

Pe er Norton's Assembly Language Book

for the IBM PC

Other Brady Books by Peter Norton
Inside the IBM PC, Revised and Enlarged
MS-DOS and PC-DOS User' Guide
PC-DOS: The Guide to High Performance Computing

Pe r N rton's Assembly Language Book

for the IBM PC

Peter Norton

and

John Socha

A Brady Book
Published by Prentice Hall Press

New York, New York 10023

Copyright © 1986 by Brady Communication Company, Inc.
All rights reserved,
including the right of reproduction
in whole or in part in any form.

Portions of this work were previou ly publi hed in a work ntitled:
Assembly Language Safari On The IBM P

A Brady Book
Published by Prentice Hall Pre
A Division of Simon & Schuster, Inc.
Gulf + Western Building
One Gulf + Western Plaza
New York, New York 10023

PRENTICE HALL PRESS is a trademark of imon & chu ter, Inc.

Manufactured in the United State of America

2 3 4 5 6 7 8 9 10

Library of Congress Cataloging-in-Publication Data

Norton, Peter, 1943-
Peter Norton's Assembly Language book for

the IBM PC.

"A Brady book."
Includes index.
1. IBM Personal Computer-Programming.

2. Assembler language (Computer program language)
I. Socha, John, 1958- . II. Title.
III. Title: Assembly language book for the IBM PC.
QA 76.8.l2594N66 1986 005.265 86-25363

ISBN 0-13-661901-0

Contents

Part I Machine Language

Chapter 1 Debug and Arithmetic

Hexadecimal Numbers
Debug
Hexari thmetic
Converting Hexadecimal to Decimal
Five-Digit Hex Numbers
Converting Decimal to Hex
Negative Numbers
Bits, Bytes, Words, and Binary Notation
Two's Complemen~An Odd Sort of Negative Number
Summary

Chapter 2 8088 Arithmetic

Registers as Variables
Memory and the 8088
Addition, 8088 Style
Subtraction, 8088 Style
Negative Numbers in the 8088
Bytes in the 8088
Multiplication and Division, 8088 Style
Summary

Chapter 3 Printing Characters

INT-The Powerful Interrupt
A Graceful Exit-INT 20h
A Two-Line Program-Putting the Pieces Together
Entering Programs
MOVing Data into Registers
Writing a String of Characters
Summary

Chapter 4 Printing Binary Numbers

Rotations and the Carry Flag
Adding With the Carry Flag
Looping
Writing a Binary Number

1

3

4
4
6
7

11
12
14
16
18
20

21

22
23
26
28
29
29
31
34

35

36
38
39
40
41
43
45

47

48
49
50
53

vi C ntcnt

Chapter 4 continued

The Proceed Command
Summary

Chapter 5 Printing in Hex

Compare and Status Bits
Printing a Single Hex Digit
Another Rotate Instruction
Logic and AND
Putting It All Together
Summary

Chapter 6 Reading Character

Reading One Character
Reading a Single-Digit Hex Number
Reading a Two-Digit Hex Number
Summary

Chapter 7 Procedures-Cou in to ubroutine

Procedures
The Stack and Return Addresses
PUS Hing and PO Pping
Reading Hex Numbers with More Ease
Summary

Part II Assembly Language

Chapter 8 Welcome to the Assembler

A Program Without Debug
Creating Source Files
Linking
Back in Debug
Comments
Labels
Summary

54
55

57

5
61
64
65
67
67

69

70
71
72
73

75

76
7
79

1
4

85

87

8
91
92
93
94
94
96

Peter Norton's Assembly Language Book vn

Chapter 9 Procedures and the Assembler 99

The Assembler's Procedures
The Hex-Output Procedures
The Beginnings of Modular Design
A Program Skeleton
Summary

Chapter 10 Printing in Decimal

Recalling the Conversion
Some Tricks
The Inner Workings
Summary

Chapter 11 Segments

Sectioning the 8088's Memory
Segment Pseudo-Ops
The ASSUME Pseudo-Op
Near and Far CALLs
More on the INT Instruction
Interrupt Vectors
Summary

Chapter 12 Course Corrections

Diskettes, Sectors, and Dskpatch
The Game Plan
Summary

Chapter 13 Modular Design

Separate Assembling
The Three Laws of Modular Design
Summary

Chapter 14 Dumping Memory

Addressing Modes
Adding Characters to the Dump

100
103
106
107
107

109

110
113
114
116

117

118
124
126
127
129
131
132

133

134
136
138

139

140
144
147

149

150
156

vm Content

Chapter 14 continued

Dumping 256 Bytes of Memory
Summary

Chapter 15 Dumping a Disk Sector

Making Life Easier
Format of the Make File
Patching up Disp_sec
Reading a Sector
Summary

Chapter 16 Enhancing the Sector Di pla

Adding Graphics Characters
Adding Addresses to the Display
Adding Horizontal Lines
Adding Numbers to the Display
Summary

Part III The IBM PC's ROM BIOS

Chapter 17 The ROM BIOS Routin

VIDEO_IO, the ROM BIOS Routines
Moving the Cursor
Rewiring Variable Usage
Writing the Header
Summary

Chapter 18 The Ultimate WRITE_CHAR

A New WRITE_CHAR
Clearing to the End of a Line
Summary

Chapter 19 The Dispatcher

The Dispatcher
Reading Other Sectors
Philosophy of the Following Chapters

15
163

165

16
167
16
169
174

175

191

193

194
199
201
204
208

209

210
212
215

217

218
224
226

Peter Norton' Assembly Language Book ix

Chapter 20 A Programming Challenge

The Phantom Cursors
Simple Editing
Other Additions and Changes to Dskpatch

Chapter 21 The Phantom Cursors

The Phantom Cursors
Changing Character Attributes
Summary

Chapter 22 Simple Editing

Moving the Phantom Cursors
Simple Editing
Summary

Chapter 23 Hex and Decimal Input

Hex Input
Decimal Input
Summary

Chapter 24 Improved Keyboard Input

A New READ_STRING

Chapter 25 In Search of Bugs

Fixing DISPATCHER
Summary

Chapter 26 Writing Modified Sectors

Writing to the Disk
More Debugging Techniques
Building a Road Map
Tracking Down Bugs
Symdeb

Symbolic Debugging
Screen Swapping

Summary

229

230
232
232

235

236
241
243

245

246
249
253

255

256
263
266

267

268

275

276
278

279

280
282
283
285
287
287
288
290

x Content

Chapter 2 7 The Other Half Sector

Scrolling by Half a Sector
Summary

Part IV Odds and Ends

Chapter 28 Relocation

Multiple Segments
Relocation
.COM versus .EXE Programs

Chapter 29 More on Segment and A UME

Segment Override
Another Look at ASSUME
Phase Errors
Closing Words

Appendix A Guide to the Disk

Chapter Examples
Advanced Version of Dskpatch

Appendix B Listing of Dskpatch

Descriptions of Procedures
Program Listings for the Dskpatch Procedures

Dskpatch Make File
CURSOR.ASM
DISK_IO.ASM
DISPATCH.ASM
DISP _SEC.ASM
DSKPATCH.ASM
EDITOR.ASM
KBD_IO.ASM
PHANTOM.ASM
VIDEO_IO.ASM

291

292
295

297

299

300
304
307

11

312
314
315
316

319

320
321

325

326
332
332
333
337
341
344
350
352
355
365
372

Peter Norton's As cmbly Language Book xi

Appendix C Segment Load Order 381

Segment Load Order 382
Phase Errors 384
EXE2BIN File Cannot be Converted 386

Appendix D Common Error Messages 389

MASM 390
LINK 391
EXE2BIN 392

Appendix E Miscellaneous Tables 393

ASCII Character Codes 394
Extended Keyboard Codes 396
Table of Addressing Modes 397
INT lOh Functions 398
INT 21h Functions 401

Index 403

rad mar
IBM, IBM PC, XT, and AT are registered trademark of International Bu i
ness Machines Corporation.

COMPAQ is a registered trademark of Compaq Computer orporation.

MS-DOS and Microsoft are registered trademark of Micro oft orporation.

SideKick and SuperKey are trademarks of Borland International.

ProKey is a trademark of Ro esoft.

Lotus and 1-2-3 are trademark of Lotus Development orporation .

Intel is a registered trademark of Intel Corporation.

0
• a1 r f a r n

The authors and publisher of this book have u ed their be t effort in pre
paring this book and the programs contained in it. The e effort include the
development, research, and testing of the theories and programs to determine
their effectiveness. The authors and publisher make no warranty of any kind,
expressed or implied, with regard to these programs or the documentation
contained in this book. The authors and publisher shall not be liable in any
event for incidental or consequential damages in connection with, or ari ing
out of, the furnishing, performance, or use of these programs.

xii

·ntro uction
By the time you finish reading this book, you'll know how to write full

scale, assembly language programs: text editors, utilities, and so on. Along
the way, you 'll learn many techniques that professional programmers use to
make their work simpler. These techniques, which include modular design
and step-wise refinement, will double or triple your programming speed, as
well as help you write more readable and reliable programs.

The technique of step-wise refinement, in particular, takes a lot of the work
out of writing complex programs. If you've ever had that sinking, where-do-I
start feeling, you'll find that step-wise refinement gives you a simple and nat
ural way to write programs. And it's also fun!

This book isn't all theory, though. We'll build a program, too. The program
is called Dskpatch (for Disk Patch), and you'll find it useful for several rea
sons. First of all, you'll see step-wise refinement and modular design at work
in a real program, so you'll have an opportunity to see why these techniques
are so useful. Also, as you'll see shortly, Dskpatch is, in its own right, a gen
eral-purpose, full-screen editor for disk sectors--one that you can continue to
u e both in whole and in part long after you've finished with this book.

Why Assembly Language?

We'll assume that you've picked up this book because you are interested in
learning assembly language. But you may not be exactly certain why you'd
want to learn it.

One reason, perhaps the least obvious, is that assembly language programs
are at the heart of any IBM PC or compatible computer. In relation to all
other programming languages, assembly language is the lowest common de
nominator. It takes you closer to the machine than higher-level languages do,
so learning assembly language also means learning to understand the 8088
microprocessor inside your computer. We'll teach you the instructions of the
8088 microprocessor , as do the authors of other introductory books, but we'll
go much farther and also cover advanced material that you'll find invaluable
when you start to write your own programs.

Once you understand the 8088 microprocessor inside your IBM PC, many
elements you'll see in other programs and in high-level languages will have
greater meaning for you. For example, you may have noticed that the largest
integer you can have in BASIC is 32767. Where did this number come from?
It's an odd number for an upper limit. But as you'll see later, the number
32767 is directly related to the way your IBM PC stores numbers.

Then, too, you may be interested in speed or size. As a rule, assembly lan
guage programs are much faster than those written in any other language.

xin

xw Introduction

Typical assembly language programs are two to three time a fa ta equiva
lent C or Pascal programs, and they generally outpace interpreted BA I pro
grams by 15 times or more. As embly language program are al o maller.
The Dskpatch program we'll build in thi book will be full-grown at about one
kilobyte. Compared with programs in general that' mall . A imilar program
written in C or Pascal would be about ten times the ize. For the e r a on
among others, the Lotus Development Corporation wrote 1-2-3 entir ly in a -
sembly language.

Assembly language programs al o provide you with full acce to th fea-
tures in your computer. A number of program uch a ideKick, ProKey,
and SuperKey, stay in memory after you run them. uch program chang th
way your machine works, and they u e y tern feature availabl only to a -
sembly language program .

Dskpatch

In our work with assembly language well look directly at di k ector , di -
playing characters and number stored there by DOS in hexadecimal nota
tion. Dskpatch is a full-screen editor for di ks and it will allow us to change
these characters and number in a di k ector. U ing D kpatch you could, for
example, look at the sector where DOS tore the directory for a disk and you
could change file names or other information. Doing so i a good way to learn
how DOS stores information on a di k.

You'll get more out of Dskpatch than ju t one program, though. D kpatch
contains about 50 subroutines. Many of these are general-purpose ubroutine
you'll find useful when you write your own programs. Thus, not only is this
book an introduction to the 8088 and assembly language programming, it'
also a source of useful subroutines.

In addition, any full-screen editor needs to use feature specific to the IBM
PC family of computers. Through the examples in this book, you'll also learn
how to write useful programs for IBM PCs, ATs, or compatible computers,
such as the COMPAQ.

Equipment Requirements

What equipment will you need to run the examples in this book? You'll
need an IBM PC or compatible with at least 128K of memory and one disk
drive. You'll also need version 2.00 or later of PC-DOS (or MS-DOS). And

Peter Norton's A . embly Language Book xv

starting in Part II, you'll need either the IBM or the Microsoft Macro
Assembler.

Organization of This Book

This book is divided into three parts, each with a different emphasis.
Whether you know anything about microprocessors or not, and whether you
already know assembly language or not, you'll find sections that are of inter
est to you.

Part I focuses on the 8088 microprocessor. Here, you'll learn the mysteries
of bits, bytes, and machine language. Each of the seven chapters contains a
wealth of real examples that use a program called Debug, which comes on
your DOS disk. Debug will allow us to look inside the famous 8088 micropro
cessor nestled deep in your IBM PC as it runs DOS. Part I assumes only that
you have a rudimentary knowledge of BASIC and know how to work with
your computer.

Part II, Chapters 8 to 16, moves on to assembly language and how to write
programs in the assembler. The approach is gentle, and rather than cover all
the details of the assembler itself, we'll concentrate on a set of assembler com
mands we need to write useful programs.

We'll use the assembler to rewrite some of the programs fr.om Part I, and
then move on to begin creating Dskpatch. We'll build this' program slowly, so
you'll learn how to use step-wise refinement in building large programs. We'll
also cover techniques like modular design that help in writing clear programs.
As mentioned, these techniques will simplify programming by removing some
of the complexities normally associated with writing assembly language
programs.

In Part III, which includes Chapters 17 to 29, we'll concentrate on using
more advanced features found in IBM PCs. These features include moving the
cursor and clearing the screen.

In Part III we'll also discuss techniques for debugging larger assembly lan
guage programs. Assembly language programs grow very quickly and can
easily be two or more pages long without doing very much (Dskpatch will be
longer). Even though we'll use these debugging techniques on programs
larger than a few pages, you'll find them useful with small programs, too.

Now, without further ado, let's jump into the 8088 and take a look at the
way it stores numbers.

PART I

Machine Language

1

DEBUG AND ARITHMETIC

Hexadecimal Numbers 4
Debug 4
Hexarithmetic 6
Converting Hexadecimal to Decimal 7
Five-Digit Hex Numbers 11
Converting Decimal to Hex 12
Negative Numbers 14
Bits, Bytes, Words, and Binary Notation 16
Two's Complement-An Odd Sort of Negative

Number 18
Summary 20

3

4 Debug and Arithmetic

Let's begin our foray into assembly language by learning how computer
count. That may sound simple enough. After all, we count to 11 by starting at
one and counting up: 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11.

But a computer doesn't count that way. Instead it counts to five like thi : 1,
10, 11, 100, 101. The numbers 10, 11, 100, and o on are binary number ,
based a number system with only two digit , one and zero, in tead of the ten
associated with our more familiar decimal number . Thu , the binary number
10 is equivalent to the decimal number we know a two.

We're interested in binary numbers becau e they are the form in which
numbers are used by the 8088 microproces or in ide your IBM P . But while
computers thrive on binary numbers tho e string of one and zero can be
long and cumbersome to write out. The solution? Hexadecimal numbers-a
far more compact way to write binary numbers. In thi chapter, you'll learn
both ways to write numbers: hexadecimal and binary. And a you learn how
computers count, you'll also learn about how they tore numbers-in bit ,
bytes, and words.

If you already know about binary and hexadecimal numbers, bits, bytes,
and words, you can skip to the chapter summary.

b r
Since hexadecimal numbers are easier to handle than binary numbers-at

least in terms of length-we'll begin with hexadecimal (hex for short), and use
DEBUG.COM, a program you'll find on your PC-DOS supplemental disk.
We'll be using Debug here and in later chapters to enter and run machine
language programs one instruction at a time. Like BASIC, Debug provides a
nice, interactive environment. But unlike BASIC, it doesn't know decimal
numbers. To Debug, the number 10 is a hexadecimal number-not ten. And
since Debug only speaks in hexadecimal, you'll need to learn something about
hex numbers. But first, let's take a short side trip and find out a little about
Debug itself.

eh
Why does this program carry the name Debug? Bugs, in the computer

world, are mistakes in a program. A working program has no bugs, while a

Peter Norton' Assembly Language Book 5

non-working or "limping" program has at least one bug. By using Debug to
run a program one instruction at a time, and watching how the program
works, we can find mistakes and correct them. This is known as debugging,
hence the name Debug.

According to computer folklore, the term debugging stems from the early
days of computing-in particular, a day on which the Mark I computer at Har
vard failed. After a long search, the technicians found the source of their trou
bles: a small moth caught between the contacts of a relay. The technicians
removed the moth and wrote a note in the log book about "debugging" the
Mark I.

Find Debug on your DOS supplemental disk and we'll get started. You
should also have a work disk handy, and you'll want to copy DEBUG.COM to
it. We'll make heavy use of Debug in Part I of this book.

Note: From here on, in interactive sessions like this one, the text
you type will be against a gray background to distinguish it from your
computer's responses. Type the text, press the Enter key, and you should
see a response similar to the ones we show in these sessions. You won't
always see exactly the same responses, because your computer probably
has a different amount of memory from the computer on which we wrote
this book. (We'll begin to encounter such differences in the next chapter.)
In addition, notice that we use uppercase letters in all examples. This is
only to avoid any confusion between the lowercase letter 1 (el) and the
number 1 (one). If you prefer, you can type all examples in lowercase
letters.

Now, with those few conventions noted, start Debug by typing its name af
ter the DOS prompt (which is A> in this example):

A>DEBOG

The hyphen you see in response to your command is Debug's prompt symbol,
just as A> is a DOS prompt. It means Debug is waiting for a command.

To leave Debug and return to DOS, just type Q (for Quit) at the hyphen
prompt and press Enter. Try quitting now, if you like, and then return to
Debug:

6 Debug and Arithmcti

-Q
A>DEBUG

Now we can get down to learning about hex numbers.

rit
We'll use a Debug command called H. His short for Hexarithmetic , and, as

its name suggests, it adds and subtracts two hex number . Let's see how H
works by starting with 2 + 3. We know that 2 + 3 = 5 for decimal numbers.
Is this tnie for hex numbers? Make sure you're still in Debug and, at the hy
phen prompt, type the following screened text:

-B 3 2
0005 000 1

Debug prints both the sum (0005) and the difference (0001) of 3 and 2. The
Hexarithmetic command always calculates the sum and difference of two
numbers, as it did here. And so far , the results are the same for hex and deci
mal numbers: 5 is the sum of 3 + 2 in decimal, and 1 is the difference (3 - 2).
But sometimes, you can encounter a few surprises.

Number A Number B

~ /
-H 305C 2A10

676C 134C

! \
A+B A-8

Figure 1-1. The Hexarithmetic Command.

Peter Norton's As embly Language Book 7

For example, what if we typed H 2 3, to add and subtract two and three,
instead of three and two? If we try it:

-H 2 3
0005 FFFF

we get FFFF instead of -1, for 2 - 3. Strange as it may look, however, FFFF
is a number. In fact, it is hex for -1.

We'll come back to this rather unusual -1 shortly. But first, let's explore
the realm of slightly larger numbers to see how an F can appear in a number.

To see what the Hexarithmetic command does with larger numbers, let's try
nine plus one, which would give us the decimal number 10:

-H 'I 1
ODDA 0008

Nine plus one equals A? That's right: A is the hex number for ten. Now, what
if we try for an even larger number, such as 15:

-H 'I 6
DOOP 0003

If you try other numbers between ten and fifteen, you'll find 16 digits alto
gether-0 through F (0 through 9 and A through F). The name hexadecimal
comes from hexa- (6), plus deca- (10) which, when combined, represent 16. The
digits 0 through 9 are the same in both hexadecimal and decimal; the hexa
decimal digits A through Fare equal to the decimals 10 through 15.

Why does Debug speak in hexadecimal? Soon you'll see that we can write
256 different numbers with two hex digits. As you may already suspect, 256
also bears some relationship to the unit known as a byte, and the byte plays a
major role in computers and in this book. You'll find out more about bytes
near the end of this chapter, but for now we'll continue to concentrate on
learning hex, the only number system known to Debug, and hex math.

Converting Hexadecimal to Decimal
Thus far we've looked at single-digit hex numbers. Now, let's see how to

represent larger hex numbers, and how to convert these numbers to decimal
numbers.

Just as with decimal numbers, we build multiple-digit hex numbers by add-

8 Debug and Arithm tic

Decimal

0
1
2
3
4
5
6
7
8
9

10
1 1
12
13
14
15

Hex digit

0
1
2
3
4
5
6
7
8
9
A
B
c
D
E
F

Figure 1-2. H ad imaJ.Digit .

ing more digits on the left. Suppose, for example, we add the number 1 to the
largest single-digit decimal number, 9. The result is a two-digit number, 10
(ten). What happens when we add 1 to the largest single-digit hex number, F?
We get ten again.

But wait, ten in hex is really 16, not ten. This could become rather confus
ing. We need some way to tell these two tens apart, so from now on we'll place
the letter h after any hex number. Thus, we'll know that lOh is hexadecimal
16 and 10 is decimal ten.

Now we come to the question of how to convert numbers between hex and
decimal. We know that lOh is 16, but how do we convert a larger hex number,
such as D3h, to a decimal number without counting up to D3h from lOh? Or,
how do we convert the decimal number 173 to hex?

We can't rely on Debug for help, because Debug can't speak in decimal. In
Chapter 10, we'll write a program to convert a hex number into decimal nota-

Peter Norton' Assembly Language Bo k 9

tion so that our programs can talk to us in decimal. But right now, we'll have
to do these conversions by hand, so let's begin by returning to the familiar
world of decimal numbers.

What does the number 276 mean? In grade school, we learned that 276
means we have two hundreds, seven tens, and six ones. Or, more graphically:

2 * 100 = 200
7 * 10 = 70

6 * 1 6
27 6 27 6

Well, that certainly helps us visualize the meanings of those digits. Can we
use the same graphic method with a hex number? Of course.

Consider the number D3h we mentioned earlier.Dis the hexadecimal digit
13, and there are 16 hex digits, versus 10 for decimal, so D3h is thirteen six
teens and three ones. Or, presented graphically:

D ~ 13 * 16 = 208
3 ~ 3 * 1 3

D3h 211

For the decimal number 276, we multiplied the digits by 100, 10, and 1; for
the hex number D3, we multiplied the digits by 16 and 1. If we had four deci
mal digits we'd multiply by 1000, 100, 10, and 1. Which four numbers would
we use with four hex digits?

For decimal, the numbers 1000, 100, 10, and 1 are all powers of 10:

103 1000
10 2 100
10 1 10
10° 1

We can use exactly the same method for hex digits, but with powers of 16,
instead of 10, so our four numbers are:

16 3 = 40%
16 2 = 256
16 1 = 16
16° = 1

Let's convert 3AC8h to decimal using the four numbers we just calculated:

10 Debug and Arithm tic

'/ -- > 7 16 = 112

c --> 12 * 1 = 12

7Ch - 124

3 --> 3 256 = 768

F --> 15 * 16 = 240

9 --> 9 1 = 9

3F9h = 1 , 017

A --> 10 * 4 , 096 = 40 , 960

F --> 15 256 - 3 , 840

1 --> 1 16 = 16

c --> 12 1 = 12

AFlCh - 44 , 828

3 --> 3 * 65 , 536 - 196 , 608

B --> 11 * 4 , 096 - 45,056

8 --> 8 * 256 - 2,048

D --> 13 * 16 - 208

2 --> 2 * 1 - 2

3B8D2h = 243 , 922

Figure 1-3. More Hexadecimal to Decimal Conversions.

Peter Norton's Assembly Languag Book 11

3 ~ 3 * 4096 = 12288
A ~ 10 * 256 2560
c ~ 12 * 16 192

8 ~ 8 * 1 8
3AC8h 15048

Now let's discover what happens when we add hex numbers that have more
than one digit. For this, we'll use Debug and the numbers 3A 7h and lEDh:

-H 3A7 1ED
0594 01BA

So we see that 3A 7h + lEDh = 594h. You can check the results by con
verting these numbers to decimal and doing the addition (and subtraction, if
you wish) in decimal form; if you're more adventurous, do the calculations
directly in hex.

1

3A7

+ 92A

CDl

1 1 1 1

BCD8

+ FAE9

1B7Cl

1

F451

+ CB03

1BF54

1 1

BCD8

+ 0509

Cl El

1

c
+ D

19

Figure 1-4. More Examples of Hexadecimal Addition.

Five-Digit Hex Numbers
So far, hex math is quite straightforward. What happens when we try add

ing even larger hex numbers? Let's try a five-digit hex number:

-H 5C3FO 4BCb
A Error

12 Debug and Arithmetic

That's an unexpected response. Why does Debug say we have an error here?
The reason has to do with a unit of storage called the word. Debug's Hex
arithmetic command works only with words, and words happen to be long
enough to hold four hex digits, no more.

We'll find out more about words in a few pages, but for now, remember that
you can work only with four hex digits. Thus, if you try to add two four-digit
hex numbers, such as COOOh and DOOOh (which should give you 19000h), you
get 9000h, instead:

-H COOO 0000
crnoo FOOD

Debug keeps only the four rightmost digits of the answer.

Converting De imal to H x
So far we've only looked at the conversion from hex to decimal. Now we'll

learn how to convert decimal numbers to hex. As we mentioned earlier, in
Chapter 10 we'll create a program to write the 8088's numbers as decimal
numbers; in Chapter 23, we'll write another program to read decimal numbers
into the 8088. But, as with decimal-to-hex conversions, let's begin by learning
how to do the conversions by hand. Again, we'll start by recalling a bit of
grade-school math.

When we first learned division, we would divide 9 by 2 to get 4 with a re
mainder of 1. We'll use the remainder to convert decimal numbers to hex.

Let's see what happens when we repeatedly divide a decimal number, in
this case 493, by 10:

t;cn I 10 t;g remainder 3
I

t
t;g I 10 t; remainder q ~

I
f
t; I 10 0 remainder t; ------+

t; g 3

The digits of 493 appear as the remainder in reverse order-that is, starting
with the rightmost digit (3). We saw in the last section that all we needed for
our hex-to-decimal conversion was to replace powers of 10 with powers of 16.

Peter Norton's Assembly Language Book 13

1069 I 16 66 Remainder 13

I

' 66 I 16 4 Remainder 2

t
I

4 I 16 = 0 Remainder 4 -.
1069 4 2 D h

57 , 109 I 16 = 3 , 569 Remainder 5

'
I

3 , 569 I 16 223 Remainder 2

t
I

223 I 16 = 13 Remainder 15

t
I

13 I 16 = 0 Remainder 13

l
57 , 109 = D F .l 5 h

Figure 1-5. More Examples of Hexadecimal Conversions.

14 Debug and Arithm tic

For our decimal-to-hex conversion, can we divide by 16 instead of 10? Indeed,
that's our conversion method.

For example, let's find the hex number for 493. Dividing by 16, as shown
here:

t;93 I 16 30 remainder 13 (Dh) -

30 I 16 1 remainder tt; (Eh)

=l, t
1 I 16 D remainder 1 (th)

f T t
1 E D h

We find that lEDh is the hex equivalent of decimal 493. In other word , keep
dividing by 16, and form the final hex number from the remainders. That's all
there is to it.

Negative umber
If you recall, though, we still have an unanswered puzzle in the number

FFFFh. We said that FFFFh is actually -1. Yet, if we convert FFFFh to deci
mal, we get 65535. How can that be? Does it behave as a negative number?

Well, if we add FFFFh (alias -1) to 5, the result should be 4, because 5 - 1
= 4. Is that what happens? Using Debug's H command to add 5 and FFFFh,
we find:

-H S FFFF
OOOt; 0006

Debug seems to treat FFFFh as -1. But FFFFh won't always behave as -1 in
programs we'll write. To see why not, let's do this addition by hand.

When we add two decimal numbers, we often find ourselves carrying a one
to the next column, like this:

1 1

9 s
+ S B
1 s 3

Peter Norton's Assembly Language Book 15

The addition of two hex numbers isn't much different. Adding 3 to F gives
us 2, with a carry into the next column:

1

F
+ 3

1 2 h

Now, watch what happens when we add 5 to FFFFh:

1 1 1 1

0 0 0 5 h
+ F F F F h
1DOOt;h

Since Fh + lh = lOh, the successive carries neatly move a 1 into the far left
position. And, if we ignore this 1, we have the correct answer for 5 - 1:
namely, 4. Strange as it seems, FFFFh behaves as -1 when we ignore this
overflow. It's called an overflow because the number is now five digits long,
but Debug keeps only the first (rightmost) four digits.

Is this overflow an error, or is the answer correct? Well, yes and yes. We can
choose either answer. Don't the answers contradict each other? Not really,
because we can view these numbers in either of two ways.

Let's suppose we take FFFFh as equal to 65536. This is a positive number,
and it happens to be the largest number we can write with four hex digits. We
say that FFFFh is an unsigned number. It is unsigned because we've just de
fined all four digit numbers as positive. Adding 5 to FFFFh gives us 10004h;
no other answer is correct. In the case of unsigned numbers, then, an overflow
is an error.

On the other hand, we can also treat FFFFh as a negative number, as
Debug did when we used the H command to add FFFFh to 5. FFFFh behaves
as - 1 as long as we ignore the overflow. In fact, the numbers 8000h through
FFFFh all behave nicely as negative numbers. For signed numbers, as here,
the overflow isn't an error.

The 8088 microprocessor can view numbers either as unsigned or signed;
the choice is yours. There are slightly different instructions for each, and we'll
explore these differences in later chapters as we begin to use numbers on the
8088. Right now, before you can learn to actually write the negative of, say,
3C8h, we need to unmask the bit and see how it fits into the scheme of bytes,
words, and hex.

16 Dchug and Arithmetic

Bits, Bytes, W ' a ary ti on
It's time for us to dig deeper into the intricacies of your IBM PC-time to

learn about the arithmetic of the 8088: binary number . 'l'he 8088 micropro
cessor, with all its power, is rather dumb. It knows only the two digit 0 and 1,
so any number it uses must be formed from a long tring of zero and ones.
This is the binary (base 2) number system.

When Debug prints a number in hex, it uses a small program to convert it's
internal numbers from binary to hexadecimal. In Chapter 5, we'll build uch a
program to write binary number in hex notation, but first we need to learn
more about binary numbers themselves.

Let's take the binary number lOllb (the b stands for binary). Thi number
is equal to the decimal 11, or Bh in hex. To see why, multiply the digit of
lOllb by the number's base, 2:

Powers of 2:

So that:

23 = 8
22 = t;

21 = 2
2° = 1

1 * 8
0 * t;

1 * 2

1 * 1
1011b

8
0
2
1

= 11 or Bh

Likewise, llllb is Fh, or 15. And llllb is the largest unsigned four-digit
binary number we can write, while OOOOb is the smallest. Thus, with four
binary digits we can write 16 different numbers. There are exactly 16 hex
digits, so we can write one hex digit for every four binary digits.

A two-digit hex number, such as 4Ch, can be written as 0100 llOOb. It's
composed of eight digits, which we separate into groups of four for easy read
ing. Each one of these binary digits is known as a bit, so a number like 0100
llOOb, or 4Ch, is eight bits long.

Very often, we find it convenient to number each of the bits in a long string,
with bit 0 farthest to the right. The 1 in lOb then is bit number 1, and the
leftmost bit in lOllb is bit number 3. Numbering bits in this way makes it
eas ·er for us to talk about any particular one, as we'll want to later on.

A group of eight binary digits is known as a byte, while a group of 16 binary

Peter Norton' Assembly Language Book 17

Binary Decimal Hexadecimal

0000 0 0
0001 1 1
0010 2 2
0011 3 3
0100 4 4
0101 5 5
0110 6 6
0111 7 7
1000 8 8
1001 9 9
1010 10 A
1011 1 1 B
1100 12 c
1101 13 D
1110 14 E
1 1 1 1 15 F

Figure 1-6. Binary, Hex, and Decimal for 0 Through F.

digits, or two bytes, is a word. We'll use these terms frequently throughout
this book, because bits, bytes, and words are all fundamental to the 8088.

We can see now why hexadecimal notation is convenient; two hex digits fit
exactly into one byte (four bits per hex digit), and four digits fit exactly into
one word. We can't say the same for decimal numbers. If we try to use two
decimal digits for one byte, we can't write numbers larger than 99, so we lose
the values from 100 to 255-more than half the range of numbers a byte can
hold. And if we use three decimal digits, we must ignore more than half the
three-digit decimal numbers, because the numbers 256 through 999 can't be
contained in one byte.

18 Debug and Arithmetic

Sign
bit

i
0100
\......_ ____ ../

4

Bit

i
1101
"------../

D

i....----Byte

0001
\.... _____ ./

1

t-----------Word

i
1100

\... ______ ../
A

Figure 1-7. A Word i Mad Out of Bi and B te .

Two's Complement-An Odd Sort of Negat·ve
Numb r

t

Now we're ready to learn more about negative numbers. We said before that
the numbers 8000h through FFFFh all behave as negative numbers when we
ignore the overflow. There is an easy way to spot negative numbers when we
write them in binary:

Positive numbers:
OOOOh

7FFFh

Negative numbers:
llOOOh

FFFFh

DODO ODDO DODO OOOOb

0111 1111 1111 1111b

1000 DODO ODDO DDDOb

1111 1111 1111 1111b

Peter Norton's Assembly Language Book 19

In the binary forms for all the positive numbers, the first bit (bit 15) is always
0. For all negative numbers, this first bit is always 1. This difference is, in
fact, the way that the 8088 microprocessor knows when a number is negative:
It looks at bit 15, the sign bit. If we use instructions for unsigned numbers in
our programs, the 8088 will ignore the sign bit, and we will be free to use
signed numbers at our convenience.

These negative numbers are known as the Two's Complement of positive
numbers. Why complement? Because the conversion from a positive number,
such as 3C8h, to its two's-complement form is a two-step process, with the first
being the conversion of the number to its complement.

We won't need to negate numbers often, but we'll do the conversion here
just so you can see how the 8088 microprocessor negates numbers. The conver
sion will seem a bit strange. You won't see why it works, but you will see that
it does work.

To find the two's-complement form (negative oO any number, first write the
number in binary, ignoring the sign. For example, 4Ch becomes 0000 0000
0100 llOOb.

To negate this number, first reverse all the zeros and ones. This process of
reversing is called complementing, and taking the complement of 4Ch, we find
that:

0 0 0 0 0 0 0 0

becomes:
1 1 1 1 1 1 1 1

0 1 0 0 1 1 0 0

1 0 1 1 0 0 1 1

In the second step of the conversion, we add 1:

1 1

1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 1
+ 1

1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0
-t;Ch = FFBt;h

The answer, FFB4h, is the result we get if we use Debug's H command to
subtract 4Ch from Oh.

If you wish, you can add FFB4h to 4Ch by hand, to verify that the answer is
lOOOOh. And from our earlier discussion, you know that you should ignore this
leftmost 1 to get 0 (4C + (-4C) = 0) when you do two's-complement addition.

20 cbug and Arithm tt

I rv
This chapter has been a fairly steep climb into the world of hexadecimal and

binary numbers, and it may have required a fair amount of mental exercise.
Soon, in Chapter 3, we'll slow down to a gentler pace-once you've learned
enough to converse with Debug in hex. Now, let's take a breath of fresh air
and look back on where we've been and what we've found.

We started out by meeting Debug. In chapters to come, we'll become inti
mate friends with Debug but, since it doesn't understand our familiar decimal
numbers, we've begun the friendship by learning a new numbering system,
hexadecimal notation.

In learning about hex numbers, you also learned how to convert decimal
numbers to hex, and hex numbers to decimal. We'll write a program to do
these translations later, but for now it's been necessary to learn the language
itself.

Once we'd covered the basics of hexadecimal notation, we were able to
wander off for a look at bits, bytes, words, and binary numbers-important
characters you'll encounter frequently as we continue to explore the world of
the 8088 and assembly language programming.

Finally, we moved on to learn about negative numbers in hex-the two's
complement numbers. They led us to signed and unsigned numbers, where we
also witnessed overflows of two different types: one in which an overflow
leaves the correct answer (addition of two signed numbers), and one in which
the overflow leads to the wrong answer (addition of two unsigned numbers).

All this learning will pay off in later chapters, because we'll use our knowl
edge of hex numbers to speak with Debug, and Debug will act as an inter
preter between us and the 8088 microprocessor waiting inside your IBM PC.

In the next chapter, we'll use the knowledge we've gained so far to learn
about the 8088. We'll rely on Debug again, and use hex numbers, rather than
binary, to talk to the 8088. We'll learn about the microprocessor's registers
the places where it stores numbers-and, in Chapter 3, we'll be ready to write
a real program that will print a character on the screen. We'll also learn more
about how the 8088 does its math; by the time we reach Chapter 10, we'll be
able to write a program to convert binary numbers to decimal.

8808 ARITHMETIC

Registers as Variables 22
Memory and the 8088 23
Addition, 8088 Style 26
Subtraction, 8088 Style 28
Negative Numbers in the 8088 29
Bytes in the 8088 29
Multiplication and Division, 8088 Style 31
Summary 34

21

2

22 088 Arithm tic

Knowing something of Debug's hex arithmetic and the 8088's binary arith
metic, we can begin to learn how the 8088 does its math. It uses internal com
mands called instructions.

Debug, our guide and interpreter, knows much about the 8088 microproces
sor inside the IBM PC. We'll use it to delve into the inner workings of the
8088, and begin by asking Debug to display what it can about small pieces of
memory called registers, in which we can store numbers. Registers are like
variables in BASIC, but they are not exactly the same. Unlike the BASIC
language, the 8088 microprocessor contains a fixed number of registers, and
these registers are not part of your IBM PC's memory.

We'll ask Debug to display the 8088's registers with the R, for Register,
command:

-R
AX=OOOO BX=OODO CX=ODOO DX=DDDO SP=FFEE BP=ODOO SI=OOOO DI=ODDO
DS=37Sb ES=37Sb SS=37Sb CS=37Sb IP=D100 NV UP DI PL NZ NA PO NC
3756:0100 E~BS IN AL,85

(You'll probably see different numbers in the second and third lines of your
display; those numbers reflect the amount of memory in a computer. You'll
continue to see such differences, and later we'll learn more about them.)

For now, Debug has certainly given us a lot of information. Let's concen
trate on the first four registers, AX, BX, CX, and DX, all of which Debug tells
us are equal to 0000, both here and on your display. These registers are the
general-purpose registers. The other registers, SP, BP, SI, DI, DS, ES, SS, CS,
and IP, are special-purpose registers we'll deal with in later chapters.

The four-digit number following each register name is in hex notation. In
Chapter 1, we learned that one word is described exactly by four hex digits.
Here, you can see that each of the 13 registers in the 8088 is one word, or 16
bits, long. This is why computers based on the 8088 microprocessor are known
as 16-bit I}lachines.

