Peter Norton’s

Assembly Language Book
for the IBMPC

Peter Norton
John Socha

e e

Peter Norton’s Assembly Language Book

for the IBM PC

Other Brady Books by Peter Norton

Inside the IBM PC, Revised and Enlarged
MS-DOS and PC-DOS User’s Guide
PC-DOS: The Guide to High Performance Computing

Peter Norton’s Assembly Language Book
for the IBM PC

Peter Norton

and

John Socha

A Brady Book
Published by Prentice Hall Press
New York, New York 10023

Copyright © 1986 by Brady Communications Company, Inc.
All rights reserved,

including the right of reproduction

in whole or in part in any form.

Portions of this work were previously published in a work entitled:
Assembly Language Safari On The IBM PC.

A Brady Book

Published by Prentice Hall Press

A Division of Simon & Schuster, Inc.
Gulf + Western Building

One Gulf + Western Plaza

New York, New York 10023

PRENTICE HALL PRESS is a trademark of Simon & Schuster, Inc.

Manufactured in the United States of America

2345678910

Library of Congress Cataloging-in-Publication Data

Norton, Peter, 1943—

Peter Norton’s Assembly Language book for
the IBM PC.

“A Brady book.”

Includes index.

1. IBM Personal Computer—Programming.
2. Assembler language (Computer program language)
I. Socha, John, 1958- . II. Title.
III. Title: Assembly language book for the IBM PC.
QA76.8.12594N66 1986 005.265 86-25363

ISBN 0-13-661901-0

Contents

Part 1 Machine Language
Chapter 1 Debug and Arithmetic

Hexadecimal Numbers

Debug

Hexarithmetic

Converting Hexadecimal to Decimal
Five-Digit Hex Numbers

Converting Decimal to Hex

Negative Numbers

Bits, Bytes, Words, and Binary Notation

Two’s Complement—An Odd Sort of Negative Number

Summary
Chapter 2 8088 Arithmetic

Registers as Variables

Memory and the 8088

Addition, 8088 Style

Subtraction, 8088 Style

Negative Numbers in the 8088

Bytes in the 8088

Multiplication and Division, 8088 Style
Summary

Chapter 3 Printing Characters

INT—The Powerful Interrupt

A Graceful Exit—INT 20h

A Two-Line Program—Putting the Pieces Together
Entering Programs

MOVing Data into Registers

Writing a String of Characters

Summary

Chapter 4 Printing Binary Numbers

Rotations and the Carry Flag
Adding With the Carry Flag
Looping

Writing a Binary Number

W

DO = = e
S OO DNEFE=JIDO &

22
23
26
28
29
29
31
34

35

36
38
39
40
41
43
45

47

48
49
50
53

vi Contents

Chapter 4 continued

The Proceed Command
Summary

Chapter 5 Printing in Hex

Compare and Status Bits
Printing a Single Hex Digit
Another Rotate Instruction
Logic and AND

Putting It All Together
Summary

Chapter 6 Reading Characters

Reading One Character

Reading a Single-Digit Hex Number
Reading a Two-Digit Hex Number
Summary

Chapter 7 Procedures—Cousins to Subroutines

Procedures

The Stack and Return Addresses
PUSHing and POPping

Reading Hex Numbers with More Ease
Summary

Part 11 Assembly Language
Chapter 8 Welcome to the Assembler

A Program Without Debug
Creating Source Files
Linking

Back in Debug

Comments

Labels

Summary

54
55

57

58
61
64
65
67
67

69

70
71
72
73

75

76
78
79
81
84

85
87

88
91
92
93
94
94
96

Peter Norton’s Assembly Language Book wii

Chapter 9 Procedures and the Assembler 99
The Assembler’s Procedures 100
The Hex-Output Procedures 103
The Beginnings of Modular Design 106
A Program Skeleton 107
Summary 107
Chapter 10 Printing in Decimal 109
Recalling the Conversion 110
Some Tricks 113
The Inner Workings 114
Summary 116
Chapter 11 Segments 117
Sectioning the 8088’s Memory 118
Segment Pseudo-Ops 124
The ASSUME Pseudo-Op 126
Near and Far CALLs 127
More on the INT Instruction 129
Interrupt Vectors 131
Summary 132
Chapter 12 Course Corrections 133
Diskettes, Sectors, and Dskpatch 134
The Game Plan 136
Summary 138
Chapter 13 Modular Design 139
Separate Assembling 140
The Three Laws of Modular Design 144
Summary 147
Chapter 14 Dumping Memory 149
Addressing Modes 150

Adding Characters to the Dump 156

viti Contents

Chapter 14 continued

Dumping 256 Bytes of Memory
Summary

Chapter 15 Dumping a Disk Sector

Making Life Easier
Format of the Make File
Patching up Disp_sec
Reading a Sector
Summary

Chapter 16 Enhancing the Sector Display

Adding Graphics Characters
Adding Addresses to the Display
Adding Horizontal Lines
Adding Numbers to the Display
Summary

Part 111 The IBM PC’s ROM BIOS
Chapter 17 The ROM BIOS Routines

VIDEO_IO, the ROM BIOS Routines
Moving the Cursor

Rewiring Variable Usage

Writing the Header

Summary

Chapter 18 The Ultimate WRITE_CHAR

A New WRITE_CHAR
Clearing to the End of a Line
Summary

Chapter 19 The Dispatcher

The Dispatcher
Reading Other Sectors
Philosophy of the Following Chapters

158
163

165

166
167
168
169
174

175

176
178
182
186
189

191
193

194
199
201
204
208

209

210
212
215

217

218
224
226

Peter Norton’s Assembly Language Book ix

Chapter 20 A Programming Challenge

The Phantom Cursors
Simple Editing
Other Additions and Changes to Dskpatch

Chapter 21 The Phantom Cursors

The Phantom Cursors
Changing Character Attributes
Summary

Chapter 22 Simple Editing

Moving the Phantom Cursors
Simple Editing
Summary

Chapter 23 Hex and Decimal Input

Hex Input
Decimal Input
Summary

Chapter 24 Improved Keyboard Input
A New READ_STRING
Chapter 25 In Search of Bugs

Fixing DISPATCHER
Summary

Chapter 26 Writing Modified Sectors

Writing to the Disk
More Debugging Techniques
Building a Road Map
Tracking Down Bugs
Symdeb
Symbolic Debugging
Screen Swapping
Summary

229

230
232
232

235

236
241
243

245

246
249
253

255

256
263
266

267
268
275

276
278

279

280
282
283
285
287
287
288
290

X Contents

Chapter 27 The Other Half Sector

Scrolling by Half a Sector
Summary

Part IV Odds and Ends
Chapter 28 Relocation

Multiple Segments
Relocation
.COM versus .EXE Programs

Chapter 29 More on Segments and ASSUME

Segment Override
Another Look at ASSUME
Phase Errors

Closing Words

Appendix A Guide to the Disk

Chapter Examples
Advanced Version of Dskpatch

Appendix B Listing of Dskpatch

Descriptions of Procedures

Program Listings for the Dskpatch Procedures
Dskpatch Make File
CURSOR.ASM
DISK_10.ASM
DISPATCH.ASM
DISP_SEC.ASM
DSKPATCH.ASM
EDITOR.ASM
KBD_I0.ASM
PHANTOM.ASM
VIDEO_IO.ASM

291

292
295

297
299

300
304
307

311

312
314
315
316

319

320
321

325

326
332
332
333
337
341
344
350
352
355
365
372

Peter Norton’s Assembly Language Book xi

Appendix C Segment Load Order

Segment Load Order
Phase Errors
EXE2BIN File Cannot be Converted

Appendix D Common Error Messages

MASM
LINK
EXE2BIN

Appendix E Miscellaneous Tables

ASCII Character Codes
Extended Keyboard Codes
Table of Addressing Modes
INT 10h Functions

INT 21h Functions

Index

381

382
384
386

389

390
391
392

393

394
396
397
398
401

403

Trademarks

IBM, IBM PC, XT, and AT are registered trademarks of International Busi-
ness Machines Corporation.

COMPAQ is a registered trademark of Compaq Computer Corporation.
MS-DOS and Microsoft are registered trademarks of Microsoft Corporation.
SideKick and SuperKey are trademarks of Borland International.

ProKey is a trademark of Rosesoft.

Lotus and 1-2-3 are trademarks of Lotus Development Corporation.

Intel is a registered trademark of Intel Corporation.

Limits of Liability and Disclaimer of Warranty

The authors and publisher of this book have used their best efforts in pre-
paring this book and the programs contained in it. These efforts include the
development, research, and testing of the theories and programs to determine
their effectiveness. The authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The authors and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or arising
out of, the furnishing, performance, or use of these programs.

Introduction

By the time you finish reading this book, you’ll know how to write full-
scale, assembly language programs: text editors, utilities, and so on. Along
the way, you’ll learn many techniques that professional programmers use to
make their work simpler. These techniques, which include modular design
and step-wise refinement, will double or triple your programming speed, as
well as help you write more readable and reliable programs.

The technique of step-wise refinement, in particular, takes a lot of the work
out of writing complex programs. If you've ever had that sinking, where-do-I-
start feeling, you’ll find that step-wise refinement gives you a simple and nat-
ural way to write programs. And it’s also fun!

This book isn’t all theory, though. We’ll build a program, too. The program
is called Dskpatch (for Disk Patch), and you’ll find it useful for several rea-
sons. First of all, you’ll see step-wise refinement and modular design at work
in a real program, so you’ll have an opportunity to see why these techniques
are so useful. Also, as you’ll see shortly, Dskpatch is, in its own right, a gen-
eral-purpose, full-screen editor for disk sectors—one that you can continue to
use both in whole and in part long after you've finished with this book.

Why Assembly Language?

We’ll assume that you’ve picked up this book because you are interested in
learning assembly language. But you may not be exactly certain why you’d
want to learn it.

One reason, perhaps the least obvious, is that assembly language programs
are at the heart of any IBM PC or compatible computer. In relation to all
other programming languages, assembly language is the lowest common de-
nominator. It takes you closer to the machine than higher-level languages do,
so learning assembly language also means learning to understand the 8088
microprocessor inside your computer. We'll teach you the instructions of the
8088 microprocessor, as do the authors of other introductory books, but we’ll
go much farther and also cover advanced material that you’ll find invaluable
when you start to write your own programs.

Once you understand the 8088 microprocessor inside your IBM PC, many
elements you’ll see in other programs and in high-level languages will have
greater meaning for you. For example, you may have noticed that the largest
integer you can have in BASIC is 32767. Where did this number come from?
It’s an odd number for an upper limit. But as you’ll see later, the number
32767 is directly related to the way your IBM PC stores numbers.

Then, too, you may be interested in speed or size. As a rule, assembly lan-
guage programs are much faster than those written in any other language.

xiil

xiv Introduction

Typical assembly language programs are two to three times as fast as equiva-
lent C or Pascal programs, and they generally outpace interpreted BASIC pro-
grams by 15 times or more. Assembly language programs are also smaller.
The Dskpatch program we’ll build in this book will be full-grown at about one
kilobyte. Compared with programs in general, that’s small. A similar program
written in C or Pascal would be about ten times the size. For these reasons,
among others, the Lotus Development Corporation wrote 1-2-3 entirely in as-
sembly language.

Assembly language programs also provide you with full access to the fea-
tures in your computer. A number of programs, such as SideKick, ProKey,
and SuperKey, stay in memory after you run them. Such programs change the
way your machine works, and they use system features available only to as-
sembly language programs.

Dskpatch

In our work with assembly language, we’ll look directly at disk sectors, dis-
playing characters and numbers stored there by DOS in hexadecimal nota-
tion. Dskpatch is a full-screen editor for disks, and it will allow us to change
these characters and numbers in a disk sector. Using Dskpatch you could, for
example, look at the sector where DOS stores the directory for a disk and you
could change file names or other information. Doing so is a good way to learn
how DOS stores information on a disk.

You’ll get more out of Dskpatch than just one program, though. Dskpatch
contains about 50 subroutines. Many of these are general-purpose subroutines
you’ll find useful when you write your own programs. Thus, not only is this
book an introduction to the 8088 and assembly language programming, it’s
also a source of useful subroutines.

In addition, any full-screen editor needs to use features specific to the IBM
PC family of computers. Through the examples in this book, you’ll also learn
how to write useful programs for IBM PCs, ATs, or compatible computers,
such as the COMPAQ.

Equipment Requirements

What equipment will you need to run the examples in this book? You'll
negd an IBM PC or compatible with at least 128K of memory and one disk
drive. Youll also need version 2.00 or later of PC-DOS (or MS-DOS). And,

e

Peter Norton’s Assembly Language Book xv

starting in Part II, you’'ll need either the IBM or the Microsoft Macro
Assembler.

Organization of This Book

This book is divided into three parts, each with a different emphasis.
Whether you know anything about microprocessors or not, and whether you
already know assembly language or not, you’ll find sections that are of inter-
est to you.

Part I focuses on the 8088 microprocessor. Here, you’ll learn the mysteries
of bits, bytes, and machine language. Each of the seven chapters contains a
wealth of real examples that use a program called Debug, which comes on
your DOS disk. Debug will allow us to look inside the famous 8088 micropro-
cessor nestled deep in your IBM PC as it runs DOS. Part I assumes only that
you have a rudimentary knowledge of BASIC and know how to work with
your computer.

Part II, Chapters 8 to 16, moves on to assembly language and how to write
programs in the assembler. The approach is gentle, and rather than cover all
the details of the assembler itself, we’ll concentrate on a set of assembler com-
mands we need to write useful programs.

We'll use the assembler to rewrite some of the programs from Part I, and
then move on to begin creating Dskpatch. We’'ll build this' program slowly, so
you’ll learn how to use step-wise refinement in building large programs. We’ll
also cover techniques like modular design that help in writing clear programs.
As mentioned, these techniques will simplify programming by removing some
of the complexities normally associated with writing assembly language
programs.

In Part III, which includes Chapters 17 to 29, we’ll concentrate on using
more advanced features found in IBM PCs. These features include moving the
cursor and clearing the screen.

In Part III we’ll also discuss techniques for debugging larger assembly lan-
guage programs. Assembly language programs grow very quickly and can
easily be two or more pages long without doing very much (Dskpatch will be
longer). Even though we’ll use these debugging techniques on programs
larger than a few pages, you’ll find them useful with small programs, too.

Now, without further ado, let’s jump into the 8088 and take a look at the
way it stores numbers.

| :
|
=!; : '

. ’ . ».,-_1ll|,i

] NI P | o B D
‘,; , ey 40 el
\{ o ‘

: o v we O R

i 100 e e AR |
f?: “ o st ok Sl
| e Sy iy i N
. N RIS "

‘”? .] BaEt .JP{'.M L
n' f v o TS

R
M 3

' \ ‘ b iR - 1ol :

[iv i SR

lzl RN i .
. : 2 Ll il‘_ﬁ‘w

s 15 W N A ﬂ‘--{d "

M y WildE 3 qr-ﬁ'."i :
TRt - 4 vl £, nﬁ

N

e A e e R R T e N

PART 1

Machine Language

TN —— ——————— — — " T ——— e — e i L S NI R | . I e A ———— e st S— s " s —— i i ————— B s el s i . e e b L e) L D g Ph L g S N ek

DEBUG AND ARITHMETIC

Hexadecimal Numbers 4

Debug 4

Hexarithmetic 6

Converting Hexadecimal to Decimal 7

Five-Digit Hex Numbers 11

Converting Decimal to Hex 12

Negative Numbers 14

Bits, Bytes, Words, and Binary Notation 16

Two’s Complement—An Odd Sort of Negative
Number 18

Summary 20

4 Debug and Arithmetic

Let’s begin our foray into assembly language by learning how computers
count. That may sound simple enough. After all, we count to 11 by starting at
one and counting up: 1, 2, 3, 4, 5,6, 7, 8, 9, 10, 11.

But a computer doesn’t count that way. Instead, it counts to five like this: 1,
10, 11, 100, 101. The numbers 10, 11, 100, and so on are binary numbers,
based a number system with only two digits, one and zero, instead of the ten
associated with our more familiar decimal numbers. Thus, the binary number
10 is equivalent to the decimal number we know as two.

We're interested in binary numbers because they are the form in which
numbers are used by the 8088 microprocessor inside your IBM PC. But while
computers thrive on binary numbers, those strings of ones and zeros can be
long and cumbersome to write out. The solution? Hexadecimal numbers—a
far more compact way to write binary numbers. In this chapter, you’ll learn
both ways to write numbers: hexadecimal and binary. And as you learn how
computers count, you’ll also learn about how they store numbers—in bits,
bytes, and words.

If you already know about binary and hexadecimal numbers, bits, bytes,
and words, you can skip to the chapter summary.

Hexadecimal Numbers

Since hexadecimal numbers are easier to handle than binary numbers—at
least in terms of length—we’ll begin with hexadecimal (hex for short), and use
DEBUG.COM, a program you'll find on your PC-DOS supplemental disk.
We'll be using Debug here and in later chapters to enter and run machine-
language programs one instruction at a time. Like BASIC, Debug provides a
nice, interactive environment. But unlike BASIC, it doesn’t know decimal
numbers. To Debug, the number 10 is a hexadecimal number—not ten. And
since Debug only speaks in hexadecimal, you’ll need to learn something about

hex numbers. But first, let’s take a short side trip and find out a little about
Debug itself.

Debug

Why does .this program carry the name Debug? Bugs, in the computer
world, are mistakes in a program. A working program has no bugs, while a

Peter Norton’s Assembly Language Book 5

non-working or “limping” program has at least one bug. By using Debug to
run a program one instruction at a time, and watching how the program
works, we can find mistakes and correct them. This is known as debugging,
hence the name Debug.

According to computer folklore, the term debugging stems from the early
days of computing—in particular, a day on which the Mark I computer at Har-
vard failed. After a long search, the technicians found the source of their trou-
bles: a small moth caught between the contacts of a relay. The technicians
removed the moth and wrote a note in the log book about “debugging” the
Mark I.

Find Debug on your DOS supplemental disk and we’ll get started. You
should also have a work disk handy, and you’ll want to copy DEBUG.COM to
it. We’ll make heavy use of Debug in Part I of this book.

Note: From here on, in interactive sessions like this one, the text
you type will be against a gray background to distinguish it from your
computer’s responses. Type the text, press the Enter key, and you should
see a response similar to the ones we show in these sessions. You won’t
always see exactly the same responses, because your computer probably
has a different amount of memory from the computer on which we wrote
this book. (We’ll begin to encounter such differences in the next chapter.)
In addition, notice that we use uppercase letters in all examples. This is
only to avoid any confusion between the lowercase letter 1 (el) and the
number 1 (one). If you prefer, you can type all examples in lowercase
letters.

Now, with those few conventions noted, start Debug by typing its name af-
ter the DOS prompt (which is A> in this example):

A>DEBUG

The hyphen you see in response to your command is Debug’s prompt symbol,
just as A> is a DOS prompt. It means Debug is waiting for a command.

To leave Debug and return to DOS, just type Q (for Quit) at the hyphen
prompt and press Enter. Try quitting now, if you like, and then return to
Debug:

6 Debug and Arithmetic

-Q
A>DEBUG

Now we can get down to learning about hex numbers.

Hexarithmetic

We'll use a Debug command called H. H is short for Hexarithmetic, and, as
its name suggests, it adds and subtracts two hex numbers. Let’s see how H
works by starting with 2 + 3. We know that 2 + 3 = 5 for decimal numbers.

Is this true for hex numbers? Make sure you're still in Debug and, at the hy-
phen prompt, type the following screened text:

-H 3¢
0005 0001

Debug prints both the sum (0005) and the difference (0001) of 3 and 2. The
Hexarithmetic command always calculates the sum and difference of two
numbers, as it did here. And so far, the results are the same for hex and deci-
mal numbers: 5 is the sum of 3 + 2 in decimal, and 1 is the difference (3 — 2).
But sometimes, you can encounter a few surprises.

Number A Number B

AR

-H 3D5C 2A10

676C 134C
A+B A-B

Figure 1-1. The Hexarithmetic Command.

Peter Norton’s Assembly Language Book 7

For example, what if we typed H 2 3, to add and subtract two and three,
instead of three and two? If we try it:

-H 23
0005 FFFF

we get FFFF instead of — 1, for 2 — 3. Strange as it may look, however, FFFF
is a number. In fact, it is hex for —1.
We’ll come back to this rather unusual —1 shortly. But first, let’s explore
the realm of slightly larger numbers to see how an F can appear in a number.
To see what the Hexarithmetic command does with larger numbers, let’s try
nine plus one, which would give us the decimal number 10:

-89 %
0O0OOA 0OOO0B

Nine plus one equals A? That’s right: A is the hex number for ten. Now, what
if we try for an even larger number, such as 15:

-8 96
0DOF 0003

If you try other numbers between ten and fifteen, you’ll find 16 digits alto-
gether—O0 through F (0 through 9 and A through F). The name hexadecimal
comes from hexa- (6), plus deca- (10) which, when combined, represent 16. The
digits 0 through 9 are the same in both hexadecimal and decimal; the hexa-
decimal digits A through F are equal to the decimals 10 through 15.

Why does Debug speak in hexadecimal? Soon you’ll see that we can write
256 different numbers with two hex digits. As you may already suspect, 256
also bears some relationship to the unit known as a byte, and the byte plays a
major role in computers and in this book. You’ll find out more about bytes
near the end of this chapter, but for now we’ll continue to concentrate on
learning hex, the only number system known to Debug, and hex math.

Converting Hexadecimal to Decimal

Thus far we’ve looked at single-digit hex numbers. Now, let’s see how to
represent larger hex numbers, and how to convert these numbers to decimal
numbers.

Just as with decimal numbers, we build multiple-digit hex numbers by add-

8 Debug and Arithmetic

Decimal Hex digit

©Co~NOCTOTPAPWN —+O

MTMOOWP>POONOADRWN—=O

Figure 1-2. Hexadecimal. Digits.

ing more digits on the left. Suppose, for example, we add the number 1 to the
largest single-digit decimal number, 9. The result is a two-digit number, 10
(ten). What happens when we add 1 to the largest single-digit hex number, F?
We get ten again.

But wait, ten in hex is really 16, not ten. This could become rather confus-
ing. We need some way to tell these two tens apart, so from now on we’ll place
the letter h after any hex number. Thus, we’ll know that 10h is hexadecimal
16 and 10 is decimal ten.

Now we come to the question of how to convert numbers between hex and
decimal. We know that 10h is 16, but how do we convert a larger hex number,
such as D3h, to a decimal number without counting up to D3h from 10h? Or,
how do we convert the decimal number 173 to hex?

We can’t rely on Debug for help, because Debug can’t speak in decimal. In
Chapter 10, we’ll write a program to convert a hex number into decimal nota-

Peter Norton’s Assembly Language Book 9

tion so that our programs can talk to us in decimal. But right now, we’ll have
to do these conversions by hand, so let’s begin by returning to the familiar
world of decimal numbers.

What does the number 276 mean? In grade school, we learned that 276
means we have two hundreds, seven tens, and six ones. Or, more graphically:

2 * 100 = <200
e S i = 70
L * 1 = b
e’k = 276

Well, that certainly helps us visualize the meanings of those digits. Can we
use the same graphic method with a hex number? Of course.

Consider the number D3h we mentioned earlier. D is the hexadecimal digit
13, and there are 16 hex digits, versus 10 for decimal, so D3h is thirteen six-
teens and three ones. Or, presented graphically:

D =+ 13 * 1b
= e R
D3h

208
3
2ll

For the decimal number 276, we multiplied the digits by 100, 10, and 1; for
the hex number D3, we multiplied the digits by 16 and 1. If we had four deci-
mal digits we’d multiply by 1000, 100, 10, and 1. Which four numbers would
we use with four hex digits?

For decimal, the numbers 1000, 100, 10, and 1 are all powers of 10:

107 = 1000
10° = 100
10 = 10
100 = 1

We can use exactly the same method for hex digits, but with powers of 16,
instead of 10, so our four numbers are:

163 = 4096
162 = 256
16 = 1k
o= g

Let’s convert 3AC8h to decimal using the four numbers we just calculated:

10 Debug and Arithmetic

7 e W G 112
cC -->12 * 12
TCh = 124
3 -=> 3 * 256 = 1768
F -=> 15 * 16 = 240
9 -=> g * 1 = 9
3F%h = 1.087
A --> 10 * 4,09 = 40,960
F --> 15 «* 256 = 3,840
1 ——3> T 16 = 16
C. ~=> q Kk 1l = 12
AF1Ch = 44,828
3 -—> 3.*% 65,5836 =_ 136,608
B > 11 * 4,096 = 45,056
8 -—=> g 256 = 2,048
D ~=> 13 ¥ l6 = 208
2. ==> 2. % 1 = 2
3B8D2h = 243,922

Figure 1-3. More Hexadecimal to Decimal Conversions.

Peter Norton’s Assembly Language Book 11

3 + 3 * 4096 = 12268
A = g+ 256 = 2560
€ »id * 6 = 19¢2
e S - W Tafs= 8
3ACBh = 15048

Now let’s discover what happens when we add hex numbers that have more
than one digit. For this, we’ll use Debug and the numbers 3A7h and 1EDh:

-H 3A7 1ED
0594 O01BA

So we see that 3A7h + 1EDh = 594h. You can check the results by con-
verting these numbers to decimal and doing the addition (and subtraction, if
you wish) in decimal form; if you're more adventurous, do the calculations
directly in hex.

il 1 1
3A7 F451
+..928 + CBO3 + D
CD1 1BF54 19
I A 3L Il ik
BCD8 BCD8
+ FAEQ + 0509
1B7C1 glEd

Figure 1-4. More Examples of Hexadecimal Addition.

Five-Digit Hex Numbers

So far, hex math is quite straightforward. What happens when we try add-
ing even larger hex numbers? Let’s try a five-digit hex number:

-H SC3FD 4BCk
SAErrOr

12 Debug and Arithmetic

That’s an unexpected response. Why does Debug say we have an error here?
The reason has to do with a unit of storage called the word. Debug’s Hex-
arithmetic command works only with words, and words happen to be long
enough to hold four hex digits, no more.

We'll find out more about words in a few pages, but for now, remember that
you can work only with four hex digits. Thus, if you try to add two four-digit
hex numbers, such as C000h and D0O00h (which should give you 19000h), you
get 9000h, instead:

-H CO00 DOOO
9000 FOOO

Debug keeps only the four rightmost digits of the answer.

Converting Decimal to Hex

So far we've only looked at the conversion from hex to decimal. Now we’ll
learn how to convert decimal numbers to hex. As we mentioned earlier, in
Chapter 10 we’ll create a program to write the 8088’s numbers as decimal
numbers; in Chapter 23, we’ll write another program to read decimal numbers
into the 8088. But, as with decimal-to-hex conversions, let’s begin by learning
how to do the conversions by hand. Again, we’ll start by recalling a bit of
grade-school math.

When we first learned division, we would divide 9 by 2 to get 4 with a re-
mainder of 1. We’ll use the remainder to convert decimal numbers to hex.

Let’s see what happens when we repeatedly divide a decimal number, in
this case 493, by 10:

493 /7 10 = 49 remainder 3
455/ 50 = 4 remainder 9
Y
4 /10 - 0 remainder 4
l Y
4

93

The digits of 493 appear as the remainder in reverse order—that is, starting
with the rightmost digit (3). We saw in the last section that all we needed for
our hex-to-decimal conversion was to replace powers of 10 with powers of 16.

Peter Norton’s Assembly Language Book 13

D>
U

1069 / 16 = 66 Remainder 13
; |
66 /16 = 4 Remainder 2
+ |
4 /16 = 0 Remainder
1069 =
57,109 / 16 = 3,569 Remainder 5
3, h09 /S 16 = 223 Remainder)
+ |
o8 R 13 Remainder 15
* |
13 / 16 = 0 Remainder 13
57,109 -

Figure 1-5.

More Examples of Hexadecimal Conversions.

14 Debug and Arithmetic

For our decimal-to-hex conversion, can we divide by 16 instead of 10? Indeed,
that’s our conversion method.

For example, let’s find the hex number for 493. Dividing by 16, as shown
here:

493 / 16 - 30 remainder 13 (Dh) g '7~~’
‘ |
|
30 /7 16 - 1 remainder 14 (Eh) — |
; I |
1 / 16 = 0 remainder 1 (lh) ——
Yy
493 = 1EDHh

We find that 1EDh is the hex equivalent of decimal 493. In other words, keep
dividing by 16, and form the final hex number from the remainders. That’s all
there is to it.

Negative Numbers

If you recall, though, we still have an unanswered puzzle in the number
FFFFh. We said that FFFFh is actually — 1. Yet, if we convert FFFFh to deci-
mal, we get 65535. How can that be? Does it behave as a negative number?

Well, if we add FFFFh (alias — 1) to 5, the result should be 4, because 5 — 1
= 4. Is that what happens? Using Debug’s H command to add 5 and FFFFh,
we find:

—He SUEFEE
0004 0006

Debug seems to treat FFFFh as — 1. But FFFFh won’t always behave as —1 in
programs we’ll write. To see why not, let’s do this addition by hand.

When we add two decimal numbers, we often find ourselves carrying a one
to the next column, like this:

1

4
1

10 BT s B
oo un

wu
w

Peter Norton’s Assembly Language Book 15

The addition of two hex numbers isn’t much different. Adding 3 to F gives
us 2, with a carry into the next column:

Now, watch what happens when we add 5 to FFFFh:

=+
oo v
oo e
oo e
Nl o
===

Since Fh + 1h = 10h, the successive carries neatly move a 1 into the far left
position. And, if we ignore this 1, we have the correct answer for 5 — 1:
namely, 4. Strange as it seems, FFFFh behaves as —1 when we ignore this
overflow. It’s called an overflow because the number is now five digits long,
but Debug keeps only the first (rightmost) four digits.

Is this overflow an error, or is the answer correct? Well, yes and yes. We can
choose either answer. Don’t the answers contradict each other? Not really,
because we can view these numbers in either of two ways.

Let’s suppose we take FFFFh as equal to 65536. This is a positive number,
and it happens to be the largest number we can write with four hex digits. We
say that FFFFh is an unsigned number. It is unsigned because we’ve just de-
fined all four digit numbers as positive. Adding 5 to FFFFh gives us 10004h;
no other answer is correct. In the case of unsigned numbers, then, an overflow
s an error.

On the other hand, we can also treat FFFFh as a negative number, as
Debug did when we used the H command to add FFFFh to 5. FFFFh behaves
as —1 as long as we ignore the overflow. In fact, the numbers 8000h through
FFFFh all behave nicely as negative numbers. For signed numbers, as here,
the overflow isn’t an error.

The 8088 microprocessor can view numbers either as unsigned or signed;
the choice is yours. There are slightly different instructions for each, and we’ll
explore these differences in later chapters as we begin to use numbers on the
8088. Right now, before you can learn to actually write the negative of, say,
3C8h, we need to unmask the bit and see how it fits into the scheme of bytes,
words, and hex.

16 Debug and Arithmetic

Bits, Bytes, Words, and Binary Notation

It’s time for us to dig deeper into the intricacies of your IBM PC—time to
learn about the arithmetic of the 8088: binary numbers. The 8088 micropro-
cessor, with all its power, is rather dumb. It knows only the two digits 0 and 1,
so any number it uses must be formed from a long string of zeros and ones.
This is the binary (base 2) number system.

When Debug prints a number in hex, it uses a small program to convert it’s
internal numbers from binary to hexadecimal. In Chapter 5, we’ll build such a
program to write binary numbers in hex notation, but first we need to learn
more about binary numbers themselves.

Let’s take the binary number 1011b (the b stands for binary). This number
is equal to the decimal 11, or Bh in hex. To see why, multiply the digits of
1011b by the number’s base, 2:

Powers of 2:
23 = 8
22 = 4
2L =
20 = 1
So that:
PR TR
0*4 = 0
1% = 2
R
1011b = 11 or Bh

Likewise, 1111b is Fh, or 15. And 1111b is the largest unsigned four-digit
binary number we can write, while 0000b is the smallest. Thus, with four
binary digits we can write 16 different numbers. There are exactly 16 hex
digits, so we can write one hex digit for every four binary digits.

A two-digit hex number, such as 4Ch, can be written as 0100 1100b. It’s
composed of eight digits, which we separate into groups of four for easy read-
ing. Each one of these binary digits is known as a bit, so a number like 0100
1100b, or 4Ch, is eight bits long.

Very often, we find it convenient to number each of the bits in a long string,
with bit 0 farthest to the right. The 1 in 10b then is bit number 1, and the
leftmost bit in 1011b is bit number 3. Numbering bits in this way makes it
easier for us to talk about any particular one, as we’ll want to later on.

A group of eight binary digits is known as a byte, while a group of 16 binary

Peter Norton’s Assembly Language Book 17

Binary Decimal Hexadecimal
0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 9 5
0110 6 6
0111 7 o
1000 8 8
1001 9 9
1010 10 A
1011 11 B
1100 12 C
1101 13 D
1110 14 E
141 15 F

Figure 1-6. Binary, Hex, and Decimal for 0 Through F.

digits, or two bytes, is a word. We'll use these terms frequently throughout
this book, because bits, bytes, and words are all fundamental to the 8088.

We can see now why hexadecimal notation is convenient; two hex digits fit
exactly into one byte (four bits per hex digit), and four digits fit exactly into
one word. We can’t say the same for decimal numbers. If we try to use two
decimal digits for one byte, we can’t write numbers larger than 99, so we lose
the values from 100 to 255—more than half the range of numbers a byte can
hold. And if we use three decimal digits, we must ignore more than half the
three-digit decimal numbers, because the numbers 256 through 999 can’t be
contained in one byte.

18 Debug and Arithmetic

Sign
bit Bit

L l l Byte l
0100 1101 0001 1100

4 D 1 A

! o I

Figure 1-7. A Word is Made Out of Bits and Bytes.

Two’s Complement—An Odd Sort of Negative
Number

Now we're ready to learn more about negative numbers. We said before that
the numbers 8000h through FFFFh all behave as negative numbers when we
ignore the overflow. There is an easy way to spot negative numbers when we
write them in binary:

Positive numbers:
0000h 0000 00DD OODO 0OOOb

?FFFh 0111 1113 1311 1111b

Negative numbers:
8000h 1000 0000 OOOO DOOOb

FFFFh 1111 1122 1111 111l1b

Peter Norton’s Assembly Language Book 19

In the binary forms for all the positive numbers, the first bit (bit 15) is always
0. For all negative numbers, this first bit is always 1. This difference is, in
fact, the way that the 8088 microprocessor knows when a number is negative:
It looks at bit 15, the sign bit. If we use instructions for unsigned numbers in
our programs, the 8088 will ignore the sign bit, and we will be free to use
signed numbers at our convenience.

These negative numbers are known as the Two’s Complement of positive
numbers. Why complement? Because the conversion from a positive number,
such as 3C8h, to its two’s-complement form is a two-step process, with the first
being the conversion of the number to its complement.

We won’t need to negate numbers often, but we’ll do the conversion here
just so you can see how the 8088 microprocessor negates numbers. The conver-
sion will seem a bit strange. You won’t see why it works, but you will see that
it does work.

To find the two’s-complement form (negative of) any number, first write the
number in binary, ignoring the sign. For example, 4Ch becomes 0000 0000
0100 1100b.

To negate this number, first reverse all the zeros and ones. This process of
reversing is called complementing, and taking the complement of 4Ch, we find
that:

gonao 000D 0100 1100

becomes:
e g e g e 1 e Pl T

In the second step of the conversion, we add 1:

11
1111 T sl i 1Fy S0 [0102l
+ 1
1111 1111 10111 Sl
—-4Ch = FFB4h

The answer, FFB4h, is the result we get if we use Debug’s H command to
subtract 4Ch from Oh.

If you wish, you can add FFB4h to 4Ch by hand, to verify that the answer is
10000h. And from our earlier discussion, you know that you should ignore this
leftmost 1 to get 0 (4C + (—4C) = 0) when you do two’s-complement addition.

|.

20 Debug and Arithmetic

Summary

This chapter has been a fairly steep climb into the world of hexadecimal and
binary numbers, and it may have required a fair amount of mental exercise.
Soon, in Chapter 3, we’ll slow down to a gentler pace—once you've learned
enough to converse with Debug in hex. Now, let’s take a breath of fresh air
and look back on where we’ve been and what we’ve found.

We started out by meeting Debug. In chapters to come, we’ll become inti-
mate friends with Debug but, since it doesn’t understand our familiar decimal
numbers, we’ve begun the friendship by learning a new numbering system,
hexadecimal notation.

In learning about hex numbers, you also learned how to convert decimal
numbers to hex, and hex numbers to decimal. We’ll write a program to do
these translations later, but for now it’s been necessary to learn the language
itself.

Once we’d covered the basics of hexadecimal notation, we were able to
wander off for a look at bits, bytes, words, and binary numbers—important
characters you’ll encounter frequently as we continue to explore the world of
the 8088 and assembly language programming.

Finally, we moved on to learn about negative numbers in hex—the two’s-
complement numbers. They led us to signed and unsigned numbers, where we
also witnessed overflows of two different types: one in which an overflow
leaves the correct answer (addition of two signed numbers), and one in which
the overflow leads to the wrong answer (addition of two unsigned numbers).

All this learning will pay off in later chapters, because we’ll use our knowl-
edge of hex numbers to speak with Debug, and Debug will act as an inter-
preter between us and the 8088 microprocessor waiting inside your IBM PC.

In the next chapter, we’ll use the knowledge we’ve gained so far to learn
about the 8088. We’ll rely on Debug again, and use hex numbers, rather than
binary, to talk to the 8088. We'll learn about the microprocessor’s registers—
the places where it stores numbers—and, in Chapter 3, we’ll be ready to write
a real program that will print a character on the screen. We’ll also learn more
about how the 8088 does its math; by the time we reach Chapter 10, we’ll be
able to write a program to convert binary numbers to decimal.

8808 ARITHMETIC

Registers as Variables 22

Memory and the 8088 23

Addition, 8088 Style 26

Subtraction, 8088 Style 28

Negative Numbers in the 8088 29

Bytes in the 8088 29

Multiplication and Division, 8088 Style 31
Summary 34

21

22 8088 Arithmetic

Knowing something of Debug’s hex arithmetic and the 8088’s binary arith-
metic, we can begin to learn how the 8088 does its math. It uses internal com-
mands called instructions.

Registers as Variables

Debug, our guide and interpreter, knows much about the 8088 microproces-
sor inside the IBM PC. We'll use it to delve into the inner workings of the
8088, and begin by asking Debug to display what it can about small pieces of
memory called registers, in which we can store numbers. Registers are like
variables in BASIC, but they are not exactly the same. Unlike the BASIC
language, the 8088 microprocessor contains a fixed number of registers, and
these registers are not part of your IBM PC’s memory.

We'll ask Debug to display the 8088’s registers with the R, for Register,
command:

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000

DS=37?56k ES=3?56 SS=3756& CS=3756 IP=0100 NV UP DI PL NZ NAR PO NC
3756:0100 E485 IN AL, 85

(You’ll probably see different numbers in the second and third lines of your
display; those numbers reflect the amount of memory in a computer. You’'ll
continue to see such differences, and later we’ll learn more about them.)

For now, Debug has certainly given us a lot of information. Let’s concen-
trate on the first four registers, AX, BX, CX, and DX, all of which Debug tells
us are equal to 0000, both here and on your display. These registers are the
general-purpose registers. The other registers, SP, BP, SI, DI, DS, ES, SS, CS,
and IP, are special-purpose registers we’ll deal with in later chapters.

The four-digit number following each register name is in hex notation. In
Chapter 1, we learned that one word is described exactly by four hex digits.
Here, you can see that each of the 13 registers in the 8088 is one word, or 16
bits, long. This is why computers based on the 8088 microprocessor are known
as 16-bit machines.

We mentioned that the registers are like BASIC variables. That means we
should be able to change them, and we can. Debug’s R command does more
than display registers. Followed by the name of the register, the command

Peter Norton’s Assembly Language Book 23

tells Debug that we wish to view the register, and then change it. For exam-
ple, we can change the AX register like this:

-R AX
AX 0000
:3A7

Let’s look at the registers again to see if the AX register now contains 3A7h:

-R

AX=03R7? BX=0000 CX=0000 DX=0D000 SP=FFEE BP=0000 SI=0000 DI=0000
D5=37?57 ES=3?56k SS=3756 CS=375& IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 E485 IN AL, 85

It does. Furthermore, we can put any hex number into any register with the
R command by specifying the register’s name and entering the new number
after the colon, as we just did. From here on, we’ll be using this command
whenever we need to place numbers into the 8088’s registers.

You may recall seeing the number 3A7h in Chapter 1, where we used
Debug’s Hexarithmetic command to add 3A7h and 1EDh. Back then, Debug
did the work for us. This time, we’ll use Debug merely as an interpreter so we
can work directly with the 8088. We'll give the 8088 instructions to add num-
bers from two registers: We’'ll place a number in the BX register and then
instruct the 8088 to add the number in BX to the number in AX and put the
answer back into AX. First, we need a number in the BX register. This time,
let’'s add 3A7h and 92Ah. Use the R command to store 92Ah into BX.

Memory and the 8088

The AX and BX registers should, respectively, contain 3A7h and 92Ah, as
we can verify with the R command:

AX=03A7? BX=092A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=3756 ES=3756 SS=3756 CS=3756 IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 E48S IN AL, 85

Now that we have our two numbers in the AX and BX registers, how do we
tell the 8088 to add BX to AX? We put some numbers into the computer’s
memory.

24 8088 Arithmetic

Your IBM PC probably has at least 128K of memory—far more than we’ll
need to use here. We’ll place two bytes of machine code into a corner of this
vast amount of memory. In this case, the machine code will be two binary
numbers that tell the 8088 to add the BX register to AX. Then, so we can
watch what happens, we’ll execute this instruction with the help of Debug.

Now, where in memory should we place our two-byte instruction, and how
will we tell the 8088 where to find it? As it turns out, the 8088 chops memory
into 64K pieces known as segments. Most of the time, we’ll be looking at mem-
ory within one of these segments without really knowing where the segment
starts. We can do this because of the way the 8088 labels memory.

All bytes in memory are labeled with numbers, starting with Oh and work-
ing up. But remember the four-digit limitation on hex numbers? That means
the highest number the 8088 can use is the hex equivalent of 65535, which
means the maximum number of labels it can use is 64K. Even so, we know
from experience that the 8088 can call on more than 64K of memory. How
does it do this? By being a little bit tricky: It uses two numbers, one for each
64K segment, and one for each byte, or offset, within the segment. Each seg-
ment begins at a multiple of 16 bytes, so by overlapping segments and offsets,
the 8088 effectively can label more than 64K of memory. In fact, this is pre-
cisely how the 8088 uses up to one million bytes of memory.

All the addresses (labels) we’ll be using are offsets from the start of a seg-
ment. We'll write addresses as a segment number, followed by the offset
within the segment. For example, 3756:0100 will mean we are at an offset of
100h within segment 3756h.

Later, in Chapter 11, we’ll learn more about segments and see more about
why we have such a high segment number. But for now, we’ll simply trust
Debug to look after the segments for us, so that we can work within one seg-
ment without having to pay attention to segment numbers. And for the time
being, we’ll refer to addresses only by their offsets. Each of these addresses
refers to one byte in the segment, and the addresses are sequential, so 101h is
the byte following 100h in memory.

Written out, our two-byte instruction to add BX to AX looks like this: ADD
AX BX. We'll place this instruction at locations 100h and 101h, in whatever
segment Debug starts to use. In referring to our ADD instruction, we’ll say
that it’s at location 100h, since this is the location of the first byte of the
instruction.

Debug’s command for examining and changing memory is called E, for
Enter. Use this command to enter the two bytes of the ADD instruction, as
follows:

25

Start of ——p» --------

segment
3756

2

3756:0100 —» 01h

- ADD AX,BX

3756:0101 —» D8h

N

.- m M WM WM WM WM WM WM W W W OW WM OW O OWM OW OWM OW OWM OW OWM O OWM W OCWM OW O OCWM W OWm O OWm W W W wm wm
T R R R TR WM WRL. W R WR WM T MR WM WM W WS WR W e e e N WS R e We e W W e, e

Figure 2-1. Our Instruction Begins 100h Bytes From the Start of the
Segment.

-E 100
3756:0100 E4.01
-E 101
3756:0101 85.D8

The numbers 01h and D8h are the 8088’s machine language for our ADD in-
struction at memory locations 3756:0100 and 3756:0101. The segment number
you see will probably be different, but that difference won’t affect our pro-
gram. Likewise, Debug probably displayed a different two-digit number for
each of your E commands. These numbers (E4h and 85h in our example) are
the old numbers in memory at offset addresses 100h and 101h of the segment

26 8088 Arithmetic

Debug chose—that is, the numbers are data from previous programs left in
memory when you started Debug. (If you just started your computer, the num-
bers should be 00.)

Addition, 8088 Style
Now your register display should look something like this:

AX=03A? BX=092A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=3756 ES=3756 SS5=3756 CS=3756 IP=0100 NV UP DI PL NZ NAR PO NC
3756:0100 01D8 ADD AX,BX

Our ADD instruction is neatly placed in memory, just where we want it to be.
We know this from reading the third line of the display. The first two num-
bers, 3756:0100, give us the address (100h) for the first number of our ADD
instruction. Next to this, we see the two bytes for ADD: 01D8. The byte equal
to 01h is at address 100h, while D8h is at 101h. Finally, since we entered our
instruction in machine language—numbers that have no meaning to us, but
which the 8088 will interpret as an add instruction—the message ADD
AX BX confirms that we entered the instruction correctly.

Even though we've placed our ADD instruction in memory, we’re not quite
ready to run it through the 8088 (execute it). First, we need to tell the 8088
where to find the instruction.

The 8088 finds segment and offset addresses in two special registers, CS and
IP, which you can see listed in the preceding register display. The segment
number is stored in the CS, or Code Segment, register, which we’ll discuss
shortly. If you look at the register display, you can see that Debug has already
set the CS register for us (CS=3756, in our example). The full starting ad-
dress of our instruction, however, is 3756:0100.

The second part of this address (the offset within segment 3756) is stored in
the IP (Instruction Pointer) register. The 8088 uses the offset in the IP register
to actually find our first instruction. We can tell it where to look by setting
the IP register to the address of our first instruction—IP =0100.

But the IP register is already set to 100h. We’ve been clever: Debug sets
IP to 100h whenever you first start it. Knowing this, we’ve deliberately
chosen 100h as the address of our first instruction and have thus elimi-
nated the need to set the IP register in a separate step. It’s a good point to
keep in mind.

Peter Norton’s Assembly Language Book 27

Now, with our instructions in place and the registers set correctly, we’ll tell
Debug to execute our one instruction. We’ll use Debug’s T (for Trace) com-
mand, which executes one instruction at a time and then displays the regis-
ters. After each trace, the IP should point to the next instruction. In this case,
it will point to 102h. We haven’t put an instruction at 102h, so in the last line
of the register display we’ll just see an instruction left from some other
program.

Let’s ask Debug to trace one instruction with the T command:

—T

AX=0CD1 BX=092A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=3756 ES=3756 SS=375k CS=3756 IP=010¢ NV UP DI PL NZ AC PE NC
3756:0102 AC LODSB

That’s it. The AX register now contains CD1h, which is the sum of 3A7h and
92Ah. And the IP register points to address 102h, so the last line of the regis-
ter display shows some instruction at memory location 102h, rather than
100h.

We mentioned earlier that the instruction pointer, together with the CS
register, always points to the next instruction for the 8088. If we typed T
again, we’d execute the next instruction, but don’t do it just yet—your 8088
might head for limbo.

Instead, what if we want to execute our ADD instruction again, adding
92Ah to CD1h and storing the new answer in AX? For that we need to tell the
8088 where to find its next instruction, and want this to be our ADD instruc-
tion at 0100h. Can we just change the IP register to 0100h? Let’s try it. Use
the R command to set IP to 100, and look at the register display:

AX=0CD1 BX=092A CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=37?56 ES=37?56 SS=37?56 CS=375t IP=0100 NV UP DI PL NZ AC PE NC
3756:0100 ADD AX,BX

That’s done it. Try the T command again and see if the AX register contains
15FBh. It does.

As you can see here, you should always check the IP register and the in-
struction at the bottom of an R display before using the T command. That
way, you’ll be sure the 8088 executes the instruction you want it to.

Now, set the IP register to 100h once again, make certain the registers con-
tain AX = 15FB, BX = 092A, and let’s try subtraction.

28

AX:03A7 BX:092A

Figure 2-2. Before Executing the ADD Instruction.

AX:0CD1 BX:092A

ADD AXBX
LODSB

Figure 2-3. After Executing the ADD Instruction.

Subtraction, 8088 Style

We're going to write an instruction to subtract BX from AX so that, after
two subtractions, we’ll have 3A7h in AX: the point from which we started
before our two additions. You’ll also see how we can save a little effort in
entering two bytes into memory.

When we entered the two bytes for our ADD instruction, we typed the E
command twice: once with 0100h for the first address, and once with 0101h for
the second address. The procedure worked, but as it turns out we can actually
enter the second byte without another E command if we separate it from the
first byte with a space. When you've finished entering bytes, pressing the

Peter Norton’s Assembly Language Book 29

Enter key will exit from the Enter command. Try this method for our subtract
instruction:

-E 100
37?56:0100 D01.29 D&.D&

The register display (remember to reset the IP register to 100h) should now
show the instruction SUB AX,BX, which subtracts the BX register from the
AX register and leaves the result in AX. The order of AX and BX may seem
backward, but the instruction is like the BASIC statement AX = AX — BX
except that the 8088, unlike BASIC, always puts the answer into the first
variable (register).

Execute this instruction with the T command. AX should contain CD1.
Change IP to point back to this instruction, and execute it again (remember to
check the instruction at the bottom of the R display first). AX should now be
03A7.

Negative Numbers in the 8088

In the last chapter, we learned how the 8088 uses the two’s-complement
form for negative numbers. Now, let’s work directly with the SUB instruction
to calculate negative numbers. Let’s put the 8088 to a little test, to see if we
get FFFFh for — 1. We'll subtract one from zero and, if we’re right, the sub-
traction should place FFFFh (—1) into AX. Set AX equal to zero and BX to
one, then trace through the instruction at address 0100h. Just what we ex-
pected: AX = FFFFh.

While you have this subtraction instruction handy, you may wish to try
some different numbers to gain a better feel for two’s-complement arithmetic.
For example, see what result you get for —2.

Bytes in the 8088

All of our arithmetic thus far has been performed on words, hence the four
hex digits. Does the 8088 microprocessor know how to perform math with
bytes? Yes, it does.

Since one word is formed from two bytes, each general-purpose register can
be divided into two bytes, known as the high byte (the first two hex digits) and
the low byte (the second two hex digits). Each of these registers can be called

30 8088 Arithmetic

by its letter (A through D), followed by X for a word, H for the high byte, or L
for the low byte. For example, DL and DH are byte registers, and DX is a word
register. (This terminology can become somewhat confusing, however, be-
cause words stored in memory have their low byte first, and the high byte
second.)

AH AL
e
0100 1101 00071 1104
SR SR W L W

- D 1 A

; & i

Figure 2-4. The AX Register Split into Two Byte Registers (AH and AL).

Let’s test byte-sized math with an ADD instruction. Enter the two bytes 00h
and C4h, starting at location 0100h. At the bottom of the register display,
you’ll see the instruction ADD AH, AL, which will add the two bytes of the
AX register and place the result in the high byte, AH.

Next, load the AX register with 0102h. This places 01h in the AH register
and 02h in the AL register. Set the IP register to 100h, execute the T com-
mand, and you’ll find that AX now contains 0302. The result of 01h + 02h is
03h, and that value is in the AH register.

But suppose you hadn’t meant to add 01h and 02h. Suppose you really
meant to add 01h and 03h. If the AX register already contained 0102, could
you change the AL register to 03h? No. You would have to change the AX
register to 0103h. Why? Because Debug only allows us to change entire word
registers. There isn’t a way to change just the low or high part of a register
with Debug. But, as you saw in the last chapter, this isn’t a problem. With
hex numbers, we can split a word into two bytes by breaking the four-digit
hex number in half. Thus, the word 0103h becomes the two bytes 01h and
03h.

To try this ADD instruction, load the AX register with 0103h. Your ADD

Peter Norton’s Assembly Language Book 31

AH,AL instruction is still at memory location 0100h, so reset the IP register
to 100h and, with 01h and 03h now in the AH and AL registers, trace through

this instruction. This time, AX contains 0403h: 04h, the sum of 01h + 03h is
now in the AH register.

Multiplication and Division, 8088 Style

We've seen the 8088 add and subtract two numbers. Now we’ll see that it
can also multiply and divide—clever processor. The multiply instruction is
called MUL, and the machine code to multiply AX and BX is F7h E3h. We'll
enter this into memory, but first a word about the MUL instruction.

Where does the MUL instruction store its answer? In the AX register? Not
quite; we have to be careful here. As you’ll soon see, multiplying two 16-bit
numbers can give a 32-bit answer, so the MUL instruction stores its result
in two registers, DX and AX. The higher 16 bits are placed in the DX regis-
ter; the lower, into AX. We can also write this register combination as
DX:AX.

Let’s get back to Debug and the 8088. Enter the multiply instruction, F7h
E3h, at location 0100h, just as you did for the addition and subtraction in-
structions, and set AX = 7C4Bh and BX = 100h. You’ll see the instruction in
the register display as MUL BX, without any reference to the AX register. To
multiply words, as here, the 8088 always multiplies the register you name in
the instruction by the AX register, and stores the answer in the DX:AX pair of
registers.

Before we actually execute this MUL instruction, let’s do the multiplication
by hand. How do we calculate 100h * 7C4Bh? The three digits 100 have the
same effect in hex as in decimal, so to multiply by 100h simply add two zeros
to the right of a hex number. Thus, 100h * 7C4Bh = 7C4B00h. This result is
too long to fit into one word, so we’ll split it into the two words 007Ch and
4B00h.

Use Debug to trace through the instruction. You’ll see that DX contains
the word 007Ch, and AX contains the word 4BO0Oh. In other words, the
8088 returned the result of the word-multiply instruction in the DX:AX
pair of registers. Since multiplying two words together can never be
longer than two words, but will often be longer than one word (as we just
saw), the word-multiply instruction always returns the result in the
DX:AX pair of registers.

And what about division? When we divide numbers, the 8088 keeps both
the result and the remainder of the division. Let’s see how the 8088’s division

32

DX AX BX

0000 | [7C4B 0100

DX AX BX

007C| |4B00 0100

MUL BX
LODSB

Figure 2-6. After Executing the MUL Instruction.

DX

007C

4B12

BX

Figure 2-7.

DX

0100

DIV BX
LODSB

Before Executing the DIV Instruction.

AX

BX

0012

/C4B

0100

Figure 2-8,

DIV BX
LODSB

After Executing the DIV instruction.

34 8088 Arithmetic

works. First, place the instruction F7h F3h at 0100h (and 101h). Like the
MUL instruction, DIV uses DX:AX without being told, so all we see is DIV
BX. Now, load the registers so that DX = 007Ch and AX = 4B12h; BX should
still contain 0100h.

Again, we’ll first calculate the results by hand: 7C4B12h / 100h = 7C4Bh,
with 12h left over. When we execute our division instruction at 0100h, we find
that AX = 7C4Bh, the result of our division, and DX = 0012h, which is the
remainder. (We’'ll put this remainder to very good use in Chapter 10, when we
write a program to convert decimal numbers to hex by using the remainders,
just as we did in Chapter 1.)

Summary

It’s almost time for us to write a real program—one to print a character on
the screen. We've put in our time learning the basics. Let’s take a look at the
ground we've covered, and then we’ll be all set to push on.

We began this chapter by learning about registers and noticing their simi-
larity to variables in BASIC. Unlike BASIC, however, we saw that the 8088
has a small, fixed number of registers. We concentrated on the four general-
purpose registers, with a quick look at the CS and IP registers, which the 8088
uses to locate segment and offset addresses.

After learning how to change and read registers, we moved on to build some
single-instruction programs by entering the machine codes to add, subtract,
multiply, and divide two numbers with the AX and BX registers. In future
chapters we’ll use much of what we learned here, but you won’t need to re-
member the machine codes for each instruction.

We also learned how to tell Debug to execute, or trace through, a single
instruction. We’ll come to rely heavily on Debug to trace through our pro-
grams. Of course, as our programs grow in size, this tracing will become both
more useful and more tedious. Later on we’ll build on our experience and
learn how to execute more than one instruction with a single Debug
command.

Let’s turn back to real programs and learn how to make a program that
speaks.

PRINTING CHARACTERS

INT—The Powerful Interrupt 36

A Graceful Exit—INT 20h 38

A Two-Line Program—Putting the Pieces
Together 39

Entering Programs 40

MOVing Data into Registers 41

Writing a String of Characters 43

Summary 45

35

3

36 Printing Characters

Now we know enough to do something solid, so roll up your sleeves and flex
your fingers. We're going to begin by instructing DOS to send a character to
the screen, then we’ll move on to even more interesting work. We’ll build a
small program with more than one instruction, and from there, learn another
way to put data into registers—this time, from within a program. Now, let’s
see if we can get DOS to speak.

INT—The Powerful Interrupt

To our four math instructions, ADD, SUB, MUL, and DIV, we’ll add a new
instruction called INT (for Interrupt). INT is something like BASIC’s GOSUB
statement. We'll use the INT instruction to ask DOS to print a character, A,
on the screen for us.

Before we learn how INT works, let’s run through an example. Start Debug
and place 200h into AX and 41h into DX. The INT instruction for DOS func-
tions is INT 21h—in machine code, CDh 21h. This is a two-byte instruction
like the DIV instruction in the last chapter. Put INT 21h in memory, starting
at location 100h, and use the R command to confirm that the instruction reads
INT 21 (remember to set IP to 100h if it isn’t already there).

Now we're ready to execute this instruction, but we can’t use the trace com-
mand here as we did in the last chapter. The trace command executes one
instruction at a time, but the INT instruction calls upon a large program in
DOS to do the actual work, much as BASIC programs can call a subroutine
with the GOSUB statement.

We don’t want to execute each of the instructions in the entire DOS “sub-
routine” by tracing through it one instruction at a time. Instead, we want to
run our one-line program, but stop before executing the instruction at location
102h. We can do this with Debug’s G (for Go) command, followed by the ad-
dress at which we want to stop:

-G 102

A

AX=0241 BX=0000 CX=0000 DX=0041 SP=FFEE BP=0000 SI=0000 DI=0000
DS=3970 ES=39?0 SS5=3970 CS=3970 IP=0102 NV UP DI PL NZ NAR PO NC
3970:0102 BBES MoV SP,BP

DOS printed the character A, and then returned control to our small program.

Peter Norton’s Assembly Language Book 37

(Remember, the instruction at 102h is just data left behind by another pro-
gram, so you'll probably see something different.)

Our small program here is, in a sense, two instructions long, the second
instruction being whatever is at location 102h. That is, it is something like
this:

INT 2l
MOV SP,BP (Or whatever is on your computer)

We’'ll soon replace this random second instruction with one of our own. For
now, since it isn’t anything we want to execute, we told Debug to run our
program, stop execution when it reached this second instruction, and display
the registers when it was done.

And how did DOS know to print the A? The 02h in the AH register told DOS
to print a character. Another number in AH would tell DOS to execute a dif-
ferent function. (We’ll see others later, but if you’re curious right now, you can
find a list of functions in your DOS Technical Manual.)

As for the character itself, DOS uses the number in the DL register as the
ASCII code for the character to print when we ask it to send a character to the
screen. We stored 41h, the ASCII code for an uppercase A.

In Appendix E, you’ll find a chart of ASCII character codes for all the char-
acters your IBM PC can display. For your convenience, the numbers are in
both decimal and hex notation. But since Debug reads hex only, here is a good
chance for you to practice converting decimal numbers to hex. Pick a charac-
ter from the table and convert it to hex on your own. Then, verify your conver-
sion by typing your hex value into the DL register and running the INT
instruction again (remember to reset IP to 100h).

You may have wondered what would have happened if you had tried the
trace command on the INT instruction. We’ll pretend we had not executed the
G 102 command and, instead, trace a short distance through, to see what hap-
pens. If you try this yourself, don’t go too far: You may find your IBM PC
doing something strange. After you've traced through a few steps, exit Debug
with the Q command. This will clean up any mess you’'ve left behind.

-R

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFEE BP=0000 SI=0000 DI=0000
DS=39?0 ES=3970 SS=3970 CS=3970 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD2L INT cl

=T

38 Printing Characters

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFE8 BP=0000 SI=0000 DI=0000
DS=3970 ES=3970 SS=3970 CS=3372¢ IP=0180 NV UP DI PL NZ NR PO NC
3372:0180 B0FC4B CHP AH,4B

=T

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFE& BP=0000 SI=0000 DI=0000
DS=3970 ES=39?0 SS=3970 CS=337¢ 1IP=0183 NV UP DI NG NZ AC PE CY
3372:0183 7405 Jz 0L8A

=T

AX=0200 BX=0000 CX=0000 DX=0041 SP=FFE6 BP=0000 SI=0000 DI=0000
DS=3970 ES=3970 SS=3970 CS=3372 1IP=0185 NV UP DI NG NZ AC PE CY
3372:0185 CE CS:

3372:0166 FFZEARBOB JMP FAR [OBAB] CS:0BAB=0BFF
-Q

Notice that the first number of the address changed here, from 3970 to
3372. These last three instructions were part of DOS, and the program for
DOS is in another segment. In fact, there are many, many more instructions
that DOS executes before it prints a single character; even such an apparently
simple task is not as easy as it sounds. Now you can see why we used the G
command to run our program to location 102h. Otherwise, we’d have seen a
torrent of instructions from DOS. (If you're using a different version of DOS
than we used, the instructions you see when you try this may be different.)

A Graceful Exit—INT 20h

Remember that our INT instruction was 21h? If we changed the 21h to a
20h, we’d have INT 20h instead. INT 20h is another interrupt instruction, and
it tells DOS we want to exit our program, so that DOS can take full control
again. In our case, INT 20h will send control back to Debug, since we're exe-
cuting our programs from Debug, rather than from DOS.

Enter the instruction CDh 20h, starting at location 100h, then try the fol-
lowing (remember to check the INT 20h instruction with the R command):

-G 102

Program terminated normally

-R

AX=0000 BX=0000 CX=0D000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=397?0 ES=3970 SS=3970 CS=3970 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD2O INT 20

-G

Peter Norton’s Assembly Language Book 39

Program terminated normally

-R

AX=0000 BX=0000 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=39?70 ES=3970 SS=39?0 CS=3970 1IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD2O INT 20

The command G, with no number after it, executes the entire program (which
is just one instruction now, because INT 20 is an exit instruction), and then
returns to the start. IP has been reset to 100h, where we started. The registers
in this example are 0 only because we started Debug afresh.

We can use this INT 20h instruction at the end of a program to return con-
trol gracefully to DOS (or Debug), so let’s put this instruction together with
INT 21h and build a two-line program.

A Two-Line Program—Putting the Pieces
Together

Starting at location 100h, enter the two instructions INT 21h, INT 20h
(CDh 21h CDh 20h) one after the other. (From now on, we’ll always start pro-
grams at location 100h).

When we had only one instruction we could “list” that instruction with the
R command, but now we have two instructions. To see them, we have the U
(Unassemble) command, which acts like BASIC’s List command:

-U 100

3970:0100 CD2Y INT cl

3970:0102 CD2O INT 20

3970:0104 D98D4E0250B& ESC 09,[(DI+0246]1[DI+BA50]
3970:010A D00 LEA AX, [BX+SI]
3970:010C SO PUSH AX

3970:010D EB82AZ3 CALL 243A

3970:0110 BBES MOV SP,BP

3970:0112 B83C41A ADD SP,+1A

3970:0115 SD POP BP

3970:0116 C3 RET

9702041 '55 PUSH BP

3970:0118 B3ECOE SUB SP,+0e

3970:011B BBEC MOV BP, SP

3970:011D 823EOECOOD CMP BYTE PTR [OOOE],00

The first two instructions we recognize as the two instructions we just en-
tered. The other instructions are remnants left in memory. As our program
grows, we’ll fill this display with more of our own code.

40 Printing Characters

Now, fill the AH register with 02h and the DL register with the number for
any character (just as you did earlier when you changed the AX and DX regis-
ters), then simply type the G command to see your character. For example, if
you place 41h into DL, you’ll see:

-G
A
Program terminated normally

Try this a few times before we move on to other ways to set these registers.

Entering Programs

From here on, most of our programs will be more than one instruction long,
and to present these programs we’ll use an unassemble display. Our last pro-
gram would thus appear like this:

3970:0100 CD2l INT el
3970:0102 CD2O INT c0

So far, we’ve entered the instructions for our programs directly as numbers,
such as CDh, 21h. But that’s a lot of work, and, as it turns out, there is a much
easier way to enter instructions.

In addition to the unassemble command, Debug includes an A (Assemble)
command, which allows us to enter the mnemonic, or human-readable, in-
structions directly. So rather than entering those cryptic numbers for our
short program, we can use the assemble command to enter the following:

-A 100

3970:0100 INT 21
3970:0102 INT 20
3970:0104

When you've finished assembling instructions, all you have to do is press the
Enter key, and the Debug prompt reappears.

Here, the A command told Debug that we wished to enter instructions in
mnemonic form, and the 100 in our command told Debug to start entering
instructions at location 100h. Since Debug’s assemble command makes enter-
ing programs much simpler, we’ll use it from now on to enter instructions.

Peter Norton’s Assembly Language Book 41

MOVing Data into Registers

Although we've relied on Debug quite a bit so far, we won’t always run
programs with it. Normally, a program would set the AH and DL registers
itself before an INT 21h instruction. To do this, we’ll learn about another in-
struction, MOV. Once we know enough about this instruction, we’ll be able to
take our small program to print a character and make a real program—one
that we can execute directly from DOS.

Soon, we’ll use the MOV instruction to load numbers into registers AH and
DL. But let’s start learning about MOV by moving numbers between regis-
ters. Place 1234h into AX (12h into the AH register, and 34h in AL) and
ABCDh into DX (ABh in DH, and CDh in DL). Now, enter the following in-
struction with the A command:

396F:0100 88D4 MoV AH,DL

This instruction moves the number in DL into AH by putting a copy of it into
AH; AL is not affected. If you trace through this one line, you’ll find that AX
= CD34h and DX = ABCDh. Only AH has changed. It now holds a copy of
the number in DL.

Like the BASIC statement LET AH = DL, a MOV instruction copies a
number from the second register to the first, and for this reason we write AH
before DL. Although there are some restrictions, which we’ll find out about
later, we can use other forms of the MOV instruction to copy numbers be-
tween other pairs of registers. For example, reset IP and try this:

396F:0100 89C3 MOV BX,AX

You've just moved words, rather than bytes, between registers. The MOV in-
struction always works between words and words, or bytes and bytes; never
between words and bytes. It makes sense, for how would you move a word into
a byte?

We originally set out to move a number into the AH and DL registers. Let’s
do so now with another form of the MOV instruction:

396F:0100 B40O2 MOV AH,0¢2

This instruction moves 02h into the AH register without affecting the AL reg-
ister. The second byte of the instruction, 02h, is the number we wish to move.
Try moving a different number into AH: Change the second byte to another,
such as Clh, with the E 101 command.

42 Printing Characters

Now, let’s put all the pieces of this chapter together and build a longer pro-
gram. This one will print an asterisk, *, all by itself, with no need for us to set
the registers (AH and DL). The program uses MOV instructions to set the AH
and DL registers before the INT 21h call to DOS:

396F:0100 B40¢2 MOV RH,02
396F:0102 B2eh MOV DL,2hA
396F:0104 CD2l INT el
396F:0106 CDeO INT c0

Enter the program and check it with the U command (U 100). Make sure IP
points to location 100h, then try the G command to run the entire program.
You should see the * character appear on your screen:

-G

*
Program terminated normally

Now that we have a complete, self-contained program, let’s write it to disk
as a .COM program, so we will be able to execute it directly from DOS. We can
run a .COM program from DOS simply by typing its name. Since our program
doesn’t yet have a name, we need to give it one.

The Debug command N (for Name) gives a name to a file before we write it
to disk. Type:

-N WRITESTR.COM

to give the name WRITESTR.COM to our program. This command doesn’t
write our file to the disk, though—it simply names the file.

Next, we must give Debug a byte count, telling it the number of bytes in our
program so it will know how much memory we want to write to our file. If you
refer to the unassemble listing of our program, you can see that each instruc-
tion is two bytes long (this won’t always be true). We have four instructions,
so our program is 4 * 2 = 8 bytes long. (We could also put Debug’s H command
to work, and use hexarithmetic to determine the number of bytes in our pro-
gram. Typing H 108 100, where 108 is the address of the instruction after INT
20, will produce 8.)

Once we have our byte count, we need somewhere to put it. Debug uses the
pair of registers BX:CX for the length of our file, so putting 8h into CX tells
Debug that our program is eight bytes long. Finally, since our file is only
eight bytes long, we also need to set BX to zero.

Peter Norton’s Assembly Language Book 43

Once we've set the name and length of our program, we can then write it to
disk with Debug’s W (for Write) command:

-W
Writing 0008 bytes

We now have a program on our disk called WRITESTR.COM, so let’s exit
Debug, with a Q, and look for it. Use the DOS Dir command to list the file:

A>DIR WRITESTR.COM

Volume in drive A has no label
Directory of A:\

WRITESTR COM 8 6-30-83 10:05a
1 File(s) 18432 bytes free

A>

The directory listing tells us that WRITESTR.COM is on the disk and that
it’s eight bytes long, just as it should be. To run the program, simply type
Writestr at the DOS prompt. You'll see a * appear on the display. Nothing to it.

Writing a String of Characters

As a final example for this chapter, we’ll use INT 21h, with a different func-
tion number in the AH register, to write a whole string of characters. We’'ll
have to store our string of characters in memory and we’ll have to tell DOS
where to find the string, so in the process, we’ll also learn more about ad-
dresses and memory.

We'’ve already seen that function number 02h for INT 21H prints one char-
acter on the screen. Another function, number 09h, prints an entire string,
and stops printing characters when it finds a $ symbol in the string. Let’s put
a string into memory. We’ll start at location 200h, so the string won’t become
tangled with the code for our program. Enter the following numbers, using the
instruction E 200:

48 kS &EC EC
6F eC 20 44
4F 53 20 b8
65 e b5 cE

24

44 Printing Characters

The last number, 24h, is the ASCII code for a $ sign, and it tells DOS that this
is the end of our string of characters. You’'ll see what this string says in a
minute, when you run the program we’ll enter now:

396F:0100 B409 MOV AH,09
396F:0102 BAOODOE MOV DX, 0200
396F:0105 CD21 INT cl
396F:0107 CD2O INT c0

200h is the address of the string we entered, and loading 200h into the DX
register tells DOS where to find the string of characters. Check your program
with the U command, then run it with a G command:

-G
Hello, DOS here. N
Program terminated normally

Now that we’ve stored some characters in memory, it’s time to meet another
Debug command, D (for Dump). The dump command dumps memory to the
screen somewhat like U lists instructions. Just as when you use the U com-
mand, simply place an address after D to tell Debug where to start the dump.
For example, type the command D 200 to see a dump of the string you just
entered:

-D 200
396F:0200 48 65 6C BC BF 2C 20 44-4F 53 20 68 bS5 72 kS CE Hello, DOS here.

396F:0210 24 SD C3 55 83 EC 30 4B-EC C? Ot 10 00 DD OO EB $1CU.10.16G«s ~. <2

After each pair of address numbers (such as 396F:0200 in our example), we
see 16 hex bytes, followed by the 16 ASCII characters for these bytes. Thus, on
the first line you see most of the ASCII codes and characters you typed in. The
ending $ sign you typed is the first character on the second line; the remain-
der of that line is a miscellaneous assortment of characters.

Wherever you see a period (.) in the ASCII window, it represents either a
period or a special character, such as the Greek letter pi. Debug’s D command
displays only 96 of the 256 characters in the IBM PC character set, so a period
is used for the remaining 160 characters.

We’ll use the D command in the future to check numbers we enter for data,
whether those data are characters or ordinary numbers. (For more informa-
tion, refer to the Debug section in your DOS manual.)

Peter Norton’s Assembly Language Book 45

Our string-writing program is complete, so we can write it to the disk. The
procedure is the same one we used to write WRITESTR.COM to disk, except
this time we have to set our program length to a value long enough to include
the string at 200h. Our program begins at line 100h, and we can see from the
memory dump just performed that the first character (1) following the $ sign
that ends our string is at location 211h. Again, we can use the H command to
find the difference between these two numbers. Find 211h — 100h and store
this value into the CX register, again setting BX to zero. Use the N command
to give the program a name (add the .COM extension to run the program di-
rectly from DOS), then use the W command to write the program and data to a
disk file.

That’s it for writing characters to the screen—aside from one final note: You
may have noticed that DOS never sends the $ character. Quite so, because
DOS uses the $ sign to mark the end of a string of characters. That means we
can’t use DOS to print a string with a $ in it, but in a later chapter, we’ll see
how to print a string with a $ sign or any other special character.

Summary

Our preparations in the first two chapters brought us to the point where we
could work on a real program. In this chapter, we used our knowledge of hex
numbers, Debug, 8088 instructions, and memory to build short programs to
print a character and a string of characters on the screen. In the process we
also learned some new things.

First we learned about INT instructions—not in much detail, but enough
for us to write two short programs. In later chapters, we’ll gain more knowl-
edge about interrupt instructions as we increase our understanding of the
8088 microprocessor tucked under the cover of your IBM PC.

Debug has, once again, been a useful and faithful guide. We’ve been relying
heavily on Debug to display the contents of registers and memory, and in this
chapter we used its abilities even more. Debug ran our short programs with
the G command.

We also learned about the INT 20 exit instruction, and the MOV instruction
for moving numbers into and between registers. The exit instruction (INT 20)
allowed us to build a complete program that we could write to the disk and
run directly from DOS without the help of Debug. And the MOV instruction
gave us the ability to set registers before an INT 21 (print) instruction, so we
could write a self-contained program to print one character.

