469
m_copym(), 373
memory allocation

buffer cache, 230-231
kernel, 31

Index 563

Memory-based Filesystem, 41, 265,
302-306

design, 302-303
implementation of, 303-304
improvements to, 305-306
organization, 303-304
performance, 305

memory management, 29-31, 117-187
cache design, 174-175
design, 29-31
goals, 117-123
hardware, VAX, 30
in IPC, 369-374
kernel, 126-132
page-table design, 175-176
portability of, 30
system, 117,530

memory-management unit, 119, 173-174,
179,185,531

design, 173-174
memory overlay, 119
message buffer, 495-496, 531
metrics, route, 420, 426
m_free(), 373
m_freem( ), 373
MFS. See Memory-based Filesystem
m_get(), 373
m_gethdr(), 373
MIB. See Management Information Base
Microsoft Corporation, 8
MINIX operating system, 10
minor-device number, 194, 501, 531
minphys(), 202
MIPS, viii, 9, 15
mi_switch(), 87-88, 90, 97
mkdir system call, 38, 46, 295
mkdir vnode operator, 242
mknod system call, 34, 295, 530-531

usage of, 501
mknod vnode operator, 242
mlock system call, 140, 167, 185

definition of, 140
mmap system call, 29-31, 124, 137,

139-140, 142, 145-148, 152, 154, 157,
182,262,530

definition of, 139
interface, 139-141

mmap vnode operator, 242
MMU. See memory-management unit

modem control, 346-347, 531
ignored, 346-347

motivation for select system call, 211-213
mount, 319-320

mount options, 222
mount system call, 36, 197, 232, 234, 237,

303-304,319,505
mountd, 319-320, 324
M_PREPEND(), 374
mprotect system call, 140, 154, 184

definition of, 140
m_pullup(), 373-374, 445, 464
MS-DOS

filesystem, 39
operating system, 248, 313

MSL. See maximum segment lifetime
msync system call, 141, 157, 159

definition of, 141
mtod(), 373
MTU. See maximum transmission unit
MTXlNU, 12
multicast, 403

agent, IP, 450
Internet addresses, 441
message, 446

Multics operating system, 3, 10
multilevel feedback queue, 92, 531
multiplexed file, 361,531
multiprocessor

locking resources on a shared-memory, 92
virtual memory for a shared-memory, 30

multiprogramming, 77-78
munlock system call, 140-141

definition of, 140
munmap system call, 140, 143-144, 148,

152, 158, 183
definition of, 140
implementation of, 152-153

N
Nagle, John, 470
name

creation, filesystem, 242
deletion, filesystem, 242
length, filesystem, 40
login, 68
lookup, filesystem, 249
translation, filesystem, 38, 249-250



564

named object, 135
named pipe, 35
namei( ), 92, 481
naming

filesystem, 247-253
shared memory, 139

National Bureau of Standards, 11
NCP. See Network Control Program
ndflush( ), 350
need_resched(), 97, 106
negative caching of filename, 225
NetBSD, xi, 3, 10, 16
network

additions in 4.3BSD, 45
architecture, 395, 531
buffering, 426-427
byte order, 437, 531
congestion control, 426-427
data flow, 397-398
design, 4.2BSD, 16, 44
layer, 396, 532
layering, 396-397
mask, 439, 532
protocol capabilities, 399-400
queue limiting, 427
time synchronization, 63-64
timer, 59, 399
virtual terminal, 15, 532

Network Control Program, 436
Network Disk Filesystem, 312
Network Filesystem, viii, 14-15, 42, 158,

219, 224, 227-228, 234-235, 237, 242,
244, 287, 311-334, 378, 504, 522-523

asynchronous writing, 326
client-server interaction, 321-322
crash recovery, 332-333
daemons, 319-321
delayed writing, 326
design, 312-313
file handle, 314, 522
file locking, 313
hard mount, 322
implementation of, 318-321
interruptable mount, 322
lease, 318, 328-332
lease, obtaining an, 332
overview, 41-42
protocol, 316-318

Index

recovery storm, 333, 537
RPC transport, 322-324
security issues, 324-325
soft mount, 322
structure, 314-325

network interface, 400-405
addresses, 401-402
capabilities, 402-404
layer, 396, 531
output, 404-405

networking, summary of, 480-483
newfs, 303-305
nextc(), 345
NFS. See Network Filesystem
nfsd, 319-321, 323-325, 333
nfsiod, 320-321
nfssvc system call, 320
nice, 27, 69, 172, 532, 536, 540
Ninth Edition UNIX, 7
no-overwrite policy, 287, 532
nonlocking I/O, 208, 212, 346-347, 355,

381-382, 384, 387, 532
noncaching lease, 329, 331
nonlocal goto, 532
Not-Quite Network Filesystem, 318, 321,

328,331-332,334,528
Novell, 8, 11
NQNFS. See Not-Quite Network Filesystem
null modem connection, 347
nullfs filesystem, 234-235

o
object

cache, 136-137, 532
oriented file entry, 205-206, 208
shadow, 125, 135, 142-146, 541
virtual memory, 134-137, 548

obtaining 44BSD, xi
octet, 437, 532
off_t, 262
old filesystem, 269
Olson, Arthur, 12
open system call, 32, 34, 40, 197, 206, 232,