We mentioned that the registers are like BASIC variables. That means we
should be able to change them, and we can. Debug's R command does more
than display registers. Followed by the name of the register, the command

Peter Norton's Assembly Language Book 23

tells Debug that we wish to view the register, and then change it. For exam
ple, we can change the AX register like this:

-R AX
AX ODDO
:3A7

Let's look at the registers again to see if the AX register now contains 3A 7h:

-R
AX=03A7 BX=OOOO CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=3757 ES=3756 SS=3756 CS=3756 IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 E~B5 IN AL,85

It does. Furthermore, we can put any hex number into any register with the
R command by specifying the register's name and entering the new number
after the colon, as we just did. From here on, we'll be using this command
whenever we need to place numbers into the 8088's registers.

You may recall seeing the number 3A 7h in Chapter 1, where we used
Debug's Hexarithmetic command to add 3A 7h and lEDh. Back then, Debug
did the work for us. This time, we'll use Debug merely as an interpreter so we
can work directly with the 8088. We'll give the 8088 instructions to add num
bers from two registers: We'll place a number in the BX register and then
instruct the 8088 to add the number in BX to the number in AX and put the
answer back into AX. First, we need a number in the BX register. This time,
let's add 3A7h and 92Ah. Use the R command to store 92Ah into BX.

the 8 8
The AX and BX registers should, respectively, contain 3A 7h and 92Ah, as

we can verify with the R command:

AX=03A7 BX=092A CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=3756 ES=3756 SS=3756 CS=3756 IP=0100 NV UP DI PL NZ NA PO NC
3756:0100 E~B5 IN AL,85

Now that we have our two numbers in the AX and BX registers, how do we
tell the 8088 to add BX to AX? We put some numbers into the computer's
memory.

24 0 Arithm ti

Your IBM PC probably has at least 128K of memory-far more than we'll
need to use here. We'll place two bytes of machine code into a corner of this
vast amount of memory. In this case, the machine code will be two binary
numbers that tell the 8088 to add the BX regi ter to AX. Then o we can
watch what happens, we'll execute this instruction with the help of Debug.

Now, where in memory should we place our two-byte instruction, and how
will we tell the 8088 where to find it? As it turns out, the 8088 chops memory
into 64K pieces known as segments. Most of the time, we'll be looking at mem
ory within one of these segments without really knowing where the egment
starts. We can do this because of the way the 808 label memory.

All bytes in memory are labeled with numbers, tarting with Oh and work
ing up. But remember the four-digit limitation on hex number ? That means
the highest number the 8088 can use is the hex equivalent of 65535, which
means the maximum number of labels it can use is 64K. Even o, we know
from experience that the 8088 can call on more than 64K of memory. How
does it do this? By being a little bit tricky: It uses two numbers, one for each
64K segment, and one for each byte, or offset, within the segment. Each seg
ment begins at a multiple of 16 bytes, so by overlapping egments and offsets,
the 8088 effectively can label more than 64K of memory. In fact, this is pre
cisely how the 8088 uses up to one million bytes of memory.

All the addresses (labels) we'll be using are offsets from the start of a seg
ment. We'll write addresses as a segment number, followed by the offset
within the segment. For example, 3756:0100 will mean we are at an offset of
lOOh within segment 3756h.

Later, in Chapter 11, we'll learn more about segments and see more about
why we have such a high segment number. But for now, we'll simply trust
Debug to look after the segments for us, so that we can work within one seg
ment without having to pay attention to segment numbers. And for the time
being, we'll refer to addresses only by their offsets. Each of these addresses
refers to one byte in the segment, and the addresses are sequential, so lOlh is
the byte following lOOh in memory.

Written out, our two-byte instruction to add BX to AX looks like this: ADD
AX,BX. We'll place this instruction at locations lOOh and lOlh, in whatever
segment Debug starts to use. In referring to our ADD instruction, we'll say
that it's at location lOOh, since this is the location of the first byte of the
instruction.

Debug's command for examining and changing memory is called E, for
Enter. Use this command to enter the two bytes of the ADD instruction, as
follows:

Start of
segment
3756

3756:0100

3756:0101

•
•
•

---1·~' ~ '
~•:loahl'

ADD AX,BX

•
•
•

I

' - - - - - - - _,

Figure 2-1. Our Instruction Begins lOOh Bytes From the Start of the
egment.

-E 100
3756:0100 E~.01

-E 101
3756:0101 85.08

25

The numbers Olh and D8h are the 8088's machine language for our ADD in
struction at memory locations 3756:0100 and 3756:0101. The segment number
you see will probably be different, but that difference won't affect our pro
gram. Likewise, Debug probably displayed a different two-digit number for
each of your E commands. These numbers (E4h and 85h in our example) are
the old numbers in memory at offset addresses lOOh and lOlh of the segment

Debug chose-that is, the numbers are data from previous program left in
memory when you started Debug. (If you just started your comput r, the num
bers should be 00.)

• •
l 0 I

Now your register display should look omething like thi :

AX=03A7 BX=Og 2A CX =OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=3 756 ES=3 756 SS= 3756 CS=3756 I P=0100 NV UP DI PL NZ NA PO NC
3756:0100 01D8 ADD AX,BX

Our ADD instruction is neatly placed in memory, ju t where we want it to be.
We know this from reading the third line of the di play. The fir t two num
bers, 3756:0100, give us the address (100h) for the fir t number of our ADD
instruction. Next to this, we see the two bytes for ADD: OlD . The byte equal
to Olh is at address lOOh, while D8h is at lOlh. Finally, ince we entered our
instruction in machine language-numbers that have no meaning to us but
which the 8088 will interpret as an add instruction-the message ADD
AX,BX confirms that we entered the instruction correctly.

Even though we've placed our ADD instruction in memory, we're not quite
ready to run it through the 8088 (execute it). First, we need to tell the 8088
where to find the instruction.

The 8088 finds segment and offset addresses in two special registers, CS and
IP, which you can see listed in the preceding register display. The segment
number is stored in the CS, or Code Segment, register, which we'll discuss
shortly. If you look at the register display, you can see that Debug has already
set the CS register for us (CS= 3756, in our example). The full starting ad
dress of our instruction, however, is 3756:0100.

The second part of this address (the offset within segment 3756) is stored in
the IP (Instruction Pointer) register. The 8088 uses the offset in the IP register
to actually find our first instruction. We can tell it where to look by setting
the IP register to the address of our first instruction-IP= 0100.

But the IP register is already set to lOOh. We've been clever: Debug sets
IP to lOOh whenever you first start it. Knowing this, we've deliberately
chosen lOOh as the address of our first instruction and have thus elimi
nated the need to set the IP register in a separate step. It's a good point to
kee:p in mind.

Peter Norton's As embly Language Book 27

Now, with our instructions in place and the registers set correctly, we'll tell
Debug to execute our one instruction. We'll use Debug's T (for Trace) com
mand, which executes one instruction at a time and then displays the regis
ters. After each trace, the IP should point to the next instruction. In this case,
it will point to 102h. We haven't put an instruction at 102h, so in the last line
of the register display we'll just see an instruction left from some other
program.

Let's ask Debug to trace one instruction with the T command:

- T
AX=OCD1 BX=OG2A CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=3756 ES=3756 SS=3756 CS=3756 IP=0102 NV UP DI PL NZ AC PE NC
3756:0102 AC LODSB

That's it. The AX register now contains CDlh, which is the sum of 3A7h and
92Ah. And the IP register points to address 102h, so the last line of the regis
ter display shows some instruction at memory location 102h, rather than
lOOh.

We mentioned earlier that the instruction pointer, together with the CS
register, always points to the next instruction for the 8088. If we typed T
again, we'd execute the next instruction, but don't do it just yet-your 8088
might head for limbo.

Instead, what if we want to execute our ADD instruction again, adding
92Ah to CDlh and storing the new answer in AX? For that we need to tell the
8088 where to find its next instruction, and want this to be our ADD instruc
tion at OlOOh. Can we just change the IP register to OlOOh? Let's try it. Use
the R command to set IP to 100, and look at the register display:

AX=OCD1 BX=OG2A CX=DDOO DX=DDDD SP=FFEE BP=DDDD SI=DDDD DI=DDDD
DS=3756 ES=3756 SS=3756 CS=3756 IP=D1DD NV UP DI PL NZ AC PE NC
3756:0100 ADD AX,BX

That's done it. Try the T command again and see if the AX register contains
15FBh. It does.

As you can see here, you should always check the IP register and the in
struction at the bottom of an R display before using the T command. That
way, you'll be sure the 8088 executes the instruction you want it to.

Now, set the IP register to lOOh once again, make certain the registers con
tain AX = 15FB, BX = 092A, and let's try subtraction.

28

AX: 03A7 BX: 092A

ADD AX,BX
LCDSB

AX: OCD1 BX: 092A

Figure 2-3. After Exe uting th ADD In truction.

Subtraction, 8088 Stvle
We're going to write an instruction to subtract BX from AX so that, after

two subtractions, we'll have 3A 7h in AX: the point from which we started
before our two additions. You'll also see how we can save a little effort in
entering two bytes into memory.

When we entered the two bytes for our ADD instruction, we typed the E
command twice: once with OlOOh for the first address, and once with OlOlh for
the second address. The procedure worked, but as it turns out we can actually
enter the second byte without another E command if we separate it from the
first byte with a space. When you've finished entering bytes, pressing the

Peter Norton' Assembly Language Book 29

Enter key will exit from the Enter command. Try this method for our subtract
instruction:

-E 100
3756:0100 01.2g DB.DB

The register display (remember to reset the IP register to lOOh) should now
show the instruction SUB AX,BX, which subtracts the BX register from the
AX register and leaves the result in AX. The order of AX and BX may seem
backward, but the instruction is like the BASIC statement AX = AX - BX
except that the 8088, unlike BASIC, always puts the answer into the first
variable (register).

Execute this instruction with the T command. AX should contain CDl.
Change IP to point back to this instruction, and execute it again (remember to
check the instruction at the bottom of the R display first). AX should now be
03A7.

e a ·ve Numbers in the 8088
In the last chapter, we learned how the 8088 uses the two's-complement

form for negative numbers. Now, let's work directly with the SUB instruction
to calculate negative numbers. Let's put the 8088 to a little test, to see if we
get FFFFh for -1. We'll subtract one from zero and, if we're right, the sub
traction should place FFFFh (-1) into AX. Set AX equal to zero and BX to
one, then trace through the instruction at address OlOOh. Just what we ex
pected: AX = FFFFh.

While you have this subtraction instruction handy, you may wish to try
some different numbers to gain a better feel for two's-complement arithmetic.
For example, see what result you get for - 2.

y s in the 8088
All of our arithmetic thus far has been performed on words, hence the four

hex digits. Does the 8088 microprocessor know how to perform math with
bytes? Yes, it does.

Since one word is formed from two bytes, each general-purpose register can
be divided into two bytes, known as the high byte (the first two hex digits) and
the low byte (the second two hex digits). Each of these registers can be called

30 0 Artthm ti

by its letter (A through D), followed by X for a word, H for the high byte, or L
for the low byte. For example, DL and DH are byte registers, and DX is a word
register. (This terminology can become somewhat confu ing however, be
cause words stored in memory have their low byte first, and the high byte
second.)

+AH-i
0100 1101
\... ..I \...

______ ..I

4 D

t
Fig r 2-4. T A

+AL--i
0001 1100

\...__ _____ ..I , ________ .../

1 A

t

Let's test byte-sized math with an ADD instruction. Enter the two byte OOh
and C4h, starting at location OlOOh. At the bottom of the regi ter display,
you'll see the instruction ADD AH, AL, which will add the two bytes of the
AX register and place the result in the high byte, AH.

Next, load the AX register with 0102h. This places Olh in the AH register
and 02h in the AL register. Set the IP register to lOOh, execute the T com
mand, and you'll find that AX now contains 0302. The result of Olh + 02h is
03h, and that value is in the AH register.

But suppose you hadn't meant to add Olh and 02h. Suppose you really
meant to add Olh and 03h. If the AX register already contained 0102, could
you change the AL register to 03h? No. You would have to change the AX
register to 0103h. Why? Because Debug only allows us to change entire word
registers. There isn't a way to change just the low or high part of a register
with Debug. But, as you saw in the last chapter, this isn't a problem. With
hex numbers, we can split a word into two bytes by breaking the four-digit
hex number in half. Thus, the word 0103h becomes the two bytes Olh and
03h.

To try this ADD instruction, load the AX register with 0103h. Your ADD

Peter Norton's Assembly Language Book 31

AH,AL instruction is still at memory location OlOOh, so reset the IP register
to lOOh and, with Olh and 03h now in the AH and AL registers, trace through
this instruction. This time, AX contains 0403h: 04h, the sum of Olh + 03h is
now in the AH register.

ulti Ii ation and Division, 8088 Style
We've seen the 8088 add and subtract two numbers. Now we'll see that it

can also multiply and divide-dever processor. The multiply instruction is
called MUL, and the machine code to multiply AX and BX is F7h E3h. We'll
enter this into memory, but first a word about the MUL instruction.

Where does the MUL instruction store its answer? In the AX register? Not
quite; we have to be careful here. As you'll soon see, multiplying two 16-bit
numbers can give a 32-bit answer, so the MUL instruction stores its result
in two registers, DX and AX. The higher 16 bits are placed in the DX regis
ter; the lower, into AX. We can also write this register combination as
DX:AX.

Let's get back to Debug and the 8088. Enter the multiply instruction, F7h
E3h, at location OlOOh, just as you did for the addition and subtraction in
structions, and set AX = 7C4Bh and BX = lOOh. You'll see the instruction in
the register display as MUL BX, without any reference to the AX register. To
multiply words, as here, the 8088 always multiplies the register you name in
the instruction by the AX register, and stores the answer in the DX:AX pair of
registers.

Before we actually execute this MUL instruction, let's do the multiplication
by hand. How do we calculate lOOh * 7C4Bh? The three digits 100 have the
same effect in hex as in decimal, so to multiply by lOOh simply add two zeros
to the right of a hex number. Thus, lOOh * 7C4Bh = 7C4BOOh. This result is
too long to fit into one word, so we'll split it into the two words 007Ch and
4BOOh.

Use Debug to trace through the instruction. You'll see that DX contains
the word 007Ch, and AX contains the word 4BOOh. In other words, the
8088 returned the result of the word-multiply instruction in the DX:AX
pair of registers. Since multiplying two words together can never be
longer than two words, but will often be longer than one word (as we just
saw), the word-multiply instruction always returns the result in the
DX:AX pair of registers.

And what about division? When we divide numbers, the 8088 keeps both
the result and the remainder of the division. Let's see how the 8088's division

32

DX AX BX
Jooooj l7C4BJ !01001

DX AX BX
loo?cl l4Bool lo1ooj

MUL BX
LODSB

Figure 2-6. After Executing the MUL Instruction.

DX AX ·
loo7cl l4B12I

IP:100 DIV BX
LODSB

BX
101001

Figure 2-7. Before Executing the DIV Instruction.

DX AX
loo121 l7C4BI

DIV BX
IP:102 LODSB

BX
101001

Figure 2-8. After Executing the DIV instruction.

34 088 Arithmetic

works. First, place the instruction F7h F3h at OlOOh (and lOlh). Like the
MUL instruction, DIV uses DX:AX without being told, so all we see is DIV
BX. Now, load the registers so that DX = 007Ch and AX = 4B12h; BX should
still contain OlOOh.

Again, we'll first calculate the results by hand: 7C4B12h I lOOh = 7C4Bh,
with 12h left over. When we execute our division instruction at OlOOh, we find
that AX = 7C4Bh, the result of our division, and DX = 0012h, which is the
remainder. (We'll put this remainder to very good use in Chapter 10, when we
write a program to convert decimal numbers to hex by u ing the remainders,
just as we did in Chapter 1.)

Summary
It's almost time for us to write a real program-one to print a character on

the screen. We've put in our time learning the basics. Let's take a look at the
ground we've covered, and then we'll be all set to push on.

We began this chapter by learning about registers and noticing their simi
larity to variables in BASIC. Unlike BASIC, however, we saw that the 8088
has a small, fixed number of registers. We concentrated on the four general
purpose registers, with a quick look at the CS and IP registers, which the 8088
uses to locate segment and offset addresses.

After learning how to change and read registers, we moved on to build some
single-instruction programs by entering the machine codes to add, subtract,
multiply, and divide two numbers with the AX and BX registers. In future
chapters we'll use much of what we learned here, but you won't need to re
member the machine codes for each instruction.

We also learned how to tell Debug to execute, or trace through, a single
instruction. We'll come to rely heavily on Debug to trace through our pro
grams. Of course, as our programs grow in size, this tracing will become both
more useful and more tedious. Later on we'll build on our experience and
learn how to execute more than one instruction with a single Debug
command.

Let's turn back to real programs and learn how to make a program that
speaks.

PRINTI G CHARACTERS

INT-The Powerful Interrupt 36
A Graceful Exit-INT 20h 38
A Two-Line Program-Putting the Pieces

Together 39
Entering Programs 40
MOVing Data into Registers 41
Writing a String of Characters 43
Summary 45

35

3

36 Printing Character

Now we know enough to do something solid, so roll up your sleeves and flex
your fingers. We're going to begin by instructing DOS to send a character to
the screen, then we'll move on to even more interesting work. We'll build a
small program with more than one instruction, and from there, learn another
way to put data into registers-this time, from within a program. Now, let's
see if we can get DOS to speak.

T- h werful I
To our four math instructions, ADD, SUB, MUL, and DIV, we'll add a new

instruction called INT (for Interrupt). INT is something like BASIC's GOSUB
statement. We'll use the INT instruction to ask DOS to print a character, A,
on the screen for us.

Before we learn how INT works, let's run through an example. Start Debug
and place 200h into AX and 41h into DX. The INT instruction for DOS func
tions is INT 21h-in machine code, CDh 21h. This is a two-byte instruction
like the DIV instruction in the last chapter. Put INT 21h in memory, starting
at location lOOh, and use the R command to confirm that the instruction reads
INT 21 (remember to set IP to lOOh if it isn't already there).

Now we're ready to execute this instruction, but we can't use the trace com
mand here as we did in the last chapter. The trace command executes one
instruction at a time, but the INT instruction calls upon a large program in
DOS to do the actual work, much as BASIC programs can call a subroutine
with the GOSUB statement.

We don't want to execute each of the instructions in the entire DOS "sub
routine" by tracing through it one instruction at a time. Instead, we want to
run our one-line program, but stop before executing the instruction at location
102h. We can do this with Debug's G (for Go) command, .followed by the ad
dress at which we want to stop:

-G 102
A
AX=0241 BX=OOOO CX=OOOO DX=0041 SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=]g?Q ES=3g70 SS=]g70 CS=]g70 IP=0102 NV UP DI PL NZ NA PO NC
]g7Q:0102 &BES MOV SP,BP

DOS printed the character A, and then returned control to our small program.

Peter Norton's Assembly Language Book 37

(Remember, the instruction at 102h is just data left behind by another pro
gram, so you'll probably see something different.)

Our small program here is, in a sense, two instructions long, the second
instruction being whatever is at location 102h. That is, it is something like
this:

INT
110V

21
SP,BP (Or whatever is on your computer)

We'll soon replace this random second instruction with one of our own. For
now, since it isn't anything we want to execute, we told Debug to run our
program, stop execution when it reached this second instruction, and display
the registers when it was done.

And how did DOS know to print the A? The 02h in the AH register told DOS
to print a character. Another number in AH would tell DOS to execute a dif
ferent function. (We'll see others later, but if you're curious right now, you can
find a list of functions in your DOS Technical Manual.)

As for the character itself, DOS uses the number in the DL register as the
ASCII code for the character to print when we ask it to send a character to the
screen. We stored 4lh, the ASCII code for an uppercase A.

In Appendix E, you'll find a chart of ASCII character codes for all the char
acters your IBM PC can display. For your convenience, the numbers are in
both decimal and hex notation. But since Debug reads hex only, here is a good
chance for you to practice converting decimal numbers to hex. Pick a charac
ter from the table and convert it to hex on your own. Then, verify your conver
sion by typing your hex value into the DL register and running the INT
instruction again (remember to reset IP to lOOh).

You may have wondered what would have happened if you had tried the
trace command on the INT instruction. We'll pretend we had not executed the
G 102 command and, instead, trace a short distance through, to see what hap
pens. If you try this yourself, don't go too far: You may find your IBM PC
doing something strange. After you've traced through a few steps, exit Debug
with the Q command. This will clean up any mess you've left behind.

-R
AX=0200 BX=OOOO CX=OOOO DX=00~1 SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=3970 ES=3970 SS=3970 CS=3970 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD21 INT 21
-T

38 Printing Character

AX=0200 BX=OOOO CX=OOOO DX=00~1 SP=FFE8 BP=OOOO SI=OOOO DI=OOOO
DS=3970 ES=3970 SS=3970 CS=3372 IP=0180 NV UP DI PL NZ NA PO NC
3372:0180 aoFC~B CMP AH,~B

-T

AX=0200 BX=OOOO CX=OOOO DX=00~1 SP=FFE8 BP=OOOO SI=OOOO DI=OOOO
DS=3970 ES=3970 SS=3G70 CS=3372 IP=0183 NV UP DI NG NZ AC PE CY
3372:0183 7~0S JZ 018A
-T

AX=0200 BX=OOOO CX=OOOO DX=00~1 SP=FFE8 BP=OOOO SI=OOOO DI=OOOO
DS=3970 ES=3970 SS=3970 CS=3372 IP=018S NV UP DI NG Z AC PE CY
3372:0185 2E CS:
3372:0186 FF2EABOB JMP FAR (OBAB) CS:OBAB=OBFF
-Q

Notice that the first number of the address changed here, from 3970 to
3372. These last three instructions were part of DOS, and the program for
DOS is in another segment. In fact, there are many, many more instructions
that DOS executes before it prints a single character; even such an apparently
simple task is not as easy as it sound . Now you can ee why we used the G
command to run our program to location 102h. Otherwise, we'd have seen a
torrent of instructions from DOS. (If you're using a different version of DOS
than we used, the instructions you see when you try this may be different.)

A Graceful Exit-INT 20h
Remember that our INT instruction was 21h? If we changed the 21h to a

20h, we'd have INT 20h instead. INT 20h is another interrupt instruction, and
it tells DOS we want to exit our program, so that DOS can take full control
again. In our case, INT 20h will send control back to Debug, since we're exe
cuting our programs from Debug, rather than from DOS.

Enter the instruction CDh 20h, starting at location lOOh, then try the fol
lowing (remember to check the INT 20h instruction with the R command):

-G 102

Program terminated normally
-R
AX=DOOO BX=OOOO CX=OOOO DX=OOOD SP=FFEE BP=OOOO SI=DOOO DI=OOOO
DS=3970 ES=3970 SS=3970 CS=3970 IP=0100 NV UP DI PL NZ NA PO NC
3970:0100 CD20 INT 20
-G

Program terminated normally
-R

Peter Norton's Assembly Language Book 39

AX=OOOO BX=OOOD CX=DOOO DX=ODOO SP=FFEE BP=OODO SI=ODOO DI=DODO
DS=3970 ES=3970 SS=3970 CS=3970 IP=D100 NV UP DI PL NZ NA PO NC
3970:0100 CD20 INT 20

The command G, with no number after it, executes the entire program (which
is just one instruction now, because INT 20 is an exit instruction), and then
returns to the start. IP has been reset to lOOh, where we started. The registers
in this example are 0 only because we started Debug afresh.

We can use this INT 20h instruction at the end of a program to return con
trol gracefully to DOS (or Debug), so let's put this instruction together with
INT 21h and build a two-line program.

A Two-Line Program-Putting the Pieces
(:I t

Starting at location lOOh, enter the two instructions INT 21h, INT 20h
(CDh 21h CDh 20h) one after the other. (From now on, we'll always start pro
grams at location lOOh).

When we had only one instruction we could "list" that instruction with the
R command, but now we have two instructions. To see them, we have the U
(Unassemble) command, which acts like BASIC's List command:

-U 100
3970:0100 CD21 INT 21
3970:0102 CD20 INT 20
3970:010~ D98D~6025DB8 ESC 09,[DI+D2~6J[DI+B850]

3970:010A 8DOO LEA AX,[BX+SIJ
3970:010C 50 PUSH AX
3970:01DD E82A23 CALL 2~3A

3970:0110 8BES MOV SP,BP
3970:0112 83C~1A ADD SP,+1A
3970: 0115 SD POP BP
3970:0116 C3 RET
3970:0117 55 PUSH BP
3970:0118 B3ECD2 SUB SP,+02
3970: 011B BBEC MOV BP,SP
3970:011D 823EDEDDDD CMP BYTE PTR [DODE JI DO

The first two instructions we recognize as the two instructions we just en
tered. The other instructions are remnants left in memory. As our program
grows, we'll fill this display with more of our own code.

40 Printin

Now, fill the AH regi ter with 02h and the DL regi ter with the number for
any character (just as you did earlier when you changed the AX and DX regis
ters), then simply type the G command to ee your character. For example, if
you place 41h into DL, you'll see:

-G
A
Program terminated normally

Try this a few times before we move on to other way to et these regi ter .

• n Pr a
From here on, most of our program will be more than one instruction long,

and to present these programs we'll u e an una emble di play. Our la t pro
gram would thus appear like this:

3Cl 70:0100 CD2 1
3Cl 70 :0102 CD20

I NT
I NT

21
20

So far, we've entered the instruction for our programs directly as numbers
such as CDh, 21h. But that's a lot of work, and, as it turns out, there is a much
easier way to enter instructions.

In addition to the unassemble command, Debug includes an A (Assemble)
command, which allows us to enter the mnemonic, or human-readable, in
structions directly. So rather than entering those cryptic numbers for our
short program, we can use the assemble command to enter the following:

-A 100
3Cl70:0100 INT 21
3Cl70:0102 INT 20
3Cl70:010t;

When you've finished assembling instructions, all you have to do is press the
Enter key, and the Debug prompt reappears.

Here, the A command told Debug that we wished to enter instructions in
mnemonic form, and the 100 in our command told Debug to start entering
instructions at location lOOh. Since Debug's assemble command makes enter
ing programs much simpler, we'll use it from now on to enter instructions.

Peter Norton' Assembly Language Book 41

OVing Data into Registers
Although we've relied on Debug quite a bit so far, we won't always run

programs with it. Normally, a program would set the AH and DL registers
itself before an INT 21h instruction. To do this, we'll learn about another in
struction, MOV. Once we know enough about this instruction, we'll be able to
take our small program to print a character and make a real program-one
that we can execute directly from DOS.

Soon, we'll use the MOV instruction to load numbers into registers AH and
DL. But let's start learning about MOV by moving numbers between regis
ters. Place 1234h into AX (12h into the AH register, and 34h in AL) and
ABCDh into DX (ABh in DH, and CDh in DL). Now, enter the following in
struction with the A command:

396F:0100 88Dt; MOV AH,DL

This instruction moves the number in DL into AH by putting a copy of it into
AH; AL is not affected. If you trace through this one line, you'll find that AX
= CD34h and DX = ABCDh. Only AH has changed. It now holds a copy of
the number in DL.

Like the BASIC statement LET AH = DL, a MOV instruction copies a
number from the second register to the first, and for this reason we write AH
before DL. Although there are some restrictions, which we'll find out about
later, we can use other forms of the MOV instruction to copy numbers be
tween other pairs of registers. For example, reset IP and try this:

396F:0100 89C3 MOV BX,AX

You've just moved words, rather than bytes, between registers. The MOV in
struction al ways works between words and words, or bytes and bytes; never
between words and bytes. It makes sense, for how would you move a word into
a byte?

We originally set out to move a number into the AH and DL registers. Let's
do so now with another form of the MOV instruction:

396F: 0100 Bt;02 MOV AH,02

This instruction moves 02h into the AH register without affecting the AL reg
ister. The second byte of the instruction, 02h, is the number we wish to move.
Try moving a different number into AH: Change the second byte to another,
such as Clh, with the E 101 command.

42 Printing Chara tcr

Now, let's put all the pieces of this chapter together and build a longer pro
gram. This one will print an asterisk, *, all by itself, with no need for u to set
the registers (AH and DL). The program uses MOV instructions to set the AH
and DL registers before the INT 21h call to DOS:

3%F:Ol.OO B402
3%F: 01.02 B22A
396F:010t; CD21
396F:010b CD20

l'IOV
MOV
INT
INT

AH,02
DL,2A
21
20

Enter the program and check it with the U command (U 100). Make sure IP
points to location lOOh, then try the G command to run the entire program.
You should see the * character appear on your screen:

-G

*
Program terminated normally

Now that we have a complete, self-contained program, let's write it to disk
as a .COM program, so we will be able to execute it directly from DOS. We can
run a .COM program from DOS simply by typing its name. Since our program
doesn't yet have a name, we need to give it one.

The Debug command N (for Name) gives a name to a file before we write it
to disk. Type:

-N WRITESTR.C0!1

to give the name WRITESTR.COM to our program. This command doesn't
write our file to the disk, though-it simply names the file.

Next, we must give Debug a byte count, telling it the number of bytes in our
program so it will know how much memory we want to write to our file. If you
refer to the unassemble listing of our program, you can see that each instruc
tion is two bytes long (this won't always be true). We have four instructions,
so our program is 4 * 2 = 8 bytes long. (We could also put Debug's H command
to work, and use hexarithmetic to determine the number of bytes in our pro
gram. Typing H 108 100, where 108 is the address of the instruction after INT
20, will produce 8.)

Once we have our byte count, we need somewhere to put it. Debug uses the
pair of registers BX:CX for the length of our file, so putting 8h into CX tells
Debug that our program is eight bytes long. Finally, since our file is only
eight bytes long, we also need to set BX to zero.

Peter Norton's As embly Language Book 43

Once we've set the name and length of our program, we can then write it to
disk with Debug's W (for Write) command:

-Ii
Writing 0008 bytes

We now have a program on our disk called WRITESTR.COM, so let's exit
Debug, with a Q, and look for it. Use the DOS Dir command to list the file:

A>DIR WRITESTR.COM

Volume in drive A has no label
Directory of A: \

WRITESTR COM 8 6-30-83 10:05a
1 File(s) 18~32 bytes free

A>

The directory listing tells us that WRITESTR.COM is on the disk and that
it's eight bytes long, just as it should be. To run the program, simply type
Writestr at the DOS prompt. You'll see a* appear on the display. Nothing to it.

Writing a String of Characters
As a final example for this chapter, we'll use INT 21h, with a different func

tion number in the AH register, to write a whole string of characters. We'll
have to store our string of characters in memory and we'll have to tell DOS
where to find the string, so in the process, we'll also learn more about ad
dresses and memory.

We've already seen that function number 02h for INT 21H prints one char
acter on the screen. Another function, number 09h, prints an entire string,
and stops printing characters when it finds a$ symbol in the string. Let's put
a string into memory. We'll start at location 200h, so the string won't become
tangled with the code for our program. Enter the following numbers, using the
instruction E 200:

~8

6F
u
65
2~

65
2C
53
72

6C
20
20
65

6C
~~

68
2E

44 Printing Characters

The last number) 24h, is the ASCII code for a $ sign, and it tells DOS that this
is the end of our string of characters. You'll see what this string says in a
minute, when you run the program we'll enter now:

3%F:o100 a.:;oq
]q6F:0102 BA0002
3%P:0105 CD21
3%F:0107 CD20

MOV
t!OV
INT
INT

r.H,0'1
ox,0200
21
20

200h is the address of the string we entered, and loading 200h into the DX
register tells DOS where to find the string of characters. Check your program
with the U command, then run it with a G command:

-G
Hello, DOS here.
Program terminated normally

Now that we've stored some characters in memory, it's time to meet another
Debug command, D (for Dump). The dump command dumps memory to the
screen somewhat like U lists instructions. Just as when you use the U com
mand, simply place an address after D to tell Debug where to start the dump.
For example, type the command D 200 to see a dump of the string you just
entered:

-D 200
396F:0200 .:;8 65 6C 6C 6F 2C 20 .:;.:;-.:;p 53 20 68 65 72 65 2E Hello, DOS here.
396F:0210 2.:; SD C3 SS 83 EC 30 8B-EC C7 06 10 00 00 00 E8 $)C0.10.1G h

After each pair of address numbers (such as 396F:0200 in our example), we
see 16 hex bytes, followed by the 16 ASCII characters for these bytes. Thus, on
the first line you see most of the ASCII codes and characters you typed in. Th~
ending $ sign you typed is the first character on the second line; the remain
der of that line is a miscellaneous assortment of characters.

Wherever you see a period(.) in the ASCII window, it represents either a
period or a special character, such as the Greek letter pi. Debug's D command
displays only 96 of the 256 characters in the IBM PC character set, so a period
is used for the remaining 160 characters.

We'll use the D command in the future to check numbers we enter for data,
whether those data are characters or ordinary numbers. (For more informa
tion, refer to the Debug section in your DOS manual.)

Peter Norton's Assembly Language Book 45

Our string-writing program is complete, so we can write it to the disk. The
procedure is the same one we used to write WRITESTR.COM to disk, except
this time we have to set our program length to a value long enough to include
the string at 200h. Our program begins at line lOOh, and we can see from the
memory dump just performed that the first character (]) following the $ sign
that ends our string is at location 211h. Again, we can use the H command to
find the difference between these two numbers. Find 211h - lOOh and store
this value into the CX register, again setting BX to zero. Use the N command
to give the program a name (add the .COM extension to run the program di
rectly from DOS), then use the W command to write the program and data to a
disk file.

That's it for writing characters to the screen-aside from one final note: You
may have noticed that DOS never sends the $ character. Quite so, because
DOS uses the$ sign to mark the end of a string of characters. That means we
can't use DOS to print a string with a$ in it, but in a later chapter, we'll see
how to print a string with a$ sign or any other special character.

ary
Our preparations in the first two chapters brought us to the point where we

could work on a real program. In this chapter, we used our knowledge of hex
numbers, Debug, 8088 instructions, and memory to build short programs to
print a character and a string of characters on the screen. In the process we
also learned some new things.

First we learned about INT instructions-not in much detail, but enough
for us to write two short programs. In later chapters, we'll gain more knowl
edge about interrupt instructions as we increase our understanding of the
8088 microprocessor tucked under the cover of your IBM PC.

Debug has, once again, been a useful and faithful guide. We've been relying
heavily on Debug to display the contents of registers and memory, and in this
chapter we used its abilities even more. Debug ran our short programs with
the G command.

We also learned about the INT 20 exit instruction, and the MOV instruction
for moving numbers into and between registers. The exit instruction (INT 20)
allowed us to build a complete program that we could write to the disk and
run directly from DOS without the help of Debug. And the MOV instruction
gave us the ability to set registers before an INT 21 (print) instruction, so we
could write a self-contained program to print one character.

Finally, we rounded out the chapter with the INT 21h function to print an

• 46 rinting h ra ter

entire string of characters. We'll use all these instructions heavily throughout
the rest of this book, but as you saw from using the Debug assemble and unas
semble commands, you won't need to remember the machine codes for these
instructions.

Now we know enough to move on to printing binary numbers. In the next
chapter we'll build a short program to take one byte and print it on the screen
as a string of binary digits (zeros and ones).

PRINTING BINARY
NUMBERS

Rotations and the Carry Flag 48
Adding With the Carry Flag 49
Looping 50
Writing a Binary Number 53
The Proceed Command 54
Summary 55

47

4

48 Printing Binary Numbers

In this chapter we'll build a program to write binary number to the screen
as strings of zeros and ones. We have most of the knowledge we need, and our
work here will help solidify ideas we've already covered. We'll also add a few
instructions to those we know, including another version of ADD and ome
instructions to help us repeat parts of our program. Let' begin by learning
something completely new.

Ro nd the Carr a
In Chapter 2, when we first encountered hex arithmetic, we found that add

ing 1 to FFFFh should give lOOOOh, but doesn't. Only the four hex digits to
the right fit into one word; the 1 doesn't fit. We al o found that this 1 is an
overflow and that it is not lo t. Where does it go? It i put into something
called a fiag-in this case, the Carry Flag, or CF. Flag contain one-bit num
bers, so they can hold either a zero or a one. If we need to carry a one into the
fifth hex digit, it goes into the carry flag.

Let's go back to our ADD instruction of Chapter 3 (ADD AX,BX). Put FFFFh
into AX and 1 into BX, then trace through the ADD instruction. At the end of
the second line of Debug's R display, you'll see eight pairs of letters. The last of
these, which can read either NC or CY, is the carry flag. Right now, because
your add instruction resulted in an overflow of 1, you'll see that the carry status
reads CY (Carry). The carry bit is now 1 or, as we'll say, it's set.

Just to confirm that we've stored a seventeenth bit here (it would be the
ninth bit for a byte addition), add one to the zero in AX by resetting IP to lOOh
and tracing through the add instruction again. The carry flag is affected by
each add instruction, and this time there shouldn't be any overflow, so the
carry should be reset. And, indeed, the carry does become zero, as indicated by
the NC, which stands for No Carry, in the R display.

(We'll learn about the other status flags later, but if you're curious, you can
find information about them right now under Debug's R command in your
DOS manual.)

Let's review the task of printing a binary number, to see how the carry
information could be useful. We print only one character at a time, and want
to pick off the bits of our number, one by one, from left to right. For example,
the first character we would want to print in the number 1000 OOOOb would be
the one. If we could move this entire byte left one place, dropping the one into
the carry flag and adding a 0 to the right side, then repeat the process for each
succeeding digit, the carry flag would pick off our binary digits. And we can do

Peter Norton!s A sembly Language Book 49

just this with a new instruction called RCL (Rotate Carry Left).
To see how it works, enter the short program:

39115:0100 DOD3 RCL BL,1

This instruction rotates the byte in BL to the left by one bit (hence the ,1), and
it does so through the carry flag. The instruction is called rotate, because RCL
moves the leftmost bit into the carry flag, while moving the bit currently in
the carry flag into the rightmost bit position (0). In the process, all the other
bits are moved, or rotated, to the left. After enough rotations (17 for a word,
nine for a byte) the bits are moved back into their original positions, and you
get back the original number.

Place B7h in the BX register, then trace through this rotate instruction
several times. Converting your results to binary, you'll see the following:

Carry
0
1
0
1

0

BL register
1 0 1 1 0 1 1 1
0 1 1 0 1 1 1 0
1 1 0 1 1 1 0 1
1 0 1 1 1 0 1 0

1 0 1 1 0 1 1 1

B7h
6Eh
DDh
BAh

B7h

We start here

After 9 rotations

In the first rotation, bit 7 of BL moves into the carry flag, the bit in the carry
flag moves into bit 0 of BL, and all the other bits move left one position. Suc
ceeding moves continue rotating the bits to the left until, after nine rotations,
the original number is back in the BL register.

We're getting closer to building our program to write binary numbers to the
screen, but we still need a few other pieces. Let's see how we can convert the
bit in the carry flag into the character 0 or 1.