Finally, we rounded out the chapter with the INT 21h function to print an

46 Printing Characters

entire string of characters. We’ll use all these instructions heavily throughout
the rest of this book, but as you saw from using the Debug assemble and unas-
semble commands, you won’t need to remember the machine codes for these
instructions.

Now we know enough to move on to printing binary numbers. In the next
chapter we’ll build a short program to take one byte and print it on the screen
as a string of binary digits (zeros and ones).

PRINTING BINARY
NUMBERS

Rotations and the Carry Flag 48
Adding With the Carry Flag 49
Looping 50

Writing a Binary Number 53

The Proceed Command 54
Summary 55

47

48 Printing Binary Numbers

In this chapter we’ll build a program to write binary numbers to the screen
as strings of zeros and ones. We have most of the knowledge we need, and our
work here will help solidify ideas we've already covered. We'll also add a few
instructions to those we know, including another version of ADD and some
instructions to help us repeat parts of our program. Let’s begin by learning
something completely new.

Rotations and the Carry Flag

In Chapter 2, when we first encountered hex arithmetic, we found that add-
ing 1 to FFFFh should give 10000h, but doesn’t. Only the four hex digits to
the right fit into one word; the 1 doesn’t fit. We also found that this 1 is an
overflow and that it is not lost. Where does it go? It is put into something
called a flag—in this case, the Carry Flag, or CF. Flags contain one-bit num-
bers, so they can hold either a zero or a one. If we need to carry a one into the
fifth hex digit, it goes into the carry flag.

Let’s go back to our ADD instruction of Chapter 3 (ADD AX,BX). Put FFFFh
into AX and 1 into BX, then trace through the ADD instruction. At the end of
the second line of Debug’s R display, you'll see eight pairs of letters. The last of
these, which can read either NC or CY, is the carry flag. Right now, because
your add instruction resulted in an overflow of 1, you’ll see that the carry status
reads CY (Carry). The carry bit is now 1 or, as we'll say, it’s set.

Just to confirm that we've stored a seventeenth bit here (it would be the
ninth bit for a byte addition), add one to the zero in AX by resetting IP to 100h
and tracing through the add instruction again. The carry flag is affected by
each add instruction, and this time there shouldn’t be any overflow, so the
carry should be reset. And, indeed, the carry does become zero, as indicated by
the NC, which stands for No Carry, in the R display.

(We'll learn about the other status flags later, but if you’re curious, you can
find information about them right now under Debug’s R command in your
DOS manual.)

Let’s review the task of printing a binary number, to see how the carry
information could be useful. We print only one character at a time, and want
to pick off the bits of our number, one by one, from left to right. For example,
the first character we would want to print in the number 1000 0000b would be
the one. If we could move this entire byte left one place, dropping the one into
the carry flag and adding a 0 to the right side, then repeat the process for each
succeeding digit, the carry flag would pick off our binary digits. And we can do

Peter Norton’s Assembly Language Book 49

just this with a new instruction called RCL (Rotate Carry Left).
To see how it works, enter the short program:

39485:0100 DpOD3 RCL BL,1

This instruction rotates the byte in BL to the left by one bit (hence the ,1), and
it does so through the carry flag. The instruction is called rotate, because RCL
moves the leftmost bit into the carry flag, while moving the bit currently in
the carry flag into the rightmost bit position (0). In the process, all the other
bits are moved, or rotated, to the left. After enough rotations (17 for a word,
nine for a byte) the bits are moved back into their original positions, and you
get back the original number.

Place B7h in the BX register, then trace through this rotate instruction
several times. Converting your results to binary, you’ll see the following:

Carry BL register
0 1005 1 0l e B7h We start here
1 Q41518 A 1 | EEh
0 I8 i B B DDh
1 1011 1010 BAh
0 i R o [(8 0111 B7?h After 9 rotations

In the first rotation, bit 7 of BL moves into the carry flag, the bit in the carry
flag moves into bit 0 of BL, and all the other bits move left one position. Suc-
ceeding moves continue rotating the bits to the left until, after nine rotations,
the original number is back in the BL register.

We're getting closer to building our program to write binary numbers to the
screen, but we still need a few other pieces. Let’s see how we can convert the
bit in the carry flag into the character 0 or 1.

Adding With the Carry Flag

The normal ADD instruction, for example, ADD AX BX, simply adds two
numbers. Another instruction, ADC (Add with Carry) adds three numbers:
the two, as before, plus one bit from the carry flag. If you look in your ASCII
table, you’ll discover that 30h is the character 0 and 31h is the character 1. So,
adding the carry flag to 30h gives the character 0 when the carry is clear, and
1 when the carry is set. Thus, if DL = 0 and the carry flag is set (1), executing:

ADC DL,30

50

CF BL
G BN Toimergrt| [2 08 e, 050 1

Figure 4-1. The RCL BL,1 Instruction.

adds DL (0) to 30h (‘0’) and to 1h (the carry) to give 31h (‘1’). And, with one
instruction we’ve converted the carry to a character we can print.

At this point, rather than run through an example of ADC, let’s wait for our
complete program. Once we've built our program, we’ll execute its instruc-
tions one at a time, in a procedure called single-stepping, and through this,
we’ll see both how the ADC instruction works and how it fits nicely into our
program. But first we need one more instruction, which we’ll use to repeat our
RCL, ADC, and INT 21h (print) instructions eight times: once for each bit in a

byte.

Looping

As mentioned, the RCL instruction isn’t limited to rotating bytes; it can also
rotate entire words. We’ll use this ability to demonstrate the LOOP instruc-
tion. LOOP is something like a FOR-NEXT loop in BASIC, but it’s not as
general. As with BASIC’s FOR-NEXT loop, however, we need to tell LOOP
how many times to run through a loop. We do this by placing our repeat count
in register CX. Each time through the loop, the 8088 subtracts one from CX,
and, when CX becomes zero, LOOP ends the loop.

Why the CX register? The C in CX stands for Count. We can use this regis-
ter as a general-purpose register, but, as you’ll see in the next chapter, the CX
register is used with other instructions when we wish to repeat operations.

Here’s a simple program that rotates the BX register left eight times, mov-
ing BL into BH (but not the reverse, since we rotate through the carry flag):

" Peter Norton’s Assembly Language Book 51

396F:0100 BBCSA3 MOV BX,RA3CS
396F:0103 BY0OA00 Mov Cx,0008
396F:0106 D1D3 RCL BX,1
396F:0108 EZFC LOOP 0106
396F:010A CD2O0 INT 20

Our loop starts at 106h (RCL BX,1) and ends with the LOOP instruction. The
number following LOOP (106h) is the address of the RCL instruction. When
we run the program, LOOP subtracts one from CX, then jumps to address
106h if CX is not zero. The instruction RCL BX,1 (rotate carry left, one place)
is executed eight times here, because CX is set to eight before the loop.

0106: -
\

. Decrement
: CX

LOOP 0106 —)

Continue
when CX =0

INT - 20

Figure 4-2. The LOOP Instruction.

You may have noticed that, unlike the FOR-NEXT loop in BASIC, the
LOOP instruction is at the end of our loop (where we’d put the NEXT state-
ment in BASIC). And the start of the loop, the RCL instruction at 106h, has
no special instruction like FOR has in BASIC. If you know a language like
Pascal, you can see that the LOOP instruction is somewhat akin to the RE-
PEAT-UNTIL pair of instructions, where the REPEAT instruction just labels
the start of the block of instructions to loop through.

There are different ways you could execute our small program. If you simply

52 Printing Binary Numbers

type G, you won’t see any change in the register display, because Debug saves
all the registers before it starts carrying out a G command. Then, if it en-
counters an INT 20 instruction (as it will in our program), it restores all the
registers. Try G. You’ll see that IP has been reset to 100h (where you started),
and that the other registers don’t look any different, either.

If you have the patience, you can trace through this program instead. Tak-
ing it one step at a time, you can watch the registers change at each step:

-R

AX=0000 BX=0000 CX=0000 DX=DD0O0O SP=FFEE BP=0000 SI=0000 DI=0000D
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0100 NV UP DI PL NZ NA PO NC
OCDE:0100 BBCSA3 MOV BX,A3CS5

-T

AX=0000 BX=A3CS5 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=0103 NV UP DI PL NZ NAR PO NC
OCDE:0103 BY0800 MOV CX,0008

~T

AX=0000 BX=A3C5 CX=0008 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=0106 NV UP DI PL NZ NA PO NC
OCDE:D0106 D1D3 RCL BX,1

~T

AX=0000 BX=478R CX=0008 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=0108 OV UP DI PL NZ NA PO CY
OCDE:0108 EZFC LOOP 0106

=1

AX=0000 BX=478R CX=0007 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0DCDE ES=0CDE SS=0CDE CS=0CDE 1IP=0106 OV UP DI PL NZ NA PO CY
OCDE:D0106 D1D3 RCL BX,1

=T

AX=0000 BX=C551 CX=0001 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=0108 NV UP DI PL NZ NA PO CY
OCDE:0108 EZFC LOOP 0106

=1

AX=0000 BX=C551 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE 1IP=D10R NV UP DI PL NZ NA PO CY
OCDE:010A CD2D INT c0

Alternatively, you can type G 10A to execute the program up to, but not in-
cluding, the INT 20 instruction at 10Ah; then the registers will show the re-
sult of the program.

T o W LA N

Peter Norton’s Assembly Language Book 53

If you try this, you’ll see CX = 0 and either BX = C551 or BX = C5D1,
depending on the value of the carry flag before you ran the program. The C5
our program’s MOV instruction put into BL at the start is now in the BH
register, but BL doesn’t contain A3, because we rotated BX through the carry.
Later, we’ll see other ways of rotating without going through the carry. Let’s
get back to our goal of printing a number in binary notation.

Writing a Binary Number

We’ve seen how to strip off binary digits one at a time, and convert them to
ASCII characters. If we add an INT 21h instruction to print our digits, our
program will be done. Here’s the program; the first instruction sets AH to 02
for the INT 21h function call (recall, 02 tells DOS to print the character in the
DL register):

39685:0100 B4O¢2 MOV AH,02
3985:0102 BY0AOO MOV CX,0008
3985:0105 B2OO MOV DL,00
3985:0107 DOD3 RCL BL,1
39685:0109 60D230 ADC DL, 30
3985:010C CD21 INT cl
39685:010E EZF5 LOOP 0105
3965:0110 CD20 INT c0

We'’ve seen how all the pieces work, and put them together now. Use rotate BL
(with the instruction RCL BL,1) to pick off the bits of a number, pick a
number you want printed in binary, load it into the BL register, then run this
program with a G command. After the INT 20h instruction, the G command
restores the registers to the values they had before, so BL still contains the
number you see printed in binary.

The ADC DL,30 instruction in our program converts the carry flag to a zero
or a one character. The instruction MOV DL,0 sets DL to zero first, then the
ADC instruction adds 30h to DL, and then finally adds the carry. Since 30h is
the ASCII code for a 0, the result of ADC DL,30 is the code for 0 when the
carry is clear (NC) or 1 if the carry is set (CY).

If you want to see what happens when you run this program, trace through
it. Keep in mind that you’ll need to be a bit careful in single-stepping through
it with the T command. It contains an INT 21h instruction and, as you saw
when we first encountered INT 21h, DOS does a great deal of work for that
one instruction. That’s why you can’t use T on the INT 21.

54 Printing Binary Numbers

You can, however, trace through all the other instructions in this pro-
gram except the final INT 20, which won’t concern you until the very end.
During your tracing, each time you loop through and reach the INT 21h
instruction, type G 10E. Your G command, followed by an address, will tell
Debug to continue running the program, but to stop when IP becomes the
address (10E) you entered. That is, Debug will execute the INT 21h instruc-
tion without your tracing through it, but stops before executing the LOOP
instruction at 10E, so you can return to tracing through the program. (The
number you type after G is known as a breakpoint in the DOS manual,;
breakpoints are very useful when you're trying to understand the inner
workings of programs.)

Finally, terminate the program when you reach the INT 20h instruction by
typing the G command by itself. :

The Proceed Command

Whether or not you tried out the instructions to trace through our program,
you've seen that an instruction like G 10E allows us to trace over an INT
instruction that starts at, say, 10Ch. But that means each time we want to
trace over an INT instruction, we need to find the address of the instruction
immediately following the INT instruction.

As it turns out, there is a Debug command that makes tracing through INT
instructions much simpler. The P (for Proceed) command does all the work for
us. To see, trace through the program, but this time, when you reach the INT
21h instruction, type P, rather than G 10E, as described before.

We’ll make heavy use of the P command in the rest of this book, because it’s
a very nice way to trace over commands like INT, which call on large pro-
grams, such as the routines inside DOS. Before going on, though, we should
mention one thing about the P command—it wasn’t documented in the DOS
manuals for versions of DOS before 3.00. This lack of documentation may
have been an oversight or, more likely, because Microsoft didn’t have time to
test the P command completely before delivering version 2.00 of DOS. What-
ever the reason, if you have a version of DOS before 3.00, you should be aware
that the P command may not work all the time—although we’'ve never had
any problems using it.

That’s about all we’ll do for printing binary numbers as strings of zeros and
ones, but here’s a simple exercise for you to practice on: See if you can modify
this program to print a b at the end of our binary number (Hint: The ASCII
code for b is 62h).

Peter Norton’s Assembly Language Book 55

Summary

In this chapter, we had a chance to catch our breath a bit after our hard
work on new concepts in Chapters 1 through 3. So where nave we been, and
what have we seen?

We had our first encounter with flags, and had a look at the carry flag,
which was of special interest here, because it made our job of printing a binary
number quite simple. It did so as soon as we learned about the rotate instruc-
tion RCL, which rotates a byte or word to the left, one bit at a time.

Once we learned about the carry flag and rotating bytes and words, we
tucked a new version of the add instruction, ADC, under our belts and were
almost ready to build our program to print a number in binary notation.

This is where the LOOP instruction entered the scene. By loading the CX
register with a loop count, we could keep the 8088 executing a loop of instruc-
tions a number of times. We set CX to 8, to execute a loop eight times.

That’s all we needed to write our program. We’ll use these tools again in the
following chapters. In the next chapter we’ll print a binary number in hexa-
decimal notation, just as Debug does, so by the time we finish Chapter 5, we’ll
have a better idea of how Debug translates numbers from binary to hex. Then,
we’ll move on to the other end of Debug: reading the numbers typed in hex
and converting them to the 8088’s binary notation.

PRINTING IN HEX

Compare and Status Bits 58
Printing a Single Hex Digit 61
Another Rotate Instruction 64
Logic and AND 65

Putting It All Together 67
Summary 67

57

58 Printing in Hex

Our program in Chapter 4 was fairly straightforward. We were lucky, be-
cause the carry flag made it easy to print a binary number as a string of 0 and
1 characters. Now we’ll move on to printing numbers in hex notation. Here,
our work will be a bit less direct, and we’ll begin to repeat ourselves in our
programs, writing the same sequence of instructions more than once. But that
type of repetition won’t last forever: In Chapter 7, we’ll learn about proce-
dures, or subroutines, that eliminate the need to write more than one copy of a
group of instructions. First, let’s learn some more useful instructions and see
how to print numbers in hex.

Compare and Status Bits

In the last chapter, we learned something about status flags and examined
the carry flag, which is represented as either CY or NC in Debug’s R display.
The other flags, which are equally useful, keep track of the status for the last
arithmetic operation. There are eight flags altogether, and we’ll learn about
them as they are needed.

Recall that CY means the carry flag is 1, or set, whereas NC means the
carry flag is 0. In all flags 1 means ¢rue and 0 means false. For example, if you
did a SUB instruction with a result of 0, the flag known as the Zero Flag
would be set to 1—true—and you would see it in the R display as ZR (Zero).
Otherwise, the zero flag would be reset to 0—NZ (Not Zero).

Let’s look at an example that tests the zero flag. We’ll use the SUB instruc-
tion to subtract two numbers. If the two numbers are equal, the result will be
zero, and the zero flag will appear as ZR on your display. Enter the following
subtract instruction:

396F:0100 29D8 SUB AX,BX

Now, trace through the instruction with a few different numbers, watching for
ZR or NZ to appear in the zero flag. If you place the same number (F5h in the
following example) into both the AX and BX registers, you'll see the zero flag
set after one subtract instruction, and cleared after another:

Peter Norton’s Assembly Language Book 59

-R

AX=00FS BX=00F5 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0100 NV UP DI PL NZ NA PO NC
OCDE:0100 29D8 SUB AX,BX

=T

AX=0000 BX=00FS5 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0102 NV UP DI PL ZR NA PE NC

OCDE: 0102 3F AAS

—-R 1P

IP 0102

:100

=R

AX=0000 BX=00FS5 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0100 NV UP DI PL ZR NA PE NC

OCDE:0100 29D& SUB AX,BX

-T

AX=FFOB BX=00FS5 CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=010¢2 NV UP DI NG NZ AC PO CY
OCDE:0102 3F AAS

If we subtract one from zero, the result is FFFFh, which, as we saw in Chap-
ter 1,is —1 in two’s-complement form. Can we tell from the R display whether
a number is positive or negative? Yes, another flag, called the Sign Flag,
changes between NG (Negative) and PL (Plus), and is set to 1 when a number
is a negative two’s-complement number.

And another new flag we’ll be interested in is the Overflow Flag, which
changes between OV (Overflow) when the flag is 1 and NV (No Overflow)
when the flag is 0. The overflow flag is set if the sign bit changes when it
shouldn’t. For example, if we add two positive numbers, such as 7000h and
6000h, we get a negative number, DOOOh, or —12288. This is an error because
the result overflows the word. The result should be positive, but isn’t, so the
8088 sets the overflow flag. (Remember, if we were dealing with unsigned
numbers, this wouldn’t be an error, in which case we would ignore the over-
flow flag.)

Try several different numbers to see if you can set and reset each of these
flags, trying them out until you’re comfortable with them. For the overflow,
subtract a large negative number from a large positive number— for example,
7000h — 8000h, since 8000h is a negative number equal to —32768 in two’s-
complement form.

Now we’re ready to look at a set of instructions called the conditional jump
instructions. They allow us to check status flags more conveniently than

60 Printing in Hex

we’ve been able to so far. The instruction JZ (Jump if Zero) jumps to a new
address if the last arithmetic result was zero. Thus, if we follow a SUB in-
struction with, say, JZ 15A, a result of zero for the subtraction would cause
the 8088 to jump to, and start executing, statements at address 15Ah, rather
than at the next instruction.

The JZ instruction tests the zero flag, and, if it’s set (ZR), does a jump just
like a jump with the BASIC statement IF A = 0 THEN 100. The opposite of
JZ is JNZ (Jump if Not Zero). Let’s look at a simple example that uses JNZ
and subtracts one from a number until the result is zero:

396F:0100 2C0L SUB AL,01
396F:0102 7SFC JNZ 0100
396F:0104 Cp20 INT c0

Put a number like three in AL, so you’ll go through the loop a few times,
then trace through this program, one instruction at a time, to see how
conditional branches work. We put the INT 20h instruction at the end so
typing G by accident won’t drop off the end of our program: It’s a good
defensive practice.

You may have noticed that using SUB to compare two numbers, as we just
did, has the potentially undesirable side effect of changing the first number.
Another instruction, CMP (Compare) allows us to do the subtraction without
storing the result anywhere and without changing the first number. The re-
sult is used only to set the flags, so we can use one of the many conditional
jump instructions after a compare. To see what happens, set both AX and BX
to the same number, F5h, and trace through this instruction:

-A 100

OCDE:0100 CMP AX,BX
OCDE: D102

-T

AX=00F5 BX=00FS CX=0000 DX=0000 SP=FFEE BP=0000 SI=0000 DI=0000
DS=0CDE ES=0CDE SS=0CDE CS=0CDE IP=0102 NV UP DI PL ZR NAR PE NC
OCDE:0102 3F AAS

The zero flag is now set (ZR), but F5h remains in both registers.

Let’s use CMP to print a single hex digit. We’'ll create a set of instructions
that use flags to alter the flow of our program, as LOOP did in the last chapter,
in a manner similar to BASIC’s IF-THEN statement. This new set of instruc-
tions will use the flags to test for such conditions as less than, greater than, and

Peter Norton’s Assembly Language Book 61

so on. We won’t have to worry about which flags are set when the first number
is less than the second; the instructions know which flags to look at.

Printing a Single Hex Digit

Let’s start by putting a small number (between 0 and Fh) into the BL regis-
ter. Since any number between 0 and Fh is equivalent to one hex digit, we can
convert our choice to a single ASCII character and then print it. Let’s look at
the steps we need to take to do the conversion.

The ASCII characters 0 through 9 have the values 30h through 39h; the
characters A through F, however, have the values 41h through 46h. Herein
lies a problem: These two groups of ASCII characters are separated by seven
characters. As a result, the conversion to ASCII will be different for the two
groups of numbers (0 through 9 and Ah through Fh), so we must handle each
group differently. A BASIC program to do this two-part conversion looks like
this:

100 IF BL < &HOA
THEN BL = BL + &H30
ELSE BL = BL + &H37

(Notice that we wrote 0Ah for the number A, rather than AH, so we wouldn’t
confuse the number Ah with the register AH. We’ll often place a zero before
hex numbers in situations like this, that could be confusing. In fact, since it
never hurts to place a zero before a hex number, it’s a good idea to place a zero
before all hex numbers.)

Our BASIC conversion program is fairly simple. Unfortunately, the 8088’s
machine language doesn’t include an ELSE statement; it’s far more primitive
than BASIC is, so we’ll need to be somewhat clever. Here’s another BASIC
program, this time one that mimics the method we’ll use for our machine-
language program:

100 BL = BL + &H30
110 IF BL >= &H3A
THEN BL = BL + &H7

You can convince yourself that this program works by trying it with some
choice examples. The numbers 0, 9, Ah, and Fh are particularly good because

62 Printing in Hex

Character | ASCII Code (Hex)

oF
30
31

32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
40
41

42
43
44
45
46
47

CONOCO PPWN—-O

G)'!'IITIUOUJZD@'\JV |, Tl

Figure 5-1. Partial ASCII Table Showing the Characters Used by Hex
Digits.

Peter Norton’s Assembly Language Book 63

these four numbers cover all the boundary conditions—areas where we often
run into problems.

Here, 0 and Fh are, respectively, the smallest and largest single-digit hex
numbers, so by using 0 and Fh, we check the bottom and top of our range. The
numbers 9 and 0Ah, although next to each other, require two different conver-
sion schemes in our program. By using 9 and 0Ah, we confirm that we’ve cho-
sen the correct place to switch between these two conversion schemes.

The machine-language version of this program contains a few more steps;
but it’s essentially the same as the BASIC version. It uses the CMP instruc-
tion, as well as a conditional jump instruction called JL (Jump if Less Than).
Here’s the program to take a single-digit hex number in the BL register and
print it in hex:

3985:0100 B40e MOV AH,02
3985:0102 B868DA MOV DL,BL
3985:0104 80C230 ADD DL, 30
3985:0107 B0FR3A CMP DL, 3R
3965:010A 7COD3 JL 010F
3965:010C 80C207 ADD DL,07
3985:010F CD2l INT cl
39685:0111 CDe2O INT 20

The CMP instruction, as we saw before, subtracts two numbers (DL — 3Ah) to
set the flags, but it doesn’t change DL. So if DL is less than 3Ah, the JL 10F
instruction skips to the INT 21h instruction at 10Fh. Place a single-digit hex
number in BL and trace through this example to get a better feeling for CMP
and our algorithm to convert hex to ASCII. Remember to use either the G
command with a breakpoint or the P command when you run the INT
instructions.

0107 CMP DL3A

010A JL O10F

010C ADD DL,07 il
010F INT 21

Figure 5-2. The JL Instruction.

64 Printing in Hex

Another Rotate Instruction

Our program works for any single-digit hex number, but if we wish to print
a two-digit hex number, we need a few more steps. We need to isolate each
digit (four bits, which are often called a nibble) of this two-digit hex number.
In this section, we’ll see that we can easily isolate the first, or higher, four
bits, and in the next section, we’ll encounter a concept known as a logical
operation, which we’ll use to isolate the lower four bits—the second of our two
hex digits.

To begin, recall that the RCL instruction rotates a byte or a word to the left,
through the carry flag. In the last chapter we used the instruction RCL BL,1,
in which the one told the 8088 to rotate BL by one bit. We can rotate by more
than one bit if we want, but we can’t simply write the instruction RCL BL,2.
(Note: Although RCL BL,2 isn’t a legal 8088 instruction, it works just fine
with the 80286 processor found in IBM ATs. But since the older IBM PCs are
more common than ATs, it’s best to write your programs for the lowest com-
mon denominator — the older 8088.) For rotations by more than one bit, we
must place a rotate count in the CL register.

The CL register is used here in much the same way as the CX register is
used by the LOOP instruction to determine the number of times to repeat a
loop. Use CL for the number of times to rotate a byte or word, rather than the
CX register, because it makes no sense to rotate more than 16 times; thus the
eight-bit CL register is more than large enough to hold our maximum shift
count.

How does all this tie in with printing a two-digit hex number? Our plan now
is to rotate the byte in DL four bits to the right. To do so, we’ll use a slightly
different rotate instruction called SHR (Shift Right). Using SHR, we will be
able to move the upper four bits of our number to the rightmost nibble (four

bits).
DL CF
0— 01101108 1%

—h

Figure 5-3. The SHR DL,1 Instruction.

We also want the upper four bits of DL set to zero, so that the entire register
becomes equal to the byte we are shifting into the right nibble. If we were to

Peter Norton’s Assembly Language Book 65

enter SHR DL,1, our instruction would move the byte in DL one bit to the
right, and at the same time, it would move bit 0 into the carry flag, while
shifting a zero into bit 7 (the highest, or leftmost, bit in DL). If we do that
three more times, we’ll have just what we want: The upper four bits will end
up shifted down into the lower four bits, while the upper four bits will all have
had zeroes shifted into them. We can do all that shifting in one instruction,
using the CL register as the shift count. By setting CL to four before the in-
struction SHR DL,CL, we will ensure that DL becomes equal to the upper hex
digit.

Let’s see how this works. Place 4 into CL and 5Dh into DL, then enter and
trace through the following SHR instruction:

3965:0100 DZEA SHR DL, CL

DL should now be 05h, which is the first digit in the number 5Dh, and we can
now print this digit with a program like the one we used earlier. Thus, putting
together the pieces we have so far, we can build the following program to take
a number in the BL register and print the first hex digit:

3965:0100 B40Oe MoV AH,0¢2
39485:0102 B88DA MoV DL,BL
3985:0104 B10O4 MOV CL,04
39685:0106 DZEA SHR DL,CL
3965:0106 80C230 ADD DL, 30
3985:010B A0FA3A CMP DL,3A
3965:010E 7CO3 JL 0113
3965:0110 80Ce07 ADD DL,07
3985:0113 CD21 INT 2l
3985:0115 CDe20 INT 20

Logic and AND

Now that we can print the first of the two digits in a hex number, let’s see
how we can isolate and print the second digit. Here, we’ll learn how to clear
the upper four bits of our original (not shifted) number to zero, leaving DL
equal to the lower four bits. It’s simple: Set the upper four bits to zero with an
instruction called AND. The AND instruction is one of the logical instruc-
tions—those that have their roots in formal logic. Let’s see how AND works.

In formal logic, we can say, “A is true, if B and C are both true.” But if
either B or C is false, then A must also be false. If we take this statement,
substitute one for true and zero for false, then look at the various combina-

66 Printing in Hex

tions of A, B, and C, we can create what is known as a truth table. Here’s the
truth table for ANDing two bits together:

AND | F T AND 0 1
F B E = 0 g 0
T ¥ T 1 0 1

Down the left and across the top are the values for the two bits. The results for
the AND are in the table, so you see that 0 AND 1 gives 0.

The AND instruction works on bytes and words by ANDing together the
bits of each byte or word that are in the same position. For example, the state-
ment AND BL,CL successively ANDs bits 0 of BL and CL, bits 1, bits 2, and so
on, and places the result in BL. Let’'s make this clearer with an example in
binary:

1011 0101
AND 0111 0110
0011 0100

Furthermore, by ANDing 0Fh to any number, we can set the upper four bits to
Zero:

E=
=
o

oloo

o= J} e I

oo &

(= = W=

ol el

ol o

o ol

ol Gl

Let’s put this logic into a short program that takes the number in BL, iso-
lates the lower hex digit by ANDing OFh to the upper four bits, and then
prints the result as a character. We saw most of the details of this program
when we printed the upper hex digit; the only new detail is the AND
instruction.

3985:0100 B40e MOV AH,02
3985:0102 88DA MOV DL,BL
3945:0104 BO0E20F AND DL,OF
3985:0107 a0C230 ADD DL,30
3985:010A AOFA3A CMP DL,3A
3945:010D 7c03 JL 0112
3985:010F a0C207 ADD DL,07
3985:0112 CD2l INT 2l
3965:0114 CD20 INT c0

Try this with some two-digit hex numbers in BL before we move on to put

Peter Norton’s Assembly Language Book 67

the pieces together to print both digits. You should see the rightmost hex digit
of your number in BL on the screen.

Putting It All Together

There really isn’t much to change when we put all the pieces together. We
need only change the address of the second JL instruction we used to print the
second hex digit. Here is the complete program:

3965:0100 B4De MoV RH,0¢2
3985:0102 B86DA MoV DL,BL
3965:0104 B104 Mov CL,04
3985:0106 DCEA SHR DL,CL
3985:0108 80C230 ADD DL, 30
3965:010B A0FA3A CMP DL,3A
3985:010E 7CO3 JL 0123
39685:0110 60Ce07 ADD DL,07
3985:0113 CD2l INT 2l
3985:0115 B88DA MoV DL,BL
3965:0117 BO0ECOF AND DL,OF
3965:011A 80C230 ADD DL,30
39685:011D B0FA3A CHP DL,3A
39685:0120 7CO3 JL 0125
3985:0122 60C207 ADD DL, 07
3985:0125 CD21 INT 2l
3985:0127 CD2O INT c0

Once you’ve entered this program, you’ll have to type U 100, followed by U,
to see the entire unassembled listing. Note that we’ve repeated one set of five
instructions: the instructions at 108h through 113h, and 11Ah through 125h.
In Chapter 7 we’ll see how to write this sequence of instructions just once by
using an instruction similar to BASIC’s GOSUB statement.

Summary

In this chapter, we learned more about how Debug translates numbers from
the 8088’s binary format to a hex format we can read. What did we add to our
growing store of knowledge?

First, we learned about some of the two-letter flags we see on the right side
of the register (R) display. These status bits give us a great deal of information
about our last arithmetic operation. By looking at the zero flag, for example,

68 Printing in Hex

we could tell whether the result of the last operation was zero. We also found
we could compare two numbers with a CMP instruction.

Next, we learned how to print a single-digit hex number. And, armed with
this information, we went on to learn about the SHR instruction, which ena-
bled us to move the upper digit of a two-digit hex number into the lower four
bits of BL. That done, we could print the digit, just as we've done before.

Finally, we found that the AND instruction allowed us to isolate the lower
hex digit from the upper. And, putting all these pieces together, we wrote a
program to print a two-digit hex number.

We could have continued on to print a four-digit hex number, but at this
point, we’'d find ourselves repeating instructions. Before we try to print a four-
digit hex number, we’ll learn about procedures in Chapter 7. Then, we’ll know
enough to write a procedure to do the job. By then we’ll also be ready to learn
about the assembler—a program that will do much of our work for us. But
now, let’s move on to reading hex numbers.

6
READING CHARACTERS

Reading One Character 70

Reading a Single-Digit Hex Number 71
Reading a Two-Digit Hex Number 72
Summary 73

69

Now that we know how to print a byte in hex notation, we’re going to re-
verse the process by reading two characters—hex digits—from the keyboard
and converting them into a single byte.

Reading One Character

The DOS INT 21h function call we’ve been using has an input function,
number 1, that reads a character from the keyboard. When we learned about
function calls in Chapter 4, we saw that the function number must be placed
in the AH register before an INT 21h call. Let’s try function 1 for INT 21h.
Enter INT 21h at location 0100h:

396F:0100 Cb2l INT cl

Then, place 01h into AH and type either G 102 or P to run this one instruc-
tion. Nothing happens? It doesn’t seem to—all you’ll see is the blinking cur-
sor. But actually, DOS has paused and is waiting until you press a key (don’t
do so yet). Once you press a key, DOS will place the ASCII code for that char-
acter into the AL register. We’ll use this instruction later, to read the charac-
ters of a hex number, but right now, let’s see what happens when we press a
key like F1.

Try pressing the F1 key. DOS will return a 0 in AL, and you’ll also see a
semicolon (;) appear just after Debug’s hyphen prompt.

This is what happened. F1 is one of a set of special keys with extended codes,
which DOS treats differently from the keys representing normal ASCII char-
acters. (You'll find a table listing these extended codes in Appendix E, as well
as at the end of your BASIC manual.) For each of these special keys, DOS
sends fwo characters, one right after the other. The first character returned is
always zero, indicating that the next character is the scan code for a special
key.

To read both characters, we’d need to execute INT 21h twice. But in our
example, we read only the first character, the zero, and left the scan code in
DOS. When Debug finished with the G 102 (or P) command, it began to read

Peter Norton’s Assembly Language Book 71

characters, and the first character it read was the scan code left behind from
the F1 key: namely, 59, which is the ASCII code for a semicolon.

Later, when we develop our Dskpatch program, we’ll begin to use these ex-
tended codes to bring the cursor and function keys to life. Until then, we’ll just
work with the normal ASCII characters.

Reading a Single-Digit Hex Number

Let’s reverse the conversion used in Chapter 5, when we transformed a sin-,
gle-digit hex number to the ASCII code for one of the characters in 0 through
9 or A through F. To convert one character, such as C or D, from a hex charac-
ter to a byte, we must subtract either 30h (for 0 through 9) or 37h (for A
through F). Here is a simple program that will read one ASCII character and
convert it to a byte:

3985:0100 B40L MOV RH,0L
39485:0102 CD2l INT cl

3985:0104 2C30 SUB AL,30
3965:0106 3CO09 CHMP AL,09
3985:0108 7EOC JLE 010C
3985:010A 2CO7 SUB AL,O07
3985:010C CDe20 INT 20

Most of these instructions should be familiar now, but there is one new one,
JLE (Jump if Less than or Equal to). In our program, this instruction jumps if
AL is less than or equal to 9h.

To see the conversion from hex character to ASCII, you need to see the AL
register just before the INT 20h is executed. Since Debug restores the regis-
ters when it executes the INT 20h, you’ll need to set a breakpoint, as you did
in Chapter 4. Here, type G 10C, and you’ll see that AL will contain the hex
number converted from a character.

Try typing some characters, such as k or a lowercase d, that are not hex
digits, to see what happens. You'll notice that this program works correctly
only when the input is one of the digits 0 through 9 or the uppercase letters A
through F. We'll correct this minor failing in the next chapter, when we learn
about subroutines, or procedures. Until then, we’ll be temporarily sloppy and
ignore error conditions: We’ll have to type correct characters for our program
to work properly.

ling

72 Readir

v naraciers

Reading a Two-Digit Hex Number

Reading two hex digits isn’t much more complicated than reading one, but
it does require many more instructions. We’ll begin by reading the first digit,
then we’ll place its hex value in the DL register and multiply it by 16. To
perform this multiplication, we’ll shift the DL register left four bits, placing a
hex zero (four zero bits) to the right of the digit we just read. The instruction
SHL DL,CL, with CL set to four does the trick by inserting zeros at the right.
In fact, the SHL (Shift Left) instruction is known as an arithmetic shift, be-
cause it has the same affect as an arithmetic multiplication by two, four,
eight, and so on, depending on the number (such as one, two, or three) in CL.

CF

1

DL

0110110

he SHL DL.1 Instruction.

§-saivig)

Finally, with the first digit shifted over, we’ll add the second hex digit to the
number in DL (the first digit * 16). You can see and work through all these

details in this program:

398S:
3985
3948S:
49855
3985:
3985
3985S:
3585
3985:
3985
39485:
3985
4985:
3948S:
3985:
4585:

0100
0102
0104
0106
0109
010C
010E
0111
0113
0115
0117
0119
011B
011D
011F
0121

B401
CD2l
8ace
60EA30
80FAO9
7ED3
80ERD7
B104
D2Ee
CD2l
2C30
3co9
7EQ02
2Cco?
ooce
Cb20

MOV
INT
MOV
SUB
CMP
JLE
SUB
MOV
SHL
INT
SUB
CMP
JLE
SUB
ADD
INT

AH,01
cl
DL,AL
DL,30
DL,09
0111
DL,07
CL,04
DL,CL
cl
AL,30
AL,09
0L1F
AL,O07
DL,AL
c0

Now that we’ve got a working program, it’s a good idea to check the bound-
ary conditions to confirm that it’s working properly. For these boundary con-
ditions, use the numbers 00, 09, 0A, OF, 90, A0, FO, and some other number,

Peter Norton’s Assembly Language Book 73

such as 3C. Use a breakpoint to run the program without executing the INT
20h instruction. (Make sure you use uppercase letters for your hex input.)

Summary

We’ve finally had a chance to practice what we learned in previous chapters
without being flooded with new information. Using a new INT 21 function
(number 1) to read characters, we developed a program to read a two-digit hex
number. Along the way, we emphasized the need to test programs with all the
boundary conditions.

Now we’re ready to wrap up Part I by learning about procedures in the
8088.

s

ety AV e

»_i_,

VR R

| fh'u.’l

r-:‘,‘

L] T
|) TS
U R

o g

pigan w

j—
I
" l_q
|

PROCEDURES—COUSINS
TO SUBROUTINES

Procedures 76

The Stack and Return Addresses 78
PUSHing and POPping 79

Reading Hex Numbers with More Ease 81
Summary 84

75

7

dures—Cousins to Subroutines

76 l'l't’-\ L

In the next chapter, we’ll meet MASM, the macro assembler, and begin to
use assembly, or assembler, language. But before we leave Debug, we’ll look at
one last set of examples, and learn about subroutines and a special place to
store numbers called the stack.

Procedures

A procedure is a list of instructions that we can execute from many different
places in a program, rather than having to repeat the same list of instructions
at each place they're needed. In BASIC such lists are called subroutines, but
we’ll call them procedures for reasons that will become clear later.

We move to and from procedures just as we do in BASIC. We call a proce-
dure with one instruction, CALL, which is just like BASIC’s GOSUB. And we
return from the procedure with a RET instruction, which is just like BASIC’s
RETURN.

Here’s a simple BASIC program we’ll soon rewrite in machine language.
This program calls a subroutine ten times, each time printing one character,
starting with A and ending with J:

10 B = &H4L

¢0 FOR I =1 TO 10
30 GOSUB 1000

40 NEXT I

SO0 END

1000 PRINT CHR$(R);
1100 R = R + 1

1200 RETURN

'ASCII for 'A!

The subroutine, following a common practice in BASIC programs, begins at
line 1000 to leave room for us to add more instructions to the main program
without affecting our subroutine. We’ll do the same with our machine-lan-
guage procedure by putting it at 200h, far away from our main program at
100h. We'll also replace GOSUB 1000 with the instruction CALL 200h, which
calls the procedure at memory location 200h. The CALL sets IP to 200h, and
the 8088 starts executing the instructions at 200h.

The FOR-NEXT loop of the BASIC program, as we saw in Chapter 4, can be

D.s o N X5 A b LAl 7 ~]
reter INorton s “L‘“"xf!!l}‘i'l Language Hw»h 77

written as a LOOP instruction. The other pieces of the main program should
be familiar.

3985:0100 B241 MOV DL,41
3985:0102 BYOAOOD MoV CX,000A
3985:0105 EAF800 CALL 0200
3965:0108 ECFB LOOP 0105
39685:010A CDe20 INT c0

The first instruction places 41h (ASCII for A) into the DL register, because
the INT 21h instruction prints the character given by the ASCII code in DL.
The INT 21h instruction itself is located some distance away, in the procedure
at location 200h. Here’s the procedure you should enter at 200h:

3965:0200 B40e MOV AH,0¢2
3965:0202 CD21 INT 2l
3985:0204 FECZ INC DL
3965:0206 C3 RET

There are two new and two old instructions here. Recall that the 02h in AH
tells DOS to print the character in DL when we execute the INT 21h instruc-
tion. INC DL, the first of our two new instructions, increments the DL regis-
ter. That is, it adds one to DL. The other new instruction, RET, returns to the
first (LOOP) instruction following the CALL in our main program.

Type G to see the output of this program, then single-step through it to see
how it works (remember to use either a breakpoint or the P command to run
the INT 21 instruction).

0105: CALL 0200 ~.

+ 0108:LOOP 0105 =
g
\\ e
o 0200: MOV AH,02
sl 0202: INT 21
e 0204: INC DL
SR, 0206: RET

By oA

Figure 7-1. The CALL and RET Instructions.

78 Procedures—Cousins to Subroutines

The Stack and Return Addresses

The CALL instruction in our program needs to save the return address
somewhere so the 8088 will know where to resume executing instructions
when it sees the RET instruction. For the storage place itself, we have a por-
tion of memory known as the stack. And for tracking what’s on the stack,
there are two registers that we can see on the R display: the SP (Stack Pointer)
register, which points to the top of the stack, and the SS (Stack Segment),
which holds the segment number.

In operation, a stack for the 8088 is just like a stack of trays in a cafeteria,
where placing a tray on the top covers the trays underneath. The last tray on
the stack is the first to come off, so another name for a stack is LIFO, for Last
In, First Out. This order, LIFO, is precisely what we need for retrieving return
addresses after we make nested CALLs like this one:

396F:0100 EAFDOO CALL 0200
396F:0200 EAFDOO CALL 0300
396F:0203 C3 RET
396F:0300 ESFDOO CALL 0400
396F :0303. €3 RET
396F:0400 C3 RET

Here, the instruction at 100h calls one at 200h, which calls one at 300h,
which calls one at 400h, where we finally see a return (RET) instruction. This
RET returns to the instruction following the previous CALL instruction, at
300h, so the 8088 resumes executing instructions at 303h. But there it en-
counters a RET instruction at 303h, which pulls the next oldest address (203h)
off the stack. So the 8088 resumes executing instructions at 203h, and so on.
Each RET pops the topmost return address off the stack, so each RET follows
the same path backward as the CALLs did forward.

Try entering a program like the preceding one. Use multiple calls, and trace
through the program to see how the calls and returns work. Although the
process may not seem very interesting right now, there are other uses for this
stack, and a good understanding of how it works will come in handy. (In a
later chapter, we’ll go looking for the stack in memory.)

Address Stack

0098:

0100: [0203

0102: 0103
0104: .

Figure 7-2. The Stack Just Before Executing the CALL 400 Instructior

PUSHing and POPping

The stack is a useful place to store words of data for a while, provided we're
careful to restore the stack before a RET instruction. We’ve seen that a CALL
instruction pushes the return address (one word) onto the top of the stack,
while a RET instruction pops this word off the top of the stack, loads it into
the IP register, and exposes the word that was lying underneath it. We can do
much the same thing with the instructions PUSH and POP, which allow us to
push and pop words. When might we want to do this?

80 Procedures—Cousins to Subroutines
Address Stack

0098: |0303
0100: 0203

0102: | 0103
0104 .

Figure 7-3. The Stack Just After Executing the CALL 400 Instruction.

It’s often convenient to save the values of registers at the beginning of a
procedure and restore them at the end, just before the RET instruction. Then
we're free to use these registers in any way we like within the procedure, as
long as we restore their values at the end.

Programs are built from many levels of procedures, with each level calling
the procedures at the next level down. By saving registers at the beginning of
a procedure and restoring them at the end, we remove unwanted interactions
between procedures at different levels, and this makes our job of program-
ming much easier. You’'ll see more about saving and restoring registers in
Chapter 13, when we talk about modular design. But right now, here’s an
example (don’t enter it) to use to save and restore CX and DX:

Peter Norton’s Assembly Language Book 81

396F:0200 51 PUSH CX
396F:0201 52 PUSH DX

396F :0202 B9080D MOV Cx,0008
396F:0205 EAF800 CALL 0300
396F:0208 FECCZ INC DL
396F:020A E2F9 LOOP 0205
396F:020C SA POP DX
396F:020D S9 POP CX

J96F :020E €3 RET

Notice that the POPs are in reverse order from the PUSHes, because a POP
removes the word placed most recently on the stack, and the old value of DX is
on top of the old CX.

Saving and restoring CX and DX allows us to change these registers in the
procedure that begins at 200h, but without changing the values used by any
procedure that calls this one. And once we’ve saved CX and DX, we can use
these registers to hold local variables—variables we can use within this proce-
dure without affecting the values used by the calling program.

We’ll use such local variables to simplify our programming tasks. As long as
we're careful to restore the original values, we won’t have to worry about our
procedures changing any of the registers used by the calling program. This
will become clearer in the next example, which is a procedure to read a hex
number. Unlike the program in Chapter 6, our program now will allow only
valid characters such as A, but not K.

Reading Hex Numbers with More Ease

We want to create a procedure that keeps reading characters until it re-
ceives one it can convert to a hex number between 0 and Fh. We don’t want to
display any invalid characters, so we’ll sift our input by using a new INT 21h
function, number 8, that reads a character but doesn’t let it pass on to the
screen. That way we can echo (display) characters only if they are valid.

Place 8h into the AH register and run through this instruction, typing an A
just after you type G 102:

3965:0100 CD21 INT cl

The ASCII code for A (41h) is now in the AL register, but the A didn’t appear
on the screen.

Using this function, our program can read characters without echoing them
until it reads a valid hex digit (0 through 9 or A through F), which it will then

82 Procedures—Cousins to Subroutines

echo. Here is the procedure to do this and to convert the hex character to a hex
number:

3985:0200 S¢@ PUSH DX
3985:0201 B4048 MOV AH,08
3985:0203 CD21 INT cl
3985:0205 3C30 CHP AL,30
3985:0207 72FA JB 0203
3985:0209 3C46 CHP AL,4b
3985:020B ?7F6 JA 0203
3985:020D 3C39 CHP AL,39
3985:020F 770A JA 021B
3965:0211 B40O¢2 MOV AH,0¢
39485:0213 8acCe MOV DL,AL
3985:0215 CD2l INT 2l
3985:0217 2C30 SUB AL,30
3985:0219 SA POP DX
3985:021A C3 RET

3985:021B 3C41 CHP AL,41
3985:021D 72E4 JB 0203
3985:021F B40O¢2 MOV AH,02
3985:0221 8aCe MOV DL,AL
3985:02¢23 CD2l INT cl
3985:02¢25 eC37 SUB AL,37
3985:02¢27 SA POP DX
39685:02¢268 C3 RET

The procedure reads a character in AL (with the INT 21h at 203h) and
checks to see if it’s valid with the CMPs and conditional jumps. If the charac-
ter just read is not a valid character, the conditional jump instructions send
the 8088 back to location 203, where the INT 21h reads another character.
(JA is Jump if Above, and JB is Jump if Below; both treat the two numbers as
unsigned numbers, whereas the JL instruction we used earlier treated both as
signed numbers.)

By line 211h, we know that we have a valid digit between 0 and 9, so we
subtract the code for the character 0 and return the result in the AL register,
remembering to pop the DX register, which we saved at the beginning of the
procedure. The process for hex digits A through F is much the same. Notice
that we have two RET instructions in this procedure; we could have had more,
or we could have had just one.

Here is a very simple program to test the procedure:

3985:0100 E8FDOO CALL 0200
3985:0103 CD20 INT 20

As you've done before, use either the G command, with a breakpoint, or use

Peter Norton’s Assembly Language Book 83

the P command. You want to execute the CALL 200h instruction without exe-
cuting the INT 20h instruction, so you can see the registers just before the
program terminates and the registers are restored.

You’ll see the cursor at the left side of the screen, waiting patiently for a
character. Type &, which isn’t a valid character. Nothing should happen. Now,
type any of the uppercase hex characters. You should see the character’s hex
value in AL and the character itself echoed on the screen. Test this procedure
with the boundary conditions: ‘\’ (the character before zero), 0, 9, ‘.’ (the char-
acter just after 9), and so on.

Now that we have this procedure, the program to read a two-digit hex
number, with error handling, is fairly straightforward:

3965:0100 EBFDOOD CALL 0200
3965:0103 8ace MoV DL, AL
3985:0105 B104 MOV CL,04
39685:0107 DCEZ SHL DL, CL
3965:0109 E8F400 CALL 0200
3965:010C 00OCe ADD DL,AL
3965:010E B40e MoV AH,0¢2
3965:0110 CD2l INT 2l

3965:011¢2 CD2O INT c0

You can run this program from DOS, since it reads in a two-digit hex number
and then displays the ASCII character that corresponds to the number you
typed in.

Aside from the procedure, our main program is much simpler than the ver-
sion we wrote in the last chapter, and we haven’t duplicated the instructions
to read characters. We did add error handling, though, and even if it did com-
plicate our procedure, it also ensures that the program now accepts only valid
input.

Here we can also see the reason for saving the DX register in the procedure.
The main program stores the hex number in DL, so we don’t want our proce-
dure at 200h to change DL. On the other hand, the procedure at 200h must
use DL itself to echo characters. So, by using the instruction PUSH DX at the
beginning of the procedure, and POP DX at the end, we save ourselves from
problems.

From now on, to avoid complicated interactions between procedures, we’ll
be very strict about saving any registers used by a procedure.

84 Procedures—Cousins to Subroutines

Summary

Our programming is becoming more sophisticated. We've learned about pro-
cedures that allow us to reuse the same set of instructions without rewriting
them each time. We've also discovered the stack and seen that a CALL stores
a return address on the top of the stack, while a RET instruction returns to
the address on the top of the stack.

We saw how to use the stack for more than just saving return addresses. We
used the stack to store the values of registers (with a PUSH instruction) so we
could use them in a procedure. By restoring the registers (with a POP instruc-
tion) at the end of each procedure, we avoided unwanted interactions between
procedures. By always saving and restoring registers in procedures that we
write, we can CALL other procedures without worrying about which registers
are used within the other procedure.

And finally, armed with this knowledge, we moved on to build a better pro-
gram to read hex numbers—this time, with error checking. The program we
built here is similar to one we’ll use in later chapters, when we begin to de-
velop the Dskpatch program.

Now we're ready to move on to Part II, where we’ll learn how to use the
assembler. In the next chapter, we’ll see how to use the assembler to convert a
program to machine language. We'll also see that there won’t be any reason to
leave room between procedures, as we did in this chapter, when we put our
procedure way up at location 200h.

PART 11

Assembly Language

WELCOME TO THE
ASSEMBLER

A Program Without Debug 88
Creating Source Files 91
Linking 92

Back in Debug 93

Comments 94

Labels 94
Summary 96

87

88 Welcome to the Assembler

“’ell, at long last we’re ready to meet the assembler, a DOS program that
will make our programming much simpler. From now on, we’ll write mne-
monic, human-readable instructions directly, using the assembler to turn our
programs into machine code.

Of necessity, this chapter and the next will be somewhat heavy with details
on the assembler, but learning these details will be well worth the effort. Once
we know how to use the assembler, we’ll get back on course in learning how to
write assembly language programs. Meanwhile, let’s jump right in.

A Program Without Debug

Up to this point, we've just typed DEBUG, and then typed in our program
instructions. Now we’re about to leave Debug behind, and to write programs
without it, and we’ll have to use either an editor or a word processor to create
text, or human-readable, files containing our assembly language instructions.

We begin by creating a source file—the name for the text version of an as-
sembly language program. We’ll create a source file now, for the program we
built and named Writestr back in Chapter 3. To refresh your memory, here is
our Debug version:

396F:0100 B40Oe MOV AH,02
396F:0102 B2kl MOV DL,2A
396F:0104 CD21 INT cl
396F:0106 CD2O INT 2l

Use your editor to enter the following lines of code into a file named
WRITESTR.ASM (the extension .ASM means this is an assembler source file).
Here, as with Debug, lowercase works just as well as uppercase, but we’ll con-
tinue to use uppercase letters to avoid confusion between the number 1 (one)
and the lowercase letter | (el):

CODE_SEG SEGMENT
MOV AH,2h
MOV DL,2Ah
INT 2lh
INT 20h
CODE_SEG ENDS

END

- Peter Norton’s Assembly Language Book 89

This is the same program we created in Chapter 3, but it contains a few nec-
essary changes and additions. Ignoring for now the three new lines in our
source file, notice that there is an A after each hex number. This A tells the
assembler that the numbers are in hexadecimal. Unlike Debug, which assumes
all numbers are in hexadecimal, the assembler assumes that all numbers are
decimal. We tell it otherwise by placing an h after any hexadecimal number.

NOTE: Here’s a warning before we move on: The assembler can become
confused by numbers, such as ACh, that look like a name or an instruc-
tion. To avoid this, always type a zero before a hex number that begins
with a letter. For example, type 0Ch—not ACh.

Watch what happens when we assemble a program with ACh, rather than
0OACh. Here’s the program:

‘ CODE_SEG SEGMENT
MOV DL,ACh
INT 20h
CODE_SEG ENDS
END

Here’s the output:

R>MASM TEST;
Microsoft (R) Macro Assembler Version 4.00
Copyright (C) Microsoft Corp 1981, 1963, 1984, 1985. All rights reserved.

TEST.ASM(2) : error 9: Symbol not defined AC
51070 Bytes symbol space free

0 Warning Errors
1 Severe Errors

A>

Definitely not encouraging. But changing the ACh to 0ACh will satisfy the
assembler.

Also notice the spacing of the commands in our assembler program. We
used tabs to align everything neatly and make the source text more readable.
Compare the program you entered with this version:

90 Welcome to the Assembler

CODE_SEG SEGMENT
MOV RH,ch

MOV DL,Z2Ah

INT 21h

INT 20h

CODE_SEG ENDS
END

A bit of a mess; the assembler doesn’t care, but we do.

This is a label

e
MOV DL,ACh

This is a number

MOV DL@ACh

The 0 tells MASM
that this is a number

Figure 8-1. Put a zero before hexadecimal numbers starting with a letter,
otherwise the assembler will treat the number as a name.

Now let’s return to the three new lines in our source file. The three new

o

Peter Norton’s Assembly Language Book 91

lines are all pseudo-ops, or pseudo-operations. They’re called pseudo-ops be-
cause, rather than generate instructions, they just supply information to the
assembler. The END pseudo-op marks the end of the source file, so the assem-
bler knows that it’s done when it sees an END. Later on, we’ll see that END is
useful in other ways, too. But right now, let’s put aside any further discussion
of it or the other two pseudo-ops and see how to use the assembler.

Creating Source Files

Even though you've entered the lines of WRITESTR.ASM, there’s one more
consideration before we move on to actually assemble our program. The as-
sembler can use source files that contain standard ASCII characters only. If
you are using a word processor, bear in mind that not all word processors
write disk files using only the standard ASCII characters. WordStar is one
such culprit; Microsoft Word is another. For both these word processors, use
the non-document, or unformatted, mode when you save your files.

Before you try assembling WRITESTR.ASM, make sure it’s still ASCII.
From DOS, type:

A>TYPE WRITESTR.ASM

You should see the same text you entered, as you entered it. If you see strange
characters in your program, you may have to use a different editor or word
processor to enter programs. You’'ll also need a blank line after the END state-
ment in your file.

Now, let’s begin to assemble Writestr (be sure to type the semicolon).

BR>MASM WRITESTR;
The IBM Personal Computer Assembler
Version 1.00 (C) Copyright IBM Corp 1981

Warning Severe
Errors Errors
0 0

A>

We're not done yet. At this point, the assembler has produced a file called
WRITESTR.OBJ, which you’ll now find on your disk. This is an intermediate
file, called an object file. It contains our jnachine language program, along

92 Welcome to the Assembler

with a lot of bookkeeping information used by another DOS program called
the Linker.

Linking
Right now, we want the linker to take our .OBJ file and create an .EXE

version of it. Copy LINK.EXE from your DOS disk to the disk containing your
source file and the assembler. Then, link WRITESTR.OBJ by typing:

A>LINK WRITESTR;

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1982

Warning: No STACK segment
There was 1 error detected.

A>

One error? Not really; the linker counts its warning as an error, but in this
case it’s really just what we want. (In some versions of MS-DOS, the Linker
doesn’t report this warning as an error.) Even though the linker warns us that
there is no stack segment, we don’t need one right now. After we learn how to
add more of the trappings, we’ll see why we might want a stack segment.

Now we have our .EXE file, but this still isn’t the last step. We have one
more step—to create a .COM version, which is just what we created with
Debug. Again, you’ll see later why we need all these steps. For now, let’s cre-
ate a .COM version of Writestr.

For our final step, we need the program EXE2BIN.EXE from the DOS sup-
plemental disk. Exe2bin, as its name implies, converts an .EXE file to a
.COM, or binary (bin) file. There’s a difference between .EXE and .COM files,
but we won’t see it until much later, so for now let’s just create the .COM file.

Type:

A>EXEZBIN WRITESTR WRITESTR.COM

A>

The response didn’t tell us very much. To see whether Exe2bin worked, let’s
list all the Writestr files we've created so far:

B e S e B s TF

R R —— -

Peter Norton’s Assembly Language Book 93

A>DIR WRITESTR.*

Volume in drive A has no label
Directory of A:\

WRITESTR ASM 78 7-25-83 5:00p
WRITESTR OBJ 46 7-25-683 7:02p
WRITESTR EXE 640 7-25-43 7:04p
WRITESTR COM 8 7-25-83 7:06p
? File(s) 23552 bytes free

A>

This is quite a number of files, including WRITESTR.COM. Type writestr to
run the .COM version and verify that your program functions properly (recall
that it should print an asterisk on your screen). The exact sizes DOS reports
for the first three files may vary a bit.

The results may seem a little anticlimactic, since we are seemingly back
where we were in Chapter 3, but we aren’t: We’ve gained a great deal. It will
all become much clearer when we deal with calls again. Notice that we never
once had to worry about where our program was put in memory, as we did
about IP in Debug. The addresses were all taken care of for us.

Very soon you’ll come to appreciate this feature of the assembler: It will
make programming much easier. For example, recall that in the last chapter
we wasted space by having our main program at 100h and the procedure we
called at 200h. We'll see that using the assembler allows us to place the proce-
dure immediately after the main program without any gap. But first, let’s see
how our program looks to Debug.

Back in Debug

Let’s read our .COM file into Debug and unassemble it to see how Debug
reconstructs our program from the machine code of WRITESTR.COM:

A>DEBUG WRITESTR.COM
-0

397F:0100 B402 MOV AH,02
397F:0102 B22A MOV DL,c2A
397F:0104 CD2l1 INT 2l

397F:0106 CD2O INT c0

94 Welcome to the Assembler

Exactly what we had in Chapter 3. This is all Debug sees in
WRITESTR.COM. The END and our additional instructions about seg-
ments—CODE_SEG SEGMENT and CODE_SEG ENDS—didn’t make it
through at all. What happened to them?

These instructions don’t appear in the final machine language version of
the program because they are pseudo-ops, and pseudo-ops are for bookkeeping
only. The assembler takes care of a lot of bookkeeping at the cost of some
extra lines. We’ll make good use of pseudo-ops to simplify our job, and we’ll
see how they affect our program, when we take a closer look at segments in
Chapter 11.

Comments

Since we are no longer operating directly with Debug, we'’re free to add more
to our program that the assembler sees but won’t pass on to the 8088. Perhaps
the most important such additions we can make are comments, which are in-
valuable in making a program clear. In assembly language programs, we place
comments after a semicolon, which works like a single quotation mark (’) in
BASIC. The assembler ignores anything on the line after a semicolon, so we can
add anything we want. If we add comments to our brief program:

CODE_SEG SEGMENT
MOV AH,2h ;Select DOS function 2, character output
MOV DL,2Ah ;Load the ASCII code for '*' to be printed
INT clh ;Print it with INT 21h
INT 20h ;And exit to DOS

CODE_SEG ENDS
END

we see quite an improvement—we can understand this program without hav-
ing to think back and remember what each line means.

Labels

To round off this chapter, let’s look at another bookkeeping feature of the
assembler that makes programming smoother: labels.

Until now, when we wanted to jump from one part of a program to another
with one of the jump commands, we had to know the specific address we were
jumping to. In everyday programming, inserting new instructions forces us to

Peter Norton’s Assembly Language Book 95

change the addresses in jump instructions. The assembler takes care of this
problem with labels—names we give to the addresses of any instructions or
memory locations. A label takes the place of an address. As soon as the assem-
bler sees a label, it replaces the label with the correct address before sending
it on to the 8088.

0111

010C JLE DIGHT

010E SUB DL
DIGIT1: 0111 MOV CL
0113 SHL DL,1

Figure 8-2. The Assembler Substitutes Addresses for Labels.

Labels can be up to 31 characters long and can contain letters, numbers,
and any of the following symbols: a question mark (?), a period (.), an at sym-
bol (@), an underline (), or a dollar sign (§). They can’t start with a digit (0
through 9), and a period can be used only as the first character.

As a practical example, let’s take a look at our program from Chapter 6 that
reads a two-digit hex number. It contains two jumps, JLE 0111 and JLE 011F.
Here’s the old version:

3985:0100 B401 MoV AH,01
3965:0102 CD2l INT 2l
39685:0104 88Ce MoV DL,AL
3985:0106 B0EA3D SUB DL, 30
39685:0109 60FAD9 CMP DL,09
3985:010C 7ED3 JLE 0111
3985:010E 80EAD? SUB DL, 07
39685:0111 B1D4 MoV CL,04
39685:0113 DCEe2 SHL DL,CL
3985:0115 CD21 INT 2l
3985:0117 2C30 SUB AL,30
3965:0119 3C09 CHP AL,09
3965:011B 7EDE JLE 0LLF
39685:011D 2CO7 SUB AL,07
39685:011F 00OCe2 ADD DL,AL

39485:0121 CD20 INT c0

96 Welcome to the Assembler

It’s certainly not obvious what this program does, and if it’s not fresh in your
mind, you may have to work a little to understand the program again. Let’s
add labels and comments to clarify its function:

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG ;(To be explained in chapter 11)
MOV AH,1h ;Select DOS function 1, character input
INT 2lh yRead a character, and return ASCII code in AL
MOV DL,AL ;Move ASCII code into DL
SUB DL, 30h ;Subtract 30h to convert digit to 0 - 9
CMP DL,Sh ;Has it a digit between 0 and 9?
JLE DIGITL ;Yes, we have the first digit (four bits)
SUB DL,7h ;No, subtract ?h to convert letter A - F
DIGITL:
MOV CL,4h ;Prepare to multiply by 16
SHL DL,CL yMultiply by shifting, becomes upper four bits
INT clh ;Get next character
SUB AL,30h ;Repeat conversion
CMP AL,9h vI5 It a 81git 1l —"9%
JLE DIGITE ;Yes, so we have the second digit
SUB AL, 7h ;No, subtract ?h
DIGITZ:
ADD DL,AL ;ADD second digit
INT c0h ;And exit
CODE_SEG ENDS
END

The labels here, DIGIT1 and DIGITZ2, are of a type known as NEAR labels,
because a colon (:) appears after the labels when they’re defined. The term
NEAR has to do with segments, which we’ll talk about in Chapter 11, along
with the SEGMENT, ENDS, and ASSUME pseudo-ops. Here, if you assem-
bled the preceding program and then unassembled it with Debug, you’d see
DIGIT1 replaced by 0111h and DIGIT2 replaced by 011Fh.

Summary

This has been quite a chapter. It’s as if we’ve stepped into a new world, and,
in a sense, we have. The assembler’s much simpler to work with than Debug
was, so we can now begin to write real programs, because the assembler does
much of the bookkeeping for us.

What have we learned here? We began by learning how to create a source
file and then go through the steps of assembling, linking, and converting it
from an .OBJ file to an .EXE, and then a .COM file, using a simple program
from Chapter 3. The assembly language program we created contained a few

)
L
¢
2
+

Peter Norton’s Assembly Language Book 97

pseudo-ops, which we’ve never seen before, but they’ll become familiar, once
we’ve become more comfortable using the assembler. In fact, we’ll place SEG-
MENT, ENDS, and END pseudo-ops in all our programs from now on, since
we need them, even though we won’t really see the reason why until Chapter
1t

Next, we learned about comments. You may have wondered how we could
survive without comments. We won’t from now on. Comments add so much to
the readability of programs that we won’t skimp on them.

Finally came labels, to make our programs even more readable. We’ll use
all these ideas and methods throughout the rest of this book. Let’s move on to
the next chapter and see how the assembler makes procedures easier to use.

' "thﬁ".,l
s i i atuﬁwum
¥ e 'I-lr'l._;l.i;w

el g

’ ll,'l Tar Iy ”"_._“
$iy roood eapenidiliveg. B
i s W ANE A m" '-"_ '

PROCEDURES AND THE
ASSEMBLER

The Assembler’s Procedures 100

The Hex-Output Procedures 103

The Beginnings of Modular Design 106
A Program Skeleton 107

Summary 107

99

100 Procedures and the Assembler

Now that we've met the assembler, let’s become a little more comfortable
with writing assembly language programs. In this chapter, we’ll return to the
subject of procedures. You’ll see how we can write procedures much more eas-
ily with the help of our hard-working assembler. Then, we’ll move on to build
some useful procedures, which we’ll use when we begin to develop our
Dskpatch program a few chapters from now.

We'll begin with two procedures to print a byte in hexadecimal. Along the
way, we'll meet several more pseudo-ops. But, like SEGMENT, END, and
ENDS in the last chapter, we’ll leave them pretty much undefined until Chap-
ter 11, where we’ll learn more about segments.

The Assembler’s Procedures

When we first learned about procedures, we left a large gap between the
main program and its procedures, so that we'd have room for changes without
having to worry about our main program overlapping a procedure. But now
we have the assembler, and since it does all the work of assigning addresses to
instructions, we no longer need to leave a gap between procedures. With the
assembler, each time we make a change, we can just assemble the program
again.

In Chapter 7, we built a small program with one CALL. The program did
nothing more than print the letters A through J, and it looked like this:

3985:0100 B241 MOV DL,41
3985:0102 BYORAOOD MOV CX,000A
3985:0105 E8Fa800 CALL 0200
3985:0108 ECFB LOOP 0105
3985:010A CD20 INT el
3985:0200 B40O2 MOV AH,02
3985:0202 CD2l INT 2l
3985:0204 FECe INC DL
3985:020k C3 RET

Let’s turn this into a program for the assembler. It will be hard to read
without labels and comments, so we’ll add those embellishments to make our
program far more readable:

Peter Norton’s Assembly Language Book 101

Listing 9-1. The Program PRINTAJ.ASM

CODE_SEG SEGHMENT
ASSUME CS:CODE_SEG
ORG 100h ;Make this a .COM file (to be explained)
PRINT_A_J PROC NEAR
MOV DL,'A! ;Start with the character A
MOV CX,10 ;Print 10 characters, starting with A
PRINT_LOOP:
CALL WRITE_CHAR ;Print character, and move to next one
LOOP PRINT_LOOP ;Continue for 10 characters
INT 20h ;Return to DOS
PRINT_A_J ENDP
WRITE_CHAR PROC NEAR
MOV AH,Z2 ;Set function code for character output
INT c2lh ;Print the character already in DL
INC DL ;Move to the next char in the alphabet
RET ;Return from this procedure
WRITE_CHAR ENDP
CODE_SEG ENDS
END PRINT_A_J

There are four new pseudo-ops here: ASSUME, ORG, PROC, and ENDP. AS-
SUME is related to segments, and ORG is related to the way DOS loads pro-
grams; we’ll find out more about them in Chapter 11.

PROC and ENDP are pseudo-ops for defining procedures. As you can see,
both the main program and the procedure at 200h are surrounded by match-
ing pairs of the pseudo-ops PROC and ENDP, which, themselves, are enclosed
in the pseudo-ops SEGMENT and ENDS (End Segment).

PROC defines the beginning of a procedure; ENDP defines the end. The
label in front of each is the name we give to the procedure they define. Thus,
in the main procedure, PRINT_A_J, we can replace our CALL 200 instruc-
tion with the more readable CALL WRITE_CHAR. Just insert the name of
the procedure, and the assembler assigns the addresses.

The NEAR and FAR pseudo-ops (more on FAR later) provide information to
the assembler about our use of segments. The assembler uses this information
whenever it assembles a CALL instruction since there are two types of CALL
and RET instructions: near and far. A far CALL, which we won’t use here,
calls a procedure that is contained in another segment. A near CALL, on the
other hand, calls a procedure contained in the same segment.

In this book, we’ll be dealing with programs that fit in a single 64K seg-
ment, so all of our procedures will be NEAR procedures. NEAR informs the

102 Procedures and the Assembler

assembler the procedure is in the same segment as any procedure that calls it.
When the assembler sees CALL WRITE_CHAR, it will know from the NEAR,
in WRITE_CHAR PROC NEAR, that WRITE_CHAR is in the same segment
as PRINT_A_J.

The assembler needs this segment information because there are two ver-
sion of the CALL and RET instructions—one for when we don’t change seg-
ments, and one for when we do. Here it is obvious that our two procedures are
in the same segment, because we placed both procedures between one pair of
segment-defining pseudo-ops: SEGMENT and ENDS. Later on, as we break
our program into pieces that we put in several different source files, the uses
of NEAR and FAR will become more important.

Finally, since we have two procedures, we need to tell the assembler which
to use as the main procedure—where the 8088 should start executing our pro-
gram. The END pseudo-op takes care of this detail. By writing END PRINT _
A_J, we've told the assembler that PRINT_A_J is the main procedure. Later
in our work, we’ll see that the main procedure can be anywhere. Right now,
however, we are dealing with .COM files, and we’ll need to place the main
procedure first in our source file.

You're ready to go, so if you haven’t done so yet, enter the program into a
file called PRINTAJ.ASM and generate the .COM version, using the same
steps you did in the last chapter:

MASM PRINTAJ;
LINK PRINTAJ;
EXEZBIN PRINTAJ PRINTAJ.COM

Then give Printaj a try. (Make sure you've run Exe2bin before you run
Printaj. Otherwise, you’ll end up running the .EXE version of Printaj, which
undoubtedly won’t produce the results you expect.)

When you'’re satisfied, use Debug to unassemble our program and see how
the assembler fits the two procedures together. Recall that we can read a par-
ticular file into Debug by typing its name as part of the command line. For
example, we can type DEBUG PRINTAJ.COM, and when we do, we see:

3985:0100 B24l MOV DL,41
3985:0102 BSOAOO MOV CXx,000A
39685:0105 E80400 CALL 010cC
3985:0108 ECFB LOOP 0105
3985:010A CbeO INT c0
3985:010C B40O2 MOV AH,02
3985:010E CD21 INT cl
39685:0110 FECZ INC DL

39485:0112 C3 RET

3N d& - ‘s

Peter Norton’s Assembly Language Book 103

Our program is nice and snug, with no gap between the two procedures.

0100 MOV DL, 41
0102 MOV CX,0A
0105 CALL 010C
0108 LOOP 0105
010A INT 20

4

\
\
\
.

010C MOV AH,02

010E INT 21
0110 INC DL
0112 RET

Figure 9-1. MASM Assembles Separate Procedures Without a Gap.

The Hex-Output Procedures

We’ve seen hex-output procedures twice before: Once in Chapter 5, where
we learned how to print a number in hex, and again in Chapter 7, where we
saw how to simplify the program, using a procedure to print one hex digit.
Now we'’re going to add yet another procedure to print one character. Why?
Well, let’s just call it foresight.

By using a central procedure to write a character to the screen, we can
change the way this procedure writes characters without affecting the rest of
the program. We will change it several times.

Enter the following program into the file VIDEO_IO.ASM:

104 Procedures and the Assembler

Listing 9-2. The New File VIDEO_IO.ASHM

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG
ORG 100h
TEST_WRITE_HEX PROC NEAR
MOV DL,3Fh ;Test with 3Fh
CALL WRITE_HEX
INT 20h ;Return to DOS

TEST_WRITE_HEX ENDP

PUBLIC WRITE_HEX

; This procedure converts the byte in the DL register to hex and writes ;
; the two hex digits at the current cursor position. :
s DL Byte to be converted to hex. :
; Uses: WRITE_HEX_DIGIT :
B T T T AT S T T R A T I R T Dot s S '
WRITE_HEX PROC NEAR ;Entry point

PUSH 5 ¢ ;Save registers used in this procedure

PUSH DX

MoV DH,DL ;Make a copy of byte

MOV CX,4 ;Get the upper nibble in DL

SHR DL,CL

CALL WRITE_HEX_DIGIT ;Display first hex digit

Mov DL,DH ;Get lower nibble into DL

AND DL,0OFh ;Remove the upper nibble

CALL WRITE_HEX_DIGIT ;Display second hex digit

POP DX

POP CX

RET
WRITE_HEX ENDP

PUBLIC WRITE_HEX_DIGIT

This procedure converts the lower 4 bits of DL to a hex digit and
writes it to the screen.

B
e we e W ws ws e o

DL Lower 4 bits contain number to be printed in hex.
; Uses: WRITE_CHAR
WRITE_HEX_DIGIT PROC NEAR
PUSH DX ;Save registers used
CMP DL, 10 ;Is this nibble <107?
JAE HEX_LETTER ;No, convert to a letter
ADD DL,"a" ;Yes, convert to a digit
JMP Short WRITE_DIGIT ;Now write this character

HEX_LETTER:

Peter Norton’s Assembly Language Book 105

Listing 9-2. continued

ADD DL,"A"-10 ;Convert to hex letter
WRITE_DIGIT:

CALL WRITE_CHAR ;Display the letter on the screen

POP DX ;Restore old value of AX

RET

WRITE_HEX_DIGIT ENDP

PUBLIC WRITE_CHAR

; This procedure prints a character on the screen using the DOS
; function call.

“ s s ws ws we wse

DL Byte to print on screen.
WRITE_CHAR PROC NEAR
PUSH AX
MOV AH,¢2 ;Call for character output
INT 2lh ;Output character in DL register
POP AX ;Restore old value in AX
RET ;And return
WRITE_CHAR ENDP
CODE_SEG ENDS
END TEST_WRITE_HEX

The DOS function to print characters treats some characters specially. For
example, using the DOS function to output 07 results in a beep, without print-
ing the character for 07, which is a small diamond. We’ll see a new version of
WRITE_CHAR in Part III, where we’ll learn about the ROM BIOS routines
inside your IBM PC. For now, though, we’ll just use the DOS function to print
characters.