242-243, 245, 251-252, 340, 347, 365,
367,519

open vnode operator, 242
opendir() 248

Index 565

operations
filestore, 265-266
filesystem, 241-243
terminal, 347-355

optimal replacement policy, 120, 532
organization

FFS, 269-271
LFS, 286-288
MFS, 303-304

orphaned process group, 111-112, 533
OSI. See International Organization for

Standardization
out-of-band data, 385-386, 408, 430, 533

receipt of, 387
transmission of, 383

overlay, 24, 533

packet
filter, 403
forwarding, IP, 449-450, 478
queue, 414—416
reception, 413-416
transmission, 412-413

packet demultiplexing
Internet addresses, 442
IP, 443

page-attribute array, 181
page fault, 119, 522, 533, 537
page lists, 167-168

active, 167, 169-170
free, 168
inactive, 136, 167-171, 185
wired, 167, 169

page push, 170, 533
page replacement, 8, 120-121, 166-171

criterion for, 166-168
in the VMS operating system, 167

page table, 175
forward-mapped, 173, 523
pages, 175, 533

page-table entry, 173, 175-176, 181,
183-186,533,536

page usage, 185-186
page, wired, 128-129, 159, 177, 179-180,

183-185,187,548

pagedaemon, 49, 79, 128, 135, 156-157,
159-160, 162, 168-172, 185, 187-188,
504-505,519,528,533

initialization, 504
operation of the, 169-171

pagein(), 533
operation of, 162-166

pageout (), 533
asynchronous I/O in, 170

pageout daemon. See pagedaemon
pageout in progress, 171
pager, 126, 135-136, 156, 533

definition of, 156-157
device, 159
instance, 156
interface, 156-162
swap, 136, 160-162
vnode, 135, 157-158

paging, 8, 29, 62, 119-120, 122, 134, 137,
162-166,519,534

parameters, 168-169
system initialization, 503
systems, characteristics of, 120

panic, 508, 534
parent directory, 38
parent process, 26, 83, 98, 534
partition. See disk partition
pathname, 37, 534

translation, 222
PC. See personal computer
PCB. See process control block
PDP-11, viii, xvi, 7, 10, 54, 77
PDP-7, 3, 77
performance. See system performance
Perkin Elmer, 51
persist timer, 459, 534
personal computer, viii, 9-10, 15, 44, 52
pfctlinput() 477-478
physical block, 267, 534
physical I/O, 202

algorithm for, 203
physical mapping, 176
physical to virtual mapping, 180-181
physio(), 202, 204
PID. See process identifier
ping, 478
pipe, 32-33, 361-362, 534

implementation of, 33



566

named, 35
system call, 32, 34, 519

pipeline, 28, 33, 534
placement policy, 120, 534
Plan 9, 7
pmap, 176-187,534

functions, 178-179
initialization, 180
module, 125, 176-179, 186-187
structure, 125

pmap_bootstrap( ), 178-179, 495
pmap_bootstrap_alloc(), 178-179
pmap_change_wiring(), 185
pmap_clear_modify( ), 178, 185
pmap_clear_reference(), 178, 185
pmap_collect(), 179, 187
pmap_copy(), 179, 187
pmap_copy_on_write (), 184
pmap_copy_page(), 178, 186
pmap_create(), 179, 186
pmap_destroy(), 179, 187
pmap_enter(), 178, 182-184, 186

implementation of, 181-183
pmap_init(), 178-179
pmap_is_modified(), 178, 185
pmap_is_referenced(), 178, 185
pmap_pageable(), 179, 183, 187
pmap_page_protect(\ 178, 184-185
pmap_pinit(), 179, 187
pmap_protect(), 178, 184-185
pmap_reference(), 179, 187
pmap _re leas e(), 179, 187
pmap_remove() 178, 183-186

implementation of, 183-184
pmap_remove_all(\ 184
pmap_update(\ 179, 183-184, 187
pmap_zero_page(\ 178, 186
point-to-point protocol, 356
polling I/O, 212, 535
portability of

4.4BSD, 23
memory management, 30
Seventh Edition UNIX, 7

portable operating system interface, viii, 15,
103-104, 112, 257, 287, 340, 535

signal handling, 103-104
portal filesystem, 222, 237-238
portmap, 319

Index

POSIX. See portable operating system
interface

postsig(), 105-107
operation of, 106-107

PPP. See point-to-point protocol
pr_ctlinput(), 399, 410^12, 423, 446, 477
pr_ctloutput(), 399, 405, 410, 446
pr_drain() 399
preemption

kernel, 52
process, 92, 97

prefetching, 535
prepaging, 120, 535
pr_fasttimo(), 399, 409
pr_input() 399,410-411
printf(),495
private mapping, 139, 142
private memory, 142-146
probing, 498, 535
/proc filesystem, 36, 113-114, 238, 536
process, 26, 77, 535

checkpoint a, 508
creation, 98-99, 146-150
debugging, 105, 112-114
flags, 113
kernel, 49, 528
lightweight, 80, 116
open-file table, 245, 535
preemption, 92, 97
profiling, 55, 64
queues, 83
resource accounting, 58, 71-72, 100
scheduling, 50, 59, 63, 79-80, 91-97
state, 80-88
state, change of, 90, 100, 105-106, 112
state organization, 80-81
structure, 50-51, 78, 81-85, 87, 536
synchronization, 91
termination, 99-100, 154-156
virtual address space, 132-133
virtual memory duplication, 148-150
virtual memory resources, 132-137
virtual time, 64

process control block, 51, 86-88, 534-535
process group, 28-29, 68, 107-108, 110,