Adding With the Carry Flag
The normal ADD instruction, for example, ADD AX,BX, simply adds two

numbers. Another instruction, ADC (Add with Carry) adds three numbers:
the two, as before, plus one bit from the carry flag. If you look in your ASCII
table, you'll discover that 30h is the character 0 and 31h is the character 1. So,
adding the carry flag to 30h gives the character 0 when the carry is clear, and
1 when the carry is set. Thus, ifDL = 0 and the carry flag is set (1), executing:

ADC DL,30

50

CF BL

[2J ~· - 0 1 1 0 1 1 0

Figure 4-1. Th R L BL 1 In t.ruction.

adds DL (0) to 30h ('0') and to lh (the carry) to give 31h ('1 . And, with one
instruction we've converted the carry to a character we can print.

At this point, rather than run through an example of ADC, let's wait for our
complete program . Once we've built our program, we'll execute its instruc
tions one at a time, in a procedure called single-stepping, and through this,
we'll see both how the ADC instruction works and how it fits nicely into our
program. But first we need one more instruction, which we'll use to repeat our
RCL, ADC, and INT 21h (print) instructions eight times: once for each bit in a
byte.

Looping
As mentioned, the RCL instruction isn't limited to rotating bytes; it can also

rotate entire words. We'll use this ability to demonstrate the LOOP instruc
tion. LOOP is something like a FOR-NEXT loop in BASIC, but it's not as
general. As with BASIC's FOR-NEXT loop, however, we need to tell LOOP
how many times to run through a loop. We do this by placing our repeat count
in register ex. Each time through the loop, the 8088 subtracts one from CX,
and, when CX becomes zero, LOOP ends the loop.

Why the CX register? The C in CX stands for Count. We can use this regis
ter as a general-purpose register, but, as you'll see in the next chapter, the ex
register is used with other instructions when we wish to repeat operations.

Here's a simple program that rotates the BX register left eight times, mov
ing BL into BH (but not the reverse, since we rotate through the carry flag):

· Peter Norton's Assembly Language Book 51

396F:0100 BBCSA3 MOV BX,A3CS
396F:0103 8901100 MOV CX,00011
396F:0106 0103 RCL BX,1
396P:01011 E2PC LOOP 0106
396P:010A C020 INT 20

Our loop starts at 106h (RCL BX,1) and ends with the LOOP instruction. The
number following LOOP (106h) is the address of the RCL instruction. When
we run the program, LOOP subtracts one from CX, then jumps to address
106h if CX is not zero. The instruction RCL BX,1 (rotate carry left, one place)
is executed eight times here, because ex is set to eight before the loop.

0106:

•
•
•

Decrement
ex

LOOP 0106

INT 20

Continue
when CX=O

Figure 4-2. The LOOP Instruction.

You may have noticed that, unlike the FOR-NEXT loop in BASIC, the
LOOP instruction is at the end of our loop (where we'd put the NEXT state
ment in BASIC). And the start of the loop, the RCL instruction at 106h, has
no special instruction like FOR has in BASIC. If you know a language like
Pascal, you can see that the LOOP instruction is somewhat akin to the RE
PEAT-UNTIL pair of instructions, where the REPEAT instruction just labels
the start of the block of instructions to loop through.

There are different ways you could execute our small program. If you simply

52 Printing Bin, r • , umb ·r

type G, you won't see any change in the register display because Debug saves
all the registers before it starts carrying out a G command. Then, if it en
counters an INT 20 instruction (as it will in our program), it re tores all the
registers. Try G. You'll see that IP ha been re et to lOOh (where you started),
and that the other registers don't look any different, either.

If you have the patience, you can trace through thi program instead. Tak
ing it one step at a time, you can watch the regi ters change at each step:

-R
AX=OOOO BX=OOOO CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0100 NV UP DI PL NZ NA PO NC
OCDE:0100 BBCSA3 110V BX,A3CS
-T

AX=OOOO BX=A3CS
DS=OCDE ES=OCDE
OCDE:0103 890&00
-T

AX=OOOO BX=A3CS
DS=OCDE ES=OCDE
OCDE:0106 D1D3
-T

CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
SS=OCDE CS=OCDE IP=0103 NV UP DI PL NZ NA PO NC

110V CX,000&

CX=OOO& DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
SS=OCDE CS=OCDE IP=0106 NV UP DI PL NZ NA PO NC

RCL BX,1

AX=OOOO BX=~7&A CX=OOO& DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=010& OV UP DI PL NZ NA PO CY
OCDE:010& E2FC LOOP 0106
-T
AX=OOOO BX=~7&A CX=0007 DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0106 OV UP DI PL NZ NA PO CY
OCDE:0106 D1D3

-T

AX=OOOO BX=C551
DS=OCDE ES=OCDE
OCDE:010& E2FC
-T

RCL BX,1

CX=0001 DX =OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
SS =OCDE CS=OCDE IP=010& NV UP DI PL NZ NA PO CY

LOOP 0106

AX=OOOO BX=C551 CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=OOOO
DS=OCDE ES=OCDE SS=OCDE CS=DCDE IP=010A NV UP DI PL NZ NA PO CY
OCDE:0 10A CD20 INT 20

Alternatively, you can type G lOA to execute the program up to, but not in
cluding, the INT 20 instruction at lOAh; then the registers will show the re
sult of the program.

Peter Norton's Assembly Language Book 53

If you try this, you'll see CX = 0 and either BX = C551 or BX = C5Dl,
depending on the value of the carry flag before you ran the program. The C5
our program's MOV instruction put into BL at the start is now in the BH
register, but BL doesn't contain A3, because we rotated BX through the carry.
Later, we'll see other ways of rotating without going through the carry. Let's
get back to our goal of printing a number in binary notation.

Writi a Binary Number
We've seen how to strip off binary digits one at a time, and convert them to

ASCII characters. If we add an INT 21h instruction to print our digits, our
program will be done. Here's the program; the first instruction sets AH to 02
for the INT 21h function call (recall, 02 tells DOS to print the character in the
DL register):

3985:0100 8402 MOV AH,02
3985:0102 890800 MOV CX,0008
3985:0105 8200 MOV DL,00
3985:0107 0003 RCL 8L,1
3985:0109 800230 ADC DL,30
3985:010C CD21 INT 21
3985:010E E2F5 LOOP 0105
3985:0110 CD20 INT 20

We've seen how all the pieces work, and put them together now. Use rotate BL
(with the instruction RCL BL,1) to pick off the bits of a number, pick a
number you want printed in binary, load it into the BL register, then run this
program with a G command. After the INT 20h instruction, the G command
restores the registers to the values they had before, so BL still contains the
number you see printed in binary.

The ADC DL,30 instruction in our program converts the carry flag to a zero
or a one character. The instruction MOV DL,O sets DL to zero first, then the
ADC instruction adds 30h to DL, and then finally adds the carry. Since 30h is
the ASCII code for a 0, the result of ADC DL,30 is the code for 0 when the
carry is clear (NC) or 1 if the carry is set (CY).

If you want to see what happens when you run this program, trace through
it. Keep in mind that you'll need to be a bit careful in single-stepping through
it with the T command. It contains an INT 21h instruction and, as you saw
when we first encountered INT 21h, DOS does a great deal of work for that
one instruction. That's why you can't use Ton the INT 21.

54 rinting Binar ' umb r

You can, however, trace through all the other instructions in this pro
gram except the final INT 20, which won't concern you until the very end.
During your tracing, each time you loop through and reach the INT 21h
instruction, type G lOE. Your G command, followed by an address, will tell
Debug to continue running the program, but to stop when IP becomes the
address (lOE) you entered. That is, Debug will execute the INT 21h instruc
tion without your tracing through it, but stop before executing the LOOP
instruction at lOE, so you can return to tracing through the program. (The
number you type after G is known as a breakpoint in the DOS manual;
breakpoints are very useful when you're trying to understand the inner
workings of programs.)

Finally, terminate the program when you reach the INT 20h instruction by
typing the G command by itself.

T , e Proceed Com an
Whether or not you tried out the instructions to trace through our program,

you've seen that an instruction like G lOE allows us to trace over an INT
instruction that starts at, say, lOCh. But that means each time we want to
trace over an INT instruction, we need to find the address of the instruction
immediately following the INT instruction.

As it turns out, there is a Debug command that makes tracing through INT
instructions much simpler. The P (for Proceed) command does all the work for
us. To see, trace through the program, but this time, when you reach the INT
21h instruction, type P, rather than G lOE, as described before.

We'll make heavy use of the P command in the rest of this book, because it's
a very nice way to trace over commands like INT, which call on large pro
grams, such as the routines inside DOS. Before going on, though, we should
mention one thing about the P command-it wasn't documented in the DOS
manuals for versions of DOS before 3.00. This lack of documentation may
have been an oversight or, more likely, because Microsoft didn't have time to
test the P command completely before delivering version 2.00 of DOS. What
ever the reason, if you have a version of DOS before 3.00, you should be aware
that the P command may not work all the time-although we've never had
any problems using it.

That's about all we'll do for printing binary numbers as strings of zeros and
ones, but here's a simple exercise for you to practice on: See if you can modify
this program to print a bat the end of our binary number (Hint: The ASCII
code for b is 62h).

Peter Norton's As crnbly Language Book 55

Sum ary

In this chapter, we had a chance to catch our breath a bit after our hard
work on new concepts in Chapters 1 through 3. So where i1ave we been, and
what have we seen?

We had our first encounter with flags, and had a look at the carry flag,
which was of special interest here, because it made our job of printing a binary
number quite simple. It did so as soon as we learned about the rotate instruc
tion RCL, which rotates a byte or word to the left, one bit at a time.

Once we learned about the carry flag and rotating bytes and words, we
tucked a new version of the add instruction, ADC, under our belts and were
almost ready to build our program to print a number in binary notation.

This is where the LOOP instruction entered the scene. By loading the CX
register with a loop count, we could keep the 8088 executing a loop of instruc
tions a number of times. We set CX to 8, to execute a loop eight times.

That's all we needed to write our program. We'll use these tools again in the
following chapters. In the next chapter we'll print a binary number in hexa
decimal notation, just as Debug does, so by the time we finish Chapter 5, we'll
have a better idea of how Debug translates numbers from binary to hex. Then,
we'll move on to the other end of Debug: reading the numbers typed in hex
and converting them to the 8088's binary notation.

PRINTING IN HEX

Compare and Status Bits 58
Printing a Single Hex Digit 61
Another Rotate Instruction 64
Logic and AND 65
Putting It All Together 67
Summary 67

57

5

58 rinting in He.

Our program in Chapter 4 was fairly straightforward. We were lucky, be
cause the carry flag made it easy to print a binary number as a string of 0 and
1 characters. Now we'll move on to printing numbers in hex notation. Here,
our work will be a bit less direct, and we'll begin to repeat ourselves in our
progr!ims, writing the same sequence of instructions more than once. But that
type of repetition won't last forever: In Chapter 7, we'll learn about proce
dures, or subroutines, that eliminate the need to write more than one copy of a
group of instructions. First, let's learn some more useful instructions and see
how to print numbers in hex.

In the last chapter, we learned something about status flags and examined
the carry flag, which is represented as either CY or NC in Debug's R display.
The other flags, which are equally useful , keep track of the status for the last
arithmetic operation. There are eight flags altogether, and we'll learn about
them as they are needed.

Recall that CY means the carry flag is 1, or set, whereas NC means the
carry flag is 0. In all flags 1 means true and 0 means false . For example, if you
did a SUB instruction with a result of 0, the flag known as the Zero Flag
would be set to 1-true-and you would see it in the R display as ZR (Zero).
Otherwise, the zero flag would be reset to 0-NZ (Not Zero).

Let's look at an example that tests the zero flag. We'll use the SUB instruc
tion to subtract two numbers. If the two numbers are equal, the result will be
zero, and the zero flag will appear as ZR on your display. Enter the following
subtract instruction:

396F: 0100 2cma SOB AX,BX

Now, trace through the instruction with a few different numbers, watching for
ZR or NZ to appear in the zero flag. If you place the same number (F5h in the
following example) into both the AX and BX registers, you'll see the zero flag
set after one subtract instruction, and cleared after another:

'

Peter Norton's Assembly Language Book 59

-R
AX=OOPS BX=OOPS CX=OOOO DX=OOOO SP=PFEE BP=DDDD SI=OOOO DI=DDDD
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0100 NV UP DI PL NZ NA PO NC
DCDE:D100 29D8
-T

SUB AX,BX

AX=DOOO BX=DOFS CX=DDDD DX=DDOD SP=FFEE BP=OOOO SI=DDDD DI=DDOD
DS=OCDE ES=DCDE SS=OCDE CS=OCDE IP=0102 NV UP DI PL ZR NA PE NC
OCDE:0102 3P AAS
-R IP
IP 0102
:100
-R
AX=OOOO BX=OOPS CX=OOOO DX=OOOO SP=FFEE BP=DDDD SI=DDDO DI=DDDD
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0100 NV UP DI PL ZR NA PE NC
DCDE:0100 29D8 SUB AX,BX
-T

AX=FFOB BX=OOFS CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=DDDO DI=DDDD
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0102 NV UP DI NG NZ AC PO CY
OCDE:0102 3F AAS

If we subtract one from zero, the result is FFFFh, which, as we saw in Chap
ter 1, is -1 in two's-complement form. Can we tell from the R display whether
a number is positive or negative? Yes, another flag, called the Sign Flag,
changes between NG (Negative) and PL (Plus), and is set to 1 when a number
is a negative two's-complement number.

And another new flag we'll be interested in is the Overflow Flag, which
changes between OV (Overfiow) when the flag is 1 and NV (No Overfiow)
when the flag is 0. The overflow flag is set if the sign bit changes when it
shouldn't. For example, if we add two positive numbers, such as 7000h and
6000h, we get a negative number, DOOOh, or -12288. This is an error because
the result overflows the word. The result should be positive, but isn't, so the
8088 sets the overflow flag. (Remember, if we were dealing with unsigned
numbers, this wouldn't be an error, in which case we would ignore the over
flow flag.)

Try several different numbers to see if you can set and reset each of these
flags, trying them out until you're comfortable with them. For the overflow,
subtract a large negative number from a large positive number- for example,
7000h - 8000h, since 8000h is a negative number equal to - 32768 in two's
complement form.

Now we're ready to look at a set of instructions called the conditional jump
instructions. They allow us to check status flags more conveniently than

60 Printing in H

we've been able to so far . The instruction JZ (Jump if Zero) jumps to a new
address if the last arithmetic result was zero. Thu , if we follow a SUB in
struction with, say, JZ 15A, a result of zero for the subtraction would cause
the 8088 to jump to, and start executing, statements at address 15Ah, rather
than at the next instruction.

The JZ instruction tests the zero flag, and, if it's set (ZR), does a jump just
like a jump with the BASIC statement IF A = 0 THEN 100. The opposite of
JZ is JNZ (Jump if Not Zero). Let's look at a simple example that u es JNZ
and subtracts one from a number until the result is zero:

3%F : 0100 2CD1
396F:0102 7SFC
3%F:01Dt: CD20

SUB
JNZ
INT

AL,01
0100
20

Put a number like three in AL, so you'll go through the loop a few times,
then trace through this program, one instruction at a time, to see how
conditional branches work. We put the INT 20h instruction at the end so
typing G by accident won't drop off the end of our program: It's a good
defensive practice.

You may have noticed that using SUB to compare two numbers, as we just
did, has the potentially undesirable side effect of changing the first number.
Another instruction, CMP (Compare) allows us to do the subtraction without
storing the result anywhere and without changing the first number. The re
sult is used only to set the flags, so we can use one of the many conditional
jump instructions after a compare. To see what happens, set both AX and BX
to the same number, F5h, and trace through this instruction:

-A 100
OCDE:0100 CMP AX,BX
OCDE:0102
- T

AX=DOFS BX =OOFS CX=OOOO DX=OOOO SP=FFEE BP=OOOO SI=OOOO DI=DOOO
DS=OCDE ES=OCDE SS=OCDE CS=OCDE IP=0102 NV OP DI PL ZR NA PE NC
OCDE:0102 3F AAS

The zero flag is now set (ZR), but F5h remains in both registers.
Let's use CMP to print a single hex digit. We'll create a set of instructions

that use flags to alter the flow of our program, as LOOP did in the last chapter,
in a manner similar to BASIC's IF-THEN statement. This new set of instruc
tions will use the flags to test for such conditions as less than, greater than, and

Peter Norton's Assembly Language Book 61

so on. We won't have to worry about which flags are set when the first number
is less than the second; the instructions know which flags to look at.

Prin ing a Single Hex Digit
Let's start by putting a small number (between 0 and Fh) into the BL regis

ter. Since any number between 0 and Fh is equivalent to one hex digit, we can
convert our choice to a single ASCII character and then print it. Let's look at
the steps we need to take to do the conversion.

The ASCII characters 0 through 9 have the values 30h through 39h; the
characters A through F, however, have the values 41h through 46h. Herein
lies a problem: These two groups of ASCII characters are separated by seven
characters. As a result, the conversion to ASCII will be different for the two
groups of numbers (0 through 9 and Ah through Fh), so we must handle each
group differently. A BASIC program to do this two-part conversion looks like
this:

100 IF BL < &HOA
THEN BL = BL + &H30
ELSE BL = BL + &H37

(Notice that we wrote OAh for the number A, rather than AH, so we wouldn't
confuse the number Ah with the register AH. We'll often place a zero before
hex numbers in situations like this, that could be confusing. In fact, since it
never hurts to place a zero before a hex number, it's a good idea to place a zero
before all hex numbers.)

Our BASIC conversion program is fairly simple. Unfortunately, the 8088's
machine language doesn't include an ELSE statement; it's far more primitive
than BASIC is, so we'll need to be somewhat clever. Here's another BASIC
program, this time one that mimics the method we'll use for our machine
language program:

100 BL = BL + &H30
110 IF BL >= &H3A

THEN BL = BL + &H7

You can convince yourself that this program works by trying it with some
choice examples. The numbers 0, 9, Ah, and Fh are particularly good because

62 Printing in H ·

I
I

Character ASCII Code (Hex)

I 2F
0 30
1 31
2 32
3 33
4 34
5 35
6 36
7 37
8 38
9 39

I . 3A .
. 38 l

< 3C
- 30
> 3E
? 3F
@ 40
A 41
B 42
c 43
D 44
E 45
F 46
G 47

Figure 5-1. Partial ASCII Table Showing the Characters Used by Hex
Digit .

Peter Norton's Assembly Language Book 63

these four numbers cover all the boundary conditions- areas where we often
run into problems.

Here, 0 and Fh are, respectively, the smallest and largest single-digit hex
numbers, so by using 0 and Fh, we check the bottom and top of our range. The
numbers 9 and OAh, although next to each other, require two different conver
sion schemes in our program. By using 9 and OAh, we confirm that we've cho
sen the correct place to switch between these two conversion schemes.

The machine-language version of this program contains a few more steps;
but it's essentially the same as the BASIC version. It uses the CMP instruc
tion, as well as a conditional jump instruction called JL (Jump if Less Than).
Here's the program to take a single-digit hex number in the BL register and
print it in hex:

3q135:0100 BL;02 MOV AH,02
3q135:0102 8/3D A MOV DL,BL
39135:010.!; 80C2 30 ADD DL,30
39135:0107 80F A3A CMP DL,3A
3ct/35:010A 7C03 J L 010F
3ct/35:01DC 80C207 ADD DL,07
3ci/35:010F CD 21 INT 21
3'1135:0111 CD20 INT 20

The CMP instruction, as we saw before, subtracts two numbers (DL - 3Ah) to
set the flags , but it doesn't change DL. So if DL is less than 3Ah, the JL lOF
instruction skips to the INT 21h instruction at lOFh. Place a single-digit hex
number in BL and trace through this example to get a better feeling for CMP
and our algorithm to convert hex to ASCII. Remember to use either the G
command with a breakpoint or the P command when you run the INT
instructions.

0107 CMP DL,3A

010A JL 010F

010C ADD DL,07 Jump if
DL< 3Ah

010F INT 21
Figure 5-2. The JL Instruction.

64 Printing in He ·

Another Rotate In tr c ion
Our program works for any single-digit hex number, but if we wish to print

a two-digit hex number, we need a few more step . We need to isolate each
digit (four bits, which are often called a nibble) of thi two-digit hex number.
In this section, we'll see that we can easily isolate the first, or higher, four
bits, and in the next ection we'll encounter a concept known a a logical
operation, which we'll use to isolate the lower four bit -the second of our two
hex digits.

To begin, recall that the RCL in truction rotate a byte or a word to the left,
through the carry flag. In the last chapter we u ed the instruction RCL BL,1,
in which the one told the 8088 to rotate BL by one bit. We can rotate by more
than one bit if we want but we can't imply write the in truction RCL BL,2.
(Note: Although RCL BL,2 isn't a legal 8088 in truction, it work just fine
with the 80286 proces or found in IBM ATs. But ince the older IBM PCs are
more common than ATs, it's best to write your programs for the lowest com
mon denominator - the older 088.) For rotation by more than one bit, we
must place a rotate count in the CL regi ter.

The CL register is used here in much the same way as the CX register is
used by the LOOP instruction to determine the number of times to repeat a
loop. Use CL for the number of times to rotate a byte or word, rather than the
ex register, because it makes no sense to rotate more than 16 times; thus the
eight-bit CL register is more than large enough to hold our maximum shift
count.

How does all this tie in with printing a two-digit hex number? Our plan now
is to rotate the byte in DL four bits to the right. To do so, we'll use a slightly
different rotate instruction called SHR (Shift Right). Using SHR, we will be
able to move the upper four bits of our number to the rightmost nibble (four
bits).

DL

0 0 1 1 0 1 1 0

Figure 5-3. The SHR DL,1 Instruction.

We also want the upper four bits of DL set to zero, so that the entire register
becomes equal to the byte we are shifting into the right nibble. If we were to

Peter Norton' A embly Languag Bo Ir 65

enter SHR DL,1, our instruction would move the byte in DL one bit to the
right, and at the same time, it would move bit 0 into the carry flag, while
shifting a zero into bit 7 (the highest, or leftmost, bit in DL). If we do that
three more times, we'll have just what we want: The upper four bits will end
up shifted down into the lower four bits, while the upper four bits will all have
had zeroes shifted into them. We can do all that shifting in one instruction,
using the CL register as the shift count. By setting CL to four before the in
struction SHR DL,CL, we will ensure that DL becomes equal to the upper hex
digit.

Let's see how this works. Place 4 into CL and 5Dh into DL, then enter and
trace through the following SHR instruction:

3985:0100 D2EA SHR DL,CL

DL should now be 05h, which is the first digit in the number 5Dh, and we can
now print this digit with a program like the one we used earlier. Thus, putting
together the pieces we have so far, we can build the following program to take
a number in the BL register and print the first hex digit:

3985:0100 BL;02 MOV AH,02
3'185 : 0102 88DA MOV DL,BL
3985 : 010L; B10 L; MOV CL,OL;
3985:0106 D2E A SHR DL,CL
3985 :0108 80C230 ADD DL,30
3985:0106 80FA3A CMP DL,3A
3985: 010E 7C03 J L 0113
3985:0110 80C 207 ADD DL,07
3985:0113 CD21 INT 21
3985:0115 CD2 0 INT 20

~· nd AND
Now that we can print the first of the two digits in a hex number, let's see

how we can isolate and print the second digit. Here, we'll learn how to clear
the upper four bits of our original (not shifted) number to zero, leaving DL
equal to the lower four bits. It's simple: Set the upper four bits to zero with an
instruction called AND. The AND instruction is one of the logical instruc
tions-those that have their roots in formal logic. Let's see how AND works.

In formal logic, we can say, "A is true, if B and C are both true." But if
either B or C is false , then A must also be false . If we take this statement,
substitute one for true and zero for false, then look at the various combina-

66 Prmtmg m H

tions of A, B, and C, we can create what is known as a truth table. Here's the
truth table for ANDing two bits together:

Down the left and aero s the top are the value for the two bit . The result for
the AND are in the table, so you see that 0 AND 1 give 0.

The AND instruction works on byte and word by ANDing together the
bits of each byte or word that are in the same po ition. For example, the state
ment AND BL CL succe ively AND bit 0 of BL and CL, bit 1, bits 2, and so
on, and places the result in BL. Let' make this clearer with an example in
binary:

1 0 1 1 0 1 0 1
AND 0 1 1 1 0 1 1 0

0 0 1 1 0 1 0 0

Furthermore, by ANDing OFh to any number, we can set the upper four bits to
zero:

0 1 1 1 1 0 1 1
AND 0 0 0 0 1 1 1 1

0 0 0 0 1 0 1 1

Let's put this logic into a short program that takes the number in BL, iso
lates the lower hex digit by ANDing OFh to the upper four bits, and then
prints the result as a character. We saw most of the details of this program
when we printed the upper hex digit; the only new detail is the AND
instruction.

3985:0100 Bt;02 HOV AH,02
3985: 0102 MDA MOV DL,BL
3965:010t; 60E20F AND DL,Of
3965:0107 BOC230 ADD DL,30
3965:010A BOFA3A Ci'IP DL,3A
3985:0100 7C03 JL 0112
3985:010F 60C207 ADD DL,07
3985:0112 CD21 INT 21
3965:011< CD20 INT 20

Try this with some two-digit hex numbers in BL before we move on to put

Peter Norton's Assembly Language Book 67

the pieces together to print both digits. You should see the rightmost hex digit
of your number in BL on the screen.

ing It ll Tog ther
There really isn't much to change when we put all the pieces together. We

need only change the address of the second JL instruction we used to print the
second hex digit. Here is the complete program:

3'185:0100 Bt;02 MOV AH,02
3'185:0102 88DA MOV DL,BL
3'185:010t; B10t; MOV CL,Ot;
3'185:0106 D2EA SHR DL,CL
3'185:0108 80C230 ADD DL,30
3'185:0108 80FA3A CMP DL,3A
3'185:010E 7C03 JL 0113
3'185:0110 80C207 ADD DL,07
3'185:0113 CD21 INT 21
3C!85:0115 88DA MOV DL,BL
3q85:0117 80E20F AND DL,OF
3q85:011A 8oc230 ADD DL,30
3q85:011D 80FA3A CMP DL,3A
3'185:0120 7C03 JL 0125
3C!85:0122 80C207 ADD DL,07
3q85:0125 CD21 INT 21
3q85:0127 cD20 INT 20

Once you've entered this program, you'll have to type U 100, followed by U,
to see the entire unassembled listing. Note that we've repeated one set of five
instructions: the instructions at 108h through 113h, and 1 lAh through 125h.
In Chapter 7 we'll see how to write this sequence of instructions just once by
using an instruction similar to BASIC's GOSUB statement.

S ary
In this chapter, we learned more about how Debug translates numbers from

the 8088's binary format to a hex format we can read. What did we add to our
growing store of knowledge?

First, we learned about some of the two-letter flags we see on the right side
of the register (R) display. These status bits give us a great deal of information
about our last arithmetic operation. By looking at the zero flag, for example,

68 rintin in H .

we could tell whether the result of the last operation was zero. We also found
we could compare two numbers with a CMP instruction.

Next, we learned how to print a single-digit hex number. And, armed with
this information, we went on to learn about the SHR instruction, which ena
bled us to move the upper digit of a two-digit hex number into the lower four
bits of BL. That done, we could print the digit, just as we've done before.

Finally, we found that the AND instruction allowed us to isolate the lower
hex digit from the upper. And, putting all these pieces together, we wrote a
program to print a two-digit hex number.

We could have continued on to print a four-digit hex number, but at this
point, we'd find ourselves repeating instructions. Before we try to print a four
digit hex number, we'll learn about procedures in Chapter 7. Then, we'll know
enough to write a procedure to do the job. By then we'll also be ready to learn
about the assembler-a program that will do much of our work for us. But
now, let's move on to reading hex numbers.

READING CHARACTERS

Reading One Character 70
Reading a Single .. Digit Hex Number 71
Reading a Two .. Digit Hex Number 72
Summary 73

69

6

70

Now that we know how to print a byte in hex notation we're going to re
verse the process by reading two characters-hex digits-· from the keyboard
and converting them into a single byte.

The DOS INT 21h function call we've been using has an input function,
number 1, that read a character from the keyboard. When we learned about
function calls in Chapter 4 we saw that the function number must be placed
in the AH register before an INT 2lh call. Let's try function 1 for INT 21h.
Enter INT 2lh at location OlOOh:

3%F:0100 CD21 INT 21

Then, place Olh into AH and type either G 102 or P to run this one instruc
tion. Nothing happens? It doesn't seem to-all you'll see is the blinking cur
sor. But actually, DOS has paused and is waiting until you press a key (don't
do so yet). Once you press a key, DOS will place the ASCII code for that char
acter into the AL register. We'll use this instruction later, to read the charac
ters of a hex number, but right now, let's see what happens when we press a
key like Fl.

Try pressing the Fl key. DOS will return a 0 in AL, and you'll also see a
semicolon (;) appear just after Debug's hyphen prompt.

This is what happened. Fl is one of a set of special keys with extended codes,
which DOS treats differently from the keys representing normal ASCII char
acters. (You'll find a table listing these extended codes in Appendix E, as well
as at the end of your BASIC manual.) For each of these special keys, DOS
sends two characters, one right after the other. The first character returned is
always zero, indicating that the next character is the scan code for a special
key.

To read both characters, we'd need to execute INT 2lh twice. But in our
example, we read only the first character, the zero, and left the scan code in
DOS. When Debug finished with the G 102 (or P) command, it began to read

- Peter Norton's Assembly Language Book 71

characters, and the first character it read was the scan code left behind from
the Fl key: namely, 59, which is the ASCII code for a semicolon.

Later, when we develop our Dskpatch program, we'll begin to use these ex
tended codes to bring the cursor and function keys to life. Until then, we'll just
work with the normal ASCII characters.

·n s·ngle-Digit Hex Number
Let's reverse the conversion used in Chapter 5, when we transformed a sin-• gle-digit hex number to the ASCII code for one of the characters in 0 through

9 or A through F. To convert one character, such as C or D, from a hex charac
ter to a byte, we must subtract either 30h (for 0 through 9) or 37h (for A
through F). Here is a simple program that will read one ASCII character and
convert it to a byte:

3'185:0100 B401 MOV AH,01
3':i85: 0102 CD21 INT 21
3'185:0104 2C30 SOB AL,30
3'185:0106 3CO'l CMP AL,O'l
3'185:0108 7E02 JLE 010C
3'l85:010A 2C07 SOB AL,07
3'l85:010C CD20 INT 20

Most of these instructions should be familiar now, but there is one new one,
JLE (Jump if Less than or Equal to). In our program, this instruction jumps if
AL is less than or equal to 9h.

To see the conversion from hex character to ASCII, you need to see the AL
register just before the INT 20h is executed. Since Debug restores the regis
ters when it executes the INT 20h, you'll need to set a breakpoint, as you did
in Chapter 4. Here, type G lOC, and you'll see that AL will contain the hex
number converted from a character.

Try typing some characters, such as k or a lowercase d, that are not hex
digits, to see what happens. You'll notice that this program works correctly
only when the input is one of the digits 0 through 9 or the uppercase letters A
through F. We'll correct this minor failing in the next chapter, when we learn
about subroutines, or procedures. Until then, we'll be temporarily sloppy and
ignore error conditions: We'll have to type correct characters for our program
to work properly.

72 R d'ng h. r

Reading two hex digit i n't much more complicated than reading one, but
it does require many more instructions. We'll begin by reading the first digit,
then we'll place it hex value in the DL register and multiply it by 16. To
perform this multiplication we'll shift the DL regi ter left four bits, placing a
hex zero (four zero bits) to the right of the digit we ju t read. The instruction
SHL DL,CL, with CL et to four doe the trick by in erting zero at the right.
In fact, the SHL (Shift Left) in truction i known a an arithmetic shift, be
cause it has the same affect a an arithmetic multiplication by two, four
eight, and so on, depending on the number uch a one, two, or three) in CL.

CF DL

QJ~· - 0 1 1 0 1 1 0 0

u ,1 n tru t'on.

Finally, with the first digit shifted over, we'll add the econd hex digit to the
number in DL (the first digit * 16). You can ee and work through all these
details in this program:

3985:0100 8t;01 MOV AH,01
3985:0102 CD21 INT 21
3985:010.'; BllC2 MOV DL,AL
3985:0106 80EA30 SUB DL,30
3985:0109 80FA09 Cf'!P DL,09
3985:010C 7E03 JLE 0111
3985:01.0E 80EA07 SUB DL,07
3985:0111 B10t; l'IOV CL,Ot;
3C\85:0113 D2E2 SHL DL,CL
391\S: 0115 CD21 INT 21
3C!llS:0117 2C30 SUB AL,30
39115:0119 3COCJ CMP l\L / 09
3CJllS:011B 7E02 JLE 011F
3C\8S: 0110 2C07 SUB AL,07
3985:011F OOC2 ADD DL,AL
3985:0121 CD20 INT 20

Now that we've got a working program, it's a good idea to check the bound
ary conditions to confirm that it's working properly. For these boundary con
ditions, use the numbers 00, 09, OA, OF, 90, AO, FO, and some other number,

· Peter Norton' A'!sembly Language Boo~ 73

such as 3C. Use a breakpoint to run the program without executing the INT
20h instruction. (Make sure you use uppercase lett13rs for your hex input.)

We've finally had a chance to practice what we learned in previous chapters
without being flooded with new information. Using a new INT 21 function
(number 1) to read characters, we developed a program to read a two-digit hex
number. Along the way, we emphasized the need to test programs with all the
boundary conditions.

Now we're ready to wrap up Part I by learning about procedures in the
8088.

PROCEDURE COUSI S
TO SUBROUTINES

Procedures 76
The Stack and Return Addresses 78
PUSHing and POPping 79
Reading Hex Numbers with More Ease 81
Summary 84

75

7

76 ubr uun

I n the next chapter, we'll meet MASM the macro assembler, and begin to
use assembly, or assembler, language. But before we leave Debug, we'll look at
one last set of example , and learn about ubroutine and a special place to
store numbers called the stack.

p r
A procedure is a Ii t of in truction that we can execute from many different

places in a program, rather than having to repeat the ame li t of instructions
at each place they're needed. In BASIC uch li t are called subroutines, but
we'll call them procedures for reason that will become clear later.

We move to and from procedures ju t a we do in BASIC. We call a proce
dure with one instruction, CALL which i ju t like BA IC's GOSUB. And we
return from the procedure with a RET in truction, which i just like BASIC's
RETURN.

Here's a simple BASIC program we'll soon rewrite in machine language.
This program calls a subroutine ten time , each time printing one character,
starting with A and ending with J:

10 A = &B t;1
20 FOR I = 1 TO 10
30 GOSOB 1000
t;O NEXT I
SO END
1000 PRINT CBR$(A);
1100 A = A + 1
1200 RETURN

1 ASCII for 1 A1

The subroutine, following a common practice in BASIC programs, begins at
line 1000 to leave room for us to add more instructions to the main program
without affecting our subroutine. We'll do the same with our machine-lan
guage procedure by putting it at 200h, far away from our main program at
lOOh. We'll also replace GOSUB 1000 with the instruction CALL 200h, which
calls the procedure at memory location 200h. The CALL sets IP to 200h, and
the 8088 starts executing the instructions at 200h.

The FOR-NEXT loop of the BASIC program, as we saw in Chapter 4, can be

Peter Norton'. Assembly Language B ok 77

written as a LOOP instruction. The other pieces of the main program should
be familiar.

3CH\5: 0100 B2t;1
3ga s : o102 agoAoo
3gas:o1os EBFBO O
3gas :0108 E2FB
3gas: 010A CD20

MOV
MOV
CALL
LOOP
INT

DL,t;1
CX,OOOA
0200
0105
20

The first instruction places 41h (ASCII for A) into the DL register, because
the INT 21h instruction prints the character given by the ASCII code in DL.
The INT 21h instruction itself is located some distance away, in the procedure
at location 200h. Here's the procedure you should enter at 200h:

3gas:o200 Bt;02
3ges: o202 cn21
3ges:020t; PEC2
3ges:o206 c3

MOV
INT
INC
RET

AH,02
21
DL

There are two new and two old instructions here. Recall that the 02h in AH
tells DOS to print the character in DL when we execute the INT 21h instruc
tion. INC DL, the first of our two new instructions, increments the DL regis
ter. That is, it adds one to DL. The other new instruction, RET, returns to the
first (LOOP) instruction following the CALL in our main program.

Type G to see the output of this program, then single-step through it to see
how it works (remember to use either a breakpoint or the P command to run
the INT 21 instruction).

0105: CALL
r _. 0108: LOOP

--.......,
--

0200 '·,
0105 ~~

-~~

-----~---........
--...... ,~_

0200:MOV
0202: INT
0204 : INC
0206:RET

)

Figure 7-1. The CALL and RET Instructions.

AH,02
21
DL

78 >r cdur -C u in t ubr utin ·

The Stack and etur A re
The CALL instruction in our program need to save the return address

somewhere so the 8088 will know where to resume executing instructions
when it sees the RET in truction. For the torage place itself, we have a por
tion of memory known a the stack. And for tracking whats on the tack,
there are two registers that we can ee on the R display: the SP (Stack Pointer)
register which point to the top of the stack , and the SS (tack Segment),
which holds the segment number.

In operation, a stack for the 8088 i ju t like a stack of trays in a cafeteria,
where placing a tray on the top cover the tray underneath. The la t tray on
the stack i the fir t to come off, o another name for a tack is LIFO, for Last
In, First Out. This order LIFO i preci ely what we need for retrieving return
addresses after we make nested CALL like thi one:

39bF:0100 E8FDOO

3qbf:02DO E6FDOO
396F:0203 C3

39bF:0300 E8FDOO
396F:0303 C3

396F:Ot;OO C3

CALL

CALL
RET

CALL
RET

RET

0200

0300

Ot;OO

Here, the instruction at lOOh calls one at 200h, which calls one at 300h,
which calls one at 400h, where we finally see a return CRET) instruction. This
RET returns to the instruction following the previous CALL instruction, at
300h, so the 8088 resumes executing instructions at 303h. But there it en
counters a RET instruction at 303h, which pulls the next oldest address (203h)
off the stack. So the 8088 resumes executing instructions at 203h, and so on.
Each RET pops the topmost return address off the stack, so each RET follows
the same path backward as the CALLs did forward.

Try entering a program like the preceding one. Use multiple calls, and trace
through the program to see how the calls and returns work. Although the
process may not seem very interesting right now, there are other uses for this
stack, and a good understanding of how it works will come in handy. (In a
later chapter, we'll go looking for the stack in memory.)

Peter Nort n'. A cmbl Lmguag ·Bo k 79

Address Stack

0098:

0100: 102031

0102: I 0103 I
0104: I • I

I • I

I • I
Figure 7-2. The Stack Just Before Executing the CALL 400 Instruction.

us a OP ing
The stack is a useful place to store words of data for a while, provided we're

careful to restore the stack before a RET instruction. We've seen that a CALL
instruction pushes the return address (one word) onto the top of the stack,
while a RET instruction pops this word off the top of the stack, loads it into
the IP register, and exposes the word that was lying underneath it. We can do
much the same thing with the instructions PUSH and POP, which allow us to
push and pop words. When might we want to do this?