The new pseudo-op PUBLIC is here for future use: We’ll use it in Chapter
13, when we learn about modular design. PUBLIC simply tells the assembler
to generate some more information for the linker. The linker allows us to
bring separate pieces of our program, assembled from different source files,
together into one program. And PUBLIC informs the assembler that the pro-
cedure named after the PUBLIC pseudo-op should be made public, or avail-
able to procedures in other files.

Right now, Video_io contains the three procedures to write a byte as a hex
number, and a short main program to test these procedures. We’ll be adding
many procedures to the file as we develop Dskpatch, and by the end of this
book, VIDEO_I0.ASM will be filled with many general-purpose procedures.

The procedure TEST _WRITE_HEX that we've included does just what it

106 Procedures and the Assembler

says: It’s here to test WRITE_HEX, which, in turn, uses WRITE_HEX _
DIGIT and WRITE_CHAR. As soon as we've verified that these three proce-
dures are all correct, we’ll remove TEST_WRITE_HEX from VIDEO_
[10.ASM.

Create the .COM version of Video_io, and use Debug to thoroughly test
WRITE_HEX. Change the 3Fh at memory location 101h to each of the bound-
ary conditions we tried in Chapter 5, then use G to run TEST_WRITE_HEX.

We’ll use many simple test programs to test new procedures we've written.
In this way, we can build a program piece by piece, rather than try to build
and debug it all at once. This incremental method is much faster and easier,
since we can confine bugs to just the new code.

The Beginnings of Modular Design

Notice that, ahead of each procedure in Video_io, we've included a block of
comments briefly describing the function of each procedure. More impor-
tantly, these comments tell which registers the procedure uses to pass infor-
mation back and forth, as well as what other procedures it uses. As one
feature of our modular approach, the comment block allows us to use any pro-
cedure by looking at the description. There’s no need to relearn how the proce-
dure does its work. This also makes it fairly easy to rewrite one procedure
without having to rewrite any of the procedures that call it.

We've also used PUSH and POP instructions to save and restore any regis-
ters we use within each procedure. We’'ll do this for every procedure we write,
except for our test procedures. This approach, too, is part of the modular style
we'll be using.

Recall that we save and restore any register used so that we never have to
worry about complex interactions between procedures trying to fight over the
small number of registers in the 8088. Each procedure is free to use as many
registers as it likes, provided it restores them before the RET instruction. It’s
a small price to pay for the added simplicity. In addition, without saving and
restoring registers, the task of rewriting procedures would be mind-rending.
You’d be sure to lose much hair in the process.

We also try to use many small procedures, instead of one large one. This,
too, makes our programming task simpler, although we’ll sometimes be forced
to write longer procedures when the design becomes particularly convoluted.

These ideas and methods will all be borne out more fully in the chapters to
come. In the next chapter, for example, we’ll add another procedure to Video_

Peter Norton’s Assembly Language Book 107

io: a procedure to take a word in the DX register and print the number in
decimal on the screen.

A Program Skeleton

As we've seen in this and the preceding chapter, the assembler imposes a
certain amount of overhead on any programs that we write. In other words,
we need to write a few pseudo-ops that tell the assembler the basics. For fu-
ture reference, here is the absolute minimum you’ll need for programs you
write:

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG
ORG 100h

Some_procedure PROC NEAR

INT 20h
Some_procedure ENDP

CODE_SEG ENDS
END Some_procedure

We’ll add some new pseudo-ops to this program skeleton in later chapters,
but you can use it, as shown here, as the starting point for new programs you
write. Or, even better, you can use some of the programs and procedures from
this book as your starting point.

Summary

We're really making progress now. In this chapter, we learned how to write
procedures in assembly language. From now on we’ll use procedures all the
time, and by using small procedures, we’ll make our programs more
manageable.

We saw that a procedure begins with a PROC definition and ends with an
ENDP pseudo-op. We rewrote PRINT_A_J to test our new knowledge of pro-
cedures, then went on to rewrite our program to write a hex number—this
time with an extra procedure. Now that procedures are so easy to work with,

108 Procedures and the Assembler

there’s little reason not to break our programs into more procedures. In fact,
we’ve seen that there are many reasons for using many small procedures.

At the end of this chapter we talked briefly about modular design, a philos-
ophy that will save us a great deal of time and effort. Our modular programs
will be easier to write, easier to read, and easier for someone else to modify
than programs created with the well-worn technique of spaghetti logic: pro-
grams written with very long procedures and many interactions.

We're now ready to build another useful procedure. Then, in Chapter 11,
we’ll learn about segments. And from there, we’ll move on to developing
larger programs, where we’ll really start to use the techniques of modular
design.

10
PRINTING IN DECIMAL

Recalling the Conversion 110
Some Tricks 113

The Inner Workings 114
Summary 116

109

110 Printing in Decimal

We’ve been promising that we’d write a procedure to take a word and print
it in decimal notation. WRITE_DECIMAL uses some new tricks—ways to
save a byte here, a few microseconds there. Perhaps such tricks will hardly
seem to be worth the effort. But if you memorize them, you'll find that you can
use them to shorten and speed up programs. Through our tricks, we’ll also
learn about two new types of logical operations to add to the AND instruction
we covered in Chapter 5. First, let’s review the process for converting a word
to decimal digits.

Recalling the Conversion

Division is the key to converting a word to decimal digits. Recall that the
DIV instruction calculates both the integer answer and its remainder. So, cal-
culating 12345/10 yields 1234 as the integer answer, and 5 as the remainder.
In this example, 5 is simply the rightmost digit. And if we divide by 10 again,

1

- Stack

AN

.

Figure 10-1. PUSHing the Digits onto the Stack Reverses Their Order.

oo S > 12345

[T P S S —

Peter Norton’s Assembly Language Book 111

we’ll get the next digit to the left. Repeated division by 10 strips off the digits
from right to left, each time putting them in the remainder.

Of course, the digits come out in reverse order, but in assembly language
programming, we have a fix for that. Remember the stack? It’s just like a
stack of lunch trays: The first one to come off the top is the last tray that was
set down. If we substitute digits for trays, and place the digits one on top of the
other as they come out of the remainder, we’ll have it. We can pull out the
digits in correct order.

The top digit is the first digit in our number, and the other digits are under-
neath it. So, if we push the remainders as we calculate them, and print them
as we pop them off the stack, the digits will be in the correct order.

The following program is the complete procedure to print a number in deci-
mal notation. As we mentioned, there are a few tricks hiding in this proce-
dure. We'll get to them soon enough, but let’s try WRITE__DECIMAL to see if
it works before we worry about how it works.

Place WRITE_DECIMAL into VIDEO_IO.ASM, along with the procedures
for writing a byte in hex. Make sure you place WRITE_DECIMAL after
TEST_WRITE_HEX, which we’ll be replacing with TEST_WRITE_DECI-
MAL. To save some work, WRITE_DECIMAL uses WRITE_HEX_DIGIT to
convert one nibble (four bits) into a digit.

Listing 10-1. ARdd to VIDEO_IO.ASM

PUBLIC WRITE_DECIMAL

; This procedure writes a 1b-bit, unsigned number in decimal notation.
7 DX N : 1b-bit, unsigned number.
; Uses: WRITE_HEX_DIGIT

WRITE_DECIMAL PROC NEAR

PUSH AX ;Save registers used here

PUSH X

PUSH DX

PUSH ST

Mov AX,DX

MOV SI,10 ;Will divide by 10 using SI

XOR X, CX ;Count of digits placed on stack
NON_ZERO:

XOR DX,DX ;Set upper word of N to O

DIV SI ;Calculate N/10 and (N mod 10)

PUSH DX ;Push one digit onto the stack

INC X ;One more digit added

OR AX,AX N = O yet?

112 Printing in Decimal

Listing 10-1. continued

JNE NON_ZERO ;Nope, continue
WRITE_DIGIT_LOOP:
POP DX ;Get the digits in reverse order

CALL WRITE_HEX_DIGIT
LOOP WRITE_DIGIT_LOOP
END_DECIMAL:

POP SI
POP DX
POP CX
POP AX
RET

WRITE_DECIMAL ENDP

Notice that we've included a new register, the SI (Source Index), register.
Later we’ll see why it’s been given that name, and we’ll meet its brother, the
DI, or Destination Index, register. Both registers have special uses, but they
can also be used as if they were general-purpose registers. Since WRITE_
DECIMAL needs four general-purpose registers, we used SI, even though we
could have used BX, simply to show that SI (and DI) can serve as general-
purpose registers if need be.

Before we try out our new procedure, we need to make two other changes to
VIDEO_IO.ASM. First, we must remove the procedure TEST_WRITE_HEX,
and insert this test procedure in its place:

Listing 10-2. Replace TEST_WRITE_HEX in VIDEO_IO.ASM with This

Procedure
TEST_WRITE_DECIMAL PROC NEAR
MOV DX,1234S
CALL WRITE_DECIMAL
INT 20h ;Return to DOS
TEST_WRITE_DECIMAL ENDP

This procedure tests WRITE_DECIMAL with the number 12345 (which the
assembler converts to the word 3039h).

Second, we need to change the END statement at the end of VIDEO_
I0.ASM to read END TEST_WRITE_DECIMAL, because TEST_WRITE_
DECIMAL is now our main procedure.

Make these changes and give VIDEO_IO a whirl. Convert it to its .COM
version and see if it works. If it doesn’t, check your source file for errors. If
you're adventurous, try to find your bug with Debug. After all, that’s what
Debug is for.

J

Peter Norton’s Assembly Language Book 113

Some Tricks

Hiding in WRITE_DECIMAL are two tricks of the trade garnered from the
people who wrote the ROM BIOS procedures we’ll meet in Chapter 17. The
first is an efficient instruction to set a register to zero. It’s not much more
efficient than MOV AX,0, and perhaps it’s not worth the effort, but it’s the
sort of trick you’ll find people using, so here it is. The instruction:

XOR AX,AX

sets the AX register to zero. How? To understand that, we need to learn about
the logical operation called an Exclusive OR, hence the name XOR.

The exclusive OR is similar to an OR (which we’ll see next), but the result of
XORing two trues:

XOR | 0 1
0’01
Tl dal)

is true if only one bit is true, not if both are true. Thus, if we exclusive OR a
number to itself, we get zero:

101100 0F 10T
XOR" 10110101
0000 000O

That’s the trick. We won’t find other uses for the XOR instruction in this book,
but we thought you'd find it interesting.

As a short aside, you’ll also find many people using another quick trick to
set a register to zero. Rather than using the XOR instruction, we could have
used:

SUB AX,RX

to set the AX register to zero.
Now for the other trick. It’s just about as devious as our XOR scheme to
clear a register, and it uses a cousin to the exclusive OR—the OR function.
We want to check the AX register to see if it’s zero. To do this, we could use
the instruction CMP AX,0. But no, we’d rather use a trick: It’s more fun, and a
little more efficient, too. So, we write OR AX,AX and follow this instruction

114 Printing in Decimal

with a JNE (Jump if Not Equal) conditional jump. (We could also have used
JNZ—Jump if Not Zero.)

The OR instruction, like any of the math instructions, sets the flags, includ-
ing the zero flag. Like AND, OR is a logical concept. But here, a result is true
if one OR the other bit is true:

If we take a number and OR it to itself, we get the original number back
again:

1011 0101
OR 1011 0101
161 0301

The OR instruction is also useful for setting just one bit in a byte. For exam-
ple, we can set bit 3 in the number we just used:

11 0193
OR 0000 1000
¥ 13301

We'll have more tricks to play before we're through in this book, but these
two are the only ones that are entirely for fun.

The Inner Workings

To see how WRITE__DECIMAL performs its task, study the listing; we won’t
cover more details here. We do need to point out a few more things.

First, the CX register is used to count how many digits we’ve pushed onto
the stack, so that we know how many to remove. The CX register is a particu-
larly convenient choice, because we can build a loop with the LOOP instruc-
tion and use the CX register to store the repeat count. Our choice makes the
digit-output loop (WRITE_DIGIT_LOOP) almost trivial, because the LOOP
instruction uses the CX register directly. We’ll use CX very often when we
have to store a count.

Next, be careful to check the boundary conditions here. The boundary condi-

Peter Norton’s Assembly Language Book 115

tion at 0 isn’t a problem, as you can check. The other boundary condition is
65535, or FFFFh, which you can check easily with Debug. Just load VIDEO__
10.COM into Debug by typing DEBUG VIDEO_IO.COM and change the 12345
(3039h) at 101h to 65535 (FFFFh). (WRITE_DECIMAL works with unsigned
numbers. See if you can write a version to write signed numbers).

You may have noticed a sticky point here, having to do with the 8088, not our
program. Debug works mostly with bytes (at least the E command does) but we
want to change a word. We must be careful, since the 8088 stores the bytes in a
different order. Here is an unassemble for the MOV instruction:

39685:0100 BA3930 MOV DX,3039

You can tell from the BA3930 part of this display that the byte at 101h is 39h,
and the one at 102h is 30h (BA is the MOV instruction). The two bytes are the
two bytes of 3039h, but seemingly in reverse order. Confusing? Actually, the
order is logical, after a short explanation.

A word consists of two parts, the lower byte and the upper byte. The lower
byte is the least significant byte (39h in 3039h), while the upper byte is the
other part (30h). It makes sense, then, to place the lower byte at the lower
address in memory. (Some computers actually reverse these two bytes, and
this can be a bit confusing if you’re using several different computers.)

Try different numbers for the word starting at 101h, and you’ll see how this
storage works. Use TEST_WRITE_DECIMAL to see if you got it right, or
unassemble the first instruction.

MOV DX.,3039

0102: | 30
Qiai:) 3%

0100: | BA| «— MOV instruction

3039h

Figure 10-2. The 8088 Stores Numbers With the Lower Byte First in
Memory.

116 Printing in Decimal

Summary

We added a few new instructions to our repertoire here, as well as a few
tricks for fun. We also learned about two other registers, SI and DI, that we
can use as general-purpose registers. They also have other uses, which we’ll
see in later chapters.

We learned about the XOR and OR logical instructions, which allow us to
work between individual bits in two bytes or words. And in our WRITE_DEC-
IMAL procedure, we used the XOR AX AX instruction as a tricky way to set
the AX register to zero. We used OR AX,AX as a devious way to write the
equivalent of CMP AX,0 to test the AX register and see if it is zero.

Finally, we learned about how the 8088 stores a word in memory by check-
ing the boundary conditions of our new procedure, WRITE_DECIMAL.

Here, at the end of this chapter, we now have another general-purpose pro-
cedure, WRITE_DECIMAL, that we’ll be able to use in the future for our own
programs.

Take a breather now. We've got a few different chapters scheduled next.
Chapter 11 covers segments in detail. Segments are perhaps the most compli-
cated part of the 8088 microprocessor, so the chapter may prove to be rather
heavy going. Even so, though, we need to cover the topic for following
chapters.

After that, we’ll make a slight course correction and get back on track by
learning about what we want to do with our program Dskpatch. We’ll do a bit
of probing on disks, and learn about sectors, tracks, and other such things.

From there, we can plot a simple course for preliminary versions of
Dskpatch. En route, you'll get a chance to see how to develop large programs.
Programmers don’t write an entire program, then debug it. They write sec-
tions and try each section before they move on—programming is much less
work that way. We’ve used this approach to a limited extent by writing and
testing WRITE_HEX and WRITE_DECIMAL, for which the test programs
were very simple. The test programs from here on will be more complex, but
more interesting, too.

P e

11
SEGMENTS

Sectioning the 8088’s Memory 118
Segment Pseudo-Ops 124

The ASSUME Pseudo-Op 126
Near and Far CALLs 127

More on the INT Instruction 129
Interrupt Vectors 131

Summary 132

117

118 \V:H!L nts

In the preceding chapters, we've encountered several pseudo-ops that deal
with segments. Now the time has come to look at segments themselves, and at
how the 8088 manages to address a full megabyte (1,048,576 bytes) of memory.
From this, we’ll begin to understand why segments need their own pseudo-ops
in the assembler, and in later chapters we’ll begin to use different segments
(thus far, we've used only one). Then, in Chapter 13, when we learn about mod-
ular design, we’ll see how to group segments together into a .COM file.

Let’s start at the 8088 level by learning how it constructs the 20-bit ad-
dresses needed for a full megabyte of memory.

Sectioning the 8088’s Memory

Segments are about the only part of the 8088 we haven't covered yet, and
they are, perhaps, the most confusing part of this microprocessor to most peo-
ple. In fact, segments are what we call a kludge in this business: computerese
for a makeshift fix to a problem.

The problem, in this case, is being able to address more than 64K of mem-
ory—the limit with one word, since 65535 is the largest number a single word
can hold. Intel, designers of the 8088, used segments and segment registers to
“fix” this problem, and in the process made the 8088 more confusing.

So far, we haven’t concerned ourselves with this problem. We’ve been using
the IP register to hold the address of the next instruction for the 8088 to exe-
cute ever since we met Debug in Chapter 2. Back then, you may recall that we
said the address is actually formed from both the CS register and the IP regis-
ter. But we never really said how. Now, let’s find out.

Although the complete address is formed from two registers, the 8088
doesn’t form a two-word number for the address. If you were to take CS:IP as a
32-bit number (two 16-bit numbers side by side), the 8088 would be able to
address about four billion bytes—far more than the one million bytes it can
actually address. The 8088’s method is slightly more complicated: The CS reg-
ister provides the starting address for the code segment, where a segment is
64K of memory. Here’s how it works.

As you can see in Figure 11-1, the 8088 divides memory into many overlap-
ping segments, with a new segment starting every 16 bytes. The first segment
(segment 0) starts at memory location 0; the second (segment 1) starts at 10h
(16); the third starts at 20h (32), and so on.

The actual address is just CS * 16 + IP. For example, if the CS register
contains 3FA8 and IP contains D017, the absolute address is:

0001:0000

SEGVENT
1

R

0001:FFFF

0
65535
16
v
65551

0000:0000

0000:FFFF

119

Figure 11-1. Overlapping Segments Start Every 16 Bytes, and Are 65536

Bytes Long.

£S5 Aby < D 0T 1111 1 @ 10 1000 0D0DO0O
IP - L 0000 0001 0111
0100 1100 s sl 1001 0111

We multiplied by 16 just by shifting CS left four bits, and injecting zeros at

the right.

Now, this may seem like a strange way to address more than 64K of mem-
ory, and it is—but it works. Soon, we’ll begin to see how well it really works.

120 Segments

&@ [ofo["[1[1[* A][o] o 1 o]o]0 < Segment (CS)

4+ |1]1/0[1]0[{0[|O|0|O[OfO]1]|O|1[1]1 <+ Offset (IP)

UT00T1T007T 01T DYTORI RT3 1

Figure 11-2. The Absolute Address of CS:IP is CS * 16 + IP.

The 8088 actually has four segment registers: CS (Code Segment), DS (Data
Segment), SS (Stack Segment), and ES (Extra Segment). The CS register
we’'ve been looking at is used by the 8088 for the segment where the next
instruction is stored. In much the same way, DS is the segment where the
8088 looks for data, and SS is where the 8088 places the stack.

Before we go on, let’s look at a short program, quite different from any we've

seen before, that uses two different segments. Enter this program into the file
TEST_SEG.ASM:

Listing 11-1. The Program TEST_SEG.ASM

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG
TEST_SEGMENT PROC NEAR

MOV AH,4Ch ;Ask for the exit-to-dos function
INT 2lh ;Return to DOS

TEST_SEGMENT ENDP

CODE_SEG ENDS

STACK_SEGMENT SEGMENT STACK
DB 10 DUP ("Stack) ;Three spaces after Stack
STACK_SEGMENT ENDS

END TEST_SEGMENT

Then assemble and link Test_seg, but don’t generate a .COM file for it. The
result will be TEST_SEG.EXE, which is slightly different from a .COM file.

Note: We have to use a different method for exiting from .EXE files. For
.COM files, INT 20h works perfectly well, but it doesn’t work at all for
.EXE files because the organization of segments is very different, as we’ll
see in this chapter; more on this difference later.

A —

Peter Norton’s Assembly Language Book 121

When we used Debug on a .COM file, Debug sets all the segment registers
to the same number, with the program starting at an offset of 100h from the
start of this segment. The first 256 bytes (100h) are used to store various
pieces of information which we really aren’t that interested in, but we’ll take
a peek at part of this area in a little bit.

Now, try loading TEST_SEG.EXE into Debug, to see what happens with
segments in an .EXE file:

A>DEBUG TEST_SEG.EXE

-R

AX=0000 BX=0000 CX=0080 DX=DDOO SP=0050 BP=0000 SI=0000 DI=0000
DS=3985 ES=3985 SS=399t CS=3995 IP=0000 NV UP DI PL NZ NA PO NC
3995:0000 CbeOd INT c0

The values of the SS and CS registers are different from those for DS and ES.

In our program, we defined two segments. The STACK_SEGMENT is
where we place the stack (hence, the word STACK after the word SEG-
MENT). We defined the stack to be 80 bytes long: The instruction DB 10 DUP
(“Stack ”) tells the assembler to convert the string in quotation marks to
bytes, and to repeat the string ten times in memory. DB (Define Byte) tells the
assembler we are defining bytes of memory. Here, we'’re initializing the stack
with ten repetitions of the ASCII code for Stack and three spaces. The code for
this is 53 74 61 63 6B 20 20 20, so if we look at the stack segment, we should
see these numbers repeated ten times. Ask Debug to dump this area of mem-
ory with the following command, which tells Debug to dump memory starting
at offset 0 within the Stack Segment (SS:0):

-D 55:0

3996:0000 53 7?4 61 63 6B 20 20 €0-53 74 61 63 6B 20 20 20 Stack Stack
3996:0010 53 74 61 b3 6B 20 20 20-53 74 61 b3 6B 20 20 20 Stack Stack
3996:0020 53 7?4 61 b3 6B 20 20 20-53 7?4 b1 63 6B 20 20 20 Stack Stack
3996:0030 53 74 61 63 BB 20 20 20-53 74 61 b3 6B 20 20 20 Stack Stack
3996:0040 53 7?4 61 63 6B 20 20 20-53 74 61 63 6B 20 0D 0O Stack ¢ Stack ..
3996:0050 00 00 00D DD 00 DO OO O0-00 0OG DO OO0 00 00 00 0D .cccecccecccannasa

The address for the top of the stack is given by SS:SP. SP is the Stack Pointer,
like IP and CS for code, and is an offset within the current Stack Segment.
Actually, “top-of-stack” is a misnomer, because the stack grows from high

122 Segments

3985:0000
DATA SEGMENT
3995:0000
CODE SEGMVENT
3996:0000
STACK SEGMENT
Figure 11-3. Memory Layout for TEST_SEG.EXE.

memory toward low memory. Thus, the top of the stack is really at the bottom
of the stack in memory, and new entries to the stack are placed progressively
lower in memory. Here, SP is 50h, which is 80 decimal, because we defined a
stack area 80 bytes long. We haven'’t placed anything on the stack as yet, so
top-of-stack is still at the top of the memory we set aside for the stack: 50h.

Now that you know how to find the stack, you may wish to watch how it
changes for the programs in previous chapters. Here, though, let’s continue
with the example already in Debug.

Notice that the Stack Segment (SS) is segment number 3996 (this will prob-
ably be different for you), while our Code Segment (CS) is at segment 3995—

Peter Norton’s Assembly Language Book 123

one less than SS, or just 16 bytes lower in memory. That means if we do an
unassemble starting at CS:0, we’ll see our program (the INT 20h instruction)
followed by 14 bytes equal to zero (the INT 20h takes two bytes), and then
we’ll see the bytes from the stack segment. We'll also see the data for Stack,
followed by three spaces, unassembled:

-U CS:0

3995:0000 CD20 INT c0

3995:0002 0000 ADD [BX+SI],AL
3995:0004 0000 ADD [BX+SI1,AL
3995:000&6 0OOO ADD [BX+SI1,AL
3995:0008 0000 ADD [BX+SI],AL
3995:000A 0000 ADD [BX+SI],AL
3995:000C 0000 ADD [BX+SI],AL
3995:000E 0000 ADD [BX+SI],AL
3995:0010 S3 PUSH BX

3995:0011 7461 JZ 0074
3995:0013 &3 DB 63

3995:0014 &B DB 6B

3995:0015 2020 AND [BX+SI1,RH
3995:0017 205374 AND [BP+DI+?4],DL
3995:001A b1 DB 61

3995:001B &3 DB 63

3995:001C 6B DB 6B

3995:001D 2020 AND [BX+SI],RH
3995:001F 205374 AND [BP+DI+74],DL

Just as we expected, the number 53h—the ASCII code for S, the first letter in
our stack area—is at offset 10h (16) within our Code Segment.

In looking at the register display, you may have noticed that the ES and DS
registers contain 3985h, 10h less than the beginning of the program at seg-
ment 3995h. Multiplying by 16 to get the number of bytes, we can see that
there are 100h (or 256) bytes before our program starts. This is the same area
placed at the beginning of a .COM file.

Among other things, this 256 byte scratch area at the start of programs
contains the characters we type after the name of our program. For example:

A>DEBUG TEST_SEG.EXE And now for some characters we'll see in the memory dump
-D DS:80

3985:0080 39 20 41 GE b4 20 GE G&F-77 20 bk &F 7?2 20 ?3 6F 9 Rnd now for so
3985:0090 &D 6S 20 63 68 b1 ?2 b1-63 74 65 72 7?3 20 ?? 65 me characters we
3985:00A0 27 bC EC 20 7?3 65 bS 20-69 LE 20 74 BA bS 20 6D 'll see in the m
3985:00B0 &S 6D BF 72 79 20 64 ?5-6D 7?0 OD 20 6D 65 &D 6F emory dump. memo
3985:00C0 7?2 7?9 20 b4 7?5 &D 70 0D-00 OD OO OO OO OO OO0 OO ry dump.........

124 Segments

The first byte tells us we typed 39h (or 57) characters, including the first space
after TEST_SEG.EXE. We won’t use this information in this book, but it
helps show why you might want such a large scratch area.

Note: The “scratch area” is actually called a PSP (Program Segment
Prefix) and contains information for use by DOS. In other words, you
should not assume that you can make use of this area.

The scratch area also contains information that DOS uses when we exit
from a program, with either the INT 20h or the INT 21h, function 4Ch, in-
structions. But for reasons that are not at all clear, the INT 20h instruction
expects the CS register to point to the start of this scratch area, which it does
for a .COM program, but not for a .EXE program. This is an historical ques-
tion. And, in fact, the exit function (INT 21h, function 4Ch) was added to DOS
with the introduction of version 2.00.

The code for .COM files must always start at an offset of 100h in the code
segment to leave room for this 256-byte scratch area at the start. This is un-
like the .EXE file, which had its code start at IP = 0000, because the code
segment started 100h bytes after the beginning of the area in memory.

Recall that, in our .COM files in Chapter 10, we had to explicitly place an
ORG 100h pseudo-op at the beginning of our programs to set aside 100h bytes.
The ORG 100h pseudo-op sets the origin of our code to 100h. That’s all it does,
but we’ll continue to use the ORG 100h in our files, because we’ll be using
.COM programs in the rest of the book.

We presented an .EXE file here just so you could learn about segments.
Later on, you’ll learn more about them, but we’ll use .COM files from now on,
because they are smaller and load into memory more quickly. You’ll see the
reasons for this when we reach the last chapter, but now let’s move on. Let’s
learn about the pseudo-ops for segments.

Segment Pseudo-Ops

We have several pseudo-ops to cover here: SEGMENT, ENDS, ASSUME,
and the NEAR and FAR from the PROC pseudo-op. We also need to take a
closer look at the CALL and RET instructions. When we’ve covered all this
ground, we’ll learn more about the INT instruction and see how it is similar to

125

Memory layout for Memory layout for
.COM program .EXE program
CS, DS, ES, SS e 256 byte data
256 byte data
area
e e CSIP
1en Program, data 108
and stack
Data segment
= Stack area
Sp S e R

Figure 11-4. .COM vs .EXE Programs.

a CALL instruction. But let’s take these all in order, beginning with SEG-
MENT and ENDS.

The SEGMENT and ENDS pseudo-ops are much like the PROC and ENDP
pseudo-ops we encountered in Chapter 9. We define a segment by surrounding
part of the source file with a SEGMENT/ENDS pair, just as we defined a pro-
cedure with a PROC/ENDP pair. The name before the SEGMENT pseudo-op
is a label.

We’ll use this label in Chapter 13, when we divide our source file into many
different source files and two segments; a data segment and a code segment.
With two segments, we can easily separate the variables in memory from our
program. There will be more on memory variables, too, in Chapter 13, and
we’ll also add more pieces to the SEGMENT pseudo-op. There are myriad de-

126 Segments

tails, though, and we won’t spend much time on them. You can find the infor-
mation in your assembler manual if you need it.

The ASSUME Pseudo-Op

The ASSUME pseudo-op is slightly trickier than SEGMENT. It provides
the assembler with information about segments and how we want to use the
segment registers. To understand ASSUME, we need to understand how the
assembler keeps track of labels and variable names.

Every time you create a label, such as a procedure (like WRITE_CHAR
PROC NEAR) or a memory variable, the assembler remembers several pieces
of information along with the name: the type (procedure, byte, word, and so
on), the address of the name, and the segment in which it is defined. This last
piece of information is where ASSUME becomes involved.

The assembler doesn’t automatically assume that all the procedures of a
program are in the same segment. In many cases, such as for large programs
like Lotus 1-2-3, they aren’t. Such programs actually use a number of differ-
ent code segments. So in the interest of generality, we need to provide infor-
mation to the assembler in the form of ASSUME statements, which tell the
assembler which segments the segment registers are pointing to.

For example, let’'s look at the ASSUME statement we used in previous
chapters:

ASSUME CS:CODE_SEG

This ASSUME statement tells the assembler that the CS register is pointing
to the code segment we named CODE_SEG. Without this information, the
assembler will throw up its hands whenever we try to use a label (as in CALL
WRITE_CHAR), saying that it doesn’t know which segment we’re currently
in with the message No or unreachable CS.

Since the CS register is always pointing to the code that we're executing, it
may seem a bit odd that the assembler complains when we have no ASSUME
statement. As a matter of fact, we wouldn’t need the ASSUME pseudo-op, if it
weren’t for something called segment overrides.

The 8088 normally reads data (as in MOV AL,SOME_VARIABLE) from
the data segment (DS). But it can also read information from any other seg-
ment, such as the code segment (CS), by using a segment override. And this is
why the assembler needs the ASSUME pseudo-op: so that it knows which seg-
ment register to use when you read or write memory.

Peter Norton’s Assembly Language Book 127

Don’t worry if you didn’t quite understand this explanation of the ASSUME
pseudo-op. We’ll be making minimal use of it until we reach Chapter 29.
There, we’ll learn more about both the ASSUME pseudo-op and segment over-
rides, when we look at multiple-segment programs.

The rest of the information in this chapter is purely for your interest, since
we won’'t be making use of it in this book. You can skip the next two sections
and read them later if you find the going tough or you’re anxious to get back
to programming.

Near and Far CALLs

Let’s step back for a minute and take a closer look at the CALL instructions
we used in previous chapters. Specifically, let’s look at the short program in
Chapter 7, where we first learned about the CALL instruction. Back then, we
wrote a very short program that looked like this (without the procedure at
200h):

39685:0100 B24l Mov DL, 41
3985:0102 BQOAOD MOV CX,000A
3985:0105 EAFA800 CALL 0200
3985:0108 ECFB LOOP 0105
3985:010A CD20 INT 20

You can see by looking at the machine code on the left that the CALL instruc-
tion occupies only three bytes (E8F800). The first byte (E8h) is the CALL in-
struction, and the second two bytes form an-offset. The 8088 calculates the
address of the routine we're calling by adding this offset of 00F8h (remember
that the 8088 stores the lower byte of a word in memory before the high byte,
so we have to reverse the bytes) to the address of the next instruction (108h in
our program). In this case, then, we have F8h + 108h = 200h. Just what we
expected.

The fact that this instruction uses a single word for the offset means that
CALLs are limited to a single segment, which is 64K bytes long. So how is it
that we can write a program like Lotus 1-2-3 that is larger than 64K? We do it
by using FAR, rather than NEAR, calls.

NEAR CALLs, as we've seen, are limited to a single segment. In other
words, they change the IP register without affecting the CS register. And for
this reason they’re sometimes known as intrasegment CALLs.

But we can also have FAR CALLs that change both the CS and IP registers.

128 Segments

Such CALLs are often known as intersegment CALLs because they call proce-
dures in other segments.

Going along with these two versions of the CALL instruction are two ver-
sions of the RET instruction.

The NEAR CALL, as we saw in Chapter 7, pushes a single word onto the
stack for its return address. And the corresponding RET instruction pops this
word off the stack and into the IP register.

In the case of FAR CALLs and RETSs, a word is not sufficient, because we're
dealing with another segment. In other words, we need to save a two-word
return address on the stack: one word for the instruction pointer (IP) and the
other for the code segment (CS). The FAR RET, then, pops two words off the
stack—one for the CS register, and the other for IP.

Now we come to a sticky issue. How does the assembler know which of these
two CALLs and RETSs to use? When should it use the FAR CALL, and when
should it use the NEAR CALL? This is where the NEAR and FAR pseudo-ops
take command.

By way of example, look at the following program:

PROC_ONE PROC FAR
RET

PROC_ONE ENDP

PROC_TWO PROC NEAR

CALL PROC_ONE

RET
PROC_TWO ENDP

When the assembler sees the CALL PROC_ONE instruction, it hunts in its
table for the definition of PROC_ONE, which, in this case, is PROC_ONE
PROC FAR. This definition tells whether the procedure is a near or far
procedure.

In the case of a NEAR procedure, the assembler generates a NEAR CALL.
And conversely, it generates a FAR CALL if the procedure you’re calling was
defined as a FAR procedure. In other words, the assembler uses the definition
of the procedure that you're calling to determine the type of CALL instruction
that’s needed.

For the RET instruction, on the other hand, the assembler looks at the defi-

129

PROC_TWO PROC NEAR
CALL PROC_ONE @i .

RET .
PROC_TWO ENDP v

PROC_ONE PROC FAR

RET..
PROC ONE ENDP

Figure 11-5. The Assembler Produces a FAR CALL.

PROC_ONE PROC FAR

b

Sl il
PROC ONE ENDP

Figure 11-6. The Assembler Produces a FAR RET.

nition of the procedure that contains the RET instruction. In our program, the
RET instruction for PROC__ONE will be a FAR RET, because PROC_ONE is
declared to be a FAR procedure. Likewise, the RET in PROC_TWO is a
NEAR RET.

More on the INT Instruction

The INT instruction is much like a CALL instruction, but with a minor
difference. The name INT comes from the word interrupt. An interrupt is an
external signal that causes the 8088 to execute a procedure and then return to

130 degments

what it was doing before it received the interrupt. An INT instruction doesn’t
interrupt the 8088, but it's treated as if it did.

When the 8088 receives an interrupt, it needs to store more information on
the stack than just the two words for the return address. It has to store the
values of the status flags—the carry flag, the zero flag, and so on. These val-
ues are stored in one word known as the Flag Register, and the 8088 pushes
this information onto the stack before the return address. Here’s why we need
to save the status flags.

Your IBM PC regularly responds to a number of different interrupts. The
8088 inside your IBM PC receives an interrupt from the clock 18.2 times ev-
ery second, for example. Each of these interrupts causes the 8088 to stop what
it’s doing and execute a procedure to count the clock pulses.

Now, envision such an interrupt occurring between these two program
instructions:

CHP AH,2
JNE NOT_2

Let’s assume AH = 2, so the zero flag will be set after the CMP instruction,
which means that the JNE instruction will not branch to NOT_2.

Now, imagine that the clock interrupts the 8088 between these two instruc-
tions. That means the 8088 runs off to carry out the interrupt procedure
before it checks the zero flag (with the JNE instruction). If the 8088 didn’t
save and restore the flag registers, the JNE instruction would use flags set by
the interrupt procedure, not from our CMP instruction. To prevent such disas-
ters, the 8088 always saves and restores the flag register for interrupts. An
interrupt saves the flags, and an IRET (Interrupt Return) instruction restores
the flags at the end of the interrupt procedure.

The same is true for an INT instruction. Thus, after executing the
instruction:

INT cl

the 8088’s stack will look like this:

Top of stack - 01d IP (return address part I)
01d CS (return address part II)
01d Flag Register

(The stack grows into lower memory, so the top-of-stack is below the Old Flag
Register).

Peter Norton’s Assembly Language Book 131

When we place an INT instruction in a program, however, the interrupt is
no surprise. Why, then, do we want to save the flags? Isn’t saving the flags
useful only when we have an external interrupt that comes at an unpredict-
able time? As it turns out, the answer is no. There is a very good reason for
saving and restoring the flags for INT instructions. In fact, without this fea-
ture, Debug wouldn’t be possible.

Debug uses a special flag in the flag register called the Trap Flag. This flag
puts the 8088 into a special mode known as single-step mode, which Debug
uses to trace through programs one instruction at a time. When the trap flag
is set, the 8088 issues an INT 1 after it executes any instruction.

The INT 1 also clears the trap flag, so the 8088 won’t be in single-step mode
while we’re inside Debug’s INT 1 procedure. But since INT 1 saved the flags to
the stack, issuing an IRET to return to the program we’re debugging restores
the trap flag. Then, we’ll receive another INT 1 interrupt after the next in-
struction in our program. This is just one example of when it’s useful to save
the flag registers. But, as we’ll see next, this restore-flag feature isn’t always
appropriate.

Some interrupt procedures bypass the restoration of the flag registers. For
example, the INT 21h procedure in DOS sometimes changes the flag registers
by short-circuiting the normal return process. Many of the INT 21h proce-
dures that read or write disk information return with the carry flag set if
there was an error of some sort (such as no disk in the drive).

Interrupt Vectors

Where do these interrupt instructions get the addresses for procedures?
Each interrupt instruction has an interrupt number, such as the 21h in INT
21h. The 8088 finds addresses for interrupt procedures in a table of interrupt
vectors, which is located at the very bottom of memory. For example, the two-
word address for the INT 21h procedure is at 0000:0084. We get this address
by multiplying the interrupt number by 4 (4 * 21h = 84h), since we need four
bytes, two words, for each vector, or procedure address.

These vectors are exceedingly useful for adding features to DOS, because
they enable us to intercept calls to interrupt procedures by changing the ad-
dresses in the vector table. We won’t do that in this book, though. Such tricks
are too advanced for us just now.

All these ideas and methods should become clearer as we see more exam-
ples. Most of this book from here on will be filled with examples, so there will
be plenty to study. If you've been feeling a bit overwhelmed by new informa-

132 Segments

tion, rest easy. We'll take a short breather in the next chapter, and get our-
selves reoriented and back on course.

Summary

As we said, this chapter contained a lot of information. We won’t use it all,
but we did need to learn more about segments. Chapter 13 will bring us to
modular design, and we’ll use some aspects of segments to make our job
easier.

We began this chapter by learning how the 8088 divides memory into seg-
ments. To understand segments in more detail, we built an .EXE program
with two different segments. We won’t use .EXE programs in this book, but an
.EXE program demonstrated the idea of segments nicely here.

We also found that the 100h (256 byte) scratch area at the start of our pro-
grams contains a copy of what we typed on the command line. Again, we won’t
use this knowledge in this book, but it helps us see why DOS sets aside such a
large chunk of memory for the purpose.

And, we finally got around to learning about the SEGMENT, ENDS, AS-
SUME, NEAR, and FAR pseudo-ops. These are all pseudo-ops that help us
work with segments. In this book, we’ll barely use the power of these pseudo-
ops, because our .COM programs will use only one segment. But for program-
mers who write huge programs in assembly language, these pseudo-ops are
invaluable. If you're interested, you’ll find the details in your macro assem-
bler manual.

At the very end of this chapter we learned more about the roots of our help-
ful INT instruction. Now, we're just about ready to slow down and learn how
to write larger and more useful assembly language programs.

12
COURSE CORRECTIONS

Diskettes, Sectors, and Dskpatch 134
The Game Plan 136

Summary 138

133

134 Course Corrections

“’e’ve been poking our noses into a lot of new and interesting places, and
you may, at times, have wondered whether we’ve been wandering about some-
what aimlessly. We haven’t been, of course. We're now familiar enough with
our new surroundings to fix our sights and plot a course for the rest of this
book. And that’s what we’ll do in this chapter: We’ll take a close look at a
design for our Dskpatch program. Then we’ll spend the rest of this book devel-
oping Dskpatch, much as you will later develop programs of your own.

We won’t present the finished version of Dskpatch all at once; that isn’t the
way we wrote it. Instead, we’ll present short test programs to check each stage
of our program as we write it. To do this, we need to know where we want to
go. Hence, our course correction here.

Since Dskpatch will deal with information on disks, that’s where we’ll
begin.

Diskettes, Sectors, and Dskpatch

The information on your floppy disks is divided into sectors, with each sector
holding 512 bytes of information. A double-sided disk formatted with DOS 2.0
or above has a total of 720 sectors, or 720 * 512 = 368,640 bytes. If we could
look directly at these sectors, we could examine the directory directly, or we
could look at the files on the disk. We can’t—not by ourselves—but Dskpatch
will. Let’s use Debug to learn more about sectors and get an idea of how we’ll
display a sector with Dskpatch.

Debug has a command, L (Load), to read sectors from disk into memory,
where we can look at the data. As an example, let’s look at the directory that
starts at sector 5 on a double-sided disk. Load sector 5 from the disk in drive A
(that’s drive 0 to Debug) by using the L command like this:

-L 100051

As you can see in Figure 12-1, this command loads sectors into memory, start-
ing with sector 5 and continuing through one sector at an offset of 100 within
the data segment. To display sector 5, we can use a Dump command:

-D 100
396F:0100 49 42 4D 42 49 4F 20 20-43 4F 4D 27 00D 0O 0O 0O IBMBIO COM'....
396F:0110 OO0 OO DO OO DO OO OO 6O-B8 O O2 DO DO 12 DO OO RS il

396F:0120 49 42 4D 44 4F 53 20 20-43 4F 4D 27 0O 0O 0O OO IBMDOS COM'....

39GF:
396F:
39&F:
39&F:
39LF:

-

39EF:
39&F:
396F:
396F:
3J9EF:
J9&F:
39&F:
39LF:

Address to load

segment at.

0130
0140
0150
0160
0170

0180
0190
01AO
01BO
01Cco
01Dp0
01EO
OLFO

00
43
00
41
00

46
00
46
00
46
00
43
00

Sector number

to read

bl e 16 (4 (8 Wbts e

00
4F
00
53
00

57
00
57
00
57
00
4F
00

Disk to read
from (drive A: = 0)

Figure 12-1.

00
4D
00
53
00

c0
00
c0
0o
20
0o
4E
00

00
4D
00
45
00

20
00
20
00
20
00
46
00

00
41
00
4D
00

c0
00
c0
00
c0
0o
49
00

00
4E
00
4e
00

c0
00
20
00
20
00
47
00

00
44
00
4C
33

20
00
20
00
20
9B
20
1D

DEBUG’s Load Command.

£0-68
20-43
60-E68
45-5¢
9C-BO

20-43
00-EF
20-4F
00-7¢2
20-53
8A-FF
20-44
82-A1

06
4F
06
20
06

4F
0s
56
0s
57
06
41
06

07
4D
18
c0
00

4D
cA
4C
56
50
5if
54
a9

00
c0
0o
08
00

20
00
20
0o
c0
0o
20
0o

00
00
00
00
00

00
60
00
81
0o
0o
00
0o

43
00
45
00
00

00
AF
00
0e
00
Ca
0o
28

Number of
sectors to read

00
00
00
00
00

00
00
00
00
00
00
00
00

....... ChiE oSGt
COMMAND COM
....... STy i
ASSEMBLER
...... Sl Re =t bl
FW COoHM
........ (8 Jesi s d
FW 0oVL
........ oo Vesiaratits
FW SWP .
.......... N.H
CONFIG DAT

135

We’ll use a format much like this for Dskpatch, but with many improve-
ments. Dskpatch will be the equivalent of a full-screen editor for disk sectors.
We’ll be able to display sectors on the screen and move the cursor about the
sector display, changing numbers or characters as we want. We’ll also be able
to write this altered sector back to the disk, and this is why we call it Disk
Patch—or rather Dskpatch, since we can’t have more than eight characters in

the name.
Dskpatch is the motivation for the procedures we write. It is by no means an

136 Course Corrections

end in itself. In using Dskpatch as an example for this book, we’ll also manage
to present many procedures that you'll find useful when you attempt to write
your own programs. That means you’ll find many general-purpose procedures
for display output, display manipulation, keyboard input, and more.

Let’s take a closer look at some improvements we’ll make to Debug’s sec-
tor dump. The display from Debug only shows the “printable” characters—
96 out of the 256 different characters that an IBM PC can display. Why is
that? Because MS-DOS, PC-DOS’s cousin, runs on many different com-
puters. Some of these computers display only 96 characters, so Microsoft (the
author of Debug) chose to write one version of Debug that would work on all
machines.

Dskpatch is for IBM Personal Computers and near cousins, so we can dis-
play all 256 different characters; to do so will require a bit of work. Using the
DOS function 2 for character output, we can display almost all characters, but
DOS gives special meaning to some, such as 7, which rings the bell. There are
characters for special codes like 7, and in Part III we’ll see how to display
them.

We'll also make heavy use of the function keys so that, for example, we can
display the next sector just by pressing the F2 key. And we’ll be able to
change any byte by moving the cursor to that byte and typing in a new
number. It will be just like using a word processor, where we can change char-
acters very easily. More of these details will appear as we slowly build
Dskpatch. (Figure 12-2 shows what its normal display will look like—a vast
improvement over the display from Debug.)

The Game Plan

In Chapter 13, we’ll learn how to break our program into many different
source files. Then, we’ll begin serious work on Dskpatch in Chapter 14. At the
end, we’ll have nine source files for Dskpatch that have to be linked together.
And even if you don’t enter and run all these programs now, they’ll be here
when you're ready for them, or when you want to borrow some of the general-
purpose procedures. In any case, you'll get a better idea of how to write long
programs as you read through the following chapters.

We've already created several useful procedures, such as WRITE_HEX to
write a byte as a two-digit hex number and WRITE_DECIMAL to write a
number in decimal. Now, we’ll write some programs to display a block of
memory in much the same way Debug’s D command does. We’ll start by dis-
playing 16 bytes of memory, one line of Debug’s display, and then work

Fyrs

- PR T TS

Disk A Sector 8
B0 81 82 83 84 B85 B6 87 B8 89 BA BB BC BD BE BF B123456789ABCDEF
T T T

80 (IXJ21 908 49 42 4D 26 28 33 2E 31 0@ 82 62 01 @6 || ftEIBM 3.1 88O
18 || B2 76 88 DB B2 FD B2 9B 89 PG B2 BB BB 0P 6B 68 | Op 1828 0 O
20 || 89 88 88 C4 SC 88 33 ED B8 C@ 87 8E D8 33 C9 @A -\I3¢110§+3
38 || D2 79 BE 89 1E 1E 88 8C 86 20 88 88 16 22 88 B1 §| yyfeas 1¢ é."”
48 | 82 BE CS 8E D5 BC 88 7C 51 FC 1E 36 C5 36 78 68 0§+5f5 1 Q" a6} 6x
58 | BF 23 7C B9 BB 8@ F3 A4 1F 88 BE 2C 88 AB 18 @8 | ,8!Jé <iven, at
68 | A2 27 88 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1 | o' ix Ri%¥i. T
70 | E@ 40 E8 80 88 E8 86 @ BB 6@ 85 53 BB B1 E8 AB || «03C 33 3 ¢S BI%
80 || 88 SF BE 73 81 B9 0B 88 98 F3 A6 75 62 83 C? 15 _JSQﬂd E<*ubaf}8
98 | B1 BB 98 98 F3 A6 75 57 26 8B 47 1C 99 8B OE 8B | JOEE<uWaiGdiNé
AB || 80 B3 C1 48 F7 F1 8@ 3E 71 81 68 75 B2 BB 14 96 oLH=40) g8 uB Td
BA | A1 11 8@ B1 B4 D3 ES EB 3B 80 FF 36 1E 80 C4 1E | i4 Jeldd: 64 -a
Cl | 6F 81 EB 39 08 EB 64 68 2B F@ 76 6D EB 26 88 52 | oB%9 &d +=vri& R
DB | F7 26 6B 66 83 DB SA EB E9 CD 11 B9 82 68 D3 EB | =&¢ 0#260=4ﬂ0 g
E@ || 88 E4 83 74 B4 FE C4 84 CC 5B 58 FF 2E 6F 81 BE || CZwten—gfIX .oBd
F@ § 89 81 EB 55198 B1 86 1El88 11 2E ZUIGG C3 A1 18 || eBSUEDA 4. }it

Peter Norton’s Assembly Language Book

137

Press function key, or enter character or hex byte:
Figure 12-2. Example of Dskpatch’s Display.

toward displaying 16 lines of 16 bytes each (half a sector). A full sector won’t
fit on the display at one time with the format we’ve chosen, so Dskpatch in-
cludes procedures for scrolling through a sector using the ROM BIOS—not
DOS—interrupts. That will come much later, though, after we’ve built a full-
screen display of half a sector.

Once we can dump 256 bytes from memory, we’ll build another procedure to
read a sector from the disk into our area of memory. We’ll dump half a sector
on the screen, and we’ll be able to use Debug to alter our program, so we can
dump different sectors. At that point, we’ll have a functional, but not very
attractive display, so making it pretty comes next.

With a bit more work and some more procedures, we’ll rebuild the half-
sector display to be much more pleasing aesthetically. It still won’t be a full-
screen display, so it will just scroll past like Debug’s dump did. But the full-
screen display will come next, and through it, we’ll learn about the ROM
BIOS routines that allow us to control the display, move the cursor ... that
sort of thing. Then, we’ll be ready to learn how to use more ROM BIOS rou-
tines to print all 256 different characters.

Next will come the keyboard input and command procedures that will let us

138 Course Corrections

start interacting with Dskpatch. About that time we’ll also need another
course correction.

Summary

We've seen enough of the future here. You should have a better idea of
where we're headed, so let’s move on to the next chapter, where we’ll lay the
groundwork for modular design and learn how to split a program into many
different source files. Then, in Chapter 14, we’ll write some test procedures to
display sections of memory.

13
MODULAR DESIGN

Separate Assembling 140
The Three Laws of Modular Design 144
Summary 147

139

140 Modular Design

Without modular design, Dskpatch wouldn’t have been much fun to write.
Using a modular design greatly eases the task of writing any but the smallest
program. We'll use this chapter to set some ground rules for modular design,
and we’ll follow those rules throughout the rest of this book. Let’s begin by
learning how to separate a large program into many different source files.

Separate Assembling

In Chapter 10, we added the procedure WRITE_DECIMAL to VIDEO_
I0.ASM, and we also added a short test procedure called TEST_WRITE_
DECIMAL. Let’s take this test procedure out of VIDEO_I10.ASM and put it in
a file of its own, called TEST.ASM. Then, we’ll assemble these two files sepa-
rately and link them together into one program. Here is the TEST.ASM file:

Listing 13-1. The File TEST.ASH

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG
ORG 100h

EXTRN WRITE_DECIMAL:NEAR

TEST_WRITE_DECIMAL PROC NEAR

MOV DX, 12345

CALL WRITE_DECIMAL

INT 20h ;Return to DOS
TEST_WRITE_DECIMAL ENDP
CODE_SEG ENDS

END TEST_WRITE_DECIMAL

We've seen most of this source file before, but some of it is new, so let’s begin
at the top and work our way down. First, the word PUBLIC now appears after
SEGMENT. This tells the assembler we want this segment (CODE_SEG)
combined into one segment along with all other segments that have the same
name—the code segment, in this case. The assembler just passes this informa-
tion on to the linker, which, as its name implies, links different files. The
linker does the work of stitching the different pieces of each segment together.

CODE _SEG

DATA_SEG

141

OODE_SEGSEGVENT
PUBLIC
(from file 1)

OODE_SEGSEGMENT
PUBLIC
(from file 2)

DATA SEG SEGMENT
PUBLIC
(from file 1)

DATA_SEG SEGMENT
PUBLIC
(from file 2)

Figure 13-1.

LINK Stitches Together Segments From Different Files.

EXTRN WRITE_DECIMAL:NEAR

TEST_WRITE_DECIMAL

CALL WRITE-

Our file now contains the EXTRN pseudo-op. The statement EXTRN-
WRITE_DECIMAL:NEAR tells the assembler two things: that WRITE__
DECIMAL is in another, external, file, and that it’s defined as a NEAR proce-
dure in that file, so it should be in the same segment. The assembler thus
generates a NEAR CALL for this procedure; it would generate a FAR CALL if
we had placed a FAR after WRITE_DECIMAL.

LINK provides
the address

Figure 13-2. LINK Assigns the Addresses for External Names.

142 Modular Design

These are about the only changes we need for separate source files until we
begin to store data in memory. At that point, we’ll introduce another segment
for data. Now, let’s modify VIDEO_IO.ASM, and then assemble and link
these two files.

Remove the procedure TEST_WRITE_DECIMAL from VIDEO_IO.ASM.
We've placed this in TEST.ASM, so we don’t need it in Video_io. Then, re-
move the ORG 100h statement from Video_io. We moved this, too, to
TEST.ASM, which now has the first procedure in our program. As we saw in
Chapter 11, the ORG 100h statement is needed to save 256 bytes for the
scratch area at the beginning of our program—that is, before TEST_WRITE _
DECIMAL in the source file TEST.ASM.

Next, we have to put the word PUBLIC after SEGMENT, like this:

CODE_SEG SEGMENT PUBLIC

so the linker will know that it should combine this segment with the same
segment in TEST.ASM.

Finally, change END TEST_WRITE_DECIMAL at the end of VIDEO_
I0.ASM to just END. Once again, we moved the main procedure to
TEST.ASM. The procedures in VIDEO_IO.ASM are now external procedures,
nothing more. That is, they have no function by themselves; they must be
linked to procedures that call them from other files. We don’t need a name
after the END pseudo-op in VIDEO_IO.ASM, because our main program is
now in TEST.ASM.

When you've finished making these changes, your VIDEO_I0O.ASM source
file should look something like this:

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG

PUBLIC WRITE_HEX_DIGIT

WRITE_HEX_DIGIT ENDP

PUBLIC WRITE_HEX

WRITE_HEX ENDP

Peter Norton’s Assembly Language Book 143
PUBLIC WRITE_CHAR

WRITE_CHAR ENDP

PUBLIC WRITE_DECIMAL

WRITE_DECIMAL ENDP
CODE_SEG ENDS

END

with an ASSUME at the the start.

Assemble these two files just as you assembled Video_io before. TEST.ASM
knows all it needs to know about VIDEO_IO.ASM through the EXTRN state-
ment. The rest will come when we link the two files.

You should now have the files TEST.OBJ and VIDEO_I0O.OBJ. Use the fol-
lowing command to link these two files into one program named TEST.EXE:

A>LINK TEST VIDEO_IO;

LINK stitches the procedures of these two files together to create one file con-
taining the entire program. It uses the first file name we entered as the name
for the resulting .EXE file, so we now have TEST.EXE.

Finally, create a .COM file, just as you did before, by typing EXE2BIN
TEST TEST.COM. That’s it, we created one program from two source files.
The final .COM program is identical to the version we created from the single
file VIDEO_IO.ASM, when it contained the main procedure TEST _WRITE _
DECIMAL.

We’ll make heavy use of separate source files from here on, and their value
will become clearer as the procedures stack up. In the next chapter, we’ll write
a test program to dump sections of memory in hex. We’ll usually write a sim-
ple test version of a procedure before we write the complete version. Doing so
will allow us to see how to write a good final version, as well as saving much
effort and mental turmoil in the process.

There are several other useful ways to save effort. We call them the Three
Laws of Modular Design.

144 Modular Design

The Three Laws of Modular Design

These laws are summarized in Table 13-1. They aren’t really laws, they’re
suggestions. But we’ll use them throughout this book. Define your own laws if
you like, but either way, stick to the same ones all the time. Your job will be
much easier if you're consistent.

Table 13-1. The Three Laws of Modular Design

1. Save and restore all registers, unless the procedure returns a value in
that register.

2. Be consistent about which registers you use to pass information. For ex-
ample:

DL, DX—Send byte and word values.

AL, AX—Return byte and word values.

BX:AX—Return double-word values.

DS:DX—Send and return addresses.

CX—Repeat counts and other counts.

CF—Set when there is an error; an error code should be returned in

one of the registers, such as AL or AX.

% ¥ ¥ % ¥ *

3. Define all external interactions in the comment header:
* Information needed on entry.

Information returned (registers changed).

Procedures called.

Variables used (read, written, and so on).

* * *

There’s an obvious parallel between modular design in programming and
modular design in engineering. An electrical engineer, for example, can build
a very complicated piece of equipment from boxes that perform different func-
tions, without knowing how each box works. But if each box uses different
voltages and different connections, the lack of consistency creates a major
headache for the poor engineer, who must somehow provide a different volt-
age for each box and create special connections between boxes. Not much fun,
but fortunately for the engineer, there are standards providing for only a
small number of standard voltages. So, perhaps only four different voltages
need to be provided, instead of a different voltage for each box.

Modular design and standard interfaces are just as important in assembly-
language programs, and that’s why we’ll lay down the laws (so to speak), and
use those laws from here on. As you’ll see by the end of this book, these rules
will make our task much simpler. Let’s take a look at these laws in detail.

£\

Peter Norton’s Assembly Language Book 145

Save and restore all registers, unless the procedure returns a value in

that register. There aren’t that many registers in the 8088. By saving reg-
isters at the start of a procedure, we free them for use within that procedure.
But we must be careful to restore them at the end of the procedure. You’ll see
us doing this in all our procedures, with PUSH instructions appearing first in
each procedure, and POPs at the end.

The only exception is for procedures that must return some information to
the calling procedure. For example, a procedure that reads a character from
the keyboard must somehow return the character. We won’t save any regis-
ters that we use to return information.

Short procedures also help the register-shortage problem. At times, we’ll
write a procedure that’s used only once. Not only does this help with the
shortage of registers, it also makes the program easier to write and, often,
easier to read. We’ll see more of this as we write procedures for Dskpatch.

Be consistent about which registers you use to pass information.
Our job becomes simpler if we set standards for exchanging information be-
tween procedures. We'll use one register for sending information, and one for
receiving information. We’ll also need to send addresses for long pieces of
data, and for this we’ll use the pair of registers DS:DX, so that our data can be
anywhere in memory. You’ll learn more about this when we introduce a new
segment for data and begin to make use of the DS register.

We reserve the CX register for repeat counts. We’ll soon write a procedure
to write one character several times, so that we can write ten spaces by calling
this procedure (WRITE_CHAR_N_TIMES) with CX set to 10. We’ll use the
CX register whenever we have a repeat count or when we want to return some
count, such as the number of characters read from the keyboard (we’ll do this
when we write a procedure named READ_STRING).

Finally, we’ll set the Carry Flag (CF) whenever there is an error, and we’ll
clear it whenever there isn’t an error. Not all procedures use the carry flags.
For example, WRITE_CHAR always works, so there’s no reason to return an
error report. But a procedure that writes to the disk can encounter many er-
rors (no disk, write-protection, and so on). In this case, we’ll use a register to
return an error code. There’s no standard here, because DOS uses different
registers for different functions. Its fault, not ours.

Define all external interactions in the comment header. There’s no
need to learn how a procedure works if all we want to do is use it, and this is
why we place a detailed comment header before each procedure. This header

146 Modular Design

contains all the information we need to know. It tells us what to place in each
register before calling the procedure, and it tells what information the proce-
dure returns. Most procedures use registers for their variables, but some of
the procedures we’ll soon see use variables in memory. The comment header
should say which of these memory variables are read and which are changed.
And lastly, each header should list other procedures called. Here is an exam-
ple of a full-blown header with much of this information:

; This is an example of a full-blown header. This part would normally ;
; be a brief description of what this procedure does. For example,
; this procedure will write the message "Sector " on the first line.

DS:DX Address of the message "Sector " 5

> Calls: GOTO_XY, WRITE_STRING (procedures called) :
; Reads: STATUS_LINE_NO (memory variables read only) :
; Writes: DUMMY (memory variables altered) s

Whenever we want to use any procedure we've written, we can just glance
at this comment header to learn how to use it. There will be no need to delve
into the inner workings of the procedure to find out what it does.

These laws make assembly language programming easier, and we’ll be cer-
tain to abide by them, but not necessarily on the first try—we often won’t. The
first version of a procedure or program is a test case. Frequently, we don’t
know exactly how to write the program we have in mind, so on these “rough
drafts,” we’ll write the program without concern for the laws of modular de-
sign. We'll just plow through and get something that works. Then we can
backtrack and do a good job by rewriting each procedure to conform to these
laws.

Programming is a process that goes by leaps and bounds. Throughout this
book we’ll show much of the stuttering that went into writing Dskpatch, but
we certainly can’t show it all. There isn’t room enough to contain all the ver-
sions we wrote before we settled on the final version. Our first tries often bore
very little resemblance to the final versions you’ll see, so when you write pro-
grams, don’t worry about getting everything right the first time. Be prepared
to rewrite each procedure as you learn more about what you really want.

In the next chapter, we’ll build a simple test program to print a block of
memory. It won’t be the final version; we’ll go through others before we're
satisfied, and even then, there will be other changes we’d like to make. The
moral is: A program is never done ... but we must stop somewhere.

B e o

Peter Norton’s Assembly Language Book 147

Summary

This has been a chapter for you to remember and use in the future. We
began by learning how to separate a program into a number of different
source files that we can assemble independently, then stitch together with the
linker. We used the PUBLIC and EXTRN pseudo-ops to inform the linker that
there are connections between different source files. PUBLIC says that other
source files can CALL the procedures named after PUBLICs, while EXTRN
tells the assembler that the procedure we want to use is in another file.

We also used PUBLIC after the SEGMENT definition so that the linker will
stitch together segments of the same name that are in different source files.

Then we moved on to the Three Laws of Modular Design. These rules are
meant to make your programming job simpler, so use them when you write
your own programs, just as you’ll see us use them in this book. You’ll find it
easier to write, debug, and read programs if they conform to these Three
Laws.

v’ § e B l'f'l'L.l
, i it alera
oamd ob, e A, g e
: N RF] T T R #'ﬂ‘
| . | i Al Sdi b i B l.-u
| N (T2 haw 4G ~w..|...¢ W .
| N I .7-”_'-0:!'-” o Mg v Tt ﬁm _
: e 0 %00 will .'.A-‘ 3 ety iy
‘ ‘ ; Ui s 1ads siicaiein S
’ £ el it andis ..i: B i ;U#I‘f‘ﬂh T-
wal gl WS Yo "u'u*wn el g
Ve | sevAT ot o "v-lJL'hL, !
. S LSS "wy Dy iR N
| R P R I o .

" o r tL’r' C 1!. v ‘1‘1'..__ i H‘U 6_-.‘ h

; "“I:l,;
D
L S

e A -_"?_ .1:- ‘
sl o o B 3 4-!-|Fr (il 1
H‘#\"'

= , h -"I'IUI..I.

.:— ;P r‘ iy
S e R T -ﬂ '" q

o | L O n' 1 s, e

: D ATEm wie I'*"I"l.'" hllﬂ ‘[

Ll s i i, e ;mm.ﬁn“‘

- it e B R £ AN B _.l,;*,
. al 3 ﬂ-hhﬁi i

LT e
3 - ’ = -

t’
i .,,

A

o

i'—‘-

’.- 1I1-
o s
-

1

14
DUMPING MEMORY

Addressing Modes 150

Adding Characters to the Dump 156
Dumping 256 Bytes of Memory 158
Summary 163

149

150 Dumping Memory

Eom here on, we’ll concentrate on building Dskpatch in much the same way
we originally wrote it. Some of the instructions in procedures to come may be
unfamiliar; we’ll explain each briefly as we come across them, but for detailed
information, you’ll need a book that covers all of the instructions in detail.

Rather than cover all the 8088 instructions, we’ll concentrate on new con-
cepts, such as the different modes of addressing memory, which we’ll cover in
this chapter. In Part III, we’ll move even farther away from the details of
instructions and begin to see information specific to the IBM Personal Com-
puter and its near cousins.

Now, let’s learn about addressing modes by writing a short test program to
dump 16 bytes of memory in hex notation. To begin, we need to learn how to
use memory as variables.

Addressing Modes

We've seen two addressing modes; they're known as the register and imme-
diate addressing modes. The first one we learned about was the register mode,
which uses registers as variables. For example, the instruction:

MOV AX,BX

uses the two registers AX and BX as variables.
Then, we moved on to the immediate addressing mode, in which we moved a
number directly into a register, as in the example:

MOV AX,2

This moves the byte or word of memory immediately following the instruction
into a register. In this sense, the MOV instruction in our example is one byte
long, with two more bytes for the data (0002):

396F:0100 B&0OZ200 MOV AX,000¢2

The instruction is B8h, and the two bytes of data (02h and 00h) follow this
(remember that the 8088 stores the low byte, 02h, first in memory).
Now, we’ll learn how to use memory as a variable. The immediate mode

Peter Norton’s Assembly Language Book 151

allows us to read the piece of fixed memory immediately following that one
instruction, but it doesn’t allow us to change memory. For this, we’ll need
other addressing modes.

Let’s begin with an example. The following program rca's 16 bytes of mem-
ory, one byte at a time, and displays each byte in hex notation, with a single
space between each of the 16 hex numbers. Enter the program into the file
DISP_SEC.ASM and assemble it. Later, we’ll want to change VIDEO_
I10.ASM slightly, but first, let’s take care of DISP_SEC.ASM:

Listing 14-1. The New File DISP_SEC.ASHM

CGROUP GROUP CODE_SEG, DATA_SEG ;Group two segments together
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 100h

EXTRN WRITE_HEX:NEAR
EXTRN WRITE_CHAR:NEAR

; This is a simple test program to dump 1t bytes of memory as hex ;
; numbers, all on one line. .

DISP_LINE PROC NEAR

XOR BX,BX ;Set BX to O
MOV CX,1b ;Dump 16 bytes
HEX_LOOP:
Mov DL,SECTOR[BX] ;Get 1 byte
CALL WRITE_HEX ;Dump this byte in hex
MOV DL ;irite a space between numbers
CALL WRITE_CHAR
INC BX
LOOP HEX_LOOP
INT 20h ;Return to DOS
DISP_LINE ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
PUBLIC SECTOR
SECTOR DB 10h, 11h, 12h, 13h, 14h, 1Sh, 1b6h, 17?h ;Test pattern
DB 18h, 19h, 1BAh, 1Bh, 1Ch, 1Dh, 1Eh, 1Fh
DATA_SEG ENDS

END DISP_LINE

152 Dumping Memory

Notice that we’ve put the data segment (DATA_SEG) after the code seg-
ment (CODE_SEG). We've put it at the end of the file so the linker will load
the data in memory at the end of our program.

We've also added a few new tricks to this program, and for this reason we
need to make some small changes to VIDEO_IO.ASM. First, remove the AS-
SUME statement in Video_io and place the following two lines at the begin-
ning of VIDEO_IO.ASM:

CGROUP GROUP CODE_SEG ;Group two segments together
ASSUME CS:CGROUP

We'll place these two lines at the beginning of each file from now on, with one
slight variation. We'll write:

CGROUP GROUP CODE_SEG, DATA_SEG ;Group two segments together
ASSUME CS:CGROUP, DS:CGROUP

(with DATA_SEG) whenever we have both a code segment and a data seg-
ment in the file.

The ASSUME here replaces the old ASSUME, and we’ll see later what
these two statements actually do. But now, let’s try our new program to see
how it works. Assemble both Disp_sec and Video_io.

We're ready to link DISP_SEC.OBJ and VIDEO_IO.OBJ and run the re-
sult through Exe2bin, so first use LINK to create an .EXE file named DISP_
SEC.EXE. The first file name in the LINK command must be the name of the
file that contains the main procedure (Disp_sec in this case), and a semicolon
must appear at the end of the list of files, so type:

A>LINK DISP_SEC VIDEO_IO;

Linking will always be the same, with more names before the semicolon
when we have more files, but the main procedure must always be in the first
file listed.

Now, convert the .EXE file to a .COM file by typing:

A>EXEZBIN DISP_SEC DISP_SEC.COM

In general, the two preceding steps for the files filel, file2, and so on, look
like this:

PR e . £

l
r

Peter Norton’s Assembly Language Book 153

LINK filel file2 filed ...;
EXECZBIN filel filel.COM

Now, run the .COM file. Make sure you've run Exe2bin before you run
Disp_sec. Otherwise, you’ll end up running the .EXE version of Disp_sec, and
who knows what will happen. At worst, you’ll have to turn your computer off,
wait about a minute, and then turn it on again to reset it.

If you don’t see:

10 13 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

when you run the program, ge back and check carefully for a mistake.
Now, let’s see how Disp_sec works. The instruction:

MOV DL,SECTOR[BX] ;Get 1 byte

uses a new addressing mode known as Indirect Memory Addressing—address-
ing memory through the Base register with offset, or more simply, Base Rela-
tive. Let’s see what this really means.

0431 + BX

MOV DLSECTORBX]

0434: 0013
0433: 0012
0432: 0011

SECTOR: 0431: 0010

Figure 14-1. Translation of SECTOR[BX].

Looking at Disp_sec, you'll see that the label SECTOR is in a segment
named DATA_SEG. This is a new segment used for memory variables. Any
time we want to store and read data in memory, we’ll set aside some space in
this segment. We’ll get back to memory variables in just a minute, but first
let’s learn a little more about segments.

The ASSUME DS:CGROUP tells the assembler where to find memory vari-

154 Dumping Memory

ables. You might have guessed we'd want ASSUME DS:DATA_SEG. Not
quite, because we want to build a .COM file, we must build only one segment.
Yet, it’s convenient to work with two: one for the code, and one for the data.
This is where the GROUP pseudo-op enters the scene. GROUP groups differ-
ent segments into what is effectively one segment, with the name we give
before the GROUP pseudo-op. So the statement:

CGROUP GROUP CODE_SEG, DATA_SEG

merges the two segments CODE_SEG and DATA_SEG into a single 64K seg-
ment with the name CGROUP. The inner workings of groups are a bit more
complicated than this, but we don’t need to know any more details. If you
want the details, you'll find them in your macro assembler manual. Be
warned, however: They are a bit difficult to read.

It’s time to get back to our base-relative addressing mode. The two lines:

SECTOR DB 10h, 13h, 12h, 13h, 14h, 15h, 16h, 1?h ;Test pattern
DB 18h, 19h, 1Ah, 1Bh, 1Ch, 1Dh, 1Eh, 1Fh

set aside 16 bytes of memory in the data segment starting at SECTOR, which
the assembler converts to an address. DB, you may recall, stands for Define
Byte; the numbers after each DB are initial values. So, when we first start
DISP_SEC.COM, the memory starting at SECTOR will contain 10h, 11h,
12h, and so on. If we wrote:

MOV DL,SECTOR

the instruction would move the first byte (10h) into the DL register. This is
known as direct memory addressing. But we didn’t write that. Instead, we
placed [BX] after SECTOR. This may look suspiciously like an index into an
array, like the BASIC statement:

K = L(10)

which moves the 10th element of L into K.

In fact, our MOV instruction is much the same. The BX register contains an
offset in memory from SECTOR. So if BX is 0, the MOV DL,SECTOR[BX]
moves the first byte (10h here) into DL. If BX is 0Ah, this MOV instruction
moves the eleventh byte (1Ah—remember, we started at 0) into DL.

Peter Norton’s Assembly Language Book 155

CSDS —» OGROLP

CODE_SEG

DATA SEG

Figure 14-2. Groups Treat Multiple Sectors as a Single Segment.

On the other hand, the instruction MOV DX ,SECTOR[BX] would move the
sixth word into DX, since an offset of 10 bytes is the same as 5 words, and the
first word is at offset zero. (For enthusiasts: This last MOV instruction is not
legal, because SECTOR is a byte label, whereas DX is a word register. We
would have to write MOV DX,Word Ptr SECTOR[BX] to tell the assembler
that we really want to use SECTOR as a word label in this instruction.)

156 Dumping Memory

There are many other addressing modes; some we’ll encounter later, but
most we won’t. All the addressing modes are summarized in Table 14-1.

Table 14-1. Addressing Modes

Addressing Mode Format of Address Segment Register Used
Register register (such as AX) None
Immediate data (such as 12345) None

Memory Addressing Modes
Register Indirect [BX] DS
[BP] SS
[DI] DS
[SI] DS
Base Relative* label[BX] DS
label[BP] SS
Direct Indexed* label[DI] DS
label[SI] DS
Base Indexed* label[BX + SI] DS
label[BX + DI] DS
label [BP + SI] SS
label[BP + DI SS
String Commands: Read from DS:SI
(MOVSW, LODSB, and so on) Write to ES:DI

* Labell...] can be replaced by [disp+...], where disp is a displacement.
Thus, we could write (10 + BX] and the address would be 10 + BX.

Adding Characters to the Dump

We're almost through the procedure for a dump display similar to Debug’s.
So far we've dumped the hex numbers for one line; in the next step we’ll add
the character display following the hex display. It’s not very involved, so with-
out further delay, here’s the new version of DISP_LINE (in DISP_SEC.ASM),
with a second loop added to display the characters:

Peter Norton’s Assembly Language Book 157

Listing 14-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC NEAR
XOR BX, BX ;Set BX to D
MOV CX,16 ;Dump 16 bytes
HEX_LOOP:
MoV DL,SECTOR([BX] ;Get 1 byte
CALL WRITE_HEX ;Dump this byte in hex
MOV)] B ;Write a space between numbers
CALL WRITE_CHAR
INC BX

LOOP HEX_LOOP

MOV DL,!' ! ;Add another space before characters
CALL WRITE_CHAR
MOV CX,1b
XOR BX,BX ;Set BX back to O
ASCII_LOOP:
MOV DL,SECTOR[BX]
CALL WRITE_CHAR
INC BX

LOOP ASCII_LOOP

INT c0h ;Return to DOS
DISP_LINE ENDP

Assemble this, link it to Video_io, run it through Exe2bin, and try it. Just the
display we wanted. (See Figure 14-3.)

Addisp_sec
18 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F »<3!98.2tiscway
A

Figure 14-3. DISP_LINE’s Output.