535
association with, socket, 110, 376
hierarchy, 83

Index 567

identifier, 107, 208, 376, 535
job-control use of, 28
leader, 108
orphaned, 111-112,533
terminal, 110, 343-344, 352, 355

process identifier, 26-27, 68, 80, 83, 98-99,
107-109, 114, 147, 343-344, 425,
534-535

allocation, 99
process management, 26-29, 60-63, 77-114

history of, 77
process priority, 27, 54, 69, 83-84, 88, 536

calculation of, 58, 90, 93-95
while sleeping, 84

processor priority level, 52, 535, 541
processor status longword, 52-54
procfs filesystem, 238
profil system call, 73
profiling

process, 55, 64
timer, 57, 64

program relocation, 493, 538
programmed I/O, 536
programming language

B,7
BCPL, 7
C, 3-4, 7, 17, 26, 54
C++, 7
Fortran, 17, 39
LISP, 9

protection, virtual memory map, 184-185
protocol, 43, 517

buffering policy, 427
capabilities, network, 399-400
control-output routine, 409-410
interface, 375
internal requests, 409
network-interface interface, 412-416
NFS, 316-318
protocol interface, 410-412
switch structure, 398, 536

protocol family, 364, 375-376, 395, 536
pr_output() 399,410^11
pr_slowtimo(), 399,409
pr_sysctl(), 399
pr_usrreq( ), 399,405,410
ps, 505
pseudo-DMA, 350

pseudo-terminal, 337
pseudoheader, IP, 443, 445, 464
psignal(), 104-106

operation of, 105-106
PSL. See processor status longword
PTE. See page-table entry
ptrace system call, 90, 112-114

limitations of, 113
Purdue University, 8
pure demand-paging, 120, 536
putc(), 345
pv_entry structure, 180-181, 185-186
pvjable structure, 180, 183-185

q_to_b(), 345, 350
queue limiting, network, 427
quotacheck, 256
quota.group, 254
quotas

contribution of, 11
format of record, 254
implementation of, 253-256
limits, 253

quota.user, 254

R
race condition, 536
radix search trie, 421
RAM-disk, 302-303
Rand Corporation, 8, 361
raw device, 201-202

interface, 201, 536
raw mode, 42, 338
raw-partition pager. See swap pager
raw socket, 34, 395, 428-429, 437, 478, 537

control block, 428-429
input processing, 429
output processing, 429

read-caching lease, 329
read system call, 32, 35-36, 43, 113, 206,

217, 232, 340, 352-353, 366-367, 382,
482, 522, 532, 536, 545

read vnode operator, 266
readdir(), 248



568 Index

readdir vnode operator, 242
readlink vnode operator, 242
readv system call, 35-36, 216, 366, 527
real GID. See real group identifier
real group identifier, 66, 537
real-time clock, 50

initialization, 503
real-time system, 4.4BSD as a, 79-80, 97,

140-141
real-time timer, 59, 64
real UID. See real user identifier
real user identifier, 66, 537
reboot system call, 507, 511

operation of, 507-508
receive window, 456, 537, 542
reclaim vnode operator, 224, 242, 246
record, 364, 537
recovery, LFS, 300-301
recovery storm, NFS, 333, 537
recv system call, 35-36, 366
recvfrom system call, 35-36, 366, 383
recvit(), 383
recvmsg system call, 35, 366, 383, 387, 480

data structures for, 367
red zone, 62, 502, 537
reference string, 120, 538
region, 132, 538
relative pathname, 38, 534, 538
release engineering, 16-17
reliably-delivered-message socket, 432, 538
Remote Filesystem filesystem, 312
remote filesystem performance, 325-328
remote filesystems, history of, 311-312
remote procedure call, 314, 316-327,

329-330, 332-334, 538, 540
transport, NFS, 322-324

remove system call, 295
remove vnode operator, 242
remrq(), 96
rename system call, 39, 295

addition of, 39
rename vnode operator, 242
replacement policy, 120, 538
resident-set size, 168, 538
resource

accounting, process, 58, 71-72, 100
limit, 26, 68-70
map, 162, 538
process virtual memory, 132-137

sharing, 91-92
utilization, 69-70

retransmit timer, 459, 462, 538
return from kernel, 53
return from system call, 54-55
reverse-mapped page table, 174, 526, 538
revocation of controlling terminal, 224
revoke system call, 225, 344, 355, 506
rewinddir( ), 248
RFS. See Remote Filesystem
rip_input(\ 478
Ritchie, Dennis, 3, 7, 10
rmalloc() 162
rmdir system call, 38, 295
rmdir vnode operator, 242
rmfree(), 162
roll forward, 538
root directory, 37, 539
root filesystem, 38, 491, 539
root user, 65, 544
round robin, 93, 539
round-trip time, 323, 325-326, 461