80 r u in l uhr utm

Address Stack

SP:98 0098: 10303 J

0100: I 0203 J

0102: I 0103 J

0104: I • I
I • l
I • I

igur 7-3. Th tack Ju t After E ufng th A L 400 In truction.

It's often convenient to save the values of registers at the beginning of a
procedure and restore them at the end, just before the RET instruction. Then
we're free to use these registers in any way we like within the procedure, as
long as we restore their values at the end.

Programs are built from many levels of procedures, with each level calling
the procedures at the next level down. By saving registers at the beginning of
a procedure and restoring them at the end, we remove unwanted interactions
between procedures at different levels, and this makes our job of program
ming much easier. You'll see more about saving and restoring registers in
Chapter 13, when we talk about modular design. But right now, here's an
example (don't enter it) to use to save and restore CX and DX:

Peter Norton's Assembly Language Book 81

3%F:0200 51 PUSH ex
3%F:0201 52 PUSH DX
39bF:0202 B90800 MOV CX,0008
39bF:0205 E8F800 CALL 0300
3%F: 0208 FEC2 INC DL
39bF:02DA E2F9 LOOP 0205
39bF:020C SA POP DX
39bP:020D 59 POP ex
39bF:020E C3 RET

Notice that the POPs are in reverse order from the PUSHes, because a POP
removes the word placed most recently on the stack, and the old value of DX is
on top of the old ex.

Saving and restoring CX and DX allows us to change these registers in the
procedure that begins at 200h, but without changing the values used by any
procedure that calls this one. And once we've saved CX and DX, we can use
these registers to hold local variables-variables we can use within this proce
dure without affecting the values used by the calling program.

We'll use such local variables to simplify our programming tasks. As long as
we're careful to restore the original values, we won't have to worry about our
procedures changing any of the registers used by the calling program. This
will become clearer in the next example, which is a procedure to read a hex
number. Unlike the program in Chapter 6, our program now will allow only
valid characters such as A, but not K.

Reading Hex Numbers with More Ease
We want to create a procedure that keeps reading characters until it re

ceives one it can convert to a hex number between 0 and Fh. We don't want to
display any invalid characters, so we'll sift our input by using a new INT 21h
function, number 8, that reads a character but doesn't let it pass on to the
screen. That way we can echo (display) characters only if they are valid.

Place 8h into the AH register and run through this instruction, typing an A
just after you type G 102:

3985:0100 CD21 INT 21

The ASCII code for A (4 lh) is now in the AL register, but the A didn't appear
on the screen.

Using this function, our program can read characters without echoing them
until it reads a valid hex digit (O through 9 or A through F), which it will then

82 Pro -cdurc -Cou in co ubr utin ·

echo. Here is the procedure to do thi and to convert the hex character to a hex
number:

3985:0200 52 PUSH DX
3Cl85:0201 8t;08 l'IOV AH,08
3Cl85:0203 CD21 I T 21
3985:0205 3C30 CtlP AL , 30
3Cl8S :0207 72FA JB 0203
3Cl85:020CI 3Ct;b CtlP AL,t;b
3Cl8S:0208 77Fb JA 0203
3CJ85:020D 3C3CJ CHP AL,39
3CJ85:020F 770A JA 0218
3985 :. 0211 8402 av AH , 02
3'1d5:0213 08C2 110V DL , AL
39d5:0215 CD21 I NT 21
39d5 : 0217 2C30 SOB AL , 30
39d5 : 0219 SA POP DX
398S :021A C3 RET
3985:0218 3C41 c p AL,£:1
39d5:0210 72Et; JB 0203
3985 : 021F Bt;02 l'IOV AH, 02
3'105 :0221 68C2 tlOV DL, AL
3965:0223 CD21 I T 21
3905:0225 2C37 SOB AL , 37
3965:0227 SA POP DX
3965:0226 C3 RET

The procedure read a character in AL (with the INT 21h at 203h) and
checks to see if it's valid with the CMPs and conditional jumps. If the charac
ter just read is not a valid character, the conditional jump instructions send
the 8088 back to location 203, where the INT 21h reads another character.
(JA is Jump if Above, and JB is Jump if Below; both treat the two numbers as
unsigned numbers, whereas the JL instruction we used earlier treated both as
signed numbers.)

By line 211h we know that we have a valid digit between 0 and 9, so we
subtract the code for the character 0 and return the result in the AL register,
remembering to pop the DX register, which we saved at the beginning of the
procedure. The process for hex digits A through F is much the same. Notice
that we have two RET instructions in this procedure; we could have had more,
or we could have had just one.

Here is a very simple program to test the procedure:

3965:0100 E6FDOO
3cios:o103 co20

CALL
INT

0200
20

As you've done before, use either the G command, with a breakpoint, or use

Peter Norton's Assembly Language Book 83

the P command. You want to execute the CALL 200h instruction without exe
cuting the INT 20h instruction, so you can see the registers just before the
program terminates and the registers are restored.

You'll see the cursor at the left side of the screen, waiting patiently for a
character. Type k, which isn't a valid character. Nothing should happen. Now,
type any of the uppercase hex characters. You should see the character's hex
value in AL and the character itself echoed on the screen. Test this procedure
with the boundary conditions:'\' (the character before zero), 0, 9, ':'(the char
acter just after 9), and so on.

Now that we have this procedure, the program to read a two-digit hex
number, with error handling, is fairly straightforward:

3gas:o100 EBFDOO CALL 0200
3gas:o103 aac2 MOV DL,AL
3gas:o1os s10,:; MOV CL,OL;
3gas:o107 D2E2 SHL DL,CL
3gas:o1og EaF.::;oo CALL 0200
3gas:o10c ooc2 ADD DL,AL
3gas:o10E s.::;02 MOV AH,02
3gas:o110 cD21 INT 21
3gas:o112 cD20 INT 20

You can run this program from DOS, since it reads in a two-digit hex number
and then displays the ASCII character that corresponds to the number you
typed in.

Aside from the procedure, our main program is much simpler than the ver
sion we wrote in the last chapter, and we haven't duplicated the instructions
to read characters. We did add error handling, though, and even if it did com
plicate our procedure, it also ensures that the program now accepts only valid
input.

Here we can also see the reason for saving the DX register in the procedure.
The main program stores the hex number in DL, so we don't want our proce
dure at 200h to change DL. On the other hand, the procedure at 200h must
use DL itself to echo characters. So, by using the instruction PUSH DX at the
beginning of the procedure, and POP DX at the end, we save ourselves from
problems.

From now on, to avoid complicated interactions between procedures, we'll
be very strict about saving any registers used by a procedure.

84 Pro~cdurc .

S mary
Our programming is becoming more ophi ticated. We've learned about pro

cedures that allow us to reu e the ame set of in truction without rewriting
them each time. We've also di covered the tack and een that a CALL stores
a return address on the top of the stack, while a RET instruction returns to
the address on the top of the tack.

We saw how to use the stack for more than ju t a ving return addresses. We
used the stack to store the value of regi ters (with a PUSH instruction) so we
could use them in a procedure. By re toring the regi ters (with a POP instruc
tion) at the end of each procedure, we avoided unwanted interactions between
procedures. By alway saving and re toring register in procedures that we
write, we can CALL other procedure without worrying about which registers
are used within the other procedure.

And finally armed with thi knowledge we moved on to build a better pro
gram to read hex numbers-thi time, with error checking. The program we
built here is similar to one we'll u e in later chapter , when we begin to de
velop the Dskpatch program.

Now we're ready to move on to Part II, where we'll learn how to use the
assembler. In the next chapter we'll see how to u e the assembler to convert a
program to machine language. We'll also see that there won't be any reason to
leave room between procedures, as we did in this chapter, when we put our
procedure way up at location 200h.

PART II

Assembly Language

WELCOME TO THE
ASSEMBLER

A Program Without Debug 88
Creating Source Files 91
Linking 92
Back in Debug 93
Comments 94
Labels 94
Summary 96

87

8

88 \Vclcom to the s t:mbla

Wen, at long last we're ready to meet the assembler, a DOS program that
will make our programming much simpler. From now on, we'll write mne
monic, human-readable in tructions directly, u ing the a embler to turn our
programs into machine code.

Of necessity, this chapter and the next will be somewhat heavy with details
on the assembler, but learning the e details will be well worth the effort. Once
we know how to u e the assembler, we'll get back on course in learning how to
write assembly language program . Meanwhile, let's jump right in.

ro ram w· out
Up to this point, we've ju t typed DEBUG, and then typed in our program

instructions. Now we're about to leave Debug behind, and to write programs
without it, and we'll have to use either an editor or a word processor to create
text, or human-readable, files containing our assembly language instructions.

We begin by creating a source file-the name for the text version of an as
sembly language program. We'll create a source file now, for the program we
built and named Writestr back in Chapter 3. To refresh your memory, here is
our Debug version:

396F: 0100 8402
396F:0102 8261
396F:0104 CD21
396F:0106 CD20

MOV
MOV
INT
INT

AH,02
DL,2A
21
20

Use your editor to enter the following lines of code into a file named
WRITESTR.ASM (the extension .ASM means this is an assembler source file).
Here, as with Debug, lowercase works just as well as uppercase, but we'll con
tinue to use uppercase letters to avoid confusion between the number 1 (one)
and the lowercase letter I (el):

CODE_SEG SEGMENT
MOV AH I 2h
MOV DL,2Ah
INT 21h
INT 20h

CODE_SEG ENDS
END

. Peter Norton's As embly Language Book 89

This is the same program we created in Chapter 3, but it contains a few nec
essary changes and additions. Ignoring for now the three new lines in our
source file, notice that there is an h after each hex number. This h tells the
assembler that the numbers are in hexadecimal. Unlike Debug, which assumes
all numbers are in hexadecimal, the assembler assumes that all numbers are
decimal. We tell it otherwise by placing an h after any hexadecimal number.

NOTE: Here's a warning before we move on: The assembler can become
confused by numbers, such as ACh, that look like a name or an instruc
tion. To avoid this, always type a zero before a hex number that begins
with a letter. For example, type OCh-not ACh.

Watch what happens when we assemble a program with ACh, rather than
OACh. Here's the program:

CODE_SEG
MOV
INT

CODE_SEG
END

SEGMENT
DL,ACh
2Dh
ENDS

Here's the output:

A> f'IASl'I TEST;
f'licrosoft (R) Macro Assembler Version ~.DD
Copyright (C) Microsoft Corp 1981, 1983, 198~, 1985. All rights reserved.

TEST.ASM(2) : error 9: Symbol not defined AC

A>

51070 Bytes symbol space free

O Warning Errors
1 Severe Errors

Definitely not encouraging. But changing the ACh to OACh will satisfy the
assembler.

Also notice the spacing of the commands in our assembler program. We
used tabs to align everything neatly and make the source text more readable.
Compare the program you entered with this version:

90 el m t th

CODE_SEG SEGMENT
llOV AH,2h
MOY DL,2Ah
INT 21h
INT 20h
CODE_SEG ENDS
END

m I r

A bit of a mes ; the as ernbler doe n t care but we do.

This is a label

I

MOV DL,ACh

This is a number

MOV DL,0ACh

The 0 tells MASM
that this is a number

Figure 8-1. Put a zero before hexadecimal number tarting with a etter,
otherwi e the assembler will treat the number as a name.

Now let's return to the three new lines in our source file. The three new

Peter Norton's Assembly Language Book 91

lines are all pseudo-ops, or pseudo-operations. They're called pseudo-ops be
cause, rather than generate instructions, they just supply Anformation to the
assembler. The END pseudo-op marks the end of the source file, so the assem
bler knows that it's done when it sees an END. Later on, we'll see that END is
useful in other ways, too. But right now, let's put aside any further discussion
of it or the other two pseudo-ops and see how to use the assembler.

Crea ing Source Files
Even though you've entered the lines of WRITESTR.ASM, there's one more

consideration before we move on to actually assemble our program. The as
sembler can use source files that contain standard ASCII characters only. If
you are using a word processor, bear in mind that not all word processors
write disk files using only the standard ASCII characters. WordStar is one
such culprit; Microsoft Word is another. For both these word processors, use
the non-document, or unformatted, mode when you save your files.

Before you try assembling WRITESTR.ASM, make sure it's still ASCII.
From DOS, type:

A>TYPE WRITESTR.ASM

You should see the same text you entered, as you entered it. If you see strange
characters in your program, you may have to use a different editor or word
processor to enter programs. You'll also need a blank line after the END state
ment in your file.

Now, let's begin to assemble Writestr (be sure to type the semicolon).

A>MASM WRITESTR;
The IBM Personal Computer Assembler
Version 1.00 (C) Copyright IBM Corp 1gB1

Warning Severe
Errors Errors
0 0

A>

We're not done yet. At this point, the assembler has produced a file called
WRITESTR.OBJ, which you'll now find on your disk. This is an intermediate
file, called an object file. It contains our machine language program, along

92 \\1 ·I omc H th • A s mbl r

with a lot of bookkeeping information used by another DOS program called
the Linker .

•
10

Right now, we want the linker to take our .OBJ file and create an .EXE
version of it. Copy LINK.EXE from your DOS disk to the di k containing your
source file and the assembler. Then, link WRITESTR.OBJ by typing:

A>LINK WRITESTR;

IBM Personal Computer Linker
Version 1.10 (C)Copyright IBM Corp 1qa2

Warning: Ho STACK segment

There was 1 error detected.

A>

One error? Not really; the linker counts it warning as an error, but in this
case it's really just what we want. (In ome versions of MS-DOS, the Linker
doesn't report this warning as an error.) Even though the linker warns us that
there is no stack segment, we don't need one right now. After we learn how to
add more of the trappings, we'll see why we might want a stack segment.

Now we have our .EXE file, but this still isn't the last step. We have one
more step-to create a .COM version, which is just what we created with
Debug. Again, you'll see later why we need all these steps. For now, let's cre
ate a .COM version of Writestr.

For our final step, we need the program EXE2BIN .EXE from the DOS sup
plemental disk. Exe2bin, as its name implies, converts an .EXE file to a
.COM, or binary (bin) file. There's a difference between .EXE and .COM files,
but we won't see it until much later, so for now let's just create the .COM file.
Type:

A>EXE2BIH WRITESTR WRITESTR.COM

A>

The response didn't tell us very much. To see whether Exe2bin worked, let's
list all the Writestr files we've created so far:

A>DIR WRITESTR.*

Volume in drive A has no label
Directory of A: \

WRITESTR ASM 78 7-25-83
WRITESTR OBJ t;b 7-25-83
WRITESTR EXE bt;O 7-25-83
WRITESTR COM 8 7-25-83

5:0Dp
7:02p
7: Ot;p
7:06p

7 File (s) 23552 bytes free

A>

Peter Norton's Assembly Language Book 93

This is quite a number of files, including WRITESTR.COM. Type writestr to
run the .COM version and verify that your program functions properly (recall
that it should print an asterisk on your screen). The exact sizes DOS reports
for the first three files may vary a bit.

The results may seem a little anticlimactic, since we are seemingly back
where we were in Chapter 3, but we aren't: We've gained a great deal. It will
all become much clearer when we deal with calls again. Notice that we never
once had to worry about where our program was put in memory, as we did
about IP in Debug. The addresses were all taken care of for us.

Very soon you'll come to appreciate this feature of the assembler: It will
make programming much easier. For example, recall that in the last chapter
we wasted space by having our main program at lOOh and the procedure we
called at 200h. We'll see that using the assembler allows us to place the proce
dure immediately after the main program without any gap. But first, let's see
how our program looks to Debug.

Bae in Debug
Let's read our .COM file into Debug and unassemble it to see how Debug

reconstructs our program from the machine code of WRITESTR.COM:

A>DEBUG WRITESTR . COM
-U
3C!7F:0100 Bt;02
3C!7F:0102 8221\
3C!7F:010t; CD21
3C!7F:0106 CD20

MOV
MOV
INT
INT

AH,02
DL,21\
21
20

94 lcom t th cm Ir

Exactly what we had in Chapter 3. Thi is all Debug sees in
WRITESTR.COM. The END and our additional instructions about seg
ments-CODE_SEG SEGME T and CODE_ EG ENDS-didn't make it
through at all. What happened to them?

These in tructions don't appear in the final machine language version of
the program becau e they are p eudo-op and p eudo-ops are for bookkeeping
only. The a sembler takes care of a lot of bookkeeping at the co t of some
extra line . We'll make good u e of p eudo-op to implify our job, and we'll
ee how they affect our program, when we take a clo er look at segments in

Chapter 11 .

mm nt
Since we are no longer operating directly with Debug, we're free to add more

to our program that the as embler ee but won't pa on to the 8088. Perhaps
the most important such additions we can make are comments, which are in
valuable in making a program clear. In assembly language programs, we place
comments after a emicolon which work like a ingle quotation mark (') in
BASIC. The a ernbler ignore anything on the line after a semicolon, so we can
add anything we want. If we add comments to our brief program:

COD E_SEG
MOV
MOY
I NT
I NT

CODE_SEG
EN D

SEGMENT
AH, 2h
DL , 2Ah
21h
20h
ENDS

;Select DOS function 2, charac t er outp ut
; Load the ASCII code for '*' to be printed
;Print it with INT 21h
; And exit to DOS

we see quite an improvement-we can understand this program without hav
ing to think back and remember what each line means.

Labels
To round off this chapter, let's look at another bookkeeping feature of the

assembler that makes programming smoother: labels.
Until now, when we wanted to jump from one part of a program to another

with one of the jump commands, we had to know the specific address we were
jumping to. In everyday programming, inserting new instructions forces us to

. Peter Norton's Assembly Language Book 95

change the addresses in jump instructions. The assembler takes care of this
problem with labels-names we give to the addresses of any instructions or
memory locations. A label takes the place of an address. As soon as the assem
bler sees a label, it replaces the label with the correct address before sending
it on to the 8088.

0111
010C JLE ~
010E SUB DL

DIGIT1: 0111 MOV CL

0113 SHL DL,1
Figure 8-2. The Assembler Substitutes Addresses for Labels.

Labels can be up to 31 characters long and can contain letters, numbers,
and any of the following symbols: a question mark (?), a period (.), an at sym
bol (), an underline (_), or a dollar sign ($). They can't start with a digit (0
through 9), and a period can be used only as the first character.

As a practical example, let's take a look at our program from Chapter 6 that
reads a two-digit hex number. It contains two jumps, JLE 0111 and JLE OllF.
Here's the old version:

3crn5: 0100 BL;01 MOV AH,01
3crn5: 0102 CD21 INT 21
3crn5: 010L; MC2 MOV DL,AL
39115:0106 llOEA30 SUB DL,30
39115:0109 llOFA09 CMP DL,09
39115:010C 7E03 JLE 0111
39115:010E llOEA07 SUB DL,07
3985:0111 B10L; MOV CL,OL;
39115:0113 D2E2 SHL DL,CL
39115: 0115 CD21 INT 21
39115:0117 2C30 SUB AL,30
39115:0119 3C09 CMP AL,09
3985:011B 7E02 JLE 011F
3985:011D 2C07 SUB AL,07
39115:011F OOC2 ADD DL,AL
3985:0121 CD20 INT 20

96 Welcome t the " 'mblcr

It's certainly not obvious what this program does, and if it's not fresh in your
mind, you may have to work a little to understand the program again. Let's
add labels and comments to clarify its function:

CODE_SEG
ASSU11E
MOV
INT
HOV
SUB
Cl1P
JLE
SOB

DIGIT1:
HOV
SAL
I NT
SOB
Cl1P
JLE
SOB

DIGIT2:
ADD
I NT

CODE_SEG
END

SEGME NT
CS:CODE_SEG
AR,1h
21h
DL , AL
DL,30h
DL , CJh
DIGIT1
DL,7h

CL,t.h
DL , CL
21h
AL,30h
AL,%
DIGIT2
AL,7h

DL,AL
20h
ENDS

;(To be explained in chapter 11)
;Select DOS function 1, character input
;Read a character , and return ASCII code i n AL
;Move ASCII code into DL
;Subtract 30h to convert digit to O - q
;Was it a digit between O and q?
;Yes, we have the first digit (four bits)
;No, subtract 7h to convert letter A - F

;Prepare to ul iply by 1b
;Multiply by shifting, becomes upper f our bi ts
;Get next character
;Repeat conversion
;Is it a digit O - q?
;Yes , so we have the second digit
;No, subtract 7h

;ADD second digit
;And exi

The labels here , DIGITl and DIGIT2, are of a type known as NEAR labels,
because a colon (:) appears after the labels when they're defined. The term
NEAR has to do with segments, which we'll talk about in Chapter 11, along
with the SEGMENT, ENDS, and ASSUME pseudo-ops. Here, if you assem
bled the preceding program and then unassembled it with Debug, you'd see
DIGIT! replaced by Olllh and DIGIT2 replaced by OllFh.

Summarv
This has been quite a chapter. It's as if we've stepped into a new world, and,

in a sense, we have. The assembler's much simpler to work with than Debug
was, so we can now begin to write real programs, because the assembler does
much of the bookkeeping for us.

What have we learned here? We began by learning how to create a source
file and then go through the steps of assembling, linking, and converting it
from an .OBJ file to an .EXE, and then a .COM file, using a simple program
from Chapter 3. The assembly language program we created contained a few

Peter Norton,s Assembly Language Book 97

pseudo-ops, which we've never seen before, but they'll become familiar, once
we've become more comfortable using the assembler. In fact, we'll place SEG
MENT, ENDS, and END pseudo-ops in all our programs from now on, since
we need them, even though we won't really see the reason why until Chapter
11.

Next, we learned about comments. You may have wondered how we could
survive without comments. We won't from now on. Comments add so much to
the readability of programs that we won't skimp on them.

Finally came labels, to make our programs even more readable. We'll use
all these ideas and methods throughout the rest of this book. Let's move on to
the next chapter and see how the assembler makes procedures easier to use.

P OCEDVRES AND THE
A SEMBLER

The Assembler's Procedures 100
The Hex-Output Procedures 103
The Beginnings of Modular Design 106
A Program Skeleton 107
Summary 107

99

9

100 "'>r ccdur" , nd the mblcr

Now that we've met the a embler, let' become a little more comfortable
with writing a embly language programs. In this chapter, we'll return to the
subject of procedure . You'll ee how we can write procedures much more eas
ily with the help of our hard-working as embler. Then, we'll move on to build
some useful procedure , which we 11 u e when we begin to develop our
Dskpatch program a few chapter from now.

We'll begin with two procedure to print a byte in hexadecimal. Along the
way, we'll meet everal more p udo-op . But, like SEGMENT, END, and
ENDS in the la t chapter, we'll leave them pretty much undefined until Chap
ter 11, where we'll learn more about segment .

T A , bl r' Pr c
Wben we fir t learned about procedure , we left a large gap between the

main program and its procedure , o that we'd have room for changes without
having to worry about our main program overlapping a procedure. But now
we have the a sembler, and since it does all the work of assigning addresses to
instructions, we no longer need to leave a gap between procedures. With the
assembler, each time we make a change, we can just assemble the program
again.

In Chapter 7, we built a small program with one CALL. The program did
nothing more than print the letters A through J, and it looked like this:

3965:0100 B2t;1 MOV DL,t;1
3965:0102 B90AOO tlOV CX,OOOA
3985:0105 E8F800 CALL 0200
3C!85:0108 E2FB LOOP 0105
3985:010A CD20 I T 20

3985:0200 Bt;02 l'IOV AB,02
3985:0202 CD21 INT 21
3985:020t; FEC2 INC DL
3'H~S: 020.6 C3 RET

Let's turn this into a program for the assembler. It will be hard to read
without labels and comments, so we'll add those e.mbellishments to make our
program far more readable:

Peter Norton's Assembly Language Book 101

Listing g-1. The Program PRINTAJ.ASM

CODE_SEG
ASSUME
ORG

PRI NT _A_J
MOV
MOV

PRI NT_LOOP:
CALL
LOO P
INT

PRINT_A_J

WRITE_CHAR
MOV
INT
I NC
RET

WRITE_CH AR

CODE_SEG
EN D

SEGMENT
CS: CODE SEG
100h

PROC NEAR
DL, I A I
CX , 10

WR I TE_CHAR
PRIN T_LOOP
20h
ENDP

PROC NEAR
AH, 2
21h
DL

ENDP

EN DS
PRI NT_A_J

;Make this a .COM file (to be explained)

;Start with the character A
;Print 10 characters, starting with A

;Print character, and move to next one
;Continue for 10 characters
; Return to DOS

;Set function code for character output
;Print the character already in DL
;Move to the next char in the alphabet
;Return from this procedure

There are four new pseudo-ops here: ASSUME, ORG, PROC, and ENDP. AS
SUME is related to segments, and ORG is related to the way DOS loads pro
grams; we'll find out more about them in Chapter 11.

PROC and ENDP are pseudo-ops for defining procedures. As you can see,
both the main program and the procedure at 200h are surrounded by match
ing pairs of the pseudo-ops PROC and ENDP, which, themselves, are enclosed
in the pseudo-ops SEGMENT and ENDS (End Segment).

PROC defines the beginning of a procedure; ENDP defines the end. The
label in front of each is the name we give to the procedure they define. Thus,
in the main procedure, PRINT _A_J, we can replace our CALL 200 instruc
tion with the more readable CALL WRITE_CHAR. Just insert the name of
the procedure, and the assembler assigns the addresses.

The NEAR and FAR pseudo-ops (more on FAR later) provide information to
the assembler about our use of segments. The assembler uses this information
whenever it assembles a CALL instruction since there are two types of CALL
and RET instructions: near and far. A far CALL, which we won't use here ,
calls a procedure that is contained in another segment. A near CALL, on the
other hand, calls a procedure contained in the same segment.

In this book, we'll be dealing with programs that fit in a single 64K seg
ment, so all of our procedures will be NEAR procedures. NEAR informs the

102 Pro cdun and the A:. . cmbl r

assembler the procedure is in the same segment as any procedure that calls it.
When the assembler sees CALL WRITE_ CHAR, it will know from the NEAR,
in WRITE_CHAR PROC NEAR, that WRITE_CHAR is in the same segment
as PRINT _A_J.

The assembler needs this segment information because there are two ver
sion of the CALL and RET instructions-one for when we don't change seg
ments, and one for when we do. Here it i obviou that our two procedures are
in the same segment, becau we placed both procedure between one pair of
segment-defining p eudo-op : EGMENT and E DS. Later on, as we break
our program into pieces that we put in several different source files, the uses
of NEAR and FAR will become more important.

Finally since we have two procedures we need to tell the assembler which
to use as the main procedure-where the 8088 hould tart executing our pro
gram. The END pseudo-op take care of this detail. By writing END PRINT_
A_J, we've told the a embler that PRINT_A_J is the main procedure. Later
in our work, we 11 ee that the main procedure can be anywhere. Right now,
however, we are dealing with .COM files, and we'll need to place the main
procedure first in our source file.

You're ready to go so if you haven't done so yet, enter the program into a
file called PRINTAJ.ASM and generate the .COM version, using the same
steps you did in the last chapter:

f1!\Sl1 PRINTAJ;
LINK PRINTAJ;
EXE2BIN PRINT!\J PRINTAJ.COM

Then give Printaj a try. (Make sure you've run Exe2bin before you run
Printaj. Otherwise, you'll end up running the .EXE version of Printaj, which
undoubtedly won't produce the results you expect.)

When you're satisfied, use Debug to unassemble our program and see how
the assembler fits the two procedures together. Recall that we can read a par
ticular file into Debug by typing its name as part of the command line. For
example, we can type DEBUG PRINTAJ.COM, and when we do, we see:

3'185:0100 82<'.;1 MOV DL,t;t
3q55;0102 B'IDAOO MDV CX,OOOA
3'185:0105 E8D~OO CALL 010C
3'185:0108 E2FB LOOP 0105
3985:010!\ CD20 INT 20
3ci85:010C Bt;02 MOV AR,02
3ci85:010E CD21 INT 21
3C!85:0110 FEC2 INC DL
3qas:o112 C3 RET

-Peter Norton's A sembly Language Book 103

Our program is nice and snug, with no gap between the two procedures.

0100
0102
0105
0108
010A

MOV DL,41
MOV CX,OA
CALL 010C
LOOP 0105
INT 20

010C
010E

MOV
INT

0110 INC
0112 RET

AH,02
21
DL

Figure 9-1. MASM Assembles Separate Procedures Without a Gap.

e ,,. ut ut Procedures
We've seen hex-output procedures twice before: Once in Chapter 5, where

we learned how to print a number in hex, and again in Chapter 7, where we
saw how to simplify the program, using a procedure to print one hex digit.
Now we're going to add yet another procedure to print one character. Why?
Well, let's just call it foresight.

By using a central procedure to write a character to the screen, we can
change the way this procedure writes characters without affecting the rest of
the program. We will change it several times.

Enter the following program into the file VIDEO_IO.ASM:

104 Pr {edur and th· rnbl r

Listing q-2. The New File VIDEO IO.ASM

CODE_SEG SEGMENT
ASSUl1E CS:CODE SEG -
ORG 100h

TEST_WRITE_HEX PROC EAR
110V DL,3Fh ;Test wi h 3Fh
CALL WRITE_HEX
INT 20h ;Return to DOS

TEST - WRITE_HEX ENDP

PUBLIC ilRITE_HEX

This procedure converts the byte in the OL register to hex and writes
the two hex digits at the current cursor position.

DL Byte to be converted to hex.

Uses: WRITE_REX DIGIT

WRITE_HEX PROC NEAR ;Entry point
PUSH ex ;Save registers used in this procedure
POSH DX
110V DH,DL ;Make a copy of byte
HOV ex, t; ;Get the upper nibble in DL
SHR DL,CL
CALL WRITE BEX_DIGIT ;Display first hex digit
HOV DL,DH ;Get lower nibble into DL
AND DL,OFh ;Be ove the upper nibble
CALL llRITE_BEX_DIGIT ;Display second hex digit
POP DX
POP ex
RET

WRITE HEX ENDP -
PUBLIC WRITE BEX_DIGIT

This procedure converts the lower t; bits of DL to a hex digit and
writes it to the screen.

DL Lower t; bits contain number to be printed in hex.

Uses: WRITE_CBAR

WRITE_REX_DIGIT PROC NEAR
PUSH DX ;Save registers used
CMP DL, 10 ;Is this nibble <10?
JAE REX _LETTER ;No, convert to a letter
ADD DL, 11 011 ;Yes, convert to a digit
Jl'IP Short WRITE - DIGIT ;Now write this character

REX LETTER:

Listing 9-2. continued

ADD
WRITE_DIGIT:

CALL
POP
RET

DL,"A"-10

WRITE_CHAR
DX

WRITE_HEX_DIGIT ENDP

POBLIC WRITE_CHAR

Peter Norton's Assembly Language Book 105

;Convert to hex letter

;Display the letter on the screen
;Restore old value of AX

This procedure prints a character on the screen using the DOS
function call.

DL Byte to print on screen.
---;

WRITE_CRAR
POSH
f'IOV
INT
POP
RET

WRITE_CHAR

CODE_SEG

END

PROC NEAR
AX
AH,2
21h
AX

ENDP

ENDS

TEST_WRITE - HEX

;Call for character output
;Output character in DL register
;Restore old value in AX
; And return

The DOS function to print characters treats some characters specially. For
example, using the DOS function to output 07 results in a beep, without print
ing the character for 07, which is a small diamond. We'll see a new version of
WRITE_ CHAR in Part III, where we'll learn about the ROM BIOS routines
inside your IBM PC. For now, though, we'll just use the DOS function to print
characters.

The new pseudo-op PUBLIC is here for future use: We'll use it in Chapter
13, when we learn about modular design. PUBLIC simply tells the assembler
to generate some more information for the linker. The linker allows us to
bring separate pieces of our program, assembled from different source files,
together into one program. And PUBLIC informs the assembler that the pro
cedure named after the PUBLIC pseudo-op should be made public, or avail
able to procedures in other files.

Right now, Video_io contains the three procedures to write a byte as a hex
number, and a short main program to test these procedures. We'll be adding
many procedures to the file as we develop Dskpatch, and by the end of this
book, VIDEO_IO.ASM will be filled with many general-purpose procedures.

The procedure TEST_ WRITE_HEX that we've included does just what it

106 r cdur"' n th A • mblcr

says: It's here to test WRITE_HEX, which, in turn, uses WRITE_HEX_
DIGIT and WRITE_CHAR. A oon as we've verified that these three proce
dures are all correct, we'll remove TEST_ WRITE_HEX from VIDEO_
IO.ASM.

Create the .COM ver ion of Video_io, and use Debug to thoroughly test
WRITE_HEX. Change the 3Fh at memory location lOlh to each of the bound
ary conditions we tried in Chapter 5, then use G to run TEST_ WRITE_HEX.

We'll u e many imple test programs to test new procedures we've written.
In this way, we can build a program piece by piece, rather than try to build
and debug it all at once. Thi incremental method is much faster and easier,
since we can confine bug to ju t the new code.

• •
10 f M •

2
Notice that ahead of each procedure in Video_io, we've included a block of

comments briefly describing the function of each procedure. More impor
tantly, these comments tell which registers the procedure uses to pass infor
mation back and forth as well as what other procedures it uses. As one
feature of our modular approach, the comment block allows us to use any pro
cedure by looking at the description. There's no need to relearn how the proce
dure does its work. This also makes it fairly easy to rewrite one procedure
without having to rewrite any of the procedures that call it.

We've also used PUSH and POP instructions to save and restore any regis
ters we use within each procedure. We'll do this for every procedure we write,
except for our test procedures. This approach, too, is part of the modular style
we'll be using.

Recall that we save and restore any register used so that we never have to
worry about complex interactions between procedures trying to fight over the
small number of registers in the 8088. Each procedure is free to use as many
registers as it likes, provided it restores them before the RET instruction. It's
a small price to pay for the added simplicity. In addition, without saving and
restoring registers, the task of rewriting procedures would be mind-rending.
You'd be sure to lose much hair in the process.

We also try to use many small procedures, insteacl of one large one. This,
too, makes our programming task simpler, although we'll sometimes be forced
to write longer procedures when the design becomes particularly convoluted.

These ideas and methods will all be borne out more fully in the chapters to
come. In the next chapter, for example, we'll add another procedure to Video_

Peter Norton's Assembly Language Book 107

io: a procedure to take a word in the DX register and print the number in
decimal on the screen.

A Program Skeleton
As we've seen in this and the preceding chapter, the assembler imposes a

certain amount of overhead on any programs that we write. In other words,
we need to write a few pseudo-ops that tell the assembler the basics. For fu
ture reference, here is the absolute minimum you'll need for programs you
write:

CODE_SEG SEGMENT
ASSUME CS:CODE_SEG
ORG 10Dh

Some_procedure PROC NEAR

INT 2Dh
Some_procedure ENDP

CODE_SEG ENDS
END Some_procedure

We'll add some new pseudo-ops to this program skeleton in later chapters,
but you can use it, as shown here, as the starting point for new programs you
write. Or, even better, you can use some of the programs and procedures from
this book as your starting point.

Summary
We're really making progress now. In this chapter, we learned how to write

procedures in assembly language. From now on we'll use procedures all the
time, and by using small procedures, we'll make our programs more
manageable.

We saw that a procedure begins with a PROC definition and ends with an
ENDP pseudo-op. We rewrote PRINT_A_J to test our new knowledge of pro
cedures, then went on to rewrite our program to write a hex number-this
time with an extra procedure. Now that procedures are so easy to work with,

I 08 r1 t dur • .., and the ·mbl •r

there's little reason not to break our programs into more procedures. In fact,
we've seen that there are many reason for using many small procedures.

At the end of this chapter we talked briefly about modular design, a philos
ophy that will save us a great deal of time and effort. Our modular programs
will be easier to write, easier to read, and easier for someone else to modify
than program created with he well-worn technique of spaghetti logic: pro
grams written with very long procedure and many interactions.

We're now ready to build another u eful procedure. Then, in Chapter 11,
we'll learn about segments. And from there, we'll move on to developing
larger programs, where we'll really tart to u e the techniques of modular
design.

10

RINTING IN DECIMAL

Recalling the Conversion 110
Some Tricks 113
The Inner Workings 114
Summary 116

109

110 rioting in D · im, I

We've been promi ing that wed write a procedure to take a word and print
it in decimal notation. WRITE_DECIMAL use some new tricks-ways to
save a byte here, a few micro econds there. Perhaps such tricks will hardly
seem to be worth the effort. But if you memorize them you'll find that you can
use them to shorten and peed up program . Through our trick , we'll also
learn about two new type of logical operation to add to the AND instruction
we covered in Chapter 5. Fir t let' review the proces for converting a word
to decimal digit .

c • v r 1 n
Divi ion is the key to converting a word to decimal digits. Recall that the

DIV in truction calculate both the integer an wer and its remainder. So, cal
culating 12345/10 yields 1234 as the integer answer, and 5 a the remainder.
In this example, 5 i imply the rightmost digit. And if we divide by 10 again,

DX ----------- • 12345
1

2

3
Stack

4

5

Figure 10-1. PUSHing the Digits onto the Stack Reverses Their Order.

Peter Norton's Assembly Language Book 111

we'll get the next digit to the left. Repeated division by 10 strips off the digits
from right to left, each time putting them in the remainder.

Of course, the digits come out in reverse order, but in assembly language
programming, we have a fix for that. Remember the stack? It's just like a
stack of lunch trays: The first one to come off the top is the last tray that was
set down. Ifwe substitute digits for trays, and place the digits one on top of the
other as they come out of the remainder, we'll have it. We can pull out the
digits in correct order.

The top digit is the first digit in our number, and the other digits are under
neath it. So, if we push the remainders as we calculate them, and print them
as we pop them off the stack, the digits will be in the correct order.

The following program is the complete procedure to print a number in deci
mal notation. As we mentioned, there are a few tricks hiding in this proce
dure. We'll get to them soon enough, but let's try WRITE_DECIMAL to see if
it works before we worry about how it works.

Place WRITE_DECIMAL into VIDEO_IO.ASM, along with the procedures
for writing a byte in hex. Make sure you place WRITE_DECIMAL after
TEST_ WRITE_HEX, which we'll be replacing with TEST_ WRITE_DECI
MAL. To save some work, WRITE_DECIMAL uses WRITE_HEX_DIGIT to
convert one nibble (four bits) into a digit.

Listing 10-1. Add to VIDEO_IO.ASM

PUBLIC WRITE_DECIMAL

This procedure writes a 16-bit, unsigned number in decimal notation.

DX N : 16-bit, unsigned number.

Uses: WRITE HEX DIGIT . . .---,
WRITE_DECIMAL

PUSH
PUSH
PUSH
PUSH
MOV
MOV
XOR

NON ZERO:
XOR
DIV
PUSH
INC
OR

PROC NEAR
AX
ex
DX
SI
AX,DX
SI,10
cx,cx

DX,DX
SI
DX
ex
AX,AX

;Save registers used here

;Will divide by 10 using SI
;Count of digits placed on stack

;Set upper word of N to 0
;Calculate N/ 10 and (N mod 10)
;Push one digit onto the stack
;One more digit added
;N = 0 yet?