Try changing the data to include a 0Dh or a 0Ah. You'll see a rather strange
display. Here’s why: 0Ah and ODh are the characters for the line-feed and
carriage-return characters. DOS interprets these as commands to move the
cursor, but we’d like to see them as just ordinary characters for this part of the
display. To do this, we’ll have to change WRITE_CHAR to print all charac-
ters, without applying any special meaning. We’'ll do that in Part III, but for
now, let’s rewrite WRITE_CHAR slightly so that it prints a period in place of
the low characters (between 0 and 1Fh).

158 Dumping Memory

A)Xdisp_sec
160 11 12 13 14 1516 17 18 19 1A 1B IC {D {E{F Ak
A

Figure 14-4. Modified Version of DISP_LINE.
Replace the WRITE_CHAR in VIDEO_IO.ASM with this new procedure:

Listing 14-3. A New WRITE_CHAR in VIDEO_IO.ASM

PUBLIC WRITE_CHAR

; This procedure prints a character on the screen using the DOS
; function call. WRITE_CHAR replaces the characters 0 through 1Fh with

; a period.
- DL byte to print on screen.
WRITE_CHAR PROC NEAR
PUSH AX
PUSH DX
CHP DL,32 ;Is character before a space?
JAE IS_PRINTABLE ;No, then print as is
MOV DL,'.! ;Yes, replace with a period
IS_PRINTABLE:
MOV AH,2 ;Call for character output
INT clh ;Output character in DL register
POP DX ;Restore old value in AX and DX
POP AX
RET
WRITE_CHAR ENDP

Try this new procedure with Disp_sec, and change the data to various charac-
ters to check the boundary conditions.

Dumping 256 Bytes of Memory

Now we’ve managed to dump one line, or 16 bytes, of memory. The next
step is to dump 256 bytes of memory. This happens to be exactly half the
number of bytes in a sector, so we're working toward building a display of
half a sector. We still have many more improvements to make; this is just a
test version.

We'll need two new procedures here, and a modified version of DISP_LINE.
The new procedures are DISP_ HALF_SECTOR, which will soon evolve into a
finished procedure to display half a sector, and SEND_CRLF, which just
sends the cursor to the beginning of the next line (CRLF stands for Carriage

Peter Norton’s Assembly Language Book 159

Return-Line Feed, the pair of characters that move the cursor to the next
line).

SEND_ CRLF is very simple, so let’s start with it. Place the following proce-
dure into a file called CURSOR.ASM:

Listing 14-4. The New File CURSOR.ASM

CR EQU 13 ;Carriage return
LF EQU 10 ;Line feed

CGROUP GROUP CODE_SEG
ASSUME CS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC SEND_CRLF
; This routine just sends a carriage return-line feed pair to the
; display, using the DOS routines so that scrolling will be handled
; correctly.

s W we ws -

SEND_CRLF PROC NEAR

PUSH AX
PUSH DX
MoV AH,Z2
MOV DL,CR
INT 2lh
MoV DL,LF
INT clh
POP DX
POP AX
RET

SEND_CRLF ENDP

CODE_SEG ENDS
END

This procedure sends a Carriage Return and Line Feed pair, using the DOS
function 2 to send characters. The statement:

CR EQU 13 ;Carriage return

uses the EQU pseudo-op to define the name CR to be equal to 13. So the in-
struction MOV DL,CR is equivalent to MOV DL,13. As shown in Figure 14-5,
the assembler substitutes 13 whenever it sees CR. Likewise, it substitutes 10
whenever it sees LF.

160 Dumping Memory

CR EQU 13

MOV DLGH

Figure 14-5. The EQU Pseudo-Op Lets Us Use Names in Place of Numbers.

The file Disp_sec now needs much work. Here’s the new version of DISP_
SEC.ASM. From here on, additions to our programs will be shown against a
gray background; text you should delete will be printed in blue:

i R B

Listing 14-5. The New Version of DISP_SEC.ASM

CGROUP GROUP CODE_SEG, DATA_SEG ;Group two segments together
ASSUME CS:CGROUP, DS:CGROUP
CODE_SEG SEGMENT PUBLIC
ORG 100h
PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:NEAR

; This procedure displays half a sector (25t bytes)

PROC NEAR

XOR DX, DX ;Start at beginning of SECTOR

MOV CX,16 ;Display 1k lines
HALF_SECTOR:

CALL DISP_LINE

CALL SEND_CRLF

ADD DX,1b

LOOP HALF_SECTOR

INT c0h
DISP_HALF_SECTOR ENDP

PUBLIC DISP_LINE

EXTRN WRITE_HEX:NEAR

EXTRN WRITE_CHAR:NEAR

- ws ms w e

e S S——

Peter Norton’s Assembly Language Book 161

Listing 14-5. continued

This procedure displays one line of data, or 1t bytes, first in hex,
then in ASCII.

DS:DX Offset into sector, in bytes.

W e e e e e e o

’
’
)
B
B
)
D

Uses: WRITE_CHAR, WRITE_HEX
Reads: SECTOR
ISP_LINE PROC NEAR
XOR BX,BX
PUSH BX
PUSH 9% §
PUSH DX
MOV BX,DX ;0ffset is more useful in BX
MOV CX,16 ;Dump 16 bytes
PUSH BX ;Save the offset for ASCII_LOOP
HEX_LOOP:
MOV DL,SECTOR[BX] ;Get 1 byte
CALL WRITE_HEX ;Dump this byte in hex
MoV DLt ;Write a space between numbers
CALL WRITE_CHAR
INC BX
LOOP HEX_LOOP
MOV DL, 1 ! ;Add another space before characters
CALL WRITE_CHAR
MOV CX,16
POP BX ;Get back offset into SECTOR
XOR BX,BX
ASCII_LOOP:
MOV DL,SECTOR[BX]
CALL WRITE_CHAR
INC BX
LOOP ASCII_LOOP
POP DX
POP CcX
POP BX
RET
INT 20h
DISP_LINE ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
PUBLIC SECTOR
SECTOR DB 10h, 11h, i2h, 13h, 14h, 15h, 16h, 17h ;Test pattern

DB 18h, 19h, 1Ah, 1Bh, 1Ch, 1Dh, LEh, 1Fh

162 Dumping Memory

Listing 14-S5. continued

SECTOR DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
D5

DATA_SEG
END

1k
1b
16
16
16
16
16
16
1b
16
1b
16
16
16
1b
16

DUP(10h)
DUP(11h)
DUP(12h)
DUP(13h)
DUP(14h)
DUP(15h)
DUP(1bh)
DUP(17h)
DUP(18h)
DUP(15h)
DUP(1Ah)
DUP(1Bh)
DUP(1Ch)
DUP(1Dh)
DUP(1Eh)
DUP(1Fh)
ENDS
DISP_HALF_SECTOR

The changes are all fairly straightforward. In DISP_LINE, we’ve added a
PUSH BX and POP BX around the HEX_LOOP, because we want to reuse
the initial offset in ASCII_LOOP. We've also added PUSH and POP instruc-
tions to save and restore all the registers we use within DISP_LINE. Actu-
ally, DISP_LINE is almost done; the only changes we have left are aesthetic,

Addisp_sec

18
i1
12
13
14
15
16
17
18
19
1A
1B
i€
D
iE
iF

A>

18
11
12
13
14
15
16
17
18
19
1A
1B
iC
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
iB
icC
1D
iE
iF

18
11
12
13
14
15
16
1?7
18
19
1A
iB
i€
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
i€
1D
iE
iF

18
11
12
13
14
15
16
1?7
18
19
1A
1B
icC
D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
icC
1D
1E
iF

18
11
12
13
14
15
16
1?7
18
19
1A
1B
i€
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
icC
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
iC
D
1E
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
iC
D
iE
iF

18
i1
12
13
14
15
16
17
18
19
1A
1B
ic
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
1A
1B
i€
1D
iE
iF

18
11
12
13
14
15
16
1?7
18
19
1A
1B
iC
1D
iE
iF

18
11
12
13
14
15
16
17
18
19
14
1B
icC
1D
iE
iF

oooooooooooooooo

oooooooooooooooo

nnnnnnnnnnnnnnnn

Figure 14-6. Output From Disp_sec.

Peter Norton’s Assembly Language Book 163

to add spaces and graphics characters so we’ll have an attractive display;
those will come later.

When you link the files, remember that we now have three files: Disp_ sec,
Video_io, and Cursor. Disp_sec must be first in this list. After you run the
.EXE version through Exe2bin, you’ll see a display like the one in Figure
14-6.

We’ll have more files before we're done, but now, let’s move on to the next
chapter, where we’ll read a sector directly from the disk before we dump half a
sector.

Summary

We know more about the different memory modes for addressing memory
and registers in the 8088 microprocessor. We learned about indirect memory
addressing, which we first used to read 16 bytes of memory.

We also used indirect memory addressing in several programs we wrote in
this chapter, starting with our program to print 16 hex numbers on the
screen. These 16 numbers came from an area in memory labeled SECTOR,
which we expanded a bit later so we could display a memory dump for 256
bytes—half a sector.

And, at last, we’ve begun to see dumps of the screen, as they appear on your
display, rather than as they are set in type. We’ll use these screen dumps to
more advantage in the following chapters.

r e
- , % vesFterts 3 T 50% R
Whﬁm }
bl w Imad teciinasee el atl ﬂ[l'ﬂm
| 3 e gl inetekl }m
Touy Sovtlsall Fyeendd' s

i sy il sl l_‘:
v tinerlh 1ot o) -r',‘_m :1fl|f?;

| St 'r.h.@il
{oby, o ot A m £ &
3 '!.lll!.'b b‘f
e
I v v g '!""r___ﬁf’rh-ll!
o TR LT B b IS -
v T 2k el aRalabving

: g g i 1
«% S ;_,_:L ’ .
' LRy
-J ! : ﬂ:

RN N ERTYE T d

) v -

1 g , i
3 i 4 0 .“f;:'ﬁi.' S
L Ty

&
&IJ-' IFPW -y -
: . i. L_ Al - m :l-.‘¥f IJ
F 'y A J--_" 'y ¥ = .-4-{5!; ..I.*."F }
' L BRSO
: . I. ""“"
L g
> —lr'l'.

.

15
DUMPING A DISK SECTOR

Making Life Easier 166
Format of the Make File 167
Patching up Disp_sec 168
Reading a Sector 169
Summary 174

165

166 Dumping a Disk Sector

Now that we have a program that dumps 256 bytes of memory, we can add
some procedures to read a sector from the disk and place it in memory starting
at SECTOR. Then, our dump procedures will dump the first half of this disk
sector.

Making Life Easier

With the three source files we had in the last chapter, life becomes some-
what complicated. Did we change all three of the files we were working on, or
just two? You probably assembled all three, rather than check to see if you
made any changes since the last assemble.

But assembling all of our source files when we’ve only changed one of them
is rather slow, and will become even slower as Dskpatch grows in size. What
we’'d really like to do is assemble only the files that we’ve changed.

Fortunately, if you are using one of the more recent Macro Assembler pack-
ages from Microsoft (or you have their C compiler), there is a way you can do
just that. They include a program called Make that does exactly what we
want. To use it, we create a file (we’ll call it Dskpatch) that tells Make how to
do its work, then just type:

A>MAKE DSKPATCH

Make then assembles only the files you've changed.

The file you create (Dskpatch) tells Make which files depend on which
other files. Every time you change a file, DOS updates the modify time for
this file (you can see this in the DIR display). Make simply looks at both the
.ASM and .OBJ versions of a file. If the .ASM version has a more recent
modify time than the .OBJ version, Make knows that it needs to assemble
that file again.

That’s all there is to it, but there is one caveat we need to point out: Make
will work correctly only if you're diligent about setting DOS’ date and time
each time you start your computer. Without this information, Make won’t al-
ways know when you’ve made changes to a file.

Peter Norton’s Assembly Language Book 167

Format of the Make File

The format for our file, Dskpatch, that we’ll use with Make is fairly simple:

Listing 15-1. The Make File DSKPATCH

disp_sec.obj: disp_sec.asnm
masm disp_sec;

video_io.obj: video_io.asnm
masm video_io;

cursor.obj: CUrsor.asnm
masm Cursor;

disp_sec.conm: disp_sec.obj video_io.obj cursor.obj
link disp_sec video_io cursor;
execbin disp_sec disp_sec.com

Each entry has a file name on the left (before the colon) and one or more file
names on the right. If any of the files on the right (such as DISP_SEC.ASM in
the first line) are more recent than the first file (DISP_SEC.OBJ), Make will
execute all the indented commands that appear on the following lines. (Note:
You must indent the command lines with a tab, not with spaces.)

If your assembler has the Make program, enter these lines into the file
Dskpatch (without an extension) and make a small change to DISP_
SEC.ASM. Then type:

A>MAKE DSKPATCH

and you’ll see something like the following:

Microsoft (R) Macro Assembler Version 4.00
Copyright (C) Microsoft Corp 14981, 1983, 1984, 1985. All rights reserved.
48984 Bytes symbol space free
0 Warning Errors
0 Severe Errors

link disp_sec video_io cursor;

Microsoft (R) 808k Object Linker Version 3.05

168 Dumping a Disk Sector

Copyright (C) Microsoft Corp 1983, 1984, 1985. All rights reserved.

Warning: no stack segment
execbin disp_sec disp_sec.asnm

A>

Make has done the minimum amount of work necessary to rebuild our
program.

If you don’t have a recent version of the Microsoft Macro Assembler that
includes Make, you’ll find this program worth the price of an upgrade. And
you’ll get a nice replacement for Debug, too. It’s called Symdeb (Symbolic
Debugger), and we’ll take a look at it later. Now, on with Dskpatch.

Patching up Disp_sec

Disp_sec, as we left it, included a version of DISP_HALF_SECTOR, which
we used as a test procedure, and the main procedure. Now, we’ll change
DISP_HALF_SECTOR to an ordinary procedure so we can call it from a pro-
cedure we’ll name Disk_io. Our test procedure will be in Disk_io, along with
a test version of the procedure to read a disk sector.

First, let’s modify Disp_sec to make it a file of procedures, just as we did
with Video_io. Change the END DISP_HALF_SECTOR to just END, since
our main procedure will now be in Disk_io. Then remove the ORG 100h state-
ment from CODE_SEG, again because we moved this to a different file.

Since we plan to read a sector into memory starting at SECTOR, there is no
need for us to supply test data. We can replace all the 16 DB statements after
SECTOR with one line:

SECTOR DB 8192 DUP (0)

which reserves 8192 bytes for storing a sector.

But recall our earlier statement that sectors are 512 bytes long. So why do
we need such a large storage area? It turns out that some hard disks (300
megabyte, for example) use very large sector sizes. These large sector sizes are
by no means common, but we still want to be certain that we don’t read in a
sector that is too large to fit into the memory we’ve reserved for SECTOR. So,
in the interest of safety, we've reserved 8192 bytes for SECTOR. In the rest of
this book, with the exception of SECTOR, which we’ll cover soon, we’ll assume
that sectors are only 512 bytes long.

Peter Norton’s Assembly Language Book 169

Now what we need is a new version of DISP_HALF_SECTOR. The old ver-
sion is nothing more than a test procedure that we used to test DISP_LINE.
In the new version, we’ll want to supply an offset into the sector so that we can
display 256 bytes, starting anywhere in the sector. Among other things, this
means we could dump the first half, the last half, or the middle 256 bytes.
Once again, we’ll supply this offset in DX. Here is the new—and final—ver-
sion of DISP_HALF_SECTOR in Disp_sec:

Listing 15-2. The Final Version of DISP_HALF_SECTOR
in DISP_SEC.ASM

PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:NEAR

This procedure displays half a sector (25t bytes)

- DS:DX Offset into sector, in bytes -- should be multiple of 1k;
; Uses: DISP_LINE, SEND_CRLF :

DISP_HALF_SECTOR PROC NEAR
PUSH CX
PUSH DX
MoV CX,16 ;Display 1k lines

HALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF

ADD DX, 16
LOOP HALF_SECTOR
POP DX
POP CX
RET
DISP_HALF_SECTOR ENDP

Let’s move on now to our procedure to read a sector.

Reading a Sector

In this first version of READ_SECTOR we’ll deliberately ignore errors,
such as having no disk in the disk drive. This is not good practice, but this
isn’t the final version of READ_SECTOR. We won’t be able to cover error

handling in this book, but you will find error-handling procedures in the ver-
sion of Dskpatch on the disk that is available for this book. For now, though,

170 Dumping a Disk Sector

we just want to read a sector from the disk. Here is the test version of the file
DISK_10.ASM:

Listing 15-3. The New File DISK_IO.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 100h

EXTRN DISP_HALF_SECTOR:NEAR

; This procedure reads the first sector on disk R and dumps the first
; half of this sector.

s ' 9o ws

MOV AL,O ;Disk drive A (number 0)
MOV CX,1 ;Read only 1 sector
MOV DX,0 ;Read sector number O
LEA BX,SECTOR ;Where to store this sector
INT ¢Sh ;Read the sector
POPF ;Discard flags put on stack by DOS
XOR DX,DX ;Set offset to O within SECTOR
CALL DISP_HALF_SECTOR ;Dump the first half
INT c¢0h ;Return to DOS
READ_SECTOR ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
DATA_SEG ENDS
END READ_SECTOR

There are three new instructions in this procedure. The first:

LEA BX,SECTOR

moves the address, or offset, of SECTOR (from the start of CGROUP) into the
BX register; LEA stands for Load Effective Address. After this LEA instruc-
tion, DS:BX contains the full address of SECTOR, and DOS uses this address
for the second new instruction, the INT 25h call, as we’ll see after a few more
words about SECTOR. (Actually, LEA loads the offset into the BX register
without setting the DS register; we have to ensure that DS is pointing to the
correct segment.)

-

A ey ———u

“Him"%dadm - —=_1

Peter Norton’s Assembly Language Book 171

SECTOR isn’t in the same source file as READ_SECTOR. It’s over in DISP_
SEC.ASM. How do we tell the assembler where it is? We use the EXTRN
pseudo-op:

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
DATA_SEG ENDS
L CGROUP
CODE SEG
DATA SEG
*
0381: SECTOR:

_LEA BXSECTOR +—— MOV BX,0381

Figure 15-1. LEA Loads the Effective Address.

172 Dumping a Disk Sector

This set of instructions tells the assembler that SECTOR is defined in the
DATA_SEG, which is in another source file, and that SECTOR is a variable
of bytes (rather than words). We’'ll be using such EXTRNSs often in following
chapters; it’s the way we use the same variables in a number of source files.
We just need to be careful that we define our variables in only one place.

DATA SEG SEGMENT PUBLIC
EXTRN SECTORBYTE
DATA SEG ENDS

A byte variable.
LINK will provide
the address.

Figure 15-2. The EXTRN Pseudo-Op.

Let’s return to the INT 25h instruction. INT 25h is a special function call to
DOS for reading sectors from a disk. When DOS receives a call from INT 25h,

it uses the information in the registers as follows:

AL Drive number (0=A, 1=B, and so on)

CX Number of sectors to read at one time

DX Number of the first sector to read (the first sector is 0)
DS:BX Transfer address: where to write the sectors read

The number in the AL register determines the drive from which DOS will
read sectors. If AL = 0, DOS reads from drive A.

DOS can read more than one sector with a single call, and it reads the
number of sectors given by CX. Here, we set CX to one so DOS will read just
one sector of 512 bytes.

We set DX to zero, so DOS will read the very first sector on the disk. You

T

Peter Norton’s Assembly Language Book 173

can change this number if you want to read a different sector; later on, we
will.

DS:BX is the full address for the area in memory where we want DOS to
store the sector(s) it reads. In this case, we’ve set DS:BX to the address of
SECTOR, so that we can call DISP_HALF_SECTOR to dump the first half of
the first sector read from the disk in drive A.

Finally, you’ll notice a POPF instruction immediately following the INT
21h. As we mentioned before, the 8088 has a register called the status register
that contains the various flags, like the zero and carry flags. POPF is a special
POP instruction that pops a word into the status register. Why do we need
this POPF instruction?

The INT 25h instruction pushes first the status registers, then the return
address onto the stack. When DOS returns from this INT 25h, it leaves the
status register on the stack. DOS does this so that it can set the carry flag on
return if there was a disk error, such as trying to read from drive A: with no
disk in the drive. We won’t be checking for errors in this book, but we have to
remove the status register from the stack—hence the POPF instruction.
(Note: INT 25h, along with INT 24h which writes a disk sector, are the only
DOS routines that leave the status register on the stack.)

Now you can assemble DISK_I0.ASM, and reassemble DISP_SEC.ASM.
Then, link the four files Disk_io, Disp_sec, Video_io, and Cursor, with Disk__
i0 listed first. Or, if you have Make, add these two lines to your Dskpatch file:

disk_io.obj: disk_io.asm
masm disk_io;

and change the last three lines to:

disk_io.conm: disk_io.obj disp_sec.obj video_io.obj cursor.obj
link disk_io disp_sec video_io cursor;
execbin disk_io disk_io.com

After you create your .COM version of Disk__io, you should see a display some-
thing like Figure 15-3.

We’ll come back later to add more to Disk_io, we have enough for now. In
the next chapter, we’ll build a nicer sector display by adding some graphics
characters to the display, and then adding a few more pieces of information.

174 Dumping a Disk Sector

AXdisk_io
EB 21 98 49 42 4D 28 28 33 2E 31 08 B2 82 81 88 S!EIBM 3.1.....
82 708 86 D8 82 FD B2 88 B9 00 B2 00 60 0 88 8@ .p. 1.2,,

88 88 B8 C4 SC B8 33 ED BB CB 87 BE DB 33 CI BA ...-\.3¢yL.4}3y.
D2 79 BE 89 1E 1E B8 BC 86 20 @8 88 16 22 88 Bi yy.b...1. .4.".]
82 BE C5 BE DS BC 88 7C 51 FC 1E 36 C5 36 78 88 .A4pY. !QY. 6}bx.
BF 23 7C B9 8B 88 F3 A4 1F 88 BE 2C B8 AB 18 88 8!..¢H.4.,.4..
A2 27 88 BF 78 88 BB 23 7C AB 91 AB A1 16 B8 D1 &' .,x.18i%aki. .7
EB 48 £8 89 88 EB 86 09 BB 88 85 53 BO 81 8 AD «@1G.3d.j..S]. B
88 SF BE 73 81 B9 BB @8 98 F3 A6 75 62 83 C7 15 . ds.]..EC*ubi].
B1 BB 98 98 F3 A6 75 57 26 BB 47 1C 99 8B BE 8B [£E<SuMaic. bi. .
88 83 C1 48 F7 F1 88 3 71 81 68 75 82 BB 14 96 ..LlH=#C)q.'u.E.d
A1 11 88 B1 84 D3 E8 £ 3B @8 FF 36 1E 88 C4 1E {..J.%5%:. 6..-.
6F 81 E8 39 80 E8 64 88 2B F@ 76 8D EB 26 88 52 o.%9.3d.+=v.34.R

F7 26 8B 88 83 DB SA EB E9 CD 11 B9 82 88 D3 EB =&...+Z§0'.i..l¢
80 E4 B3 74 B4 FE C4 BA CC SB 58 FF 2E 6F 81 BE GI.t.n-gf(X .o0.d
89 81 EB 55 98 81 86 1E 08 11 2E 28 88 C3 A1 18 &.5UE...... H
Ad
Figure 15-3: Screen Dump from DISK_10.COM.
Summary

Now that we have four different source files, Dskpatch is becoming some-
what more involved. In this chapter, we looked at the program Make, which
helps make life simpler by assembling only the files we’ve changed.

We also wrote a new procedure, DISK_IO. It’s in a different source file from
SECTOR, so we used an EXTRN definition in DISK_I0.ASM to tell the as-
sembler about SECTOR, and let it know that SECTOR is a byte variable.

We also learned about the LEA (Load Effective Address) instruction, which
we used to load the address of SECTOR into the BX register.

DISK_IO uses a new INT number, INT 25h, to read sectors from a disk to
memory. We used INT 25h to read one sector into our memory variable, SEC-
TOR, so we could dump it on the screen with DISP_HALF_SECTOR.

We also learned about the POPF instruction to pop a word off the stack and
into the status register. We used this instruction to remove the flags which
DOS didn’t remove from the stack when it returned from INT 25h.

Our half-sector display isn’t very attractive yet, in the next chapter we’ll
use some of the graphics characters available on the IBM PC to make it more
aesthetically pleasing.

16

ENHANCING THE SECTOR
DISPLAY

Adding Graphics Characters 176
Adding Addresses to the Display 178
Adding Horizontal Lines 182

Adding Numbers to the Display 186
Summary 189

175

176 Enhancing the Sector Display

We’ve come to the last chapter in Part II. Everything we've done so far has
been applicable to MS-DOS and the 8088 (or the 8086 and other relatives of
the 8088). In Part III, we’ll begin to write procedures specific to the IBM Per-
sonal Computer and its close cousins.

But before we move on, we’ll use this chapter to add several more proce-
dures to Video_10. We'll also modify DISP_LINE in Disp_sec. All our modifi-
cations and additions will be to the display. Most of them will be to improve
the appearance of the display, but one will add new information: It will add
numbers on the left that act like the addresses in Debug’s dump. Let’s begin
with graphics.

Adding Graphics Characters

The IBM Personal Computer has a number of line-drawing characters we
can use to draw boxes around various parts of our dump display. We'll draw
one box around the hex dump, and another around the ASCII dump. This
change requires very little thought, just work.

Enter the following definitions near the top of the file DISP_SEC.ASM, be-
tween the ASSUME pseudo-op and the first SEGMENT pseudo-op, leaving
one or two blank lines before and after these definitions:

Listing 16-1. Add to the Top of DISP_SEC.ASHM

HORIZONTAL_BAR EQU OCDh
UPPER_LEFT EQU 0C9h
UPPER_RIGHT EQU OBBh
LOWER_LEFT EQU 0C8h
LOWER_RIGHT EQU DBCh
TOP_T_BAR EQU OCBh
BOTTOM_T_BAR EQU OCRh
TOP_TICK EQU OD1h
BOTTOM_TICK EQU OCFh

These are the definitions for the graphics characters. Notice that we put a zero
before each hex number so the assembler will know these are numbers, rather
than labels.

Peter Norton’s Assembly Language Book 177

We could just as easily have written hex numbers instead of these defini-
tions in our procedure, but the definitions make the procedure easier to under-
stand. For example, compare the following two instructions:

Mov DL, VERTICAL_BAR
MOV DL,0BAh

Most people find the first instruction clearer.
Now, here is the new DISP_LINE procedure to separate the different parts

of the display with the VERTICAL_BAR character, number 186 (0BAh). As
before, additions are shown against a gray background:

Listing 1&-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC NEAR
PUSH BX
PUSH CX
PUSH DX
MOV BX,DX ;0ffset is more useful in BX
;Write separator
MoV DL,
CALL WRITE_CHAR
MOV DL,VERTICAL_BAR ;Draw left side of box
CALL WRITE_CHAR
MoV DL, 1t

CALL WRITE_CHAR
;Now write out 1k bytes

MOV CX,1b6 ;Dump 16 bytes

PUSH BX ;Save the offset for ASCII_LOOP
HEX_LOOP:

Mov DL,SECTOR[BX] ;Get 1 byte

CALL WRITE_HEX ;Dump this byte in hex

MoV DEL ! ;Hrite a space between numbers

CALL WRITE_CHAR

INC BX

LOOP HEX_LOOP

MOV DL,VERTICAL_BAR ;Write separator
CALL WRITE_CHAR '
Mov DL, " !

CALL WRITE_CHAR

Mov CX,16

POP BX ;Get back offset into SECTOR
ASCII_LOOP:

MOV DL,SECTOR[BX]

CALL WRITE_CHAR

INC BX

LOOP ASCII_LOOP

178

Enhancing the

Sector |)I\[‘l.n

Listing 1b-2. continued
MoV DL,' ! ;Draw right side of box
CALL WRITE_CHAR
Mov DL,VERTICAL_BAR
CALL WRITE_CHAR
POP DX
POP CX
POP BX
RET

DISP_LINE ENDP

Assemble this new version of Disp_sec and link your four files (remember to
place Disk_io first in the list of files following the LINK command). You’ll see
nice double bars separating the display into two parts, as you can see in Fig-
ure 16-1.

Adding Addresses to the Display

Now let’s try something a bit more challenging: Let’s add the hex addresses
down the left side of the display. These numbers will be the offset from the

AXdisk_io
EB 21 98 49 42 4D 20 28 33 2E 31 68 82 B2 81 88 | S'EIBM 3.1.....

A

82 708 86 DB 82 FD 82 88 89 06 82 88 68 88 88 08
86 88 88 C4 SC 88 33 ED B8 C8 87 BE D8 33 C9 BA
D2 79 BE 89 1E 1E 88 8C 86 28 88 88 16 22 88 Bi
82 8E CS 8E DS BC 88 7C 51 FC 1E 36 C5 36 78 68
BF 23 7C B9 @B 88 F3 A4 1F 88 BE 2C 88 A0 18 88
AZ 27 86 BF 78 88 BB 23 7C AB 91 AB A1 16 88 D1
EB 48 E8 88 88 EB B6 88 BB 88 85 53 B 81 E8 AB
88 SF BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15
B1 @B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE 8B
88 83 C1 48 F? F1 88 3E 71 81 68 75 82 BB 14 96
A1 11 80 B1 84 D3 E8 E8 3B 8@ FF 36 1E 8@ C4 1E
6F 81 E8 39 88 EB 64 88 2B F@ 76 8D EB 26 88 52
F7 26 8B 88 83 D8 SA EB E9 CD 11 B9 82 88 D3 E@
88 E4 83 74 84 FE C4 8A CC 5B S8 FF 2E 6F 81 BE
89 81 EB 55 98 81 86 1E 8@ 11 2E 208 88 C3 A1 18

Figure 16-1.

p_l.z

#ﬁr' 'Q‘ 6%!

8'{ AhLe.,.

o' .qyx. 1l-1$¢1§i

010, 35,755 %

s.. zi’ubal

I EES’uUhG oi..

. LH=4C)q. ‘u. § 0

L 1E. 6

59 §d.+3v. !& R
. $286=.1. .k

92 t. —¢fX 0.4

8.8UE...... .I-i.

lIO -

Adding Vertical Bars.

Peter Norton’s Assembly Language Book 179

beginning of the sector, so the first number will be 00, the next 10, then 20,
and so on.

The process is fairly simple, since we already have the procedure WRITE _
HEX for writing a number in hex. But we do have a problem in dealing with a
sector 512 bytes long: WRITE_HEX prints only two-digit hex numbers,
whereas we need three hex digits for numbers greater than 255.

Here’s the solution. Since our numbers will be between zero and 511 (Oh to
1FFh), the first digit will either be a space, if the number (such as BCh) is
below 100h, or it will be a one. So, if the number is larger than 255, we’ll
simply print a one, followed by the hex number for the lower byte. Otherwise,
we’ll print a space first. These are the additions to DISP_LINE that will print
this leading three-digit hex number:

Listing 16-3. Rdditions to DISP_LINE in DISP_SEC.ASHM

DISP_LINE PROC NEAR

PUSH BX f

PUSH CX

PUSH DX

MOV BX,DX ;0ffset is more useful in BX

MOV DL

;Write offset in hex

CHMP BX,100h ;Is the first digit a 1?

JB WRITE_ONE ;No, white space already in DL

MoV DL, '1! ;Yes, then place 'l' into DL for output
WRITE_ONE:

CALL WRITE_CHAR

MOV DL,BL ;Copy lower byte into DL for hex output

CALL WRITE_HEX
;Write separator

MoV BL,t !
CALL WRITE_CHAR
MOV DL,VERTICAL_BAR ;Draw left side of box

You can see the result in Figure 16-2.

We're getting closer to our full display. But on the screen, our display is not
quite centered. We need to move it to the right by about three spaces. Let’s
make this one last change, then we’ll have our finished version of DISP_
LINE.

We could make the change by calling WRITE_CHAR three times with a
space character, but we won’t. Instead, we’ll add another procedure, called
WRITE_CHAR_N_TIMES, to Video_io. As its name implies, this procedure

180 Enhancing the Sector Display

AXdisk_io
88 | EB 21 98 49 42 4D 20 28 33 2E 31 88 82 82 81 08 | stEIBM 3.1.....
18 | 82 78 88 DB 82 FD B2 08 89 88 62 02 80 08 @0 88 | .p.1.2..........
28 | 88 88 88 C4 SC 88 33 ED BB CB 87 BE D8 33 C9 8A | ...-\.3¢ L. &$3y.
38 | D2 79 BE 89 1E 1E 88 BC 86 20 88 88 16 22 88 Bl | yy.6...1. .&.".}
48 | 82 BE C5 BE DS BC 88 7C 51 FC 1E 36 C5 36 78 88 .a+3rl Qv 6+6x
S8 | BF 23 7C B9 BB 88 F3 A4 1F 88 BE 2C 88 AB 18 80 | (#!1]..¢F.&.,.
68 | A2 27 88 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1 | &' .yx. ::xaxi
78 | £ 48 E8 88 8@ EB 86 8@ BB 88 85 53 B3 81 E8 AB (069 61 S§. ix
88 | 88 SF BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15 | . ! !S‘ub&
99 | B1 BB 98 98 F3 A6 75 57 26 BB 47 1C 99 8B AE 6B | J. ﬁés L u:
AB | 88 B3 C1 48 F7 F1 88 3E 71 81 68 75 82 BO 14 96 | ..1H=C)q. u.§. &
B8 | A1 11 89 B1 B4 D3 EB E8 3B 88 FF 36 1E 88 C4 1E | f. J.4E. 6..-.
CB | 6F 81 E8 39 88 EB 64 88 2B FO 76 8D EB 26 88 52 | o0.39.3d.+=v.34.R
D8 | F7 26 8B 88 83 D8 SA EB E9 CD 11 B9 82 88 D3 EB | =4...§250=.{..k
E8 | 88 E4 83 74 84 FE C4 BA CC 5B S8 FF 2E 6F 81 BE | GE.t.e-2fIX .0.4
F8 | 89 81 EB 55 98 81 86 1E 88 11 2E 208 88 C3 A1 18 | &.3UE...... .}i.

A>

Figure 16-2. Adding Numbers on the Left.

writes one character N times. That is, we place the number N into the CX

register and the character code into DL, and we call WRITE_CHAR_N_

TIMES to write N copies of the character whose ASCII code we placed in DL.
Thus, we’ll be able to write three spaces by placing 3 into CX and 20h (the
ASCII code for a space) into DL.

Here’s the procedure to add to VIDEO_IO.ASM:

Listing 16-4. Add this Procedure to VIDEO_IO.ASHM

PUBLIC WRITE_CHAR_N_TIMES

; This procedure writes more than one copy of a character

. DL Character code

CX Number of times to write the character
; Uses: WNRITE_CHAR ’
WRITE_CHAR_N_TIMES PROC NEAR

PUSH CcX
N_TIMES:

CALL WRITE_CHAR

LOOP N_TIMES

POP CX

RET
WRITE_CHAR_N_TIMES ENDP

[PUL_NPS Ty e

W assT LT W

Peter Norton’s Assembly Language Book 181

You can see how simple this procedure is, since we already have WRITE_
CHAR. If you'’re wondering why we bothered to write a procedure for some-
thing so simple, it’s because our program Dskpatch is much clearer when we
call WRITE_CHAR_N_TIMES, rather than write a short loop to print multi-
ple copies of a character. Besides, we’ll find use for this procedure several
times again.

Here are the changes to DISP_LINE to add three spaces on the left of our
display. Make the changes to DISP_SEC.ASM:

PUBLIC DISP_LINE

EXTRN WRITE_HEX:NEAR

EXTRN WRITE_CHAR:NEAR

EXTRN WRITE_CHRR_N_TIMES:NEAR
; This procedure displays one line of data, or 1t bytes, first in hex,
; Ethen 1in ASCII.

- DS:DX Offset into sector, in bytes

s we we we ws ws ws

; Uses: WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES
; Reads: SECTOR :
DISP_LINE PROC NEAR

PUSH BX

PUSH i

PUSH DX

MOV BX,DX ;0ffset is more useful in BX

MOV DL, !

Mov CX,3 ;Write 3 spaces before line

CALL WRITE_CHAR_N_TIMES
;Write offset in hex

CMP BX,100h 7Isi the first digit a 12

JB WRITE_ONE ;No, white space already in DL

Mov DL VL3 ;Yes, then place 'l' into DL for output
WRITE_ONE:

We made changes in three places. First, we had to add an EXTRN statement
for WRITE_CHAR_N_TIMES, because the procedure is in Video_io, and not
in this file. We also changed the comment block, to show that we use this new
procedure. Our third change, the two lines that use WRITE_CHAR_N_
TIMES, is quite straightforward and needs no explanation.

Try this new version of our program to see how the display is now centered.
Next we’ll move on to add more features to our display—the top and bottom
lines of our boxes.

182 Enhancing the Sector Display

Adding Horizontal Lines

Adding horizontal lines to our display is not quite as simple as it sounds,
because we have a few special cases to think about. We have the ends, where
the lines must go around corners, and we also have T-shaped junctions at the
top and bottom of the division between the hex and ASCII windows.

We could write a long list of instructions (with WRITE_CHAR_N_TIMES)
to create our horizontal lines, but we won’t. We have a shorter way. We'll
introduce another procedure, called WRITE_PATTERN, which will write a
pattern on the screen. Then, all we'll need is a small area of memory to hold a
description of each pattern. Using this new procedure, we can also easily add
tick marks to subdivide the hex window, as you’ll see when we finish this
section.

WRITE_PATTERN uses two entirely new instructions, LODSB and CLD.
We'll describe them after we see more about WRITE _PATTERN and how we
describe a pattern. Right now, enter this procedure into the file VIDEO_
[10.ASM:

Listing 16-5. Add This Procedure to VIDEO_IO.ASHM

PUBLIC WRITE_PATTERN

; This procedure writes a line to the screen, based on data in the
; form

: DB (character, number of times to write character), O .
; Where (x] means that x can be repeated any number of times :
: DS:DX Address of above data statement :
; Uses: WRITE_CHAR_N_TIMES -
WRITE_PATTERN PROC NEAR
PUSH AX
PUSH CcX
PUSH DX
PUSH SI
PUSHF ;Save the direction flag
CLD ;Set direction flag for increment
MOV SI,DX ;Move offset into SI register for LODSB
PATTERN_LOOP:
LODSB ;Get character data into AL
OR AL,AL ;Is it the end of data (0Oh)?
JZ END_PATTERN ;Yes, return
MOV DL,AL ;No, set up to write character N times
LODSB ;Get the repeat count into AL
MOV CL,AL ;And put in CX for WRITE_CHAR_N_TIMES

XOR CH,CH ;Zero upper byte of CX

Listing 16-5. continued

CALL
JHP
END_PATTERN:
POPF
POP
POP
POP
POP
RET
WRITE_PATTERN

WRITE_CHAR_N_TIMES

PATTERN_LOOP

SI
DX
CX
AX

ENDP

Peter Norton’s Assembly Language Book 183

;Restore direction f.ug

Before we see how this procedure works, let’s see how to write data for pat-
terns. We’ll place the data for the top-line pattern into the file Disp_sec,
which is where we’ll use it. To this end, we’ll add another procedure, called
INIT_SEC_DISP, to initialize the sector display by writing the half-sector
display, then we’ll modify READ_SECTOR to call our INIT_SEC_DISP

procedure.

First, place the following data just after SECTOR (in DISP_SEC.ASM), in-
side the data segment:

Listing 1b-b.

TOP_LINE_PATTERN

DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB

BOTTOM_LINE_PATTERN

DB
DB
DB
DB
DB
DB
DB
DB
DB

Additions to DISP_SEC.ASHM

LABEL
J T
UPPER_LEFT,1

BYTE

HORIZONTRL_BAR,1é

TOP_TICK,1

HORIZONTAL_BAR,11

TOP_TICK,1

HORIZONTAL_BAR,11

TOP_TICK,1

HORIZONTAL_BAR, 12

TOP_T_BAR,1

HORIZONTAL_BAR,18

UPPER_RIGHT, 1
0

LABEL
IR
LOWER_LEFT, 1

BYTE

HORIZONTAL_BAR,1¢

BOTTOM_TICK,1

HORIZONTAL_BAR,11

BOTTOM_TICK,1

HORIZONTAL_BAR, 11

BOTTOM_TICK, 1

HORIZONTAL_BAR,1¢2

184 Enhancing the Sector Display

Listing 16-bk. continued

DB BOTTOM_T_BAR, 1
DB HORIZONTAL_BAR, 18
DB LOWER_RIGHT, 1

DB 0

Each DB statement contains part of the data for one line. The first byte is
the character to print; the second byte tells WRITE_PATTERN how many
times to repeat that character. For example, we start the top line with seven
blank spaces, followed by one upper-left corner character, followed by twelve
horizontal-bar characters, and so on. The last DB is a solitary hex zero, which
marks the end of the pattern.

Let’s continue our modifications and see the result before we discuss the
inner workings of WRITE_PATTERN. Here is the test version of INIT_SEC_
DISP. This procedure writes the top-line pattern, the half-sector display, and
finally the bottom-line pattern. Place it in the file DISP_SEC.ASM, just
before DISP_HALF_SECTOR:

Listing 16-7. Add This Procedure to DISP_SEC.ASHM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NERR, SEND_CRLF:NEAR

This procedure initializes the half-sector display.

- W we we s ows

Fod we w4 ws we ws =

Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN
NIT_SEC_DISP PROC NEAR

PUSH DX

LEA DX,TOP_LINE_PATTERN

CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX,DX ;Start at the beginning of the sector

CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

POP DX

RET

INIT_SEC_DISP ENDP

We used the LEA instruction to load an address into the DX register, thus
WRITE_PATTERN knows where to find the pattern data.

Finally, we need to make a small change to READ_SECTOR in the file
DISK_I0.ASM, to call INIT_SECTOR_DISP, rather than WRITE_HALF _

Peter Norton’s Assembly Language Book 185

SECTOR_DISP, so that a full box will be drawn around our half-sector
display:

Listing 16-8. Changes to READ_SECTOR in DISK_IO.ASM

EXTRN INIT_SEC_DISP:NEAR

; This procedure reads the first sector on disk AR and dumps the first
; half of this sector.

READ_SECTOR PROC NEAR

MOV AL,D ;Disk drive A (number 0)
MOV CX,1 ;Read only 1 sector
MOV DX,0 ;Read sector number O
LEA BX,SECTOR ;Where to store this sector
INT 25Sh ;Read the sector
POPF ;Discard flags put on stack by DOS
XOR DX,DX ;Set offset to O within SECTOR
CALL INIT_SEC _DISP ;Dump the first half
INT 20h ;Return to DOS
READ_SECTOR ENDP

That’s all we need to write the top and bottom lines for our sector display.
Assemble and link all these files (remember to assemble the three files we
changed), run the result through Exe2bin, and give it a try. Figure 16-3 shows
the output we now have. ;

Let’s see how WRITE _PATTERN works. As mentioned, it uses two new
instructions. LODSB stands for Load String Byte, and it is one of the string
instructions: specially designed instructions that work with strings of charac-
ters. That’s not quite what we’re doing here, but the 8088 doesn’t care
whether we're dealing with a string of characters or just numbers, so LODSB
suits our purposes just fine.

LODSB moves (loads) a single byte into the AL register from the memory
location given by DS:SI, a register pair we haven’t used before. All the seg-
ment registers in our .COM file are set to the beginning of our one segment,
CGROUP, so DS is already set for our segment. And before the LODSB in-
struction, we moved the offset into the SI register with the instruction MOV
SI,DX.

The LODSB instruction is somewhat like the MOV instruction, but more
powerful. With one LODSB instruction, the 8088 moves one byte into the AL
register and then either increments or decrements the SI register. Increment-
ing the SI register points to the following byte in memory; decrementing the
register points to the previous byte in memory.

186 Enhancing the Sector Display

Addisk_io

T T T

88 | EB 21 98 49 42 4D 28 20 33 2E 31 88 62 82 81 88 | S'EIBM 3.1.....
18 | 82 78 88 DB B2 FD 82 8@ 89 B8 B2 68 66 B8 B8 08
28 | 88 88 8@ C4 SC 88 33 ED B8 CB 87 BE D8 33 C9 8A
38 § D2 79 BE 89 1E 1E 88 8C B6 28 88 88 16 22 8@ Bi
48 | 82 BE CS BE DS BC 88 7C 51 FC 1E 36 CS 36 78 88
S8 | BF 23 7C B9 BB 88 F3 A4 1F 88 BE 2C 88 AB 18 08
68 | A2 27 88 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1
78 | EB 40 EB B8 B8 E8 B6 88 BB 88 85 53 BB 81 E8 AB
88 | 88 SF BE 73 81 B9 BB 88 98 F3 A6 75 62 B3 C7? 15
98 | B1 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE 8B
AB | 88 83 C1 48 F7 F1 88 3E 71 81 68 75 82 B 14 96 1H-tg)q u. i
B8 | A1 11 88 B1 84 D3 EB EB 3B 88 FF 36 1E 88 C4 1E i J.1E. 6. .-,
Cé | 6F 81 EB 39 88 EB 64 88 2B F@ 76 8D EB 26 88 52 o §9.3d.+2v. 88,
D8 | F7 26 8B 88 83 D8 SA EB E9 CD 11 B9 82 88 D3 E8 . ¥2se=1..

EB | 88 E4 83 74 84 FE C4 BA CC SB 58 FF 2E 6F 81 BE G! t -efIX .o.
F8 | 89 81 EB 55198 81 86 1;100 11 2E 28188 C3 A1 18 | &.8UE...... .}i.

A

Figure 16-3. The Display with Closed Boxes.

The former (incrementing) is exactly what we want to do. We want to go
through the pattern, one byte at a time, starting at the beginning, and that is
what our LODSB instruction does, because we used the other new instruction,
CLD (Clear Direction Flag) to clear the direction flag. If we had set the direc-
tion flag, the LODSB instruction would decrement the SI register, instead.
We'll use the LODSB instruction in a few other places in Dskpatch, always
with the direction flag cleared, to increment.

Aside from LODSB and CLD, notice that we also used the PUSHF and
POPF instructions to save and restore the flag register. We did this just in
case we later decide to use the direction flag in a procedure that calls WRITE _
PATTERN.

Adding Numbers to the Display

We're almost through with Part II of this book now. We’ll create one more
procedure, then we’ll move on to Part III, and bigger and better things.

Right now, notice that our display lacks a row of numbers across the top.
Such numbers—00 01 02 03 and so forth—would allow us to sight down the
columns to find the address for any byte. So, let’s write a procedure to print

Peter Norton’s Assembly Language Book 187

this row of numbers. Add this procedure, WRITE_TOP_HEX_NUMBERS, to
DISP_SEC.ASM, just after INIT_SEC_DISP:

Listing 16-9. Rdd This Procedure to DISP_SEC.ASM

EXTRN WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX:NERR, WRITE_CHAR:NEAR
EXTRN WRITE_HEX_DIGIT:NEARR, SEND_CRLF:NEAR
; This procedure writes the index numbers (0 through F) at the top of
; the half-sector display.

s s v -

; Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
- WRITE_HEX_DIGIT, SEND_CRLF ;

WRITE_TOP_HEX_NUMBERS PROC NEAR

PUSH (694

PUSH DX

MOV DLy 1 ;Write 9 spaces for left side

MOV CX,9

CALL WRITE_CHAR_N_TIMES

XOR DH,DH ;Start with O
HEX_NUMBER_LOOP:

MOV DL,DH

CALL WRITE_HEX

MOV DL,"' !

CALL WRITE_CHAR

INC DH

CHMP DH,10h ;Done yet?

JB HEX_NUMBER_LOOP

Mov DL," ! ;Write hex numbers over ASCII window

MOV CX,e

CALL WRITE_CHAR_N_TIMES

XOR DL,DL

HEX_DIGIT_LOOP:
CALL WRITE_HEX_DIGIT

INC DL

CHMP DL, 10h

JB HEX_DIGIT_LOOP
CALL SEND_CRLF

POP DX

POP CX

RET

WRITE_TOP_HEX_NUMBERS ENDP

Modify INIT_SEC_DISP (also in DISP_SEC.ASM) as follows, so it calls
WRITE_TOP_HEX_NUMBERS before it writes the rest of the half-sector
display:

188 Enhancing the Sector Display

Listing 16-10. Changes to INIT_SEC_DISP in DISP_SEC.ASHM

; Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR -
} WRITE_TOP_HEX_NUMBERS ’
; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN -
INIT SEC_DISP PROC NEAR

PUSH DX

CALL WRITE_TOP_HEX_NUMBERS

LEA DX,TOP_LINE_PATTERN

CALL WRITE_PATTERN
CALL SEND_CRLF

XOR DX, DX ;Start at the beginning of the sector
CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

POP DX

RET

INIT_SEC_DISP ENDP

Now we have a complete half-sector display, as you can see in Figure 16-4.
There are still some differences between this display and the final version.
We'll change WRITE_CHAR so it will print all 256 characters the IBM PC

AXdisk_io

A>

88 81 82 83 84 85 86 B7 88 89 BA BB BC 8D BE OF

8123456789ABCDEF

88
18
28
38
48
58
68
78
88
98
B
Ba
ca
D8
E8
Fa

T T T

EB 21 98 49 42 4D 28 28 33 2E 31 88 82 92 81 @8
82 76 88 DB B2 FD 82 B8 89 68 B2 B8 BB 60 B8 0@
86 88 88 C4 SC 88 33 ED BB CB@ 87 BE D8 33 C9 BA
DZ 79 BE 89 1E 1E 88 BC 86 28 68 88 16 22 88 Bi
82 BE CS BE DS BC 88 7C 51 FC 1E 36 C5 36 78 88
BF 23 7C B9 @B 88 F3 A4 1F 88 BE 2C 088 AB 18 88
AZ 27 88 BF 78 88 BB 23 7C AB 91 AB A1 16 88 D1
EB 48 EB 86 88 E8 86 68 BB 8@ 85 53 BB 81 E8 AB
88 SF BE 73 81 B9 8B 88 98 F3 A6 75 62 83 C7 15
B1 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE 8B
88 83 C1 48 F7 F1 88 3E 71 81 68 75 82 B8 14 96
A1 11 @8 B1 84 D3 EB EB 3B 88 FF 36 1E 88 C4 {E
6F 81 E8 39 88 EB 64 88 2B F@ 76 8D EB 26 88 52
F7 26 8B 68 83 D8 SA EB E9 CD 11 B9 62 @88 D3 E8
88 E4 83 74 84 FE C4 8A CC SB 58 FF 2E 6F 81 BE
89 61 EB 55198 81 86 lEIBB 11 2E 20188 C3 A1 18

SYEIBM 3.1.....
p. 1.2

s, Es‘ubal
I BE"uU&nG M.,

. AH=4C)q. "u. §
{. J.uE. 6
0.89.3d.42v, Q& R
=%...§280=.]. .
GE. t.a-efX .o0.d
&.8UE...... .}1.

Figure 16-4. A Complete Half Sector Display.

Peter Norton’s Assembly Language Book 189

can display, and then we’ll clear the screen and center this display vertically,

using the ROM BIOS routines inside the IBM Personal Computer. We’ll do
that next.

Summary

We've done a lot of building on our Dskpatch program, adding new proce-
dures, changing old ones, and moving from one source file to another. From
now on, if you find yourself losing track of what you’re doing, refer to the
complete listing of Dskpatch in Appendix B. The listing there is the final ver-
sion, but you’ll probably see enough resemblances to help you along.

Most of our changes in this chapter didn’t rely on tricks, just hard work. But
we did learn two new instructions: LODSB and CLD. LODSB is one of the
string instructions that allow us to use one instruction to do the work of sev-
eral. We used LODSB in WRITE_PATTERN to read consecutive bytes from
the pattern table, always loading a new byte into the AL register. CLD clears
the direction flag, which sets the direction for increment. Each following
LODSB instruction loads the next byte from memory.

In the next part of this book we’ll learn about the IBM PC’s ROM BIOS
routines. They will save us a lot of time.

PART Il

The IBM PC’s ROM BIOS

L
THE ROM BIOS ROUTINES

VIDEO_10, the ROM BIOS Routines 194
Moving the Cursor 199

Rewiring Variable Usage 201

Writing the Header 204

Summary 208

193

194 'he ROM BIOS Routines

Inside your IBM Personal Computer are some computer chips, or ICs (Inte-
grated Circuits), known as ROMs (Read-Only Memory). One of these ROMs
contains a number of routines, very much like procedures, that provide all the
basic routines for doing input and output to several different parts of your
IBM PC. Because this ROM provides routines for performing input and output
at a very low level, it is frequently referred to as the BIOS, for Basic Input
Output System. DOS uses the ROM BIOS for such activities as sending char-
acters to the screen and reading and writing to the disk, and we're free to use
the ROM BIOS routines in our programs.

We'll concentrate on the BIOS routines we need for Dskpatch. Among them
is a set for video display, which includes a number of functions we couldn’t
otherwise reach without working directly with the hardware—a very difficult
job.

VIDEO 10, the ROM BIOS Routines

We refer to the elements of the ROM BIOS as routines in order to distin-
guish them from procedures. We use procedures with a CALL instruction,
whereas we call routines with INT instructions, not CALLs. We'll use an INT
10h instruction, for example, to call the video I/O routines, just as we used an
INT 21h instruction to call routines in DOS.

Specifically, INT 10h calls the routine VIDEO_IO in the ROM BIOS. Other
numbers call other routines, but we won'’t see any of them; VIDEO_IO pro-
vides all the functions we need outside of DOS. (Just for your information,
however, DOS calls one of the other ROM BIOS routines when we ask for a
sector from the disk.)

In this chapter, we’'ll use ROM BIOS routines to add two new procedures to
Dskpatch: one to clear the screen, and the other to move the cursor to any
screen location we choose. Both are very useful functions, but neither is avail-
able directly through DOS. Hence, we’ll use the ROM BIOS routines to do the
job. Later, we’ll see even more interesting things we can do with these ROM
routines, but let’s begin by using INT 10h to clear the screen before we display
our half sector.

The INT 10h instruction is our entry to a number of different functions.
Recall that, when we used the DOS INT 21h instruction, we selected a partic-
ular function by placing its function number in the AH register. We select a
VIDEO_IO function in just the same way: by placing the appropriate function

Peter Norton’s Assembly Language Book 195

number in the AH register (a full list of these functions is given in Table

17-1).
Table 17-1. INT 10h Functions
(AH)=0 Set the display mode. The AL register contains the
mode number.
TEXT MODES
(AL)=0 40 by 25, black and white mode
(AL)=1 40 by 25, color
(AL)=2 80 by 25, black and white
(AL)=3 80 by 25, color
(AL)="7 80 by 25, monochrome display adapter
GRAPHICS MODE
(AL)=4 320 by 200, color
(AL)=5 320 by 200, black and white
(AL)=6 640 by 200, black and white
(AH)=1 Set the cursor size.
(CH) Starting scan line of the cursor. The top line
is 0 on both the monochrome and color
graphics displays, while the bottom line is 7
for the color graphics adapter and 13 for the
monochrome adapter. Valid range: 0 to 31.
(CL) Last scan line of the cursor.
The power-on setting for the color graphics adapter is
CH=6 and CL="7. For the monochrome display: CH=11
and CL=12.
(AH)=2 Set the cursor position.

(DH,DL)

Row, column of new cursor position; the
upper left corner is (0,0).

196 The ROM BIOS Routines

Table 17-1. continued

(AH)=2

(AH)=3

(AH)=4

(AH)=5

(AH)=6

(AH)=17

(AH)=8

(BH) Page number. This is the number of the
display page. The color-graphics adapter has
room for several display pages, but most
programs use page 0.

Read the cursor position.
(BH) Page number

On exit (DH,DL) Row, column of cursor
(CH,CL) Cursor size

Read light pen position (see Tech. Ref. Man.).

Select active display page.

(AL) New page number (from 0 to 7 for modes 0
and 1; from 0 to 3 for modes 2 and 3)

Scroll up.

(AL) Number of lines to blank at the bottom of
the window. Normal scrolling blanks one
line. Set to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window

(DH,DL) Row, column of lower, right corner of
window

(BH) Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at
the top of the window instead of the bottom

Read attribute and character under the cursor.

(BH) Display page (text modes only)

Table 17-1. continued

(AH)=8
(AH)=9
(AH)=10

(AH)=11 to 13

(AH)=14

(AH)=15

Peter Norton’s Assembly Language Book 197

(AL) Character read
(AH) Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and
attribute of screen

(AL) Character to write

(BL) Attribute to write

Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character
(AL) Character to write

Various graphics functions. (See Tech. Ref. Man. for
the details)

Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write
(BL) Color of character (graphics mode only)
(BH) Display page (text mode)

Return current video state.

(AL) Display mode currently set
(AH) Number of characters per line
(BH) Active display pages

We’ll use the INT 10h function number 6, SCROLL ACTIVE PAGE UP, to
clear the screen. We don’t actually want to scroll the screen, but this function

198 The ROM BIOS Routines

also doubles as a clear-screen function. Here is the procedure; enter it into the
file CURSOR.ASM:

Listing 17-1. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR_SCREEN

CLEAR_SCREEN PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

XOR AL,AL ;Blank entire window

XOR Cx,Cx ;Upper left corner is at (0,0)
MOV DH, 24 ;Bottom line of screen is line 24
MOV DL, 7?9 ;Right side is at column 79

MOV BH,? ;Use normal attribute for blanks
MOV AH,b ;Call for SCROLL-UP function

INT 10h ;Clear the window

POP DX

POP CX

POP BX

POP AX

RET

CLEAR_SCREEN ENDP

It appears that INT 10h function number 6 needs quite a lot of information,
even though all we want to do is clear the display. This function is rather
powerful: It can actually clear any rectangular part of the screen—window—
as it’s called. We have to set the window to the entire screen by setting the
first and last lines to 0 and 24, and setting the columns to 0 and 79. The rou-
tines we are using here can also clear the screen to all white (for use with
black characters), or all black (for use with white characters). We want the
latter, and that is what is specfied with the instruction MOV BH,7. Then, too,
setting AL to 0, the number of lines to scroll, tells this routine to clear the
window, rather than to scroll it.

Now we need to modify our test procedure, READ_SECTOR, to call CLEAR_
SCREEN just before it starts to write the sector display. We didn’t place this
CALL in INIT_SEC_DISP, because we’ll want to use INIT_SEC_DISP to re-
write just the half-sector display, without affecting the rest of the screen.

To modify READ_SECTOR, add an EXTRN declaration for CLEAR_
SCREEN and insert the CALL to CLEAR_SCREEN. Make the following
changes in the file DISK_10.ASM:

Peter Norton’s Assembly Language Book 199

Listing 17-2. Changes to READ_SECTOR in DISK_IO.ASM

EXTRN INIT_SEC_DISP:NEAR, CLEAR_SCREEN:NEAR

; This procedure reads the first sector on disk AR and dumps the first
; half of this sector.

READ_SECTOR PROC NEAR

-s we we we

Mov AL,O ;Disk drive A (number 0)
MOV CX,1 ;Read only 1 sector
MOV DX,0 ;Read sector number 0
LEA BX,SECTOR ;Where to store this sector
INT 25h ;Read the sector
POPF ;Discard flags put on stack by DOS
XOR DX,DX ;Set offset to O within SECTOR
CALL CLEAR_SCREEN
CALL INIT SEC_DISP ;Dump the first half
INT 20h ;Return to DOS
READ_SECTOR ENDP

Just before you run the new version of Disk_io, note where the cursor is lo-
cated. Then, run Disk_io. The screen will clear, and Disk_io will start writing
the half sector display wherever the cursor happened to be before you ran the
program—probably at the bottom of the screen.

Even though we cleared the screen, we didn’t mention anything about mov-
ing the cursor back to the top. In BASIC, the CLS command clears the screen
in two steps: It clears the screen, then it moves the cursor to the top of the
screen. Our procedure doesn’t do that; we’ll have to move the cursor ourselves.

Moving the Cursor

The INT 10h function number 2 sets the cursor position in much the same
way BASIC’s LOCATE statement does. We can use GOTO_XY to move the
cursor anywhere on the screen (such as to the top after a clear), but we won't.
Enter this procedure into the file CURSOR.ASM:

Listing 17-3. Add This Procedure to CURSOR.ASHM

PUBLIC GOTO_XY

This procedure moves the cursor

DH Row (Y)
DL Column (X)

s ws s we e e
" e ws e e

200 The ROM BIOS Routines

Listing 17-3. continued

GOTO_XY PROC NEAR
PUSH AX
PUSH BX
MOV BH,D ;Display page O
MOV RH,2 ;Call for SET CURSOR POSITION
INT 10h
POP BX
POP AX
RET
GOTO_XY ENDP

We'll use GOTO_XY in a revised version of INIT_SEC_DISP, to move the
cursor to the second line just before we write the half-sector display. Here are
the modifications to INIT_SEC_DISP in DISP_SEC.ASM:

Listing 17-4. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NEARR, SEND_CRLF:NEAR
EXTRN GOTO_XY:NEAR

This procedure initializes the half-sector display.

; Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR

- WRITE_TOP_HEX_NUMBERS, GOTO_XY

; Reads: TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN

INIT_SEC_DISP PROC NEAR
PUSH DX
XOR DL,DL ;Move cursor into position at beginning
MoV DH,2 ;of 3rd line '

CALL GOTO_XY
CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN

If you try it now, you'll see that the half-sector display is nicely centered.

As you can see now, it’s easy to work with the screen when we have the
ROM BIOS routines. In the next chapter, we’ll use another routine in the
ROM BIOS to improve WRITE_CHAR, so that it will write any character to
the screen. But before we continue let’s make some other changes to our pro-
gram, then finish up with a procedure called WRITE_HEADER, which will
write a status line at the top of the screen, to show the current disk drive and
sector number.

Peter Norton’s Assembly Language Book 201

Rewiring Variable Usage

We have much that we need to revamp before we create WRITE_HEADER.
As they are now, many of our procedures have numbers hard-wired into them:;
READ_SECTOR, for example, reads sector O on drive A. We want to place the
disk drive and sector numbers into memory variables, so more than one proce-
dure can read them.

We'll need to change these procedures so they’ll use memory variables, but
let’s begin by putting all memory variables into one file, DSKPATCH.ASM, to
make our work simpler. Dskpatch.asm will be the first file in our program
Dskpatch, so the memory variables will be easy to find there. Here is
DSKPATCH.ASM, complete with a long list of memory variables:

Listing 17-5. The New File DSKPATCH.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 100h
EXTRN CLEARR_SCREEN:NEAR, READ_SECTOR:NEAR
EXTRN INIT_SEC_DISP:NEAR

DISK_PATCH PROC NEAR

CALL CLERR_SCREEN
CALL READ_SECTOR
CALL INIT_SEC_DISP
INT c0h

DISK_PATCH ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

PUBLIC SECTOR_OFFSET

; SECTOR_OFFSET is the offset of the half -
; sector display into the full sector. It must ;
; be a multiple of 16, and not greater than 256 ;

SECTOR_OFFSET DW 0

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO DW 0
DISK_DRIVE_NO DB 0

;Initially sector O
;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER_LINE_NO

202 The ROM BIOS Routines

Listing 17-S.

PUBLIC HEADER_PART_1, HEADER_PART_Z2

; LINES_BEFORE_SECTOR is the number of lines .
; at the top of the screen before the half -

sector display.

LINES_BEFORE_SECTOR DB 2

HEADER_LINE_NO
HEADER_PART_1
HEADER_PART_2

PUBLIC SECTOR

The entire sector (up to 8192 bytes) is
stored in this part of memory.

SECTOR DB 8192 DUP (0)

DATA_SEG ENDS
END DISK_PATCH

The main procedure, DISK_PATCH, calls three other procedures. We've seen

them all before;

DISP to use the variables just placed into the data segment.
Before we can use Dskpatch, we need to modify Disp_sec, to replace the defi-
nition of SECTOR with an EXTRN. We also need to alter Disk_io, to change

READ_SECTOR

Let’s take SECTOR first. Since we’ve placed it in DSKPATCH.ASM as a

memory variable

an EXTRN declaration. Make these changes in DISP_SEC.ASM:

Listing 17-6.

DATR_SEG
EXTRN
PUBLIC
SECTOR DB

TOP_LINE_PATTERN
DB
DB

continued

DB ' Sector ',0

soon we’ll rewrite both READ_SECTOR and INIT_SEC

into an ordinary procedure we can call from Dskpatch.

, we need to change the definition of SECTOR in Disp_sec to

Changes to DISP_SEC.ASM

SEGMENT PUBLIC
SECTOR:BYTE
SECTOR

512 DUP(D)

LABEL BYTE
i
UPPER_LEFT, 1

Peter Norton’s Assembly Language Book 203

Let’s rewrite the file DISK_10.ASM so that it contains only procedures, and
READ_SECTOR uses memory variables (not hard-wired numbers) for the
sector and disk-drive numbers. Here is the new version of DISK_10.ASM:

Listing 17-7?. Changes to DISK_IO.ASHM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC REARD_SECTOR
DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
DATA_SEG

; This procedure reads one sector (512 bytes) into SECTOR. 5

’ ’

; Reads: CURRENT_SECTOR_NO, DISK_DRIVE_NO :
; Writes: SECTOR :
READ_SECTOR PROC NEAR

PUSH AX

PUSH BX

PUSH CcX

PUSH DX

MOV AL,DISK_DRIVE_NO ;Drive number

MOV CX,1 ; ;Read only 1 sector

MOV DX,CURRENT_SECTOR_NO ;Logical sector number

LEA BX,SECTOR ;Where to store this sector

INT 25Sh ;Read the sector

POPF ;Discard flags put on stack by DOS

DX,DX Set offset to 0O within SECTOR

CALI CLEAR_SCREEN

LI INIT SEC_DISP ;Dump the first half

POP DX

POP CX

POP BX

POP AX

RET
READ_SECTOR ENDP
CODE_SEG ENDS

204 The ROM BIOS Routines

This new version of Disk_io uses the memory variables DISK_DRIVE_NO
and CURRENT_SECTOR_NO as the disk drive and sector numbers for the
sector to read. Since these variables are already defined in DSKPATCH.ASM,
we won’t have to change Disk_io when we start reading different sectors from
other disk drives.

If you're using the Make program to rebuild DSKPATCH.COM, you’ll need
to make some additions to your Make file named Dskpatch:

Listing 17-8. The New Version of DSKPATCH

dskpatch.obj: dskpatch.asm
masm dskpatch;

disk_io.obj: disk_io.asm
masm disk_io;

disp_sec.obj: disp_sec.asm
masm disp_sec;

video_io.obj: video_io.asm
masm video_io;

cursor.obj: cursor.asm
masm Cursor,

dskpatch.com: dskpatch.obj disk_io.obj disp_sec.obj video_io.obj cursor.obj
link dskpatch disk_io disp_sec video_io cursor;
execbin dskpatch dskpatch.com

If you’re not using Make, be sure to reassemble all three files changed
(Dskpatch, Disk_io, and Disp_sec), and to link all five files, with Dskpatch
listed first:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR;
EXEZBIN DSKPATCH DSKPATCH.COM

We’ve made quite a few changes, so test Dskpatch and make sure it works
correctly before you move on.

Writing the Header

Now that we’ve converted the hard-wired numbers into direct references to
memory variables, we can write the procedure WRITE_HEADER to write a

Peter Norton’s Assembly Language Book 205

status line, or header, at the top of the screen. Our header will look like this:

Disk A Sector O

WRITE_HEADER will use WRITE_DECIMAL to write the current sector
number in decimal. It will also write two strings of characters, Disk and Sec-
tor (each followed by a blank space), and a disk letter, such as A. We'll place
the procedure in the file VIDEO_IO.ASM.

To begin, since we’ll have a reference to the data segment (DATA_SEGQG),
change the first line (the GROUP statement) in VIDEO_IO.ASM to read:

CGROUP GROUP CODE_SEG, DATA_SEG

Place the following procedure in VIDEO_IO.ASM:
Listing 17-9. Add This Procedure to VIDEO_IO.ASHM

PUBLIC WRITE_HEADER
DATA_SEG SEGMENT PUBLIC
EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXTEN DISK_DRIVE_NO:BYTE
EXTEN CURRENT_SECTOR_NO:WORD
DATA_SEG ENDS
EXTRN GOTO_XY:NEAR

; This procedure writes the header with disk-drive and sector number. :

; Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL :
; Reads: HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_Z ;
; DISK_DRIVE_NO, CURRENT_SECTOR_NO ;

WRITE_HEADER PROC NEAR

PUSH DX

XOR DL,DL ;Move cursor to header line number
MoV DH,HEADER_LINE_NO

CALL GOTO_XY

LEA DX,HERDER_PART_1

CALL WRITE_STRING

MOV DL,DISK_DRIVE_NO

ADD DL,'A! ;Print drives A, B,

CALL WRITE_CHAR

LEA DX,HEADER_PART_¢Z

CALL WRITE_STRING
MOV DX,CURRENT_SECTOR_NO

206 The ROM BIOS Routines

Listing 17-9. continued

CALL WRITE_DECIMAL
POP DX
RET

WRITE_HEADER ENDP

The procedure WRITE_STRING doesn’t exist yet. As you can see, we plan to
use it to write a string of characters to the screen. The two strings, HEADER _
PART_1 and HEADER_PART_2, are already defined in DSKPATCH.ASM.
WRITE_STRING will use DS:DX as the address for the string.

We’ve chosen to supply our own string-output procedure so that our strings
can contain any character, including the $, which we couldn’t print with the
DOS function 9. Where DOS uses a $ to mark the end of a string, we’ll use a
hex 0. Here is the procedure. Enter it into VIDEO_IO.ASM:

Listing 17?-10. Add This Procedure to VIDEO_IO.ASHM

PUBLIC WRITE_STRING

; This procedure writes a string of characters to the screen. The

; string must end with DB 0 :
: DS:DX Address of the string H
; V
; Uses: WRITE_CHAR .
B e e e e e e e i '
WRITE_STRING PROC NEAR

PUSH AX

PUSH DX

PUSH SI

PUSHF ;Save direction flag
CLD ;Set direction for increment (forward)

MOV SI,DX ;Place address into SI for LODSB
STRING_LOOP:

LODSB ;Get a character into the AL register

OR AL,AL ;Have we found the 0 yet?

JZ END_OF_STRING ;Yes, we are done with the string

MOV DL,AL ;No, write character

CALL WRITE_CHAR

JHP STRING_LOOP
END_OF_STRING:

POPF ;Restore direction flag

POP ST

POP DX

POP AX

RET

WRITE_STRING

ENDP

Peter Norton’s Assembly Language Book 207

As it stands now, WRITE_STRING will write characters with ASCII codes
below 32 (the space character) as a period (.), because we don’t have a version
of WRITE_CHAR that will write any character. We’ll take care of that detail
| in the next chapter.

! After all our work in this chapter, let’s put the icing on the cake. Change
I DISK_PATCH in DSKPATCH.ASM to include the CALL to WRITE_
| HEADER:

Listing 17-11. Changes to DISK_PATCH in DSKPATCH.ASM

EXTRN ~ CLEAR_SCREEN:NEAR, READ_SECTOR:NERR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
DISK_PATCH PROC NEAR
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
| INT 20h
| DISK_PATCH ENDP

Dskpatch should now produce a display like the one in Figure 17-1.
Disk A Sector 8

88 81 82 63 84 85 686 87 68 89 BA BB @C 6D BE BF B123456789ABCDEF

1 | I

@8 | EB 21 90 49 42 4D 26 28 33 2E 31 0@ B2 02 01 08 | S'EIBM 3.1.....
10 || 82 78 @ DB 2 FD 62 60 B9 6P B2 A8 89 88 @6 A6 | .p.L.2..........
28 || 88 89 80 C4 5C 88 33 ED BS CB 87 8E D8 33 €9 BA [...-\.3¢ L.kb3p.
38 | D2 79 OE 89 1E 1E 88 8C B6 20 89 88 16 22 08 Bl § 4y.8...1. .&.".|
48 || 82 8E C5 8E DS BC 88 7C 51 FC 1E 36 C5 36 78 88 | .AM4P. !Q". 6}6x.
58 | BF 23 7C B9 BB 88 F3 A4 1F 88 BE 2C 08 AB 18 88 | (4:]..¢F.&.,.4..
68 | A2 27 80 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1 | &’ . x.18

a

] T
78 || E6 40 EB 80 B8 EB 86 8@ BB 6@ 85 53 BB @1 E8 AB | «P3C.3 .j..Sﬁ.QX
80 || 8@ SF BE 73 81 B9 8B 08 98 F3 A6 75 62 83 C? 15 || . Is.{..E<*ubdl.
98 || B1 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE @B | §.EEC*uW&iG.Ui..
AB || 8@ B3 C1 48 F7 F1 88 3E 71 81 68 75 B2 BB 14 96 AHz0>q. "u. B
B8 | A1 11 88 B1 84 D3 E8 E8 3B 0@ FF 36 1E 8@ C4 1E | i..J.183:. 6..-.
C@ | 6F 81 EB 39 8@ EB 64 88 2B FB 76 8D E8 26 88 52 || 0.%9.%d.+=v.8&.R
D8 || F? 26 8B 8@ 83 D8 SA EB E9 CD 11 B9 62 0@ D3 E@ | =&...$256=.]..L

E0 || 88 E4 83 74 B4 FE C4 8A CC SB 58 FF 2E 6F 81 BE || GZ.t.s—2fIX .o0.d
Fo || 89 81 EB 55 98 81 86 1E186 11 Z2E 20188 C3 A1 18 || &.5UE...... JH.
1

A>

Figure 17-1. Dskpatch with the Header at the Top.

208 The ROM BIOS Routines

Summary

At last, we've met the ROM BIOS routines inside our IBM PCs, and already
used two of these routines to help us toward our goal of a full Dskpatch
program.

First we learned about INT 10h, function number 6, which we used to clear
the screen. We also saw (though very briefly) that this function has more uses
than we’ll take advantage of in this book. For example, you may eventually
find it helpful for scrolling portions of the screen—in Dskpatch or in your own
programs.

We then used function 2 of INT 10h to move the cursor to the third line on
the screen (line number 2), where we started writing our sector dump.

To make our programs easier to work with, we also rewrote several proce-
dures so they would use memory variables, rather than hard-wired numbers.
Now, we’ll be able to read other sectors and change the way our program
works in other ways, just by changing a few central numbers in
DSKPATCH.ASM.