RPC timeout, 323
TCP estimation of, 460-461

roundrobinO, 95, 97
route metrics, 420, 426
router, 398, 416, 539
routing, 416-426

daemon, 425, 519, 539
information protocol, 425
interaction with ICMP, 478
interface, 425-426
lookup, 420-423
mechanism, 416-424, 539
policy, 416, 425, 539
redirect, 423, 539
socket, 425
tables, 417-424
types of, 417

RPC. See remote procedure call
RS-232 serial line, 337, 346, 545
rtalloc(), 424, 448
rtfree (), 424
rtredirect() 424, 478
RTT. See round-trip time
run queue, 83, 92, 540

management of, 96-97
VAX influence on, 96

rusage structure, 82

Index 569

Santa Cruz Operation, vii, 8
savecore, 508
saved GID, 67, 540
saved UID, 67, 540
sbappend(), 467-468
sbappendaddr(), 446
sblock() 384
sbrk system call, 62, 123-124, 147, 151, 524
sbunlock( ), 384
SC22WG15, 11
scatter/gather I/O, 35-36, 46, 218, 383
schedcpu(),95,91
schednetisr(), 415
scheduler(), 172, 505
scheduling, 78, 540

long-term algorithm, 93
parameters, 26
priority, 83, 540
process, 50, 59, 63, 79-80, 91-97
short-term algorithm, 93

SCO. See Santa Cruz Operation
SCSI bus, 496^97, 499, 501, 542

disk device driver, 501
secondary storage, 117, 540
secure mode, 263
security issues, NFS, 324-325
security level, kernel, 263
seekdir(), 248
segment, 118,451,540

bss,60,515
data, 29, 60-61, 151, 519
stack, 29, 60, 151,543
summary, LFS, 287-288
table, 175, 540
text, 29,60-61,545

select system call, 14, 204, 212-216, 239,
340, 378, 463, 482, 495, 535

device driver code for, 215
device driver support for, 204, 213-216
implementation of, 213-216
motivation for, 211-213

select vnode operator, 242
selinfo structure, 216
selrecord() 214, 216
seltrue(), 204
selwait, 214-216

selwakeup(), 214, 216, 350
semaphores, virtual memory, 138
send system call, 35-36, 44, 366, 377, 482
send window, 456, 540
sendit() 383
sendmsg system call, 35, 366, 382-383, 406,

444
data structures for, 367

sendsig(), 107
sendto system call, 35-36, 366, 382, 406,

444, 482
sense request, 408, 541
sequence numbers, TCP, 451
sequence space, 451, 541
sequence variables, TCP, 456^57
sequenced packet socket, 364, 541
Sequent, 92
Serial Line IP, 356, 541-542
server, 41

process, 365, 541
session, 29, 68, 108-109, 343-344, 541

leader, 109, 541
set-group-identifier program, 66, 541
set priority level, 91, 541, 543
set-user-identifier program, 66, 541
setattr vnode operator, 242
seteuid system call, 67
setlogin system call, 507
setpgid system call, 108-109
setpriority(), 95, 97
setpriority system call, 535
setrlimit system call, 262
setrunnable(), 87, 95, 97, 105
setrunqueue(), 96
setsid system call, 109
setsockopt system call, 367, 391, 405, 410,

441,445,471,518
settimeofday system call, 63
Seventh Edition UNIX, 7-8, 10, 15, 361

portability of, 7
sh shell, 60, 505
shadow object, 125, 135, 142-146, 541

chain, 143-145
collapse, 144-145

shared mapping, 139
shared memory, 137-146

naming, 139
shared text segment, 8
sharing, resource, 91-92



570

shell, 541
csh, 110
login, 22
sh, 60, 505

short-term scheduling algorithm, 93, 542
shutdown system call, 367, 386, 463
sigaction system call, 102-104, 106, 516
SIGALRM, 64
sigaltstack system call, 102, 104
SIGCHLD, 105, 108, 112
SIGCONT, 102, 105-106, 518
SIGHUP, 111,344,355
SIGINT, 68
SIGIO, 206, 352, 376, 542
SIGKILL, 28, 102, 106
signal, 27-28, 81-82, 100-112, 542

checking for a pending, 55
comparison with other systems, 103
delivering, 106-107
driven I/O, 208, 212, 542
handler, 27, 100, 102, 542
handling, POSIX, 103-104
masking, 102
posting, 102, 104-106
priority, 28
restrictions on posting, 102
stack, 28, 102
trampoline code, 107, 542

sigpause system call, 89
sigpending system call, 104
sigprocmask system call, 102, 530
SIGPROF, 64, 73
sigreturn system call, 103, 107, 542
SIGSTOP, 28, 102
sigsuspend system call, 102
SIGTRAP, 113
SIGTSTP, 115,352
SIGTTIN, 110, 112,352
SIGTTOU, 105, 110, 112,348
SIGURG, 376
SIGVTALRM, 64
SIGWINCH, 343
silly-window syndrome, 469, 542