112 Printing in D im I

Listing 10-1. continued

JNE NON_ZERO ;Nope, continue
llRITE_DIGIT_LOOP:

POP DX ;Get the digits in reverse order
CALL llRITE_HEX -DIGIT
LOOP llRITE_DIGIT_LOOP

END DECIPIAL:
POP SI
POP DX
POP ex
POP AX
RET

WRITE DECIMAL ENDP

Notice that we ve included a new regi ter the I (Source Index), register.
Later we'll ee why it' been given that name, and we'll meet its brother, the
DI, or De tination Index, regi ter. Both register have special uses, but they
can also be u ed a if they were general-purpose registers. Since WRITE_
DECIMAL needs four general-purpo e regi ter , we used SI, even though we
could have used BX, imply to show that SI (and DI) can serve as general
purpose register if need be .

Before we try out our new procedure, we need to make two other changes to
VIDEO_IO.ASM. First, we mu t remove the procedure TEST_ WRITE_HEX,
and insert this test procedure in its place:

Listing 10-2. Replace TEST_WRITE_HEX in VIDEO_IO.ASM with This
Procedure

TEST_llRITE_DECIMAL PROC
f'IOV
CALL
INT

DX,123t::S
WRITE_DECil1AL
20h

TEST_WRITE_DECIMA L ENDP

NEAR

; Return to DOS

This procedure tests WRITE_DECIMAL with the number 12345 (which the
assembler converts to the word 3039h).

Second, we need to change the END statement at the end of VIDEO_
10.ASM to read END TEST_ WRITE_DECIMAL, because TEST_ WRITE_
DECIMAL is now our main procedure.

Make these changes and give VIDEO_IO a whirl. Convert it to its .COM
version and see if it works. If it doesn't, check your source file for errors. If
you're adventurous, try to find your bug with Debug. After all, that's what
Debug is for.

.Peter Norton's Assembly Language Book 113

Some Tricks
Hiding in WRITE_DECIMAL are two tricks of the trade garnered from the

people who wrote the ROM BIOS procedures we'll meet in Chapter 17. The
first is an efficient instruction to set a register to zero. It's not much more
efficient than MOV AX,O, and perhaps it's not worth the effort, but it's the
sort of trick you'll find people using, so here it is. The instruction:

XOR AX,AX

sets the AX register to zero. How? To understand that, we need to learn about
the logical operation called an Exclusive OR, hence the name XOR.

The exclusive OR is similar to an OR (which we'll see next), but the result of
XORing two trues:

XOR 0 1
0 0 1
1 1 0

is true if only one bit is true, not if both are true. Thus, if we exclusive OR a
number to itself, we get zero:

1011 0101
XOR 1 0 1 1 0 1 0 1

0000 0000

That's the trick. We won't find other uses for the XOR instruction in this book,
but we thought you'd find it interesting.

As a short aside, you'll also find many people using another quick trick to
set a register to zero. Rather than using the XOR instruction, we could have
used:

SOB AX,AX

to set the AX register to zero.
Now for the other trick. It's just about as devious as our XOR scheme to

clear a register, and it uses a cousin to the exclusive OR-the OR function.
We want to check the AX register to see if it's zero. To do this, we could use

the instruction CMP AX,O. But no, we'd rather use a trick: It's more fun, and a
little more efficient, too. So, we write OR AX,AX and follow this instruction

114 Printin m im. I

with a JNE (Jump if Not Equal) conditional jump. (We could also have used
JN~ump if Not Zero.)

The OR in truction, like any of the math in truction , et the flag , includ
ing the zero flag . Like A D OR i a logical concept. But here, a re ult is true
if one OR the other bit i true:

If we take a number and OR it to it elf, we get the original number back
again:

1011 0101
OR 1 0 1 1 0 1 0 1

1011 0101

The OR in truction i al o u eful for etting ju t one bit in a byte. For exam
ple, we can et bit 3 in the number we just u ed:

1011 0101
OR 0 0 0 0 1 0 0 0

1011 1101

We'll have more trick to play before we're through in this book, but these
two are the only ones that are entirely for fun .

In
To see how WRITE_DEeIMAL performs its task, study the listing; we won't

cover more details here. We do need to point out a few more things.
First, the ex register is used to count how many digits we've pushed onto

the stack, so that we know how many to remove. The ex register is a particu
larly convenient choice, because we can build a loop with the LOOP instruc
tion and use the ex register to store the repeat count. Our choice makes the
digit-output loop (WRITE_DIGIT_LOOP) almost trivial, because the LOOP
instruction uses the ex register directly. We'll use ex very often when we
have to store a count.

Next, be careful to check the boundary conditions here. The boundary condi-

Peter Norton's As embly Language Book 115

tion at 0 isn't a problem, as you can check. The other boundary condition is
65535, or FFFFh, which you can check easily with Debug. Just load VIDEO_
IO.COM into Debug by typing DEBUG VIDEO_IO.COM and change the 12345
(3039h) at lOlh to 65535 (FFFFh). (WRITE_DECIMAL works with unsigned
numbers. See if you can write a version to write signed numbers).

You may have noticed a sticky point here, having to do with the 8088, not our
program. Debug works mostly with bytes (at least the E command does) but we
want to change a word. We must be careful, since the 8088 stores the bytes in a
different order. Here is an unassemble for the MOV instruction:

3985:0100 BA3930 MOV DX,3039

You can tell from the BA3930 part of this display that the byte at lOlh is 39h,
and the one at 102h is 30h (BA is the MOV instruction). The two bytes are the
two bytes of 3039h, but seemingly in reverse order. Confusing? Actually, the
order is logical, after a short explanation.

A word consists of two parts, the lower byte and the upper byte. The lower
byte is the least significant byte (39h in 3039h), while the upper byte is the
other part (30h). It makes sense, then, to place the lower byte at the lower
address in memory. (Some computers actually reverse these two bytes, and
this can be a bit confusing if you're using several different computers.)

Try different numbers for the word starting at lOlh, and you'll see how this
storage works. Use TEST_ WRITE_DECIMAL to see if you got it right, or
unassemble the first instruction.

MOV

0102:

0101:

0100:

DX,3039

3039h

MOV instruction

Figure 10-2. The 8088 Stores Numbers With the Lower Byte irst in
Memory.

116 Printin in De imal

Su
We added a few new in tructions to our repertoire here, as well as a few

trick for fun . We also learned abou two other regi ter , SI and DI, that we
can u e as general-purpo e register . They also have other uses, which we'll
see in later chapter .

We learned about the XOR and OR logical in truction , which allow us to
work between individual bit in two byte or words. And in our WRITE_DEC
IMAL procedure we u ed the XOR AX,AX instruction as a tricky way to set
the AX register to zero. We used OR AX,AX as a devious way to write the
equivalent of CMP AX 0 to te t the AX register and ee if it is zero.

Finally, we learned about how the 0 tore a word in memory by check-
ing the boundary condition of our new procedure, WRITE_DECIMAL.

Here, at the end of thi chapter, we now have another general-purpose pro
cedure, WRITE_DECIMAL that we'll be able to u e in the future for our own
programs.

Take a breather now. We ve got a few different chapters scheduled next.
Chapter 11 covers segment in detail. Segments are perhaps the most compli
cated part of the 8088 microprocessor, so the chapter may prove to be rather
heavy going. Even so, though we need to cover the topic for following
chapters.

After that we'll make a slight cour e correction and get back on track by
learning about what we want to do with our program Dskpatch. We'll do a bit
of probing on disks, and learn about sectors, tracks, and other such things.

From there, we can plot a simple course for preliminary versions of
Dskpatch. En route, you'll get a chance to see how to develop large programs.
Programmers don't write an entire program, then debug it. They write sec
tions and try each section before they move on-programming is much less
work that way. We've used this approach to a limited extent by writing and
testing WRITE_HEX and WRITE_DECIMAL, for which the test programs
were very simple. The test programs from here on will be more complex, but
more interesting, too.

SEGMENTS

Sectioning the 8088's Memory 118
Segment Pseudo ... Ops 124
The ASSUME Pseudo ... Op 126
Near and Far CALLs 127
More on the INT Instruction 129
Interrupt Vectors 131
Summary 132

117

11

118 gm nt

In the preceding chapters, we've encountered several p eudo-ops that deal
with segments. Now the time ha come to look at segments themselves, and at
how the 8088 manages to add.re s a full megabyte (1,048,576 bytes) of memory.
From this, we'll begin to understand why segments need their own pseudo-ops
in the assembler, and in later chapters we'll begin to u e different segments
(thus far, we've used only one). Then, in Chapter 13, when we learn about mod
ular design, we'll see how to group egments together into a .COM file.

Let's start at the 8088 level by learning how it con tructs the 20-bit ad
dresses needed for a full megabyte of memory.

nin th 8 0

Segments are about the only part of the 8088 we haven t covered yet, and
they are perhap , the most confusing part of this microprocessor to most peo
ple. In fact, segment are what we call a kludge in this business: computerese
for a makeshift fix to a problem.

The problem, in this case is being able to addre s more than 64K of mem
ory-the limit with one word, since 65535 is the largest number a single word
can hold. Intel designers of the 8088, used segments and segment registers to
"fix' this problem, and in the process made the 8088 more confusing.

So far, we haven't concerned ourselves with this problem. We've been using
the IP register to hold the address of the next instruction for the 8088 to exe
cute ever since we met Debug in Chapter 2. Back then, you may recall that we
said the address is actually formed from both the CS register and the IP regis
ter. But we never really said how. Now, let's find out.

Although the complete address is formed from two registers, the 8088
doesn't form a two-word number for the address. If you were to take CS:IP as a
32-bit number (two 16-bit numbers side by side), the 8088 would be able to
address about four billion bytes-far more than the one million bytes it can
actually address. The 8088's method is slightly more complicated: The CS reg
ister provides the starting address for the code segment, where a segment is
64K of memory. Here's how it works.

As you can see in Figure 11-1, the 8088 divides memory into many overlap
ping segments, with a new segment starting every 16 bytes. The first segment
(segment 0) starts at memory location O; the second (segment 1) starts at lOh
(16); the third starts at 20h (32), and so on.

The actual address is just CS * 16 + IP. For example, if the CS register
contains 3F AB and IP contains DOl 7, the absolute address is:

SEGvENT
0

0001 :0000

SEGvENT
1

0

65535

16

65551

119

0000:0000

OOOO:FFFF

igure 11-1. Overlapping Segments Start Every 16 Bytes, and Are 65536
Bytes Long.

cs * 16
IP

0 0 1 1 1 1 1 1 1 0 1 0 1 0 0 0 0 0 0 0
1 1 0 1 0 0 0 0 0 0 0 1 0 1 1 1

0 1 0 0 1 1 0 0 1 0 1 0 1 0 0 1 0 1 1 1

We multiplied by 16 just by shifting CS left four bits, and injecting zeros at
the right.

Now, this may seem like a strange way to address more than 64K of mem
ory, and it is-but it works. Soon, we'll begin to see how well it really works.

120 ·gment

I 0 I 0 I 1 I 1 I 1 I 1 I 1 j 1 I 1 I 0 I 1 I 0 ! 1 I 0 I 0 I O I ._ Segment (CS)

+ j 1 I 1 I 0 j 1 I 0 I 0 J 0 I 0 I 0 IO IO j 1 IO j 1 I 1 I 1 J ._ Offset (IP)

0100 11 0 0101 010010111

igu 11-2. Th b Jut Addr of * 16 + IP.

The 8088 actually ha four segment registers: CS (Code Segment), DS (Data
Segment), S (Stack egment), and ES (Extra Segment). The CS register
we've been looking at i u ed by the 8088 for the egment where the next
instruction is stored. In much the ame way, DS is the egment where the
8088 looks for data, and SS is where the 8088 places the tack.

Before we go on, let's look at a short program, quite different from any we've
seen before t hat uses two different segments. Enter this program into the file
TEST_SEG.ASM:

Listing 11-1 . The Program TEST_SEG . AS M

CODE_SEG
AS SOME

TEST_SEGMENT
MOV
INT

TEST_SEGl1ENT
CODE_SEG

STACK_SEGMENT
DB

STACK_SEGMENT

END

SEGMENT
CS:CODE_SEG
PROC EAR
AA,t;Ch
21h
ENDP
ENDS

SEGMENT STACK
10 DOP ("Stack
ENDS

TEST_SEGHENT

II)

;Ask for the exit-to-dos function
;Return to DOS

;Three spaces after Stack

Then assemble and link Test_seg, but don't generate a .COM file for it. The
result will be TEST_SEG.EXE, which is slightly different from a .COM file.

Note: We have to use a different method for exiting from .EXE files . For
.COM files, INT 20h works perfectly well, but it doesn't work at all for
.EXE files because the organization of segments is very different, as we'll
see in this chapter; more on this difference later.

.Peter Norton' Assembly Language Book 121

When we used Debug on a .COM file, Debug sets all the segment registers
to the same number, with the program starting at an offset of lOOh from the
start of this segment. The first 256 bytes (lOOh) are used to store various
pieces of information which we really aren't that interested in, but we'll take
a peek at part of this area in a little bit.

Now, try loading TEST_SEG.EXE into Debug, to see what happens with
segments in an .EXE file:

A>DE80G TEST_SEG.EXE
-R
AX=OOOO 8X=OOOO CX=OOBO DX=OOOO SP=0050 8P=OOOO SI=OOOO DI=OOOO
DS=39B5 ES=39B5 SS=3996 CS=3995 IP=OOOO NV UP DI PL NZ NA PO NC
3995:0000 CD20 INT 20

The values of the SS and CS registers are different from those for DS and ES.
In our program, we defined two segments. The STACK_SEGMENT is

where we place the stack (hence, the word STACK after the word SEG
MENT). We defined the stack to be 80 bytes long: The instruction DB 10 DUP
("Stack ") tells the assembler to convert the string in quotation marks to
bytes, and to repeat the string ten times in memory. DB (Define Byte) tells the
assembler we are defining bytes of memory. Here, we're initializing the stack
with ten repetitions of the ASCII code for Stack and three spaces. The code for
this is 53 74 61 63 6B 20 20 20, so if we look at the stack segment, we should
see these numbers repeated ten times. Ask Debug to dump this area of mem
ory with the following command, which tells Debug to dump memory starting
at offset 0 within the Stack Segment (SS:O):

-D SS:O
3996:0000 53 7t, 61 63 68 20 20 20-53 7t, 61 63 68 20 20 20 Stack Stack
3996:0010 53 7t, 61 63 68 20 20 20-53 7{., 61 63 68 20 20 20 Stack Stack
3996:0020 53 7{., 61 63 68 20 20 20-53 7{., 61 63 6B 20 20 20 Stack Stack
3996: 0030 53 7t, 61 63 6B 20 20 20-53 7{., 61 63 68 20 20 20 Stack Stack
3996: 00{.,0 53 7t, 61 63 6B 20 20 20-53 7t., 61 63 68 20 DD DD Stack Stack ..
3996: 0050 DO 00 DO OD DD OD OD 00-00 DO DD DO DD DO OD OD

l l
SS SP

The address for the top of the stack is given by SS:SP. SP is the Stack Pointer,
like IP and CS for code, and is an offset within the current Stack Segment.

Actually, "top-of-stack" is a misnomer, because the stack grows from high

122 gm nt

3985:0000
DATA SEGMENT

3995:0000
CXX>E SE<?lv1ENT

3996:0000
STACK SEGMENT

Fi re 11-3. emory Layout for TE T _ EG.EXE.

memory toward low memory. Thus, the top of the stack is really at the bottom
of the stack in memory, and new entries to the stack are placed progressively
lower in memory. Here, SP is 50h, which is 80 decimal, because we defined a
stack area 80 bytes long. We haven't placed anything on the stack as yet, so
top-of-stack is still at the top of the memory we set aside for the stack: 50h.

Now that you know how to find the stack, you may wish to watch how it
changes for the programs in previous chapters. Here, though, let's continue
with the example already in Debug.

Notice that the Stack Segment (SS) is segment number 3996 (this will prob
ably be different for you), while our Code Segment (CS) is at segment 3995-

· Peter Norton's Assembly Language Book 123

one less than SS, or just 16 bytes lower in memory. That means if we do an
unassemble starting at CS:O, we'll see our program (the INT 20h instruction)
followed by 14 bytes equal to zero (the INT 20h takes two bytes), and then
we'll see the bytes from the stack segment. We'll also see the data for Stack ,
followed by three spaces, unassembled:

-U CS:O
3995:0000 CD20 INT 20
3995:0002 DODO ADD [BX+SIJ,AL
3995 : DOOt; DO DD ADD [BX+SIJ,AL
3995:0006 DOD O ADD [BX+SIJ,AL
3995:0005 DOD D ADD [BX+SIJ , AL
3995:DODA OD DO ADD [BX+SIJ,AL
3995:000C DODO ADD [BX+SIJ,AL
3995:DODE DODO ADD [BX+SIJ,AL
3995:0010 53 PUSH BX
3995:0011 7t; 61 JZ 007t;
3995:0013 63 DB 63
3995: DOM 6B DB 6B
3995:0015 202 0 AND [BX+SIJ,AH
3995:0017 205 37<'.; AND [BP+DI+7t;J,DL
3995:001A 61 DB 61
3995:0018 63 DB 63
399S:D01C 68 DB 68
3995:001D 2020 AND [BX+SIJ,AH
399S:001F 20537<'.; AND [BP+DI+7t;],DL

Just as we expected, the number 53h-the ASCII code for S, the first letter in
our stack area-is at offset lOh (16) within our Code Segment.

In looking at the register display, you may have noticed that the ES and DS
registers contain 3985h, lOh less than the beginning of the program at seg
ment 3995h. Multiplying by 16 to get the number of bytes, we can see that
there are lOOh (or 256) bytes before our program starts. This is the same area
placed at the beginning of a .COM file.

Among other things, this 256 byte scratch area at the start of programs
contains the characters we type after the name of our program. For example:

A>DEBUG TEST_SEG.EXE And now for some characters we'll see in the memory dump
- D DS : 50
3955 : 0050 39 20 t;1 6E 6t; 20 6E 6F-77 20 66 6F 72 20 73 6F 9 And now for so
3955 : 0090 6D 65 20 63 65 61 72 61-63 7t; 65 72 73 20 77 65 me c harac t ers we
39 55 : DOAD 27 6C 6C 20 73 65 65 20-69 6E 20 7t; 65 65 20 6D 1 11 see i n them
39 55 : 0080 65 6D 6F 72 79 20 6t; 75-6D 70 OD 20 6D 65 6D 6F e mor y dump. memo
3955 :00CO 72 79 20 6t; 75 6D 70 OD- OD DO DD DO DD DD DO OD ry dum p

124 ·gm nr

The fir t byte tell u we typ d 39h (or 57 character including the fir t space
after TE T_SEG.EXE. We won't u e thi information in thi book, but it
help how why you might want uch a large cratch area.

Note: The " cratch area' i actually called a P P (Program Segment
Prefix) and contain information for u e by DO . In other words, you
hould not a um that you can make u e of thi area.

The cratch ar a al o contain information that D u e when we exit
from a program with either the INT 20h or the INT 21h, function 4Ch in-
truction . But for rea on that are not at all clear, the INT 20h in truction

expect the CS regi ter to point to the tart of thi cratch area, which it does
for a .COM program, but not for a .EXE program. Thi i an historical ques
tion. And in fact, the exit function (INT 2lh, function 4 h) wa added to DOS
with the introduction of ver ion 2.00.

The code for .COM files mu t alway tart at an off: et of lOOh in the code
segment to leave room for thi 256-byte cratch area at the tart. This is un
like the .EXE file, which had it code tart at IP = 0000, because the code
segment started lOOh bytes after the beginning of the area in memory.

Recall that, in our .COM files in Chapter 10, we had to explicitly place an
ORG lOOh pseudo-op at the beginning of our programs to set aside lOOh bytes.
The ORG lOOh pseudo-op et the origin of our code to lOOh. That's all it does,
but well continue to use the ORG lOOh in our files, because we'll be using
.COM programs in the rest of the book.

We presented an .EXE file here just so you could learn about segments.
Later on, you'll learn more about them, but we'll use .COM files from now on,
because they are smaller and load into memory more quickly. You'll see the
reasons for this when we reach the last chapter, but now let's move on. Let's
learn about the pseudo-ops for segments.

Segment Pseudo-Ops
We have several pseudo-ops to cover here: SEGMENT, ENDS, ASSUME,

and the NEAR and FAR from the PROC pseudo-op. We also need to take a
closer look at the CALL and RET instructions. When we've covered all this
ground, we'll learn more about the INT instruction and see how it is similar to

CS, OS, ES, SS

100h

SP

Memory layout for
.COM program

256 byte data
area

- - - - - - - - - - - - - - - -
Program, data
and stack

DS,ES

CS:IP

SS

SP

Figure 11-4. .COM vs .EXE Programs.

125

Memory layout for
.EXE program

256 byte data
area

Program

Data segment

Stack area

a CALL instruction. But let's take these all in order, beginning with SEG
MENT and ENDS.

The SEGMENT and ENDS pseudo-ops are much like the PROC and ENDP
pseudo-ops we encountered in Chapter 9. We define a segment by surrounding
part of the source file with a SEGMENT/ENDS pair, just as we defined a pro
cedure with a PROC/ENDP pair. The name before the SEGMENT pseudo-op
is a label.

We'll use this label in Chapter 13, when we divide our source file into many
different source files and two segments; a data segment and a code segment.
With two segments, we can easily separate the variables in memory from our
program. There will be more on memory variables, too, in Chapter 13, and
we'll also add more pieces to the SEGMENT pseudo-op. There are myriad de-

126 m nt

tails, though, and we won't spend much time on them. You can find the infor
mation in your a embler manual if you need it.

A u p
The ASSUME pseudo-op i lightly trickier than SEGMENT. It provides

the assembler with information about egment and how we want to use the
segment registers. To understand A UME, we need to under tand how the
assembler keeps track of label and variable names.

Every time you create a label, such a a procedure (like WRITE_CHAR
PROC NEAR) or a memory variable, the a embler remembers several pieces
of information along with the name: the type (procedure, byte, word, and so
on), the address of the name, and the egment in which it is defined. This last
piece of information i where ASSUME become involved.

The assembler doesn t automatically assume that all the procedures of a
program are in the ame egment. In many cases, such as for large programs
like Lotus 1-2-3, they aren't. Such programs actually u ea number of differ
ent code egments. So in the interest of generality, we need to provide infor
mation to the assembler in the form of ASSUME tatements, which tell the
a embler which segments the segment registers are pointing to.

For example, let's look at the ASSUME statement we used in previous
chapters:

ASSUME CS:CODE_SEG

This ASSUME statement tells the assembler that the CS register is pointing
to the code segment we named CODE_SEG. Without this information, the
assembler will throw up its hands whenever we try to use a label (as in CALL
WRITE_ CHAR), saying that it doesn't know which segment we're currently
in with the message No or unreachable CS.

Since the CS register is always pointing to the code that we're executing, it
may seem a bit odd that the assembler complains when we have no ASSUME
statement. As a matter of fact, we wouldn't need the ASSUME pseudo-op, if it
weren't for something called segment overrides.

The 8088 normally reads data (as in MOV AL,SOME_ VARIABLE) from
the data segment (DS). But it can also read information from any other seg
ment, such as the code segment (CS), by using a segment override. And this is
why the assembler needs the ASSUME pseudo-op: so that it knows which seg
ment register to use when you read or write memory.

. Peter Norton's Assembly Language Book 127

Don't worry if you didn't quite understand this explanation of the ASSUME
pseudo-op. We'll be making minimal use of it until we reach Chapter 29.
There, we'll learn more about both the ASSUME pseudo-op and segment over
rides, when we look at multiple-segment programs.

The rest of the information in this chapter is purely for your interest, since
we won't be making use of it in this book. You can skip the next two sections
and read them later if you find the going tough or you're anxious to get back
to programming.

ar a LL
Let's step back for a minute and take a closer look at the CALL instructions

we used in previous chapters. Specifically, let's look at the short program in
Chapter 7, where we first learned about the CALL instruction. Back then, we
wrote a very short program that looked like this (without the procedure at
200h):

3'185:0100 B2L;1 MOV DL,L;1
3'185:0102 B'10 AOO MOV CX,OOOA
3'185:0105 E8F80 0 CALL 0200
3'185:0108 E2F B LOOP 0105
3'185:010A CD2 0 INT 20

You can see by looking at the machine code on the left that the CALL instruc
tion occupies only three bytes (E8F800). The first byte (E8h) is the CALL in
struction, and the second two bytes form an ·offset. The 8088 calculates the
address of the routine we're calling by adding this offset of OOF8h (remember
that the 8088 stores the lower byte of a word in memory before the high byte,
so we have to reverse the bytes) to the address of the next instruction (108h in
our program). In this case, then, we have F8h + 108h = 200h. Just what we
expected.

The fact that this instruction uses a single word for the offset means that
CALLs are limited to a single segment, which is 64K bytes long. So how is it
that we can write a program like Lotus 1-2-3 that is larger than 64K? We do it
by using FAR, rather than NEAR, calls.

NEAR CALLs, as we've seen, are limited to a single segment. In other
words, they change the IP register without affecting the CS register. And for
this reason they're sometimes known as intrasegment CALLs.

But we can also have FAR CALLs that change both the CS and IP registers.

128 · m nt

Such CALLs are often known as inter egment ALL because they call proce
dure in other egments.

Going along with the e two ver ion of the CALL instruction are two ver
sions of the RET in truction.

The NEAR CALL a we aw in hapter 7 pu he a ingle word onto the
stack for it return addre . And the corre ponding RET instruction pop this
word off the stack and into the IP regi ter.

In the ca e of FAR ALL and RET a word i not ufficient becau e we're
dealing with another egm nt. In other word , we need to ave a two-word
return addre on the tack: one word for the in truction pointer (IP) and the
other for the code segment (. The FAR RET, then pop two word off the
tack--one for the regi t r, and the other for IP.

Now we come to a ticky i ue. How doe the assembler know which of these
two CALL and RET to use? When hould it use the FAR CALL, and when
hould it use the NEAR CALL? Thi i where the NEAR and FAR pseudo-ops

take command.
By way of example look at the following program:

PROC_ONE

RET
PROC_O E

PROC_TWO
CALL

RET
PROC_TWO

PROC FAR

ENDP

PROC NEAR
PROC_ONE

ENDP

When the assembler sees the CALL PROC_ONE instruction, it hunts in its
table for the definition of PROC_ONE, which, in this case, is PROC_ONE
PROC FAR. This definition tells whether the procedure is a near or far
procedure.

In the case of a NEAR procedure, the assembler generates a NEAR CALL.
And conversely, it generates a FAR CALL if the procedure you're calling was
defined as a FAR procedure. In other words, the assembler uses the definition
of the procedure that you're calling to determine the type of CALL instruction
that's needed.

For the RET instruction, on the other hand, the assembler looks at the defi-

PROC TWO PROC NEAR
CALL PROC ONE -+-----------------------------------.

RET
PROC TWO ENDP

· .. ·.

129

····
' . ,
' I . . .
'

t

PROC ONE PROC FAR

RET
PROC ONE ENDP

Figure II-5. T e ssembler Produces a FAR CALL.

PROC ONE PROC FAR

~ . ./
~.,.

RET +-------
PROC ONE ENDP

Figure 11-6. The Assembler Produces a FAR RET.

nition of the procedure that contains the RET instruction. In our program, the
RET instruction for PROC_ONE will be a FAR RET, because PROC_ONE is
declared to be a FAR procedure. Likewise, the RET in PROC_TWO is a
NEAR RET.

ore o the INT Instruction
The INT instruction is much like a CALL instruction, but with a minor

difference. The name INT comes from the word interrupt. An interrupt is an
external signal that causes the 8088 to execute a procedure and then return to

130 •m nt

what it was doing before it received the interrupt. An INT in truction doesn't
interrupt the 8088, but it treated a if it did.

When the 8088 receives an interrupt it need to store more information on
the stack than just the two word for the return addre s. It has to store the
value of the tatu flags-the carry flag the zero flag, and so on. These val
ues are stored in one word known a the Flag Register, and the 8088 pushe
thi information onto the tack before the return addre . Heres why we need
to ave the tatu flag .

Your IBM PC regularly re pond to a number of different interrupts. The
80 8 inside your IBM P receive an interrupt from the clock 1 .2 times ev
ery second, for example . Each of the e interrupt cau e the 80 8 to stop what
it' doing and execute a procedure to count the clock pulse .

Now envision uch an interrupt occurring between these two program
in tructions:

Cl1P AH,2
JNE OT_2

Let' a ume AH = 2 o the zero flag will be et after the CMP instruction,
which mean that the JNE in truction will not branch to NOT_2.

Now, imagine that the clock interrupts the 8088 between these two instruc
tions. That means the 8088 runs off to carry out the interrupt procedure
before it checks the zero flag (with the J E in truction). If the 8088 didn't
save and restore the flag registers, the JNE instruction would use flags set by
the interrupt procedure not from our CMP instruction. To prevent such disas
ters the 8088 always saves and restores the flag register for interrupts. An
interrupt saves the flags, and an IRET (Interrupt Return) instruction restores
the flags at the end of the interrupt procedure.

The same is true for an INT instruction. Thus, after executing the
instruction:

INT 21

the 8088's stack will look like this:

Top of s t ack .. Old IP (retur n address part I)
Old cs (return address part II)
Ol d Fl ag Register

(The stack grows into lower memory, so the top-of-stack is below the Old Flag
Register).

Peter Norton's As embly Language Book 131

When we place an INT instruction in a program, however, the interrupt is
no surprise. Why, then, do we want to save the flags? Isn't saving the flags
useful only when we have an external interrupt that comes at an unpredict
able time? As it turns out, the answer is no. There is a very good reason for
saving and restoring the flags for INT instructions. In fact, without this fea
ture, Debug wouldn't be possible.

Debug uses a special flag in the flag register called the Trap Flag. This flag
puts the 8088 into a special mode known as single-step mode, which Debug
uses to trace through programs one instruction at a time. When the trap flag
is set, the 8088 issues an INT 1 after it executes any instruction.

The INT 1 also clears the trap flag, so the 8088 won't be in single-step mode
while we're inside Debug's INT 1 procedure. But since INT 1 saved the flags to
the stack, issuing an IRET to return to the program we're debugging restores
the trap flag. Then, we'll receive another INT 1 interrupt after the next in
struction in our program. This is just one example of when it's useful to save
the flag registers. But, as we'll see next, this restore-flag feature isn't always
appropriate.

Some interrupt procedures bypass the restoration of the flag registers. For
example, the INT 21h procedure in DOS sometimes changes the flag registers
by short-circuiting the normal return process. Many of the INT 21h proce
dures that read or write disk information return with the carry flag set if
there was an error of some sort (such as no disk in the drive).

Where do these interrupt instructions get the addresses for procedures?
Each interrupt instruction has an interrupt number, such as the 21h in INT
21h. The 8088 finds addresses for interrupt procedures in a table of interrupt
vectors, which is located at the very bottom of memory. For example, the two
word address for the INT 21h procedure is at 0000:0084. We get this address
by multiplying the interrupt number by 4 (4 * 2lh = 84h), since we need four
bytes, two words, for each vector, or procedure address.

These vectors are exceedingly useful for adding features to DOS, because
they enable us to intercept calls to interrupt procedures by changing the ad
dresses in the vector table. We won't do that in this book, though. Such tricks
are too advanced for us just now.

All these ideas and methods should become clearer as we see more exam
ples. Most of this book from here on will be filled with examples, so there will
be plenty to study. If you've been feeling a bit overwhelmed by new informa-

=c===~~~~---- -----

132 gm nt

tion, re t easy. We'll take a hort breather in the next chapter, and get our
selves reoriented and back on cour e.

um mar
As we aid thi chapter contained a lot of information. We won't use it all,

but we did need to learn more about egment . Chapter 13 will bring us to
modular design, and we'll u e om a pects of egment to make our job
easier.

We began thi chapter by learning how the 8088 divides memory into seg
ments. To under tand egment in more detail we built an .EXE program
with two different egment . We wont use .EXE programs in this book, but an
.EXE program demon trated the idea of egment nicely here.

We al o found that the lOOh 256 byte scratch area at the start of our pro
grams contain a copy of what we typed on the command line. Again, we won't
u e this knowledge in this book, but it help us ee why DOS sets aside such a
large chunk of memory for the purpo e.

And, we finally got around to learning about the SEGMENT, ENDS, AS
SUME NEAR and FAR pseudo-ops. The e are all p eudo-ops that help us
work with segment . In this book, we'll barely use the power of these pseudo
ops, because our .COM programs will use only one segment. But for program
mers who write huge programs in as embly language, these pseudo-ops are
invaluable. If you're interested, you'll find the details in your macro assem
bler manual.

At the very end of this chapter we learned more about the roots of our help
ful INT instruction. Now, we're just about ready to slow down and learn how
to write larger and more useful assembly language programs.

12

COURSE CORRECTIONS.

Diskettes, Sectors, and Dskpatch 134
The Game Plan 136
Summary 138

133

134 ur rr u n

We've been poking our no es into a lot of new and interesting places, and
you may, at times, have wondered whether we've been wandering about some
what aimles ly. We haven't been, of cour e. We're now familiar enough with
our new urrounding to fix our ight and plot a cour e for the rest of this
book. And that' what we'll do in thi chapter: We 11 take a close look at a
design for our D kpatch program. Then we 11 pend the re t of this book devel
oping D kpatch much a you will later develop programs of your own.

We wont present the fini hed ver ion of Dskpatch all at once; that isn't the
way we wrote it. In tead we 11 pre ent short test program to check each stage
of our program a we write it. To do hi we need to know where we want to
go. Hence our course correction here.

Since D kpatch will deal with information on di ks, that's where we'll
begin.

t r an
The information on your floppy disks is divided into sectors, with each sector

holding 512 bytes of information. A double-sided disk formatted with DOS 2.0
or above has a total of 720 sectors or 720 * 512 = 368,640 bytes. If we could
look directly at these sectors, we could examine the directory directly, or we
could look at the files on the disk. We can't-not by ourselves-but Dskpatch
will. Let's use Debug to learn more about sectors and get an idea of how we'll
display a sector with Dskpatch.

Debug has a command L (Load), to read sectors from disk into memory,
where we can look at the data. As an example, let's look at the directory that
starts at sector 5 on a double-sided disk. Load sector 5 from the disk in drive A
(that's drive 0 to Debug) by using the L command like this:

-L 1.00 0 5 1

As you can see in Figure 12-1, this command loads sectors into memory, start
ing with sector 5 and continuing through one sector at an offset of 100 within
the data segment. To display sector 5, we can use a Dump command:

-0 100
3g6f:0100 4g 42 40 42 4g 4F 20 20-43 4F 40 27 DO 00 DO 00 IBHBIO COM'
3g6f:D110 00 OD OD OD OD DO DO 60-68 06 02 00 DO 12 00 OD ' h
3gbf:012D 4g 42 40 44 4F 53 2D 20-43 4F 40 27 OD DO DO OD IBMDOS COM'

Address to load
segment at.

Sector number
to read

~ I
- L 100 0 5 1

Disk to read Number of
from (drive A: = 0) sectors to read

Figure 12-1. DEBUG's Load Command.

396F:D130 DO DD DD DD DD DD DD 60-611 06 07 DD DD L;3 DD DD ' h c ..
396F: OMO 0 L;F L;D L;D L;1 L;E L;L; 20-L;3 L;F L;D 20 DD DD DO DD COMMAND COM
396F:D1SD DD DD DD DD DD DD DD 60-611 06 111 DD DD L;S DD DO ' h E . .
396F:0160 L;1 S3 S3 L;S L;D L;2 L;C L;S-S2 20 20 011 DD DD DD DD ASSEMBLER
396F:0170 DO OD DD DD DD DD 33 CJC-BO 06 DD DD DD DD DD DD 3. 0
-D
396F: 01110 L;6 S7 20 20 20 20 20 20-L;3 L;F L;D 20 DD DD DO DD FW COM
396F: 0190 DD OD OD DD DD DD DD 00-6F OS 2A DD 110 AF OD DD o. * .. I ..
396F: 01AD L;6 S7 20 20 20 20 20 20-L;F S6 L;C 20 DD DO DO DD FW OVL
396F: 01BD DD OD DD DO OD DD OD 00-72 OS S6 DD 111 02 DD DD r. V
396F: 01CD L;6 S7 20 20 20 20 20 20-S3 S7 so 20 DD OD DD DD FW SWP
396F: 01DO DD DD DD DD OD DO CJB /IA-FF 06 S7 DD DD Cl\ DD DD W .. A ..
396F: 01ED L;3 L;F L;E L;6 L;CJ L;7 20 20-L;L; L;1 SL; 20 DD DD DD DD CONFIG DAT
396F: 01FO DD OD DD OD DD DD 1D 112-A1 06 llCJ OD OD 211 DO DD ! (..

135

We'll use a format much like this for Dskpatch, but with many improve
ments. Dskpatch will be the equivalent of a full-screen editor for disk sectors.
We'll be able to display sectors on the screen and move the cursor about the
sector display, changing numbers or characters as we want. We'll also be able
to write this altered sector back to the disk, and this is why we call it Disk
Patch~r rather Dskpatch, since we can't have more than eight characters in
the name.

Dskpatch is the motivation for the procedures we write. It is by no means an

136 l ur c orr 1.11 n

end in itself. In u ing D kpatch a an example for thi book we 11 also manage
to pre ent many procedure that you'll find u eful when you attempt to write
your own program . That mean you'll find many general-purpo e procedures
for di play output, di play manipulation, keyboard input and more.

Let' take a clo er look at ome improvem nt we'll make to Debug's sec
tor dump. The di play from Debug only how the ' printable' characters-
96 out of the 256 dif~ rent character that an IBM PC can di play. Why is
that? Becau e M -D -D ' cou in, run on many different com
puter . ome of the e computer di play only 96 character , o Micro oft (the
author of Debug) cho to writ one ver ion of Debug that would work on all
machine .

D kpatch i for IBM Per onal omputer and near cou ins, owe can dis
play all 256 different character ; to do o will require a bit of work. U ing the
DO function 2 for character output, we can di play almost all characters, but
DO give pecial m aning t ome, uch a 7, which ring the bell. There are
character for pecial code like 7, and in Part III we'll ee how to display
them.

We'll also make heavy u e of the function key o that, for example, we can
display the next sector just by pres ing the F2 key. And we'll be able to
change any byte by moving the cur or to that byte and typing in a new
number. It will be ju t like u ing a word proce or, where we can change char
acter very easily. More of these detail will appear as we slowly build
Dskpatch. (Figure 12-2 hows what its normal display will look like-a vast
improvement over the display from Debug.)