Finally, we wrote the procedures WRITE_HEADER and WRITE_ STRING,
so we could write a header at the top of the screen. As mentioned, we’ll write
an improved version of WRITE_CHAR in the next chapter, replacing the dots
in the ASCII window of our display with graphics characters. And thanks to
modular design, we’ll do this without changing any of the procedures that use
WRITE_CHAR.

THE ULTIMATE
WRITE_CHAR

A New WRITE_CHAR 210
Clearing to the End of a Line 212
Summary 215

209

18

210 The Ultimate WRITE_CHAR

Wz made good use of the ROM BIOS routines in the last chapter to clear the
screen and move the cursor. But there are many more uses for the ROM BIOS,
and we’ll see some of them in this chapter.

Using DOS alone, we haven’t been able to display all 256 of the characters
that the IBM PC is capable of displaying. So, in this chapter, we’ll present a
new version of WRITE_CHAR that displays any character, thanks to another
VIDEO_IO function.

Then, we’ll add another useful procedure, called CLEAR_TO_END_OF_
LINE, that clears the line from the cursor to the right edge of the screen.
We’'ll put this to use in WRITE_HEADER, so that it will clear the rest of
the line.

Suppose we go from sector number 10 (two digits) to sector number 9. A zero
would be left over from the 10 after we call WRITE_HEADER with the sector
set to 9. CLEAR_TO_END_OF_LINE will clear this zero, as well as any-
thing else on the remainder of the line.

A New WRITE_CHAR

The ROM BIOS function 9 for INT 10h writes a character and its attribute
at the current cursor position. The attribute controls such features as under-
lining, blinking, and color (see the description of the different color codes in
your BASIC manual under COLOR). We’ll use only two attributes for
Dskpatch: attribute 7, which is the normal attribute, and attribute 70h, which
is a foreground color of zero and background of 7 and produces inverse video
(black characters on a white background). We can set the attributes individu-
ally for each character, and we’ll do this later to create a block cursor in in-
verse video—known as a phantom cursor. For now, though, we’ll just use the
normal attribute when we write a character.

INT 10h, function 9 writes the character and attribute at the current cursor
position. Unlike DOS, it doesn’t advance the cursor to the next character posi-
tion unless it writes more than one copy of the character. We’ll use this fact
later, in a different procedure, but now we only want one copy of each charac-
ter, so we'll move the cursor ourselves.

Here is the new version of WRITE_CHAR, which writes a character and
then moves the cursor right one character. Enter it into the file VIDEO_
10.ASM:

_—

L T —

Peter Norton’s Assembly Language Book 211

Listing 18-1. Changes to WRITE_CHAR in VIDEO_IO.ASM

PUBLIC WRITE_CHAR
EXTRN CURSOR_RIGHT:NEAR

; This procedure outputs a character to the screen using the ROM BIOS :

’

; routines, so characters such as the backspace are treated as :

; any other character and are displayed. :
; This procedure must do a bit of work to update the cursor position. ;

' ’

- DL Byte to print on screen -
; Uses: CURSOR_RIGHT .
WRITE_CHAR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MoV AH,9 ;Call for output of character/attribute

MoV BH,O ;Set to display page O

MOV CX,1 ;Write only one character

MOV AL,DL ;Character to write

MOV BL,? ;Normal attribute

INT 10h ;Write character and attribute

CALL CURSOR_RIGHT ;Now move to next cursor position

POP DX

POP CX

POP BX

POP AX

RET
WRITE_CHAR ENDP

In reading through this procedure, you may have wondered why we included
the instruction MOV BH,0. If you have a graphics display adapter, your
adapter has four text pages in normal text mode. We’ll only use the first page,
page 0; hence, the instruction.

As for the cursor, WRITE_CHAR uses the procedure CURSOR_RIGHT to
move the cursor right one character position or to the beginning of the next
line if the movement would take the cursor past column 79. Place the follow-
ing procedure into CURSOR.ASM:

Listing 18-2. Add This Procedure to CURSOR.ASM

PUBLIC CURSOR_RIGHT

; This procedure moves the cursor one position to the right or to the -
; next line if the cursor was at the end of a line.)

; Uses: SEND_CRLF H

212 The Ultimate WRITE_CHAR

Listing 18-2. continued

CURSOR_RIGHT PROC NEAR

PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AH,3 ;Read the current cursor position
MOV BH,0 ;On page O
INT 10h ;Read cursor position
MOV AH,2 ;Set new cursor position
INC DL ;Set column to next position
CMP DL, 79 ;Make sure column <= 79
JBE 0K
CALL SEND_CRLF ;Go to next line
JHP DONE
OK: INT 10h
DONE: POP DX
POP CX
POP BX
POP AX
RET

CURSOR_RIGHT ENDP

CURSOR_RIGHT uses two new INT 10h functions. Function 3 reads the
position of the cursor, and function 2 changes the cursor position. The proce-
dure first uses function 3 to find the cursor position, which is returned in two
bytes, the column number in DL, and the line number in DH. Then, CUR-
SOR_RIGHT increments the column number (in DL) and moves the cursor. If
DL was at the last column (79), the procedure sends a carriage-return/line-
feed pair to move the cursor to the next line. We don’t need this column 79
check in Dskpatch, but including it makes CURSOR_RIGHT a general-pur-
pose procedure you can use in any of your own programs.

With these changes, Dskpatch should now display all 256 characters as
shown in Figure 18.1.

You can verify that it does by searching for a byte with a value less than
20h and seeing whether some strange character has replaced the period that
value formerly produced in the ASCII window.

Now let’s do something perhaps even more interesting: let’s write a proce-
dure to clear a line from the cursor position to the end.

Clearing to the End of a Line

In the last chapter, we used INT 10h, function 6, to clear the screen in the
CLEAR_SCREEN procedure. At that time, we mentioned that function 6

Disk A

Peter Norton’s Assembly Language Book

Sector 8

86 81 82 83 84 85 66 87 88 89 BA BB 8C 8D BE OF

8123456789ABCDEF

88
18
28
38
40
58
68
78
80
98
AB
Ba
ca
D8
E8
Fa

T T T

EB 21 98 49 42 4D 26 20 33 2E 31 06 82 82 01 06
82 78 68 DB 82 FD 62 06 89 68 B2 66 60 68 60 00
88 88 88 C4 5C 88 33 ED B8 C@ 87 8E D8 33 C9 8A
D2 79 BE 89 1E 1E 68 8C 86 208 68 88 16 22 08 B1
82 8E C5 8E DS BC @8 7C 51 FC 1E 36 CS 36 78 08
BF 23 7C B9 8B 88 F3 A4 1F 88 BE 2C 00 A8 18 88
A2 27 88 BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1
EB 40 EG 80 08 E8 86 68 BB 68 85 53 BA 61 EB8 AB
88 SF BE 73 81 B9 @B 68 98 F3 A6 75 62 83 C7 15
B1 8B 98 98 F3 A6 75 57 26 BB 47 1C 99 8B @E 6B
88 83 C1 48 F7 F1 88 3E 71 81 68 75 82 B 14 96
A1 11 80 B1 84 D3 E8 E8 3B @8 FF 36 1E 88 C4 1E
6F 81 EB 39 08 EB 64 66 2B F8 76 68D EB8 26 88 52
F7 26 8B 88 83 D8 S5A EB E9 CD 11 B9 82 68 D3 EA@
88 E4 83 74 84 FE C4 8A CC 5B 58 FF 2E 6F @1 BE
89 81 EB 55198 81 86 12.08 11 2E 20108 C3 Al 18

SYEIBM 3.1 880
8p l’8 0 8
-\Q3¢q Leid}3
nmyféas i¢ e."
BAlAE |Qa6}6x
8108 <hven, at
o' x j¥ikakia T
«03C 33 7 9SiG8Y
_1sBf¢ ECtubi]ll
JeiEct uMaTGYiR
oLH=£0)q8 ' u8iud
{4 Jolas; 64 -a
o889 8d +=vFi& R
=38 wjzs0=4]8 L
GToten—gfIX .oBd
gasUEaea 4. |t

A>

F

igure 18-1.

Dskpatch with the New WRITE_CHAR.

could be used to clear any rectangular window. That capability applies even if
a window is only one line high and less than one line long, so we can use

function 6 to

clear part of a line—to the end of the line.

The left side of the window, in this case, is the column number of the cursor,
which we get with a function 3 call (also used by CURSOR_RIGHT). The
right side of the window is always at column 79. You can see the details in
CLEAR_TO_END_OF_LINE; place the procedure in CURSOR.ASM:

Listing 18-

3. Add This Procedure to CURSOR.ASM

PUBLIC CLEAR_TO_END_OF_LINE

; This procedure clears the line from the current cursor position to

; the end of that line.

PUSH
PUSH
PUSH
PUSH
MOV
XOR
INT

PROC NEAR
AX

BX

CX

DX

AH,3

BH, BH

10h

; on page O
;Now have (X,Y)

in DL,

;Read current cursor position

DH

213

214 The Ultimate WRITE_CHAR

Listing 18-3. continued

MOV AH,b ;Set up to clear to end of line
XOR AL,AL ;Clear window

Mov CH,DH yAll on same line

MoV CL,DL ;Start at the cursor position
MoV DL, 79 ;And stop at the end of the line
MoV BH,? ;Use normal attribute

INT 10h

POP DX

POP CX

POP BX

POP AX

RET

CLEAR_TO_END_OF_LINE ENDP

We'll use this procedure in WRITE_HEADER, to clear the rest of the line
when we start reading other sectors (we’ll do that very soon). There isn’t any
way for you to see CLEAR_TO_END_OF_LINE work with WRITE_
HEADER until we add the procedures that allow us to read a different sector
and update the display, but let’s revise WRITE_HEADER now, just to get it
out of the way. Make the following changes to WRITE_HEADER in VIDEO_
[0.ASM, to call CLEAR_TO_END_OF_LINE at the end of the procedure:

Listing 18-4. Changes to WRITE_HEADER in VIDEO_IO.ASM

PUBLIC WRITE_HEADER
DATR_SEG SEGMENT PUBLIC
EXTRN HEADER_LINE_NO:BYTE
EXTRN HEADER_PART_L:BYTE
EXTRN HEADER_PART_cZ:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD
DATA_SEG ENDS
EXTRN GOTO_XY:NEAR, CLEAR_TO_END_OF_LINE:NEAR

; This procedure writes the header with disk-drive and sector number.

; Uses: GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
) CLERR_TO_END_OF_LINE
; Reads: HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_Z

3 DISK_DRIVE_NO, CURRENT_SECTOR_NO

s we wE we ws ws wr ws

WRITE_HEARDER PROC NEAR

PUSH DX
XOR DL,DL ;Move cursor to header line number
MOV DH,HEADER_LINE_NO

CALL GOTO_XY
LEA DX,HEADER_PART_1

Peter Norton’s Assembly Language Book 215
J 1] .

Listing 18-4. continued

CALL WRITE_STRING

Mov DL,DISK_DRIVE_NO

ADD DL, VR :Print drives A, T

CALL WRITE_CHAR

LEA DX,HEADER_PART_?2

CALL WRITE_STRING

MOV DX,CURRENT_SECTOR_NO

CALL WRITE_DECIMAL

CALL CLEAR_TO_END_OF_LINE ;Clear rest of sector number
POP DX

RET

WR1TE_HEADER ENDP

This revision marks both the final version of WRITE_HEADER and the
completion of the file CURSOR.ASM. We are still missing several important
parts of Dskpatch, though. In the next chapter, we’ll continue on and add the
central dispatcher for keyboard commands, we’ll be able to press F1 and F2 to
read other sectors on the disk.

Summary

This chapter has been relatively easy, without much in the way of new in-
formation or tricks. We did learn how to use INT 10h, function number 9, in
the ROM BIOS to write any character to the screen.

In the process, we also saw how to read the cursor position with INT 10h
function 3, so we could move the cursor right one position after we wrote a
character. The reason: INT 10h function 9 doesn’t move the cursor after it
writes just one character, unless it writes more than one copy of the character.
Finally, we put INT 10h function 6 to work clearing part of just one line.

In the next chapter, we’ll get down to business again as we build the central
dispatcher.

bl TR
iy,
[" g 't
: o O A2
L N S L TS |
I Tad RURRET 29 1) o
- f : 'C-'i
y TRl o
S T v it s
< Tl o
s R,
4 LI I s .
5
a4 5 1
i - e e i £ 1‘_;{" ﬂ .
w b ! I} i i
‘I X . b b y ' L & i
{) I. ‘I‘ ’.' ‘t
. I ol b I) i B 'n’dl
[L
[
I i
l‘:| :
(il i
L : : '
" H‘-
1| =¥
Ii
i = oo S
\ | AR g & B0 - | 2 'ﬂ\OI 'y,
| | B b il‘ i
- — r
| .
il ;- TN - B : i ”ﬂF
(]) ‘._1|1_ i gt My,
| f I S ! -. o =
' _:f'b‘l _|__ ‘llllu
I I \I‘ - ‘ s ‘b_ ‘II n (il l,(!'I l-l-' !ﬁl .-I “‘lhq
| I
Ll - 1! ﬂ__ i -, v
i j L e At
‘:;" o : R l| '!:i' L
’f 1| | At | <)~ f.‘ l
ki I‘ FI }I_l,. I [l
o : - PN |
| L AR .'1." p I gy .

THE DISPATCHER

The Dispatcher 218
Reading Other Sectors 224
Philosophy of the Following Chapters

217

226

19

218 The I)i\[‘(lhhl'l‘

In any language it’s nice to have a well-written program that does some-
thing, but to really bring a program to life we need to make it interactive. It’s
human nature to say, “If I do this, you do that,” so we’ll use this chapter to add
some interactivity to Dskpatch. We’ll write a simple keyboard-input proce-
dure and a central dispatcher. The dispatcher’s job will be to call the correct
procedure for each key pushed. For example, when we press the F1 key to read
and display the previous sector, the dispatcher will call a procedure called
PREVIOUS_SECTOR. To do this, we’ll be making many changes to
Dskpatch. We'll start by creating DISPATCHER, the central dispatcher, and
some other procedures for display formatting. Next, we’ll add two new proce-
dures, PREVIOUS_SECTOR and NEXT_SECTOR, which we’ll call through
DISPATCHER.

The Dispatcher

The Dispatcher will be the central control for Dskpatch, so all keyboard
input and editing will be done through it. DISPATCHER’s job will be to read
characters and call other procedures to do the work. You’ll soon see how the
dispatcher does its work, but first let’s see how it fits into Dskpatch.

DISPATCHER will have its own prompt line, just under the half-sector dis-
play where the cursor waits for keyboard input. You won’t be able to enter hex
numbers in our first version of the keyboard-input procedure, but later on you
will. Here are our first modifications to DSKPATCH.ASM; these add the data
for a prompt line:

Listing 19-1. Additions to DATA_SEG in DSKPATCH.ASM

HEADER_LINE_NO DB 0
HEADER_PART_1 DB 'Disk ',0
HEADER_PART_Z2 DB : Sector !',0
PUBLIC PROMPT_LINE_NO, EDITOR_PROMPT
PROMPT_LINE_NO DB 2l
EDITOR_PROMPT DB 'Press function key, or enter!
DB ! character or hex byte: !',0

We’ll add more prompts later to take care of such matters as inputting a
new sector number, so we’ll make our job simpler by using a common proce-
dure, WRITE_PROMPT_LINE, to write each prompt line. Each procedure

Peter Norton’s Assembly Language Book 219

that uses WRITE_PROMPT _LINE will supply it with the address of the
prompt (here, the address of EDITOR_PROMPT), and then write the prompt
on line 21 (because PROMPT_LINE_NO is 21). For example, this new ver-
sion of DISK_PATCH (in DSKPATCH.ASM) uses WRITE_PROMPT_LINE
just before it calls DISPATCHER:

Listing 19-2. Additions to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR, DISPATCHER:NEAR
DISK_PATCH PROC NEAR
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATCHER
INT 20h
DISK_PATCH ENDP

The dispatcher itself is a fairly simple program, but we do use some new

tricks in it. The following listing is our first version of the file
DISPATCH.ASM:

Listing 19-3. The New File DISPATCH.ASM.

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC DISPATCHER

EXTRN READ_BYTE:NEAR
; This is the central dispatcher. During normal editing and viewing, -
; this procedure reads characters from the keyboard and, if the char A
; 1s a command key (such as a cursor key), DISPATCHER calls the s
; procedures that do the actual work. This dispatching is done for :
; special keys listed in the table DISPATCH_TABLE, where the procedure ;
; addresses are stored just after the key names. .
; If the character is not a special key, then it should be placed :
; directly into the sector buffer--this is the editing mode. :

; Uses: READ_BYTE 2

220 The Dispatcher

Listing 19-3. continued

DISPATCHER
PUSH
PUSH

DISPATCH_LOOP:
CALL
OR

Jz
Js§

; do nothing with the character for now

JHP
SPECIAL_KEY:

CHP

JE

LEA
SPECIAL_LOOP:

CHP
JE

CHP
JE

ADD
JHP

DISPATCH:
INC
CALL
JHP

NOT_IN_TABLE:
JHP

END_DISPATCH:
POP
POP
RET

DISPATCHER

CODE_SEG

DATA_SEG

CODE_SEG
EXTRN
EXTRN

CODE_SEG

PROC NEAR
AX

BX

READ_BYTE
AH,AH

DISPATCH_LOOP
SPECIAL_KEY

DISPATCH_LOOP

AL,k8
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR (BX],0
NOT_IN_TABLE
AL, [BX]
DISPATCH

BX,3
SPECIAL_LOOP

BX
WORD PTR [BX]
DISPATCH_LOOP

DISPATCH_LOOP

BX

AX

ENDP

ENDS

SEGMENT PUBLIC

SEGMENT PUBLIC
NEXT_SECTOR:NEAR
PREVIOUS_SECTOR:NEAR
ENDS

;Read character into AX

+AX = 0 if no character read, -1
; for an extended code.

;No character read, try again
;Read extended code

;Read another character

;F10--exit?
;Yes, leave
;Use BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch

;No, try next entry

;Check next table entry

;Point to address of procedure
;Call procedure
;Hait for another key

;Do nothing, just read next character

;In DISK_IO.ASHM
;In DISK_IO.ASH

Peter Norton’s Assembly Language Book 221

Listing 19-3. continued

; This table contains the legal extended ASCII keys and the addresses -
; of the procedures that should be called when each key is pressed. :

The format of the table is -
- DB e ;Extended code for cursor up .
- DW OFFSET CGROUP:PHANTOM_UP :

DISPATCH_TABLE LABEL BYTE

DB 59 i F1

DW OFFSET CGROUP:PREVIOQOUS_SECTOR

DB &0 I

DW OFFSET CGROUP:NEXT_SECTOR

DB 0 ;End of the table
DATA_SEG ENDS

END

DISPATCH_TABLE holds the extended ASCII codes for the F1 and F2
keys. Each code is followed by the address of the procedure DISPATCHER
should call when it reads that particular extended code. For example, when
READ_BYTE, which is called by DISPATCHER, reads an F1 key (extended
code 59), DISPATCHER calls the procedure PREVIOUS_SECTOR.

The addresses of the procedures we want DISPATCHER to call are in the
dispatch table, so we used a new pseudo-op, OFFSET, to obtain them. The line

DW OFFSET CGROUP:PREVIOUS_SECTOR

for example, tells the assembler to use the offset of our PREVIOUS_SECTOR
procedure. This offset is calculated relative to the start of our group CGROUP,
and it is why we need the CGROUP: in front of the procedure name. Had we
not put CGROUP there, the assembler would calculate the address of PREVI-
OUS_SECTOR from the start of the code segment, and that might not be
what we want. (As it turns out here, this CGROUP isn’t absolutely necessary,
because the code segment is loaded first in our program. Still, in the interest
of clarity, we’ll write OFFSET CGROUP: anyway.)

Notice that DISPATCH_TABLE contains both byte and word data. This
raises a few considerations. In the past, we’ve always dealt with tables of one
type or the other: either all words, or all bytes. But here, we have both, so we
have to tell the assembler which type of data to expect when we use a CMP or
CALL instruction. In the case of an instruction written like this:

CHP [(BX]1,0

222 The Dispatcher

the assembler doesn’t know whether we want to compare words or bytes. But
by writing the instruction like this:

CHP BYTE PTR [BX],0

we tell the assembler that BX points to a byte, and that we want a byte com-
pare. Similarly, the instruction CMP WORD PTR [BX],0 would compare
words. On the other hand, an instruction like CMP AL,[BX] doesn’t cause any
problems, because AL is a byte register, and the assembler knows without
being told that we want a byte compare.

Then, too, remember that a CALL instruction can be either a NEAR or a
FAR CALL. A NEAR CALL needs one word for the address, while the FAR
CALL needs two. Here, the instruction:

CALL WORD PTR [BX]

tells the assembler, with WORD PTR, that [BX] points to one word, so it
should generate a short CALL and use the word pointed to by [BX] as the
address, that being the address we stored in DISPATCH_TABLE. (For a FAR
CALL, which uses a two-word address, we would use the instruction CALL
DWORD PTR [BX]. DWORD stands for Double Word, or two words.)

As you’ll see in Chapter 22, we can easily add more key commands to
Dskpatch simply by adding more procedures and placing new entries in DIS-
PATCH_TABLE. Right now, however, we still need to add four procedures
before we can test this new version of Dskpatch. We're missing READ_BYTE,
WRITE_PROMPT_LINE, PREVIOUS_SECTOR, and NEXT_SECTOR.

READ_BYTE is a procedure to read characters and extended ASCII codes
from the keyboard. The final version will be able to read special keys (such as
the function and cursor keys), ASCII characters, and two-digit hex numbers.
At this point, we’ll write a simple version of READ_BYTE—to read either a
character or a special key. Here is the first version of KBD_10.ASM, which is
the file in which we’ll store all our procedures to read from the keyboard:

Listing 19-4. The New File KBD_IO.ASHM

CGROUP GROUP CODE_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
PUBLIC READ_BYTE

Peter Norton’s Assembly Language Book 223

Listing 19-4. continued

; This procedure reads a single ASCII character. This is just -
; a test version of READ_BYTE. :

; Returns byte in AL Character code (unless AH = 0) ;
AH 1 if read ASCII char :
-1 if read a special key :

READ_BYTE PROC NEAR
MOV AH,7? ;Read character without echo
INT 2lh ; and place into AL
OR AL,AL ;Is it an extended code?
JZ EXTENDED_CODE ;Yes
NOT_EXTENDED:
MOV AH,1 ;Signal normal ASCII character
DONE_READING:
RET
EXTENDED_CODE:
INT 2lh ;Read the extended code
MOV AH,O0FFh ;Signal extended code
JHP DONE_READING
READ_BYTE ENDP
CODE_SEG ENDS
END

We'll add WRITE_PROMPT _LINE to VIDEO_IO.ASM as follows:

Listing 19-5. Rdd This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:NEAR
EXTRN GOTO_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN PROMPT_LINE_NO:BYTE

DATA_SEG ENDS

; This procedure writes the prompt line to the screen and clears the -
; end of the line. ;

; DS:DX Address of the prompt-line message ;

> Dses: WRITE_STRING, CLEAR_TO_END_OF_LINE, GOTO_XY :
; Reads: PROMPT_LINE_NO ;

224 The Dispatcher

Listing 19-5. continued

WRITE_PROMPT_LINE PROC NEAR
PUSH DX
XOR DL,DL ;Write the prompt line and
MOV DH,PROMPT_LINE_NO ; move the cursor there
CALL GOTO_XY
POP DX

CALL WRITE_STRING
CALL CLEAR_TO_END_OF_LINE
RET

WRITE_PROMPT_LINE ENDP

There really isn’t much to this procedure. It moves the cursor to the beginning
of the prompt line, which we set (in DSKPATCH.ASM) to line 21. Then, it
writes the prompt line and clears the rest of the line. The cursor is at the end
of the prompt when WRITE_PROMPT_LINE is done, and the rest of the line
is cleared by CLEAR_TO_END_OF_LINE.

Reading Other Sectors

Finally, we need the two procedures PREVIOUS_SECTOR and NEXT_
SECTOR, to read and redisplay the previous and next disk sectors. Add these
two procedures to DISK_I10.ASM:

Listing 19-t. Add These Procedures to DISK_IO.ASM

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

This procedure reads the previous sector, if possible.

; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP

“h e e wr et owe e

WRITE_PROMPT_LINE
Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT
; Writes: CURRENT_SECTOR_NO
PREVIOUS_SECTOR PROC NEAR
PUSH AX
PUSH DX
MOV AX,CURRENT_SECTOR_NO ;Get current sector number

OR AX,AX ;Don't decrement if already O

.

Listing 19-&. continued

Peter Norton’s Assembly Language Book 225

JZ DONT_DECREMENT_SECTOR
DEC AX
MOV CURRENT_SECTOR_NO,AX ;Save new sector number

CALL WRITE_HEADER
CALL READ_SECTOR
CALL ENTT=SECDISP ;Display new sector
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
DONT_DECREMENT_SECTOR:

POP DX
POP AX
RET
PREVIOUS_SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

; Reads the next sector. H

. .
' ’

; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP ;
- WRITE_PROMPT_LINE H
; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT :
; Writes: CURRENT_SECTOR_NO)
NEXT_SECTOR PROC NEAR

PUSH AX

PUSH DX

MOV AX,CURRENT_SECTOR_NO

INC AX ;Move to next sector

MoV CURRENT_SECTOR_NO,AX

CALL WRITE_HEADER
CALL READ_SECTOR

CALL INIT SEC_DISP ;Display new sector
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX
POP AX
RET
NEXT_SECTOR ENDP

Now, you’re ready to assembly all the files we created or changed:
Dskpatch, Video_io, Kbd_io, Dispatch, and Disk_io. When you link the
Dskpatch files, remember there are now seven of them: Dskpatch, Disp_ sec,
Disk_io, Video_io, Kbd_io, Dispatch, and Cursor.

If you are using Make, here are the additions you need to make to the file

226 The Dispatcher

Dskpatch (the backslash at the end of the fourth line from the bottom tells
Make we're continuing the list of files onto the next line):

Listing 19-7. Changes to the DSKPATCH Make File

cursor.obj: Cursor.asm
masm CUrsor;

dispatch.obj: dispatch.asm
masm dispatch;

kbd_io.obj: kbd_io.asm
masm kbd_io;

dskpatch.com: dskpatch.obj disk_io.obj disp_sec.obj video_io.obj cursor.obj \
dispatch.obj kbd_io.obj
link dskpatch disk_io disp_sec video_io cursor dispatch kbd_io;
execbin dskpatch dskpatch.com

If you do not have Make, you may wish to write the following short batch
file to link and create your .COM file:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR DISPATCH KBD_IO;
EXEZBIN DSKPATCH DSKPATCH.COM

As we add more files, you'll only need to change this batch file, rather than
type this long link list each time you rebuild the .COM program.

This version of Dskpatch has three active keys: F1 reads and displays the
previous sector, stopping at sector 0; F2 reads the next sector; F10 exits from
Dskpatch. Give these keys a try. Your display should now look something like
Figure 19-1.

Philosophy of the Following Chapters

We covered far more ground than usual in this chapter, and in that respect
you’'ve had a taste of the philosophy we’ll be following in Chapters 20 through
27. From now on, we’ll move along at a fairly rapid pace, so that we can get
through more examples of how to write large programs. You'll also find more
procedures that you can use in your own programs.

These chapters are here for you to learn from, hence the rather high density
of new procedures. But in the final two chapters of the book, we’ll come back
to learning new subjects, so hang on, or (if you wish) skip the remaining chap-

Disk A Sector @

88 81 82 B3 84 85 86

Peter Norton’s Assembly Language Book 227

@7 @8 89 BA BB 8C 8D OE @F

8123456789ABCDEF

T
88 § EB 21 98 49 42 4D 28
18 | 62 78 68 DB 62 FD 62
28 || 88 88 88 C4 5C 88 33
38 | D2 79 OE 89 1E 1E @8
48 || 82 BE C5 BE DS BC @@
58 | BF 23 7C B9 @B 08 F3
68 | AZ 27 88 BF 78 608 B8
78 || EB 46 EB 80 88 E8 86
88 | @8 SF BE 73 81 B9 @B
98 | B1 BB 98 98 F3 A6 75
AB || 88 B3 C1 48 F7? F1 8@
B | A1 11 88 B1 64 D3 E8
Cd | 6F B1 EB 39 8@ EB 64
DB § F7 26 8B 8@ 83 D8 SA
EB | 86 E4 83 74 84 FE C4
F@ || 89 81 EB 55198 81 86

T T
28 33 2E 31 68 62 82 61 @8
80 89 68 62 00 66 08 66 @0
ED B8 CA 87 BE D8 33 C9 BA
8C 86 20 68 88 16 22 0@ B1
7C 51 FC 1E 36 CS 36 78 @8
A4 {F 88 BE 2C 88 AB 18 80
23 7C AB 91 AB A1 16 08 D1
88 BB 88 85 53 B8 81 E8 AB
88 98 F3 A6 75 62 83 C7 15
57 26 8B 47 1C 99 8B OE @B
3E 71 81 68 75 62 BB 14 96
E8 3B 88 FF 36 1E 88 C4 1E
88 2B F@ 76 8D E8 26 6@ 52
EB E9 CD 11 B9 @82 66 D3 EB
8A CC SB 58 FF 2E 6F 61 BE
1E188 11 2E 28188 C3 A1 18

SYEIBM 3.1 888
op 1828 o 8
\J3#q Leii$3
][gn.é“ i’ é-"
BataE 1Qha6}bx
18148 <qven, at
o' yx 18i%2Kia T
<03 33 y 9S7GTY
RECTTRIENS
JoEEC uNATCLBiRg
oLH=40)q0 u8 Th
i4 Jolad; 6a -a
o839 &d +=vFi& R
=88 #}Z50=4]8 L¢
GEwten-2fIX . oo
EOsUEDeA 4. it

Press function key, or enter character or hex byte:

Figure 19-1. Dskpatch with the Prompt Line.

ters on Dskpatch until you're ready to write your own programs. When you’re
ready to come back again, you’ll find many useful tidbits for programming.
Of course, if you're champing at the bit and eager to write your own proce-
dures, read the next chapter. There, you’ll find a number of hints, and we’ll
give you a chance to write the procedures in following chapters by giving you

enough details to forge ahead.

From Chapter 21 on, we’ll present many different procedures and let you
discover how they work. Why? There are two reasons, both related to setting
you on your feet and on your way to assembly language programming. First,
we want you to have a library of procedures you can use in your own pro-
grams; to use them comfortably, you need to exercise your own skills. Second,
by presenting this large programming example, we want to show you not only
how to write a large program, but to give you a feel for it as well.

So take the rest of this book in the way that suits you best. Chapter 20 is for
those of you eager to write your own programs. In Chapter 21, we’ll return to
Dskpatch and build the procedures to write and move what we call a phantom
cursor: a reverse-video cursor for the hex and ASCII displays.

i

i+ W

Al

P IGET Yy el AL bt clds B

17 S O
} * 5%
[- -
1
N 1 i
o
- 1 W
» . : I
o N
.
N g 9
i
T 4 1 A9
i, S kA4S
¥
4 i ..T‘.'
- s
¥
" L]
f =
ia J 4 e

.4 E ¥ ‘) ‘I- "
: AN ey o et b e

" ol "Jn." AP T sl ol o
"‘"l e .-1‘14‘.;-1 :%d'
Vet v R TR R "h-,!r. : :

L e Al e s
P TAANAENG Gl I el
AP Lﬂ'—ﬁ**ﬁ-‘ﬂhhﬂ‘.‘ﬂ Illﬁ"m-‘w
300 T IS, SN b
N il il siaptadrg 8 LG i, #‘H
ﬁ.u.,, e t,f} 1?1“.“ .

r L

] : ,j-‘:._-

20

A PROGRAMMING
CHALLENGE

The Phantom Cursors 230
Simple Editing 232
Other Additions and Changes to Dskpatch 232

229

230 A Programming Challenge
~ - -

This book contains six more chapters of procedures. If you want to try navi-
gating on your own, read this chapter. We’ll chart a course for you here, and
plot your way through Chapters 21 and 22. Then you can try to write the
procedures in each chapter before you read it. If you don’t wish to try writing
pieces of Dskpatch just yet, skip this chapter for now. It’s very brief and leaves
many details to your imagination.

If you decide to read through this chapter, here’s a suggestion on how to
proceed: Read one section and then try to make your own corresponding
changes to Dskpatch. When you feel you've made enough progress, read the
chapter with the same name as the section title. After you've read the corre-
sponding chapter, then you can go on to read the next section.

Note: You may want to make a copy of all your files before you start
making changes. Then when you get to Chapter 21, you’ll have the
choice of following along with the changes, or using your own version.

The Phantom Cursors

In Chapter 21 we’ll place two phantom cursors on the screen: one in the hex
window, and one in the ASCII window. A phantom cursor is similar to a nor-
mal cursor, but it doesn’t blink and the background turns white, with the
characters black, as you can see in Figure 20-1.

The phantom cursor in the hex window is four characters wide, the one in
the ASCII window is only one character wide.

How do we create a phantom cursor? Each character on the screen has an
attribute byte. This byte tells your IBM PC how to display each character. An
attribute code of 7h displays a normal character, while 70h displays a charac-
ter in inverse video. The latter is exactly what we want for the phantom cur-
sor, so the question is: How can we change the attribute of our characters to
70h?

INT 10h function 9 writes both a character and an attribute to the screen,
and INT 10h function 8 reads the character code at the current cursor posi-

Disk A

0
18
28
38
48
58
68
78
88
98
AB
B
ca
D8
E@
Fa

88 81

Sector 8

82 83 84

Peter Norton’s Assembly Language Book

85 66 87 88 @9 BA 8B BC 8D OE OF

8123456789ABCDEF

[EB 131

8z 78
88 ea
DZ 79
82 BE
BF 23
A2 27
EB 48
88 SF
B1 8B
88 83
Al 11
6F 81
F?7 26
88 E4
89 a1

T
98 49 42
88 D8 82
88 C4 5C
8E 89 1E
C5 BE DS
7C B9 8B
88 BF 78
EB 80 88
BE 73 81
98 98 F3
C1 48 F7
88 B1 84
E8 39 68
8B 60 83
83 74 B4
EB 55198

T T

4D 28 28 33 2E 31 668 82 082 61 @8
FD 62 66 89 66 62 80 80 00 68 88
88 33 ED B8 CA @7 8E D8 33 C9 8A
iE 86 8C 06 26 68 88 16 22 88 Bi
BC 88 7C 51 FC 1E 36 C5 36 78 @8
88 F3 A4 1F 88 BE 2C 68 AB 18 00
88 B8 23 7C AB 91 AB A1 16 66 D1
EB 86 66 BB 88 B85 53 B8 81 E8 AB
B9 6B 88 98 F3 A6 75 62 83 C7 15
Ab 75 57 26 8B 47 1C 99 8B BE 6B
F1 86 3E 71 81 68 75 82 BB 14 96
D3 E8 E8 3B 88 FF 36 1E 88 C4 1E
E8 64 88 2B F@ 76 8D E8 26 88 52
D8 SA EB E9 CD 11 B9 62 @@ D3 EA
FE C4 8A CC SB 58 FF 2E 6F 81 BE
81 86 13188 11 2E 28188 C3 a1 18

| Bréen 3.1 ees
8p I8z o 8
-\f3#4 Lei$3
quféas 1¢ &."
8ata e 1Qha6fex
18446 ¢qven, at
o' yx y8ikekia 7
| «03G 33 y oS oY
As8Yé ECtubi]§
FoEE<tuhaicatine
oLH=4G)q0" uB Uk
i4 JoU33; 64 -a
0089 3d +=vris R
=48 9§250=4]8 Ig
gToten-gfIX . odd
EQSUEDRA 4. |t

Press function

key, or enter character or hex byte:

Figure 20-1.

A Display with Phantom Cursors.

tion. We can create a phantom cursor in the hex window with the following

steps:

® Save the position of the real cursor (use INT 10h function 3 to read the
cursor position and save this in variables).
® Move the real cursor to the start of the phantom cursor in the hex
window.
® For the next four characters, read the character code (function 8) and
write both the character and its attribute (setting the attribute to 70h).
® Finally, restore the old cursor position.

We write a phantom cursor in the ASCII window in much the same way.
Once you have a working phantom cursor in the hex window, you can add the
extra code for the ASCII window.

Keep in mind that your first try is only temporary. Once you have a work-
ing program with phantom cursors, you can go back and rewrite your changes,
so you have a number of small procedures to do the work. Look at the proce-
dures in Chapter 21 when you're done, to see one way of doing this.

231

232 A Programming Challenge

Simple Editing

Once we have our phantom cursors, we’ll want to move them around on the
screen. We have to pay attention here to boundary conditions, in order to keep
the phantom cursors inside each of the two windows. We also want our two
phantom cursors to move together, since they represent the hex and ASCII
representations of the same thing.

How can we move each phantom cursor? Each of the four cursor keys on the
keypad sends out a special function number: 72 for cursor up, 80 for cursor
down, 75 for cursor left, and 77 for cursor right. These are the numbers we
need to add to DISPATCH_TABLE, along with the addresses of the four pro-
cedures to move the phantom cursors in each of these four directions.

To actually move each phantom cursor, erase it, then change its two coordi-
nates and write it again. If you've been careful about how you wrote the phan-
tom cursors, the four procedures to move them should be fairly simple.

Whenever you type a character on the keyboard, Dskpatch should read this
character and replace the byte under the phantom cursor with the character
just read. Here are the steps for simple editing:

® Read a character from the keyboard.

® (Change the hex number in the hex window and the character in the
ASCII window to match the character just read.

e (Change the byte in the sector buffer, SECTOR.

Here’s a simple hint: You don’t have to make many changes to add editing.
Dispatch requires little more than calling a new procedure (we've called it
EDIT_BYTE) that does most of the work. EDIT_BYTE is responsible for
changing both the screen and SECTOR.

Other Additions and Changes to Dskpatch

From Chapter 23 through Chapter 27, the changes start to become some-
what trickier and more involved. If you're still interested in writing your own
version, consider this: What more would you like to see Dskpatch do than it
does right now? We’ve used the following ideas in the remaining chapters.

We want a new version of READ_BYTE that will read either one character
or a two-digit hex number and wait for us to press the Enter key before it
returns a character to Dispatch. This part of our “wish list” isn’t as simple as

Peter Norton’s Assembly L«lil_‘,,;:_lrlr_’(.' Book 233

it sounds, and we’ll spend two chapters (Chapters 23 and 24) working on this
problem.

In Chapter 25, we’ll go bug hunting, then in Chapter 26 we’ll learn how to
write modified sectors back to the disk using the DOS INT 26h function,
which is analogous to the INT 25h that we used to read a sector from the disk.
(In Chapter 26, we won’t check for read errors, but you’ll find such checks in
the disk version of Dskpatch that is available with this book.)

Finally, in Chapter 27, we’ll make some changes to Dskpatch so we can see
the other half of our sector display. These changes won’t allow us to scroll
through the sector display as freely as we’d like but, again, those changes are
on the disk version of Dskpatch.

f aLy

Ll
. 5. X
i
)
[A-a |
e e
f a
r Ll v
e
bl
,+ ._.I [
1] y I_rr
L2y : 4
L B -
Ll : -
. il
|v -
¥
L (g =1

v e T _"v"""“ Y -i-rlq
e r v._'_'- A ina ‘1—_ . J‘-.i.!h : »
"h.vi' CHRLEE AL e -
IR T G-l i N 0 v T' !
’ b Fy il 55 i T !r,gm
'w-qr-uww- MM i

> . o, I.|_ - IJ$ T
- = o [N o

s r
ol oo B ' "
nh_|lv _II-' _. | ! I ’ .‘ 54 9" %
'III LY PII : ._I:’_‘

21
THE PHANTOM CURSORS

The Phantom Cursors 236
Changing Character Attributes 241
Summary 243

235

: !

236 The Phantom Cursors

In this chapter we’ll build the procedures to write and erase a phantom cur-
sor in the hex window, and another in the ASCII window. A phantom cursor is
so called because it’s not the PC’s hardware cursor; it’s a shadow . . . albeit a
rather unusual shadow, since it inverts the character, turning the background
to white and the character to black. In the hex window, we have the room to
make this cursor four characters wide so it will be easy to read. In the ASCII
window, our phantom cursor will be just one character wide, because there is
no room between characters.

We have a lot of procedures and code to cover here, so we’ll describe these
procedures only briefly.

S —

The Phantom Cursors

INIT_SEC_DISP is the only procedure we have that changes the sector dis-
play. A new display appears when we start Dskpatch, and each time we read a
new sector. Since our phantom cursors will be in the sector display, we’ll begin
our work here by placing a call to WRITE_PHANTOM in INIT_SEC_DISP.
That way, we’ll write the phantom cursors every time we write a new sector
display.

Here is the revised—and final—versibn of INIT_SEC_DISP in DISP_
SEC.ASM:

Listing 21-1. Changes to INIT_SEC_DISP in DISP_SEC.ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NEARR, SEND_CRLF:NEAR
EXTRN GOTO_XY:NEAR, WRITE_PHANTOM:NEAR
DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD
DATA_SEG ENDS

This procedure initializes the half-sector display.

Uses: WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR ;

Reads: ' TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN : -
LINES_BEFORE_SECTOR ;

Writes: SECTOR_OFFSET ,

; WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PHANTOM

Peter Norton’s Assembly Language Book 237

Listing 21-1. continued

INIT_SEC_DISP PROC NEAR

PUSH DX
XOR DL,DL ;Move cursor into position
MoV DH,LINES_BEFORE_SECTOR

CALL GOTO_XY

CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN
CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX, DX ;Start at the beginning of the sector
MOV SECTOR_OFFSET, DX ;Set sector offset to O

CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

CALL WRITE_PHANTOM ;Wirite the phantom cursor

POP DX

RET

INIT_SEC_DISP ENDP

Notice that we’ve also updated INIT_SEC_DISP to use and initialize vari-
ables. It now sets SECTOR_OFFSET to zero to display the first half of a
sector.

Let’s move on to WRITE_PHANTOM itself. This will take quite a bit of
work. Altogether, we have to write six procedures, including WRITE_PHAN-
TOM. The idea is fairly simple, though. First, we move the real cursor to the
position of the phantom cursor in the hex window and change the attribute of
the next four characters to inverse video (attribute 70h). This creates a block
of white, four characters wide, with the hex number in black. Then we do the
same in the ASCII window, but for a single character. Finally, we move the
real cursor back to where it was when we started. All the procedures for the
phantom cursors will be in PHANTOM.ASM, with the exception of WRITE _
ATTRIBUTE_N_TIMES, the procedure that will set the attribute of
characters.

Enter the following procedures into the file PHANTOM.ASM:

Listing 21-2. The New File PHANTOM.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP
CODE_SEG SEGMENT PUBLIC

PUBLIC MOV_TO_HEX_POSITION
EXTRN GOTO_XY:NEAR

238 The Phantom Cursors

Listing 21-2. continued

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS

; This procedure moves the real cursor to the position of the phantom -
; cursor in the hex window. .

; Uses: GOTO_XY .
; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;
MOV_TO_HEX_POSITION PROC NEAR
PUSH AX
PUSH CX
PUSH DX
MOV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,¢2 ;Plus row of hex and horizontal bar
ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor
MOV DL, 8 ;Indent on left side
MOV CL,3 ;Each column uses 3 characters,so
MOV AL,PHANTOM_CURSOR_X ; we must multiply CURSOR_X by 3
MOL CL
ADD DL,AL ;And add to the indent, to get column
CALL GOTO_XY ; for phantom cursor
POP DX
POP CX
POP AX
RET
MOV_TO_HEX_POSITION ENDP

PUBLIC MOV_TO_ASCII_POSITION
EXTRN GOTO_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS
; This procedure moves the real cursor to the beginning of the phantom
; cursor in the ASCII window.

’
; Uses: GOTO_XY -

; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;
MOV_TO_ASCII_POSITION PROC NEAR
PUSH AX
PUSH DX
Mov DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,2 ;Plus row of hex and horizontal bar
ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor
MOV DL,S9 ;Indent on left side
ADD DL,PHANTOM_CURSOR_X ;Add CURSOR_X to get X position
CALL GOTO_XY ; for phantom cursor

POP DX

Peter Norton’s Assembly Language Book 239

Listing 21-2. continued

POP AX
RET

MOV_TO_ASCII_POSITION ENDP

PUBLIC SAVE_REAL_CURSOR

This procedure saves the position of the real cursor in the two

; variables REAL_CURSOR_X and REAL_CURSOR_Y.

; Writes: REAL_CURSOR_X, REAL_CURSOR_Y
SAVE_REAL_CURSOR PROC NEAR
PUSH AX
PUSH BX
PUSH CX
PUSH DX
MOV AH,3 ;Read cursor position
XOR BH,BH ; on page O
INT 10h ;And return in DL,DH
MOV REAL_CURSOR_Y,DL ;Save position
MoV REAL_CURSOR_X,DH
POP DX
POP CX
POP BX
POP AX
RET
SAVE_REAL_CURSOR ENDP

PUBLIC RESTORE_REAL_CURSOR

EXTRN GOTO_XY:NEAR
This procedure restores the real cursor to its old position, saved in ;
REAL_CURSOR_X and REAL_CURSOR_Y.

; Uses: GOTO_XY
; Reads: REAL_CURSOR_X, REAL_CURSOR_Y
RESTORE_REAL_CURSOR PROC NEAR
PUSH DX
MOV DL,REAL_CURSOR_Y
MOV DH,REAL_CURSOR_X
CALL GOTO_XY
POP DX
RET
RESTORE_REAL_CURSOR ENDP

PUBLIC WRITE_PHANTOM
EXTRN WRITE_ATTRIBUTE_N_TIMES:NEAR

240 The Phantom Cursors

Listing 21-2. continued

; This procedure uses CURSOR_X and CURSOR_Y, through MOV_TO_..., as the
; coordinates for the phantom cursor. WRITE_PHANTOM writes this
; phantom cursor.

: Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
; RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
: MOV_TO_ASCII_POSITION

“h e wme wms W ws ws we owe

WRITE_PHANTOM PROC NEAR

PUSH CX

PUSH DX

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window

MOV CX,4 yMake phantom cursor four chars wide
MOV DL,?0h

CALL WRITE_ATTRIBUTE_N_TIMES

CALL MOV_TO_ASCII_POSITION ;Coord. of cursor in ASCII window
MOV CX,1 ;Cursor is one character wide here
CALL WNRITE_ATTRIBUTE_N_TIMES

CALL RESTORE_REAL_CURSOR

POP DX
POP CX
RET

WRITE_PHANTOM ENDP

PUBLIC ERASE_PHANTOM

EXTRN WRITE_ATTRIBUTE_N_TIMES:NEAR
This procedure erases the phantom cursor, just the opposite of
WRITE_PHANTOM.

- wE s e W ws W owe

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_RERL_CURSOR, MOV_TO_HEX_POSITION
MOV_TO_ASCII_POSITION

RASE_PHANTOM PROC NEAR
PUSH CX
PUSH DX
CALL SAVE_REAL_CURSOR
CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window
MOV CX,4 ;Change back to white on black
MoV DL,7

CALL WRITE_ATTRIBUTE_N_TIMES
CALL MOV_TO_ASCII_POSITION
MOV CX,1

CALL WRITE_ATTRIBUTE_N_TIMES
CALL RESTORE_REAL_CURSOR

POP DX

POP CX

RET

Peter Norton’s Assembly Language Book 241

Listing 21-2. continued

ERASE_PHANTOM ENDP

CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
REAL_CURSOR_X DB 0
REAL_CURSOR_Y DB 0
PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X DB 0
PHANTOM_CURSOR_Y DB 0
DATA_SEG ENDS
END

WRITE_PHANTOM and ERASE_PHANTOM are much the same. In fact,
the only difference is in the attribute used: WRITE_PHANTOM sets the at-
tribute to 70h for inverse video, while ERASE_PHANTOM sets to attribute
back to the normal attribute (7).

Both of these procedures save the old position of the real cursor with
SAVE_REAL_CURSOR, which uses the INT 10h function number 3 to read
the position of the cursor and then saves this position in the two bytes REAL_
CURSOR_X and REAL_CURSOR_Y.

After saving the real cursor position, both WRITE_PHANTOM and
ERASE_PHANTOM then call MOV_TO_HEX_POSITION, which moves
the cursor to the start of the phantom cursor in the hex window. Next,
WRITE_ATTRIBUTE_N_TIMES writes the inverse-video attribute for four
characters, starting at the cursor and moving to the right. This writes the
phantom cursor in the hex window. In much the same way, WRITE_PHAN-
TOM then writes a phantom cursor one character wide in the ASCII window.
Finally, RESTORE_REAL_CURSOR restores the position of the real cursor
to the position it was in before the call to WRITE_PHANTOM.

The only procedure we have left unwritten is WRITE_ATTRIBUTE_N_
TIMES, so let’s take care of it now.

Changing Character Attributes

We're going to use WRITE_ATTRIBUTE_N_TIMES to do three things.
First, it will read the character under the cursor position. We’ll do this be-
cause the INT 10h function we use to set a character’s attribute, function

242 The Phantom Cursors

number 9, writes both the character and the attribute under the cursor. Thus,
WRITE_ATTRIBUTE_N_TIMES will change the attribute by writing the
new attribute along with the character just read. Finally, the procedure will
move the cursor right to the next character position, so we can repeat the
whole process N times. You can see the details in the procedure itself; place
WRITE_ATTRIBUTE_N_TIMES in the file VIDEO_IO.ASM:

Listing 21-3. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_ATTRIBUTE_N_TIMES

EXTRN CURSOR_RIGHT:NEAR
; This procedure sets the attribute for N characters, starting at the
current cursor position.

e s W W ws W ws ws =

. CX Number of characters to set attribute for
’ DL New attribute for characters
; Uses: CURSOR_RIGHT
WRITE_ATTRIBUTE_N_TIMES PROC NEAR
PUSH AX
PUSH BX
PUSH 9 5
PUSH DX
MOV BL,DL ;Set attribute to new attribute
XOR BH, BH ;Set display page to O
MOV DX,CX ;CX is used by the BIOS routines
MOV CX,1 ;Set attribute for one character
ATTR_LOOP:
MOV AH,8 ;Read character under cursor
INT 10h
MOV AH,S E ;Write attribute/character
INT 10h
CALL CURSOR_RIGHT
DEC DX ;Set attribute for N characters?
JNZ ATTR_LOQP ;No, continue
POP DX
POP CX
POP BX
POP AX
RET
WNRITE_ATTRIBUTE_N_TIMES ENDP

This is both the first and final version of WRITE_ATTRIBUTE_N_TIMES.
With it, we’ve also created the final version of VIDEO_IO.ASM, so you won’t
need to change or assemble it again.

Peter Norton’s Assembly Language Book 243
Disk A Sector 8
88 81 B2 B3 B4 B85 86 87 B8 89 BA BB BC 8D BE OF B8123456789ABCDEF
] T T T >
80 |XJ21 98 49 42 4D 28 20 33 2E 31 68 62 82 01 @8 | {'eIBM 3.1 686
18 | 82 76 88 DB 82 FD 82 @8 B9 0P B2 PA AP PO 0B 86 | Bp 1828 0 8
28 || 88 88 88 C4 5C 88 33 ED B8 C8 87 8E D8 33 CI9 BA -\J3¢ Leii}3
38 | D2 79 BE 89 iE iE 6@ BC 66 20 8@ 88 16 22 08 Bi | yyféaa i¢ &."
40 | 82 BE C5 8E D5 BC 8@ 7C 51 FC 1E 36 CS 36 78 88 | 8A}aP !QPa6}6x
58 | BF 23 7C B9 6B 8@ F3 A4 1F 88 BE 2C 8@ AB 18 88 | #iJé <iven, at
68 | A2 27 8@ BF 78 88 B8 23 7C AB 91 AB A1 16 88 D1 | o’ yx yRi%eXia. ¥
70 || EB 40 EB 8@ 90 EB 86 68 BB 8@ 85 53 BO 81 E8 AB § «@IC Ia 7 0S:0%%
88 | 88 SF BE 73 81 B9 BB 88 98 F3 A6 75 62 83 C7 15 | _IsBi|¢ EC®ubi[]d
98 || B1 8B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B BE 6B l&ééS!uN&TGLUiﬂG
AB || 88 83 C1 48 F7 F1 88 3E 71 81 68 75 62 BB 14 96 oLH=4C) g0 ud N0
BA | A1 11 8@ B1 84 D3 EB E8 3B @8 FF 36 1E 80 C4 1E § i< Jel3d: 6a -a
Cd || 6F 81 EB 39 80 EB 64 88 2B F@ 76 8D E8 26 8@ 52 §| o0%9 &d +=vFi& R
D8 | F? 26 @B 88 83 D8 SA EB E9 CD 11 B9 82 88 D3 EB | =&8 ¢§Z50=4]8 g
E@ | 80 E4 83 74 B4 FE C4 8A CC SB 58 FF 2E 6F 81 BE || CZoten-efIX .oBd
F8 || 89 81 EB 55198 81 86 IEIGO 11 2E 20188 C3 A1 18 || €D5UEDeA 4. [t
Press function key, or enter character or hex byte:
Figure 21-1. Screen Display with Phantom Cursors
Summary

We now have eight files to link, with the main procedure still in Dskpatch.
Of these, we’ve changed two files, Disp_sec and Video_io, and created one,
Phantom. If you’re using Make or the short batch file we suggested in Chapter
20, remember to add your new file, Phantom, to the list.

When you run Dskpatch now, you’ll see it write the sector display, just as
before, but Dskpatch will also write in the two phantom cursors. (See Figure
21-1.) Notice that the real cursor is back where it should be at the very end.

In the next chapter, we’ll add procedures to move our newly formed phan-
tom cursors, and we’ll add a simple editing procedure to allow us to change the
byte under the phantom cursor.

af |p"¢”
= k. ~:.4*.-a- . e

- -
il AT Ay OO '_ >
R T L Y g
.* (it I NS IA
W oM U N g
-y SR '
T RN TN uIN
i 15 M K08
f i SRCEYE R & .9
4 F 2 ":“'I!U" :
] o "" .’ %
& =y -t’r.i lw ﬁ "
Ty .--Hu“:a N
4 i | £l 4 id“? 2'
- '5.’“!. : :
v | Rt LN ERteNn NI ES
] pel vl -'3‘-»1” -.;u .:l' '
' T 1T % | .5

. L

PRI g 7 v m#ﬂ
‘ -u'mwu-h‘ b

" t g ,..n el ml"'
: $i < wal Yty ml*;..ﬂ ‘
gy ! , v ..'iﬂﬂlﬂﬂ
std J¥ o .”r_l_‘ r‘..

: R T IRER T (BN
j x dosy s f], ‘! i 1“-*‘“1 i 5*

& asls --.‘mm [L

: ‘ m‘s....p'm*

bl ;.?_ .[‘ ;4¢H'*‘I|'1‘
Wil s t.u ;

& REnles

SIMPLE EDITING

Moving the Phantom Cursors 246
Simple Editing 249
Summary 253

245

22

246 Simple Editing

Wz’ve almost reached the point at which we can begin to edit our sector
display—change numbers in our half sector display. We’ll soon add simple
versions of the procedures for editing bytes in our display, but before we do,
we need some way to move the phantom cursors to different bytes within the
half sector display. This task turns out to be fairly simple, now that we have
the two procedures ERASE_ PHANTOM and WRITE_PHANTOM.

Moving the Phantom Cursors

Moving the phantom cursors in any direction depends on three basic steps:
Erasing the phantom cursor at its current position; changing the cursor posi-
tion by changing one of the variables, PHANTOM_CURSOR_X or PHAN-
TOM_CURSOR_Y; and using WRITE_PHANTOM to write the phantom
cursor at this new position. In the process, however, we must be careful not to
let the cursor move outside the window, which is 16 bytes wide and 16 bytes
high.

To move the phantom cursors, we’ll need four new procedures, one for each
of the arrow keys on the keyboard. DISPATCHER needs no changes, because
all the information on procedures and extended codes is in the table DIS-
PATCH_TABLE. We just need to add the extended ASCII codes and ad-
dresses of the procedures for each of the arrow keys. Here are the additions to
DISPATCH.ASM that will bring the cursor keys to life:

Listing 22-1. Changes to DISPATCH.ASH

DATA_SEG SEGMENT PUBLIC

CODE_SEG SEGMENT PUBLIC
EXTRN NEXT_SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PREVIOUS_SECTOR:NEAR ;In DISK_IO.ASHM
EXTRN PHANTOM_UP:NERR, PHANTOM_DOWN:NEAR ;In PHANTOM.ASHM
EXTRN PHANTOM_LEFT:NEAR, PHANTOM_RIGHT:NEAR

CODE_SEG ENDS

; This table contains the legal extended ASCII keys and the addresses
; of the procedures that should be called when each key is pressed.

: The format of the table is

’ DB e ;Extended code for cursor up
H DW OFFSET CGROUP:PHANTOM_UP

P e e e ws s ws

Peter Norton’s Assembly Language Book 247

Listing 22-1. continued

DISPATCH_TABLE LABEL BYTE

DB 59 s Fl

DW OFFSET CGROUP:PREVIOUS_SECTOR

DB &0 s F2

DW OFFSET CGROUP:NEXT_SECTOR

DB i ;Cursor up

DW OFFSET CGROUP:PHANTOM_UP

DB a0 ;Cursor down

DW OFFSET CGROUP:PHANTOM_DOWN

DB 75 ;Cursor left

DW OFFSET CGROUP:PHANTOM_LEFT

DB 17 ;Cursor right

DW OFFSET CGROUP:PHANTOM_RIGHT

DB 0 ;End of the table
DATA_SEG ENDS

As you can see, it’s simple to add commands to Dskpatch: We merely place the
procedure names in DISPATCH_TABLE and write the procedures.

Speaking of writing procedures, the procedures PHANTOM_UP, PHAN-
TOM_DOWN, and so on are fairly simple. They're also quite similar to one
another, differing only in the boundary conditions used for each. We've al-
ready described how they work; see if you can write them yourself, in the file
PHANTOM.ASM, before you read on.

Here are our versions of the procedures to move the phantom cursors:

Listing 22-2. Add These Procedures to PHANTOM.ASM

; These four procedures move the phantom cursors. :

; Uses: ERASE_PHANTOM, WRITE_PHANTOM)
; Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y :
; Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y 3

PUBLIC PHANTOM_UP

PHANTOM_UP PROC NEAR
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;Was not at the top, write cursor
MOV PHANTOM_CURSOR_Y,O ;Was at the top, so put back there
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Write the phantom at new position
RET
PHANTOM_UP ENDP

PUBLIC PHANTOM_DOWN

248 Simple Editing

Listing 22-2. continued

PHANTOM_DOWN PROC NEAR

CALL ERASE_PHANTOM ;Erase at turrent position

INC PHANTOM_CURSOR_Y ;Move cursor down one line

CMP PHANTOM_CURSOR_Y, 16 ;Has it at the bottom?

JB WASNT_AT_BOTTOM ;No, so write phantom

MOV PHANTOM_CURSOR_Y,15 ;Has at bottom, so put back there
WASNT_AT_BOTTOM:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_DOWN ENDP

PUBLIC PHANTOM_LEFT
PHANTOM_LEFT PROC NEAR

CALL ERASE_PHANTOM ;Erase at current position

DEC PHANTOM_CURSOR_X ;Move cursor left one column

JNS WASNT_AT_LEFT ;Nas not at the left side, write cursor

MOV PHANTOM_CURSOR_X,0 ;Nas at left, so put back there
WASNT_AT_LEFT:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_LEFT ENDP

PUBLIC PHANTOM_RIGHT
PHANTOM_RIGHT PROC NEAR

CALL ERASE_PHANTOM ;Erase at current position

INC PHANTOM_CURSOR_X ;Move cursor right one column

CHMP PHANTOM_CURSOR_X,1b ;Has it already at the right side?

JB WASNT_AT_RIGHT

MOV PHANTOM_CURSOR_X,15 ;Was at right, so put back there
WASNT_AT_RIGHT:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_RIGHT ENDP

PHANTOM_LEFT and PHANTOM_RIGHT are the final versions, but we’ll
have to change PHANTOM_UP and PHANTOM_DOWN when we begin to
scroll the display.

As Dskpatch stands now, we can see only the first half of a sector. In Chap-
ter 27, we'll make some additions and changes to Dskpatch so we can scroll
the display to see other parts of the sector. At that time, we’ll change both
PHANTOM_UP and PHANTOM_DOWN to scroll the screen when we try to
move the cursor beyond the top or bottom of the screen. For example, when
the cursor is at the bottom of the half-sector display, pushing the cursor-down
key again should scroll the display up one line, adding another line at the
bottom, so that we see the next 16 bytes. Scrclling is rather messy, however,
so we’ll keep these procedures until almost last. Through Chapter 26, we’ll

Peter Norton’s Assembly Language Book 249

develop the editing and keyboard-input sections of Dskpatch by using only the
first half sector.

Test Dskpatch now te see if you can move the phantom cursors around on
the screen. They should move together, and they should stay within their own
windows. Now, we’ll go on to add editing, so we can change bytes on our
display.

Simple Editing

We already have a simple keyboard-input procedure, READ_BYTE, which
reads just one character from the keyboard without waiting for you to press
the Enter key. We'll use this old, test version of READ_BYTE to develop edit-
ing. Then, in the next chapter, we’ll write a more sophisticated version of the
procedure that will wait until we press either the Enter key or a special key,
such as a function or cursor key.

Our editing procedure will be called EDIT_BYTE, and it will change one
byte both on the screen and in memory (SECTOR). EDIT_BYTE will take the
character in the DL register, write it to the memory location within SECTOR
that is currently pointed to by the phantom cursor, and then change the
display.

DISPATCHER already has a nice niche where we can place a CALL to
EDIT_BYTE. Here is the new version of DISPATCHER in DISPATCH.ASM,
with the CALL to EDIT_BYTE and the changes to go along with it:

Listing 22-3. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER

EXTRN READ_BYTE:NEAR, EDIT_BYTE:NEAR
; This is the central dispatcher. During normal editing and viewing, :
; this procedure reads characters from the keyboard and, if the character;
; 1s a command key (such as a cursor key), DISPATCHER calls the :
; procedures that do the actual work. This dispatching is done for :
; special keys listed in the table DISPATCH_TABLE, where the procedure ;
; addresses are stored just after the key names. :
; If the character is not a special key, then it should be placed
; directly into the sector buffer--this is the editing mode. .

; Uses: READ_BYTE, EDIT_BYTE -

250 Simple Editing

Listing 22-3. continued

DISPATCHER
PUSH
PUSH
PUSH

DISPATCH_LOOP:

CALL
OR

Jz
Js
MOV
CALL
JMP

SPECIAL_KEY:
CHP
JE

LEA
SPECIAL_LOOP:
CMP
JE
CMP
JE
ADD
JMP
DISPATCH:
INC
CALL
JMP
NOT_IN_TABLE:
JMP

END_DISPATCH:
POP
POP
POP
RET

DISPATCHER

PROC NEAR
AX
BX
DX

READ_BYTE
AH,RH

DISPATCH_LOOP
SPECIAL_KEY

DL, AL
EDIT_BYTE
DISPATCH_LOOP

AL,t8
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR (BX1,0

NOT_IN_TABLE
AL, [BX]
DISPATCH
BX,3
SPECIAL_LOOP

BX
WORD PTR [BX]
DISPATCH_LOOP
DISPATCH_LOOP
DX
BX
AX

ENDP

characte

(=)

;Read character into AL

;AH = 0 if no character read, -1
; for an extended code.

;No character read, try again
;Read extended code

;Was normal character, edit byte
;Read another character

;F10--exit?
;Yes, leave
;Use BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch

;No, try next entry

;Check next table entry

;Point to address of procedure

;Call procedure

;Hait for another key

;Do nothing, just read next character

The EDIT_BYTE procedure itself does a lot of work, almost entirely by call-
ing other procedures, and this is one feature of modular design. With modular
design, we can often write rather complex procedures simply by giving a list of
CALLs to other procedures that do the work. Many of the procedures in
EDIT_BYTE work with a character in the DL register, but this is already set
when we call EDIT_BYTE, so the only instruction other than a CALL (or
PUSH, POP) is the LEA instruction to set the address of the prompt for

Peter Norton’s Assembly Language Book 251

WRITE_PROMPT_LINE. Most of the procedure calls in EDIT_BYTE are for
updating the display when we edit a byte. You'll see the other details of
EDIT_BYTE when we come to the procedure listing in a moment.

Since EDIT_BYTE changes the byte on screen, we need another procedure,
WRITE_TO_MEMORY, to change the byte in SECTOR. WRITE_TO_MEM-
ORY uses the coordinates in PHANTOM_CURSOR_X and PHANTOM_
CURSOR_Y to calculate the offset into SECTOR of the phantom cursor, then
it writes the character (byte) in the DL register to the correct byte within
SECTOR.

Here is the new file, EDITOR.ASM, which contains the final versions of
both EDIT_BYTE and WRITE_TO_MEMORY:

Listing 22-4. The New File EDITOR.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD
EXTRN PHANTOM_CURSOR_X:BYTE
EXTRN PHANTOM_CURSOR_Y:BYTE

DATA_SEG ENDS

This procedure writes one byte to SECTOR, at the memory location

pointed to by the phantom cursor.

DL Byte to write to SECTOR

The offset is calculated by
OFFSET = SECTOR_OFFSET + (16 * PHANTOM_CURSOR_Y) + PHANTOM_CURSOR_X

o W We W ws W W we ws ws ws wh

WM we wo w5 wo we W we we ws ws we

Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y, SECTOR_OFFSET
Writes: SECTOR
RITE_TO_MEMORY PROC NEAR
PUSH AX
PUSH BX
PUSH CX
MoV BX,SECTOR_OFFSET
MoV AL,PHANTOM_CURSOR_Y
XOR AH, RH
MOV CL,4 ;Multiply PHANTOM_CURSOR_Y by 1k
SHL AX,CL
ADD BX,AX yBX = SECTOR_OFFSET + (1k * Y)

Mov AL,PHANTOM_CURSOR_X

252 Simple Editing

Listing 22-4. continued

XOR AH, AH
ADD BX,AX ;That's the address!
MoV SECTOR[BX],DL ;Now, store the byte
POP CX
POP BX
POP AX
RET
WRITE_TO_MEMORY ENDP

PUBLIC EDIT_BYTE

EXTRN SAVE_REAL_CURSOR:NEAR, RESTORE_REAL_CURSOR:NEAR
EXTRN MOV_TO_HEX_POSITION:NEAR, MOV_TO_ASCII_POSITION:NEAR
EXTRN WRITE_PHANTOM:NEAR, WRITE_PROMPT_LINE:NEAR

EXTRN CURSOR_RIGHT:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN EDITOR_PROMPT:BYTE

DATA_SEG ENDS

; This procedure changes a byte in memory and on the screen.

- DL Byte to write into SECTOR, and change on screen

; Uses: SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR

- MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION
WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT

- WRITE_HEX, WRITE_CHARR, WRITE_TO_MEMORY

; Reads: EDITOR_PROMPT

wh W W W W we W ws ws we owh

EDIT_BYTE PROC NEAR

PUSH DX
CALL SAVE_REAL_CURSOR
CALL MOV_TO_HEX_POSITION ;Move to the hex number in the
CALL CURSOR_RIGHT ; hex window
CALL WRITE_HEX ;Write the new number
CALL MOV_TO_ASCII_POSITION ;Move to the char. in the ASCII window
CALL WRITE_CHAR ;Write the new character
CALL RESTORE_REAL_CURSOR ;Move cursor back where it belongs
CALL WRITE_PHANTOM ;Rewrite the phantom cursor
CALL WRITE_TO_MEMORY ;Save this new byte in SECTOR
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX
RET
EDIT_BYTE ENDP
CODE_SEG ENDS

END

Peter Norton’s Assembly Language Book 253

Summary

Dskpatch now consists of nine files: Dskpatch, Dispatch, Disp_sec, Disk_io,
Video_io, Kbd_io, Phantom, Cursor, and Editor. In this chapter, we changed
Dispatch and added Editor. None of these files is very long, so none takes very
long to assemble. Furthermore, we can make changes fairly quickly by editing
just one of these files, reassembling it, and then linking all the files together
again.

In terms of our current version of Dskpatch, push any key and you’ll see a
change in the number and character under the phantom cursor. Our editing
works, but it’s not very safe as yet, since we can change a byte by hitting any
key. We need to build in some type of safeguard, such as pressing Enter to
change a byte, so we don’t make an accidental change by leaning on the key-
board unintentionally.

In addition, the current version of READ_BYTE doesn’t allow us to enter a
hex number to change a byte. In Chapter 24, we’ll rewrite READ_BYTE, both
so we'll have to push the Enter key before it will accept a new character, and
to allow us to enter a two-digit hex number. First, we need to write a hex
input procedure; in the next chapter, we’ll write input procedures for both hex
and decimal.

19

) o lllfr‘{lhrm

LT

0 N et adicom wrad il

SO T '“_‘h‘u

1 20T ‘l 11!1 .
At d 'v't’“’

sy il i “

far s berfing S |-|_= 4

- ar-gf e =

a4 G !l-'-."'.""-._'!l. e L
s W . *.-_l:“ R

o Dirobniend

313 R Tirt ‘Ii‘»i it

. mpety ot Rl A

J el W WL

A Tl Gf sl

R ARE TR S

29
HEX AND DECIMAL INPUT

Hex Input 256
Decimal Input 263
Summary 266

255

256 Hex and Decimal Input

“Ie’ll encounter two new procedures for keyboard input in this chapter: one
procedure for reading a byte by reading either a two-digit hex number or a
single character, and another for reading a word by reading the characters of
a decimal number. These will be our hex and decimal input procedures.

Both procedures are sufficiently tricky that we need to use a test program
with them before we even consider linking them into Dskpatch. We’ll be
working with READ_BYTE, and a test procedure will be particularly im-
portant here, because this procedure will (temporarily) lose its ability to
read special function keys. Since Dskpatch relies on the function keys, we
won’t be able to use our new READ_BYTE with Dskpatch. We'll also find
out why we can’t read special function keys with the READ_BYTE devel-
oped here, and in the next chapter we’ll modify the file to make our function-
key problems go away.

Hex Input

Let’s begin by rewriting READ_BYTE. In the last chapter, READ_BYTE
would read either an ordinary character or a special function key, and return
one byte to Dispatch. Dispatch then called the Editor if READ_BYTE read an
ordinary character, and EDIT_BYTE modified the byte pointed to by the
phantom cursor. Otherwise, Dispatch looked for special function keys in DIS-
PATCH_TABLE to see if the byte was there; if so, Dispatch called the proce-
dure named in the table.

But, as mentioned in the last chapter, the old version of READ_BYTE
makes it much too easy to change a byte by accident. If you unintentionally
hit any key on the keyboard (other than special keys), EDIT_BYTE will
change the byte under the phantom cursor. All of us are sometimes clumsy,
and such an inadvertent change in a sector can lead to disaster.

We’ll change READ_BYTE so that, henceforth, it won’t return the char-
acter we type until we press the Enter key. We'll provide this feature by
using the DOS INT 21h function 0Ah to read a string of characters. DOS
only returns this string when we press Enter, so we get our anti-clumsy fix.
But along the way, we lose special function keys, for reasons you’ll see later.

To see exactly how our changes affect READ_BYTE, we need to write a test
program to test READ_BYTE in isolation. That way, if anything strange hap-
pens, we'll know it’s READ_BYTE and not some other part of Dskpatch. Our
job of writing a test procedure will be simpler if we use a few procedures from

Peter Norton’s Assembly Language Book 257

Kbd_io, Video_io, and Cursor to print information on the progress of READ __
BYTE. We'll use such procedures as WRITE_HEX and WRITE_DECIMAL to
print the character code returned and the number of characters read. The de-
tails are here, in TEST.ASM:

Listing 23-1. The Test Program TEST.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 100h

EXTRN WRITE_HEX:NEAR, WRITE_DECIMAL:NEAR
EXTRN WRITE_STRING:NEAR, SEND_CRLF:NEARR
EXTRN READ_BYTE:NEAR

TEST PROC NEAR
LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_BYTE
CALL SEND_CRLF

LEA DX,CHARACTER_PROMPT
CALL WRITE_STRING
Mov DL,AL

CALL WRITE_HEX
CALL SEND_CRLF

LEA DX,CHARACTERS_READ_PROMPT
CALL WRITE_STRING

MOV DL, AH

XOR DH,DH

CALL WRITE_DECIMAL
CALL SEND_CRLF

INT 20h
TEST ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
ENTER_PROMPT DB 'Enter characters: ',0
CHARACTER_PROMPT DB 'Character code: ',0
CHARACTERS_READ_PROMPT DB 'Number of characters read: ',0

; and now dummy variables
PUBLIC HEADER_LINE_NO, DISK_DRIVE_NO, HEADER_PART_1, HEARDER_PART_¢C
PUBLIC PROMPT_LINE_NO, CURRENT_SECTOR_NO

HEADER_LINE_NO DB 0
DISK_DRIVE_NO DB 0
HEADER_PART_1 DB 0
HEADER_PART_¢ DB 0

258 Hex and Decimal Input

Listing 23-1. continued

PROMPT_LINE_NO DB 0
CURRENT_SECTOR_NO DB 0
DATA_SEG ENDS

END TEST

Try linking this with your current versions of Kbd_io, Video_io, and Cur-
sor (place Test first in the LINK list). If you press any special function key,
Test will tell you it read 255 characters. Why? We placed the —1 from AH
into DL and set the upper byte of DX to zero, leaving DX set to 255 (FFh), not
—1 (FFFFh).

We won't be so careless when we actually use READ_BYTE in Dskpatch.
This is a test program, and as long as we know what to expect, we can test
READ_BYTE and all its boundary conditions. Before we move on to rewrite
READ_BYTE, however, we need to account for one feature of TEST.ASM that
you may have noticed: its variable definitions.