TCP handling of, 469-470
single indirect block, 244, 525, 542
68000, ix, 9, 175, 182
Sixth Edition UNIX, 4, 7, 10, 15
size update, filestore, 266
slattach, 356

Index

sleep( ), 84-85, 87-89, 91-92, 95, 97, 102,
104, 114, 169, 195, 382, 515, 542, 546

implementation of, 84-85, 88-90
interruptable, 84, 105
operation of, 89
use of tsleep( ), 84-85, 88

sleep queue, 83, 542
sliding-window scheme, 452, 542
SLIP. See Serial Line IP
slow-start algorithm, TCP, 472-476
small-packet avoidance, 485, 543

TCP implementation of, 470-471
soaccept(), 482
sobind(),481
socantrcvmore(), 467, 483
sockaddr structure, 479
sockaddr_dl, 402
socket, 32, 35, 43, 193, 205, 363, 374, 395,

543
address, 378-380
address structure, 364-365
connection queueing, 378, 381
data buffer locking, 384
data buffering, 377, 384, 386
data structures, 376-378
error handling, 382
options, 405
process group association with, 110, 376
shutdown, 390-391
state transitions during rendezvous, 380
state transitions during shutdown, 390
states, 377
types, 363, 374
using a, 364-368

socket system call, 11,16, 32, 34, 43,
364-365, 374, 380, 406, 410, 481, 519

definition, 364
socket-to-protocol interface, 405-410
socketpair system call, 367, 409, 519
soconnect( ), 382, 481-482
socreate( ), 481
soft limit, 70, 543
soft link, 251, 543, 545. See also symbolic

link
softclock(), 57-59, 64
software interrupt, 56-57, 397, 448, 543
sohasoutofband(), 467
soisconnected( ), 382, 482
soisconnecting(\ 462, 482

Index 571

soisdisconnected(), 467
solisten( ), 381
sonewconn(), 463
sonewconnl (), 381
soreceive(), 319, 385-388, 392, 482
sorflush (),483
sorwakeup( ), 387
sosend() 319, 383-385, 388, 392, 468, 482,

484
soshutdown( ), 483
source-quench processing, TCP, 474
SPARC, viii, 9, 15, 496^97
Spec 1170, 11
special-device, 205

alias, 226
special file, 34, 205, 543
spin loop, 543
SPL. See set priority level
splbio() 195
splhigh(),89, 114
splimp( ), 415-416
splnet(), 384
spltty(), 92, 195, 541
splx(), 92, 415
stack, 543

growth on HP300, 62
location of kernel, 62
segment, 29, 60, 151,543
segment expansion, 152
zero filling of user, 62

stackable filesystem, 231-238
stale data, 325
stale translation, 174-175, 543
standalone, 543

device driver, 493, 543
I/O library, 493, 543
program, 492-493

standard error, 33, 544
standard input, 33, 544
standard output, 33, 544
Stanford University, 17
start_init(\ 504
stat structure, 262-263
stat system call, 39, 232, 249, 262, 408, 541
statclock() 57-58, 69
stateless protocol, 316, 544
statfs system call, 223
statistics collection, 58, 69-70
statistics, system, 58

sticky bit, 188,544
stop character, 204, 349
storage-management algorithm, mbuf,

372-373
strategy(\ 230
stream I/O system, 8, 15, 544
stream socket, 364, 544
su, 263
subnet, 14, 438-439

Internet addresses, 438-440
summary of IPC, 480-483
summary of networking, 480-483
Sun Microsystems, 12, 15, 42, 92, 218, 220,

282, 312, 314, 318, 320-321, 323, 343
superblock, 269, 544
superuser, 65, 209, 544
supplementary group array, 66
swap

area, 122, 544
device, 122, 544
map, 162
out, 79-80, 171-172
pager, 136, 160-162
partitions, 160
space, 122, 160, 545
space management, 160-162

swapin(), 90
operation of, 172-173

swapmap, initialization of, 162
swap_pager_clean(), 170
swap_pager_iodone(), 170
s\vap_pager_putpage (), 170
swapper, 49, 172, 528, 544
swapping, 29, 63, 121-122, 171-173, 544

in 4.4BSD, reasons for, 171
symbolic link, 251-253, 545
symlink system call, 295
symlink vnode operator, 242
sync system call, 197, 220, 239, 274, 291
synchronization, 91-92

network time, 63-64
synchronous operations, FFS, 284
syscall( ), 53
sysctl system call, 399, 404, 450, 509-510

implementation of, 509-510
syslogd, 495, 506
system activity, 545
system call, 22, 25-26, 50, 52, 545

handling, 30, 52-55, 87



572

result handling, 54
return from, 54-55

system calls
accept, 366, 378, 380-381, 392, 463, 480,

482
access, 233
adjtime, 64
bind, 444
chdir,38,519
chflags, 263
chmod, 39
chown, 39
chroot, 38, 539
c/ose, 32, 207, 210, 224, 232, 326-327,