T e Garn P
In Chapter 13, we 11 learn how to break our program into many different

source files. Then, we'll begin serious work on Dskpatch in Chapter 14. At the
end, we'll have nine source files for Dskpatch that have to be linked together.
And even if you don't enter and run all these programs now, they'll be here
when you're ready for them, or when you want to borrow some of the general
purpose procedures. In any case, you'll get a better idea of how to write long
programs as you read through the following chapters.

We've already created several useful procedures, such as WRITE_HEX to
write a byte as a two-digit hex number and WRITE_DECIMAL to write a
number in decimal. Now, we'll write some programs to display a block of
memory in much the same way Debug's D command does. We'll start by dis
playing 16 bytes of memory, one line of Debug's display, and then work

·Peter Norton's As embly Language Book 13 7

Disk A Sector 0

BB 01 02 83 84 0S B6 07 0B B9 BA BB 0C BD 0E 0F
I I I

08 ll]l21 98 49 42 4D 2B 2B 33 2E 31 BB 0Z 0Z 01 B0
10 0Z 70 00 DB 8Z FD 0Z 00 09 00 0Z 00 0B 00 00 B0
Z0 BB 00 B0 C4 SC 0B 33 ED BB C0 07 BE DB 33 C9 0A
30 DZ 79 BE B9 lE lE B0 BC B6 ZB 00 BB 16 22 80 Bl
40 BZ BE cs BE DS BC 0B 7C Sl re lE 36 cs 36 7B 00
S0 BF Z3 7C B9 BB 00 F3 A4 lF BB 0E 2C 00 A0 1B B0
60 AZ Z7 00 BF 7B B0 BB Z3 7C AB 91 AB Al 16 BB Dl
70 E0 40 EB B0 BB EB B6 B0 BB 00 0S S3 B0 01 EB AB
B0 BB SF BE 73 01 B9 0B 00 90 F3 A6 7S 6Z B3 C7 15
90 Bl 0B 90 90 F3 A6 ?S S7 26 BB 47 lC 99 BB 0E 0B
A0 00 03 Cl 4B F7 Fl BB 3E 71 01 68 75 82 B8 14 96
B0 Al 11 00 Bl 04 D3 EB EB 3B 00 FF 36 lE 00 C4 1E
C0 6F 01 EB 39 00 EB 64 00 ZB re 76 0D EB 26 00 S2
D0 F? 26 0B 00 03 DB SA EB E9 CD 11 B9 02 00 D3 E0
E0 B0 E4 03 74 04 FE C4 BA CC SB SB FF 2E 6F 01 BE
F0 B9 01 EB SS 90 01 06 lE 00 11 2E 20 00 C3 Al 1B

I I I

Press function key, or enter character or hex hyte:

81234S67B9ABCDEF

~!EIBM 3.119199
19p JJ.et19 o 19

-\a3.s1 L. At31
vYf1eU it e."
19AtA f8 : Q1 •6-f-6x
, 1: lcf rn•en, u
6' l x 1 •:%~%•- 'f
c@§~ U l ~S!~f,~§%

_J s9flcf Ei!uhaH
lcfEEi!uW&1GLij1f1cf
tlH:±~> qQ • u19 ~J411u

1 ~ l+IH; 6A -A

oQ§9 u +=vru R
=U •tz~9=~~19 le
~ttt+•-e~CX .~
eG~UEGt• ~. ~lt

Figure 12-2. Example of Dskpatch's Display.

toward displaying 16 lines of 16 bytes each (half a sector). A full sector won't
fit on the display at one time with the format we've chosen, so Dskpatch in
cludes procedures for scrolling through a sector using the ROM BIOS-not
DOS-interrupts. That will come much later, though, after we've built a full
screen display of half a sector.

Once we can dump 256 bytes from memory, we'll build another procedure to
read a sector from the disk into our area of memory. We'll dump half a sector
on the screen, and we'll be able to use Debug to alter our program, so we can
dump different sectors. At that point, we'll have a functional , but not very
attractive display, so making it pretty comes next.

With a bit more work and some more procedures, we'll rebuild the half
sector display to be much more pleasing aesthetically. It still won't be a full
screen display, so it will just scroll past like Debug's dump did. But the full
screen display will come next, and through it, we'll learn about the ROM
BIOS routines that allow us to control the display, move the cursor .. . that
sort of thing. Then, we'll be ready to learn how to use more ROM BIOS rou
tines to print all 256 different characters.

Next will come the keyboard input and command procedures that will let us

13 rr · ti n

start interacting with D kpatch . About that time we'll al o need another
cour e corr ction.

m
We've en enough of the futur here. You hould have a better idea of

where we re head d o let' mov on to the next chapter, where we'll lay the
groundwork for modular de ign and learn how to plit a program into many
different ource file . Then, in hapt r 14, we 11 writ ome test procedure to
di play ction of m mory.

MODULAR DESIGN

Separate Assembling 140
The Three Laws of Modular Design 144
Summary 147

139

13

140 t ul r l 1 !Tl

Without modular de ign, D kpatch wouldn t have been much fun to write.
U ing a modular de ign greatly ea the ta k of writing any but the malle t
program. We'll u e thi chapter to et ome ground rule for modular de ign,
and we'll follow tho e rul throughout the re t of thi book. Let' begin by
learning how to eparate a large program into many different ource file .

In hapter 10, we added the procedure WRITE_DE IMAL to VIDEO_
IO.A M and we al o add d a hart t t procedure called TE T_ WRITE_
DE IMAL. Let take th1 te t procedure out ofVIDEO_IO.A Mand put it in
a file of it own called TE T.A M. Then, we'll a emble the e two file epa
rately and link them together into one program. Here i the TEST.A M file:

Listing 13-1. The File TEST.ASM

CODE_SEG SEGHE T POBLIC
ASSOHE CS:CODE_SEG
ORG 100h

EXTRN WRITE_DECI AL: EAR

TEST_WRITE_DECIHAL PROC
HOV
CALL
INT

DX,123~5

WRITE_DECIMAL
20h

TEST_WRITE_DECIHAL E DP

CODE_SEG ENDS

NEAR

END TEST_WRITE_DECIHAL

;Return to DOS

We've seen most of this source file before, but some of it is new, so let's begin
at the top and work our way down. First, the word PUBLIC now appears after
SEGMENT. This tells the assembler we want this segment (CODE_SEG)
combined into one segment along with all other segments that have the same
name-the code segment, in this case. The assembler just passes this informa
tion on to the linker, which, as its name implies, links different files. The
linker does the work of stitching the different pieces of each segment together.

<XIE SEGSEGA:NT
PUBLIC
(from file 1)

CXXESEG~
PUBLIC
(from file 2)

DATA_SEG

DATA_SEG SEGMENT
PUBLIC
(from file 1)

DATA SEGSEGMENT
PUBLIC
(from file 2)

igure 13-1. LINK Stitches Together Segments From Different Files.

141

Our file now contains the EXTRN pseudo-op. The statement EXTRN
WRITE_DECIMAL:NEAR tells the assembler two things: that WRITE_
DECIMAL is in another, external, file, and that it's defined as a NEAR proce
dure in that file, so it should be in the same segment. The assembler thus
generates a NEAR CALL for this procedure; it would generate a FAR CALL if
we had placed a FAR after WRITE_DECIMAL.

EXTRN WRITE DECIMAL:NEAR
TEST WRITE DECIMAL

CALL WR~AL
???? +

LINK provides
the address

Figure 13-2. LINK Assigns the Addresses for External Nam es.

142 ic I. r l ign

These are about the only change we need for eparate source files until we
begin to tore data in memory. At that point, we 11 introduce another segment
for data. Now, let' modify VIDEO_IO.A M, and then a semble and link
these two file .

Remove the procedure TE T_ WRITE_DECIMAL from VIDEO_IO.ASM.
We've placed this in TE T.A M o we don't need it in Video_io. Then, re
move the ORG IOOh tatement from Video_io. We moved this, too, to
TEST.ASM, which now ha the fir t procedure in our program. As we saw in
Chapter 11 the ORG lOOh stat ment i needed to ave 256 bytes for the
scratch area at the beginning of our program-that i , before TEST_ WRITE_
DECIMAL in the ourc fil TE T.A M.

Next we have to put the word PUBLIC after SEGMENT, like this:

CODE_SEG SEG ENT POBLIC

so the linker will know that it hould combine thi egment with the same
segment in TEST.ASM.

Finally, change E D TEST_ WRITE_DECIMAL at the end of VIDEO_
IO.ASM to just E D. Once again, we moved the main procedure to
TEST.ASM. The procedure in VIDEO_IO.ASM are now external procedures,
nothing more. That i they have no function by themselves; they must be
linked to procedures that call them from other files. We don't need a name
after the END pseudo-op in VIDEO_IO.ASM, because our main program is
now in TEST.ASM.

When you've finished making these changes, your VIDE0 _10.ASM source
file should look something like this:

CODE_SEG SEGHENT PUBLIC
ASSOME CS:CODE_SEG

PUBLIC WRITE_REX_DIGIT

WRITE_REX_DIGIT ENDP

PUBLIC WRITE_REX

WRITE_HEX ENDP

Peter Norton's Assembly Language Book 143

PUBLIC WRITE_CHAR

WRITE_CHAR ENDP

PUBLIC WRITE DECIMAL

WRITE_DECIMAL ENDP

CODE_SEG ENDS

END

with an ASSUME at the the start.
Assemble these two files just as you assembled Video_io before. TEST.ASM

knows all it needs to know about VIDEO_IO.ASM through the EXTRN state
ment. The rest will come when we link the two files.

You should now have the files TEST.OBJ and VIDEO_IO.OBJ. Use the fol
lowing command to link these two files into one program named TEST.EXE:

A>LINK TEST VIDEO_IO;

LINK stitches the procedures of these two files together to create one file con
taining the entire program. It uses the first file name we entered as the name
for the resulting .EXE file, so we now have TEST.EXE.

Finally, create a .COM file, just as you did before, by typing EXE2BIN
TEST TEST.COM. That's it, we created one program from two source files.
The final .COM program is identical to the version we created from the single
file VIDEO_IO.ASM, when it contained the main procedure TEST_ WRITE_
DECIMAL.

We'll make heavy use of separate source files from here on, and their value
will become clearer as the procedures stack up. In the next chapter, we'll write
a test program to dump sections of memory in hex. We'll usually write a sim
ple test version of a procedure before we write the complete version. Doing so
will allow us to see how to write a good final version, as well as saving much
effort and mental turmoil in the process.

There are several other useful ways to save effort. We call them the Three
Laws of Modular Design.

144 M ul.r [l: 1gn

La du la n
These laws are summarized in Table 13-1. They aren't really laws, they're

suggestions. But we'll u e them throughout thi book. Define your own laws if
you like, but either way, stick to the ame one all the time. Your job will be
much easier if you're con i tent.

Tabl 13, I. of Modular De ign

1. Save and restore all register , unless the procedure returns a value in
that regi ter.

2. Be consistent about which regi ter you u e to pass information. For ex-
ample:

* DL DX-Send byte and word value .
* AL, AX-Return byte and word value
* BX:AX-Return double-word values.
* DS:DX-Send and return addre es.
* CX-Repeat count and other count .
* CF-Set when there is an error; an error code should be returned in

one of the registers, such as AL or AX.

3. Define all external interactions in the comment header:
* Information needed on entry.
* Information returned (registers changed).
* Procedures called.
* Variables used (read, written, and so on).

There's an obvious parallel between modular design in programming and
modular design in engineering. An electrical engineer, for example, can build
a very complicated piece of equipment from boxes that perform different func
tions, without knowing how each box works. But if each box uses different
voltages and different connections, the lack of consistency creates a major
headache for the poor engineer, who must somehow provide a different volt
age for each box and create special connections between boxes. Not much fun,
but fortunately for the engineer, there are standards providing for only a
small number of standard voltages. So, perhaps only four different voltages
need to be provided, instead of a different voltage for each box.

Modular design and standard interfaces are just as important in assembly
language programs, and that's why we'll lay down the laws (so to speak), and
use those laws from here on. As you'll see by the end of this book, these rules
will make our task much simpler. Let's take a look at these laws in detail.

Peter Norton's A embly Language Book 145

Save and restore all registers, unless the procedure returns a value in
that register. There aren't that many registers in the 8088. By saving reg
isters at the start of a procedure, we free them for use within that procedure.
But we must be careful to restore them at the end of the procedure. You'll see
us doing this in all our procedures, with PUSH instructions appearing first in
each procedure, and POPs at the end.

The only exception is for procedures that must return some information to
the calling procedure. For example, a procedure that reads a character from
the keyboard must somehow return the character. We won't save any regis
ters that we use to return information.

Short procedures also help the register-shortage problem. At times, we'll
write a procedure that's used only once. Not only does this help with the
shortage of registers, it also makes the program easier to write and, often,
easier to read. We'll see more of this as we write procedures for Dskpatch.

Be consistent about which registers you use to pass information.
Our job becomes simpler if we set standards for exchanging information be
tween procedures. We'll use one register for sending information, and one for
receiving information. We'll also need to send addresses for long pieces of
data, and for this we'll use the pair of registers DS:DX, so that our data can be
anywhere in memory. You'll learn more about this when we introduce a new
segment for data and begin to make use of the DS register.

We reserve the CX register for repeat counts. We'll soon write a procedure
to write one character several times, so that we can write ten spaces by calling
this procedure CWRITE_CHAR_N_TIMES) with CX set to 10. We'll use the
CX register whenever we have a repeat count or when we want to return some
count, such as the number of characters read from the keyboard (we'll do this
when we write a procedure named READ_STRING).

Finally, we'll set the Carry Flag (CF) whenever there is an error, and we'll
clear it whenever there isn't an error. Not all procedures use the carry flags.
For example, WRITE_ CHAR always works, so there's no reason to return an
error report. But a procedure that writes to the disk can encounter many er
rors (no disk, write-protection, and so on). In this case, we'll use a register to
return an error code. There's no standard here, because DOS uses different
registers for different functions. Its fault, not ours.

Define all external interactions in the comment header. There's no
need to learn how a procedure works if all we want to do is use it, and this is
why we place a detailed comment header before each procedure. This header

146 1 ul.r 0 1gn

contains all the information we need to know. It tell us what to place in each
register before calling the procedure and it tell what information the proce
dure returns. Mo t procedure u e regi ter for their variables, but some of
the procedure we 11 oon ee u e variable in memory. The comment header
hould ay which of these memory variable are read and which are changed.

And lastly, each header hould li t other procedures called. Here is an exam
ple of a full-blown header with much of thi information:

This is an example of a full-blo n header. This part would nor ally
be a brief description of ha this procedure does. For exa ple ,
this procedure ill ri e he essage "Sector " on he firs line.

DS:DX Address of he essage "Sec or "
Calls: GOTO_XY, WRITE_STRING (procedures called)
Reads: STATUS LINE_NO (e ory variables read only)
Writes: DOKKY (e ory variables altered)

Whenever we want to u e any procedure we've written, we can just glance
at this comment header to learn how to use it. There will be no need to delve
into the inner workings of the procedure to find out what it does.

These laws make assembly language programming easier and we'll be cer
tain to abide by them but not necessarily on the first try-we often won't. The
first version of a procedure or program is a test case. Frequently, we don't
know exactly how to write the program we have in mind, so on these "rough
drafts,' we'll write the program without concern for the laws of modular de
sign. We'll just plow through and get something that works. Then we can
backtrack and do a good job by rewriting each procedure to conform to these
laws.

Programming is a process that goes by leaps and bounds. Throughout this
book we'll show much of the stuttering that went into writing Dskpatch, but
we certainly can't show it all. There isn't room enough to contain all the ver
sions we wrote before we settled on the final version. Our first tries often bore
very little resemblance to the final versions you'll see, so when you write pro
grams, don't worry about getting everything right the first time. Be prepared
to rewrite each procedure as you learn more about what you really want.

In the next chapter, we'll build a simple test program to print a block of
memory. It won't be the final version; we'll go through others before we're
satisfied, and even then, there will be other changes we'd like to make. The
moral is: A program is never done ... but we must stop somewhere.

Peter Norton's Assembly Language Book 147

This has been a chapter for you to remember and use in the future. We
began by learning how to separate a program into a number of different
source files that we can assemble independently, then stitch together with the
linker. We used the PUBLIC and EXTRN pseudo-ops to inform the linker that
there are connections between different source files. PUBLIC says that other
source files can CALL the procedures named after PUBLICs, while EXTRN
tells the assembler that the procedure we want to use is in another file .

We also used PUBLIC after the SEGMENT definition so that the linker will
stitch together segments of the same name that are in different source files.

Then we moved on to the Three Laws of Modular Design. These rules are
meant to make your programming job simpler, so use them when you write
your own programs, just as you'll see us use them in this book. You'll find it
easier to write , debug, and read programs if they conform to these Three
Laws.

DUMPING MEMORY

Addressing Modes 150
Adding Characters to the Dump 156
Dumping 256 Bytes of Memory 158
Summary 163

149

14

150 umpin

Eom here on, we'll concentrate on building D kpatch in much the same way
we originally wrote it. Some of the in truction in procedure to come may be
unfamiliar we 11 explain each briefly a we come aero s them but for detailed
information you'll need a book that covers all of the in tructions in detail.

Rather than cover all the 0 in truction , we'll concentrate on new con
cepts, uch a the different mode of addre ing memory, which we'll cover in
this chapter. In Part III, we II move even farther away from the details of
instruction and begin to ee information pecific to the IBM Per onal Com
puter and it near cou in .

Now, let learn about addre ing mode by writing a hort te t program to
dump 16 byte of memory in hex notation. To begin we need to learn how to
u e memory a variable .

•
ID d

We've een two addres ing mode · they're known a the register and imme
diate addressing mode . The fir tone we learned about was the register mode,
which u e regi ter as variable . For example, the instruction:

HOV AX,BX

uses the two registers AX and BX as variables.
Then, we moved on to the immediate addressing mode, in which we moved a

number directly into a register, as in the example:

HOV AX,2

This moves the byte or word of memory immediately following the instruction
into a register. In this sense, the MOV instruction in our example is one byte
long, with two more bytes for the data (0002):

3~bF:0100 880200 HOV AX,0002

The instruction is B8h, and the two bytes of data (02h and OOh) follow this
(remember that the 8088 stores the low byte, 02h, first in memory).

Now, we'll learn how to use memory as a variable. The immediate mode

Peter Norton's Assembly Language Book 151

allows us to read the piece of fixed memory immediately following that one
instruction, but it doesn't allow us to change memory. For this, we'll need
other addressing modes.

Let's begin with an example. The following program r~a,.i_s 16 bytes of mem
ory, one byte at a time, and displays each byte in hex notation, with a single
space between each of the 16 hex numbers. Enter the program into the file
DISP _SEC.ASM and assemble it. Later, we'll want to change VIDEO_
10.ASM slightly, but first, let's take care of DISP _SEC.ASM:

Listing 1~-1. The New File DISP SEC.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

;Group two segments together

CODE_SEG
ORG

SEGMENT
100h

EXTRN WRITE HEX:NEAR
EXTRN WRITE_CHAR:NEAR

PUBLIC

---' ; This is a simple test program to dump 16 bytes of memory as hex
; numbers, all on one line.

DISP_LINE
XOR
MOY

HEX LOOP:
MOY
CALL
MOY
CALL
INC
LOOP
INT

DISP LINE

CODE_SEG

DATA_SEG
PUBLIC

SECTOR DB
DB

DATA_SEG

PROC NEAR
BX,BX
CX,16

DL,SECTOR[BXJ

;Set BX to 0
;Dump 16 bytes

;Get 1 byte
WRITE_HEX ;Dump this byte in hex
DL, I I ;Write a space between numbers
WRITE_CHAR
BX
HEX_LOOP
2Dh
ENDP

ENDS

SEGMENT PUBLIC
SECTOR

; Return to DOS

10h, 11h, 12h, 13h, Mh, 15h, 16h, 17h
11\h, 19h, 1Ah, 1Bh, 1Ch, 1Dh, 1Eh, 1Fh
ENDS

;Test pattern

END DISP_LINE

152 um ing M ·m r

Notice that we've put the data segment (DATA_SEG) after the code seg
ment (CODE_SEG). We've put it at the end of the file so the linker will load
the data in memory at the end of our program.

We've also added a few new trick to thi program, and for this reason we
need to make some mall change to VI EO_IO.ASM. Fir t remove the AS
SUME tatement in Video_ io and place the following two line at the begin
ning of VIDEO_IO.ASM:

CGROOP GROOP CODE_SEG
ASSOME CS:CGROUP

;Group t o segments together

We'll place the e two line at the beginning of each file from now on, with one
light variation. We'll writ :

CGROOP GROOP CODE_SEG , DATA_SEG
ASSUME CS:CGROOP, DS:CGROOP

;Group t ~o segments together

(with DATA_SEG) whenever we have both a code segment and a data seg
ment in the file .

The A SOME h re replace the old AS UME, and we'll see later what
these two statement actually do. But now, let's try our new program to see
how it works. Assemble both Disp_sec and Video_io.

We're ready to link DISP _SEC.OBJ and VIDEO_IO.OBJ and run the re
sult through Exe2bin, so first use LINK to create an .EXE file named DISP _
SEC.EXE. The first file name in the LINK command must be the name of the
file that contains the main procedure (Disp_sec in this case), and a semicolon
must appear at the end of the list of files, so type:

A>LINK DISP_SEC VI DEO_I O;

Linking will always be the same, with more names before the semicolon
when we have more files, but the main procedure must always be in the first
file listed.

Now, convert the .EXE file to a .COM file by typing:

A>EXE2BIN DISP_SEC DISP_S]C.COM

In general, the two preceding steps for the files filel, file2, and so on, look
like this:

Peter Norton' A mbly Language Bool< 153

LINK file1 file2 file3 ... ,
EXE2BIN file1 file1.COM

Now, run the .COM file. Make sure you've run Exe2bin before you run
Disp_sec. Otherwise, you'll end up running the .EXE version ofDisp_sec, and
who knows what will happen. At worst, you'll have to turn your computer off,
wait about a minute, and then turn it on again to reset it.

If you don't see:

10 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F

when you run the program, go back and check carefully for a mistake.
Now, let's see how Disp_sec works. The instruction:

MOV DL,SECTOR[BXJ ;Get 1 byte

uses a new addressing mode known as Indirect Memory Addressing-address
ing memory through the Base register with offset, or more simply, Base Rela
tive. Let's see what this really means.

0431 +BX

MOVDL,~

SECT~:

0434: 0013
0433: 0012
0432: 0011
0431: 0010

Figure 14-1. Translation of SECTOR[BX].

Looking at Disp_sec, you'll see that the label SECTOR is in a segment
named DATA_SEG. This is a new segment used for memory variables. Any
time we want to store and read data in memory, we'll set aside some space in
this segment. We'll get back to memory variables in just a minute, but first
let's learn a little more about segments.

The ASSUME DS:CGROUP tells the assembler where to find memory vari-

154 umpan

ables. You might have gue ed we'd want AS UME DS:DATA_SEG. Not
quite, becau e we want to build a .COM file , we mu t build only one segment.
Yet, it's convenient to work with two: one for the code and one for the data.
Thi i where the GROUP p eudo-op enter the cene. GROUP group differ
ent segment into what i effectively one egment with the name we give
before the GROUP p eudo-op. o th tatement:

CGROUP GROUP CODE_SEG, DATA_SEG

merge the two egment ODE_ EG and DATA_SEG into a single 64K seg
ment with the name CGROUP. The inner working of groups are a bit more
complicated than thi , but we don t need to know any more details. If you
want the detail you 11 find them in your macro a embler manual. Be
warned, however : They are a bit difficult to read.

Its time to get back to our ba e-relative addre sing mode. The two lines:

SECTOR DB
DB

1Dh, 11h , 12h , 13h , 1~h, 1Sh , 1bh, 17h ;Test patte rn
18h, 1%, 1Ah , 1Bh , 1Ch , 1Dh 1 1Eh , 1Fh

set aside 16 byte of memory in the data segment starting at SECTOR, which
the assembler converts to an addre . DB, you may recall, stands for Define
Byte; the number after each DB are initial values. So, when we first start
DISP _SEC.COM, the memory starting at SECTOR will contain lOh, llh,
12h, and so on. If we wrote:

HOV DL,SECTOR

the instruction would move the first byte (lOh) into the DL register. This is
known as direct memory addressing. But we didn't write that. Instead, we
placed [BX] after SECTOR. This may look suspiciously like an index into an
array, like the BASIC statement:

K = 1 (10)

which moves the 10th element of L into K.
In fact, our MOV instruction is much the same. The BX register contains an

offset in memory from SECTOR. So if BX is 0, the MOV DL,SECTOR[BXJ
moves the first byte (lOh here) into DL. If BX is OAh, this MOV instruction
moves the eleventh byte (!Ah-remember, we started at 0) into DL.

Peter Norton's Assembly Language Bcok 155

CS,DS •

CXDE SEG

DATA SEG

Figure 14-2. Groups Treat Multiple Sectors as a Single Segment.

On the other hand, the instruction MOV DX,SECTOR[BX] would move the
sixth word into DX, since an offset of 10 bytes is the same as 5 words, and the
first word is at offset zero. (For enthusiasts: This last MOV instruction is not
legal, because SECTOR is a byte label, whereas DX is a word register. We
would have to write MOV DX,Word Ptr SECTOR[BX] to tell the assembler
that we really want to use SECTOR as a word label in this instruction.)

156 umpm 1 m r

There are many other addre ing mode ; ome we II encounter later, but
mo t we wont. All the addre ing mode are ummarized in Table 14-1.

Regi ter

Immediate

Register Indirect

Base Relative*

Direct Indexed*

Base Indexed*

String Commands:

Tabl 14 .. i. Addre in Mod

Fom1at of Addre

regi ter (uch a AX

data (uch a 12345)

Memory Addre ing Modes

[B J
[BP]
[DI]
[I]

label[BX]
label[BP]

label[DI]
label[I]

label[BX +SI]
label[BX +DI]
label [BP+ SI]
label[BP + DI]

(MOVSW, LODSB and so on)

gment Regi t r U ed

None

None

DS
s

DS
DS

D
SS

DS
DS

DS
DS
SS
SS

Read from DS:SI
Write to ES:DI

* Label[...] can be replaced by [disp + ...], where disp is a displacement.
Thus we could write [lO+BX] and the address would be 10 + BX.

Adding Chara ter to he D
We're almost through the procedure for a dump display similar to De bug's.

So far we ve dumped the hex numbers for one line; in the next step we'll add
the character display following the hex display. It's not very involved so with
out further delay, here's the new version of DISP _LINE (in DISP _SEC.ASM),
with a second loop added to display the characters:

Peter Norton's Assembly Language Boo~ 157

Listing 1~-2. Changes to DISP_LINE in DISP_SEC.ASM

DISP_LINE PROC NEAR
XOR
MOV

BX,BX
CX,16

;Set BX to 0
;Dump 16 bytes

HEX_LOOP:
MOV DL,SECTOR[BXJ ;Get 1 byte
CALL WRITE HEX - ;Dump this byte in hex
MOV DL, I I ;Write a space between numbers
CALL WRITE_CHAR
INC BX
LOOP HEX_LOOP

MOV DL, I I ;Add another space before characters
CALL WRITE_ CHAR
MOV CX,16
XOR BX,BX ;Set BX back to D

ASCII LOOP:
MOV DL,SECTOR[BXJ
CALL WRITE_CHAR
INC BX
LOOP ASCII_LOOP

INT 2Dh ;Return to DOS
DISP LINE ENDP

Assemble this, link it to Video_io, run it through Exe2bin, and try it. Just the
display we wanted. (See Figure 14-3.)

A>disp_sec
10 11 12 13 14 15 16 17 18 19 1A 18 1C 1D 1E 1F ~~l!!11§.lt!+L*''
A>

Figure 14-3. DISP _LINE's Output.

Try changing the data to include a ODh or a OAh. You'll see a rather strange
display. Here's why: OAh and ODh are the characters for the line-feed and
carriage-return characters. DOS interprets these as commands to move the
cursor, but we'd like to see them as just ordinary characters for this part of the
display. To do this, we'll have to change WRITE_CHAR to print all charac
ters, without applying any special meaning. We'll do that in Part III, but for
now, let's rewrite WRITE_CHAR slightly so that it prints a period in place of
the low characters (between 0 and lFh).

158 um m 1 m r

A>disp_sec
18 11 12 13 14 15 16 17 18 19 1A 1B 1C 1D 1E 1F
A>

1 •.

Replace the WRITE_ CHAR in VIDEO_IO.A M with thi new procedure:

Listing 1~-3 . A New WRITE_CHAR in VIDEO_IO. ASM

PUBLIC WRITE_CHAR

This procedure prints a charac er on he screen using he DOS
func ion call. RITE_CBAR replaces he charac ers 0 hrough 1Fh ith
a period.

DL by e o prin on screen.
---' WRITE_CRAR

PUSH
PUSH
Cl1P
JAE
110\'

IS PRINTABLE:
110\'
INT
POP
POP
RET

PROC
AX
DX
DL,32

EAR

IS_PRI TABLE
DL, I • I

AB,2
2Lh
DX
AX

WRITE_ CHAR ENDP

;Is charac er before a space?
;No, hen prin as is
;Yes, replace ith a period

;Call for character output
;Output character in DL register
;Res ore old value in AX and DX

Try this new procedure with Disp_sec and change the data to various charac
ters to check the boundary conditions.

25 of emo
Now we've managed to dump one line, or 16 bytes, of memory. The next

step is to dump 256 bytes of memory. This happens to be exactly half the
number of bytes in a sector, so we're working toward building a display of
half a sector. We still have many more improvements to make; this is just a
test version.

We'll need two new procedures here, and a modified version of DISP _LINE.
The new procedures are DISP _HALF _SECTOR, which will soon evolve into a
finished procedure to display half a sector and SEND_ CRLF which just
sends the cursor to the beginning of the next line (CRLF stands for Carriage

_Peter Norton's Assembly Language Book 159

Return-Line Feed, the pair of characters that move the cursor to the next
line).

SEND_ CRLF is very simple, so let's start with it. Place the following proce
dure into a file called CURSOR.ASM:

Lis t ing 1~-~- The New File CURSOR.ASM

CR
LP

EQU
EQU

13
10

CGROUP GROUP CODE SEG
ASSU ME CS: CGROUP

CODE SEG SEGMENT PUBLIC

PU BLIC SEN D_CRLF

;Carriage return
;Line feed

; This routine just se nds a carriage return-line feed pair to the
; display , using t he DOS routines so that scrolling will be handled
; correctly.

SEND_CRLF PROC NEAR
PUSH AX
PUSH DX
MOV AH, 2
MOV DL, CR
I NT 21 h
MD V DL,LF
INT 21 h
POP DX
POP AX
RET

SE ND_C RL F ENDP

CODE_S EG ENDS

END

This procedure sends a Carriage Return and Line Feed pair, using the DOS
function 2 to send characters. The statement:

CR EQU 13 ; Carriage return

uses the EQU pseudo-op to define the name CR to be equal to 13. So the in
struction MOV DL,CR is equivalent to MOV DL,13. As shown in Figure 14-5
the assembler substitutes 13 whenever it sees CR. Likewise, it substitutes 10
whenever it sees LF.

160 Oum ing M m r

CR EQU 13

r-.-6 13
MOV DL,yn

Figur -5. Th am in la· of umb r .

The file Disp_sec now needs much work. Here's the new version of DISP _
SEC.ASM. From here on, additions to our programs will be shown against a
gray background· text you hould delete will be printed in blue:

Listing 1~-5. The New Version of DISP_SEC.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROOP, DS:CGROUP

CODE_SEG
ORG

SEGMENT PUBLIC
100h

PUBLIC OISP_AALF_SECTOR
EXTRN SEND_CRLF:NEAR

;Group two segments together

This procedure displays half a sector (256 bytes)

Uses: DISP_LINE, SEND_CRLf

DISP_HALF_SECTOR PROC
XOR DX,DX
110V CX,16

BALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF
ADD DX,16
LOOP BALF_SECTOR
INT 2Dh

DISP_BALF_SECTOR ENDP

PUBLIC DISP LINE
EXTRN WRITE_AEX:NEAR
EXTRN WRITE_CHAR:NEAR

NEAR
;Start at beginning of SECTOR
;Display 16 lines

~eter Norton's Assembly Language Book 161

Listing 1L; - S. continued

This procedure displays one l ine of data, or 16 bytes, first in hex,
then in ASCII.

DS:DX Offset into sec t or , in bytes .

Uses: WRITE_CHAR, WRITE_HEX
Reads: SECTOR

DISP_LINE PROC NEA R
v B

PUSH BX
PUSH ex
PUSH DX
l'IOV BX,DX
l'IOV CX,16
PUSH BX

BEX LOOP:

ASCII

l'IOV
CALL
MOV
CALL
INC
LOOP

MOV
CALL
MOV
POP

(' t

LOOP:
MOV
CALL
INC
LOOP

OL,SECTOR[BXJ
WRITE_HEX
OL,' t

WRITE_CHAR
BX
HEX_LOOP

OL, 1 '

WRITE_CHAR
CX,16
BX

'{,

OL,SECTOR[BXJ
WRITE_CHAR
BX
ASCII_LOOP

POP DX
POP ex
POP BX
RET

T 20~

DISP LINE ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PU BL IC
PUBL I C SECTOR

;Offset is more useful in BX
;Dump 16 bytes
;Save the offset for ASCII_LOOP

;Get 1 byte
; Dump this byte in hex
;Write a space between numbers

; Add another space before characters

;Get back offset into SECTOR

SECTO iB
DB

'.Oh, 11.h, 12h, 13h, Mh, 15h, 16h, 17h ;Test pattern
18h, 1'1h, 1Ah, 1Bh, 1Ch, 1Dh, 1Eh, 1Fh

162 umping m r

Listing :Lt;-5. continued

SECTOR DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
DB
05

DATA_SEG
E'D

1b DOP(10h)
tb DUP(11.h)
1b DOP(12h)
1b DOP(13h)
1b DUP(1i;h)
1b DUP(1Sh)
1b DUP(1bh)
16 DUP(17h)
16 DUP(1~h)
lb DOP(1Gh)
16 DUP(1.Ah)
lb DUP(1Bh)
1b DUP(1Ch)
1b DUP(1Dh)
l.b DUP(1Eh)
1b DUP(1Fh)
E OS
DISP_HALF_SECTOR

The change ar all fairly traightforward. In DI P _LINE, we've added a
PUSH BX and POP BX around the HEX_LOOP, becau ewe want to reuse
the initial off: et in A II_LOOP. We've al o added PUSH and POP in truc
tions to ave and re tore all the regi ter we u e within DISP _LINE. Actu
ally DI P _LINE i almost done- the only change we have left are aesthetic,

A>disp_sec
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
11 11 11 11 11 11 11 11 11 11 11 11 11 11 11 11
12 12 12 12 12 12 12 12 12 12 12 12 12 12 12 12
13 13 13 13 13 13 13 13 13 13 13 13 13 13 13 13
14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14
15 15 15 15 15 15 15 15 15 15 15 15 15 15 15 15
16 16 16 16 16 16 16 16 16 16 16 16 16 16 16 16
17 17 17 17 17 17 17 17 17 17 17 17 17 17 17 17
18 18 18 18 18 18 18 18 18 18 18 18 18 18 18 18
19 19 19 19 19 19 19 19 19 19 19 19 19 19 19 19
1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A 1A
1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B 1B
1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C 1C
1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D 1D
1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E 1E
1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F 1F

A>
Figure 14-6. Output From Disp_

................

t I It ff t t t t I I I I I I

If I I I I I I It I I It I I

Peter Norton's Assembly Language Book 163

to add spaces and graphics characters so we'll have an attractive display;
those will come later.

When you link the files, remember that we now have three files: Disp_sec,
Video_io, and Cursor. Disp_sec must be first in this list. After you run the
.EXE version through Exe2bin, you'll see a display like the one in Figure
14-6.

We'll have more files before we're done, but now, let's move on to the next
chapter, where we'll read a sector directly from the disk before we dump half a
sector.

mary
We know more about the different memory modes for addressing memory

and registers in the 8088 microprocessor. We learned about indirect memory
addressing, which we first used to read 16 bytes of memory.

We also used indirect memory addressing in several programs we wrote in
this chapter, starting with our program to print 16 hex numbers on the
screen. These 16 numbers came from an area in memory labeled SECTOR,
which we expanded a bit later so we could display a memory dump for 256
bytes-half a sector.

And, at last, we've begun to see dumps of the screen, as they appear on your
display, rather than as they are set in type. We'll use these screen dumps to
more advantage in the following chapters.

15

DUMPING A DISK SECTOR

Making Life Easier 166
Format of the Make File 167
Patching up Disp_sec 168
Reading a Sector 169
Summary 174

165

166 umpin " Di k

Now that we have a program that dumps 256 byte of memory, we can add
some procedure to read a ector from the di k and place it in memory starting
at ECTOR. Then, our dump procedures will dump the fir t half of this disk
ector.

akin Li£ Ea i r
With the three ource file we had in the la t chapter, life becomes some

what complicated. Did we change all three of the file we were working on, or
ju t two? You probably a embled all three, rather than check to ee if you
made any change ince the la t as emble.

But a embling all of our ource file when we've only changed one of them
is rather slow and will become even lower a D kpatch grows in size. What
we'd really like to do i a emble only the files that we've changed.

Fortunately if you are u ing one of the more recent Macro Assembler pack
age from Micro oft (or you have their C compiler), there is a way you can do
just that. They include a program called Make that does exactly what we
want. To use it we create a file (we'll call it D kpatch) that tells Make how to
do it work then ju t type:

A>MAKE DSKPATCB

Make then assemble only the files you've changed.
The file you create (Dskpatch) tells Make which files depend on which

other files. Every time you change a file, DOS updates the modify time for
this file (you can see this in the DIR display). Make simply looks at both the
.ASM and .OBJ versions of a file. If the .ASM version has a more recent
modify time than the .OBJ version, Make knows that it needs to assemble
that file again.

That's all there is to it, but there is one caveat we need to point out: Make
will work correctly only if you're diligent about setting DOS' date and time
each time you start your computer. Without this information, Make won't al
ways know when you've made changes to a file.

Peter Norton's A sembly Language Book 167

t o e Make File
The format for our file, Dskpatch, that we'll use with Make is fairly simple:

Listing 15-1. The Make File DSKPATCH

disp_sec.obj: disp_sec.asm
masm disp_sec;

video_io.obj: video_io.asm
masm video_io;

cursor.obj: cursor.asm
masm cursor;

di sp_sec.com: disp_sec.obj video_io.obj cursor.obj
link disp_sec video_io cursor;
exe2bin disp_sec disp_sec.com

Each entry has a file name on the left (before the colon) and one or more file
names on the right. If any of the files on the right (such as DISP _SEC.ASM in
the first line) are more recent than the first file (DISP _SEC.OBJ), Make will
execute all the indented commands that appear on the following lines. (Note:
You must indent the command lines with a tab, not with spaces.)