The bulk of the instructions in TEST.ASM are for formatting—making the
display look nice. The variable definitions at the end of Test are included only
to satisfy the linker. When we link Test with Kbd_io, Video_io, and Cursor,
the linker searches for a number of variables used by Kbd_io, Video_io, and
Cursor. We defined the variables in Dskpatch, but since we aren’t linking in
Dskpatch, we need to redefine these variables in TEST.ASM. We won’t actu-
ally use the variables, because we don’t call any procedures in Video_io and
Cursor that require them. But we need these variables anyway, to satisfy the
linker there won’t be any loose ends.

Let’s move on to rewriting READ_BYTE to accept a string of characters.
Not only will this save us from our clumsiness when we use Dskpatch, it will
also allow us to use the Backspace key to delete characters if we change our
mind about what we want to type in—another nice feature since it’s easy to
make mistakes. READ_BYTE will use the procedure READ_STRING to read
a string of characters.

READ_STRING is very simple, almost trivial, but we’ve placed it in a sepa-
rate procedure so we can rewrite it in the next chapter to read special function
keys without having to press the Enter key. To save time, we’ll also add three
other procedures that READ_BYTE uses: STRING_TO_UPPER, CON-
VERT_HEX_DIGIT, and HEX_TO_BYTE.

STRING_TO_UPPER and HEX_TO_BYTE both work on strings.
STRING_TO_UPPER converts all the lowercase letters in a string to upper-
case. That means you can type either f3 or F3 for the hex number F3h. By

Peter Norton’s Assembly Language Book 259

allowing hex numbers to be typed in either lower- or uppercase letters, we add
user-friendliness to Dskpatch.

HEX_ TO_BYTE takes the string read by DOS, after we call STRING_
TO_UPPER, and converts the two-digit hex string to a single-byte number.
HEX_TO_BYTE makes use of CONVERT_HEX_DIGIT to convert each hex
digit to a four-bit number.

How do we ensure that DOS won’t read more than two hex digits? The DOS
function 0Ah reads an entire string of characters into an area of memory de-
fined like this:

CHAR_NUM_LIMIT DB 0
NUM_CHARS_READ DB 0
STRING DB 80 DUP (O)

The first byte ensures we don’t read too many characters. CHAR_NUM_
LIMIT tells DOS how many characters, at most, to read. If we set this to three,
DOS will read up to two characters, plus the carriage-return character (DOS
always counts the carriage return). Any characters we type after that will be
discarded—thrown away—and for each extra character, DOS will beep to let
us know we’ve passed the limit. When we press the Enter key, DOS sets the
second byte, NUM_CHARS_READ, to the number of characters it actually
read, not including the carriage return.

STRING_TO_UPPER, READ_BYTE, and STRING_TO_UPPER all use
NUM_CHARS_READ. For example, READ_BYTE checks NUM_CHARS_
READ to find out whether you typed a single character or a two-digit hex
number. If NUM_CHARS_READ was set to one, READ_BYTE returns a
single character in the AL register. If NUM_CHARS_READ was set to two,
READ_BYTE uses HEX_TO_BYTE to convert the two-digit hex string to a
byte.

Without further ado, here is the new file KBD_I10.ASM, with all four new
procedures:

Listing 23-2. The New Version of KBD_IO.ASHM
CGROUP GROUP CODE_SEG, DATA_SEG

ASSUME CS:CGROUP, DS:CGROUP
CODE_SEG SEGMENT PUBLIC

PUBLIC STRING_TO_UPPER

260 Hex and Decimal Input

Listing 23-2. continued

This procedure converts the string, using the DOS format for strings,
to all uppercase letters.

DS:DX Address of string buffer

TRING_TO_UPPER PROC NEAR
PUSH AX
PUSH BX
PUSH CX
MOV BX, DX
INC BX ;Point to character count
MOV CL,[BX] ;Character count in 2nd byte of buffer
XOR CH,CH ;Clear upper byte of count
UPPER_LOOP:
INC BX ;Point to next character in buffer
MOV “ AL, [BX]
CMP AL,'a’ ;See if it is a lowercase letter
JB NOT_LOWER ;Nope
CHMP AL,"'2?
JA NOT_LOWER
ADD AL,'A'-'a! ;Convert to uppercase letter
MOV [BX],AL
NOT_LOWER:
LOOP UPPER_LOOP
POP Cx
POP BX
POP AX
RET
STRING_TO_UPPER ENDP

This procedure converts a character from ASCII (hex) to a nibble (4

. H
*wbits). -
= AL Character to convert 5
; Returns: AL Nibble H
) CF Set for error, cleared otherwise 3
CONVERT_HEX_DIGIT PROC NEAR

CHMP AL,'D! ;Is it a legal digit?

JB BAD_DIGIT ; Nope

CMP AL, 9" ;Not sure yet

JA TRY_HEX ;Might be hex digit

SUB AL, 'O ;Is decimal digit, convert to nibble

CLC ;Clear the carry, no error

RET
TRY_HEX:

CMP AL,'A’ ;Not sure yet

JB BAD_DIGIT ;Not hex

CMP AL,'F!? ;Not sure yet

Peter Norton’s Assembly Language Book 261

Listing 23-2. continued

JA BAD_DIGIT ;Not hex
SUB AL,'A'-10 ;Is hex, convert to nibble
CLC ;Clear the carry, no error
RET

BAD_DIGIT:
STC ;Set the carry, error
RET

CONVERT_HEX_DIGIT ENDP

PUBLIC HEX_TO_BYTE

; This procedure converts the two characters at DS:DX from hex to one ;
; byte. ;

~ DS:DX Address of two characters for hex number s

; Returns: >
; AL Byte i
" CF Set for error, clear if no error :
; Uses: CONVERT_HEX_DIGIT :
HEX_TO_BYTE PROC NEAR

PUSH BX

PUSH |5 §

MOV BX,DX ;Put address in BX for indirect addr

MOV AL, [BX] ;Get first digit

CALL CONVERT_HEX_DIGIT

Jc BAD_HEX ;Bad hex digit if carry set

MOV CX,4 ;Now multiply by 16

SHL AL,CL

MOV AH,AL ;Retain a copy

INC BX ;Get second digit

MOV AL, [BX]

CALL CONVERT_HEX_DIGIT

JC BAD_HEX ;Bad hex digit if carry set

OR AL,AH ;Combine two nibbles

CLC ;Clear carry for no error
DONE_HEX:

POP CX

POP BX

RET
BAD_HEX:

STC ;Set carry for error

JMP DONE_HEX
HEX_TO_BYTE ENDP

DS:DX Address of string area .

R ey~ -

262 Hex and Decimal Input

Listing 23-2. continued

READ_STRING
PUSH
MOV
INT
POP
RET

READ_STRING

PUBLIC

-s we we ws

This procedure reads either a single ASCII character or a two-digit

PROC NEAR

AX

AH,ORh ;Call for buffered keyboard input

2lh ;Call DOS function for buffered input
AX

ENDP

READ_BYTE

hex number. This is just a test version of READ_BYTE. <
; Returns byte in AL Character code (unless AH = 0) :
- AH 1 if read ASCII char -
: 0 if no characters read .
- -1 if read a special key :
; Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING -
; Reads: KEYBOARD_INPUT, etc. -
; Writes: KEYBOARD_INPUT, etc. H
READ_BYTE PROC NEAR
PUSH DX
MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)
LEA DX,KEYBOARD_INPUT
CALL READ_STRING
CHMP NUM_CHARS_READ,1 ;See how many characters
JE ASCII_INPUT ;Just one, treat as ASCII character
JB NO_CHARRACTERS ;Only Enter key hit
CALL STRING_TO_UPPER ;No, convert string to uppercase
LEA DX,CHARS ;Address of string to convert
CALL HEX_TO_BYTE ;Convert string from hex to byte
JC NO_CHARACTERS ;Error, so return 'no characters read!
MOV AH,1 ;Signal read one character
DONE_READ:
POP DX
RET
NO_CHARRACTERS:
XOR AH, RH ;Set to 'no characters read'
JMP DONE_READ
ASCII_INPUT:
MOV AL,CHARS ;Load character read
MoV AH,1 ;Signal read one character
JHP DONE_READ
READ_BYTE ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC

KEYBOARD_INPUT

LABEL BYTE

Peter Norton’s Assembly Language Book 263
Listing 23-2. continued
CHAR_NUM_LIMIT DB 0 ;Length of input buffer
NUM_CHARS_READ DB 0 ;Number of characters read
CHARS DB 80 DUP (O) ;A buffer for keyboard input
DATA_SEG ENDS
END

Reassemble Kbd_io and link the four files Test, Kbd_io, Video_io, and Cur-
sor to try this version of READ_BYTE.

At this point, we have two problems with READ_BYTE. Remember the
special function keys? We can’t read them with DOS function 0Ah. It just
doesn’t work. Try pressing a function key when you run Test. DOS doesn’t
return two bytes, with the first set to zero as you might expect.

We have no way to read extended codes with DOS’ buffered input, using
function 0Ah. We used this function so we could use the Backspace key to
delete characters before we press the Enter key. But now, since we can’t read
special function keys, we have to write our own READ_STRING procedure.
We’ll have to replace function 0Ah to ensure we can press a special function
key without pressing Enter.

The other problem with DOS’ function 0Ah for keyboard input has to do
with the line-feed character. Press Control-Enter (line feed) after you type one
character, and then try the Backspace key. You’'ll find that you’re on the next
line, with no way to return to the one above. Our new version of Kbd_io in the
next chapter will treat the line-feed character (Control-Enter) as an ordinary
character; then, pressing line feed won’t move the cursor to the next line.

But before we move on to fix the problems with READ_BYTE and READ_
STRING, let’s write a procedure to read an unsigned decimal number. We
won’t use the procedure in this book, but the version of Dskpatch on the com-
panion disk does use it so that we can, for example, ask Dskpatch to display
sector number 567.

Decimal Input

Recall that the largest unsigned decimal number we can put into a single
word is 65536. When we use READ_STRING to read a string of decimal dig-
its, we’ll tell DOS to read no more than six characters (five digits and a car-
riage return at the end). Of course, that means READ__DECIMAL will still be
able to read numbers from 65536 to 99999, even though these numbers don’t

264 Hex and Decimal Input

fit into one word. We’ll have to keep watch for such numbers and return an
error code if READ_DECIMAL tries to read a number larger than 65535, or if
it tries to read a character that is not between zero and nine.

To convert our string of up to five digits into a word, use multiplication as
we did in Chapter 1: take the first (leftmost) digit, multiply it by ten, tack on
the second digit, multiply it by ten, and so on. Using this method, we could, for
example, write 49856 as:

£*10% + 9%107 + 8*102 + 5*10% + L*100

or, as we’ll do the calculation:

10*(10*(10*(10*4+9) +8) +5) +b

Of course, we must watch for errors as we do these multiplications and re-
turn with the carry flag set whenever an error occurs. How do we know when
we try to read a number larger than 65535? With larger numbers, the last
MUL will overflow into the DX register. The CF flag is set when DX is not
zero after a word MUL, so we can use a JC (Jump if Carry set) instruction to
handle an error. Here is READ_DECIMAL, which also checks each digit for
an error (a digit that is not between 0 and 9). Place this procedure in the file
KBD_IO.ASM:

Listing 23-3. Rdd This Procedure to KBD_IO.ASHM

PUBLIC READ_DECIMAL

; This procedure takes the output buffer of READ_STRING and converts
; the string of decimal digits to a word.

: AX Word converted from decimal -
: CF Set if error, clear if no error >
; Uses: READ_STRING)
; Reads: KEYBOARD_INPUT, etc.)
; Writes: KEYBOARD_INPUT, etc. '
READ_DECIMAL PROC NEAR

PUSH BX

PUSH cX

PUSH DX

MOV CHAR_NUM_LIMIT,E ;Max number is S digits (b65535)

LEA DX,KEYBOARD_INPUT

CALL READ_STRING
MOV CL,NUM_CHARS_READ ;Get number of characters read

Listing 23-3.

XOR
CHMP
JLE
XOR
XOR
CONVERT_DIGIT:
MoV
MUL
Jc
MOV
SUB
Js
CHP
JA
ADD
INC
LOOP
DONE_DECIMAL:

POP
POP
POP
RET

continued

CH,CH

CL,0
BAD_DECIMAL_DIGIT
AX,AX

BX,BX

DX,10

DX
BAD_DECIMAL_DIGIT
DL,CHARS[BX]
DL; ' [t
BAD_DECIMAL_DIGIT
DL,9
BAD_DECIMAL_DIGIT
AX,DX

BX

CONVERT_DIGIT

DX
CX
BX

BAD_DECIMAL_DIGIT:

STC
JHP
READ_DECIMAL

DONE_DECIMAL
ENDP

Peter Norton’s Assembly Language Book

;Set upper byte of count to O
;Return error if no characters read
;No chars read, signal error

;Start with number set to O

;Start at beginning of string

;Multiply number by 10

;Multiply AX by 10

;CF set if MUL overflowed one word
;Get the next digit

;And convert to a nibble (4 bits)
;Bad digit jif < 0

;Is this a bad digit?

;Yes

;No, so add it to number

;Point to next character

;Get the next digit

;Set carry to signal error

265

To make certain it works properly, we need to test this procedure with all
the boundary conditions. Here is a simple test program for READ_DECIMAL
that uses much the same approach we used to test READ_BYTE:

Listing 23-4.

CGROUP GROUP
ASSUME

CODE_SEG
ORG

EXTRN

EXTRN

EXTRN
TEST PROC
LEA
CALL
CALL
Jc

Changes to TEST.ASM

CODE_SEG, DATA_SEG
CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC
100H

WRITE_HEX:NERR, WRITE_DECIMAL:NEAR
WRITE_STRING:NERR, SEND_CRLF:NEAR

READ_DECIMAL:NERR

NEAR
DX,ENTER_PROMPT
WRITE_STRING
READ_DECIMAL
ERROR

266 Hex and Decimal Input

Listing 23-4. continued

CALL SEND_CRLF

LEA DX,NUMBER_READ_PROMPT
CALL WRITE_STRING
MOV DX, AX

CALL WRITE_DECIMAL
ERROR: CALL SEND_CRLF

INT 20h
TEST ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
ENTER_PROMPT DB 'Enter decimal number: ',0
NUMBER_READ_PROMPT DB 'Number read: ',0

; and now dummy variables
PUBLIC HEADER_LINE_NO, DISK_DRIVE_NO, HEADER_PART_1, HEADER_PART_?Z
PUBLIC PROMPT_LINE_NO, CURRENT_SECTOR_NO

HEADER_LINE_NO DB 0
DISK_DRIVE_NO DB 0
HEADER_PART_1 DB 0
HEADER_PART_2 DB 0
PROMPT_LINE_NO DB 0
CURRENT_SECTOR_NO DB 0
DATA_SEG ENDS

END TEST

Again, we need to link four files: Test (the preceding file), Kbd_io, Video_io,
and Cursor. Try the boundary conditions, using both valid digits and invalid
ones (such as A, which is not a valid decimal digit), and with such numbers as
0, 65535, and 65536.

Summary

We’ll return to the two simple test procedures later on, when we discuss
ways you can write your own programs. Then, we’ll see how you can use a
slightly more advanced version of TEST.ASM to write a program that will
convert numbers between hex and decimal.

But now, we’re ready to move on to the next chapter, where we’ll write im-
proved versions of READ_BYTE and READ_STRING.

24

IMPROVED KEYBOARD
INPUT

A New READ_STRING 268

267

268 Improved Keyboard Input

“’e mentioned we would present the development of Dskpatch just as we
first wrote it—including bugs and clumsily designed procedures, some of
which you've already seen. In this chapter, we’ll write a new version of
READ_BYTE, and it will place a subtle bug into Dskpatch. In the next chap-
ter, we'll find a can of RAID to exorcise this small bug, but see if you can find
it yourself first. (Hint: Carefully check all the boundary conditions for
READ_BYTE when it’s attached to Dskpatch.)

A New READ_STRING

Our modular-design philosophy calls for short procedures, therefore no sin-
gle procedure is too difficult to understand. The new version of READ_
STRING will be an example of a clumsy procedure: much too long. It should be
rewritten with more procedures, but we’ll leave this rewrite to you. This book
is quickly drawing to an end, and we still have a few more procedures left to
write before Dskpatch is a useful program. Right now, we can still edit only
the first half of any sector, and we can’t write this sector back to the disk yet.

In this chapter, we'll give READ_STRING a new procedure, BACK_
SPACE, to emulate the function of the Backspace key found in the DOS func-
tion 0Ah. When we push the Backspace key, BACK_SPACE will erase the
last character typed, from both the screen and the string in memory.

On screen, BACK_SPACE will erase the character by moving the cursor
left one character, writing a space over it, and then moving right one charac-
ter again. This sequence will perform the same backspace deletion provided
by DOS.

In the buffer, BACK_SPACE will erase a character by changing the buffer
pointer, DS:SI+ BX, so it points to the next lower byte in memory. In other
words, BACK_SPACE will simply decrement BX: (BX = BX — 1). The charac-
ter will still be in the buffer, but our program won’t see it. Why not? READ_
STRING tells us how many characters it’s read. If we try to read more than this
number from the buffer, we’ll see characters we erased. Otherwise, we won’t.

We have to be careful not to erase any characters when the buffer is empty.
Remember that our string-data area looked something like this:

CHAR_NUM_LIMIT DB 0
NUM_CHARS_READ DB 0
STRING DB 80 DUP (D)

S Sl e R Sy ==

Peter Norton’s Assembly Language Book

269

The string buffer starts at the second byte of this data area, or at an offset of 2
from the start. So, BACK_SPACE won't erase a character if BX is set to 2, the

start of the string buffer, because the buffer is empty when BX equals 2.

Here is BACK_SPACE; place it into KBD_10.ASM:

Listing 24-1.

PUBLIC
EXTRN

when the buffe

DS:SI+BX

ACK_SPACE
PUSH
PUSH
CMP
JE
DEC
MOV
MOV
INT
MOV
CALL
MOV
INT
END_BS: POP
POP
RET
BACK_SPACE

BRdd This Procedure to KBD_IO.ASM

BACK_SPACE

WRITE_CHAR:NEAR

This procedure deletes characters, one at a time, from the buffer and
the screen when the buffer is not empty. BACK_SPACE simply returns

r is empty.

Most recent character still in buffer

WRITE_CHAR

PROC NEAR
AX

DX

BX,¢2
END_BS

BX

AH,2

DL,BS

2lh

DL,20h
WRITE_CHAR
DL,BS

clh

DX

AX

ENDP

s Wwe we whs ws ws we we ws

;Delete one character

;Is buffer empty?

;Yes, read the next character
;Remove one character from buffer
;Remove character from screen

;Write space there

;Back up again

Let’s move on to the new version of READ_STRING. It will be a large
mouthful; the listing you’ll see is for only one procedure. By far the longest
procedure we've written, READ_STRING is, as we said, too large. That’s be-
cause it’'s complicated by so many possible conditions.

Why does READ_STRING do so many things? We added a few more fea-
tures. If you press the Escape key, READ_STRING will clear the string buffer
and remove all the characters from the screen. DOS also erases all the charac-
ters in the string buffer when you press Escape, but it doesn’t erase any char-
acters from the screen. Instead, it simply writes a backslash (\) character at
the end of the line and moves to the next line. Our version of READ_STRING
will be more versatile than the DOS READ_STRING function.

270 Improved Keyboard Input

READ_STRING uses three special keys: the Backspace, Escape, and Enter
keys. We could write the ASCII codes for each of these keys in READ_
STRING whenever we need them, but instead we’ll add a few definitions to
the beginning of KBD_IO.ASM to make READ_STRING more readable.
Here are the definitions:

Listing 24-2. Additions to KBD_IO.ASHM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

BS EQU 8 yBackspace character
CR EQU 13 ;Carriage-return character
ESC EQU e’ ;Escape character

CODE_SEG SEGMENT PUBLIC

Here is READ_STRING. Although it’s rather long, you can see from the
listing that it’s not very complicated—just long. Replace the old version of
READ_STRING in KBD_IO.ASM with this new version:

Listing 24-3. The New READ_STRING in KBD_IO.ASM

PUBLIC READ_STRING

EXTRN WRITE_CHAR:NEAR
This procedure performs a function very similar to the DOS OARh
function. But this function will return a special character if a
function or keypad key is pressed--no return for these keys. And
ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
one for the return). And the second byte will be used
by this procedure to return the number of characters
actually read.

0 No characters read

-1 One special character read

otherwise number actually read (not including
Enter key)

e W W W WE W W W W W we e W we wh
M WS W W W W wE we ws wE s W Wl we we wE e

; Uses: BACK_SPACE, WRITE_CHAR

Listing 24-3. continued

READ_STRING PROC NEAR

PUSH AX

PUSH BX

PUSH SI

MOV SI,DX
START_OVER:

MOV BX, 2

oV AH,7?

INT 21h

OR AL,AL

Jz EXTENDED
NOT_EXTENDED:

CHP AL,CR

JE END_INPUT

CHP AL,BS

JINE NOT_BS

CALL BACK_SPACE

CHP BL,2

JE START_OVER

JHP SHORT READ_NEXT_CHAR
NOT_BS: CMP AL,ESC

JE PURGE_BUFFER

CMP BL,[SI]

JA BUFFER_FULL

MoV (SI+BX],AL

INC BX

PUSH DX

MoV DL,AL

CALL WRITE_CHAR

POP DX
READ_NEXT_CHAR:

oV AH,?

INT 21h

OR AL,AL

JINE NOT_EXTENDED

MOV AH, 7

INT 21h

Peter Norton’s Assembly Language Book 271

;Use SI for index register and

;BX for offset to beginning of buffer
;Call for input with no checking

; for CTRL-BREAK and no echo

;Is character extended ASCII?

;Yes, read the extended character
;Extnd char is error unless buf empty
;Is this a carriage return?

;Yes, we are done with input

;Is it a backspace character?

;Nope

;Yes, delete character

;Is buffer empty?

;Yes, can now read extended ASCII again
;No, continue reading normal characters
;Is it an ESC--purge buffer?

;Yes, then purge the buffer

;Check to see if buffer is full

;Buffer is full

;Else save char in buffer

;Point to next free character in buffer

;Echo character to screen

;An extended ASCII char is not valid
; when the buffer is not empty
;Char is valid

;Throw out the extended character

; Signal an error condition by sending a beep
; character to the display: chr$§(7).

SIGNAL_ERROR:

PUSH DX

Mov DL,7

MOV AH,2

INT clh

POP DX

JMP SHORT READ_NEXT_CHAR

;Sound the bell by writing chr$(7)

;Now read next character

272 Improved Keyboard Input

Listing 24-3. continued

; Empty the string buffer and erase all the
; characters displayed on the screen.

PURGE_BUFFER:

PUSH CcX
MOV CL,(SI] ;Backspace over maximum number of
XOR CH,CH
PURGE_LOOP: ; characters in buffer. BACK_SPACE
CALL BACK_SPACE ; will keep the cursor from moving too
LOOP PURGE_LOOP ; far back
POP CX
JNP START_OVER ;Can now read extended ASCII characters

; Since the buffer is empty

; The buffer was full, so can't read another 2
; character. Send a beep to alert user of -
; buffer-full condition. -
BUFFER_FULL:
JHP SHORT SIGNAL_ERROR ;If buffer full, just beep

v

; Read the extended ASCII code and place this
; in the buffer as the only character, then
; return -1 as the number of characters read.

EXTENDED: ;Read an extended ASCII code
MOV AH,7?
INT clh
MOV [SI+2],AL ;Place just this char in buffer
MOV BL,0FFh ;Num chars read = -1 for special
JHP SHORT END_STRING

; Save the count of the number of characters
; read and return.

DR R I Y

END_INPUT: ;Done with input
SUB BL,¢2 ;Count of characters read
END_STRING:
MOV [SI+1],BL ;Return number of chars read
POP -
POP BX
POP AX
RET
READ_STRING ENDP

Stepping through the procedure, we can see that READ_STRING first

Peter Norton’s Assembly Language Book 273

checks to see if we pressed a special function key. It allows us to do so only
when the string is empty. For example, if we press the F1 key after we press
the a key, READ_STRING will ignore the F1 key and beep to tell us we
pressed a special key at the wrong time. We can, however, press Escape, then
F1, because the Escape key causes READ_STRING to clear the string buffer.

If READ_STRING reads a carriage-return character, it places the number
of characters it read into the second byte of the string area and returns. Our
new version of READ_BYTE looks at this byte to see how many characters
READ_STRING actually read.

Next, READ_STRING checks to see if we typed a backspace character. If so,
it CALLs BACK_SPACE to erase one character. If the string buffer becomes
empty (BX becomes equal to 2, the start of the string buffer), then READ_
STRING goes back to the start, where it can read a special key. Otherwise, it
just reads the next character.

Finally, READ_STRING checks for the ESC character. BACK_SPACE
erases characters only when there are characters in the buffer, so we can clear
the string buffer by calling the BACK_SPACE procedure CHAR_NUM_
LIMIT times, because READ_STRING can never read more than CHAR_
NUM_LIMIT characters. Any other character is stored in the string buffer
and echoed to the screen with WRITE_CHAR. Unless, that is, the buffer is
full.

In the last chapter, we changed READ_BYTE in such a way that it couldn’t
read special function keys. We need only add a few lines here to allow READ_
BYTE to work with our new version of READ_STRING, which can read spe-
cial function keys. Here are the changes to make to READ_BYTE in KBD_
[10.ASM:

Listing 24-4. Changes to READ_BYTE in KBD_IO.ASM

PUBLIC READ_BYTE

s e . e . e . . S o e S S e e . S o e o S o e e S S . = = =

This procedure reads a single ASCII character of a hex number.

Returns byte in AL Character code (unless AH = 0)
AH 1 if read ASCII char or hex number
0 if no characters read
-1 if read a special key

s W ws ws ws e e ws e

EX) o o we we we ws ws we we we ws

Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING
Reads: KEYBOARD_INPUT, etc. .
EAD_BYTE PROC NEAR

PUSH DX

274 Improved Keyboard Input

Listing 24-4. continued

MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)
LEA DX,KEYBOARD_INPUT
CALL READ_STRING
CHMP NUM_CHARS_READ,1 ;See how many characters
JE ASCII_INPOUT ;Just one, treat as ASCII character
JB NO_CHARACTERS ;Only Enter key hit
CHP BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?
JE SPECIAL_KEY ;Yes :
CALL STRING_TO_UPPER ;No, convert string to uppercase
LEA DX,CHARS ;Address of string to convert
CALL HEX_TO_BYTE ;Convert string from hex to byte
JC NO_CHARACTERS yError, so return 'no characters read'
MOV AH,1 ;Signal read one character
DONE_READ:
POP DX
RET
NO_CHARACTERS:
XOR AH, AH ;Set to 'no characters read'
JMP DONE_READ
ASCII_INPUT:
MOV AL,CHARS ;Load character read
MOV RH,1 ;Signal read one character
JHP DONE_READ
SPECIAL_KEY:
MOV AL,CHARS([O] ;Return the scan code
Mov AH,OFFh ;Signal special key with -1
JMP DONE_RERD
READ_BYTE ENDP

Dskpatch, with the new versions of READ_BYTE and READ_STRING,
should be much nicer to use. But there is a bug here, as we said. To try to find
it, run Dskpatch and try all the boundary conditions for READ_BYTE and
HEX_TO_BYTE.

e i Mg O = T

25
IN SEARCH OF BUGS

Fixing DISPATCHER 276
Summary 278

275

276 In Search of Bugs

If you try the new version of Dskpatch with ag, which isn’t a hex number,
you’ll notice that Dskpatch doesn’t do anything when you press the Enter key.
Since the string ag isn’t a hex number, there is nothing wrong with Dskpatch
ignoring it, but the program should, at least, erase it from the screen.

This error is the sort we can find only by thoroughly checking the boundary
conditions of a program. Not just the pieces, but the entire program. The bug
here isn’t the fault of READ_BYTE, even though it appeared when we re-
wrote that procedure. Rather, the problem is in the way we wrote DIS-
PATCHER and EDIT_BYTE.

EDIT_BYTE is designed so it calls WRITE_PROMPT_LINE to rewrite the
editor prompt line and clear the rest of the line. This will remove any charac-
ter we typed. But if we type a string like ag, READ_BYTE reports that it read
a string of zero length, and DISPATCH doesn’t call EDIT_BYTE. What’s the
solution?

Fixing DISPATCHER

There are actually two ways to solve this problem. The best solution would
be to rewrite Dskpatch to be more modular, and to redesign DISPATCHER.
We won’t do that. Remember: Programs are never complete, but we have to
stop somewhere. Instead, we’ll add a fix to DISPATCHER so it will rewrite
the prompt line whenever READ_BYTE reads a string of zero length.

Here are the modifications to DISPATCHER (in DISPATCH.ASM) to fix
the bug:

Listing 25-1. Changes to DISPATCHER in DISPATCH.ASHM

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT_BYTE:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN EDITOR_PROMPT:BYTE
DATA_SEG ENDS

; This is the central dispatcher. During normal editing and viewing,
; this procedure reads characters from the keyboard and, if the character;
; is a command key (such as a cursor key), DISPATCHER calls the .
; procedures that do the actual work. This dispatching is done for

; special keys listed in the table DISPATCH_TABLE, where the procedure
; addresses are stored just after the key names.

-e owe ws

Listing 25-1. continued

Peter Norton’s Assembly Language Book

- If the character is not a special key, then it should be placed :
; directly into the sector buffer--this is the editing mode. :

; Uses:
; Reads:

DISPATCHER
PUSH
PUSH
PUSH

DISPATCH_LOOP:
CALL
OR

Jz
Js
MOV
CALL
JHP

SPECIAL_KEY:
CHMP
JE

LEA
SPECIAL_LOOP:

CMP
JE

CHMP
JE

ADD
JMP

DISPATCH:
INC
CALL
JHP

NOT_IN_TABLE:
JHMP

NO_CHARS_READ:
LEA
CALL
JHP

END_DISPATCH:
POP
POP
POP
RET

READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE :

EDITOR_PROMPT

PROC NEAR
AX
BX
DX

READ_BYTE
AH,AH

NO_CHARS_READ
SPECIAL_KEY
DL,AL
EDIT_BYTE
DISPATCH_LOOP

AL,b8
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR [BX1,0
NOT_IN_TABLE
AL, [BX]
DISPATCH

BX,3
SPECIAL_LOOP

BX
WORD PTR [BX]
DISPATCH_LOOP

DISPATCH_LOOP

DX,EDITOR_PROMPT
WRITE_PROMPT_LINE
DISPATCH_LOOP

DX
BX
AX

DISPATCHER ENDP

;Read character into AX

;AX = 0 if no character read, -1
; for an extended code.

;No character read, try again
;Read extended code

;Has normal character, edit byte
;Read another character

s ELll——ex1t?
;Yes, leave
;Use BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch

;No, try next entry

;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;Do nothing, just read next character

;Erase any invalid characters typed

;Try again

277

278 In Search of Bugs

This bug fix doesn’t create any great problems, but it does make DIS-
PATCHER slightly less elegant. Elegance is a virtue to strive for. Elegance
and clarity often go hand in hand, and our rules of modular design are aimed
at increasing elegance.

Summary

DISPATCHER is elegant because it’s such a simple solution to a problem.
Rather than using many comparisons for each special character we might
type, we built a table we can search. Doing so made DISPATCHER simpler,
and hence more reliable, than a program containing different instructions for
each possible condition that might arise. By adding our small fix, we compli-
cated DISPATCHER—not by much in this case, but some bugs might require
us to really complicate a procedure.

If you find yourself adding fixes that make a procedure too complicated,
rewrite whichever procedures you must to remove this complexity. And al-
ways check the boundary conditions both before and after you add a procedure
to your main program. You'll save yourself a lot of debugging effort if you do.

We can’t overemphasize the importance of testing procedures with bound-
ary conditions and of following the rules of modular design. Both techniques
lead to better and more reliable programs. In the next chapter, we’ll look at
another method for debugging programs.

WRITING MODIFIED
SECTORS

Writing to the Disk 280
More Debugging Techniques 282
Building a Road Map 283
Tracking Down Bugs 285
Symdeb 287
Symbolic Debugging 287
Screen Swapping 288
Summary 290

279

26

280 Writing Modified Sectors

“763 almost have a usable Dskpatch program. In this chapter, we’ll build the
procedure to write a modified sector back to disk, and in the next chapter,
we’ll write a procedure to show the second half of a sector. Dskpatch won’t be
finished then, as we said, programs never are; but the scope of our coverage in
this book will be complete. You'll find many extras in the version of Dskpatch
on the disk available to complement this book.

Writing to the Disk

Writing a modified sector back to the disk can be disastrous if it’s not done
intentionally. All of Dskpatch’s functions thus far depend on the function keys
F1, F2, and F10, and on the cursor keys. But any of these keys could be
pressed quite by accident. Fortunately, the same doesn’t hold true for the
shifted function keys, so we’ll use the shifted F5 key for writing a disk sector.
This will prevent us from writing a sector back to disk unless we really want
to.

Make the following changes to DISPATCH.ASM, to add WRITE_SECTOR
to the table:

Listing 26-1. Changes to DISPATCH.ASHM

DATA_SEG SEGMENT PUBLIC
EXTRN NEXT_SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PREVIOUS_SECTOR:NEAR ;In DISK_IO.ASHM
EXTRN PHANTOM_UP:NEAR, PHANTOM_DOWN:NEAR ;In PHANTOM.ASHM
EXTRN PHANTOM_LEFT:NERR, PHANTOM_RIGHT:NEAR
EXTRN WRITE_SECTOR:NEAR ;In DISK_IO.ASM

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.
The format of the table is

s ®me We WS we we wh

DB 7c ;Extended code for cursor up
DW OFFSET CGROUP:PHANTOM_UP
ISPATCH_TABLE LABEL BYTE

DB 5y s ¥l

DW OFFSET CGROUP:PREVIOUS_SECTOR

DB &0 SR

DW OFFSET CGROUP:NEXT_SECTOR

DB [;cursor up

DW OFFSET CGROUP:PHANTOM_UP

DB a0 ;Cursor down

S R T e Ry Tl e e i iy

Peter Norton’s Assembly Language Book 281

Listing 2b-1. continued

DW
DB
DW
DB
DW
DB
DW
DB
DATA_SEG

OFFSET CGROUP:PHANTOM_DOWN

75 ;Cursor left
OFFSET CGROUP:PHANTOM_LEFT

T ;Cursor right
OFFSET CGROUP:PHANTOM_RIGHT

88 :Shift F5

OFFSET CGROUP:WRITE_SECTOR

0 ;End of the table
ENDS

WRITE_SECTOR itself is almost identical to READ_SECTOR. The only
change is that we wish to write, rather than read, a sector. Whereas the INT
25h asks DOS to read one sector, its companion function, INT 26h, asks DOS
to write a sector to the disk. Here is WRITE_SECTOR; place it into DISK _

10.ASM:

Listing 2b-2. Add This Procedure to DISK_IO.ASM

PUBLIC WRITE_SECTOR

; This procedure writes the sector back to the disk. ;

; Reads:

WRITE_SECTOR

PUSH
PUSH
PUSH
PUSH
MOV
MoV
MOV
LEA
INT
POPF
POP
POP
POP
POP
RET

WRITE_SECTOR

PROC NEAR

AX

BX

GX

DX

AL,DISK_DRIVE_NO ;Drive number

CX,1 ;Write 1 sector

DX,CURRENT_SECTOR_NO ;Logical sector

BX,SECTOR

2kh ;Write the sector to disk
;Discard the flag information

DX

CX

BX

AX

ENDP

Now, reassemble both Dispatch and Disk_io, but don’t try Dskpatch’s write
function just yet. Find an old disk you don’t care much about and put it in
drive A, with your program disk in some other drive, such as B. Run Dskpatch

282 Writing Modified Sectors

from drive B (or whatever drive you choose), so that Dskpatch reads the first
sector from your scratch disk in drive A. Before you go on, make sure this is a
scratch disk you have no qualms about if it’s destroyed.

Change one byte in your sector display and make a note of the one you
changed. Then, press the shifted F5 key. You'll see the red drive light come
on: You've just written a modified sector back to drive A.

Next, press F2 to read the next sector (sector 1), then F1 to read the previ-
ous sector (your original sector, number 0). You should see the modified sector
back again. Restore this sector and write it back to Drive A to restore the
integrity of your scratch disk.

More Debugging Techniques

What would happen if we had made a small error in our program?
Dskpatch is sufficiently large that we'd expect to have problems using
Debug to find the bug. Besides, Dskpatch is composed of nine different files
we must link to form DSKPATCH.COM. How do we find any one procedure
in this large program without tracing slowly through much of the program?
As you’ll see in this chapter, there are two ways to find procedures: by using
a road map we can get from LINK, or by using Microsoft’s SYMDEB in place
of DEBUG.

When we originally wrote Dskpatch, something went wrong when we added
WRITE_SECTOR,; pressing the Shift-F5 key caused our machine to hang. But
we couldn’t find anything wrong with WRITE_SECTOR and the only other
changes were to DISPATCH_TABLE. Everything appeared to be correct.

Finally, we traced the bug to a faulty definition in the dispatcher. The bug
turned out to be an error in the DISPATCH_TABLE entry for WRITE_SEC-
TOR. Somehow, we had typed a DW rather than a DB in the table, so
WRITE_SECTOR’s address was stored one byte higher in memory than it
should have been. You can see the bug shown in italics here:

DISPATCH_TABLE LABEL BYTE

DB 77 ;Cursor right

DW OFFSET CGROUP:PHANTOM_RIGHT

DN 48 ;Shift FS

DW OFFSET CGROUP:WRITE_SECTOR

DB 0 ;End of the table

DATA_SEG ENDS

Peter Norton’s Assembly Language Book 283

As an exercise in debugging, make this change to your file DIS-
PATCH.ASM, then follow the directions in the next section.

Building a Road Map

Let’s learn how to use LINK to build a map of Dskpatch. This map will help
us find procedures and variables in memory.
The LINK command we’ve used so far has grown to be fairly long:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR DISPATCH KBD_IO PHANTOM EDITOR;

and we’ll want to add even more to it. Does that mean we’ll have to keep
typing file after file after file? No, there is a much easier way. LINK allows us
to supply an automatic response file containing all the information. With such
a file, which we’ll call linkinfo, we can simply type:

LINK @LINKINFO

and LINK will read all of its information from this file.
With the file names that we’ve used so far, linkinfo looks like this:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +
DISPATCH KBD_IO PHANTOM EDITOR

The plus (+) at the end of the first line tells LINK to continue reading file
names from the next line.

We can also add some more information that tells LINK to create a map of
the procedures and variables in our program to this simple linkinfo file. Here
is the entire linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CURSOR +
DISPATCH KBD_IO PHANTOM EDITOR

DSKPATCH

DSKPATCH /MAP;

The last two lines are new parameters. The first, dskpatch, tells LINK we
want the .EXE file to be named DSKPATCH.EXE; the second new line tells
LINK to create a listing file called DSKPATCH.MAP—to create our road
map. The /map switch tells LINK to provide a list of all the procedures and
variables we’ve declared to be public.

Create the map file by relinking Dskpatch with this linkinfo response file.

284 Writing Modified Sectors

The map file produced by the linker is about 120 lines long. That’s a bit too
long for us to reproduce in its entirety, so we'll reproduce the parts that are of
particular interest. Here is our partial listing of the map file,

DSKPATCH.MAP:

Warning: no stack segment

Start Stop Length Name Class
00O000H OO7ESH DO?EGH CODE_SEG
O07FOH 0291FH 02130H DATA_SEG

Origin

0000:0

Address Publics by Name
0000:0677 BACK_SPACE
0000:D48F CLERR_SCREEN
0000:04D1 CLEAR_TO_END_OF_LINE
0000:07F2 CURRENT_SECTOR_NO
0000:04B1 CURSOR_RIGHT
0000:07F4 DISK_DRIVE_NO
0000:04F0 DISPATCHER
0000:0LF3 DISP_HALF_SECTOR
0000:0370 WRITE_HEX_DIGIT
0000:03DB WRITE_PATTERN
D000:O0GFE WRITE_PHANTOM
0000:0440 WRITE_PROMPT_LINE
0000:013A WRITE_SECTOR
0000:0428 WRITE_STRING

Address Publics by Value
0000:0120 READ_SECTOR
0000:013A WRITE_SECTOR
0000:D0154 PREVIOUS_SECTOR
0000:0174 NEXT_SECTOR
0000:0190 INIT_SEC_DISP
0000:01F3 DISP_HALF_SECTOR
0000:07FS LINES_BEFORE_SECTOR
0000:07F6 HERDER_LINE_NO
0000:07F7 HERDER_PART_1
0000:07FD HEADER_PART_2
0000:0D80E PROMPT_LINE_NO
0000:080F EDITOR_PROMPT

Peter Norton’s Assembly Language Book 285

0000:0844 SECTOR
0000:291¢2 PHANTOM_CURSOR_X
0000:2913 PHANTOM_CURSOR_Y

Program entry point at 0000:0100

There are three main parts to this load map (so called because it tells us
where our procedures are loaded in memory). The first shows a list of seg-
ments in our program. Dskpatch has just two segments, CODE_SEG and
DATA_SEG, which are grouped together, so you’ll see these two segments in
the list.

The next part of the load map shows our public procedures and variables,
listed in alphabetic order. LINK lists only those procedures and variables
you’ve declared to be PUBLIC—visible to the outside world. If you're debug-
ging a long program, you may want to declare all procedures and variables to
be public, just so you can find them in this map.

The final section of the map lists all the procedures and memory variables
again, but this time in the order they appear in memory.

Both of these lists include the memory address for each PUBLIC procedure
or variable. If you check this list, you’ll find that our procedure DISPATCHER
starts at address 4FOh. We’ll use this address now, to track down the bug in
Dskpatch.

Tracking Down Bugs

If you were to try running the version of Dskpatch with the bug in it, you'd
find that everything works, with the exception of Shift-F5, which on our ma-
chine caused Dskpatch to hang. You probably don’t want to try Shift-F5;
there’s no telling what it will do on your machine.

Since everything worked (and works now) except for Shift-F5, our first guess
when we wrote the program was that we had introduced a bug into WRITE _
SECTOR. To find this bug, we could start debugging Dskpatch by tracing
through WRITE_SECTOR. Instead, we’ll take a somewhat different tack.

We know that DISPATCHER works correctly, because everything else (the
cursor keys, F1, F2, and F10) all work correctly. That means DISPATCHER is
a good starting point to search for the bug in Dskpatch.

If you look at the program listing for DISPATCHER (in Chapter 25), you’ll
see that the instruction

CALL WORD PTR [BX]

286 Writing Modified Sectors

is the heart of DISPATCHER, because it calls all the other routines. In partic-
ular, this CALL instruction will call WRITE_SECTOR when we press Shift-
F5. Let’s start our search here.

We'll use Debug to start Dskpatch with a breakpoint set on this instruction.
Of course, that means we need the address of this instruction, and we can find
that by unassembling DISPATCHER, which starts at 4FOh. After a U 4F0,
followed by another U command, you should see the CALL command:

2C14:0517 EBFZ JNP 0S0B

2C14:0519 43 INC BX
c¢C14:051A FF17 CALL (BX]

¢C14:051C EBDS JHP 04F3

Now that we know the CALL instruction is at location 51Ah, we can set a
breakpoint at this address, then single-step into and through WRITE_
SECTOR.

First, use the command G 51A to execute Dskpatch up to this instruction.
You'll see Dskpatch start up, then wait for you to type a command. Press
Shift-F5, since this is the command that is causing problems. You’'ll see the
following:

-G S1A

AX=FF58 BX=c8A3 CX=2820 DX=080F SP=FFF& BP=419A SI=03CC DI=0001
DS=2Cl14 ES=2Cl4 SS=2Cl4 C(CS=2Cl4 IP=0S1A NV UP DI PL NZ NA PE NC
¢C14:0S1A FF17 CALL [BX] DS:28A3=3A00

At this point the BX register is pointing to a word that should contain the
address of WRITE_SECTOR. Let’s see if it does:

-D 28A3 L @2
2Cl4:28A0 00 3A

In other words, we're trying to CALL a procedure located at 3A00h (remember
the lower byte is displayed first). But if we look at our memory map, we can
see that WRITE_SECTOR should be at 13Ah. In fact, we can also tell from

Peter Norton’s Assembly Language Book 287

this load map that we don’t have any procedures at 3A00h. The address is
totally wrong!

In our original bug-hunting, once we discovered that this address was
wrong, it didn’t take us very long to find the error. We knew that DIS-
PATCHER and the table were basically sound, because all the other keys
worked, so we took a closer look at the data for Shift-F5 and found the DW
where we should have had a DB. Having a road map makes debugging much
simpler. Now let’s take a look at Symdeb.

Symdeb

Symdeb (Symbolic Debugging) is a program that Microsoft includes with
version 3.00 and above of its macro assembler package. As you’ll see in this
section, Symdeb is so useful that, if you don’t have it, you may well want to
consider upgrading your macro assembler.

Since both Debug and Symdeb were written by Microsoft, Symdeb shares
most, if not all, of Debug’s commands. It also includes a number of very useful
commands you won’t find in Debug, and it includes some other features that
are worth their weight in gold. We’ll use two of these new features in this
chapter: symbolic debugging and screen swapping.

Symbolic Debugging

Symbolic debugging, which gives Symdeb its name, lets us see procedure
and variable names, rather than addresses, in our Unassemble (U) listings.
For example, if we use Debug to unassemble the first line in Dskpatch, we
see:

2¢C14:0100 E88CO3 CALL 048F

With Symdeb, on the other hand, we see the following:

3245:0100 EB8C03 CALL CLEAR_SCREEN

Which of these is easier to read? We rest our case.

288 Writing Modified Sectors

Screen Swapping

The second new feature, screen swapping, is handy for debugging Dskpatch.
Dskpatch jumps around the screen, writing in different places. In the last sec-
tion, where we used Debug, Debug started writing to this screen and we even-
tually lost the Dskpatch screen.

Symdeb, however, maintains two separate screens: one for Dskpatch and
one for itself. Whenever Dskpatch is active, we see its screen; whenever
Symdeb is active, we see its screen. We'll get a clearer idea of screen swapping
as we run through the following examples.

Before we can use Symdeb’s symbolic debugging feature, we need to create a
symbol file with a program called Mapsym. Mapsym takes the .MAP file we
created earlier in this chapter and turns it into a symbol file:

A>MAPSYM DSKPATCH
Microsoft (R) Symbol File Generator Version 4.00
Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Program entry point at 0000:0100

In this case, Mapsym has created a symbol file called DSKPATCH.SYM.
We then start Symdeb with both the symbol file and the .COM file:

A>SYMDEB /S DSKPATCH.SYM DSKPATCH.COM
Microsoft (R) Symbolic Debug Utility Version 4.00
Copyright (C) Microsoft Corp 1984, 1985. All rights reserved.

Processor is [808k]

The /S switch in our command tells Symdeb to use its screen-swapping fea-
ture. It doesn’t use this feature by default, because screen swapping can make
Symdeb noticeably slower.

Before we run through a repetition of our previous debugging session, let’s
take a quick look at the start of Dskpatch:

-8

330E:0100 EB88CD3 CALL CLEAR_SCREEN
330E:0103 E8F402 CALL WRITE_HEADER
330E:010& EB1700 CALL READ_SECTOR
330E:0109 EB88400 CALL INIT_SEC_DISP

330E:010C 8D1LOFODA LEA DX, (EDITOR_PROMPT] -«

Peter Norton’s Assembly Language Book 289

330E:0110 E&2D03 CALL WRITE_PROMPT_LINE
330E:0113 EADAO3 CALL DISPATCHER
330E:0116 CD2O INT c0

You can see how nicely Symdeb displays all the names, rather than the
addresses.

When we last unassembled DISPATCHER to find the address of the CALL
WORD PTR [BX] instruction, we first had to look in the map file to find the
address of the procedure, then type U 4F0 to unassemble it. With Symdeb, life
is much simpler: We can simply type U DISPATCHER to unassemble our
procedure.

-U DISPATCHER
CGROUP:DISPATCHER:

330E:04F0 S0 PUSH AX

330E:04F1 S3 PUSH BX

330E:04Fe 52 PUSH DX

330E:04F3 EB0401 CALL READ_BYTE

330E:D4F6 ORE4 OR AH,RH

J30E:04F8 7426 JZ DISPATCHER+30 (0520)
330E:04FR 7807 Js DISPATCHER+13 (0S03)

After two more U commands, we find our CALL instruction:

330E:0514 63C303 ADD BX,+03

330E:0517 EBFe JMP DISPATCHER+1B (0OS0B)
330E:0519 43 INC BX

330E:0S1A FFL17? CALL [BX]

330E:051C EBDS JMP DISPATCHER+03 (04F3)

Type G 51A, as before, and follow that with Shift-F5. If you have Symdeb,
you’ll see Dskpatch draw its screen. Then, you’ll return to Symdeb after you
push Shift-F5. This time, though, you won’t see the Dskpatch screen, because
Symdeb will swap screens. To flip back to the Dskpatch screen, press the back-
slash (\) key and press Enter. Once the Dskpatch screen comes up, pressing
any other key will return you to Symdeb’s screen again.

There is one subtle point you may have noticed about Symdeb as we've used
it here. If we look at the unassembly listings, we see instructions like this:

330E:051C EBDS JMP DISPATCHER+03 (04F3)

290 Writing Modified Sectors

rather than this:

330E:051C EBDS JHP DISPATCH_LOOP

Why didn’t Symdeb use the label DISPATCH_LOOP? We didn’t define the
labels in this procedure to be PUBLIC. If we went back and wrote PUBLIC
declarations for all the labels in DISPATCHER, we’'d see these labels in the
unassembly listing. (If you do this, remember to rebuild the symbol file with
Mapsym).

Summary

That ends our discussion of debugging techniques. We have only three chap-
ters left in the book. In the next chapter, we’ll add the procedures to scroll the
screen between the two half sectors. Then, in the final two chapters, we’ll
learn more about the differences between .COM and .EXE files, and take a
last look at the ASSUME statement and segment overrides.

By the way: Don’t forget to fix the bug we placed in DISPATCH_TABLE.

27
THE OTHER HALF SECTOR

Scrolling by Half a Sector 292
Summary 295

291

292 The Other Half Sector

Ideally, Dskpatch should behave like a word processor when you try to move
the cursor below the bottom of the half-sector display: The display should
move up one line, with a new line appearing at the bottom. The version of
Dskpatch on the disk available with this book does just that, but we won’t get
quite so sophisticated here. In this chapter, we’ll add skeletal versions of the
two procedures, SCROLL_UP and SCROLL_DOWN, that scroll the screen.
In the disk version of Dskpatch, SCROLL_UP and SCROLL_DOWN can
scroll by any number of lines from one to sixteen (there are sixteen lines in
our half-sector display). The versions of SCROLL_UP and SCROLL_DOWN
that we’ll add to Dskpatch here scroll by full half sectors, so we’ll see either
the first or second half of the sector.

Scrolling by Half a Sector

Our old versions of PHANTOM_UP and PHANTOM_ DOWN restore the
cursor to the top or bottom of the half-sector display whenever we try to move
the cursor off the top or bottom of the display. We’ll change PHANTOM_UP
and PHANTOM_DOWN so that we call either SCROLL_UP or SCROLL_
DOWN when the cursor moves off the top or bottom of the display. These two
new procedures will scroll the display and place the cursor at its new position.

Here are the modified versions of PHANTOM_UP and PHANTOM_DOWN
(in PHANTOM.ASM):

Listing 27-1. Changes to PHANTOM.ASM

PHANTOM_UP PROC NEAR
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;Was not at the top, write cursor
MOV PHANTOM_CURSOR_Y,O ;#as at the top, so put back ther
CALL SCROLL_DOWN ;Was at the top, scroll
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Write the phantom at new position
RET
PHANTOM_UP ENDP

PHANTOM_DOWN PROC NEAR
CALL ERASE_PHANTOM ;Erase at current position

Peter Norton’s Assembly Language Book 293

Listing 27-1. continued

INC PHANTOM_CURSOR_Y ;Move cursor up one line

CHP PHANTOM_CURSOR_Y, 16 ;Has it at the bottom?

JB WASNT_AT_BOTTOM ;No, so write phantonm

MOV PHANTOM_CURSOR_Y, 15 ;Has at bottom, so put back there

CALL SCROLL_UP ;Has at bottom, scroll
WASNT_AT_BOTTOM:

CALL _WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_DOWN ENDP

Don’t forget to change the comment header for PHANTOM_UP and PHAN-
TOM_DOWN, to mention that these procedures now use SCROLL_UP and
SCROLL_DOWN:

Listing 27-2. Changes to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses: ERASE_PHANTOM, WRITE_PHANTOM
SCROLL_DOWN, SCROLL_UP

Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

e ws ws ws ws ws ws ws

SCROLL_UP and SCROLL_DOWN are both fairly simple procedures,
since they switch the display to the other half sector. For example, if we're
looking at the first half sector, and PHANTOM_DOWN calls SCROLL_UP,
we’ll see the second half sector. SCROLL_UP changes SECTOR_OFFSET to
256, the start of the second half sector, moves the cursor to the start of the
sector display, writes the half sector display for the second half, and finally
writes the phantom cursor at the top of this display.

You can see all the details for both SCROLL_UP and SCROLL_DOWN in
the following listing. Add it to PHANTOM.ASM.

Listing 27?-3. Add These Procedures to PHANTOM.ASM

EXTRN DISP_HALF_SECTOR:NEAR, GOTO_XY:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR_OFFSET:WORD

EXTRN LINES_BEFORE_SECTOR:BYTE
DATR_SEG ENDS

294 The Other Half Sector

Listing 27-3. continued

; These two procedures move between the two half-sector displays. :
; Uses: WRITE_PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, GOTO_XY ;
: SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR :
; Reads: LINES_BEFORE_SECTOR .
; Writes: SECTOR_OFFSET, PHANTOM_CURSOR_Y :
SCROLL_UP PROC NEAR
PUSH DX
CALL ERASE_PHANTOM ;Remove the phantom cursor
CALL SAVE_REAL_CURSOR ;Save the real cursor position
XOR DL,DL ;Set cursor for half-sector display
MOV DH,LINES_BEFORE_SECTOR
ADD DH,2
CALL GOTO_XY
Mov DX,256 ;Display the second half sector
MOV SECTOR_OFFSET, DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR ;Restore the real cursor position
MOV PHANTOM_CURSOR_Y,O ;Cursor at top of second half sector
CALL WRITE_PHANTOM ;Restore the phantom cursor
POP DX
RET
SCROLL_UP ENDP
SCROLL_DOWN PROC NEAR
PUSH DX
CALL ERASE_PHANTOM ;Remove the phantom cursor
CALL SAVE_REAL_CURSOR ;Save the real cursor position
XOR DL,DL ;Set cursor “for half-sector display
MOV DH,LINES_BEFORE_SECTOR
ADD DH,¢2
CALL GOTO_XY
XOR DX,DX ;Display the first half sector
MOV SECTOR_OFFSET, DX
CALL DISP_HALF_SECTOR
CALL RESTORE_REAL_CURSOR ;Restore the real cursor position
MOV PHANTOM_CURSOR_Y, 1S ;Cursor at bottom of first half sector
CALL WRITE_PHANTOM yRestore the phantom cursor
POP DX
RET
SCROLL_DOWN ENDP

SCROLL_UP and SCROLL_DOWN both work nicely, although there is
one minor problem with them as Dskpatch stands now. Start Dskpatch and
leave the cursor at the top of the screen. Press the cursor-up key, and you’ll
see Dskpatch rewrite the first half-sector display. Why? We didn’t check for

Peter Norton’s Assembly Language Book 295

this boundary condition. Dskpatch rewrites the screen whenever you try to
move the cursor off the top or bottom of the half-sector display.

Here’s a challenge for you: Modify Dskpatch so that it checks for two bound-
ary conditions. If the phantom cursor is at the top of the first half-sector dis-
play and you press the cursor-up key, Dskpatch should do nothing. If you're at
the bottom of the second half-sector display and press the cursor-down key,
again Dskpatch should do nothing.

Summary

This ends our work on Dskpatch in this book. Our intent was to use
Dskpatch as a “live” example of the evolution of an assembly language pro-
gram, at the same time providing you with a usable program, and a set of
procedures you’ll find helpful in your own programming. But the Dskpatch
you’ve developed here isn’t as finished as it could be. You’ll find more features
in the disk version of Dskpatch available with this book. And you may find
yourself changing that disk version, for “a program is never done . . . but there
comes a time when it has to be shipped to users.”

We’'ll wrap up this book with a change of pace. In the next two chapters
we’ll move on to two advanced subjects: relocation and more about segments.

PART IV

Odds and Ends

RELOCATION

Multiple Segments 300
Relocation 304
.COM versus .EXE Programs 307

299

28

300 Relocation

One subject that always seems to be shrouded in mystery is the difference
between .EXE and .COM files and the meaning of relocatable programs. As
part of our change of pace in these final two chapters, let’s look at relocation
and see how you can build programs larger than 64K—not that you'd necessa-
rily want to, although many people do.

Multiple Segments

As soon as we start to build programs that use more than 64K of memory
we find ourselves running into problems with .COM files. Why? That’s what
we're here to find out.

First of all, any program must be built from one or more segments, each no
more than 64K long. But many programs extend their use of memory by using
several different segments; for example, a code segment for the program, a
data segment for the data, and a stack segment for the stack and temporary
data. If each of these three segments were fully used, we'd fill 3 * 64K = 192K
of memory. That’s how we gain access to more memory, and that’s where the
difference between .COM and .EXE programs comes in: .EXE programs are
designed specifically for this kind of job.

All our programs in this book have been .COM files, with either one seg-
ment or one group. Remember that the GROUP pseudo-op simply combines
several different segments into a single unit that acts like one segment. If we
wanted to use more than one segment to span more than 64K of memory, we'd
have to do some more work. Let’s look at an example.

Our program for printing a string of characters in Chapter 3 will serve nice-
ly. That example, written with groups in assembly language, looks like this:

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 100h

WRITE_STRING PROC FAR
MOV AH,S9 ;Call for string output
MOV DX,OFFSET CGROUP:STRING ;Load address of string
INT c2lh ;Write string
INT c0h ;Return to DOS

WRITE_STRING ENDP

R

Peter Norton’s Assembly Language Book 301

CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
STRING DB "Hello, DOS here.$§"
DATA_SEG ENDS

END WRITE_STRING

The two segments CODE_SEG and DATA_SEG are placed into a single 64K
group, CGROUP, so OFFSET CGROUP:STRING gives the offset of STRING
from the beginning of the group CGROUP.

When DOS loads a .COM program into memory, it sets all four segment
registers (CS, DS, ES, and SS) to the start of CGROUP, therefore DS:OFFSET
CGROUP:STRING is the full address of STRING. What if we had two differ-
ent segments and no group? We wouldn’t have a limit of 64K for two seg-
ments: it would be 128K. How would we set the segment registers to point to
their respective segments? By using an .EXE program, which allows us to use
several segments, all starting at different addresses.

DOS allows us to set the segment registers for an .EXE program with the
help of some assembler instructions. These assignments aren’t as simple as
they might seem, but we’ll come back to that. First, let’s rebuild WRITE_
STRING as an .EXE program.

We must have at least two segments for any .EXE program: the code seg-
ment and the stack segment. These two segments are special cases for DOS.
DOS sets the four registers—CS, SS, IP, and SP—when it loads an .EXE pro-
gram into memory. DOS sets the CS:IP register to point to the first instruc-
tion whose address appears after the END pseudo-op. In an .EXE program,
this first instruction can be anywhere, whereas in a .COM program, this in-
struction must be the first instruction in the code segment.

Similarly, SS:IP points to the end of stack region defined with the SEG-
MENT STACK pseudo-op. For example, the following version of WRITE_
STRING contains a stack that is 80 bytes long, thus IP will be set to 80—the
end of this stack region within the stack segment. Here is the program:

ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

CODE_SEG SEGMENT PUBLIC

WRITE_STRING PROC FAR
MOV AX,DATA_SEG ;Segment address for DATA_SEG
MOV DS, AX ;Set up DS register for DATA_SEG
MOV AH,9 ;Call for string output

MoV DX,0FFSET STRING ;Load address of string

302 Relocation

INT 2lh ;Write string

PUSH ES ;Save return address for long RET below
XOR AX,AX ;There is an INT 20h inst. at ES:O

PUSH AX

RET ;Return to DOS

WRITE_STRING ENDP

CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
STRING DB "Hello, DOS here.$"
DATA_SEG ENDS
STACK_SEG SEGMENT STACK
DB 10 DUP ('STACK 5 ;'STACK' followed by three spaces
STACK_SEG ENDS
END WRITE_STRING

This program will be ready to run after you link it, but first erase
WRITESTR.COM. If you have two versions of a file, one with the extension
.COM and one with the extension .EXE, DOS will execute the .COM file.

There are a number of differences between this .EXE file and our original
.COM file. In place of the INT 20h instruction to return to DOS, we now have
several cryptic instructions, beginning with PUSH ES. The two PUSH in-
structions push a long return address, ES:0, onto the stack. This is the address
of the first byte in the 256 byte data area DOS puts into memory before our
program, and the first instruction in this data area is an INT 20h instruction.

The CS register must point to the start of this data area when we execute
the INT 20h instruction. This was the case in our .COM program, right from
the start. But our .EXE program begins with the CS register set to the start of
the code segment, not the the data area. By doing a FAR RET to ES:0, we set
CS to the start of the data area and, as you can see, ES:0 holds the INT 20h
instruction:

A>DEBUG WRITESTR.EXE

-0 ES:0O

39AF:0000 CD2O0 INT 20

39AF:0002 00&OO0O ADD [BX+SI+00],RH

Peter Norton’s Assembly Language Book 303

The GROUP pseudo-op is missing, because we now have three different seg-
ments that are not confined to a total area of 64K or less. Each of these three
segments is independent, and each of the segment registers (CS, DS, and SS)
points to a different segment. Both CS and SS are set by DOS, as we can see
with the help of Debug:

A>DEBUG WRITESTR.EXE

-R

AX=0000 BX=0000 CX=0100 DX=00D00 SP=0050 BP=0000 SI=0000 DI=0000
DS=39AF ES=39AF S55=39C3 CS=39BF IP=0000 NV UP DI PL NZ NA PO NC
39BF:0000 BAC139 MOV AX,39C1

DS and ES point to a segment lower in memory than either CS or SS. As
you saw in Chapter 11, both DS and ES point to the data area, 256 bytes long,
placed by DOS before our program. In .COM program, we reserved this area
with an ORG 100h statement. For .EXE files, we don’t need to do the same,
because the code and data segments are in different parts of memory. The
data segment is elsewhere, but DS isn’t pointing to DATA_SEG. This is the
reason for the first instruction in WRITE_STRING. The MOV AX,DATA_
SEG instruction moves the segment number of DATA_SEG into the AX reg-
ister. If we look at our program in memory:

-0

39BF:0000 BAC139 MOV AX,39C1
39BF:0003 B8EDS MOV DS, AX
39BF:0005 B4019 Mov AH,09
39BF:0007 BAOOOOD MOV DX,0000
39BF:000A CD21 INT cl
39BF:000C 06 PUSH ES
39BF:000D 33CO0 XOR AX,AX
39BF:000F S0 PUSH AX
39BF:0010 CB RETF

39BF:0011 0DOO ADD [BX+SI1,AL

we see that this MOV instruction has been translated into MOV AX,39C1,
where 39C1 is the segment number of for DATA_SEG. We needed two MOV
instructions to move this number into the DS register, because we can’t move
a number directly into any segment register. (See the chart of addressing
modes in Appendix E.)

Where did the 39C1 come from? Surely, neither the assembler nor the
linker knew ahead of time where DOS would load this program; only DOS can

304 Relocation

know that. In fact, it is DOS that sets this number to 39C1, and the process of
calculating such numbers is known as relocation. DOS makes relocation calcu-
lations for .EXE programs, but not for .COM programs. It is for this reason
that .COM programs load into memory more quickly. They are also more com-
pact, because they don’t contain the special information DOS uses to make
relocation calculations.

Out of curiosity, let’s see what happens if we try to convert our .EXE pro-
gram into a .COM program using Exe2bin:

A>EXEZBIN WRITESTR WRITESTR.COM
File cannot be converted
A>

Exe2bin knows that it can’t create a .COM program from our file, but it
doesn’t tell us why. It leaves us to figure that out for ourselves. Let’s take a
look at the problem

DOS loads a .COM program directly into memory after it creates the 256
byte header. If we want different segments, as in WRITE_STRING, and want
to create a .COM file, we have to do any relocation ourselves, with instruc-
tions in our program. It’s not very difficult, and we’ll show you how it’s done,
so you can get a better insight into the way DOS relocates programs. If you
ever need to write a large .COM program that needs to use more than 64K of
memory, you'll find this technique useful.

Relocation

Our goal is to set the DS register to the beginning of DATA_SEG, and the
SS register to the beginning of STACK_SEGMENT. We can do this with a bit
of trickery. First, we need to ensure that our three segments are loaded into
memory in the correct order:

Code segment
Data segment
Stack segment

Fortunately, we’ve already taken care of this. The linker loads these three
segments in the order in which they appear in our file. A word of warning
though: When you use the following technique in a .COM file to set segment
registers, make sure you know the order in which LINK will load your
segments.

Peter Norton’s Assembly Language Book 305

How do we calculate the value for DS? Let’s begin by looking at three labels
we’ve placed into various segments in the following listing. Those labels are
END_OF_CODE_SEG, END_OF_DATA_SEG, and END_OF_STACK_
SEG. They aren’t exactly where you might have expected them to be. Why
not? Well, when we define a segment like:

CODE_SEG SEGMENT PUBLIC

we don’t really tell the linker how to stitch together various segments. So, it
starts each new segment on a paragraph boundary—at a hex address that
ends with a zero, such as 32C40h. Because the Linker skips to the next para-
graph boundary to start each segment, there will very often be a short, blank
area between segments. By placing the label END_OF_CODE_SEG at the
beginning of DATA_SEG, we include this blank area. If we had put END_
OF_CODE_SEG at the end of CODE_SEG, we wouldn’t include the blank
area between segments. (Look at the unassemble listing of our program on
page 307. You'll see a blank area filled with zeros that is 15 bytes long.)

As for the value of the DS register, DATA_SEG starts at 39AF:0130, or
39C2:0000. The instruction OFFSET CODE_SEG:END_OF_CODE_SEG
will return 130h, which is the number of bytes used by CODE_SEG. Divide
this number by 16 to get the number we need to add to DS so that DS points to
DATA_SEG. We use the same technique to set SS.

Here’s the listing for our program, including the relocation instructions
needed for a .COM file:

ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

CODE_SEG SEGMENT PUBLIC
ORG 100h ;Reserve data area for .COM program
WRITE_STRING PROC FAR
MOV AX,O0FFSET CODE_SEG:END_OF_CODE_SEG
MOV CL,4 ;Calculate number of paragraphs
SHR AX,CL ; (16 bytes) used by the code segment
MoV BX,CS
ADD AX,BX ;Add CS to this
MOV DS, RX ;Set the DS register to DATA_SEG
MOV BX,OFFSET DATA_SEG:END_OF_DATA_SEG
SHR BX,CL ;Calculate paras used by data segment
ADD AX,BX ;Add to value used for data segment
MOV SS,AX ;Set the SS register for STACK_SEG
MOV AX,OFFSET STACK_SEG:END_OF_STACK_SEG

MOV SP,AX ;Set SP to end of stack area

306 Relocation

MOV RH,9 ;Call for string output

MoV DX,OFFSET STRING ;Load address of string

INT 2lh ;Write string

PUSH ES ;Save return address for long RET below
XOR AX,AX ;There is an INT 20h inst. at ES:0

PUSH AX

RET ;Return to DOS

WRITE_STRING ENDP

CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
END_OF_CODE_SEG LABEL BYTE
STRING DB "Hello, DOS here.S$"
DATA_SEG ENDS
STACK_SEG SEGMENT PUBLIC
END_OF_DATA_SEG LABEL BYTE
DB 10 DUP ('STACK ") i 'STACK' followed by three spaces
END_OF_STACK_SEG LABEL BYTE
STACK_SEG ENDS
END WRITE_STRING

You can see the results of all this work in the following Debug session:

A>DEBUG WRITESTR.COM

-U

39AF:0100 BA3001 MOV AX,0130

39AF:0103 B104 MOV CL, 04

39AF:0105 D3EB SHR AX,CL

39AF:0107 BCCB MOV BX,CS

39AF:0109 03C3 ADD AX,BX

39AF:010B BEDS MOV DS, AX

39AF:010D BB2000 MOV BX,0020

39AF:0110 D3IEB SHR BX,CL |
39AF:0112 03C3 ADD AX, BX

39AF:0114 BEDD MOV 5SS, AX

39AF:0116 BAS000 MOV AX,0050 I
39AF:0119 BBED MOV SP, AX

39AF:011B B409 MOV AH, 09

39AF:011D BAODOO MOV DX, 0000

-U

39AF:0120 CD21 INT 21 i
39AF:0122 06 PUSH ES

39AF:0123 33C0 XOR AX, AX

3J9AF:0125 50 PUSH AX

39AF:012k CB RETF

Peter Norton’s Assembly Language Book 307
39AF:0127 0000 ADD EBX+ST 1, AL
39AF:0129 0000 ADD [BX+SI],AL
39AF:012B 0000 ADD [BX+SI],AL
3J9AF:012D 0000 ADD [BX+SI],AL
J9AF:012F 0048kS ADD [BX+SI+E5],CL
39AF:0132 &C DB &C
39AF:0133 &C DB BC
39AF:0134 &F DB EF
39AF:013S5 2C20 SUB AL, 20
39AF:0137 44 INC SP
39AF:0138 4F DEC DI
39AF:0139 53 PUSH BX
39AF:013R 2068ES AND [BX+SI+&5]1,CH
39AF:013D 72kS JB 01R4
39AF:013F CE 5
39AF:0140 2400 AND AL,0O0
-G 120

AX=0950 BX=0002 CX=0004 DX=0000 SP=0050 BP=0D000 SI=0000 DI=0000
DS=39C2 ES=39AF SS5=39C4 CS=39AF 1IP=0120 NV UP DI PL NZ NA PO NC
39AF:0120 CD2l INT cl

By doing the relocation for more than one segment ourselves, we've in-
creased the amount of memory the .COM program can use. Most people never
have need of such tricks, but knowing how relocation works helps us under-
stand how DOS does the relocation with .EXE files.

.COM versus .EXE Programs

We’ll finish this chapter by summarizing the difference between .COM and
.EXE files.

A .COM program stored on disk is essentially a memory image of the pro-
gram. Because of this, a .COM program is restricted to a single segment, un-
less it does its own relocation, as we did in this chapter.

An .EXE program, on the other hand, lets DOS take care of the relocation.
This delegating makes it very easy for .EXE programs to use multiple seg-
ments. For this reason, most large programs are .EXE rather than .COM
programs.

For our final look at .COM versus .EXE programs, let’s take a closer look at
how DOS loads and starts both of them. This should make the differences be-
tween these types of program clearer and more concrete. We’ll begin with
.COM programs.

When DOS loads a .COM program into memory, it follows these steps:

308 Relocation

e First, DOS creates the program segment prefix (PSP), which is the 256
byte scratch area we saw in Chapter 11. Among other things, this PSP
contains the command line typed.

® DOS next copies the entire .COM file from the disk into memory, imme-
diately after the 256 byte PSP.

e DOS then sets all four segment registers (CS, DS, ES, and SS) to the
start of the PSP.

e Finally, DOS sets the IP register to 100h (which is the start of the .COM
program) and sets the SP register to the end of the segment—usually
FFFE, which is the last word in the segment.

In contrast, the steps involved in loading an .EXE file are somewhat more
involved, because DOS does the relocation. Where does DOS finds the infor-
mation it needs to do the relocation?

As it turns out, every .EXE file has a header that’s stored at the start of the
file. This header, or relocation table, is always at least 512 bytes long, and
contains all the information DOS needs to do the relocation. With recent re-
leases of its macro assembler, Microsoft has included a program called EX-
EMOD we can use to look at some of the information in this header:

A>EXEMOD WRITESTR
Microsoft (R) EXE File Header Utility Version 4.00
Copyright (C) Microsoft Corp 1985. All rights reserved.

WRITESTR (hex) (dec)
.EXE size (bytes) 290 LSk
Minimum load size (bytes) 90 144
Overlay number 0 0
Initial CS:IP 0000:0000

Initial S55:=SP 0004:0050 a0
Minimum allocation (para) 0 0
Maximum allocation (para) FFFF 65535
Header size (para) c0 32
Relocation table offset 1E 30
Relocation entries 1 1
A>

At the bottom of this table, you can see that we have a single relocation entry
for our program WRITESTR. Anytime we make a reference to a segment ad-
dress, as we did with MOV AX DATA_SEG, LINK will add a relocation entry

Peter Norton’s Assembly Language Book 309

to the table. The segment address isn’t known until DOS loads our program
into memory, so we must let DOS supply the segment number.

There are also some other interesting pieces of information in the table; for
example, the initial CS:IP and SS:SP values. These pairs tell us the initial
values for IP and SP. The table also tells DOS how much memory our program
needs before it can run: the Minimum load size.

Because DOS uses this relocation table to supply absolute addresses for
such locations as segment addresses, there are a few extra steps it takes when
loading a program into memory. Here are the steps DOS follows in loading an

.EXE program:

® DOS creates the program-segment prefix (PSP), just as it does for a
.COM program.

® Second, DOS checks the .EXE header to find where the header ends and
the program starts. It then loads the rest of the program into memory
after the PSP.

® Next, using the header information, DOS finds and patches all the refer-
ences in the program that need to be relocated, such as references to
segment addresses.

® DOS then sets the ES and DS registers so they point to the start of the
PSP. If your program has its own data segment, your program needs to
change DS and/or ES so they point to your data segment.

e Finally, DOS sets the CS register to the start of the code segment, with

IP set from the information in the .EXE header. Similarly, it sets SS:SP
according to the information in the .EXE header. In the case illustrated,
the header states that SS:SP will be placed at 0004:0050. That means
DOS will set SP to 0050, and set SS so that it is four paragraphs higher
in memory than the end of the PSP.

i

29

MORE ON SEGMENTS AND
ASSUME

Segment Override 312
Another Look at ASSUME 314

Phase Errors 315
Closing Words 316

311

312 More on Segments and ASSUME

In this, our final chapter, we’ll take another look at the ASSUME statement
and see how it relates to our use of segments. Along the way, we’ll learn about
a feature called segment overrides, which we touched on very briefly. We’ll see
that segment overrides go hand in hand with the ASSUME statement.