340,367,390-391,463
connect, 365-366, 380, 382, 444, 446,

461-462,482,518
create, 295
dup, 34, 40, 207-208, 389, 520, 522
dup2, 34, 208, 522
exec, 33, 65, 67, 71, 77, 98, 108-109,

128, 146, 149-152, 155, 157, 182, 188,
207-208, 504, 507, 537, 540-541

exit, 27, 85, 98-99, 150, 154, 156, 158
fchdir,519
fchflags, 263
fchmod, 39
fchown, 39
fcntl, 11, 207-208, 352, 482, 520
flock, 313
fork, 4, 26, 33, 40, 71, 77, 82, 85, 88,

98-99, 108-109, 113, 141, 146-149,
169, 182, 184, 188, 207-208, 503, 517,
522, 534-535, 537

fstat, 39, 262, 408
fsync, 197, 219-220, 228, 282, 291, 326
ftruncate, 262
getdirentries, 248
getfsstat, 223
getlogin, 507
getpeername, 367
getrlimit, 262
getrusage, 69
getsockname, 367
getsochopt, 367, 405, 410
gettimeofday, 63-64
ioctl, 34, 110, 206, 209, 340-342, 344,

353-355, 387, 400, 404, 408, 425, 479,
518

kill 102

Index

killpg, 110,535
lfs_bmapv, 299-300
lfs_markv, 299-300
lfs_segclean, 299-300
lfs_segwait, 299-300
link, 38, 295
listen, 366, 380-381, 463, 528
Iseek, 33, 206, 262, 522
lstat, 252, 262
mkdir, 38, 46, 295
mknod, 34, 295, 530-531
mlock, 140, 167, 185
mmap, 29-31, 124, 137, 140, 142,

145-148, 152, 154, 157, 182, 262, 530
mount, 36, 197, 232, 234, 237, 303-304,

319,505
mprotect, 154, 184
msync, 141, 157, 159
munlock, 141
munmap, 140, 143-144, 148, 152, 158,

183
nfssvc, 320
open, 32, 34, 40, 197, 206, 232, 242-243,

245, 252, 340, 347, 365, 367, 519
pipe, 32, 34, 519
pwfil, 73
ptrace,90, 112-114
read, 32, 35-36, 43, 113, 206, 217, 232,

340, 352-353, 366-367, 382, 482, 522,
532, 536, 545

readv, 35-36, 216, 366, 527
reboot, 507, 511
recv, 35-36, 366
recvfrom, 35-36, 366, 383
recvmsg, 35, 366, 383, 387, 480
remove, 295
rename, 39, 295
revoke, 225, 344, 355, 506
rmdir, 38, 295
sbrk, 62, 123-124, 147, 151, 524
select, 14, 204, 212-216, 239, 340, 378,

463, 482, 495, 535
send, 35-36, 44, 366, 377, 482
sendmsg, 35, 366, 382-383, 406, 444
sendto, 35-36, 366, 382, 406, 444, 482
seteuid, 67
setlogin, 507
setpgid, 108-109
setpriority, 535
setrlimit, 262

Index

setsid, 109
setsockopt, 367, 391, 405, 410, 441, 445,

471,518
settimeofday, 63
shutdown, 367, 386, 463
sigaction, 102-104, 106, 516
sigaltstack, 102, 104
sigpause, 89
sigpending, 104
sigprocmask, 102, 530
sigreturn, 103, 107, 542
sigsuspend, 102
socket, 11, 16, 32, 34, 43, 364-365, 374,

380,406,410,481,519
socketpair, 367, 409, 519
stat, 232, 249, 262, 408, 541
staffs, 223
symlink, 295
sync, 197, 220, 239, 274, 291
sysctl, 399, 404, 450, 509-510
tcsetattr, 521,528, 549
truncate, 39, 262
undelete, 236
unlink, 38
unmount, 232
vfork, 98, 108, 146, 149-150, 188
wait, 27, 69, 77, 82, 89, 108, 149,

155-156
wait4, 21, 99-100, 112
write, 25, 32, 35-36, 43, 113, 145, 206,

213, 217, 254, 274, 297, 321, 326-327,
340, 349, 366-367, 377, 382, 481, 522,
536, 545

writev, 35-36, 216, 366, 527
system debugging, 508
system entry, 50
system performance, 14, 53, 56, 58, 60, 62,

64, 78, 97, 384, 503
system processes initialization, 502-504
system shutdown, 507-508
system startup, 491-492

initial state, 494
system statistics, 58

table, forward-mapped page, 173, 523
TCP. See Transmission Control Protocol
tcp_close(), 463
tcp_ctloutput (), 471