If your assembler has the Make program, enter these lines into the file
Dskpatch (without an extension) and make a small change to DISP _
SEC.ASM. Then type:

A>MAKE DSKPATCH

and you'll see something like the following:

Microsoft (R) Macro Assembler Version ~.DD
Copyright (C) Microsoft Corp 1981, 1983, 198~, 1985. All rights reserved.

~898~ Bytes symbol space free

O Warning Errors
D Severe Errors

link disp_sec video_io cursor;

Microsoft (R) 8086 Object Linker Version 3.05

168 umr in

Copyright (C) Microsoft Corp 1963, 196~, 1905. All rights reserved.

Warning: no stack seg ent
exe2bin disp_sec disp_sec.asm

A>

Make has done the minimum amount of work necessary to rebuild our
program .

If you don't have a recent ver ion of the Microsoft Macro Assembler that
includes Make you'll find this program worth the price of an upgrade. And
you'll get a nice replacement for Debug too. It' called Symdeb (Symbolic
Debugger) and we'll take a look at it later. Now on with Dskpatch.

chi g u
Disp_sec as we left it, included a version of DISP _HALF _SECTOR, which

we used as a test procedure, and the main procedure. Now, we'll change
DISP _HALF _SECTOR to an ordinary procedure so we can call it from a pro
cedure we'll name Disk_io. Our test procedure will be in Disk_io, along with
a test version of the procedure to read a disk sector.

First, lefs modify Disp_sec to make it a file of procedures, just as we did
with Video_io. Change the END DISP _HALF _SECTOR to just END, since
our main procedure will now be in Disk_io. Then remove the ORG lOOh state
ment from CODE_SEG, again because we moved this to a different file.

Since we plan to read a sector into memory starting at SECTOR, there is no
need for us to supply test data. We can replace all the 16 DB statements after
SECTOR with one line:

SECTOR DB 1'>192 DUP (0)

which reserves 8192 bytes for storing a sector.
But recall our earlier statement that sectors are 512 bytes long. So why do

we need such a large storage area? It turns out that some hard disks (300
megabyte, for example) use very large sector sizes. These large sector sizes are
by no means common, but we still want to be certain that we don't read in a
sector that is too large to fit into the memory we've reserved for SECTOR. So,
in the interest of safety, we've reserved 8192 bytes for SECTOR. In the rest of
this book, with the exception of SECTOR, which we'll cover soon, we'll assume
that sectors are only 512 bytes long.

Peter Norton's A embly Language B k 169

Now what we need is a new version ofDISP _HALF _SECTOR. The old ver
sion is nothing more than a test procedure that we used to test DISP _LINE.
In the new version, we'll want to supply an offset into the sector so that we can
display 256 bytes, starting anywhere in the sector. Among other things, this
means we could dump the first half, the last half, or the middle 256 bytes.
Once again, we'll supply this offset in DX. Here is the new-and final-ver
sion of DISP _HALF _SECTOR in Disp_sec:

Listing 15-2. The Final Version of DISP HALF_SECTOR
in DISP_SEC.ASM

PUBLIC DISP_HALF_SECTOR
EXTRN SEND_CRLF:NEAR

This procedure displays half a sector (256 bytes)

' DS:DX Offset into sector, in bytes -- should be multiple of 16;

Uses: DISP_LINE, SEND_CRLF

DISP_HALF_SECTOR PROC NEAR

PUSH ex
PUSH DX
MOV CX,16 ;Display 16 lines

HALF_SECTOR:
CALL DISP_LINE
CALL SEND_CRLF
ADD DX,16
LOOP HALF_SECTOR
POP DX
POP ex
RET

h
DISP_HALP_SECTOR ENDP

Let's move on now to our procedure to read a sector.

In this first version of READ _SECTOR we'll deliberately ignore errors,
such as having no disk in the disk drive. This is not good practice but this
isn't the final version of READ _SECTOR. We won't be able to cover error
handling in this book, but you will find error-handling procedures in the ver
sion of Dskpatch on the disk that is available for this book. For now, though,

we just want to read a sector from the disk. Here is the test version of the file
DISK_IO.ASM:

Listing 15-3. The New File DISK_IO. ASM

CGROOP GROOP CODE_SEG, DATA_SEG
ASSOKE CS:CGROOP, DS:CGROOP

CODE_SEG SEGME T POBLIC
ORG 100h

EXTRH DISP_HALF_SECTOR:HEAR

; This procedure reads he firs sec or on disk A and du ps he first
; half of this sector.

READ_SECTOR
HOV
MOV
MOV
LEA
IHT
POPF
XOR
CALL
IHT

READ_SECTOR

PROC NEAR
AL,O
CX,1
DX,O
BX,SECTOR
2Sh

DX,DX
DISP_HALF_SECTOR
20h
EHDP

CODE_SEG EHDS

DATA_SEG SEGMENT POBLIC
EXTRN SECTOR:BYTE

DATA_SEG ENDS

END READ_SECTOR

;Disk drive A (nu ber 0)
;Read only 1 sector
;Read sector number 0
; here to store this sector
;Read the sector
;Discard flags put on stack by DOS
;Set offset to 0 within SECTOR
;Du p the first half
; Return to DOS

There are three new instructions in this procedure. The first:

LEA BX , SECTOR

moves the address, or offset, of SECTOR (from the start of CG ROUP) into the
BX register; LEA stands for Load Effective Address. After this LEA instruc~
tion, DS:BX contains the full address of SECTOR, and DOS uses this address
for the second new instruction, the INT 25h call, as we'll see after a few more
words about SECTOR. (Actually, LEA loads the offset into the BX register
without setting the DS register; we have to ensure that DS is pointing to the
correct segment.)

P~ter Norton's Assembly Language Book 171

SECTOR isn't in the same source file as READ_SECTOR. It's over in DISP _
SEC.ASM. How do we tell the assembler where it is? We use the EXTRN
pseudo-op:

DATA_SEG SEGMENT PUBLIC
EXTR N SECTOR : BYTE

DATA_SEG ENDS

0000:

CXIE SEG

DATA SEG

0381: SECTCJi:

• • MOV BX,0381
Figure 15-1. LEA Loads the Effective Address.

172 umping a Di

This set of instructions tells the assembler that SECTOR is defined in the
DATA_SEG, which is in another source file, and that SECTOR is a variable
of bytes (rather than words). We'll be using such EXTRNs often in following
chapters; it's the way we use the rune variables in a number of source files.
We just need to be careful that we define our variables in only one place.

DATA SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE

DATA SEG ENDS

A byte variable.
LINK will provide
the address.

'gur 15-2. h TR P udo-Op.

Let's return to the INT 25h instruction. INT 25h is a special function call to
DOS for reading sectors from a disk. When DOS receives a call from INT 25h,
it uses the information in the registers as follows:

AL
ex
DX
DS:BX

Drive number (0 =A, 1 = B, and so on)
Number of sectors to read at one time
Number of the first sector to read (the first sector is 0)
Transfer address: where to write the sectors read

The number in the AL register determines the drive from which DOS will
read sectors. If AL = 0, DOS reads from drive A.

DOS can read more than one sector with a single call, and it reads the
number of sectors given by CX. Here, we set CX to one so DOS will read just
one sector of 512 bytes.

We set DX to zero, so DOS will read the very first sector on the disk. You

Peter Norton's Assembly Language Book 173

can change this number if you want to read a different sector; later on, we
will.

DS:BX is the full address for the area in memory where we want DOS to
store the sector(s) it reads. In this case, we've set DS:BX to the address of
SECTOR, so that we can call DISP _HALF _SECTOR to dump the first half of
the first sector read from the disk in drive A.

Finally, you'll notice a POPF instruction immediately following the INT
21h. As we mentioned before, the 8088 has a register called the status register
that contains the various flags, like the zero and carry flags. POPF is a special
POP instruction that pops a word into the status register. Why do we need
this POPF instruction?

The INT 25h instruction pushes first the status registers, then the return
address onto the stack. When DOS returns from this INT 25h, it leaves the
status register on the stack. DOS does this so that it can set the carry flag on
return if there was a disk error, such as trying to read from drive A: with no
disk in the drive. We won't be checking for errors in this book, but we have to
remove the status register from the stack-hence the POPF instruction.
(Note: INT 25h, along with INT 24h which writes a disk sector, are the only
DOS routines that leave the status register on the stack.)

Now you can assemble DISK_IO.ASM, and reassemble DISP _SEC.ASM.
Then, link the four files Disk_io, Disp_sec, Video_io, and Cursor, with Disk_
io listed first . Or, if you have Make, add these two lines to your Dskpatch file:

d isk_io . ob j: disk_io. asm
masm disk_io;

and change the last three lines to:

disk_io. com: disk_io.obj disp_sec.obj video_io.obj cursor.obj
link disk_io disp_sec video_io cursor;
exe2bin disk_io disk_io.com

After you create your .COM version ofDisk_io, you should see a display some
thing like Figure 15-3.

We'll come back later to add more to Disk_io, we have enough for now. In
the next chapter, we'll build a nicer sector display by adding some graphics
characters to the display, and then adding a few more pieces of information.

I 74 I umping Oi k tor

A>dlsk_io
EB 2i 98 49 42 4D 28 28 33 2E 3i B8 B2 B2 Bi B8
82 10 00 DB 02 FD 02 eB e9 00 02 BB eB BB 8B B8
88 88 BB C4 SC ea 33 ED BB C8 B7 BE DB 33 C9 BA
D2 79 BE 89 1E 1E 88 BC B6 2B BB BB 16 22 00 Bi
82 BE cs BE DS BC 88 7C Si FC 1E 36 cs 36 78 BB
BF 23 7C B9 BB BB F3 A4 iF BB BE 2C 88 AB i8 BB
A2 27 BB BF 78 08 BB 23 7C AB 91 AB A1 16 08 Di
EB 4B EB 88 00 EB 86 BB BB BB es S3 B8 Bi EB AB
88 SF BE 73 Bi B9 8B 08 98 F3 A6 7S 62 83 C7 iS
Bi BB 98 98 F3 A6 7S S7 26 BB 47 iC 99 BB BE BB
08 83 Cl 48 F7 Fi 80 3E 7i Bl 68 7S 82 BB i4 96
Ai ii 08 Bl 84 D3 EB EB 3B 08 FF 36 iE B8 C4 iE
6F 81 EB 39 08 EB 64 88 2B re 76 0D EB 26 BB 52
F7 26 BB 00 03 DB SA EB E9 CD 11 B9 02 00 D3 EB
BB E4 83 74 04 FE C4 BA CC SB SB FF 2E 6F Bi BE
89 0i EB SS 98 81 B6 1E BB 11 2E 2B 80 C3 A1 iB

A>

Figur 1 -3:

U£IBM 3.1.
1 l .p. f • ff. I If If I

... -\, 3-'1 L. At3r.
.. ,. f. " I Ty.e ... 1 •• c ••

. Af A r8 . I Q1 . 6f6x.
,11f .. rn.e., .& ..
6' .,x.111~1~{ .. T
1@1~.11., .. sa .1~ ._Js., .. Ei 1 uUJ.
l.f£~ uWl1G.~1 ..
.. lH=±~)q. 'u. I. Q
r .. 1.1u;. 6 .. -.
o.19.ld.+::V.ll.R
=a ... +z~e-.f .. 1,
~Lt. 1-e~cx .o.J
e.~u£ ~L

Now that we have four different source files, Dskpatch is becoming some
what more involved. In this chapter, we looked at the program Make, which
helps make life simpler by assembling only the files we've changed.

We also wrote a new procedure, DISK_IO. It's in a different source file from
SECTOR, so we used an EXTRN definition in DISK_IO.ASM to tell the as
sembler about SECTOR, and let it know that SECTOR is a byte variable.

We also learned about the LEA (Load Effective Address) instruction, which
we used to load the address of SECTOR into the BX register.

DISK_IO uses a new INT number, INT 25h, to read sectors from a disk to
memory. We used INT 25h to read one sector into our memory variable, SEC
TOR, so we could dump it on the screen with DISP _HALF _SECTOR.

We also learned about the POPF instruction to pop a word off the stack and
into the status register. We used this instruction to remove the flags which
DOS didn't remove from the stack when it returned from INT 25h.

Our half-sector display isn't very attractive yet, in the next chapter we'll
use some of the graphics characters available on the IBM PC to make it more
aesthetically pleasing.

16

ENHANCING THE SECTOR
DISPLAY

Adding Graphics Characters 176
Adding Addresses to the Display 178
Adding Horizontal Lines 182
Adding Numbers to the Display 186
Summary 189

175

1 76 nh, n 10" th

W e've come to the la t chapter in Part II. Everything we've done o far has
been applicable to M -DO and the 0 (or the 0 6 and other relatives of
the 08). In Part III, we 11 begin to write procedure pecific to the IBM Per
sonal Computer and it clo e cou in .

But before we move on, we'll u e thi chapter to add everal more proce
dure to Video_10. We 11 al o modify DI P _LI E in Di p_ ec. All our modifi
cation and addition will be to the di play. Mo t of them will be to improve
the appearance of the di play but one will add new information: It will add
number on the left that act like the addre e in Debug' dump. Let' begin
with graphic .

h
The IBM Per anal Computer ha a number of line-drawing characters we

can u e to draw boxe around variou parts of our dump display. We'll draw
one box around the hex dump and another around the ASCII dump. This
change require very little thought, ju t work.

Enter the following definition near the top of the file DI P _SEC.ASM, be
tween the ASSUME p eudo-op and the fir t SEGME T pseudo-op, leaving
one or two blank line before and after these definitions:

Listing 16-1. Add to the Top of DISP_ SEC.ASM

---' ; Graphics characters for border of sector.
---' VERTICAL_BAR

BORIZONTH_BAR
OPPER_LEFT
OPPER_RIGBT
LOWER_ LEFT
LOWER_BIGHT
TOP_T_BAR
BOTTOf'l _T_BAR
TOP_TICK
BOTTOM_ TICK

EQO
EQO
EQO
EQU
EQO
EQO
EQO
EQO
EQO
EQO

OB Ah
OCDh
ocqh
OBBh
OCBh
OBCh
OCBh
OCAh
OD1h
OCfh

These are the definitions for the graphics characters. Notice that we put a zero
before each hex number so the assembler will know these are numbers rather
than labels.

Peter Norton\ Assembly Language Book 177

We could just as easily have written hex numbers instead of these defini
tions in our procedure, but the definitions make the procedure easier to under
stand. For example, compare the following two instructions:

MOV DL,VERTICAL_BAR
MOV DL,OBAh

Most people find the first instruction clearer.
Now, here is the new DISP _LINE procedure to separate the different parts

of the display with the VERTICAL_BAR character, number 186 (OBAh). As
before, additions are shown against a gray background:

Listing 16-2 . Changes to DISP LINE in DISP SEC.ASM

DISP_LINE
PUSH
PUSH
PUSH
MOV

MOV
CALL
MOV
CALL
MOV
CALL

MOV
PUSH

HEX LOOP:
MOV
CALL
MOV
CALL
INC
LOOP

MOV
CALL
MOV
CALL

MOV
POP

ASCII LOOP:
MOV
CALL
INC
LOOP

PROC NEAR
BX
ex
DX
BX,DX

DL, I I

WRITE_ CHAR
DL,VERTICAL_BAR
WRITE_CHAR
DL, I I

WRITE_ CHAR

CX,16
BX

DL,SECTOR[BXJ
WRITE_HEX
DL, I I

WRITE_CHAR
BX
HEX_LOOP

DL,VERTICAL_BAR
WRITE_CHAR
DL, I I

WRITE_CHAR

CX,16
BX

DL,SECTOR[BXJ
WRITE_CHAR
BX
ASCII_LOOP

;Offset is more useful in BX
;Write separator

;Draw left side of box

;Now write out 16 bytes
;Dump 16 bytes
;Save the offset for ASCII_LOOP

;Get 1 byte
;Dump this byte in hex
;Write a space between numbers

;Write separator

;Get back offset into SECTOR

178 Jnh n ing the tor [i pl

Listing 16-2. continued

HOV OL, I I ;Draw righ side of box
CALL WRITE_CHAR
HOV DL,VERTIC~L_BAR

CALL WRITE_CBAR

POP DX
POP ex
POP BX
RET

DISP_LINE ENDP

Assemble thi new ver ion of Di p_ ec and link your four files (remember to
place Di k_io fir tin the li t of file following the LI K command . You'll see
nice double bar separating the di play into two part , a you can ee in Fig
ure 16-1.

A Add t · pla •
I

Now lets try something a bit more challenging: Let's add the hex addresses
down the left side of the display. These numbers will be the offset from the

A>d isk_io

A>

EB 21 98 49 42 4D 20 28 33 ZE 31 88 82 82 81 88
02 10 ee De 02 FD 02 ee 89 ee 02 00 ee 00 ee ee
88 88 88 C4 SC 88 33 ED BB CB 87 SE DB 33 C9 BA
DZ 79 BE B9 1E 1E 88 BC 86 28 88 BB 16 22 88 B1
82 BE cs BE DS BC 88 7C 51 re 1E 36 cs 36 7B 88
BF 23 7C B9 BB 88 F3 A4 1F BB BE ZC 88 AB 1B 08
AZ 27 08 Bf ?B 88 BB 23 ?C AB 91 AB Al 16 88 D1
EB 48 EB BB 88 EB 86 80 BB 88 es 53 BB 81 EB AB
88 SF BE 73 81 89 BB 88 98 f3 A6 75 62 B3 C7 1S
B1 88 98 98 F3 A6 75 57 26 BB 47 1C 99 BB BE 8B
88 83 Cl 48 F7 Ft 88 3E 71 81 68 75 82 88 14 96
Al 11 88 Bl 84 D3 EB EB 38 88 FF 3& 1E 88 C4 1E
6F 81 EB 39 88 EB 64 88 2B re 76 BD EB 26 88 52
F7 26 BB 88 83 DB SA EB E9 CD 11 B9 ez BB D3 EB
B8 E4 83 74 B4 FE C4 BA CC SB 58 FF 2E 6F 81 BE
89 81 EB 55 98 81 86 1E BB 11 2E ze 88 C3 A1 18

~fEIBM 3.1.
1 I . p '

. . . -\. 3"1 L, Af3f.
.. A I)"Y· . e ... 1 •• e • .

• A+A f'. I Q1 • 6+6x.
•'I <- • I 1 • ,. _n.e.,.a ..

6' .1 x.1ll%1%i .. f
r91~.li.J .. S~ .1%
._J s.f .. E~ 1ubil.
I ' I (. w 1.•• I')(" . EE--u a:la.ul ••

. . lff=±~>q. 'u.1.n
L.l.1.§1;. 6 .. -.
o.§9.ld.+:v.ll.R
=a .. • +z~e=.f .. le
gt.t.1-efcx .o.J
e.~UE ~L

Figure 16-1. Adding Vertical Bar .

Peter Norton\ Assembly Language Book 179

beginning of the sector, so the first number will be 00, the next 10, then 20,
and so on.

The process is fairly simple, since we already have the procedure WRITE_
HEX for writing a number in hex. But we do have a problem in dealing with a
sector 512 bytes long: WRITE_HEX prints only two-digit hex numbers,
whereas we need three hex digits for numbers greater than 255.

Here's the solution. Since our numbers will be between zero and 511 (Oh to
lFFh), the first digit will either be a space, if the number (such as BCh) is
below lOOh, or it will be a one. So, if the number is larger than 255, we'll
simply print a one, followed by the hex number for the lower byte. Otherwise,
we'll print a space first. These are the additions to DISP _LINE that will print
this leading three-digit hex number:

Lis t ing 16-3. Additions to DISP LINE in DISP_SEC.ASM

DISP_LINE PROC NEAR
PUS H BX
POS H ex
PUS H DX
MO V BX,DX ;Offset is more useful in BX
MOV DL,' '

;Write offset in hex
CMP BX,100h ;Is the first digit a 1?
JB WRITE_ ONE ;No, white space already in DL
MOV DL, 1 1 1 ;Yes, then place '1' into DL for output

WRITE_ONE :
CALL WRITE_CHAR
MOV DL,BL ;Copy lower byte into DL for hex outpu t
CALL WRITE_HEX

;Write separator
MOV DL, ' 1

CALL WRITE_CHAR
MOV DL,VERTICAL_BAR ;Draw left side of box

You can see the result in Figure 16-2.
We're getting closer to our full display. But on the screen, our display is not

quite centered. We need to move it to the right by about three spaces. Lets
make this one last change, then we'll have our finished version of DISP _
LINE.

We could make the change by calling WRITE_CHAR three times with a
space character, but we won't. Instead, we'll add another procedure, called
WRITE_CHAR_N_TIMES, to Video_io. As its name implies, this procedure

A)disk_io
88 EB 21 98 49 42 4D 28 28 33 2E 31 88 ez ez 8i 88
iB 82 78 88 DB 82 FD 82 80 89 80 82 88 80 88 B8 B8
28 88 BB 88 C4 SC 88 33 ED BB C8 87 BE D8 33 C9 BA
38 DZ 79 BE 89 iE iE 88 BC 86 2B 88 BB 16 22 88 B1
48 82 BE cs BE DS BC 80 7C Si re 1E 36 cs 36 78 88
SB BF 23 7C B9 BB BB F3 A4 iF BB BE ZC 88 AB iB 88
68 AZ 27 88 BF 78 80 BB 23 7C AB 91 AB Al i6 88 Di
78 £8 48 EB BB B8 EB B6 88 BB 8B B5 53 BB 8i EB AB
88 88 SF BE 73 Bi B9 BB 88 98 F3 A6 75 62 83 C7 i5
98 B1 88 98 98 F3 A6 7S 57 26 BB 47 1C 99 BB BE BB
AB 88 83 Ci 4B F7 Fi 88 3E 71 81 68 75 82 BB 14 96
BB A1 i1 BB Bi 84 D3 EB EB 38 ee FF 36 lE 88 C4 lE
CB 6F 81 EB 39 88 EB 64 08 2B FB 76 BD EB 26 88 52
DB F7 26 BB 88 83 DB SA EB £9 CD 11 89 82 BB DJ EB
£8 BB E4 83 74 84 FE C4 BA CC SB 58 FF ZE 6F 81 BE
re 89 B1 EB SS 9B B1 86 1E 88 11 ZE 28 88 CJ A1 18

A>

UilBM 3.l.
1 1 . p. ' . t ' '' •••••

. . . -\.~ L.Af3f. I '(9.e ... 'l •• e . .
"+"..J IQ' + .A Ar., .6 6x.

1•1t .. 1n.e.,.a ..
6' ·1x.1 l :%f~L ·T
1@1~.11. 1 .. s5 .1~
._J s.t .. Ei 1uhif.
l .iiS 1 uWliG.~i ..
.. l.H=±~>q. 'u.1.a
1 . . 1.1n;. 6 .. -.
o.19.ld.+:V.ll.R
=a ... +z~e-.1 .. le
~I. t. 1-efcx . o.J
iL ~Ui ~L

Figur 16-2. ddii umb r on th I ft.

writes one character N times. That is, we place the number N into the CX
register and the character code into DL, and we call WRITE_CHAR_N_
TIMES to write N copies of the character whose ASCII code we placed in DL.
Thus we'll be able to write three spaces by placing 3 into CX and 20h (the
ASCII code for a space) into DL.

Here's the procedure to add to VIDEO_IO.ASM:

Listing 16-~. Add this Procedure to VIDEO_IO.ASM

.

PUBLIC WRITE_CHAR_N_TIMES

This procedure writes more than one copy of a character

Uses:

DL
ex

Character code
Number of times to write the character

WRITE_Cl!AR
---~---------------~---------

WRITE_CHAR_N_TIMES PROC NEAR
PUSH ex

N_TIMES:
CALL WRITE_CBAR
LOOP N_TIMES
POP ex
RET

WRITE_CHAR N ~IMES ENDP

Peter Norton's Assembly Language Book 181

You can see how simple this procedure is, since we already have WRITE_
CHAR. If you're wondering why we bothered to write a procedure for some
thing so simple, it's because our program Dskpatch is much clearer when we
call WRITE_CHAR_N_TIMES, rather than write a short loop to print multi
ple copies of a character. Besides, we'll find use for this procedure several
times again.

Here are the changes to DISP _LINE to add three spaces on the left of our
display. Make the changes to DISP _SEC.ASM:

PUBLIC DISP_LINE
EXTRN WRITE_HEX:NEAR
EXTRN WRITE_CHAR:NEAR
EXTRN WRITE_CHAR_N_TIMES:NEAR

This procedure displays one line of data, or 16 bytes, first in hex,
then in ASCII.

DS:DX Offset into sector, in bytes

Uses: WRITE_CHAR, WRITE_HEX, WRITE CHAR_N_TIMES
Reads: SECTOR

DISP_LINE PROC NEAR
PUSH BX
PUSH ex
PUSH DX
MOV BX,DX ;Offset is more useful in BX
MOV DL, I I

MOV CX,3 ;Write 3 spaces before line
CALL WRITE_CHAR _N_TIMES

;Write offset in hex
CMP BX,10Dh ; Is the first digit a 1?
JB WRITE_ONE ;No, white space already in DL
MOV DL, I 1 1 ;Yes, then place 1 1 1 into DL for output

WRITE ONE: -

We made changes in three places. First, we had to add an EXTRN statement
for WRITE_CHAR_N_TIMES, because the procedure is in Video_io, and not
in this file. We also changed the comment block, to show that we use this new
procedure. Our third change, the two lines that use WRITE_CHAR_N_
TIMES, is quite straightforward and needs no explanation.

Try this new version of our program to see how the display is now centered.
Next we'll move on to add more features to our display-the top and bottom
lines of our boxes.

182 nh n ing th tor i pl ·

A
Adding horizontal lines to our di play is not quite as simple as it sounds,

because we have a few special ca e to think about. We have the ends, where
the lines must go around corners and we al o have T- haped junctions at the
top and bottom of the division between the hex and ASCII windows.

We could write a long list of in truction (with WRITE_CHAR_N_TIMES)
to create our horizontal line , but we wont. We have a horter way. We'll
introduce another procedure, called WRITE_PATTERN which will write a
pattern on the creen. Then, all we'll need i a mall area of memory to hold a
description of each pattern. U ing thi new procedure, we can also easily add
tick marks to ubdivide the hex window, a you'll see when we finish this
section.

WRITE_PA TTERN u es two entirely new instructions, LODSB and CLD.
We'll de cribe them after we ee more about WRITE_PATTERN and how we
describe a pattern. Right now enter thi procedure into the file VIDEO_
IO.ASM:

Listing 16-5. Add This Procedure to VIDEO_IO.ASM

PUBLIC WRITE_PATTERN

This procedure writes a line to the screen, based on data in the
form

DB !character, nu ber of times to write character), 0
Where lxl eans that x can be repeated any nu ber of ti es

DS:DX Address of above data state ent

Uses: WRITE_CHAR_N_TIHES

WRITE_PATTERN PROC NEAR
POSH AX
POSR ex
PUSR DX
POSH SI
PUS HF
CLD
HOV SI,DX

PATTERN LOOP:
LODSB
OR AL,AL
JZ END_PATTERN
MOV DL, AL
LODSB
110V CL,AL
XOR CH,CH

;Save the direction flag
;Set direction flag for increment
;Move offset into SI register for LODSB

;Get character data into AL
;Is it the end of data (Oh)?
; Yes, return
;No, set up to write character N times
;Get the repeat count into AL
;And put in CX for WRITE_CHAR_N_TIMES
;Zero upper byte of ex

Peter Norton's As embly Language Book 183

Listing 16-5. continued
I

CALL WRITE_CHAR N TIMES
JMP PATTERN_LOOP

END PATTERN:
POPF ;Restore direction i~ug
POP SI
POP DX
POP ex
POP AX
RET

WRITE PATTERN ENDP

Before we see how this procedure works, let's see how to write data for pat
terns. We'll place the data for the top-line pattern into the file Disp_sec,
which is where we'll use it. To this end, we'll add another procedure, called
INIT_SEC_DISP, to initialize the sector display by writing the half-sector
display, then we'll modify READ _SECTOR to call our INIT _SEC _DISP
procedure.

First, place the following data just after SECTOR (in DISP _SEC.ASM), in
side the data segment:

Listing 16-6. Additions to DISP SEC.ASM

TOP_LINE_PATTERN LABEL BYTE
DB I It 7
DB UPPER _LEFT,1
DB HORIZONTAL_BAR,12
DB TOP_TICK,1
DB HORIZONTAL_BAR,11
DB TOP_TICK,1
DB HORIZONTAL_BAR,11
DB TOP_TICK,1
DB HORIZONTAL_BAR,12
DB TOP_T_BAR,1
DB HORIZONTAL_BAR,18
DB UPPER_RIGHT,1
DB 0

BOTTOM LINE PATTERN LABEL BYTE
DB I If 7
DB LOWER_LEFT,1
DB HORIZONTAL_BAR,12
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR,11
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR,11
DB BOTTOM_TICK,1
DB HORIZONTAL_BAR,12

Listing 16-6. continued

DB BOTTOM_T_BAR,1
DB BORIZONTAL_BAR,16
DB LOWER_RIGHT,1
DB 0

Each DB statement contains part of the data for one line. The first byte is
the character to print; the second byte tells WRITE_PA ITERN how many
times to repeat that character. For example, we start the top line with seven
blank paces, followed by one upper-left corner character, followed by twelve
horizontal-bar characters and so on. The last DB is a solitary hex zero, which
marks the end of the pattern.

Let's continue our modifications and see the result before we discuss the
inner workings ofWRITE_PATTERN. Here is the te t version ofINIT_SEC_
DISP. This procedure write the top-line pattern, the half-sector display, and
finally the bottom-line pattern. Place it in the file DISP _SEC.ASM, just
before DISP _HALF _SECTOR:

Listing 16-7. Add This Procedure to DISP_SEC.ASM

•

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN:NEAR, SEND_CRLF:NEAR

This procedure initializes the half-sector display.

Uses:
Reads:

WRITE_PATTERN, SEND_CRLF, DISP_RALF_SECTOR
TOP_LINE_PATTERN, BOTTOH_LINE_PATTERN

--~--------------

INIT_SEC_DISP PROC NEAR
POSH
LEA
CALL
CALL
XOR
CALL
LEA
CALL
POP

DX
DX,TOP_LINE_PATTERN
WRITE_PATTERN
SEND_CRLF
DX,DX
DISP_BALP_SECTOR
DX,BOTTOM_LINE_PATTERN
WRITE_PATTERN
DX

RET
INIT_SEC_DISP ENDP

;Start at the beginning of the sector

We used the LEA instruction to load an address into the DX register, thus
WRITE_PATIERN knows where to find the pattern data.

Finally, we need to make a small change to READ _SECTOR in the file
DISK_IO.ASM, to call INIT_SECTOR_DISP, rather than WRITE_HALF _

Peter Norton's Assembly Language Book 185

SECTOR_DISP, so that a full box will be drawn around our half-sector
display:

Listing 16-B. Changes to READ_SECTOR in DISK_IO.ASM

EXT RN INIT_SEC_DISP:NEAR
,--------------------- ------------------------------------- -- - - ------ ---
; This procedure reads the first sector on disk A and dumps the firs t
; half of th i s sector .

READ_SECTOR PR OC NEAR
MOV AL,D ;Disk drive A (number 0)
MOV CX , 1 ;Read only 1 sector
MOV DX ,D ;Read sector number D
LEA BX, SECTOR ;Where to store this sector
INT 2Sh ;Read the sector
PO PF ;Discard flags put on stack by
XOR DX , DX ;Set offset to D within SECTOR
CALL INIT_SEC_DISP ;Dump the first half
INT 2Dh ;Return to DOS

READ_SECTOR ENDP

DOS

That's all we need to write the top and bottom lines for our sector display.
Assemble and link all these files (remember to assemble the three files we
changed), run the result through Exe2bin, and give it a try. Figure 16-3 shows
the output we now have.

Let's see how WRITE_PATTERN works. As mentioned, it uses two new
instructions. LODSB stands for Load String Byte, and it is one of the string
instructions: specially designed instructions that work with strings of charac
ters . That's not quite what we're doing here, but the 8088 doesn't care
whether we're dealing with a string of characters or just numbers, so LODSB
suits our purposes just fine .

LODSB moves (loads) a single byte into the AL register from the memory
location given by DS:SI, a register pair we haven't used before. All the seg
ment registers in our .COM file are set to the beginning of our one segment,
CGROUP, so DS is already set for our segment. And before the LODSB in
struction, we moved the offset into the SI register with the instruct ion MOV
SI,DX.

The LODSB instruction is somewhat like the MOV instruction but more
powerful. With one LODSB instruction, the 8088 moves one byte into t he AL
register and then either increments or decrements the SI register. Increment
ing the SI register points to the following byte in memory; decrement ing the
register points to the previous byte in memory.

186 nh n in•th

A>disk_io

A>

80
18
2B
3B
4B
SB
68
78
B8
98
AB
B8
CB
DB
EB
re

I I I

EB 21 98 49 42 4D 2B 28 33 2E 31 BB B2 B2 81 BB
B2 78 B8 DB e2 FD B2 ee 09 BB B2 BB BB BB eB BB
BB BB BB C4 SC BB 33 ED BB CB B7 BE DB 33 C9 BA
D2 79 BE B9 lE lE B8 BC B6 2B 88 BB 16 22 88 Bl
B2 BE cs BE DS BC B8 7C Sl FC lE 36 cs 36 7B BB
BF 23 7C B9 BB BB F3 A4 lF BB BE 2C BB AB lB BB
A2 27 B8 BF 7B BB BB 23 7C AB 91 AB Al 16 88 Dt
EB 40 EB BB BB EB B6 BB BB BB BS 53 BB Bt EB AB
B0 SF BE 73 01 B9 BB BB 9B F3 A6 7S 62 B3 C7 1S
B1 BB 98 98 F3 A6 7S S7 26 BB 47 1C 99 BB BE BB
BB 83 Cl 4B F7 Fl BB 3E 71 81 68 7S 82 BB 14 96
At 11 8B Bl 84 D3 EB EB 3B BB FF 36 lE BB C4 lE
6F 81 EB 39 88 EB 64 8B 2B re 76 8D EB 26 88 sz
F7 26 8B 88 83 DB SA EB E9 CD 11 B9 B2 88 D3 EB
B8 E4 B3 74 84 FE C4 BA CC SB SB FF ZE 6F 81 BE
B9 81 EB SS 9B 81 86 lE 88 11 ZE 28 88 C3 Al 1B

I I I

• · ru l -3. h

~!EIBM 3.1.
1 l .p. f t t. It If It t

... -\.3"1 L.Af3f.
.y.e ... t .. e. ". I
• AfA r' . I Q1 • 61-f>x.

11:f .. Hi.e.,.& ..
o' .,x.11:~1~{ .. T
1@1~.I ·1··S· .I~
._~ s.t .. i:!lubi l .
I E't:' t! Wl "I' W" • ::i. u al~.vl ..

. . lff=±~>cr. 'u. . u
1 .. 1. tn;. 6 .. -.
o.19.ld.+:V.l l .R
=l ... +z~&-. f .. lc
~r.t. •-etcx .o.J
e.~Ui ~L

The former (incrementing i exactly what we want to do. We want to go
through the pattern one byte at a time, tarting at the beginning, and that is
what our LODSB instruction doe becau ewe u ed the other new instruction,
CLD (Clear Direction Flag) to clear the direction flag . If we had set the direc
tion flag, the LODSB instruction would decrement the SI register, instead.
We'll use the LODSB instruction in a few other places in Dskpatch, always
with the direction flag cleared to increment.

Aside from LODSB and CLD, notice that we also used the PUSHF and
POPF instructions to save and restore the flag register. We did this just in
case we later decide to use the direction flag in a procedure that calls WRITE_
PA'ITERN.

Adding umbers to the D"s la
We're almost through with Part II of this book now. We'll create one more

procedure, then we'll move on to Part III, and bigger and better things.
Right now, notice that our display lacks a row of numbers across the top.

Such numbers-00 01 02 03 and so forth-would allow us to sight down the
columns to find the address for any byte. So, let's write a procedure to print

Peter Norton's Assembly Language Book 187

this row of numbers. Add this procedure, WRITE_TOP _HEX_NUMBERS, to
DISP _SEC.ASM, just after INIT_SEC_DISP:

Listing 16-g. Add This Procedure to DISP_SEC.ASM

EXTRN WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR
EXTRN WRITE_HEX_DIGIT:NEAR, SEND_CRLF:NEAR

This procedure writes the index numbers (0 through F) at the top of
the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
WRITE_HEX_DIGIT, SEND_CRLF

WRITE_TOP_HEX_NUMBERS PROC NEAR
PUSH ex
POSH DX
MOV DL I I I ;Write '1 spaces for left side
MOV CX,'1
CALL WRITE_CHAR_N_TIMES
XOR DH,DH ; Start with 0

HEX NUMBER_LOOP:
MOV DL,DH
CALL WRITE HEX
MOV DL, I I

CALL WRITE_CHAR
INC DH
CMP DH,1Dh ;Done yet?
JB HEX_NOMBER LOOP -

MOV DL, I I ;Write hex numbers over ASCII window
MOV CX,2
CALL WRITE_ CHAR _N_TIMES
XOR DL,DL

HEX DIGIT_LOOP:
CALL WRITE_HEX_DIGIT
INC DL
CMP DL,1Dh
JB HEX_DIGIT_LOOP
CALL SEND_CRLF
POP DX
POP ex
RET

WRITE_TOP_HEX NUMBERS ENDP

Modify INIT_SEC_DISP (also in DISP _SEC.ASM) as follows, so it calls
WRITE_TOP _HEX_NUMBERS before it writes the rest of the half-sector
display:

--
1 8 Jnh. n ing tb tor i~1 la\

Listing 16-10. Changes to INIT_SEC_DISP in DISP_SEC.ASM

--- ;
; Uses:
I

; Reads:

WRITE_PATTER , SEND_CRLF, DISP_HALF_SECTOR
wRITE_TOP_HEX_ UMBERS
TOP_LINE_PATTERN, BOTTOH_LI E_PATTERN

,--- ;
INIT_SEC_DISP PROC

DX
NEAR

PUSH
CALL
LEA
CALL
CALL
XOR
CALL
LEA
CALL
POP
RET

WRITE_TOP_HEX_ UMBERS
DX,TOP_LINE_PATTERN
WRITE_PATTERN
SEND_CRLF
DX,DX
DISP_HALF_SECTOR
DX,BOTTOH_LI E_PATTER
WRITE_PATTERN
DX

;S ar at he beginning of the sector

INIT_SEC_DISP E DP

Now we have a complete half- ector di play, a you can see in Figure 16-4.
There are till ome difference between thi di play and the final version.