Segment Override

So far we've always read and written data located in the data segment.
We've been dealing with a single segment in this book (through the use of
groups), so we've had no reason to read or write data in other segments.

But, as we've seen, .EXE programs contain multiple segments, and even
.COM programs can contain or use multiple segments. A classic example is
writing directly to the screen: Many commercial programs write to the screen
by moving the data directly into screen memory and completely bypassing the
ROM BIOS routines in the interest of speed. Screen memory on the IBM PC is
located at segment B800h for a color/graphics adapter and at segment BOOOh
for monochrome display adapters. To write directly to the screen means we'd
want to write in different segments.

In this section, we’ll write a short program showing how we can write to two
different segments, using the DS and ES registers to point to the two seg-
ments. In fact, many programs that write directly to screen memory do use
the ES register to point to screen memory.

Here is our program. It’s very short, and you can see that it has two data
segments, along with one variable in each data segment:

DATA_SEG SEGMENT PUBLIC

DS_VAR DW 1

DATA_SEG ENDS

EXTRA_SEG SEGMENT PUBLIC

ES_VAR DW 2

EXTRA_SEG ENDS

STACK_SEG SEGMENT STACK

DB 10 DUP ('STACK ') ;'STACK' followed by three spaces

STACK_SEG ENDS

CODE_SEG SEGMENT PUBLIC

Peter Norton’s Assembly Language Book 313

ASSUME CS:CODE_SEG, DS:DATA_SEG, ES:EXTRA_SEG, SS:STACK_SEG

TEST PROC FAR
PUSH ES ;Save return address for long RET below
XOR AX,AX ;There is an INT 20h inst. at ES:O
PUSH AX
MOV AX,DATA_SEG ;Segment address for DATA_SEG
MOV DS,AX ;5et up DS register for DATA_SEG
MOV AX,EXTRA_SEG ;Segment address for EXTRA_SEG
MOV ES,AX ;Set up ES register for EXTRA_SEG
MOV AX,DS_VAR ;Read a variable from data segment
MOV BX,ES:ES_VAR ;Read a variable from extra segment
RET ;Return to DOS

TEST ENDP

CODE_SEG ENDS
END TEST

We’ll use this program to learn about both the ASSUME pseudo-op and seg-
ment overrides.

Notice we’'ve put both data segments and the stack segment before our code
segment, and that we’ve also put the ASSUME pseudo-op after all the seg-
ment declarations. As we’ll see in this section, this arrangement is a direct
result of using two data segments.

Let’s take a look at the two MOV instructions in this program:

MOV AX,DS_VAR
MOV BX,ES:ES_VAR

The ES: in front of the second instruction tells the 8088 to use the ES, rather
than the DS, register for this operation (to read the data from our extra seg-
ment). Every instruction has a default segment register it uses when it refers
to data. But, as we’ve done with the ES register here, we can also tell the 8088
we want to use some other segment register for data.

Here’s how it works: The 8088 has four special instructions, one for each of
the four segment registers. These instructions are the segment-override in-
structions, and they tell the 8088 to use a specific segment register, rather
than the default, when the following instruction tries to read or write
memory.

314 More on Segments and ASSUME

For example, our instruction MOV AX ES:ES_VAR is actually encoded as
two instructions. You’'ll see the following if you unassemble our test program:

2¢CF4:0011 26 ES:
2CF4:0012 8BLEDOOOO MOV BX,(0000]

This shows that the assembler translated our instruction into a segment-over-
ride instruction, followed by the MOV instruction. Now the MOV instruction
will read its data from the ES, rather than the DS, segment.

If you trace through this program, you’ll see that the first MOV instruction
sets AX equal to 1 (DS_VAR) and the second MOV sets BX equal to 2 (ES_
VAR). In other words: We've read data from two different segments.

Another Look at ASSUME

Let’s take a look at what happens when we remove the ES: from our pro-
gram. Change the line:

MOV BX,ES:ES_VAR
8o it reads:
MOV BX,ES_VAR

We're no longer telling the assembler we want to use the ES register when we
read from memory, so it should go back to using the default segment (DS),
right? Wrong.

Use Debug to look at the result of this change. You’ll see that we still have
the ES: segment override in front of our MOV instruction. How could the as-
sembler possibly have known that our variable is in the extra, rather than the
data, segment? By using the information we gave it in the ASSUME
pseudo-op.

Our ASSUME statement tells the assembler that the DS register points to
the segment DATA_SEG, while ES points to EXTRA_SEG. Each time we
write an instruction that uses a memory variable, the assembler searches for
a declaration of this variable to see which segment it’s declared in. Then, it
searches through the ASSUME list to find out which segment register is
pointing to this segment. The assembler uses this segment register when it
generates the instruction.

Peter Norton’s Assembly Language Book 315

In the case of our MOV BX ES_VAR instruction, the assembler noticed
ES_VAR was in the segment called EXTRA_SEG, and that the ES register
was pointing to that segment, so it generated an ES: segment-override in-
struction on its own. If we were to move ES_VAR into STACK_SEG, the as-
sembler would generate an SS: segment-override instruction. The assembler
automatically generates any segment-override instructions we need, pro-
vided, of course, that our ASSUME pseudo-ops reflect the actual contents of
the segment registers.

Phase Errors

Sometimes you’ll find that the assembler displays a cryptic error message,
such as Phase error between passes. This message can mean a number of
things, but we’ll look at one particular case to help you understand it.

Basically, the assembler makes a number of passes through a program as it
generates the machine language version of it. Sometimes, as we’ll see here,
the program changes size between passes.

Using our sample program again, move the two data segments (DATA_
SEG and EXTRA_SEG) so they appear after your code SEGMENT. The as-
sembler will now assemble the main program before it even looks at the data
segments. As a result, it will generate a normal MOV instruction for MOV
BX,ES_VAR, because it doesn’t realize that this variable is in another
segment.

Next, the assembler will assemble the two data segments. At this point, it
will store the information that ES_VAR is in the segment EXTRA_SEG. On
its next pass through this program, the assembler will notice it now needs
room for a segment-override instruction. Since it didn’t reserve room for this
instruction the first time through, the assembler issues the error message:
Phase error between passes.

This is why we placed all our data segments before the code segment: So the
assembler would know which segments contained which variables. What isn’t
so obvious, though, is why we placed the ASSUME statement in CODE_SEG,
rather than at the top of this file.

We also receive a phase-error message if we place our ASSUME first thing
in the file. For some reason (not clear to us), we have to declare the segments
before the ASSUME pseudo-op, if we're going to have any implicit segment
overrides. The safest approach, then, is to declare all data before the code seg-
ment and to place the ASSUME pseudo-op in the code segment.

316 More on Segments and ASSUME

Closing Words

By now you've seen many examples of assembly-language programs.
Throughout this book, we've constantly emphasized programming, rather
than the details of the 8088 microprocessor inside your IBM Personal Com-
puter. As a result, you haven’t seen all the 8088 instructions, nor the assem-
bler pseudo-ops. But most assembly language programs can be written with
what you’ve learned here, and no more. Your best approach to learning more
about writing assembly language programs is to take the programs in this
book and modify them.

If you think of a better way to write any part of Dskpatch, by all means do
so. This is how we first learned to write programs. Back then the programs
were in BASIC, but the idea still holds. We found programs written in BASIC,
and began to learn about the language itself by rewriting bits and pieces of
those programs. You can do the same with Dskpatch.

After you've tried some of these examples, you’ll be ready to write your own
programs. Don’t start from scratch here, either; that’s rather difficult for your
first time out. To begin with, use the programs in this book as a framework.
Don’t build a completely new structure or technique (your equivalent of modu-
lar design) until you feel comfortable with writing assembly language
programes.

If you really become enthralled by assembly language, you’ll also need a
more complete book for use as a reference to the 8088 instruction set. Here is a
list of good reference books available at the time we wrote this book. This list
is by no means complete, and the books listed here are only the ones we've
read.

The following two books are good programmers’ references:

tAPX 88 Book, Intel, 1981. This is the definitive source book, and a very
good reference.

Rector, Russel, and Alexy, George, The 8086 Book, Osborne/McGraw-Hill,
1980. This is another good reference, but rather thick and dense.

The next three books were all written for the IBM PC. Much of the informa-
tion in each of these is generic; only the examples in the latter part of these
books are specific to the IBM PC. We recommend that you look at all three
books in a bookstore to see which one you find most interesting:

Scanlon, Leo J., IBM PC & XT Assembly Language: A Guide for Program-
mers, Enhanced and Enlarged, Brady Communication Co., 1985. This book

Peter Norton’s Assembly Language Book 317

is easy reading. It’s a complete introduction to 8088 assembly language. If
you're still feeling somewhat shaky about assembly language, this might be
a good book for you. Otherwise, look at Morse’s book.

Willen, David C., and Krantz, Jeffrey 1., 8088 Assembler Language Pro-
gramming: The IBM PC, Howard W. Sams & Co., 1983. This is another
good second book on the 8088 microprocessor, written for the IBM PC.

Bradley, David J., Assembly Language Programming for the IBM Personal
Computer, Prentice-Hall, 1984. The author helped design the IBM PC, and
he’s included many examples for the IBM PC. These examples aren’t com-
plete, but they may give you ideas of programs to work on. He also talks
about more advanced subjects, such as the 8087 numeric processor, than do
the authors of the preceding two books.

The next recommendation is neither a reference book, nor an introduction
for the IBM PC. It’s an introduction to the 8088 microprocessor, written by a
member of the design team at Intel:

Morse, Stephen P., The 8086/8088 Primer, Hayden, 1982. This is a delight-
ful book. As one of the designers at Intel, Morse provides many insights into
the design of the 8088 and also talks about some of the design flaws and
bugs in the 8088. While not very good as a reference, this book is complete,
and it’s very readable and informative.

Finally, the last book is a reference that’s useful to anyone programming
the IBM PC. We like to think of it as a compendium of everything a program-
mer might need to know about the IBM PC and 8086 microprocessor family.

Norton, Peter, Programmer’s Guide to the IBM PC, Microsoft Press, 1985.
Includes a complete reference to all DOS and BIOS functions, descriptions
of important memory locations, a summary of 8086 instructions, and a host
of other useful (or at least interesting) information.

5
i
H K s £ ' 4 = aq i i : §i _?il‘n‘ h s
w‘ﬁ d) ’ y o ¥ Ladn
| 4 3
b
1) r e
"‘;I..\
I‘lll‘
il
‘ |
‘\1
I
of
i
i
il
I
{
|
‘I\
',I
|
1
|
| .
i
|
i
|
—
E
4
Ny
i
o
e iR A
. + -
P) &

APPENDIX A
GUIDE TO THE DISK

Chapter Examples 320
Advanced Version of Dskpatch 321

319

320 Guide to the Disk

The companion disk to this book contains most of the Dskpatch examples
you've seen in the preceding chapters, as well as an advanced version of the
program that includes a lot of improvements. The files are in two groups: the
chapter examples and the advanced Dskpatch program. This appendix will
explain what’s on the disk, and why.

Chapter Examples

All the chapter examples are from Chapters 9 through 27. The examples in
earlier chapters are short enough so you can type them in quickly. But start-
ing in Chapter 9, we began to build Dskpatch, which, by the end of this book,
had grown to nine different files.

In any one chapter, only a few of these nine files changed. Since they do
evolve throughout each chapter, however, there wasn’t enough room on the
disk to store each version of each example. You will find the examples on the
disk, as they stand after each chapter. Thus, if we modify a program several
times in, say, Chapter 19, the disk contains the final version.

The table on page 324 shows when each file changes. It also shows the name
of the disk file for that chapter. If you want to make sure you’re still on course,
or you don’t feel like typing in the changes for some chapter, just look at this
table to find the names of the new files. Then you can either check your work
or copy the file(s) to your disk.

Here’s the complete list of all the files on the companion disk (not including
the advanced version of Dskpatch):

VIDEO_9.ASM VIDEO_10.ASM VIDEO_13.ASM TEST13.ASH
DISP_S14.ASM CURSOR14.ASM VIDEO_14.ASM DISP_S1S5.ASHM
DISK_I1S.ASM DISP_S1t6.ASM VIDEO_lb.ASM DISK_Ilb.ASM
DSKPATL?.ASM DISP_S17.ASM COURSORL?.ASM VIDEO_17.ASH
DISK_IL?.ASM CURSORL8.ASM VIDEO_18.ASM DSKPAT19.ASHM
DISPAT19.ASM KBD_IO19.ASM VIDEO_19.ASM DISK_I19.ASM
DISP_S21.ASM PHANTO2L.ASM VIDEO_21.ASM DISPATZZ.ASHM
EDITORZ22.ASM PHANTOZZ2.ASM KBD_IOZ23.ASM TESTZ23.ASM
KBD_IO24.ASM DISPAT2S.ASM DISPAT2L.ASM DISK_I2E.ASM
PHANTOZ7.ASM

Peter Norton’s Assembly Language Book 321

Advanced Version of Dskpatch

The disk contains more than just the examples in this book. We didn’t really
finish Dskpatch by the end of Chapter 27, and there are many things we
should have put into Dskpatch to make it a usable program. The disk contains
an almost-finished version. Here’s a quick overview of what you’ll find there.

As it stands in this book, Dskpatch can only read the next or previous sec-
tor. Thus, if you wanted to read sector 576, you’d have to push the F2 key 575
times. That’s too much work. What if you wanted to look at sectors within a
file? Right now, you’d have to look at the directory sector and figure out where
to look for the sectors of that file. Again, not much fun. The disk version of
Dskpatch can read either absolute sectors, just as the book version can, or it
can read sectors within a file. In its advanced form, Dskpatch is a very usable
program.

The advanced version of Dskpatch has too many changes to describe in detail
here, so let’s look at the new functions we added to the disk version. You’ll find
many of the changes by exploring Dskpatch and making your own changes.

The advanced Dskpatch still has nine files, all of which you’ll find on the
disk:

DSKPATCH.ASM DISPATCH.ASM DISP_SEC.ASM KBD_IO.ASM
CURSOR.ASHM EDITOR.ASH PHANTOM.ASHM VIDEO_IO.ASH
DISK_IO.ASH DSKPATCH.COM

You’ll also find an assembled and linked .COM version ready to run, so you
can try out the new version without assembling it.

When you do, you’ll be able to tell that there are several improvements just
by looking at the screen display. The advanced Dskpatch now uses eight func-
tion keys. That’s more than you can remember, if you don’t use Dskpatch very
often, so the advanced Dskpatch has a “key line” at the bottom of the display.
Here’s a description of the function keys:

F1, F2 were used in this book. F1 reads the previous sector, and F2 reads
the next sector.

F3 changes the disk-drive number or letter. Just press F3 and enter a
letter, such as A (without a colon, :), or enter a drive number, such
as 0. When you press the Enter key, Dskpatch will change drives
and read a sector from the new disk drive. You may want to
change Dskpatch so that it doesn’t read a new sector when you
change drives. We set it up so that it’s very difficult to write a
sector to the wrong disk.

322 Guide to the Disk

F4 changes the sector number. Just press F4 and type a sector
number, in decimal. Dskpatch will read that sector.

F5 isin this book. Press the Shift key and F5 to write a sector back to
the disk.

F6 changes Dskpatch to file mode. Just enter the file name and
Dskpatch will read a sector from that file. From then on, F1 (Pre-
vious Sector) and F2 (Next Sector) read sectors from within that
file. F3 ends file mode and switches back to absolute-sector mode.

F7 asks for an offset within a file. This is just like F4 (Sector) except
that it reads sectors within a file. If you enter an offset of 3,
Dskpatch will read the fourth sector in your file.

F10 exits from Dskpatch. If you accidentally press this key, you'll find
yourself back in DOS, and you’ll lose any changes you’ve made to
the last sector. You may want to change Dskpatch so that it asks
if you really want to leave Dskpatch.

A number of other changes aren’t as obvious as those just mentioned. For
example, Dskpatch now scrolls the screen one line at a time. If you move the
cursor to the bottom line of the display and press the Cursor-Down key,
Dskpatch will scroll the display by one line, putting a new line at the bottom.

In addition, some of the other keys on the keyboard also work now:

Home moves the phantom cursor to the top of the half-sector display and
scrolls the display so you see the first half-sector.

End moves the phantom cursor to the bottom right of the half-sector display
and scrolls the display so you see the second half-sector.

PgUp scrolls the half-sector display by four lines. This is a nice feature
when you want to move partway through the sector display. If you press
PgUp four times, you'll see the last half sector.

PgDn scrolls the half-sector display by four lines in the opposite direction
from PgUp.

If you like, you can modify the advanced Dskpatch to better suit your own
needs. That’s why the disk has all the source files for the advanced Dskpatch:
So you can modify Dskpatch any way you like and learn from a complete ex-

323

Peter Norton’s Assembly Language Book

ample. For instance, you might spruce up the error-checking capabilities. As
it stands, if pressing F2 causes you to fall off the end of a disk or file, Dskpatch
doesn’t reset the sector to the last sector on the disk or file. If you feel ambi-
tious, see if you can modify Dskpatch so it catches and corrects such errors.
Or, you may want to speed up screen updates. To do this you'd have to re-
write some of the procedures, such as WRITE_CHAR and WRITE_ATTRI-
BUTE_N_TIMES, to write directly to screen memory. Now, they use the very
slow ROM BIOS routines. If you're really ambitious, try to write your own

character-output routines that send characters to the screen very quickly.
Good luck.

Disk A Sector 8
B8 81 82 83 B84 85 86 87 @8 B9 BA BB BC @D BE BF ©123456789ABCDEF
T T T)

) |3:|21 98 49 42 4D 20 28 33 2E 31 06 82 82 81 @0 ﬂ!l’;‘lBﬂ 3.1 888
18 | 82 76 80 D@ B2 FD 82 89 B9 PO B2 9P @0 04 0B #B | 8p 1828 0 8
20 | 60 88 88 C4 5C 88 33 ED B8 C@ A7 BE D8 33 C9 8A —\I3¢1LOH+3
38 § D2 79 BE 89 1E 1E 88 8C B6 28 88 88 16 22 88 B1 §| yyféaa i¢ é&."
40 || 82 BE C5 8E D5 BC @8 7?C 51 FC 1E 36 C5 36 78 0@ Bﬁ+ﬁr! 3Q‘A6+6x
S8 | BF 23 7C B9 6B 88 F3 A4 1F 88 BE 2C 08 AB 18 @@ 1liﬂ€ {iivefl, at
68 | AZ 27 B8 BF 78 88 BB 23 7C AB 91 AB A1 16 88 D1 | &' x jRi%e4i. T

70 | £6 48 E8 88 8@ ES 86 B8 BB 0@ 85 53 B A1 E8 AB | «03C 34 3 4S:08Y
88 | 88 SF BE 73 @1 B9 8B 88 98 F3 A6 75 62 83 C7 15 | _4s0Yé EC®ubi[§
98 | B1 @B 98 98 F3 A6 75 57 26 8B 47 1C 99 8B OF 8B | FoEECSuWaic Bine
AB | 88 83 C1 48 F7 F1 80 3E 71 01 68 75 82 BB 14 96 | eLH=+C)qB uliqd
B8 | A1 11 88 B1 @4 D3 E8 ES 3B 0@ FF 36 1E 08 C4 1E | {4 Jolds: 6a -a
o | 6F 81 E8 39 98 E8 64 88 2B FB 76 BD ES 26 88 52 | o939 34 +=vFis R
D8 | F7 26 8B 88 B3 D8 5A EB E9 CD 11 B9 82 08 D3 EB | =3¢ wizso=<]8 L
E@ | 88 E4 83 74 84 FE C4 84 CC 5B 58 FF 2E 6F 81 BE | GEeten-2fX .od
F8 | 89 @1 EB 55 90 81 86 1E 8 11 2E 20 8@ C3 AL 18 | &MsUEGes 4. |it

Press function key, or enter character or hex byte:

Prev. Jext [Drive [iSectorfetSave JiFile Juoffsetly & JEExit |

Figure A-1.

The Advanced Version of Dskpatch

Ch
Nu::::: DSKPATCH DISPATCH DISP_SEC KBD_IO CURSOR EDITOR PHANTOM VIDEO_IO DISK_IO TEST
9 VIDEO_9.ASM
10 VIDEO_10.ASM
13 VIDEO_13 ASM TEST13.ASM
14 DISP_S14 ASM CURSOR14 ASM VIDEO_14 ASM
15 DISP_S15 ASM DISK_115 ASM
16 DISP_S16 ASM VIDEO_16.ASM | DISK_116 ASM
17 DSKPAT17 ASM DISP_S17 ASM CURSOR17.ASM VIDEO_17.ASM | DISK_I117. ASM
18 CURSOR18 ASM VIDEO_18 ASM
19 IBKPAT'ID,ASM DISPAT19.ASM KBD_l019 ASM VIDEO_19 ASM | DISK_I19.ASM
21 DISP_S21 ASM PHANTO21. ASM | VIDEO_21 ASM
22 DISPAT22 ASM EDITOR22 ASM | PHANTO022 ASM
23 KBD_1023 ASM TEST23.ASM
24 KBD_l1024 ASM
25 DISPAT25 ASM
26 DISPAT26 ASM DISK _126 ASM

jys1g aY1 031 apine)y $7€

APPENDIX B
LISTING OF DSKPATCH

Descriptions of Procedures 326
Program Listings for the Dskpatch Procedures 332

DSKPATCH Make File 332
CURSOR.ASM 333
DISK_IO.ASM 337
DISPATCH.ASM 341
DISP_SEC.ASM 344
DSKPATCH.ASM 350
EDITOR.ASM 352
KBD_IO.ASM 355
PHANTOM.ASM 365
VIDEO_IO.ASM 372

325

326 Li\ting of DSKPATCH

This appendix contains the final version of Dskpatch. If you're writing your
own programs, you'll find many general-purpose procedures in this appendix
to help you on your way. We’ve included short descriptions of each procedure.

Descriptions of Procedures

CURSOR.ASM
CLEAR_SCREEN Like the BASIC CLS command; clears the text

screen.

CLEAR_TO_END_OF_LINE Clears all the characters from the

cursor position to the end of the current line.

CURSOR_RIGHT Moves the cursor one character position to the
right, without writing a space over the old character.

GOTO_XY Very much like the BASIC LOCATE command; moves the
cursor on the screen.

SEND_CRLF Sends a carriage-return/line-feed pair of characters to the
screen. This procedure simply moves the cursor to the start of the next line.

DISK_I10.ASM

NEXT_SECTOR Adds one to the current sector number, then reads
that sector into memory and rewrites the Dskpatch screen.

PREVIOUS_SECTOR Reads the previous sector. The procedure sub-
tracts one from the old sector number (CURRENT_SECTOR_NO) and reads
the new sector into the memory variable SECTOR. It also rewrites the screen
display.

READ_SECTOR Reads one sector (512 bytes) from the disk into the
memory buffer, SECTOR.

0w e

Peter Norton’s Assembly Language Book 327

WRITE_SECTOR Writes one sector (512 bytes) from the memory
buffer, SECTOR, to the disk.

DISPATCH.ASM

DISPATCHER The central dispatcher, reads characters from the key-
board and then calls on other procedures to do all the work of Dskpatch. Add
any new commands to DISPATCH_TABLE in this file.

DISP_SEC.ASM

DISP_HALF_SECTOR Does the work of displaying all the hex and
ASCII characters that appear in the half-sector display by calling DISP_
LINE 16 times.

DISP_LINE Displays one line of the half-sector display. DISP_HALF_
SECTOR calls this procedure 16 times to display all 16 lines of the half-sector
display.

INIT_SEC_DISP Initializes the half-sector display you see in
Dskpatch. This procedure redraws the half-sector display, along with the
boundaries and top hex numbers, but does not write the header or the editor
prompt.

WRITE_TOP_HEX_NUMBERS Writes the line of hex numbers

across the top of the half-sector display. The procedure is not useful for much
else.

DSKPATCH.ASM

DISK_PATCH The (very short) main program of Dskpatch. DISK_
PATCH simply calls a number of other procedures, which do all the work. It
also includes many of the definitions for the variables used throughout
Dskpatch.

328 Listing of DSKPATCH

EDITOR.ASM

EDIT_BYTE Edits a byte in the half-sector display by changing one
byte both in memory (SECTOR) and on the screen. Dskpatch uses this proce-
dure to change bytes in a sector.

WRITE_TO_MEMORY Called upon by EDIT_BYTE to change a
single byte in SECTOR. This procedure changes the byte pointed to by the
phantom cursor.

KBD_10.ASM

BACK_SPACE Used by the READ_STRING procedure to delete one
character, both from the screen and from the keyboard buffer, whenever you
press the Backspace key.

CONVERT_HEX_DIGIT Converts a single ASCII character into its
hexadecimal equivalent. For example, the procedure converts the letter A into
the hex number 0AH. NOTE: CONVERT_HEX_DIGIT works only with up-
percase letters.

HEX_TO_BYTE Converts a two-character string of characters from a
hexadecimal string, such as A5, into a single byte with that hex value. HEX _
TO_BYTE expects the two characters to be digits or uppercase letters.

READ_BYTE Uses READ_STRING to read a string of characters. This
procedure returns the special function key, a single character, or a hex byte if
you typed a two-digit hex number.

READ_DECIMAL Reads an an unsigned decimal number from the
keyboard, using READ_STRING to read the characters. READ_DECIMAL
can read numbers from 0 to 65535.

READ_STRING Reads a DOS-style string of characters from the key-
board. This procedure also reads special function keys; the DOS READ_
STRING function does not.

Peter Norton’s Assembly Language Book 329

STRING_TO_UPPER A general-purpose procedure, converts a DOS-
style string to all uppercase letters.

PHANTOM.ASM

ERASE_PHANTOM Removes the two phantom cursors from the
screen by returning the character attribute to normal (7) for all characters
under the phantom cursors.

MOV _TO_ASCII_POSITION Moves the real cursor to the start of
the phantom cursor in the ASCII window of the half-sector display.

MOV_TO_HEX_POSITION Moves the real cursor to the start of

the phantom cursor in the hex window of the half-sector display.

PHANTOM_DOWN Moves the phantom cursor down and scrolls the
screen if you try to move past the sixteenth line of the half-sector display.

PHANTOM_LEFT Moves the phantom cursor left one entry, but not
past the left side of the half-sector display.

PHANTOM_RIGHT Moves the phantom cursor right one entry, but
not past the right side of the half-sector display.

PHANTOM_UP Moves the phantom cursor up one line in the half-sec-
tor display, or scrolls the display if you try to move the cursor off the top.

RESTORE_REAL_CURSOR Moves the cursor back to the position
recorded by SAVE_REAL_CURSOR.

SAVE_REAL_CURSOR Saves the position of the real cursor in two
variables. Call this procedure before you move the real cursor if you want to
restore its position when you’ve finished making changes to the screen.

SCROLL_DOWN Displays the first half of the sector. Youll find a
more advanced version of SCROLL_DOWN on the disk available with this
book. The advanced version scrolls the half-sector display by just one line.

330 Listing of DSKPATCH

SCROLL_UP cCalled by PHANTOM_DOWN when you try to move the
phantom cursor off the bottom of the half-sector display. The version in this
book doesn’t actually scroll the screen: It writes the second half of the sector.
On the disk, more advanced versions of SCROLL_UP and SCROLL_DOWN
scroll the display by one line, instead of 16.

WRITE_PHANTOM Draws the phantom cursors in the half-sector
display: one in the hex window, and one in the ASCII window. This procedure
simply changes the character attributes to 70H, to use black characters on a
white background.

VIDEO_IO.ASM

Contains most of the general-purpose procedures you’ll want to use in your
own programes.

WRITE_ATTRIBUTE_N_TIMES A handy procedure you can use
to change the attributes for a group of N characters. WRITE_PHANTOM
uses this procedure to draw the phantom cursors, and ERASE_PHANTOM
uses it to remove the phantom cursors.

WRITE_CHAR Writes a character to the screen. Since it uses the
ROM BIOS routines, this procedure doesn’t attach special meaning to any
characters. A carriage-return character will appear on the screen as a musical
note (the character for 0DH). Call SEND_CRLF if you want to move the cur-
sor to the start of the next line.

WRITE_CHAR_N_TIMES Writes N copies of one character to the

screen. This procedure is useful for drawing lines of characters, such as the
ones used in patterns.

WRITE_DECIMAL Writes a word to the screen as an unsigned deci-
mal number in the range 0 to 65535.

WRITE_HEADER Writes the header at the top of the screen you see
in Dskpatch. There, the procedure displays the disk-drive number and the
number of the sector you see in the half-sector display.

Peter Norton’s Assembly Language Book 331

WRITE_HEX Takes a one-byte number and writes it on the screen as a
two-digit hex number.

WRITE_HEX_DIGIT Writes a single-digit hex number on the
screen. This procedure converts a four-bit nibble into the ASCII character and
writes it to the screen.

WRITE_PATTERN Draws boxes around the half-sector display, as
defined by a pattern. Use WRITE_PATTERN to draw arbitrary patterns of
characters on the screen.

WRITE_STRING A very useful, general-purpose procedure with
which you can write a string of characters to the screen. The last character in
your string must be a zero byte.

WRITE_PROMPT _LINE Writes a string at the prompt line, then

clears the rest of the line to remove any characters from the old prompt.

332 Listing of DSKPATCH

Program Listings for Dskpatch Procedures
DSKPATCH Make File

Here is the Make file that you can use with Microsoft’s Make utility to build

Dskpatch automatically.

DSKPATCH.OBJ:

MASH
DISK_I0.0BJ:
MASH
DISP_SEC.OBJ:
MASHM
VIDEO_IO.O0BJ:
MASH
CURSOR.OBJ:
MASH
DISPATCH.OBJ:
MASH
KBD_I0.0BJ:
MASH
PHANTOM.OBJ:
MASH
EDITOR.OBJ:
MASH

DSKPATCH.ASHM

DSKPATCH;
DISK_IO.ASH
DISK_IO;
DISP_SEC.ASH
DISP_SEC;
VIDEO_IO.ASH
VIDEO_IO;
CURSOR.ASH
CURSOR;
DISPATCH.ASH
DISPATCH;
KBD_IO0.ASH
KBD_IO;
PHANTOM. ASH
PHANTOM;
EDITOR.ASH
EDITOR;

DSKPATCH.COM: DSKPATCH.OBJ DISK_I0.0BJ DISP_SEC.0BJ VIDEO_I0.0BJ CURSOR.OBJ \
DISPATCH.O0BJ KBD_IO.0BJ PHANTOM.OBJ EDITOR.OBJ
LINK @LINKINFO
EXEZBIN DSKPATCH DSKPATCH.COM

CURSOR.ASM
CR EQU 13
LF EQU 10

CGROUP GROUP
ASSUME

CODE_SEG

PUBLIC

; This routine just sends a carriage-return/line-feed pair to the
; display, using the DOS routines so that scrolling will be handled

; correctly.

SEND_CRLF
PUSH
PUSH
MOV
MOV
INT
MoV
INT
POP
POP
RET

SEND_CRLF

PUBLIC

CLEAR_SCREEN
PUSH
PUSH
PUSH
PUSH
XOR
XOR

CODE_SEG
CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC

SEND_CRLF

PROC NEAR
AX

DX

AH,2

DL,CR

21h

DL,LF

21h

DX

AX

ENDP

CLEAR_SCREEN

PROC NEAR
AX

BX

X

DX

AL,AL

CX, CX

Peter Norton’s Assembly Language Book 333

;Carriage return
;Line feed

;Blank entire window

:Upper left corner is at (0,0)

...

334 Listing of DSKPATCH

CURSOR.ASM continued

MOV DH, 24 ;Bottom Line of screen is line 24
MOV DL,79 ;Right side is at column 79

MOV BH,7 ;Use normal attribute for blanks
MoV AH,6 ;Call for SCROLL_UP function

INT 10h ;Clear the window

POP DX

POP CX

POP BX

POP AX

RET

CLEAR_SCREEN ENDP

PUBLIC GOTO_XY

...

' ’
; This procedure moves the cursor ;
H H
= DH Row (Y) i
» DL Column (X) H
H H
F e L e T T b e ‘
GOTO_XY PROC NEAR

PUSH AX

PUSH BX

MOV BH,0 ;Display page 0

MOV AH,2 ;Call for SET CURSOR POSITION

INT 10h

POP BX

POP AX

RET
GOTO_XY ENDP

PUBLIC CURSOR_RIGHT
JreTeREAmmsenTE s e e B S H
: This procedure moves the cursor one position to the right or to the ;
; next line if the cursor was at the end of a line. 3
: H
; Uses: SEND_CRLF H

...

Peter Norton’s Assembly Language Book

CURSOR.ASM continued

CURSOR_RIGHT
PUSH
PUSH
PUSH
PUSH
MOV
MOV
INT
MOV
INC
CMP
JBE
CALL
JMP
OK: INT
DONE: POP
POP
POP
POP
RET
CURSOR_RIGHT

PROC NEAR

AX

BX

CX

DX

AH,3 ;Read the current cursor position
BH,0 ;0n page 0

10h ;Read cursor position

AH,2 ;Set new cursor position

DL ;Set column to next position
DL,79 ;Make sure column <= 79

0K

SEND_CRLF ;Go to next line

DONE

10h

DX

CX

BX

AX

ENDP

PUBLIC CLEAR_TO_END_OF LINE

..............

; This procedure clears the line from the current cursor position to E
; the end of that line. e

CLEAR_TO_END OF LINE PROC NEAR

PUSH
PUSH
PUSH
PUSH
MoV
XOR
INT
MOV
XOR
MOV

AX

BX

CX

DX

AH,3 ;Read current cursor position
BH,BH ; on page O

10h ;Now have (X,Y) in DL, DH

AH,6 ;Set up to clear to end of line
AL, ,AL ;Clear window

CH,DH ;ALL on same line

335

336 Listing of DSKPATCH

CURSOR.ASM continued

MOV
MOV
MOV
INT
POP
POP
POP
POP
RET

cL,bL
oL,79
BH,7
10h
DX

cx

BX

AX

CLEAR_TO_END_OF LINE ENDP

CODE_SEG

END

ENDS

;Start at the cursor position
;And stop at the end of the line
;Use normal attribute

DISK_I0.ASM

CGROUP GROUP
ASSUME

CODE_SEG

PUBLIC
DATA_SEG

EXTRN

EXTRN

EXTRN
DATA_SEG

CODE_SEG, DATA_SEG
CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC

READ_SECTOR

SEGMENT PUBLIC
SECTOR:BYTE
DISK_DRIVE_NO:BYTE
CURRENT_SECTOR_NO:WORD
ENDS

Peter Norton’s Assembly Language Book 337

; This procedure reads one sector (512 bytes) into SECTOR.

; Reads:
; Writes:

CURRENT SECTOR _NO, DISK_DRIVE_NO

SECTOR

READ_SECTOR
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
LEA
INT
POPF
POP
POP
POP
POP
RET

READ_SECTOR

PROC NEAR

AX

BX

cX

DX

AL,DISK_DRIVE_NO
cx, 1

DX, CURRENT_SECTOR_NO
BX,SECTOR

25h

DX
CX
BX
AX

ENDP

;Drive number

;Read only 1 sector

;Logical sector number

;Where to store this sector

;Read the sector

;Discard flags put on stack by DOS

338 Listing of DSKPATCH

DISK_IO.ASM continued)

..

PUBLIC WRITE_SECTOR

This procedure writes the sector back to the disk.

Reads: DISK_DRIVE_NO, CURRENT_SECTOR_NO, SECTOR

WRITE_SECTOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MoV AL,DISK DRIVE_NO ;Drive number
MoV X ;Write 1 sector

MOV DX, CURRENT_SECTOR_NO ;Logical sector
LEA BX,SECTOR

INT 26h ;Write the sector to disk
POPF ;Discard the flag information
POP DX

POP CcX

POP BX

POP AX

RET

WRITE_SECTOR ENDP

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

This procedure reads the previous sector, if possible.

Uses: WRITE_HEADER, READ SECTOR, INIT_SEC DISP
WRITE_PROMPT_LINE

Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT

Writes: CURRENT_SECTOR_NO

ME NE NE N N wa wa

...

Peter Norton’s Assembly Language Book
; 4

DISK_IO.ASM continued)

PREVIOUS_SECTOR PROC NEAR
PUSH AX
PUSH DX
MOV AX,CURRENT_SECTOR_NO ;Get current sector number
OR AX,AX ;Don't decrement if already O
JZ DONT_DECREMENT_SECTOR
DEC AX
MOV CURRENT_SECTOR_NO, AX ;Save new sector number

CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC DISP ;Display new sector
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
DONT_DECREMENT_SECTOR:

POP DX
POP AX
RET
PREVIOUS_SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

G i S bl B e e e S Tl e A T e R G e :
; Reads the next sector. -
; Uses: WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP ;
: WRITE_PROMPT_LINE :
; Reads: CURRENT_SECTOR_NO, EDITOR_PROMPT =
; Writes: CURRENT_SECTOR_NO -

NEXT_SECTOR PROC NEAR

PUSH AX
PUSH DX
MOV AX,CURRENT_SECTOR_NO

339

340 Listing of DSKPATCH

DISK_IO.ASM continued)

INC AX ;Move to next sector
MoV CURRENT_SECTOR_NO,AX

CALL WRITE_HEADER

CALL READ_SECTOR

CALL INIT_SEC_DISP ;Display new sector
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
POP DX
POP AX
RET
NEXT_SECTOR ENDP
CODE_SEG ENDS

END

Peter Norton’s Assembly Language Book 341

DISPATCH.ASM

CGROUP GROLP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT BYTE:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
! EXTRN EDITOR_PROMPT:BYTE
‘ DATA_SEG ENDS

; This is the central dispatcher. During normal editing and viewing,
; this procedure reads characters from the keyboard and if the char
; is a command key (such as a cursor key), DISPATCHER calls the

; procedures that do tne actual work. This dispatching is done for 3
; special keys listed in the table DISPATCH_TABLE, where the procedure
; addresses are stored just after the key names.

; If the character is not a special key, then it should be placed

; directly into the sector buffer-- this is the editing mode.

; Uses: READ BYTE, EDIT_BYTE, WRITE_PROMPT_LINE ;
; Reads: EDITOR_PROMPT :
DISPATCHER PROC NEAR
‘ PUSH AX
’ PUSH BX
: PUSH DX
‘ DISPATCH_LOOP:
| CALL READ_BYTE ;Read character into AX
OR AH,AH ;AH = 0 if no character read, -1
; for an extended code.
JZ NO_CHARS_READ ;No character read, try again
Js SPECIAL_KEY ;Read extended code
MoV DL,AL
CALL EDIT_BYTE ;Was normal character, edit byte
JMP DISPATCH_LOOP ;Read another character

342 Listing of DSKPATCH

DISPATCH.ASM continued

SPECIAL KEY:
CMP
JE

LEA
SPECIAL_LOOP:

CMP
JE

CMP
JE

ADD
JMP

DISPATCH:
INC
CALL
JMP

NOT_IN_TABLE:
JMP

NO_CHARS_READ:

LEA
CALL
JMP

END_DISPATCH:
POP
POP
POP
RET

DISPATCHER

CODE_SEG

DATA_SEG

AL,68
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR [BX],0
NOT_IN_TABLE
AL, [BX]
DISPATCH

BX,3
SPECIAL_LOOP

BX
WORD PTR [BX]
DISPATCH_LOOP

DISPATCH_LOOP

DX,EDITOR_PROMPT
WRITE_PROMPT LINE
DISPATCH_LOOP

DX
BX
AX
ENDP

ENDS

SEGMENT PUBLIC

;F10--exit?
;Yes, leave
;Use BX to look through table

;End of table?

;Yes, key was not in the table
;Is it this table entry?

;Yes, then dispatch

;sNo, try next entry

;Check next table entry

;Point to address of procedure
;Call procedure
;Wait for another key

;D0 nothing, just read next character

;Erase any invalid characters typed
;Try again

B i

Peter Norton’s Assembly Language Book 343

DISPATCH.RASM continued

CODE_SEG
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN

CODE_SEG

SEGMENT PUBLIC

NEXT_SECTOR:NEAR ;1n DISK_I0.ASM
PREVIOUS_SECTOR:NEAR ;1n DISK_10.ASM
PHANTOM_UP:NEAR, PHANTOM_DOWN:NEAR ;In PHANTOM.ASM
PHANTOM_LEFT:NEAR, PHANTOM RIGHT:NEAR

WRITE_SECTOR:NEAR ;1n DISK_10.ASM
ENDS

; This table contains the legal extended ASCII keys and the addresses
; of the procedures that should be called when each key is pressed.

- The format of the table is
- DB TiEa ;Extended code for cursor up
- DW OFFSET CGROUP:PHANTOM_UP
DISPATCH_TABLE LABEL BYTE

DB 59 ;F1

DW OFFSET CGROUP:PREVIOUS_SECTOR

DB 60 :F2

DW OFFSET CGROUP:NEXT_SECTOR

DB 72 ;Cursor up

DW OFFSET CGROUP:PHANTOM_UP

DB 80 ;Cursor down

DW OFFSET CGROUP:PHANTOM_DOWN

DB 75 ;Cursor left

DW OFFSET CGROUP:PHANTOM_LEFT

DB 7 ;Cursor right

DW OFFSET CGROUP:PHANTOM_RIGHT

DB 88 ;Shift F5

DW OFFSET CGROUP:WRITE_SECTOR

DB 0 ;End of the table
DATA_SEG ENDS

END

344 Listing of DSKPATCH

DISP_SEC.ASM

CGROUP GROUP

CODE_SEG, DATA_SEG

ASSUME CS:CGROUP, DS:CGROUP

..

..

VERTICAL_BAR
HORIZONTAL_BAR
UPPER_LEFT
UPPER_RIGHT
LOWER_LEFT
LOWER_RIGHT
TOP_T_BAR
BOTTOM_T_BAR
TOP_TICK
BOTTOM_TICK

CODE_SEG

PUBLIC
EXTRN
EXTRN
DATA_SEG
EXTRN
EXTRN
DATA_SEG

EQU 0BAh
EQU 0CDh
EQU 0C%h
EQU 08Bh
EQU 0c8h
EQU 0BCh
EQU 0cBh
EQU OCAh
EQU 00D1h
EQU OCFh

SEGMENT PUBLIC

INIT_SEC DISP

WRITE_PATTERN:NEAR, SEND_CRLF:NEAR
GOTO_XY:NEAR, WRITE_PHANTOM:NEAR
SEGMENT PUBLIC
LINES_BEFORE_SECTOR:BYTE
SECTOR_OF FSET : WORD

ENDS

;Group two segments together

; This procedure initializes the half-sector display.

Uses:

’
H
; Reads:
H
; Writes:

WRITE_PATTERN, SEND CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PHANTOM
TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN
LINES_BEFORE_SECTOR

SECTOR_OFFSET

...

INIT_SEC_DISP
PUSH

PROC NEAR
DX

Peter Norton’s Assembly Language Book 345

DISP_SEC.ASM continued

XOR DL,DL ;Move cursor into position
MOV DH,LINES_BEFORE_SECTOR

CALL GOTO_XY

CALL WRITE_TOP_HEX_ NUMBERS

LEA DX, TOP_LINE_PATTERN

CALL WRITE_PATTERN

CALL SEND_CRLF

XOR DX,DX ;Start at the beginning of the sector
MOV SECTOR_OFFSET,DX ;Set sector offset to 0
CALL DISP_HALF_SECTOR

LEA DX,BOTTOM_LINE_PATTERN

CALL WRITE_PATTERN

CALL WRITE_PHANTOM ;Write the phantom cursor
POP DX
RET

INIT_SEC DISP ENDP

EXTRN WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR
EXTRN WRITE_HEX_DIGIT:NEAR, SEND_CRLF:NEAR

...

This procedure writes the index numbers (0 through F) at the top of
the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
WRITE_HEX_DIGIT, SEND_CRLF

WRITE_TOP_HEX NUMBERS PROC NEAR

PUSH CX

PUSH DX

MOV DL, ! :Write 9 spaces for left side
MOV cx,9

CALL WRITE_CHAR_N_TIMES

XOR DH,DH ;Start with 0

HEX_NUMBER_LOOP:
MoV DL,DH
CALL WRITE_HEX
MOV DL,' !
CALL WRITE_CHAR

346 Listing of DSKPATCH

DISP_SEC.ASM continued

INC DH

CMP DH, 10h ;Done yet?

JB HEX_NUMBER_LOOP

MOV DL, ¢ ;Write hex numbers over ASCII! window
MOV cx,2

CALL WRITE_CHAR_N_TIMES

XOR DL,DL

HEX_DIGIT_LOOP:
CALL WRITE_HEX DIGIT

INC DL

CMP DL, 10h

JB HEX_DIGIT_LOOP
CALL SEND_CRLF

POP DX

POP CX

RET

WRITE_TOP_HEX_NUMBERS ENDP

PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:NEAR

...

; This procedure displays half a sector (256 bytes) 5
H H
. DS:DX Offset into sector, in bytes--should be multiple of 16 ;
' H
; Uses: DISP_LINE, SEND_CRLF 3
B o S i R H
DISP_HALF_SECTOR PROC NEAR

PUSH CX

PUSH DX

MOV CX,16 ;Display 16 lines

HALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF
ADD DX, 16
LOOP HALF_SECTOR
POP DX

DISP_SEC.ASM

POP
RET
DISP_HALF_SECTOR

PUBLIC
EXTRN
EXTRN
EXTRN

continued

CX

ENDP

DISP_LINE
WRITE_HEX:NEAR
WRITE_CHAR:NEAR
WRITE_CHAR_N_TIMES:NEAR

Peter Norton’s Assembly Language Book 347

then in ASCII.

; This procedure displays one line of data, or 16 bytes, first in hex, ;
H

- DS:DX Offset into sector, in bytes -
; Uses WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES =
; Reads SECTOR =
DISP_LINE PROC NEAR

PUSH BX

PUSH CX

PUSH DX

MOV BX,DX ;0ffset is more useful in BX

MOV DL," !

MOV cx,3 ;Write 3 spaces before line

CALL WRITE_CHAR_N_TIMES

;Write offset in hex

CMP BX, 100h ;Is the first digit a 1?

JB WRITE_ONE ;No, white space already in DL

MoV DL ;Yes, then place '1' into DL for output
WRITE_ONE:

CALL WRITE_CHAR

MOV DL,BL ;Copy lower byte into DL for hex output

CALL WRITE_HEX

;Write separator

MoV DL," !

CALL WRITE_CHAR

MOV DL,VERTICAL_BAR ;Draw left side of box

348 Listing of DSKPATCH

DISP_SEC.ASM continued

CALL
MOV
CALL

MOV
PUSH

HEX_LOOP:

MOV
CALL
MoV
CALL
INC
LOOP

MOV
CALL
MOV
CALL
MOV
POP

ASCII_LOOP:

DISP_LIN

CODE_SEG

MOV
CALL
INC
LOOP

MOV
CALL
MOV
CALL

POP
POP
POP
RET
E

WRITE_CHAR
oL,' !
WRITE_CHAR

cx,16
BX

DL, SECTOR [BX]
WRITE_HEX
bL,' !
WRITE_CHAR
BX

HEX_LOOP

DL,VERTICAL BAR
WRITE_CHAR

DL,' !
WRITE_CHAR

X, 16

BX

DL, SECTOR [BX]
WRITE_CHAR
BX
ASCI1_LOOP

oL,' !
WRITE_CHAR
DL,VERTICAL BAR
WRITE_CHAR

DX
cX
BX

ENDP

ENDS

;Now write out 16 bytes

;Dump 16 bytes

;Save the offset for ASCII_LOOP
;Get one byte

;Dump this byte in hex
;Write a space between numbers

;Write separator

;Add another space before characters

;Get back offset into SECTOR

;Draw right side of box

DISP_SEC.ASM continued

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
TOP_LINE_PATTERN LABEL
DB vy
DB UPPER_LEFT,1
DB HORIZONTAL_BAR,
DB TOP_TICK,1
DB HORIZONTAL BAR,
DB TOP_TICK,1
DB HORIZONTAL BAR,
DB TOP_TICK, 1
DB HORIZONTAL BAR,
DB TOP_T_BAR, 1
DB HORIZONTAL_BAR,
DB UPPER_RIGHT,1
DB 0
BOTTOM_LINE_PATTERN LABEL
DB Can T
DB LOWER_LEFT,1
DB HORIZONTAL BAR,
DB BOTTOM_TICK, 1
DB HORIZONTAL BAR,
DB BOTTOM_TICK,1
DB HORIZONTAL BAR,
DB BOTTOM_TICK,1
DB HORIZONTAL BAR,
DB BOTTOM_T_BAR, 1
DB HORIZONTAL_BAR,
DB LOWER_RIGHT, 1
DB 0
DATA_SEG ENDS

END

BYTE

12

1"

1"

12

18

BYTE

12

"

1"

12

18

Peter Norton’s Assembly Language Book 349

350 Listing of DSKPATCH

DSKPATCH.ASM

CGROUP GROUP

CODE_SEG, DATA_SEG

ASSUME CS:CGROUP, DS:CGROUP
CODE_SEG SEGMENT PUBLIC
ORG 100h
EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT LINE:NEAR, DISPATCHER:NEAR
DISK_PATCH PROC NEAR
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATCHER
INT 20h
DISK_PATCH ENDP
CODE_SEG ENDS
DATA_SEG SEGMENT PUBLIC
PUBLIC SECTOR_OFFSET

SECTOR_OFFSET

..................................

’

; SECTOR_OFFSET is the offset of the half

; sector display into the full sector.

; be a multiple of 16, and not greater than 256

It must

..................................

DW 0

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO DW 0
DISK_DRIVE_NO DB 0

;Initially sector 0
;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER_LINE_NO

Peter Norton’s Assembly Language Book 351

DSKPATCH.ASM continued

PUBLIC HEADER_PART 1, HEADER PART 2

...

’ ’
; LINES_BEFORE_SECTOR is the number of lines -
; at the top of the screen before the half- c
; sector display. .

H H
LINES_BEFORE_SECTOR DB 2
HEADER_LINE_NO DB 0
HEADER_PART_1 DB 'Disk ',0
HEADER_PART_2 DB L Sector ',0
PUBLIC PROMPT_LINE_NO, EDITOR_PROMPT
PROMPT_LINE_NO DB 21
EDITOR_PROMPT DB 'Press function key, or enter'
DB ! character or hex byte: ',0

PUBLIC SECTOR

; The entire sector (up to 8192 bytes) is H
; stored in this part of memory. .
S S s i RN T LT A TR S H
SECTOR DB 8192 DUP (0)

DATA_SEG ENDS

END DISK_PATCH

352 Listing of DSKPATCH

EDITOR.ASM

CGROUP GROUP
ASSUME

CODE_SEG

DATA_SEG
EXTRN
EXTRN
EXTRN
EXTRN

DATA_SEG

CODE_SEG, DATA_SEG
CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC

SEGMENT PUBLIC
SECTOR:BYTE
SECTOR_OFFSET :WORD
PHANTOM_CURSOR_X:BYTE
PHANTOM_CURSOR_Y:BYTE
ENDS

...

’
; This procedure writes one byte to SECTOR, at the memory location
H

pointed to by the phantom cursor.

DL

OFFSET = SECTOR_OFFSET + (16 * PHANTOM_CURSOR_Y) + PHANTOM_CURSOR_X

; The offset is

; Reads:
; Writes:

Byte to write to SECTOR

calculated by

PHANTOM_CURSOR X, PHANTOM_ CURSOR Y, SECTOR OFFSET

SECTOR

...

WRITE_TO_MEMORY
PUSH
PUSH
PUSH
MOV
MOV
XOR
MOV
SHL
ADD
MOV
XOR
ADD
MoV

AX

BX

cX

BX,SECTOR_OFFSET
AL,PHANTOM_CURSOR Y
AH, AH

cL,4

AX, CL

BX, AX
AL,PHANTOM_CURSOR X
AH, AH

BX, AX

SECTOR [BX] ,DL

;Multiply PHANTOM_CURSOR_Y by 16

;BX = SECTOR_OFFSET + (16 * Y)

;That's the address!

;Now, store the byte

Peter Norton’s Assembly Language Book 353

EDITOR.ASM continued

POP CX

POP BX

POP AX

RET
WRITE_TO_MEMORY ENDP

PUBLIC EDIT_BYTE

EXTRN SAVE_REAL_CURSOR:NEAR, RESTORE_REAL_CURSOR:NEAR

EXTRN MOV_TO_HEX_POSITION:NEAR, MOV_TO_ASCII_POSITION:NEAR

EXTRN WRITE_PHANTOM:NEAR, WRITE_PROMPT_LINE:NEAR

EXTRN CURSOR_RIGHT:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN EDITOR_PROMPT:BYTE
DATA_SEG ENDS
VTR e Lkl e e et it e e ol e e e e e H
; This procedure changes a byte in memory and on the screen. ;
; :
- DL Byte to write into SECTOR, and change on screen
; :
; Uses: SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR 5
; MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION -
H WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT 5
: WRITE_HEX, WRITE_CHAR, WRITE_TO_MEMORY 5
; Reads: EDITOR_PROMPT F
R A e S i i R e N S e e e s e S e H
EDIT_BYTE PROC NEAR

PUSH DX

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Move to the hex number in the

CALL CURSOR_RIGHT ; hex window

CALL WRITE_HEX ;Write the new number

CALL MOV_TO_ASCII_POSITION ;Move to the char. in the ASCII window

CALL WRITE_CHAR ;Write the new character

CALL RESTORE_REAL_CURSOR ;Move cursor back where it belongs

CALL WRITE_PHANTOM ;Rewrite the phantom cursor

CALL WRITE_TO_MEMORY ;Save this new byte in SECTOR

LEA DX,EDITOR_PROMPT

354 Listing of DSKPATCH

EDITOR.ASM continued

CALL WRITE_PROMPT_LINE

| POP DX
i‘ RET

EDIT_BYTE ENDP

CODE_SEG ENDS
‘ END
1]
&

KBD_I10.ASM
CGROUP GROUP
ASSUME
BS EQU 8
CR EQU 13
ESC EQU 27
CODE_SEG SEGMENT PUBLIC

PUBLIC STRING_TO_UPPER

; This procedure converts the string, using the DOS format for strings, ;
to all uppercase letters.

STRING_TO_UPPER
PUSH
PUSH
PUSH
MOV
INC
MOV
XOR

UPPER_LOOP:
INC
MOV
CcMP
JB
CMP
JA
ADD
MOV

NOT_LOWER:
LOOP
POP

CODE_SEG, DATA_SEG
CS:CGROUP, DS:CGROUP

Address of string buffer

AX

BX

CX
BX,DX
BX

CL, [BX]
CH,CH

BX

AL, [BX]
AL,'a’
NOT_LOWER
AL,'z!
NOT_LOWER
AL,'A'-'a!
[BX1,AL

UPPER_LOOP
cX

Peter Norton’s Assembly Language Book 355

;Backspace character
;Carriage-return character
;Escape character

...

...

PROC

;Point to character count

;Character count in 2nd byte of buffer
;Clear upper byte of count

;Point to next character in buffer
;See if it is a lowercase letter

i Nope

;Convert to uppercase letter

356 Listing of DSKPATCH

KBD_IO.ASM continued

POP BX

POP AX

RET
STRING_TO_UPPER ENDP
e eeeeeeeeeieciaisaceecssessssssessssssssssescscsessesssesstassssessanns :
; This procedure converts a character from ASCII (hex) to a nibble (4 ;
: bits). -
: i
: AL Character to convert a
; Returns: AL Nibble 2
8 CF Set for error, cleared otherwise ;
St eeeeeesesaesessesessesesssssssssssssssssesssessssesssssasesnes :
CONVERT_HEX DIGIT PROC NEAR

CMP AL,'0! ;Is it a legal digit?

JB BAD DIGIT :Nope

CMP AL, 9 ;Not sure yet

JA TRY_HEX ;Might be hex digit

SUB AL,'0" ;I1s decimal digit, convert to nibble

cLC ;Clear the carry, no error

RET
TRY_HEX:

CMP AL,'A" ;Not sure yet

JB BAD _DIGIT ;Not hex

CMP AL, 'F} ;Not sure yet

JA BAD DIGIT ;Not hex

SuB AL,'A'-10 ;1s hex, convert to nibble

CLC ;Clear the carry, no error

RET
BAD DIGIT:

STC ;Set the carry, error

RET

CONVERT_HEX_DIGIT ENDP

Peter Norton’s Assembly Language Book 357

KBD_IO.ASM continued

PUBLIC HEX_TO BYTE

This procedure converts the two characters at DS:DX from hex to one
byte.

DS:DX Address of two characters for hex number

Returns: :

- AL Byte =
~ CF Set for error, clear if no error .
H H
; Uses: CONVERT_HEX_DIGIT ;
T e e e R e S e g e S RS R R S R R O R b e ;
HEX_TO_BYTE PROC NEAR

PUSH BX

PUSH CcX

MOV BX,DX ;Put address in BX for indirect addr

MoV AL, [BX] ;Get first digit

CALL CONVERT_HEX DIGIT

JC BAD_HEX ;Bad hex digit if carry set

MOV CX,4 ;Now multiply by 16

SHL AL,CL

MoV AH, AL ;Retain a copy

INC BX ;Get second digit

MoV AL, [BX]
CALL CONVERT_HEX_DIGIT

JC BAD_HEX ;Bad hex digit if carry set

OR AL, AH ;Combine two nibbles

cLC ;Clear carry for no error
DONE_HEX:

POP cX

POP BX

RET
BAD_HEX:

STC ;Set carry for error

JMP DONE_HEX
HEX_TO_BYTE ENDP

358 Listing of DSKPATCH

KBD_IO.ASM continued

PUBLIC READ_STRING

EXTRN

WRITE_CHAR:NEAR

...

This procedure performs a function very similar to the DOS OAh
But this function will return a special character if a
function or keypad key is pressed--no return for these keys. And
ESC will erase the input and start over again.

’
H
; function.
H

-~ - -

DS:DX

WE WME N N Sy N N

Address for keyboard buffer. The first byte must
contain the maximum number of characters to read (plus
And the second byte will be used
by this procedure to return the number of characters
actually read.

one for the return).

0
-1

BACK_SPACE, WRITE_CHAR

No characters read

One special character read

otherwise number actually read (not including
Enter key)

W WME My W™y WE Ny Wy my Wy S w2

S8 We Na WNa W

...

READ_STRING
PUSH
PUSH
PUSH
MOV

START OVER:
MOV
MOV
INT
OR
Jz

NOT_EXTENDED:
CMP
JE
CMP
JNE
CALL

CMP
JE

PROC NEAR
AX

BX

Sl

SI,DX

BX, 2
AH,7
21h
AL,AL
EXTENDED

AL,CR
END_INPUT
AL,BS
NOT_BS
BACK_SPACE
BL,2
START_OVER

;Use SI for index register and

;BX for offset to beginning of buffer
;Call for input with no checking

; for CTRL-BREAK and no echo

;Is character extended ASCII?

;Yes, read the extended character
;Entnd char is error unless buf empty
;1s this a carriage return?

;Yes, we are done with input

;Is it a backspace character

i Nope

;Yes, delete character

;1s buffer empty?

;Yes, can now read extended ASCII again

AN Y

Peter Norton’s Assembly Language Book 359

KBD_IO.ASM continued

JMP SHORT READ_NEXT_CHAR ;No, continue reading normal characters
NOT_BS: CMP AL ,ESC ;Is it an ESC--purge buffer?

JE PURGE_BUFFER ;Yes, then purge the buffer

CMP BL, [SI] ;Check to see if buffer is full

JA BUFFER_FULL ;Buffer is full

MOV [SI+BX],AL ;Else save char in buffer

INC BX ;Point to next free character in buffer

PUSH DX

MOV DL,AL ;Echo character to screen

CALL WRITE_CHAR

POP DX
READ_NEXT_CHAR:

MOV AH,7

INT 21h

OR AL,AL ;An extended ASCII char is not valid

; when the buffer is not empty

JNE NOT_EXTENDED ;Char is valid

MOV AH,7

INT 21h ;Throw out the extended character

...

; Signal an error condition by sending a beep ;
; character to the display: chr$(7). -

...

SIGNAL_ERROR:
PUSH DX
MoV DL,7 ;Sound the bell by writing chr$(7)
MoV AH,2
INT 21h
POP DX
JMP SHORT READ_NEXT_CHAR ;Now read next character

...

'
; Empty the string buffer and erase all the 5
; characters displayed on the screen. o
PURGE_BUFFER:

PUSH CX

360 Listing of DSKPATCH

KBD_IO.ASM continued

MOV CL, (SI] ;Backspace over maximum number of
XOR CH,CH

PURGE_LOOP: ; characters in buffer. BACK_SPACE
CALL BACK_SPACE ; will keep the cursor from moving too
LOOP PURGE_LOOP ; far back
POP CX
JMP START_OVER ;Can now read extended ASCII characters

; since the buffer is empty

...

' '
; The buffer was full, so can't read another -
; character. Send a beep to alert user of »
; buffer-full condition. -
BUFFER_FULL:
JMP SHORT SIGNAL_ERROR ;1f buffer full, just beep

...

; Read the extended ASCII code and place this ;
; in the buffer as the only character, then -
; return -1 as the number of characters read. :

...

EXTENDED: ;Read an extended ASCII code
MOV AH,7
INT 21h
MOV [SI+2] AL ;Place just this char in buffer
MOV BL,OFFh ;Num chars read = -1 for special
JMP SHORT END_STRING

...

’
; Save the count of the number of characters
; read and return.

...

END_INPUT: ;Done with input
SuB BL,2 ;Count of characters read
END_STRING:
MOV [SI+1],BL ;Return number of chars read
POP SI

POP BX

KBD_IO.ASM continued

POP AX
RET
READ_STRING ENDP

PUBLIC READ_BYTE

....................................

s we we S S

. - - -~

This procedure reads either a single ASCII character or a two-digit
hex number. This is just a test version of READ_BYTE.

Returns byte in AL Character code (unless AH = 0)
AH 1 if read ASCII char
0 if no characters read
-1 if read a special key

Peter Norton’s Assembly Language Book 361

; Uses: HEX_TO_BYTE, STRING_TO_UPPER, READ_STRING :
; Reads: KEYBOARD INPUT, etc. ¥
; Writes: KEYBOARD _INPUT, etc. s
READ BYTE PROC NEAR l
PUSH DX
MOV CHAR_NUM_LIMIT,3 ;Allow only two characters (plus Enter)
LEA DX,KEYBOARD INPUT
CALL READ_STRING
CMP NUM_CHARS_READ, 1 ;See how many characters
JE ASCII_INPUT ;Just one, treat as ASCII character
JB NO_CHARACTERS ;0nly Enter key hit
CMP BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?
JE SPECIAL_KEY ;Yes

CALL STRING_TO_UPPER
LEA DX, CHARS
CALL HEX_TO BYTE

Jc NO_CHARACTERS
MOV AH, 1
DONE_READ:
POP DX
RET
NO_CHARACTERS:
XOR AH, AH

:No, convert string to uppercase
:Address of string to convert

;Convert string from hex to byte
;Error, so return 'no characters read'
;Signal read one character

;Set to 'no characters read'

362 Listing of DSKPATCH

KBD_IO.ASM continued

JMP
ASCI1_INPUT:
MOV
MOV
JMP
SPECIAL_KEY:
MOV
MOV
JMP
READ BYTE

DONE_READ

AL, CHARS
AH, 1
DONE_READ

AL , CHARS [0]
AH,OFFh
DONE_READ
ENDP

PUBLIC READ_DECIMAL

; This procedure takes the output buffer of READ_STRING and converts
; the string of decimal digits to a word.

: AX
N CF

; Uses:
; Reads:
; Writes:

READ_DECIMAL
PUSH
PUSH
PUSH
MOV
LEA
CALL
MOV

XOR
CMP
JLE
XOR
XOR
CONVERT_DIGIT:
MOV

;Load character read
;Signal read one character

;Return the scan code
;Signal special key with -1

Word converted from decimal -
Set if error, clear if no error -

i
READ_STRING

KEYBOARD _INPUT, etc.
KEYBOARD _INPUT, etc.

..

PROC NEAR

BX

CX

DX
CHAR_NUM_LIMIT,6
DX, KEYBOARD_INPUT
READ_STRING
CL,NUM_CHARS_READ
CH,CH

cL,0

BAD_DECIMAL DIGIT
AX, AX

BX, BX

DX, 10

;Max number is 5 digits (65535)

;Get number of characters read

;Set upper byte of count to 0
;Return error if no characters read
;No chars read, signal error

;Start with number set to 0

;Start at beginning of string

;Multiply number by 10

KBD_IO.ASM continued

MUL
JC
MOV
sus
JS
CMP
JA
ADD
INC
LOOP
DONE_DECIMAL:

pPoP
POP
POP
RET

DX
BAD_DECIMAL_DIGIT
DL, CHARS [BX]

DL, '0"
BAD_DECIMAL DIGIT
DL,9
BAD_DECIMAL_DIGIT
AX,DX

BX

CONVERT_DIGIT

DX
CX
BX

BAD_DECIMAL DIGIT:

STC
JMP
READ_DECIMAL

DONE_DECIMAL
ENDP

PUBLIC BACK_SPACE

EXTRN

WRITE_CHAR:NEAR

,P&‘lk‘f '\I\',‘t"'{\ﬂ‘hn‘? r"‘\\",s:,'!‘lll‘vi\ I,Jn\;u.i";j«: }';‘ Hv]\

;Multiply AX by 10

;CF set if MUL overflowed one word
;Get the next digit

;And convert to a nibble (4 bits)
;Bad digit if <0

;Is this a bad digit?

:Yes

;No, so add it to number

;Point to next character

;Get the next digit

:Set carry to signal error

...

This procedure deletes characters, one at a time, from the buffer and

when the buffer is empty.

N
; the screen when the buffer is not empty. BACK_SPACE simply returns

Most recent character still in buffer

s DS:SI+BX
i
; Uses: WRITE_CHAR
H
BACK_SPACE PROC NEAR
PUSH AX
PUSH DX
CMP BX,2
JE END_BS
DEC BX
MoV AH,2

;Is buffer empty?
:Yes, read the next character
;Remove one character from buffer

;Remove character from screen

363

364 Listing of DSKPATCH

KBD_IO.ASM continued

MOV
INT
MOV
CALL
MOV
INT

END_BS: POP
POP
RET

BACK_SPACE

CODE_SEG

DATA_SEG
KEYBOARD INPUT
CHAR_NUM_LIMIT
NUM_CHARS_READ
CHARS

DATA_SEG

END

DL,BS
21h

DL, 20h
WRITE_CHAR
DL,BS

21h

DX

AX

ENDP

ENDS

SEGMENT PUBLIC

LABEL BYTE

DB 0

DB 0

DB 80 pup (0)
ENDS

;Write space there

;Back up again

;Length of input buffer
;Number of characters read
;A buffer for keyboard input

Peter Norton’s Assembly Language Book 365

PHANTOM.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC MOV_TO_HEX POSITION
EXTRN GOTO_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE
DATA_SEG ENDS

; This procedure moves the real cursor to the position of the phantom
; cursor in the hex window.

H ;
; Uses: GOTO_XY 5
; Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;
MOV_TO_HEX_POSITION PROC NEAR

PUSH AX

PUSH CX

PUSH DX

MOV DH,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)

ADD DH,2 ;Plus row of hex and horizontal bar

ADD DH,PHANTOM_CURSOR_Y ;DH = row of phantom cursor

MOV DL,8 ;Indent on left side

MOV CL,3 ;Each column uses 3 characters, so

MOV AL ,PHANTOM_CURSOR_X ; we must multiply CURSOR_X by 3

MUL CL

ADD DL,AL ;And add to the indent, to get column

CALL GOTO_XY ; for phantom cursor

POP DX

POP CX

POP AX

RET
MOV_TO_HEX_POSITION ENDP

PUBLIC MOV_TO ASCII POSITION
EXTRN GOTO_XY:NEAR
DATA_SEG SEGMENT PUBLIC

366 Listing of DSKPATCH

PHANTOM.ASM continued

EXTRN

DATA_SEG

..

LINES_BEFORE_SECTOR:BYTE

ENDS

; This procedure moves the real cursor to the beginning of the phantom
; cursor in the ASCII window.

i
; Uses:
; Reads:

GOTO_XY

LINES_BEFORE_SECTOR, PHANTOM_CURSOR X, PHANTOM_CURSOR Y

...

’
MOV_TO ASCII _POSITION PROC NEAR

PUSH
PUSH
MOV
ADD
ADD
MOV
ADD
CALL
POP
POP
RET

AX
DX
DH,LINES_BEFORE_SECTOR
DH, 2
DH,PHANTOM_CURSOR_Y
oL,59
DL,PHANTOM_CURSOR X
GOTO_XY

DX

AX

MOV_TO_ASCII POSITION ENDP

PUBLIC SAVE_REAL_CURSOR

...

;Find row of phantom (0,0)
;Plus row of hex and horizontal
;DOH = row of phantom cursor
;Indent on left side

;Add CURSOR_X to get X position
; for phantom cursor

; This procedure saves the position of the real cursor in the two
; variables REAL_CURSOR_X and REAL_CURSOR_Y.

; Writes:

REAL_CURSOR_X, REAL_CURSOR_Y

...

SAVE_REAL CURSOR PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV AH,3

XOR BH,BH

INT 10h

MOV REAL_CURSOR Y,DL

MOV

REAL_CURSOR_X,DH

;Read cursor position
; on page 0

;And return in DL,DH
;Save position

bar

Peter Norton’s Assembly Language Book

PHANTOM.ASM continued

POP
POP
POP
POP
RET

SAVE_REAL_CURSOR

DX
CX
BX
AX

ENDP

PUBLIC RESTORE_REAL_CURSOR

EXTRN

GOTO_XY:NEAR

; This procedure restores the real cursor to its old position, saved in
; REAL_CURSOR_X and REAL_CURSOR_Y.

; Uses: GOTO_XY 7
; Reads: REAL_CURSOR_X, REAL_CURSOR_Y -
RESTORE_REAL_CURSOR PROC NEAR

PUSH DX

MOV DL,REAL_CURSOR_Y

MOV DH,REAL_CURSOR_X

CALL GOTO_XY

POP DX

RET

RESTORE_REAL_CURSOR ENDP

PUBLIC WRITE_PHANTOM

EXTRN

This procedure uses CURSOR X and CURSOR_Y, through MOV_TO_..., as the
coordinates for the phantom cursor. WRITE_PHANTOM writes this
phantom cursor.

Uses:

..

WRITE_PHANTOM
PUSH
PUSH

WRITE_ATTRIBUTE_N_TIMES:NEAR

WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
MOV_TO_ASCII_POSITION

PROC NEAR
CX
DX

367

368 Listing of DSKPATCH

PHANTOM.ASM continued

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window

MOV CX,4 ;Make phantom cursor four chars wide

MOV DL,70h

CALL WRITE_ATTRIBUTE_N_TIMES

CALL MOV_TO_ASCII_POSITION ;Coord. of cursor in ASCII window

MOV EX 1 ;Cursor is one character wide here |
CALL WRITE_ATTRIBUTE_N_TIMES

CALL RESTORE_REAL_CURSOR

POP DX
POP X |
RET

WRITE_PHANTOM ENDP

PUBLIC ERASE_PHANTOM

EXTRN WRITE_ATTRIBUTE_N_TIMES:NEAR
This procedure erases the phantom cursor, just the opposite of
WRITE_PHANTOM.

Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL CURSOR
RESTORE_REAL_CURSOR, MOV_TO HEX_POSITION
MOV_TO_ASCII_POSITION

ERASE_PHANTOM PROC NEAR

g S WS Wy S W &

-
-

PUSH CX

PUSH DX

CALL SAVE_REAL_CURSOR

CALL MOV_TO_HEX_POSITION ;Coord. of cursor in hex window
MOV CX,4 ;Change back to white on black
MOV oL,7

CALL WRITE_ATTRIBUTE_N_TIMES
CALL MOV_TO_ASCII_POSITION
MOV cx, 1

CALL WRITE_ATTRIBUTE_N_TIMES
CALL RESTORE_REAL_CURSOR

POP DX

POP cX

Peter Norton’s Assembly Language Book 369

PHANTOM.ASM continued

RET
ERASE_PHANTOM ENDP

...

These four procedures move the phantom cursors.

’
’ l.
; ;
; Uses: ERASE_PHANTOM, WRITE_PHANTOM ;
; SCROLL_DOWN, SCROLL_UP ;
; Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;
; Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR Y ;

PUBLIC PHANTOM_UP

PHANTOM_UP PROC NEAR
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_Y ;Move cursor up one line
JNS WASNT_AT_TOP ;Was not at the top, write cursor
CALL SCROLL_DOWN ;Was at the top, scroll
WASNT_AT_TOP:
CALL WRITE_PHANTOM ;Write the phantom at new position
RET
PHANTOM_UP ENDP

PUBLIC PHANTOM_DOWN
PHANTOM_DOWN PROC NEAR

CALL ERASE_PHANTOM ;Erase at current position

INC PHANTOM_CURSOR_Y ;Move cursor up one line

CMP PHANTOM_CURSOR_Y, 16 ;Was; it at the bottom?

JB WASNT_AT_BOTTOM ;No, so write phantom

CALL SCROLL_UP ;Was at bottom, scroll
WASNT_AT_BOTTOM:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_DOWN ENDP

PUBLIC PHANTOM_LEFT

PHANTOM_LEFT PROC NEAR
CALL ERASE_PHANTOM ;Erase at current position
DEC PHANTOM_CURSOR_X ;Move cursor left one column

370 Listing of DSKPATCH

PHANTOM.ASM continued

JNS WASNT_AT_LEFT ;Was not at the left side, write cursor

MOV PHANTOM_CURSOR_X,0 ;Was at left, so put back there
WASNT_AT_LEFT:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_LEFT ENDP

PUBLIC PHANTOM_RIGHT
PHANTOM_RIGHT PROC NEAR

CALL ERASE_PHANTOM ;Erase at cursor position

INC PHANTOM_CURSOR X ;Move cursor right one column

CMP PHANTOM_CURSOR_X, 16 ;Was it already at the right side?