573

tcp_fasttimo(), 460, 467
tcp_input(), 458, 465, 467, 476

operation of, 464-467
tcp_output(), 458, 462, 465, 467-472

operation of, 469
tcp_slowtimo(), 459-460
tcp_timers(), 458-459
tcp_usrreq(), 458, 461, 463, 468, 471
tcsetattr system call, 521, 528, 549
tcsetpgrp(), 110
telldir(), 248
TENEX operating system, 10
Tenth Edition UNIX, 7
terminal, 42-43, 545

buffering, 344-346
multiplexer, 194, 337, 545
operations, 347-355

terminal driver, 204, 339-340, 547
bottom half of, 340
close(), 355
data queues, 343-346, 348-350, 352-353
hardware state, 342-343
input, 351-353
input, bottom half of, 351-352
input silo, 351
input, top half of, 352-353
ioctl(), 340-342, 353-354
modem control, 346-347
modem transitions, 354-355
modes, 338-339, 343, 351-352
open(), 347
output, 349-350
output, bottom half of, 350
output, stop(), 353
output, top half of, 349-350
software state, 343
special characters, 338, 343
start•(), 349
tc*(), 340-342
top half of, 339
user interface, 10, 340-342
window size, 343, 347

terminal process group, 110, 343-344, 352,
355

termios, 15
structure, 340, 545

text segment, 29, 60-61, 545. See also
shared text segment

Thompson, Ken, 3, 7, 10, 22
thrashing, 79-80, 545



574

thread, 80, 138, 546
tick, 57, 546
time, 57-58, 63-64

of day, 50
of day register, 63
interval, 64
process virtual, 64
quantum, 93, 546
representation, 64
slice, 79, 93, 546
stable identifier, 316, 546
synchronization, network, 63-64
wall clock, 63-64

time zone handling, 12
timeout(), 58-60
timer

2MSL, 460, 547
backoff, 459, 546
network, 59, 399
profiling, 57, 64
real-time, 59, 64
resolution of, 64
virtual-time, 57, 64
watchdog, 59

timestamps option, TCP, 453, 461
TLB. See translation lookaside buffer
/tmp, 41, 139, 265, 302-303
top half of, 50, 546

device driver, 195
kernel, 50-52,91
terminal driver, 339
terminal driver input, 352-353
terminal driver output, 349-350

TOPS-20 operating system, 10
trace trap, 112-113,546
traced process, 105, 113
track cache, 275, 281-283, 546
translation lookaside buffer, 173-174, 177,

182-186, 546
Transmission Control Protocol, viii, 3, 9, 14,

44-45, 237-238, 313-314, 320,
323-324, 334, 397, 424, 430, 436-437,
442-443, 451-486, 524, 536, 545-546

algorithm, 457-463
congestion control, 472-476
connection setup, 453, 461-463
connection shutdown, 454-455, 463
connection states, 453-456
data buffering, 474

Index

delayed acknowledgments in, 467,
471-472

estimation of round-trip time, 460-461
fast retransmission, 476^1-77
features of, 451
flow control in, 452
handling of silly-window syndrome,

469-470
handling of urgent data, 467
header prediction, 465, 524
implementation of small packet

avoidance, 470-471
implementation, use of 4BSD, 11
input processing, 464-467
maximum-segment-size option, 453, 462
options, 452
output processing, 468^1-77
packet header, 452
retransmission handling, 472
send policy, 458, 468-477
sequence numbers, 451
sequence variables, 456^57
slow-start algorithm, 472-476
source-quench processing, 474
state diagram, 455
timers, 459-460
timestamps option, 453, 461
window-scale option, 453
window updates, 471-472

transport layer, 396, 546
trap(), 53
trap handling, 50, 52-53, 55-57, 87
trap type code, 52
triple indirect block, 245, 525, 547
truncate system call, 39, 262

addition of, 39
truncate vnode operator, 266
T-shirt, daemon, xi
tsleep( ). See sleep()
ttioctl( ), 354
ttread( ), 352
ttselect(), 204, 340
ttstart() 349, 356
ttwakeup(), 351-352
ttwrite( ), 348-349, 352
tty driver. See terminal driver
tty structure, 342-343
ttyclose(), 355
ttyinput (),351-352

Index

ttylclose(), 355
ttymodem(), 355
tty output (), 349
Tunis operating system, 10, 22
2MSL timer, 460, 547. See also maximum

segment lifetime
type-ahead, 337, 547

u
u-dot. See user structure
UDP. See User Datagram Protocol
udp_input(}, 445
udp_output(), 444
udp_usrreq(), 443-444, 446
ufs_bmap(), 273, 282, 299
UID. See user identifier
uio structure, 202, 216-218, 266, 347-348,

352-353, 547
uiomove(), 204, 217, 349

implementation of, 216-218
umapfs filesystem, 234-235, 324
undelete system call, 236
union filesystem, 235-237
Universal Coordinated Time, 63-64, 72
University of California at Berkeley, 8
University of Illinois, 8
University of Maryland, 45
UNIX/32V, 7-9, 13
UNIX, history of, 3-10
UNIX Programmer's Manual, 4
UNIX Support Group, 7-8
UNIX System III, 7-8, 10-11, 44
UNIX System Laboratories, 8-9
UNIX System V, 4, 7-11, 35

Release 3, 8, 15
UNIX United Filesystem, 311
unlink system call, 38
unlock vnode operator, 242-243
unmount system call, 232
unp_gc(), 389
unputc(), 345
update, 197, 239, 274, 292, 506
update vnode operator, 265
updatepri(), 95
ureadc(), 352
urgent data, 430, 547

TCP handling of, 467
transmission, styles of, 385

575

use of descriptor, 32-33
USENET, 12, 283
user area. See user structure
User Datagram Protocol, 313-314, 316, 320,

322-324, 334, 424, 436-437, 442-446,
451, 459, 461-462, 464, 468, 477-478,
481,484-485,536,547

control operations, 446
initialization, 443-444
input, 445^46
output, 444-445

user identifier, 65-67, 71, 234, 313, 324,
521, 525, 537, 540-541, 544, 547

use in file-access validation, 65
user-level system initialization, 505-507
user mode, 77, 122,547
user request routine, 399, 405-409, 547

operations, 406-409
user structure, 51, 62, 78, 85-86, 547

contents of, 85
USL. See UNIX System Laboratories
UTC. See Universal Coordinated Time

V Kernel operating system, 22
valloc vnode operator, 265-266
/var/quotas, 254
VAX, viii, 7-9, 13, 50, 405

memory management hardware, 30
vfork system call, 98, 108, 146, 149-150,

188
implementation issues, 149-150
operation of, 150
see also process creation

vfree vnode operator, 265
vfsinit(), 503
vget vnode operator, 266
vgone(), 224-225
vi, xvi, 13
virtual-address aliasing, 174, 548
virtual address space, 118, 548

lay out of user, 60-63
process, 132-133

virtual-filesystem interface, 218-223
virtual memory, 8, 548

for a shared-memory multiprocessor, 30
advantages of, 122
cache coherency, 141, 158



576 Index

change protection, 154
change size, 151-152
data structures, 124-126
duplication, process, 148-150
hardware requirements for, 122-123
implementation portability, 173-187
initialization, 179-181, 186
interface, 4.2BSD, 10
layout, 123-124
machine dependencies, 173-187
manipulation of, 151-154
map allocation, 181-184
map protection, 184-185
maps, 127-128
object, 134-137, 548
overview, 123-126
resources, process, 132-137
semaphores, 138
system deficiencies, 4.3BSD, 15
usage calculation of, 147-148, 151-152

virtual-time timer, 57, 64
vm_fault( ), 69, 162, 177, 185
vm_fork(), 99
vm_map structure, 125, 127-128, 178-179
vm_map_entry structure, 125, 127-128,

131-135, 137, 141, 143, 147, 149,
151-155, 162-163

vm_map_pageable(), 183-184
vm_mem_init(), 503
vm_object structure, 125-126
vm_page structure, 126, 134, 137, 156-157,

159,180,496
vm_page_alloc(), 168
vm_pageout(), 169-170, 504
vm_pager_has_page(), 166
VMS operating system, viii, 11, 167

page replacement in the, 167
vmspace structure, 125, 132, 134, 147, 151,

187
/vmunix, 491,504, 508
vnode, 15, 36, 205, 218, 377, 548

description of, 219-221
operations, 220-221

vnode operator
abortop, 243
access, 242
advlock, 242
blkatoff, 266
close, 242

create, 242-243
fsync, 266
getattr, 242
inactive, 223-224, 242, 246
ioctl, 242
link, 242
lock, 242
lookup, 222, 242
mkdir, 242
mknod, 242
mmap, 242
open, 242
read, 266
readdir, 242
readlink, 242
reclaim, 224, 242, 246
remove, 242
rename, 242
rmdir, 242
select, 242
setattr, 242
symlink, 242
truncate, 266
unlock, 242-243
update, 265
valloc, 265-266
vfree, 265
vget, 266
write, 266

vnode pager, 135, 157-158
voluntary context switching, 87-91
vop_access_args structure, 233

w
wait channel, 81, 88-91, 548
wait system call, 27, 69, 77, 82, 89, 108,

149, 155-156, 548
wait4 system call, 27, 99-100, 112

operation of, 100
wakeup(), 89-91, 95, 97, 113, 171

implementation of, 90-91
operation of, 90

wall clock time, 63-64
want_resched, 97
watchdog timer, 59
whiteout, filename, 236
wildcard route, 418, 548
window probe, 459, 548

Index

window-scale option, TCP, 453
window size, 343, 347
window system, 110, 343. See also X

Window System
Windows operating system, viii
wine, xv, xvi
wired page, 128-129, 159, 177, 179-180,

183-185, 187,548
definition of, 128
list, 167, 169

word-erase character, 338, 549
working set, 121, 549
workstation, 117
write-caching lease, 329-330
write system call, 25, 32, 35-36, 43, 113,

145, 206, 213, 217, 254, 274, 297, 321,
326-327, 340, 349, 366-367, 377, 382,
481,522,536,545

write vnode operator, 266

write_slack, 328, 330, 332-333
writev system call, 35-36, 216, 366, 527

X/OPEN, vii, 8, 11
X Window System, 343, 470
X.25,413
XDR. See external data representation
XENIX operating system, 8
Xerox Network System, 14, 43, 45

domain, 43
XINU operating system, 10
XNS. See Xerox Network System

zero filling of user stack, 62
zombie process, 82, 100, 549