JB WASNT_AT_RIGHT

MOV PHANTOM_CURSOR X, 15 ;Was at right, so put back there
WASNT_AT_RIGHT:

CALL WRITE_PHANTOM ;Write the phantom cursor

RET

PHANTOM_RIGHT ENDP

EXTRN DISP_HALF_SECTOR:NEAR, GOTO_XY:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR_OFFSET :WORD

EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS
B O e e e i
; These two procedures move between the two half-sector displays. -
H N
; Uses: WRITE_PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, GOTO XY ;
; SAVE_REAL_CURSOR, RESTORE_REAL_ CURSOR :
; Reads: LINES_BEFORE_SECTOR g
; Writes: SECTOR_OFFSET, PHANTOM CURSOR Y :
B R e e i A O = = i
SCROLL_uP PROC NEAR

PUSH DX

CALL ERASE_PHANTOM ;Remove the phantom cursor

CALL SAVE_REAL_CURSOR ;Save the real cursor position

XOR DL,DL ;Set cursor for half-sector display

MOV DH,LINES_BEFORE_SECTOR

PHANTOM.ASHM

ADD
CALL
MOV
MOV
CALL
CALL
MOV
CALL
POP
RET

SCROLL_UP

SCROLL_DOWN
PUSH
CALL
CALL
XOR
MOV
ADD
CALL
XOR
MOV
CALL
CALL
MOV
CALL
POP
RET

SCROLL_DOWN

CODE_SEG

DATA_SEG
REAL_CURSOR X
REAL_CURSOR Y

continued

DH,2

GOTO_XY

DX, 256
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_CURSOR
PHANTOM_CURSOR_Y,0
WRITE_PHANTOM

DX

ENDP

PROC NEAR

DX

ERASE_PHANTOM
SAVE_REAL_CURSOR
DL,DL
DH,LINES_BEFORE_SECTOR
DH,2

GOTO_XY

DX, DX
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_CURSOR
PHANTOM_CURSOR Y, 15
WRITE_PHANTOM

DX

ENDP

ENDS

SEGMENT PUBLIC
DB 0
DB 0

Peter Norton’s Assembly Language Book

;Display the second half sector

;Restore the real cursor position
;Cursor at top of second half sector
;Restore the phantom cursor

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

;Display the first half sector

;Restore the real cursor position
;Cursor at bottom of first half sector
;Restore the phantom cursor

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PHANTOM_CURSOR X
PHANTOM_CURSOR Y
DATA_SEG

END

DB 0
DB 0
ENDS

371

372 Listing of DSKPATCH

VIDEO_I10.ASM

CGROUP GROUP
ASSUME

CODE_SEG
ORG

CODE_SEG, DATA_SEG
CS:CGROUP, DS:CGROUP

SEGMENT PUBLIC
100h

WRITE_HEX

DL

This procedure converts the byte in the DL register to hex and writes
the two hex digits at the current cursor position.

Byte to be converted to hex

WRITE_HEX_DIGIT

...

WRITE_HEX
PUSH
PUSH
MOV
MOV
SHR
CALL
MOV
AND
CALL
POP
POP
RET

WRITE_HEX

PROC NEAR

('

DX

DH,DL

CX,4

DL,CL

WRITE_HEX DIGIT
DL,DH

DL,OFh
WRITE_HEX DIGIT
DX

cX

ENDP

PUBLIC WRITE_HEX _DIGIT

.................................

; This procedure converts the lower 4 bits of DL to a hex digit and

writes it to the screen.

. DL

Lower 4 bits contain number to be printed in hex

WRITE_CHAR

;Entry point
;Save registers used in this procedure

;Make a copy of byte
;Get the upper nibble in DL

;Display first hex digit
;Get lower nibble into DL
;Remove the upper nibble
;Display second hex digit

..

VIDEO_IO.ASM continued

WRITE_HEX DIGIT PROC NEAR

PUSH
CMP
JAE
ADD
JMP

HEX_LETTER:
ADD

WRITE DIGIT:

CALL
POP

RET

WRITE_HEX DIGIT

PUBLIC

EXTRN

DX
DL, 10

HEX_LETTER

DL, "O"

Short WRITE_DIGIT

DL,"A"-10

WRITE_CHAR
DX

ENDP

WRITE_CHAR
CURSOR_RIGHT :NEAR

Peter Norton’s Assembly Language Book 373

;Save registers used

;Is this nibble <10?

;No, convert to a letter

;Yes, convert to a digit

;Now write this character

;Convert to hex letter

;Display the letter on the screen
;Restore old value of AX

H
; This procedure outputs a character to the screen using the ROM BIOS
; routines, so that characters such as the backspace are treated as

; any other character and are displayed.
H
H

- DL

Byte to print on screen

CURSOR_RIGHT

H
;
;
:
This procedure must do a bit of work to update the cursor position. ;
H
;
H
H

...

WRITE_CHAR
PUSH
PUSH
PUSH
PUSH
MOV
MOV
MOV
MoV
MOV
INT
CALL

PROC NEAR
AX

BX

CX

DX

AH,9

BH,0

X, 1

AL,DL

BL,7

10h
CURSOR_RIGHT

;Call for output of character/attribute
;Set to display page 0

;Write only one character

;Character to write

;Normal attribute

:Write character and attribute

:Now move to next cursor position

374 Listing of Dskpatch

VIDEO_IO.ASM continued

POP DX
POP CX
POP BX
POP AX
RET
WRITE_CHAR ENDP

PUBLIC WRITE_DECIMAL

...

: H
; This procedure writes a 16-bit, unsigned number in decimal notation. ;
s N
- DX N : 16-bit, unsigned number :
s H
; Uses: WRITE_HEX DIGIT -
Y H
WRITE_DECIMAL PROC NEAR

PUSH AX ;Save registers used here

PUSH CX

PUSH DX

PUSH S

MOV AX,DX

MOV SI1,10 ;Will divide by 10 using SI

XOR CX,CX ;Count of digits placed on stack
NON_ZERO:

XOR DX,DX ;Set upper word of N to 0

DIV SI ;Calculate N/10 and (N mod 10)

PUSH DX ;Push one digit onto the stack

INC CX ;One more digit added

OR AX, AX ;N = 0 yet?

JNE NON_ZERO ;Nope, continue
WRITE_DIGIT_LOOP:

POP DX ;Get the digits in reverse order

CALL WRITE_HEX DIGIT
LOOP WRITE_DIGIT_LOOP
END_DECIMAL :

POP SI
POP DX
POP CX

POP AX

Peter Norton’s Assembly Language Book 375

VIDEO_IO.ASM continued

RET
WRITE_DECIMAL ENDP

PUBLIC WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character

DL Character code
- CX Number of times to write the character
H
; Uses: WRITE_CHAR
; --
WRITE_CHAR_N_TIMES PROC NEAR
PUSH CX
N_TIMES:

CALL WRITE_CHAR
LOOP N_TIMES

POP cX
RET
WRITE_CHAR_N_TIMES ENDP

PUBLIC WRITE_PATTERN

; This procedure writes a line to the screen, based on data in the

; form

: DB {character, number of times to write character), 0
; Where (x) means that x can be repeated any number of times

DS:DX Address of above data statement

Uses: WRITE_CHAR_N_TIMES

WRITE_PATTERN PROC NEAR
PUSH AX
PUSH CX
PUSH DX

376 Listing of DSKPATCH

VIDEO_IO.ASM continued

PUSH
PUSHF
CLD
MOV
PATTERN_LOOP:
LODSB
OR
Jz
MOV
LODSB
MOV
XOR
CALL
JMP
END_PATTERN:
POPF
POP
POP
POP
POP
RET
WRITE_PATTERN

PUBLIC
DATA_SEG
EXTRN
EXTRN
EXTRN
EXTRN
EXTRN
DATA_SEG
EXTRN

This procedure writes the header with disk-drive and sector number.

H
H
:
; Uses:
H
; Reads:

SI

SI,DX

AL, AL
END_PATTERN
DL,AL

cL,AL

CH,CH
WRITE_CHAR_N_TIMES
PATTERN_LOOP

S
DX
CX
AX

ENDP

WRITE_HEADER

SEGMENT PUBLIC
HEADER_LINE_NO:BYTE
HEADER PART 1:BYTE
HEADER_PART 2:BYTE
DISK_DRIVE_NO:BYTE
CURRENT_SECTOR_NO:WORD
ENDS

;Save the direction flag
;Set direction flag for increment
;Move offset into SI register for LODSB

;Get character data into AL

;1s it the end of data (Oh)?

;Yes, return

;No, set up to write character N times
;Get the repeat count into AL

;And put in CX for WRITE_CHAR_N_TIMES
;Zero upper byte of CX

;Restore direction flag

GOTO_XY:NEAR, CLEAR TO END OF LINE:NEAR

...

GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL

CLEAR_TO_END_OF LINE

HEADER_LINE_NO, HEADER_PART 1, HEADER PART 2
DISK_DRIVE_NO, CURRENT SECTOR_NO

...

VIDEO_IO.ASM continued

WRITE_HEADER

PUSH
XOR

MOV
CALL
LEA
CALL
MOV
ADD
CALL
LEA
CALL
MOV
CALL
CALL
POP
RET

WRITE_HEADER

PROC NEAR

DX
DL,DL

DH, HEADER_LINE_NO
GOTO_XY

DX, HEADER_PART 1
WRITE_STRING
DL,DISK_DRIVE_NO
DL, 'A!

WRITE_CHAR

DX, HEADER_PART 2
WRITE_STRING

DX, CURRENT_SECTOR_NO

WRITE_DECIMAL

CLEAR_TO_END_OF LINE

DX

ENDP

PUBLIC WRITE_STRING

DS:DX

This procedure wrrites a string of characters to the screen. The
string must end with

Address of the string

WRITE_CHAR

DB

Peter Norton’s Assembly Language Book 377

;Move cursor to header line number

;Print drives A, B, ...

;Clear rest of sector number

0

...

WRITE_STRING
PUSH
PUSH
PUSH
PUSHF
cLD
MOV

STRING_LOOP:
LODSB
OR

PROC NEAR
AX
DX
SI

SI,DX

AL, AL

;Save direction flag
;Set direction for increment (forward)
;Place address into SI for LODSB

:Get a character into the AL register
:Have we found the 0 yet?

378 Listing of DSKPATCH

VIDEO_IO.ASM continued

Jz
MOV
CALL
JMP
END_OF STRING:
POPF
POP
POP
POP
RET
WRITE_STRING

PUBLIC
EXTRN

EXTRN
DATA_SEG

EXTRN
DATA_SEG

END_OF_STRING ;Yes, we are done with the string
DL,AL ;No, write character

WRITE_CHAR

STRING_LOOP

;Restore direction flag
SI
DX
AX

ENDP

WRITE_PROMPT_LINE
CLEAR_TO_END_OF _LINE:NEAR

GOTO_XY:NEAR
SEGMENT PUBLIC
PROMPT_LINE_NO:BYTE
ENDS

...

; This procedure writes the prompt line to the screen and clears the
; end of the line.

s DS:DX Address of the prompt-line message
H
; Uses: WRITE_STRING, CLEAR_TO_END_OF LINE, GOTO_XY
; Reads: PROMPT_LINE_NO
WRITE_PROMPT_LINE PROC NEAR
PUSH DX
XOR DL,DL ;Write the prompt line and
MOV DH,PROMPT_LINE_NO ; move the cursor there
CALL GOTO XY
POP DX
CALL WRITE_STRING
CALL CLEAR_TO_END OF LINE
RET
WRITE_PROMPT _LINE ENDP
PUBLIC WRITE_ATTRIBUTE_N_TIMES
EXTRN CURSOR_RIGHT:NEAR

Peter Norton’s Assembly Language Book 379

VIDEO_IO.ASM continued

; :
; This procedure sets the attribute for N characters, starting at the ;
; current cursor position. -
H H
= CX Number of characters to set attribute for -
; DL New attribute for characters =
; Uses: CURSOR_RIGHT :
R e e s R~ & T s e S W, PR S S PR = =0 g '
WRITE_ATTRIBUTE_N_TIMES PROC NEAR

PUSH AX

PUSH BX

PUSH CX

PUSH DX

MOV BL,DL ;Set attribute to new attribute

XOR BH,BH ;Set display page to 0

MOV DX,CX ;CX is used by the BIOS routines

MOV cxX, 1 ;Set attribute for one character
ATTR_LOOP:

MOV AH,8 ;Read character under cursor

INT 10h

MoV AH,9 ;Write attribute/character

INT 10h

CALL CURSOR_RIGHT

DEC DX ;Set attribute for N characters?

JNZ ATTR_LOOP ;No, continue

POP DX

POP CX

POP BX

POP AX

RET

WRITE_ATTRIBUTE_N_TIMES ENDP

CODE_SEG ENDS

END

T o

L3

@ e U
- 'ﬂ'ﬂ' :
15 n _‘
v v
b, N “ N
r!w f
s Bk ﬂ }
Yy v "L
y. e I
| g
ST
i 8
|] [Ilrul—-
. r,ﬁ :
¥ -4
4 % .
T
LD
MR ¥ R TN
IFH !
-
-
. - K]
T
s, :
p I ‘-..-I Jl'i.

APPENDIX C
SEGMENT LOAD ORDER

Segment Load Order 382
Phase Errors 384
EXE2BIN File Cannot be Converted 386

381

382 Segment Load Order

The IBM Macro Assembler (version 1.0 and 2.0) loads segments in an order
different from that used by all the more recent versions of the Microsoft Macro
Assembler. In this appendix, we’ll look at the question of segment load order,
and see how knowledge of this order can be useful when EXE2BIN gives you
the error message File cannot be converted.

Segment Load Order

All of the examples after Chapter 13 use two segments, CODE_SEG and
DATA_SEG. The IBM versions of the assembler tell LINK to load these seg-
ments into memory in alphabetic order. So, when we wrote:

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME_CS:CGROUP, DS:CGROUP

DATAR_SEG SEGMENT PUBLIC
DATA_SEG ENDS
CODE_SEG SEGMENT PUBLIC
CODE_SEG ENDS

END

The IBM versions of the Macro Assembler tell LINK to load DATA_SEG into
memory after loading CODE_SEG. Let’s turn this code fragment into a real
program, so that we can look at the load map.

Here’s our new version. It doesn’t do much, but it’s enough for us to see how
LINK loads the segments into memory.

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

DATA_SEG SEGMENT PUBLIC
DB 0

DATA_SEG ENDS

CODE_SEG SEGMENT PUBLIC
ORG 100h

MAIN: INT 20h

CODE_SEG ENDS

END MAIN

T ——

i TR e e s e

Peter Norton’s Assembly Language Book 383

Type in this file, name it SEGTEST.ASM, and then assemble and link it to
create a load map:

A>LINK SEGTEST,SEGTEST,SEGTEST/MAP;

If you've got an IBM version of the assembler, you’ll see this load map:

Warning: no stack segment

Start Stop Length Name Class
ODOD0OH O0101H OD102H CODE_SEG
00110H 0O0110H DOODOLH DATR_SEG

Origin Group
000D:0 CGROUP

Address Publics by Nanme
Address Publics by Value

Program entry point at 0000:0100

LINK loaded CODE_SEG into memory before DATA_SEG. This is exactly
the order we want. In fact, CODE_SEG must be the first segment in memory,
so our program will begin at 100h from the start of the group.

On the other hand, your map may have had these two segments in reverse
order. That’s a sign that you have a Microsoft version of the assembler. If you
do, you’ll see the following load map, instead:

\
l
| Warning: no stack segment
l
|

Start Stop Length Name Class
00O000H OOOOOH DOOOLH DATA_SEG
00010H 0O0111H DOLD2H CODE_SEG

Origin Group

0000:0 CGROUP

Rddress Publics by Name
Address Publics by Value

Program entry point at 0000:0110

384 Segment Load Order

Nothing’s right in this load map. DATA_SEG appears in memory before
CODE_SEQG, and that means the ORG 100h statement gives us an offset from
the end of DATA_SEG, rather than from the start of the group.

The last line in this map shows that the starting address of our program is
now 110h. But it has to be at 100H for a .COM file. So, what will happen if we
try to create a .COM file from this?

Run EXE2BIN and you’ll see the following:

A>EXEZ2BIN SEGTEST SEGTEST.COM
File cannot be converted
A>

That’s not a very useful error message—it doesn’t give us a clue about why it
can’t convert our program. But that’s where the load map comes in handy. By
looking at the load map, we can see that LINK loaded our segments into mem-
ory in the wrong order. Then we just have to figure out how to fix the problem.

We’ve been careful in this book to make sure that all the programs will run
with both the Microsoft and IBM versions of the assembler. This is the reason
we've placed the data segment after the code segment in all of our source files.

If, in your work with assembly language programs, you either create or en-
counter programs in which the data segments appear at the top of the file, use
the /A switch available with the Microsoft versions of MASM. The /A option
tells MASM you want segments loaded in alphabetical order. To try out this
option, reassemble our sample test program, SEGTEST.ASM, with the follow-
ing command:

A>MASM SEGTEST/A;

Link this file again and create a new load map. You should now see the two
segments in alphabetic order, with CODE_SEG first in the file.

Phase Errors

We've been very careful that the examples run with all versions of the
Macro Assembler—IBM and Microsoft—by placing the data segment at the
end of our files. But this is not a good idea in many cases. In this section we’ll
look at the problems, and at better ways to organize your segments.

Let’s look at a concrete example:

Peter Norton’s Assembly Language Book 385

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG, ES:DATA_SEG

BEGIN PROC NEAR

MOV AX,DATA_SEG ;Get the segment number
MOV ES,RX ;Set ES so it points to our data
MOV AL,VARIABLE ;Read ""variable'' into AL
MOV AH,4Ch ;Exit to DOS
INT 2lh

BEGIN ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

VARIABLE DB 0

DATA_SEG ENDS
END BEGIN

We've placed the data segment at the end of this program to ensure that
DATA _SEG will be loaded into memory after CODE_SEG. But the assembler
generates a phase error message when we try to assemble it:

A>MASM TEST;
Microsoft (R) Macro Assembler Version 4.00
Copyright (C) Microsoft Corp 1981, 1983, 1984, 1985. All rights reserved.

TEST.ASM(10) : error b: Phase error between passes
51036 Bytes symbol space free

0 Warning Errors
1 Severe Errors

What does phase error mean?

It turns out that the Macro Assembler makes several passes through a file
as it assembles it. On the first pass, it collects information it needs, such as
the type and segments of variables. In the interest of efficiency, the assembler
also starts to assemble the program on the first past; here is where we run
into problems.

MASM assembles the instruction MOV AL,VARIABLE before it knows
what segment contains VARIABLE, so it assembles the MOV instruction as if
we don’t need a segment override (which is ES: in this case). On the second
pass, however, MASM notices that it needs to add a segment override since
VARIABLE is in the segment pointed to by the ES register. Unfortunately,

386 Segment Load Order

MASM didn’t reserve room for this override instruction during the first pass
(or phase), so it generates a phase error message.

We need to declare all variables before we use them in a file. If we do this,
and we're using the Microsoft Macro Assembler, the data segment will be first
in memory, which usually isn’t a problem with .EXE files where we’re most
likely to use multiple segments.

If, on the other hand, you want the code segment to be loaded into memory
first, there is a simple solution: Simply place a dummy segment before your
data segment. You can see the details in the following example.

CODE_SEG
CODE_SEG

DATA_SEG
VARIABLE
DATA_SEG

CODE_SEG
ASSUME

BEGIN PROC
MOV
MOV
MOV
MOV
INT

BEGIN ENDP

CODE_SEG

END

SEGMENT PUBLIC ;Load CODE_SEG first
ENDS

SEGMENT PUBLIC
DB 0
ENDS

SEGMENT PUBLIC
CS:CODE_SEG, ES:DATA_SEG

NEAR

AX,DATA_SEG ;Get the segment number

ES,AX ;Set ES so it points to our data
AL, VARIABLE ;Read "variable" into AL

AH,4Ch ;Exit to DOS

21h

ENDS

BEGIN

EXE2BIN File Cannot be Converted

If you have problems with EXE2BIN, first check the load map to make sure
that CODE_SEG is the first segment. Also, make certain you only have two
segments listed. It’s possible to have several different versions of the same
segment listed. For example:

00000H 00103H 00104H CODE_SEG
00110H 0O01DSH OODDGEH DATA_SEG
00120H 00101H 00102H CODE_SEG

Peter Norton’s Assembly Language Book 387

In this case, CODE_SEG is fragmented. If you see more than one piece of a
single segment in the load map, it means you’'ve got problems, and they could
stem from several possible sources.

You may not have a PUBLIC pseudo-op after all of your segment
definitions.

You may have slightly different SEGMENT definitions in your source
files. Check all your source files and verify that all the SEGMENT defi-
nitions are identical.

One of your source files may be missing a GROUP statement or the
GROUP statement may not be correct. Check all of the group statements
carefully to make sure they're the same.

If the GROUP statements are in order, check the ASSUME statements
to make sure they read:

ASSUME CS:CGROUP, DS:CGROUP

You've defined a STACK segment. .COM programs don’t need a STACK
segment, and, in fact, you must not define one.

The entry point is not at 100h. This may be because you didn’t place the
starting procedure’s name after the END pseudo-op in the main source
file, or that you've linked the files in the wrong order. The main proce-
dure must be in the first file named in the LINK list.

You’ll also find more information on error messages and what they may mean
in Appendix D.

Vo T o e

t b 3 (vo U i eaul o 0 B
) et o T R :‘* ‘
" . 2k 1"
» : B AL “*{! “q‘“ :
~ oy ool T

dan ' v a4 = r""l' Ar =

| Yo

. i '-4"' ﬂ“_
T, B,)-t‘i‘.ﬂﬁ.! ..". |.-

NERE R "
_ PR

: ¢ il 1"
(N EY 3 B at
= NEEST S

d

%ol g9 poY

|
|
|
|
\
i
\l
|
L‘
|
:
1i.
h

APPENDIX D
COMMON ERROR MESSAGES

MASM 390
LINK 391
EXE2BIN 392

389

390 Common Error Messages

This appendix lists many of the more common error messages you may en-
counter as you use MASM, LINK, and EXE2BIN. If you don’t find an error
message listed here, check either your macro assembler or your DOS manual.

The error messages are in three groups: one for MASM, one for LINK, and
one for EXE2BIN. Within each section, you’ll find the error messages listed
alphabetically.

MASM

Block nesting error You'll probably see this error message along with
either an Open procedures or an Open segments message. See the following
descriptions for these two error messages.

End of file, no END directive You're either missing the END state-
ment at the end of your file, or you need to add a blank line after the existing
END statement. The Microsoft versions of the macro assembler expect to find

a blank line at the very end of the file. If you don’t have at least one blank line
after END, MASM won’t read the END statement.

Must be declared in pass 1 This error message usually appears in con-
nection with a GROUP statement. It means you haven’t defined one of the
segments you listed in the GROUP statement. For example, if you have the
line CGROUP GROUP CODE_SEG, DATA_SEQG, but you never defined a
segment called DATA_SEG, you’ll probably see this message. Verify that
you’ve declared all the segments listed in the GROUP statement.

No or unreachable CS MASM needs to see an ASSUME statement in
order to know how to assemble some instructions, such as branch or CALL
instructions. This error message means MASM either couldn’t find an AS-
SUME statement or the ASSUME it found had an error in it. Check your
source file to make sure you have an ASSUME statement in it, and that the
statement is correct. '

Open procedures This means that either you're missing a PROC or an
ENDP statement, or that the names aren’t the same on one PROC/ENDP pair.
Make sure every PROC has a matching ENDP statement, and check the pro-

Peter Norton’s Assembly Language Book 391

cedure name in both the PROC and the ENDP statements to make sure they
match.

Open segments You're missing a SEGMENT or a.. ENDS statement, or
the names aren’t the same on one SEGMENT/ENDS pair. Make sure every
SEGMENT has a matching ENDS statement, and check the procedure name
in both the SEGMENT and ENDS statements to make sure they match.

Symbol not defined There are three things you should look for if you see
this error message:

1. You may have misspelled a name. Check the line you see in the error
display to make certain you've typed the name correctly.

2. You may have misspelled the name when you first declared a PROC or
a variable. Check the spelling of the names you see in the faulty line
against the names in the PROC or variable declarations.

3. You may be missing an EXTRN declaration, or the name in the EXTRN
may be misspelled.

LINK

Fixup offset exceeds field width This is a tricky one, and it’s often the
hardest bug to swat. This message usually means you’'ve declared some proce-
dure as a FAR procedure, but later declared that same procedure as a NEAR
procedure in an EXTRN declaration.

It can also mean that a group has grown larger than the the 64K limit for
groups. You can check for such errors by looking at the size field in the map
file.

This message can also appear when your segment has become fragmented.
In such cases, the two fragments may be more than 64K apart, which means
that CALLs must be FAR CALLs to work. You'll find more information on
fragmented segments in Appendix C.

If that doesn’t seem to be the problem, you’ll have to search deeper. Read
Appendix C carefully, then create a load map of your program. You may find a
hint in this load map. For example, check the order of the segments. You may
find they are out of order.

Symbol defined more than once This means you've probably defined
the same procedure or variable in two source files. Make sure you’'ve defined

392 Common Error Messages

each name in only one source file, then use EXTRNs in other places where you
need to use the same procedure or variable.

Unresolved externals When you see this message, either a PUBLIC is
missing from the file in which you declared the procedure or variable, or you
misspelled the name in an EXTRN declaration in some other source file.

Warning: no stack segment This isn’t really an error message, it’s sim-
ply a warning. You’ll see this warning message for the examples in this book,
because we're creating .COM files, and .COM files don’t use a separate seg-
ment for the stack. See Chapter 28 for a sample program that doesn’t cause
LINK to display this warning.

EXEZBIN

File cannot be converted This is probably the only error message you’ll
see from EXE2BIN, and it’s not a very helpful one. Most of the time it can
mean one of three things:

1. Your segments are in the wrong order, thus you have a segment in
memory before CODE_SEG. Check the load map to see if this is your
problem. For more information, read Appendix C.

2. Your main program is not the first file you listed in your LINK list. It
must be, so try relinking to make sure this isn’t the problem. Again, you
can often spot this type of problem by looking at the load map.

3. Your main program does not have an ORG 100h as the first statement
after the CODE_SEG SEGMENT PUBLIC declaration. Also, make
sure the END statement in your main source file includes the label of

the instruction at which you want to start—for example, END
DSKPATCH.

If these suggestions don’t help, check Appendix C for more information.

T —

APPENDIX E
MISCELLANEOUS TABLES

ASCII Character Codes 394
Extended Keyboard Codes 396
Table of Addressing Modes 397
INT 10h Functions 398

INT 21h Functions 401

393

394

.\vli\\ C ”:HH’HU\ [(1}‘1(S

Dec Hex Char

BN BN bt b e i b b b ph b
OO A WNOOWONO"UMTaWN-=D

N
N

WWwNNNNNNN
0D W00 ~JO0 U e W

i L) W W W W W WwwWw
W OO~ W

e
N -

R R ol el el ol ol e T e S SV A S P
E™MMOoOODDOUAO~NO"UMLEaEWNMFE"TMTMOOODDDOUO-~SO0O"UTalWwWwN-D

NN
W e

NNNNN
Lo~~~

N
-2

“ AVETDIMTOOLEIOER s O saeaDdD

“@ ST el WO

= -

X s~ "N OO

Table E-1.

ASCII Character Codes

Dec Hex Char

43
44
45
46
47
48
19
58
51
52
53
54
55
56
57
58
59
68
61
62
63
b4
65
66
67
68
69
78
!
72
73
74
75
76
7
78
79
88
81
82
83
84
85

2B
2C
2D
2E
2F
38
31
32
33
34
35
36
37
38
39
3A
3B
3C
3D
3E
3F
48
41
42
43
44
45
46
47
48
49
4A
4B
4C
4D
4E
4F
58
51
52
53
54
55

+

WO A WN =D N\ -

C-HNMWO YO XX "N ~IXIOWMMOOOE DDV I A -

Dec Hex Char

86
87
88
89
98
91
92
93
94
95
96
97
98
99
188
181
182
183
184
185
186
187
1688
189
118
111
112
113
114
115
116
117
118
119
128
121
122
123
124
125
126
127
128

56
57
58
59
5A
SB
5C
SD
SE
SF
68
b1
62
63
b4
65
b6
67
68
69
bA
6B
6C
6D
6E
6F
78
"
72
73
74
75
76
77
78
79
7A
7B
7C
70
7E
7F
88

Pt S NCXEC

I e NE X ECE v+ a9 0 a3 B —XCG.=a -0 a0 e

wy o

Dec Hex

129
138
131
132
133
134
135
136
137
138
139
148
141
142
143
144
145
146
147
148
149
158
151
152
153
154
155
156
157
158
159
168
161
162
163
164
165
166
167
168
169
178
171

81
82
83
84
85
86
87
88
89
BA
8B
8C
8D
BE
8F
98
91
92
93
94
95
96
97
98
99
94
9B
9C
9D
9E
9F
A8
Al
A2
A3
A4
AS
Ab
A7
A8
A9
AR
AB

Char

WC J T eI E Ot K OCIXCEI S E20-0 O30 N I De DI = wd el (D 002 (D0 WO fee s 2 B O 52

Peter Norton’s Assembly Language Book 395

Table E-1. continued

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char
372+ aC % 193 61 1 214 D6 235 EB 8

173 AD i 194 C2 215 . D7 236 EC ©
174 AE « 19 C3 I 216 D8 237 ED []
175 AF » 196 C4 - 215 203 238 EE €

176 B8 197 ¢S 218 DA 239 EF n
e M 198 Cé6 219 DB i 248 FB =
178 B2 199 (7 228 DC 241 K1 i
179 B3 208 (8 221 DD 242 F2 2
186 B4 281 L9 I 222 DE 243 I3 £
181 BS 282 CA 2 223 IF 244 T4 I
182 B6 283 CB ¥ 224 I8 « 245 F5

183 B7 1 284 CC ! 2250 "kl g 246 Fb6 T
184 B8 285 CD = 226 E2 r 247 7 =
185 B9 i 286 CE & 221 K3 | 248 F8 i

186 BA 287 CF I 228 [E4 I 29 19

187 BB] 208 D@ 1 229 ES [} 258 FA '

188 BC 289 D1t T 238 Eb p 251 FB J
189 B0 I 218 D2 238 1 % 252 FC O
198 BE E 211 D3 I 232 E8] 253 FD z

M Ny 22 M 'k 233 B9 254 FE »
192 Ca L 213 DS F 234 EA Q 255 FF

396 Miscellaneous Tables

Many of the keys on the keyboard (such as the function keys) return a two-
character code when you read the keys through DOS: A decimal 0 followed by
a scan code. The following table shows the scan codes for all the keys that
have no equivalent ASCII code.

Table E-2. Extended Keyboard Codes

15 Shift Tab

16-25 Alt keysfor Q, W, E, R, T, Y, U, 1, O, P
30-38 Alt keys for A, S, D, F, G, H,], K, L
44-50 Alt keys for Z, X, C, V, B, N, M
59-68 F1 through F10

71 Home

72 Cursor Up

73 PgUp

75 Cursor Left

17 Cursor Right

79 End

80 Cursor Down

81 PgDn

82 Ins

83 Del

84-93 Shift F1 through F10
94-103 Control F1 through FI10
104-113 Alt F1 through F10

114 Control PrtSc

115 Control Left Cursor
116 Control Right Cursor
117 Control End

118 Control PgDn

119 Control Home

120-131 Control Alt for 1, 2, 3, 4,5,6,7,8,9,0, -, =
132 Control PgUp

Peter Norton’s Assembly Language Book 397

Table E-3. The Addressing Modes

Addressing Mode Format of Address Segment Register Used
Register register (such as AX) None
Immediate data (such as 12345) None

Memory Addressing Modes
Register Indirect [BX] DS
[BP] SS
[DI] DS
[SI] DS
Base Relative* label[BX] DS
label[BP] SS
Direct Indexed* label[DI] DS
label[SI] DS
Base Indexed* label[BX + SI] DS
label[BX + DI] DS
label [BP + SI] SS
label[BP + DI] SS
String Commands: Read from DS:SI
(MOVSW, LODSB, and so on) Write to ES:DI

* Label[...] can be replaced by [disp+...], where disp is a displacement.
Thus, we could write [10 + BX] and the address would be 10 + BX.

398 Miscellaneous Tables

(AH)=0

(AH)=1

(AH)=2

(AH)=3

Table E-4. INT 10h Functions

Set the display mode. The AL registers contain the
mode number.

(AL)=0
(AL)=1
(AL)=2
(AL)=3
(AL)=17

(AL)=4
(AL)=5
(AL)=6

TEXT MODES

40 by 25, black and white mode

40 by 25, color

80 by 25, black and white

80 by 25, color

80 by 25, monochrome display adapter

GRAPHICS MODE

320 by 200, color

320 by 200, black and white
640 by 200, black and white

Set the cursor size.

(CH)

(CL)

Starting scan line of the cursor. The top line is
0 on both the monochrome and color graphics
displays, while the bottom line is 7 for the col-
or graphics adapter and 13 for the mono-
chrome adapter. Valid range: 0 to 31.

Last scan line of the cursor.

The power-on setting for the color graphics adapter is
CH=6 and CL=7. For the monochrome display: CH=11
and CL=12.

Set the cursor position.

(DH,DL)

(BH)

Row, column of new cursor position; the up-
per, left corner is (0,0).

Page number. This is the number of the dis-
play page. The color-graphics adapter has
room for several display pages, but most pro-
grams use page 0.

Read the cursor position.

(BH)
On exit

Page number
(DH,DL) Row, column of cursor
(CH,CL) Cursor size

Peter Norton’s Assembly Language Book 399

Table E-4. (continued)

(AH)=4
(AH)=5
(AH)=6
(AH)=7
(AH)=38
(AH)=9
(AH)=10

(AH)=11 to 13

Read light pen position (See Tech. Ref. Man.)

Select active display page.
(AL) New page number (from 0 to 7 for modes 0
and 1; from 0 to 3 for modes 2 and 3)

Scroll up.

(AL) Number of lines to blank at the bottom of the
window. Normal scrolling blanks one line. Set
to zero to blank entire window.

(CH,CL) Row, column of upper, left corner of window
(DH,DL) Row, column of lower, right corner of window
(BH) Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at
the top of the window instead of the bottom

Read attribute and character under the cursor.

(BH) Display page (text modes only)
(AL) Character read
(AH) Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)

(CX) Number of times to write character and attri-
bute on screen

(AL) Character to write

(BL) Attribute to write

Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character
(AL) Character to write

Various graphics functions. (See Tech. Ref. Man. for
the details.)

400 Miscellaneous Tables

Table E-4. (continued)

(AH)=14

(AH)=15

Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write
(BL) Color of character (graphics mode only)
(BH) Display page (text mode)

Return current video state.

(AL) Display mode currently set
(AH) Number of characters per line
(BH) Active display pages

Peter Norton’s Assembly Language Book 401

This table contains the INT 21h functions used in this book. For a more
complete list, you should buy the IBM DOS Technical Reference manual.

(AH)=1

(AH)=2

(AH)=8

(AH)=9

(AH)=0Ah

Table E-5. INT 21h Functions

Keyboard input. This function waits for you to type a char-
acter on the keyboard. It echoes the character to the screen,
and returns the ASCII code in the AL register. For extended
keyboard codes, this function returns two characters: an ASCII
0 followed by the scan code (see Table E-2).

(AL) Character read from the keyboard.

Display output. Displays one character on the screen. Sev-
eral characters have special meaning to this function:

7 Beep: Send a one-second tone to the speaker.

8 Backspace: move the cursor left one character posi-
tion.

9 Tab: Move to the next tab stop. Tab stops are set to

every 8 characters.

0Ah Line feed: Move to the next line.

0Dh Carriage return: Move to the start of the current
line.

(DL) Character to display on the screen.

Keyboard input without echo. Reads a character from the
keyboard, but doesn’t display the character on the screen.

(AL) Character read from keyboard.

Display string. Displays the string pointed to by the DS:DX
pair of registers. You must mark the end of the string with the
$ character. -

DS:DX Points to the string to display.

Read string. Reads a string from the keyboard. See Chapter
23 for more details.

402 Miscellaneous Tables

Table E-5. (continued)

(AH)=4Ch Exit to DOS. Returns to DOS, like INT 20h, but it works
for both .COM and .EXE programs. The INT 20h function used
in this book only works for .COM programs.

(AL) Return code. Normally set to 0, but you can set it to
any other number and use the DOS batch com-
mands [F and ERRORLEVEL to detect errors.

INDEX

A

A, Debug’s assemble command, 40
ADC, 49
ADD, 24, 25
Adding one, INC, 77
Addition with carry, 49
Addition, hexarithmetic command, 6
Addresses, 24
CALL and segments, 127
CS:IP pair, 118
effective and LEA, 171
interrupt instruction, vectors, 131
labels, 96
locations in memory, 23
map files, 288
modes, 150, 397
base indexed, 156
base relative, 153, 156
direct mode, 156
direct indexed, 156
immediate, 156
indirect memory, 153
register, 156
register indirect, 156
table, 397
OFFSET pseudo-op, 221
PUBLIC, 290
RET and segments, 127
segment override, 312
segments, 120
AL register, the LODSB instruction, 185
AND instruction, 66
Area in front of programs, scratch, 123, 124
Arithmetic shift, SHL, 72
ASCII, codes, 37, 394
ASCII, extended, 396
Asm, ".asm’ source file, 88
Assemble in Debug, 40
Assembler
automatic, 166
comments, 94
labels, 94
output, object file, 89
passes, 315
phase errors, 315
pseudo-op, 91
ASSUME, 126

403

Assembler pseudo-op (continued)
BYTE, 222
DB, 121
DUP, 121
END, 91, 301
ENDP and PROC, 101
ENDS and SEGMENT, 125
EQU, 159
EXTRN, 141
FAR and NEAR, 101, 128
GROUP, 154
NEAR and FAR, 101, 128
OFFSET, 221
PROC and ENDP, 101
PTR, 155
PUBLIC, 105, 140
SEGMENT and ENDS, 101, 125
WORD, 222
segment load order, 382
segment override, 312
Assignment, EQU pseudo-op, 159
Assignment, the MOV instruction, 41
ASSUME pseudo-op, 126, 313
groups, 153
segment overrides, 126
Attributes, inverse and normal, 210
WRITE_ATTRIBUTE_N_TIMES, 241
writing characters and, 210
Automatic assembly, 166
Automatic response, LINK, 283
AX, general purpose register, 22

B

B, binary numbers, 16
BACK_SPACE, 268
Base 16, hex, 8
Base 2, binary, 16
Base relative addressing mode, 153
BASIC CLS command, 199
Basic input output system, ROM BIOS, 194
Binary numbers, 16
converting to decimal, 110
group of four bits, Nibble, 64
BIOS, Basic input output system in ROM,
194
functions in VIDEO_IO ROM, 194

404 Index

BIOS (continued)
INT 10h function 2, set cursor position,
195
INT 10h function 3, read cursor
position, 196, 212, 215
INT 10h function 6, scroll page up, 196,
213, 215, 230
INT 10h function 9, write
char./attribute, 197, 210, 215
Bits, 19
group of four, Nibble, 64
setting with OR, 114
Block nesting error, 390
Boundary conditions, 63, 72
Boundary conditions, printing a number in
hex, 63
Breakpoint for Debug’s G, 54
BS, back space constant, 270
Bugs, finding, 282, 285
BX, general purpose register, 22
Byte, 16
BYTE pseudo-op, 222
BYTE PTR, 222
Byte registers, changing in Debug, 30
Bytes and words, mixing, 222

®

CALL instruction, 76, 102
NEAR and FAR, 128
segments, 127
the stack, 78
Carry Flag, 48
Central dispatcher, 218
CF, the Carry Flag, 48
errors, 145
CGROUP, group name, 154
Changing memory in Debug, 24, 28
Changing registers in Debug, R, 22
Character attributes, WRITE _
ATTRIBUTE_N_TIMES, 241
Character codes, 394
extended, 396
reading a string, 269
reading with READ_BYTE, 222
writing attributes and, 210
writing strings of, 206
Characters, 70
CL, count register and rotates, 64, 72
CLD instruction, 186
Clear direction flag, CLD, 186
Clearing registers with XOR, 113

Clearing the screen, 199

BASIC CLS, 199
Clearing windows, 198
CLEAR_SCREEN, 198
CLEAR_TO_END_OF_LINE, 213
Clock interrupt, 130
CLS, the BASIC command, 199
CMP, compare instruction, 60

comparing to 0 with OR, 113
Code segment, 27
Code Segment register, CS, 118
COM, ".com’ files, 92

creating '.com’ files, 152

groups and ".com’ files, 154
Command file, LINK, 283
Command line, 132
Comment header, 146
Comments and modular design, 106
Comments, the, 94
Common error messages, 390
Compare with OR, 113
Computerese, kludge, 118
Conditional jump instructions, 59

JA, 82

JB, 82

JL, 63

JLE, 71

JNZ, 60

JZ, 60
Constants, CR, BS, and ESC, 270
Constants, EQU pseudo-op, 159
Converting binary to decimal numbers, 110
Converting Decimal to Hex, 12
Converting Hex to Decimal, 9
Converting negative numbers to two’s

complement, 19
CONVERT_HEX_DIGIT, 259
CR, carriage return constant, 270
CR, carriage return or enter, 159
CRLF, carriage return/line feed, 158, 159
CS, code segment, 27
CURRENT_SECTOR_NO, 202, 205
Cursor movement, INT 10h function 2, 195,

199-201
Cursor position, read, 211
Cursor, moving the, 199
Cursor, moving to right, 211
Cursor.asm, 159, 198, 199, 204, 211, 213
CURSOR_RIGHT, 211
CX, general purpose register, 22
CX, the count register, 145
CY, the carry flag, 48

D

D, Debug’s dump command, 44
Data segment, 120

multiple, 312

segment for variables, 153
Data types, mixing, 222
Data

ASSUME pseudo-op, 313

DISPATCH_TABLE, 220, 282

immediate addressing mode, 150

segment override, 312
DB, define byte, 129
Debug, 136

G command, breakpoints, 54

how tracing works, 36-38

load command, L, 134

starting and leaving, 5

trace command, 27, 36
Debugging, 5

PUBLIC, 140

symbolic, 287

techniques, 282, 285
Decimal numbers, converting from binary,

110
Decimal, converting Hex to, 9
Decimal, converting to Hex, 12
Define byte, DB pseudo-op, 121
Define with EQU pseudo-op, 159
Deleting characters, BACK_SPACE, 268
Designers of the 8088, Intel, 317
Destination Index register, 112
DI register, 112
Direct addressing mode, 156
Direction flag, 186
Directories, diskette, 134
Disk directories, 134
Disk sectors, 134

reading sectors with INT 25h, 173

reading with READ_SECTOR, 184

writing, 281

writing modified sectors with F5, 280
DISK_DRIVE_NO, 202, 203
Disk_io.asm, 173, 184, 198, 203, 224, 281
DISK_PATCH, 202, 207, 219
Dispatch.asm, 219, 246, 249, 276, 280
Dispatcher, 218, 219, 249, 276
DISPATCH_TABLE, 220, 282
Display header, 205
Display registers, 22
Display, INIT_SEC_DISP, 184
Display, using ROM BIOS with, 194

Peter Norton’s Assembly Language Book 405

DISP_HALF_SECTOR, 158, 168
DISP_LINE, 156, 162, 176, 177, 179, 181
Disp_sec.asm, 151, 156, 160, 167, 176, 177,
179, 181, 184, 187, 200, 202, 236
DIV, 33
Dividing memory into segments, 24
Division, 33
remainder, 14
Documentation, comment header, 146
DOS function 25h, reading sectors, 173
DOS functions, 401
DS, data segment, 120
Dskpatch.asm, 201, 207
Dumping memory with Debug’s D, 44
DUP, the assembler pseudo-op, 121
Duplicate, the assembler DUP pseudo-op,
121
DX, general purpose register, 22

E

E, Debug’s enter command, 24, 28
Echoing characters, 81
Editing memory, EDIT_BYTE, 250
Editor.asm, 251
EDITOR_PROMPT, 219
EDIT_BYTE, 250
Effective address, LEA, 171
End of file, no END directive, 390
End of lines, clear to, 212
END pseudo-op, 91, 301

.EXE files and, 301

use in separate source files, 142
Endless, see Loop
End-of-string marker, 206
ENDP pseudo-op, procedures, 101, 125
Enter, Debug’s enter command, 24, 28
Entering programs, 40
EQU pseudo-op, 159
Equate, the EQU pseudo-op, 159
ERASE_PHANTOM, 241
Erasing characters, BACK_SPACE, 268
Error messages

EXE2BIN, 386

MASM, 390

phase errors, 385

possible causes, 390
Errors, debugging to remove, 5
Errors, the carry flag, 145
ES, extra segment, 120
ES, segment override, 120, 312
ESC, escape constant, 270

406 Index

Exclusive OR, 113
EXE, ".exe’ and '.com’ files, 120, 121
EXE, '.exe’ files, 92
Exe2bin, 92

file cannot be converted, 386
Execute, 26
Execution, single-step, 26
Exit dskpatch—F10, 226
Exit, the INT 20H instruction, 38
Extended keyboard codes, 70, 396
External, EXTRN pseudo-op, 141
Extra segment, 120
EXTRN pseudo-op, 141

linking files together, 143

F

F1-F10, special function key input, 70
F1—read previous sector, 226
F2—read next sector, 226
F5—write modified sectors, 280
F10—exit dskpatch, 226

Far CALL, 127

FAR pseudo-op, 128

Far RET, 128

File cannot be converted, 386

File directories, 134

File, make format, 167

Files, names in Debug, 42

Files, writing in Debug, 43

Finding procedures in memory, 285

Fixup offset exceeds field width, 391

Flags
carry, 48
direction flag, 186
IRET and, 130
overflow, 59
POPF instruction, 173
register, 130
saving and restoring, 186
INT instruction and, 130
sign, 59
zero, 58

Floppy disks, 134
directories, 134
sectors, 134

reading with INT 25h, 172
reading with READ_SECTOR, 184
writing, 281
FOR-NEXT, the LOOP instruction, 50
Fragmented segments, 387, 391

Function keys, 70
Fl—read previous sector, 226
F2—read next sector, 226
F5—write modified sectors, 280
F10—exit dskpatch, 226

Function numbers for ROM BIOS VIDEO_

10, 194

function 2, set cursor position, 195
function 3, read cursor position, 196, 212,

215

function 6, scroll page up, 196, 213, 215,
230

function 9, write char./attr., 197, 210, 215

G

G, Debug’s go command, 36, 38
breakpoints, 54
see also Proceed trace, 54
General purpose registers, 22
Go, see G, 36
GOSUB, 76
CALL instruction, 76
procedures, 101
see also INT, 36
GOTO_XY, 199
Graphics characters, 394
GROUP pseudo-op, 154

H

H, hexarithmetic, 6
hexadecimal numbers, 9
H, for hexadecimal numbers in the
assembler, 89
Header at top of screen, 205
HEADER_LINE_NO, 202
HEADER_PART_1, 202
HEADER_PART_2, 202
Hexadecimal, 7
converting Decimal to, 12
converting to Decimal, 9
numbers in the assembler, 89
origins, 7
printing in, 66
reading a single digit, 71
Hexarithmetic, 6
HEX_TO_BYTE, 259
Humans, 40
Hyphen, Debug’s prompt, 6

I

IF-THEN, conditional jumps, 59, 60
CMP instruction, 60
status flags, 59, 60
Immediate mode, 156
INC instruction, 36, 77
Incrementing, INC, 77
Index registers, SI and DI, 112
Indirect memory addressing mode, 153
INIT_SEC_DISP, 184, 198, 200, 236
Instruction addresses, CS:IP, 118
Instruction pointer, 26, 27
IP register, 118
Instructions, machine language, 24
LEA, 171
LODSB, 185
segment override, 312
INT instruction, 36, 130
INT 1, single-step interrupt, 131
INT 10h functions, 194, 398
function 2, set cursor position, 195
function 3, read cursor position, 196,
212, 215
function 6, scroll page up, 196, 213,
215, 230
function 9, write char./attr., 197, 210,
215
INT 10h, Video_io in ROM BIOS, 194
INT 20H, 38
INT 21H, 36
INT 21h functions, 401
function 1, read character, 70-71, 73
function 8, reading characters without
echo, 81
function 9, write string, 43
INT 25h, DOS function to read disk
sectors, 170
tracing with the P command, 54
Intel, 317
Interrupt vectors, 131
Interrupt, stack after an, 130
Interrupt, the clock, 130
Interrupt, the INT instruction, 129
Interrupts, return from, 131
Intersegment CALL, 127
Intersegment RET, 128
Intrasegment CALL, 127
Intrasegment RET, 128
Inverse video, 210
IP register, 118

Peter Norton’s Assembly Language Book

IP, instruction pointer, 26, 27
IRET, return from interrupt, 130

)

JA, jump if above, 82

JB, jump if below, 82

JL, jump if less than, 63

JLE, jump if less than or equal, 71
JNZ, jump if not zero, 60

JZ, jump if zero, 60

K

Kbd_io.asm, 222, 259, 264, 269, 270, 273
Keyboard codes, extended, 396

Keyboard input without echo, 81
Keyboard input, INT 21h function 1, 401
Keys, function codes, 70

Kludge, a make-shift fix, 118

L

L, Debug’s load command, 134
Labels, 94

addresses, 24

segments, and ASSUME, 126

symdeb and, 287
Large programs, 140

debugging, 282
Laws, the three of modular design, 144
LEA instruction, 170
Leaving dskpatch -- F10, 226
LET, the MOV instruction, 41
LF, line feed, 158
LIFO, last in first out, 78

the stack, 78
Limbo, 27
Line, writing prompt, 223
Lines, clear to end of, 212
LINES_BEFORE_SECTOR, 202
LINK, 92

automatic response, 283

map files and, 283

/map switch, 283

PUBLIC pseudo-ops, 105

segment load order, 161, 382
Linkinfo, LINK response file, 283
Linking, 92

separate files, 143

together files, 152

407

408 Index

Listing a program, Debug’s U, 39
Load map, 285

Load order of segments, 161, 382
LOad String Byte, LODSB instruction, 185
Loading a byte with LODSB, 185
Loading sectors, Debug’s L, 134
Local variables, 81

LOCATE, cursor movement, 199
Locations in memory, addresses, 24
LODSB instruction, 185

Logical instructions, AND, 65
Logical operations, the XOR, 113
Long CALL, 127

Long RET, 127

LOOP, 50

Loop, see Endless

M

Machine Code, 24
Machine language, 24, 26
Make, 166
Make file, format, 167
Makefile, new version, 225
Makeshift fix, kludge, 118
Map files, creating, 283, 288
Mapsym, creating map files, 288
MASM
ASSUME pseudo-op, 315
error messages, 390
phase errors, 315, 385
segment load order, 382
segment override, 312
Memory, 24
addressing instructions with CS:IP, 118
addressing modes, 150, 397
ASSUME pseudo-op, 126, 315
base relative addressing, 153, 156
data segment, 152
DB pseudo-op, 121
direct addressing, 156
dividing into segments, 24
editing with EDIT_BYTE, 250
how words are stored, 115
indirect memory addressing, 153
labels for, 24
map, 283
offset, 24
order of segments in, 382
PUBLIC and, 290
ROM chip, 194
segment overrides, 126

Memory (continued)
segment registers, 120
segmenting, 118
stack in, 123
Symdeb and, 287
writing to with WRITE_TO_MEMORY,
251
Memory variables, 201
CURRENT_SECTOR_NO, 204
DB pseudo-op, 121
DISK_DRIVE_NO, 203
DISPATCH_TABLE, 220, 282
EDITOR_PROMPT, 219
PHANTOM_CURSOR_X, 238
PHANTOM_CURSOR_Y, 238
PROMPT_LINE_NO, 218, 219
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
SECTOR, 160
Microsoft and Debug, 136
Microsoft, Symdeb, 287
Minimum program, 107
Mixing different data types, 222
Mixing words and bytes, 222
Mnemonic, 40
Modified sectors, writing with F5, 280
Modular design, 144
comment blocks, 145
Monochrome display, ROM BIOS functions,
198
MOV, 41
MOV, its cousin LODSB, 185
Move, the MOV instruction, 41
Moving the cursor, CURSOR_RIGHT, 211
Moving the cursor, GOTO_XY, 199
MOV_TO_ASCII_POSITION, 240
MOV_TO_HEX_POSITION, 240
MS-DOS and Debug, 136
MUL, 31
Multiple segments, 312
grouped together, 154
Multiplication, 31
by shifting, SHL, 72
Multiplying two words, 31
Must be declared in pass 1, 390

N

N, Debug’s name command, 42
Names in Debug, 42

Names in Symdeb, 287

NC, the carry flag, 48

Near CALL, 128
Near labels, 96
NEAR pseudo-op, 101, 128
Near RET, 128
Negative numbers, 18, 29
sign bit, 18
sign flag, 59
New programs, starting point, 107
Next instruction, 27
Next sector, F2, 226
NEXT_SECTOR, 224
NG, sign flag, 59
Nibble, 64
No or unreachable CS, 390
Normal attribute, 210

Numbers, converting binary to decimal, 110

Numbers, overflow flag, 59
Numbers, sign flag, 59
NV, overflow flag, 59

NZ, zero flag, 58

D)

OBJ, ’.obj’ files, 91
Object file, assembler output, 91
OFFSET pseudo-op, 221
Offset within segment, 24
Open procedures, 390
Open segments, 391
OR instruction, 113
CMP a number with 0, 113
setting bits, 113
Order of segments, 382
ORG 100h and the scratch area, 124
OV, overflow flag, 59
Overflow flag, 59
Overflow, the Carry Flag, 48
Overrides, segment, 136, 312

P

P, the proceed trace command, 54
Passes, assembler, 315

phase errors, 315, 385
Passing information, standards, 145
Patterns, WRITE_PATTERN, 182
PC-DOS and Debug, 136
Phantom.asm, 237, 247, 292, 293
PHANTOM_CURSOR_X, 238
PHANTOM_DOWN, 247
PHANTOM_LEFT, 248
PHANTOM _RIGHT, 248

Peter Norton’s Assembly Language Book

PHANTOM_UP, 247

Phase errors, 385
meaning of, 315

PL, sign flag, 59

POP and PUSH to save and restore

registers, 145

Pop off the stack, 79

POPF instruction, 173, 186

POS, reading cursor position, 212

Position, read cursor, 212

Positive numbers, overflow flag, 59

Positive numbers, sign flag, 59

Previous sector, F1, 226

PREVIOUS_SECTOR, 224

PRINT, INT 21H function 9, 43

Printaj.asm, 102

Printing in hexadecimal, 66

PRINT_A_J, 101

PROC pseudo-op, procedures, 101

Procedure addresses, OFFSET pseudo-op,

2241

Procedures, 76
BACK_SPACE, 268
CLEAR_SCREEN, 198
CLEAR_TO_END_OF_LINE, 213
CONVERT_HEX_DIGIT, 259
CURSOR_RIGHT, 211
DISK_PATCH, 207, 219
DISPATCHER, 218, 249, 276
EDIT_BYTE, 250
ERASE_PHANTOM, 241
external, 141
finding in memory, 285
HEX_TO_BYTE, 259
INIT_SEC_DISP, 236
local variables, 81
make ’em short, 145
MOV _TO_ASCII_POSITION, 240
MOV_TO_HEX_POSITION, 240
NEXT_SECTOR, 224
PHANTOM_DOWN, 247
PHANTOM _LEFT, 248
PHANTOM _RIGHT, 248
PHANTOM_UP, 247
PREVIOUS_SECTOR, 224
PROC and ENDP, 101
READ_BYTE, 223, 259, 273
READ_DECIMAL, 263
READ_STRING, 258, 270
RESTORE_REAL_CURSOR, 239
SAVE_REAL_CURSOR, 239
saving and restoring registers, 80, 145
SCROLL_DOWN, 293

409

410 Index

Procedures (continued)
SCROLL_UP, 293
STRING_TO_UPPER, 259
Symdeb and, 287
TEST, 257, 266
WRITE_ATTRIBUTE_N_TIMES, 241
WRITE_CHAR, 210
WRITE_HEADER, 205, 214
WRITE_PHANTOM, 237
WRITE_PROMPT _LINE, 223
WRITE_SECTOR, 281
WRITE_STRING, 207
WRITE_TO_MEMORY, 251

Proceed, the P trace command, 54

Program text, source file, 88

Program trace, the P command, 54

Programs, skeletal, 107

Prompt line, writing, 224

PROMPT_LINE_NO, 218, 219

Pseudo-ops, 94
assembler commands, 91
ASSUME, 126
BYTE, 222
DB, 121
DUP, 121
END, 91, 301
ENDP and PROC, 101
ENDS and SEGMENT, 125
EQU, 159
EXTRN, 141
FAR and NEAR, 101, 128
GROUP, 154
NEAR and FAR, 101, 128
OFFSET, 221
PROC and ENDP, 101
PTR, 156
PUBLIC, 105, 140
SEGMENT and ENDS, 101, 125
WORD, 222

PSP, Program Segment Prefix, 124

PTR pseudo-op, 155

PUBLIC pseudo-op, 105, 140
map files and, 283
Symdeb and, 287

PUSH and POP to save and restore

registers, 145
Push onto stack, 79
PUSHF instruction, 186

Q

Quitting dskpatch—F10, 226

R

R, Debug’s register command, 22
changing byte registers, 30
RCL, 49
Read cursor position, 212
Read next sector, F2, 226
Read only memory chip, ROM, 194
Read previous sector, F1, 226
Reading a string of characters, 269
Reading characters
INT 21h function 1, 70-71, 73
READ_BYTE, 223
strings of characters, 185
without echo, 81

Reading disk sectors, DOS function 25h, 172

Reading hexadecimal digits, 71
Reading memory, LODSB, 185
Reading sectors
Debug’s L, 135
DOS function 25h, 172
PREVIOUS_SECTOR and NEXT_
SECTOR, 224
READ_SECTOR, 184
READ_BYTE, 223, 259, 273
READ_DECIMAL, 263
testing, 265
READ_SECTOR, 169, 184, 202
READ_STRING, 258, 270
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
Registers, 22
ASSUME and segment, 126
changing bytes with Debug’s R, 30
changing them in Debug, 22
CS, 118
display with Debug’s R, 22
flag, 130
general purpose, 22
IP, 118
modes, 150
base indexed, 156
base relative, 153, 156
direct mode, 156
direct indexed, 156
immediate, 156
indirect memory, 153
register, 156
register indirect, 156
saving and restoring, 145
segment, 120
ASSUME, 314
overrides, 126
SI and DI registers, 112

Registers (continued)
special purpose, 22
usage, 145
REM, comment statements, 94
Remainder, 14, 31, 33
Removing errors, debugging, 5
Repeat count, the LOOP instruction, 50
RESTORE_REAL_CURSOR, 239
Restoring flags, POPF, 186
Restoring registers from the stack, 79
RET instruction, 77, 102
NEAR and FAR, 128
segments, 127
the stack, 78
Return address, the stack, 78
Return from interrupt, IRET, 130
RETURN, the RET instruction, 76
Reverse video, 210
Road map, map files, 283
ROM, read only memory chip, 194
ROM BIOS functions in VIDEO_IO, 194
INT 10h function 2, set cursor position,
195
INT 10h function 3, read cursor position,
196, 212, 215
INT 10h function 6, scroll page up, 196,
218, 215,
INT 10h function 9, write char./attribute,
197, 210, 215
Rotate instruction, 49
Rotate through carry, 49
Rotates, SHR, 64
Rotates, the count register, 64
Routines, in ROM BIOS, 194

S

SAVE_REAL_CURSOR, 239
Saving a file to disk from Debug, 43
Saving and restoring registers, 106, 145
Saving flags with INT instruction, 130, 131
Saving registers on the stack, 78
Saving the flags, PUSHF, 186
Scan code, 70
Scratch area in front of programs, 123, 124
Screen functions, 398

see also ROM BIOS
Screen swapping, 288

Symdeb, 288
Screen, clearing the, 199
Screen, using ROM BIOS with, 194
Scrolling the sector display, 292

Scrolling, SCROLL_UP and SCROLL_
DOWN, 293

Peter Norton’s Assembly Language Book 411

SECTOR, 151, 160, 201, 202
Sector display, INIT_SEC_DISP, 184
Sector displey, scrolling the, 292
Sectors, disk, 130
editing with EDIT_BYTE, 250
F1 previous sector, 226
F2 next sector, 226
F5 key to write modified, 280
previous and next with F1 and F2, 226
reading, 134
Debug’s L, 134
DOS INT 25h function, 172
PREVIOUS_SECTOR and NEXT_
SECTOR, 224
READ_SECTOR, 184
writing disk, 281
SECTOR_OFFSET, 201
SEG, segment override, 313
Segment offset, 24
Segment overrides, 126
ASSUME and, 126
instruction, 312
phase errors, 385
SEGMENT pseudo-op, 126
Segment registers, 120
ASSUME pseudo-op, 126
CS, 118
Segments, 24
ASSUME pseudo-op, 126
CALL and RET, 127
ENDS and SEGMENT, 101, 125
FAR, 127
fragmented, 387, 391
GROUP pseudo-op, 154
labeling, 24
load order, 151, 152
multiple, 312
NEAR, 96, 127
PUBLIC pseudo-op, 140
SEGMENT and ENDS pseudo-op, 101,
125
SEND_CRLF, 158
Separate source files, 140
linking, 141, 152
modular design, 144
Setting bits with OR, 113
Shift, SHL, 72
SHL, shift left instruction, 72
Short CALL, 127
Short RET, 127
SI register, 112
Sign bit, 18, 59
Signed numbers, 15

412 Index

Single-step execution, 27
breakpoints, 54
trap flag and, 131
Skeletal program, 107
Software interrupt, INT instruction, 129
Source file, 91
Cursor.asm, 159, 198, 204, 211, 213
Disk_io.asm, 170, 184, 198, 203, 224, 281
Dispatch.asm, 159, 167, 171, 173, 219,
246, 249, 276, 280
Disp_sec.asm, 176, 177, 179, 181, 184,
187, 200, 202, 236
Dskpatch.asm, 201, 207, 219
editor.asm, 251
kbd_io.asm, 222, 254, 264, 269, 270, 273
phantom.asm, 237, 247, 292, 293
separate, 140
Test.asm, 140, 257
Test_seg.asm, 120
Video_io.asm, 142, 151, 180, 182, 205,
206, 223, 242
Source Index register, 112
SP, stack pointer, 78
Special function keys
keyboard input, 70
reading with READ_BYTE, 223
table, 396
Special purpose registers, 22
SS, stack segment, 78, 120
SS:IP, 301
SS:SP, top of stack, 122
Stack, 78, 301
after an INT instruction, 130
LIFO, 78
pointer, 78
pop off the, 79
push onto, 79
saving and restoring registers, 80
saving flags on the, 130
segment, 78
top of stack, 122
Standards, 144
Starting point for new programs, 107
Status flags, 58
CMP instruction, 60
direction flag, 186
JA, 82
JB, 82
JL, 63
JLE, 71
JZ, 60
OR instruction, 113
overflow, 59

Status flags (continued)
saving and restoring, 186
sign, 59
Status register, POPF, 173
see also status flags
String instructions, LODSB, 185
Strings, reading, 269
Strings, writing with WRITE_STRING, 207
STRING_TO_UPPER, 259
SUB, 29
Subroutines, 76
see also procedures
Subtraction, 28
CMP instruction, 60
Swapping, Symdeb and screen, 288
Switch
LINK and /map, 283
Symdeb’s /S, 288
Symbol defined more than once, 391
Symbol files,
Symbol not defined, 391
Symbolic debugging, 287
Symbols and PUBLIC, 290
Symdeb, 287
screen swapping, 288

T

T, Debug’s trace command, 27
Tables
characters, 394
ROM BIOS functions for VIDEO_IO, 194
addressing modes, 397
extended keyboard codes, 396
INT 10h functions, 398
INT 21h functions, 401
Temporary storage, the stack, 78
TEST, 257, 266
Test.asm, 257
Testing limits, boundary conditions, 63, 72
Testing READ_BYTE with TEST, 257
Testing READ_DECIMAL, 265
Test_seg.asm, 120
TEST_WRITE_DECIMAL, 112, 140
TEST_WRITE_HEX, 104
Text, source file, 88
The three laws of modular design, 144
Top of stack, 122
Trace, 27
Tracing with the P command, 54
Tracking down bugs, 285
Trap flag, single stepping, 131
Truth table, AND, 66
Two screens, Symdeb’s screen swapping, 288

Two’s complement, negative numbers, 18,
29
overflow flag, 59
sign flag, 59

U

U Debug’s Unassemble, 39
Unassemble, 39
Unresolved externals, 392
Unsigned numbers, 15

JA and JB, 82

overflow flag, 59

\/

Variable usage, 146

Variables and symdeb, 287

Variables
addressing modes, 150
BOTTOM_LINE_PATTERN,
CURRENT_SECTOR_NO, 202, 205
data segment, 152
DB pseudo-op, 121
DW pseudo-op,
DISK_DRIVE_NO, 202, 203
DISPATCH_TABLE, 220, 282
EDITOR_PROMPT, 219
HEADER_LINE_NO, 202
HEADER_PART_1, 202
HEADER_PART_2, 202
labels, 94
LINES_BEFORE_SECTOR, 202
memory, 201
PHANTOM_CURSOR_X, 238
PHANTOM_CURSOR_Y, 238
PROMPT_LINE_NO, 218, 219
REAL_CURSOR_X, 239
REAL_CURSOR_Y, 239
registers as, 22
SECTOR, 151, 160, 201, 202
SECTOR_OFFSET, 201
segment overrides, 126
TOP_LINE_PATTERN,

Vectors, interrupt, 131

Video-io INT 10h functions, 194, 398
2, set cursor position, 195
3, read cursor position, 196
6, scroll page up, 196
9, write char./attribute, 197

Video_io.asm, 103, 142, 151, 180, 182, 205,

206, 210, 214, 223, 242

Peter Norton’s Assembly Language Book 413

W

W, Debug’s write command, 43

Warning messages, possible sources, 390

Warning: no stack segment, 392

Windows, clearing, 198

Word, 16

Word multiply, 31

WORD pseudo-op, 222

WORD PTR, 222

Words and bytes, mixing, 222

Words, how they’re stored in memory, 115

Writestr.asm, 88

WRITE_ATTRIBUTE_N_TIMES, 241

WRITE_CHAR, 101, 102, 143, 157, 210

WRITE_CHAR_N_TIMES, 180

WRITE_DECIMAL, 111, 143

WRITE_HEADER, 205, 214

WRITE_HEX, 104

WRITE_HEX_DIGIT, 104, 142

WRITE_PATTERN, 182

WRITE_PHANTOM, 236

WRITE_PROMPT_LINE, 223

WRITE_SECTOR, 281

WRITE_STRING, 207

WRITE_TOP_HEX_NUMBERS, 187

WRITE_TO_MEMORY, 251

Writing a file in Debug, 43

Writing a string, 43

Writing attributes, WRITE_ATTRIBUTE _
N_TIMES, 242

Writing characters and attributes, 210

Writing disk sectors, 281

Writing modified sectors, F5 key, 280

Writing strings of characters, 206

Writing to memory, WRITE _TO_
MEMORY, 251

X

XOR instruction, 113
clearing registers, 113

Z

Zero flag, 58
JNZ, 60
JZ, 60

ZR, zero flag, 58

About the Authors

Peter Norton is well-known in the personal computing arena for both his writ-
ing and programming. Starting in the earliest days of the IBM Personal Com-
puter, he began writing about the IBM/PC, helping other people understand how
these wonderful machines work. He has written a half a dozen books on the PC
family, including the best-selling Inside the IBM/PC; his columns appear in each
issue of PC and PC Week magazines. His set of programs called The Norton Utili-
ties has helped many PC users rescue lost data and explore the inner workings of
their computers. Peter grew up in Seattle, Washington, attended Reed College in
Portland, Oregon; he now lives in Santa Monica, California with his wife.

John Socha is better known for his public-domain utilities than by his name.
In the early days of the IBM PC, he wrote a column for the now defunct magazine
Softalk, where he published such programs as ScreenSave (the first screen
blanker), KbdBuffer (extends the keyboard buffer), and Whereis (finds files on a
hard disk). After the demise of Softalk, John concentrated on finishing his PhD
in Physics and writing a commercial program called The Norton Commander.
John grew up in the woods of Wisconsin, earned a BS degree in Electrical Engi-
neering from the University of Wisconsin, and a PhD in Applied Physics from
Cornell University; he now lives in southern California.

e

PERRERERR R R R

Nortons here

BKAD gt

MS DOS and

1. An inside look at how
Disk Operation Systems
work as only Peter Norton
can give. A how-to-book
for beginners and experi-
enced users alike. Practi-
cal and simply written, this
book has all you'll need to
understand the operating
system of your microcom-
puter as well as practical
advice about what to buy
and what to use. $17.95

(0-89303-645-5)

Now at your book or computer store.
Or order today

[—Prenllce Hall Press
c/o Simon & Schuster
Mall Order Department
Route 59 at Brook HIill Drive
West Nyack, NY 10994

Circle the numbers of the titles you want below Add

Please charge my | Mastercard

2. Peter Norton has updated and
expanded his bestseller to include
every model of the IBM microcom-
puter family. Beginning with a review
of the fundamentals, the book then
moves on to discover new ways to
master the important facets of using
your microcomputer to its fullest
potential. $21.95

(0-89303-583-1)

Name

3. The most comprehen-
sive guide available from
America’s most respected
authority, Peter Norton,
PC-DOS tells you every-
thing you need to know to
use your operating system
to customize your PC. $18.95

(0-89303-752-4)

201-767-5937

Address

City

Zip

Merchandise Total

sales tax for your state

7% postage + handling”

Exp Date Signature

Enclosed 1s my check or money order

Bill me

I(uj Card =_

1 (0-89303-645-5)

Total, check enclosed

*Publisher pays postage + handling charges
for prepaid and charge card orders

2 (0-89303-583-1)

3 (0-89303-752- 4)

lllirally

BRADY Knows
Programming

Assembly Utilities
Longuogc o the oM PE& X1
ROULINGS o e mm

1. Bayond the basics, this guide explores 2. You learn by exampie with this guide 3 Learn the techniques used for creating 4 Includes code listings for three working
new structured concepts 1o anal and through hundreds of subroutine listings assembly language utilities Includes 10 of debuggers including single-stepping, cross
s0lve s in C with 1ools Discover how 1o enhance high level lan the most lar utllities such as DBUG referencing, and mapping utilities. § n?!
modularity, input and output functions guage programs (esp. BASIC) to quickly SCAN, CLOCK, UNDELETE, ONE KEY (Disk avallable)

Wl‘; and structures, and bit manipulation manipulate and sort large data ftiles PCALC calculator and notepad and five

¥4l generate graphics. integrate arrays, and others $21 95 (Disk available)

use interrupts to access DOS $17 95

S

5. A definitive reference text for advanced 6. Perfect for both beginners and experi- 7. Here's a compendium of many of the 8. The titie might say “advanced” but you'll

programmers. You'll find over 150 discus- enced programmers, you'll find everything most useful, but often lected, advanced find a guide that begins with the funda-
sions of common hardware-control tasks (in from the basics of computer numbering programming concepts. A tutorial in format mentals of BASIC graphics and takes you
BASIC. Pascal, or C) as well as assembler through to step-by-step instructions for that uses BASIC for examples, it covers through truly sophisticated 3-D assembly
overlays, drivers, and real-time operators using the IBM Macro Assembler. With com- techniques such as: linked data structures; routines. Includes block graphics, creating
$2295 plete coverage of BIOS and a library of over recursion p;p.m\m? and dynamic storage %apmcs editor, directly pvognmmmg

30 macros for faster programming. $21.95 allocation. includes listings for 25 sub- IBM's color graphics adapter. and muc

(Disk available) routines. $21.95 (Disk -v-cuooe) more. $21.9

Now at your book or computer store 800_62 ‘I _0023 In New Jersey:
Or order toll-free today 800-624-0024

- T T

BRADY COMMUNICATIONS COMPANY, INC. Acc't # Exp.date. -« o |
c/o Prentice Hall
P.O. Box 512, W. Nyack, NY 10994 Signature
N 3,
Circle the numbers of the titles you want below R l
| (Payment must be enclosed; or, use your charge Address I
card.) Add $1.50 for postage and handling City State Zip
I Enclosed is check for$_____ or charge to New Jersey residents. please add applicable sales tax) l
MasterCard [] VISA Dept. 3
| 1(0-89303-473-8) 2 (0-89303-409-6) 3 (0-89303-584-X) 4 (0-89303-587-4) l
5 (0-89303-787-7) 6 (0-89303-484-3) 7 (0-89303-481-9) 8 (0-89303-476-2)

el

Peter Norton’s
Assembly Language Book
for the IBMPC

ARE YOU HUNGRY TO LEARN ASSEMBLY LANGUAGE
BUT FEAR THAT IT'S BEYOND YOUR GRASP?

Do you want more control over your PC? More power?

More raw speed—five times, even ten times the speed of your
existing programs?

Then speak to your IBM PC in the language it knows best . . .
ASSEMBLY LANGUAGE

AND LEARN IT FROM THE PC'S MASTER PROGRAMMER . . .
PETER NORTON

Assembly language is the most direct way you can control each
and every aspect of your machine, and Peter Norton's Assembly
Language Book for the IBM PC is the easiest way to learn
assembly language.

You'll learn the instructions of the Intel 8088 microprocessor,

the very heart of the IBM PC. And, once you understand the 8088,
many elements you see in other programs and in high-level
languages will have greater meaning for you. Not only that, you'll
learn how to write full-scale assembly language programs: text
editors, utilities, and more!

You can use this book with an IBM PC, XT, AT, or compatible,
a minimum of 128K and one disk drive, PC or MS-DOS version 2.0
or higher, and the IBM or Microsoft Macro assembler.

Peter Norton, of Peter Norton Computing, is the designer and
author of the now-legendary Norton Ultilities (as well as numerous
Brady Books including Inside the IBM PC and PC DOS: Introduction
to High Performance Computing).

John Socha, also of Peter Norton Computing, is the designer
and author of The Norton Commander, the latest product from
Peter Norton Computing.

|| Front cover photo © Douglas Kirkland/Sygma

21898"66190
ISBN 0-13-b6k1901-0

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436