We 11 change WRITE_ CHAR o it will prin t all 256 characters the IBM PC

A>dlsk_io

A>

BB
18
28
38
40
SB
68
78
ae
98
AB
BB
ce
DB
EB
re

Be 01 02 03 84 05 86 07 0B B9 BA BB BC 0D BE BF B1234567B9ABCDEF
I I I

EB 21 90 49 42 4D 20 20 33 2E 31 00 02 02 Bl BB
82 78 08 DB 02 FD 82 BB 09 BB B2 BB 0B 00 00 08
0B 00 0B C4 SC BB 33 ED BB CB B7 BE DB 33 C9 BA
DZ 79 BE B9 1E 1E 88 SC B6 20 BB 88 16 zz ea B1
ez BE C5 BE DS BC 00 7C Sl re lE 36 C5 36 7B 08
BF 23 7C B9 BB ee F3 A4 lF 8B BE 2C ee AB 1B 00
AZ 27 BB BF 7B 80 BB 23 7C AB 91 AB Al 16 88 Dl
EB 4B EB BB BB EB B6 B8 BB BB 85 S3 BB Bl EB AB
ea SF BE 73 Bl B9 BB ee 98 F3 A6 75 62 B3 C7 15
B1 BB 9B 98 F3 AG 75 S7 26 BB 47 lC 99 BB BE BB
ea 83 Cl 4B F7 Ft BB 3E 71 81 68 75 B2 BB 14 96
Al 11 80 Bl 84 D3 EB EB 38 BB FF 36 lE 80 C4 1E
6F 81 EB 39 80 EB 64 BB 28 FB 76 8D EB 26 BB S2
F7 26 88 88 03 DB SA EB E9 CD 11 89 ez BB D3 EB
BB E4 83 74 B4 FE C4 BA CC 58 58 FF 2E 6F Bl BE
89 81 EB 55 9B 01 86 1E 80 11 2E 2B 00 C3 Al lB

I I I

&!iIBM 3.1. ...•
I & . p.

. . . -\.3-, L.Af3f. " I Ty.e .• • 1 .• e ••

. Af-A,.t. :q• .6f6x.
•'I <- .. , 1 , •• _n.e.,.a ..

o' .,x., 1:%1%i .. ,.
c@l~.li.l .. Sl .1%

J I <• h"f • _ s · 1 .. £_ -u a .

I ''<• w•"I')(u . EE--u al\1.Ul ..

. . l.H=±~)q. 'u. ~ · u
L .1.1n;. 6 .. -.
o.19.ld.+::V.ll.R
=I.· .+z~e=.t. ·le
~I.t. •-etcx .o.J
e.~UE ~i.

Figure 16-4. A Complete Half Sector Displa)'.

Peter Norton's Assembly Language Book 189

can display, and then we'll clear the screen and center this display vertically,
using the ROM BIOS routines inside the IBM Personal Computer. We'll do
that next.

Summary
We've done a lot of building on our Dskpatch program, adding new proce

dures, changing old ones, and moving from one source file to another. From
now on, if you find yourself losing track of what you're doing, refer to the
complete listing of Dskpatch in Appendix B. The listing there is the final ver
sion, but you'll probably see enough resemblances to help you along.

Most of our changes in this chapter didn't rely on tricks, just hard work. But
we did learn two new instructions: LODSB and CLD. LODSB is one of the
string instructions that allow us to use one instruction to do the work of sev
eral. We used LODSB in WRITE_PATTERN to read consecutive bytes from
the pattern table, always loading a new byte into the AL register. CLD clears
the direction flag, which sets the direction for increment. Each following
LODSB instruction loads the next byte from memory.

In the next part of this book we'll learn about the IBM PC's ROM BIOS
routines. They will save us a lot of time.

PART III

The IBM PC's ROM BIOS ·

17

THE ROM BIOS ROUTINES

VIDEO _IO, the ROM BIOS Routines 194
Moving the Cursor 199
Rewiring Variable Usage 201
Writing the Header 204
Summary 208

193

194 Th H) 1 H R utin •

In ide your IBM Personal Computer are ome computer chips, or ICs (Inte
grated Circuit), known a ROM (Read-Only Memory). One of these ROMs
contains a number of routines very much like procedures, that provide all the
basic routines for doing input and outpu to everal different parts of your
IBM PC. Becau e thi ROM provide routine for performing input and output
at a very low level , it i frequently referred to a the BIOS, for Basic Input
Output Sy tern. DO u es the ROM BIO for uch activities as sending char
acter to the screen and reading and writing to the di k, and we're free to use
the ROM BIO routine in our program .

We'll concentrate on the BIOS routine we need for D kpatch. Among them
is a set for idea di play which include a number of function we couldn't
otherwi e reach without working directly with the hardware-a very difficult
job.

VD I t 0 0 Ro tin
We refer to the element of the ROM BIOS as routine in order to distin

guish them from procedure . We u e procedures with a CALL instruction,
whereas we call routines with INT in tructions, not CALLs. We'll use an INT
lOh instruction for example, to call the video 0 routines, just as we used an
INT 2lh instruction to call routines in DOS.

Specifically INT lOh calls the routine VIDEO _IO in the ROM BIOS. Other
numbers call other routines, but we won't see any of them; VIDEO _IO pro
vides all the functions we need outside of DOS. (Just for your information,
however, DOS calls one of the other ROM BIOS routines when we ask for a
sector from the disk.)

In this chapter, we'll use ROM BIOS routines to add two new procedures to
Dskpatch: one to clear the screen, and the other to move the cursor to any
screen location we choose. Both are very useful functions, but neither is avail
able directly through DOS. Hence, we'll use the ROM BIOS routines to do the
job. Later, we'll see even more interesting things we can do with these ROM
routines, but let's begin by using INT lOh to clear the screen before we display
our half sector.

The INT lOh instruction is our entry to a number of different functions.
Recall that, when we used the DOS INT 2lh instruction, we selected a partic
ular function by placing its function number in the AH register. We select a
VIDEO _IO function in just the same way: by placing the appropriate function

Peter Norton's Assembly Language Book 195

number in the AH register (a full list of these functions is given in Table
17-1).

(AH)= O

(AH)= 1

(AH)= 2

Table 17 .. i. INT lOh Functions

Set the display mode. The AL register contains the
mode number.

(AL) =O
(AL) = 1
(AL) =2
(AL) =3
(AL) = 7

(AL) =4
(AL) =5
(AL) =6

TEXT MODES

40 by 25, black and white mode
40 by 25, color
80 by 25, black and white
80 by 25, color
80 by 25, monochrome display adapter

GRAPHICS MODE

320 by 200, color
320 by 200, black and white
640 by 200, black and white

Set the cursor size.

(CH) Starting scan line of the cursor. The top line
is 0 on both the monochrome and color
graphics displays, while the bottom line is 7
for the color graphics adapter and 13 for the
monochrome adapter. Valid range: 0 to 31.

(CL) Last scan line of the cursor.

The power-on setting for the color graphics adapter is
CH= 6 and CL= 7. For the monochrome display: CH= 11
and CL= 12.

Set the cursor position.

(DH,DL) Row, column of new cursor position; the
upper left corner is (0,0).

196 Bl

Table 1 7 -1. continued

(AH)= 2

(AH)= 3

(AH)= 4

(AH)= 5

(AH)= 6

(AH) =7

(AH)=8

(BH) Page number. Thi is the number of the
di play page. The color-graphic adapter has
room for veral di play page , but most
program u page 0.

Read th ur or po ition.

(BH) Page number
n exit (DH,DL) Row, column of cur or

(H , L ur or 1ze

Read light p n po ition (e Tech. Ref. Man.).

elect activ di play page.

(AL) ew page number (from 0 to 7 for modes 0

croll up.

(AL)

(CH CL)
(DH,DL)

(BH)

and l ; from 0 to 3 for mode 2 and 3)

Number of lines to blank at the bottom of
the window. Normal scrolling blanks one
line. Set to zero to blank entire window.
Row, column of upper, left corner of window
Row column of lower, right corner of
window
Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at
the top of the window instead of the bottom

Read attribute and character under the cursor.

(BH) Display page (text modes only)

Table 17,1 . continued

(AH) =8

(AH)= 9

(AH)= 10

(AH)= 11 to 13

(AH)= 14

(AH)= 15

(AL)
(AH)

Peter Norton' Assembly Language Book 197

Character read
Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)
(CX) Number of times to write character and

attribute of screen
(AL) Character to write
(BL) Attribute to write

Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character
(AL) Character to write

Various graphics functions. (See Tech. Ref. Man. for
the details)

Write teletype. Write one character to the screen and
move the cursor to the next position.

(AL) Character to write
(BL) Color of character (graphics mode only)
(BH) Display page (text mode)

Return current video state.

(AL) Display mode currently set
(AH) Number of characters per line
(BH) Active display pages

We'll use the INT lOh function number 6, SCROLL ACTIVE PAGE UP, to
clear the screen. We don't actually want to scroll the screen, but this function

198 , R 1 BI outin •

also doubles as a clear-screen function . Here is the procedure; enter it into the
file CURSOR.ASM:

Listing 17-1 . Add This Proce dure to CUR SOR.A SH

PUBLIC CLEAR_SCREEN
.--- ;
; This procedure clears the entire screen.

CLEAR_SCREEN PROC NEAR
POSH u
POSH BX
PUSH ex
PUSH DX
XOR AL,AL ;Blank entire window
XOR cx,cx ;Opper left corner is at (0 , 0)
l'IOV DH,2.t; ;Botto line of screen ls line 2.i;
l'IOV OL,7ci ;Right side is at column 7q
MDV BH,7 ;Use normal attribute for blanks
MOV AH,b ;Call for SCROLL-OP function
INT 10h ;Clear the window
POP DX
POP ex
POP BX
POP AX
RET

CLEAR SCREEN ENDP -

It appears that INT lOh function number 6 needs quite a lot of information,
even though all we want to do is clear the display. This function is rather
powerful: It can actually clear any rectangular part of the screen-window
as it's called. We have to set the window to the entire screen by setting the
first and last lines to 0 and 24, and setting the columns to 0 and 79. The rou
tines we are using here can also clear the screen to all white (for use with
black characters), or all black (for use with white characters). We want the
latter, and that is what is specfied with the instruction MOV BH,7. Then, too,
setting AL to 0, the number of lines to scroll, tells this routine to clear the
window, rather than to scroll it.

Now we need to modify our test procedure, READ _SECTOR, to call CLEAR_
SCREEN just before it starts to write the sector display. We didn't place this
CALL in INIT_SEC_DISP, because we'll want to use INIT_SEC_DISP to re
write just the half-sector display, without affecting the rest of the screen.

To modify READ _SECTOR, add an EXTRN declaration for CLEAR_
SCREEN and insert the CALL to CLEAR_SCREEN. Make the following
changes in the file DISK_IO.ASM:

Peter Norton's Assembly Language Book 199

Listing 17-2. Changes to READ_SECTOR in DISK_IO.ASM

EXTRN INIT_SEC_DISP:NEAR, CLEAR_SCREEN:NEAR

; This procedure reads the first sector on disk A and dumps the first
; half of this sector.

READ_SECTOR PROC NEAR
MOV AL,O ;Disk drive A (number 0)
MOV CX,1 ;Read only 1 sector
MOV DX,O ;Read sector number D
LEA BX,SECTOR ;Where to store this sector
INT 2Sh ;Read the sector
POPF ;Discard flags put on stack by
XOR DX,DX ;Set offset to D within SECTOR
CALL CLEAR SCREEN
CALL INIT_SEC_DISP ;Dump the first half
INT 2Dh ;Return to DOS

READ SECTOR ENDP -

DOS

Just before you run the new version of Disk_io, note where the cursor is lo
cated. Then, run Disk_io. The screen will clear, and Disk_io will start writing
the half sector display wherever the cursor happened to be before you ran the
program-probably at the bottom of the screen.

Even though we cleared the screen, we didn't mention anything about mov
ing the cursor back to the top. In BASIC, the CLS command clears the screen
in two steps: It clears the screen, then it moves the cursor to the top of the
screen. Our procedure doesn't do that; we'll have to move the cursor ourselves.

Moving the Cursor
The INT lOh function number 2 sets the cursor position in much the same

way BASIC's LOCATE statement does. We can use GOTO _XY to move the
cursor anywhere on the screen (such as to the top after a clear), but we won't .
Enter this procedure into the file CURSOR.ASM:

Listing 17-3. Add This Procedure to CURSOR.ASM

PUBLIC GOTO_XY
;---

This procedure moves the cursor

DH Row (Y)
DL Column (X)

;---

200 I h R tin

Listing 17-3 . continued

GOTO_XY PROC NEAR
PUSH AX
PUSH BX
HOV BH,O ;Display page 0
HOV AH,2 ;Call for SET CURSOR POSITION
INT 10h
POP BX
POP AX
RET

GOTO_XY E DP

We 11 u e OT XY in a revi d v r ion of! IT_ E _DI P, to move the
cur or to the econd lin ju t b for w writ th half- ctor di play. Here are
th modification to I IT_ E _ DI in DI P _ E .A M:

Listing 17-~. Changes to INIT SEC_DISP in DISP SEC. ASM

PUBLIC INIT_SEC_DISP
EXTRN WRITE_PATTER : EAR, SEND_CRLF:NEAR
EXTRN GOTO_XY:NEAR

This procedure initializes the half-sector display.

Uses:

Reads:

INIT_SEC_DISP
PUSH
XOR
HOV
CALL
CALL
LEA

WRITE_PATTERN, SE D_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUHBERS, GOTO_XY
TOP_LI E_PATTER , BOTTOH_LI E_PATTERN

PROC NEAR
DX
DL,DL
DH,2
GOTO_XY
WRITE_TOP HEX_NOMBERS
DX,TOP_LINE_PATTERN

;Hove cursor into position at beginning
;of 3rd line

If you try it now, you 11 see that the half-sector display is nicely centered.
As you can see now, it's easy to work with the screen when we have the

ROM BIOS routines. In the next chapter, we'll use another routine in the
ROM BIOS to improve WRITE_ CHAR, so that it will write any character to
the screen. But before we continue let's make some other changes to our pro
gram, then finish up with a procedure called WRITE_HEADER, which will
write a status line at the top of the screen, to show the current disk drive and
sector number.

Peter Norton's Assembly Language Book 201

irin Variable Usage
We have much that we need to revamp before we create WRITE_HEADER.

As they are now, many of our procedures have numbers hard-wired into them;
READ _SECTOR, for example, reads sector 0 on drive A. We want to place the
disk drive and sector numbers into memory variables, so more than one proce
dure can read them.

We'll need to change these procedures so they'll use memory variables, but
let's begin by putting all memory variables into one file, DSKP ATCH.ASM, to
make our work simpler. Dskpatch.asm will be the first file in our program
Dskpatch, so the memory variables will be easy to find there. Here is
DSKPATCH.ASM, complete with a long list of memory variables:

Listing 17-5. The New File DSKPATCH.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASS UME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC
ORG 10Dh

EXTRN CLEAR SCREEN:NEAR, READ_SECTOR:NEAR
EXTRN INIT_SEC_DISP:NEAR

DIS K_PATCH PROC NEAR
CALL
CALL
CALL
INT

CLEAR_SCREEN
READ_SECTOR
INIT_SEC_DISP
2Dh

DIS K PATCH ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC

PUBLIC SECTOR_OFFSET
;---
, SECTOR_OFFSET is the offset of the half
; s ec tor display into the full sector. It must ;
; be a multiple of 16, and not greater than 256 ;
;---
SECTOR_OFFSET DW 0

PUBLIC CORRENT_SECTOR_NO, DISK_DRIVE NO
CURRENT_SECTOR NO DW 0 ;Initially sector 0
DI SK_DRIVE_NO DB 0 ;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER LINE_NO

202 h ROM 1310 R utin

Listing 17-5. continued

PUBLIC HEAOER_PABT_1, HEAOER_PART_2

, LINES_BEFORE_SECTOR is the number of lines
; at the top of the screen before the half
; sector display.

LINES_BEFORE_SECTOR
HEADER_LINE_NO
HEAOER_PART_1
AEADER_PART_2

POBLIC SECTOR

DB
DB
DB
DB

2
0
1 Disk 1 ,o

Sec or 1 , 0

---' ; The entire sector (up to 01q2 bytes) is
; stored in this part of emory.
---' SECTOR DB 01q2 DOP (0)

DATA_SEG ENDS

END DISK_PATCA

The main procedure DISK_PATCH, call three other procedures. We've seen
them all before; soon we'll rewrite both READ _SECTOR and INIT _SEC_
DISP to use the variables just placed into the data segment.

Before we can use Dskpatch, we need to modify Disp_sec, to replace the defi
nition of SECTOR with an EXTRN. We also need to alter Disk_io, to change
READ_SECTOR into an ordinary procedure we can call from Dskpatch.

Let's take SECTOR first. Since we've placed it in DSKPATCH.ASM as a
memory variable, we need to change the definition of SECTOR in Disp_sec to
an EXTRN declaration. Make these changes in DISP _SEC.ASM:

Listing 17-6. Changes to DISP - SEC.ASM

DATA_S EG SEGMENT PUBLIC
EXT RN SECTOR:BYTE
OB~IC S~CTC 0

SECTOR DB 512 DUP(O)

TOP_LINE_PATTERN LABEL BYTE
DB I It 7
DB UPPER LEFT,1

Peter Norton's Assembly Language Boot.- 203

Let's rewrite the file DISK_IO.ASM so that it contains only procedures, and
READ _SECTOR uses memory variables (not hard-wired numbers) for the
sector and disk-drive numbers. Here is the new version of DISK_IO.ASM:

Listing 17-7. Changes to DISK_IO.ASM

CG ROUP GROUP COD E_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE SEG SEGMENT PUBLIC
...J

PUBLIC READ_SECTOR
DATA SEG SEGMENT PUBLIC -

EXTRN SECTOR:BYTE
EXTRN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:~ORD

DATA_SEG ENDS
• rRN • r ,EC_DISP:NEAR, CLEAR_SCREEN:NEAR

This procedure reads one sector (512 bytes) into SECTOR.

Reads:
Writes:

READ_SECTOR
PUSH
PUSR
PUSH
PUSH
MOV
MOV
MOV
LEA
INT
POPP

CALL
CALL
• r
POP
POP
POP
POP
RET

READ_SECTOR

CODE_SEG

DATA_SEG
EXTRN

::>ATA_. F
END

CURRENT_SECTOR_NO, DISK_DRIVE_NO
SECTOR

PROC NEAR
AX
BX
ex
DX
AL,DISK_DRIVE_NO
CX,1
DX,CURRENT_SECTOR_NO
BX,SECTOR
2Sh

DX,DX
CLEAR_SCREEN
INIT_SEC_DISP
2Ul
DX
ex
BX
AX

ENDP

ENDS

SEGMENT PUBLIC
SECTOR:BYTE
ENDS

;Drive number
;Read only 1 sector
;Logical sector number
;Where to store this sector
;Read the sector
;Discard flags put on stack by DOS
;Set offset to 0 within SECTOR

;Dump the first half

--
204 fh R M BI R utin

This new version of Disk_io u e the memory variables DISK_DRIVE_NO
and CURRENT_SECTOR_NO a the di k drive and sector numbers for the
sector to read. Since the e variable are already defined in DSKP ATCH.ASM,
we won't have to change Di k_io when we tart reading different ectors from
other di k drives .

If you re using the Make program to rebuild D KPATCH.COM, you'll need
to make some addition to your ake file named D kpatch:

Listing 17-8. The New Version of DSKPATCH

dskpatch.obj: dskpa ch.as•
masm dskpatch;

disk_io. obj: disk_io. as
mas disk_io;

disp_sec.obj: disp_sec.asm
masm disp_sec;

11ideo_io.obj: video_io.as
mas 11ideo_io;

cursor .obj: cursor.asm
masm cursor;

dskpatch.com: dskpatch.obj disk_io.obj disp_sec.obj video_io .obj cursor.obj
link dskpatch disk_io disp_sec video_io cursor;
exe2bin dskpatch dskpatch.co

If you're not using Make, be sure to reassemble all three files changed
(Dskpatch, Disk_io, and Disp_sec), and to link all five files, with Dskpatch
listed first:

LINK DSKPATCA DISK_IO DISP_SEC VIDEO_IO CURSOR;
EXE2BIN DSKPATCB DSKPATCH.COM

We've made quite a few changes, so test Dskpatch and make sure it works
correctly before you move on.

citing the Header
Now that we've converted the hard-wired numbers into direct references to

memory variables, we can write the procedure WRITE_HEADER to write a

Peter Norton' · Assembly Language Boo~ 205

status line, or header, at the top of the screen. Our header will look like this:

Disk A Sector o

WRITE_HEADER will use WRITE_DECIMAL to write the current sector
number in decimal. It will also write two strings of characters, Disk and Sec
tor (each followed by a blank space), and a disk letter, such as A. We'll place
the procedure in the file VIDEO_IO.ASM.

To begin, since we'll have a reference to the data segment (DATA_SEG),
change the first line (the GROUP statement) in VIDEO_IO.ASM to read:

CGROUP GROUP CODE_SEG, DATA_SEG

Place the following procedure in VIDEO_IO.ASM:

Listing 17-g. Add This Procedure to VIDEO IO.ASM

PUBLIC WRITE_HEADER
DATA SEG SEGMENT PUBLIC

EXTRN HEADER_LINE_NO : BYTE
EXTRN HEADER_PART_1:BYTE
EXTRN HEADER_PART_2:BYTE
EXT RN DISK_DRIVE_NO:BYTE
EXTRN CURRENT_SECTOR_NO:WORD

DATA SEG ENDS
EXTRN GOTO_XY:NEAR

This procedure writes the header with disk-drive and sector number.

Uses:
Reads:

WRITE_HEADER
PUSH
XOR
MOV
CALL
LEA
CALL
MOV
ADD
CALL
LEA
CALL
MOV

GOTO_XY, WRITE_STRING, WRITE_CHAR, WRITE_DECIMAL
HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_2
DISK_DRIVE_NO, CURRENT_SECTOR_NO

PROC NEAR
DX
DL,DL ;Move cursor to header line number
DH,HEADER_LINE_NO
GOTO_XY
DX,HEADER_PART_1
WRITE_STRING
DL,DISK_DRIVE_NO
DL, 'A' ;Print drives A, B, ...
WRITE_CHAR
DX,HEADER_PART_2
WRITE_STRING
DX,CURRENT_SECTOR NO

206 fhl· R(M BI R utin

Listing 17-'=t. continued

CALL
POP
RET

'iiRITE_HEADER

WRITE_DECHIAL
DX

ENDP

The procedure WRITE_STRING doe n't exi t yet. A you can see, we plan to
use it to write a tring of character to the creen. The two trings, HEADER_
PART _1 and HEADER_P ART _2 are already defined in DSKP ATCH.ASM.
WRITE_STRING will u e DS:DX a the addre for the tring.

We've chosen to supply our own tring-output procedure so that our strings
can contain any character including the $ which we couldn't print with the
DO function 9. Where DOS u e a $to mark the end of a string, we'll use a
hex 0. Here i the procedure. Enter it into VIDEO_IO.ASM:

Listing 17-10. Add This Procedure to VIDEO_IO.ASM

POBLIC WRITE_STRI G

This procedure ri es a string of characters to the screen. The
string ust end with DB 0

DS:DX Address of the string

Uses: WRITE_CBAR

WRITE_STRING PROC NEAR
PUSH AX
POSH DX
PUSH SI
PUS BF
CLD
HOV SI,DX

STRING LOOP: -
LODSB
OR AL, AL
JZ END_OF_STRING
110V DL,AL
CALL WRITE_CHAR
JMP STRING_LOOP

END_OF - STRING:
POFF
POP SI
POP DX
POP AX
RET

WRITE STRING ENDP -

;Save direction flag
;Set direction for increment (forward)
;Place address into SI for LODSB

;Get a character into the AL register
;Bave we found the O yet?
;Yes, we are done with the string
;No, write character

;Restore direction flag

Peter Norton's Assembly Language Book 207

As it stands now, WRITE_STRING will write characters with ASCII codes
below 32 (the space character) as a period(.), because we don't have a version
of WRITE_ CHAR that will write any character. We'll take care of that detail
in the next chapter.

After all our work in this chapter, let's put the icing on the cake. Change
DISK_P ATCH in DSKP ATCH.ASM to include the CALL to WRITE
HEADER:

Listing 17-11. Changes to DISK_PATCH in DSKPATCH.ASM

EXTRN CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR

DISK_PATCH PROC NEAR
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
INT 2Dh

DISK_PATCH ENDP

Dskpatch should now produce a display like the one in Figure 17-1.

Disk A

A>

Be
18
28
3B
48
S8
GB
7B
88
9B
AB
BB
ce
De
EB
FB

Sector e

ee e1 e2 eJ e4 es eG e7 ea e9 eA 8B BC eD BE BF B1234SG789ABCDEF
I I I

EB 21 9B 49 42 4D 2B 2B 33 2E 31 BB B2 B2 81 8B
02 10 eB DB B2 FD B2 BB B9 BB B2 Be Be Be BB BB
BB BB BB C4 SC BB 33 ED BB CB 87 BE DB 33 C9 BA
D2 79 BE B9 1E 1E BB BC BG 2B BB BB 1G 22 BB B1
82 BE CS BE DS BC 8B 7C S1 FC 1E JG CS JG 7B BB
BF 23 7C B9 BB BB F3 A4 1F BB BE 2C 00 AB 1B BB
A2 27 BB BF 7B BB BB 23 7C AB 91 AB A1 1G BB D1
EB 4B EB BB BB EB BG BB BB BB BS S3 BB B1 EB AB
BB SF BE 73 B1 B9 BB BB 9B F3 A6 7S 62 B3 C7 1S
B1 BB 9B 9B F3 A6 7S S7 ZG BB 47 1C 99 BB BE BB
BB BJ C1 4B F? F1 BB 3E 71 B1 6B 75 B2 BB 14 96
A1 11 BB B1 B4 D3 EB EB 38 BB FF 3G 1E BB C4 1E
6F B1 EB 39 BB EB G4 BB 28 FB 76 BD EB 26 B8 52
F7 26 BB BB 83 DB SA EB E9 CD 11 B9 B2 BB D3 EB
BB E4 83 74 B4 FE C4 BA CC SB SB FF 2E 6F e1 BE
B9 e1 EB SS 9e e1 eG 1E ea 11 2E 20 BB CJ A1 1B

I I I

~!EIBM 3.1
I z ,p, I t I I I I I I I I I

... -\, 31S1 L, Af3rf.
.. A ... I Ty.e ... 1 .. e ..

. AtA ~. : Q1 • 6t6x.
• iJI <• • , 1 •11 •• _n,e.,.a ..

6' .1 x.1t:%1%L ·f
1@~~· ~a·J. ~ s~~ : §I~
._ s.11 .. Ei-uba .
I ''(& Wt"I' W" .EE--u ah.ul ..

lH +"> ' ::·: A .. =-~ q. u. ~ .u
L .I. IH;. 6 .. -.
o.§9.§d.+:V.§&.R
=a ... +z~e=.f .. 11
~l:.t.•-eDcx .o.J
.. <u' t' e. a E. rl .

Figure 17-1. Dskpatch with the Header at the Top.

208 rh R 1 BI Routin

S mma y

At last, we've met the ROM BIOS routines inside our IBM PCs, and already
used two of the e routines to help us toward our goal of a full Dskpatch
program.

First we learned about INT lOh, function number 6, which we used to clear
the screen. We al o aw (though very briefly) that thi function has more uses
than we'll take advantage of in thi book. For example you may eventually
find it helpful for scrolling portion of the creen-in Dskpatch or in your own
program .

We then used function 2 of INT lOh to move the cursor to the third line on
the screen (line number 2), where we tarted writing our sector dump.

To make our programs ea ier to work with, we al o rewrote several proce
dures so they would u e memory variable , rather than hard-wired numbers.
Now, we'll be able to read other ector and change the way our program
works in other way , ju t by changing a few central numbers in
DSKPATCH.ASM.

Finally, we wrote the procedures WRITE_HEADER and WRITE_STRING,
so we could write a header at the top of the screen. As mentioned, we'll write
an improved version of WRITE_ CHAR in the next chapter, replacing the dots
in the ASCII window of our disp1ay with graphics characters. And thanks to
modular design, we'll do this without changing any of the procedures that use
WRITE_ CHAR.

HE ULTIMATE
WRITE CHAR -

A New WRITE_CHAR 210
Clearing to the End of a Line 212
Summary 215

209

18

210 fh l I um t \\ RI H R

We made good u e of the ROM BIOS routine in the la t chapter to clear the
creen and mo e the cur or. But there are many more u es for the ROM BIOS,

and we'll ee ome of them in thi chapter.
Using DOS alone, we haven't been able to di play all 256 of the characters

that the IBM PC i capable of di playing. o in thi chapter we'll present a
new ver ion of WRITE_ HAR that di pla any character, thanks to another
VIDEO _IO function .

Then we'll add another u eful procedure called LEAR_ TO _E D _OF_
LINE that clear the line from the cur or to the right edge of the screen.
We 11 put thi to u e in WRITE_HEADER, o that it will clear the rest of
the line.

Suppa ewe go from ector number 10 (two digit) to ector number 9. A zero
would be left over from the 10 after we call WRITE_HEADER with the sector
et to 9. CLEAR_TO_E D_OF _LINE will clear this zero as well as any

thing el e on the remainder of the line.

The ROM BIOS function 9 for I T lOh write a character and its attribute
at the current cursor position. The attribute controls such features as under
lining, blinking and color (see the description of the different color codes in
your BASIC manual under COLOR). We'll use only two attributes for
Dskpatch: attribute 7, which is the normal attribute, and attribute ?Oh, which
is a foreground color of zero and background of 7 and produces inverse video
(black characters on a white background). We can set the attributes individu
ally for each character and we'll do this later to create a block cursor in in
verse video-known as a phantom cursor. For now, though, we'll just use the
normal attribute when we write a character.

INT lOh function 9 writes the character and attribute at the current cursor
position. Unlike DOS, it doesn't advance the cursor to the next character posi
tion unless it writes more than one copy of the character. We'll use this fact
later, in a different procedure, but now we only want one copy of each charac
ter, so we'll move the cursor ourselves.

Here is the new version of WRITE_ CHAR, which writes a character and
then moves the cursor right one character. Enter it into the file VIDEO_
IO.ASM:

Peter Norton's Assembly Language Book 211

Listing 18-1. Changes to WRITE_CHAR in VIDEO 10.ASM

PUBLIC WRITE_CHAR
EXTRN CURSOR_RIGHT:NEAR

This procedure outputs a character to the screen using the ROM BIOS
routines, so characters such as the backspace are treated as
any other character and are displayed.

This procedure must do a bit of work to update the cursor position.

DL Byte to print on screen

Uses: CURSOR RIGHT
;---;
WRITE_CHAR

PUSH
POSH
PUSH
PUSH
MOV
MOV
MOV
MOV
MOV
INT
CALL
POP
POP
POP
POP
RET

WRITE CHAR -

PROC
AX
BX
ex
DX
AH,CJ
BH,O
cx,1
AL,DL
BL,7
1Dh
CURSOR
DX
ex
BX
AX

ENDP

NEAR

RIGHT

;Call for output of character/attribute
;Set to display page D
;Write only one character
;Character to write
;Normal attribute
;Write character and attribute
;Now move to next cursor position

In reading through this procedure, you may have wondered why we included
the instruction MOV BH,0. If you have a graphics display adapter, your
adapter has four text pages in normal text mode. We'll only use the first pag(;,
page O; hence, the instruction.

As for the cursor, WRITE_ CHAR uses the procedure CURSOR_RIGHT to
move the cursor right one character position or to the beginning of the next
line if the movement would take the cursor past column 79. Place the follow
ing procedure into CURSOR.ASM:

Listing 18-2. Add This Procedure to CURSOR.ASM

PUBLIC CURSOR_RIGHT

This procedure moves the cursor one position to the right or to the
next line if the cursor was at the end of a line.

Uses: SEND_CRLF

-

212 The him tc \\'RI E_ H R

Listing 18-2. continued

CURSOR_RIGHT PROC NEAR
PUSH AX
POSH BX
PUSH ex
PUSH DX
tlOV AH,3 ;Read he current cursor position
HOV BH,O ;On page O
INT 10h ;Read cursor position
HOV AH,2 ;Se new cursor position
INC DL ;Set colu n to next position
Cl1P DL,7'1 ;Hake sura column <= 7'1
JBE OK
CALL SE D_CRLF ;Go to nex line
Jl1P DONE

OK: INT 10h
DONE: POP DX

POP ex
POP BX
POP AX
RET

CURSOR RIGHT ENDP

CURSOR_RIGHT use two new INT lOh functions. Function 3 reads the
position of the cursor and function 2 change the cursor position. The proce
dure first uses function 3 to find the cursor po ition, which is returned in two
bytes, the column number in DL, and the line number in DH. Then, CUR
SOR_RIGHT increments the column number (in DL) and moves the cursor. If
DL was at the last column (79), the procedure sends a carriage-return/line
feed pair to move the cursor to the next line. We don't need this column 79
check in Dskpatch, but including it makes CURSOR_RIGHT a general-pur
pose procedure you can use in any of your own programs ..

With these changes, Dskpatch should now display all 256 characters as
shown in Figure 18.l.

You can verify that it does by searching for a byte with a value less than
20h and seeing whether some strange character has replaced the period that
value formerly produced in the ASCII window.

Now let's do something perhaps even more interesting: let's write a proce
dure to clear a line from the cursor position to the end.

Clearing to the End of a Line
In the last chapter, we used INT lOh, function 6, to clear the screen in the

CLEAR_SCREEN procedure. At that time, we mentioned that function 6

Disk A

A>

BB
iB
28
3B
4B
SB
68
78
BB
9B
AB
BB
CB
DB
EB
re

. Peter Norton' Assembly Language Book 213

Sector B

BB Bi BZ B3 84 BS B6 B7 BB 89 BA BB BC BD BE BF B1234S67B9ABCDEF
I I I

EB 2i 9B 49 42 4D 2B 2B 33 2E 31 BB B2 B2 Bl BB
B2 7B BB DB 82 FD B2 88 B9 BB 82 88 88 88 BB 88
BB BB BB C4 SC BB JJ ED BB ce 87 BE DB 33 C9 BA
DZ 79 BE 89 iE lE 88 BC B6 2B BB BB 16 22 BB Bl
B2 BE CS BE DS BC BB 7C Sl FC lE 36 CS J6 7B BB
BF ZJ 7C B9 BB BB F3 A4 iF BB BE 2C BB AB 18 BB
AZ 27 BB BF 7B BB BB 2J 7C AB 91 AB Ai 16 BB Di
EB 48 EB BB 88 EB B6 88 BB BB BS SJ BB 81 EB AB
00 SF BE 7J 01 B9 BB BB 9B FJ A6 75 62 8J C7 lS
Bi BB 98 9B FJ A6 75 S7 26 BB 47 lC 99 BB BE BB
BB BJ Cl 4B F7 Fl 88 JE 71 81 6B 75 B2 BB 14 96
Al il BB Bl B4 DJ EB EB JB BB FF J6 1E BB C4 1E
6F Bl EB 39 88 EB 64 88 2B re 76 8D EB 26 B8 S2
F7 26 BB 88 83 DB SA EB E9 CD 11 B9 B2 88 DJ EB
88 E4 BJ 74 84 FE C4 BA CC SB S8 FF 2E 6F Bl BE
B9 Bi EB SS 98 81 86 1E 88 11 2E 2B BB CJ Al 18

I I I

Figure 18-1. Dskpatch with the New WRITE_CHAR.

could be used to clear any rectangular window. That capability applies even if
a window is only one line high and less than one line long, so we can use
function 6 to clear part of a line-to the end of the line.

The left side of the window, in this case, is the column number of the cursor,
which we get with a function 3 call (also used by CURSOR_RIGHT). The
right side of the window is always at column 79. You can see the details in
CLEAR_TO_END_OF _LINE; place the procedure in CURSOR.ASM:

Listing 18-3. Add This Procedure to CURSOR.ASM

POBLIC CLEAR_TO_END_OF_LINE
---•

; Th i s procedure clears the line from the current cursor position to
; t he end of that line.
---•

CLEAR_TO_END_OF_LINE
POSH AX
PUSH BX
PUSH ex
PUSH DX
MOV
XOR
INT

AH,3
BH,BH
1Dh

PROC NEAR

;Read current cursor position
; on page D
;Now have (X,Y) in DL, DH

214 fh ltin at· \\RI rE_ H R

Listing 18-3. continued

MOV AH,b
XOR AL,AL
110V CH,DH
MOV CL,DL
HOV DL,7q
MOV BH,7
INT 10h
POP DX
POP ex
POP BX
POP AX
RET

CLEAR - TO_END_OF_LINE ENDP

;Set up o clear to end of line
;Clear 11indo11
;All on same line
;Start at he cursor position
;And stop at the end of the line
;Use normal a tribute

We'll u e this procedure in WRITE_HEADER to clear the re t of the line
when we tart reading other ector (we'll do that very oon). There i n't any
way for you to ee CLEAR_ TO _E D _OF _LINE work with WRITE
HEADER until we add the procedure that allow us to read a different sector
and update the di play but let's revi e WRITE_HEADER now just to get it
out of the way. Make the following change to WRITE_HEADER in VIDEO_
10.ASM, to call CLEAR_TO_END_OF _LINE at the end of the procedure:

Listing 18-~. Changes to WRITE HEADER in VIDEO_IO .ASM

PUBLIC WRITE_HEADER
DATA SEG SEGMENT PUBLIC

EXTRN READER_LINE_NO:BYTE
EXTRN
EXT RN
EXT RN
EXT RN

DATA_SEG
EXTRN

HEADER_PART_L:BYTE
HEADER_PART_2:BYTE
DISK_DRIVE_NO:BYTE
CORRENT_SECTOR_NO:WORD
ENDS
GOTO_XY: EAR, CLEAR_TO_END_OF_LINE:NEAR

This procedure writes the header with disk-drive and sector number.

Uses:

Reads:

WRITE_HEADER
PUSH
XOR
MOV
CALL

GOTO XY, WRITE_STRING, WRITE_CBAR, WRITE_DECIMAL
CLEAR _TO_END_OF_LINE
HEADER_LINE_NO, HEADER_PART_1, HEADER_PART_2
DISK_DRIVE_NO , CURRENT_SECTOR_NO

PROC NEAR
DX
DL,DL
DH,HEADER_LINE_NO
GOTO_XY

;Move cursor to header line number

LEA DX,HEADER_PART_1

. Peter Norton's Assembly Language Book 215

Listing 18-L;. continued

CALL WRITE_STRING
MOV DL,DISK_DRIVE_NO
ADD DL, I A I ;Print drives A, ~

CALL WRITE_CHAR
LEA DX,HEADER_PART_2
CALL WRITE_STRING
MOV DX,CURRENT_SECTOR_NO
CALL WRITE_DECIMAL
CALL CLEAR_TO_END OF LINE ;Clear rest of sector number
POP DX
RET

WRiTE HEADER ENDP

This revision marks both the final version of WRITE_HEADER and the
completion of the file CURSOR.ASM. We are still missing several important
parts of Dskpatch, though. In the next chapter, we'll continue on and add the
central dispatcher for keyboard commands, we'll be able to press Fl and F2 to
read other sectors on the disk.

arv
This chapter has been relatively easy, without much in the way of new in

formation or tricks. We did learn how to use INT lOh, function number 9, in
the ROM BIOS to write any character to the screen.

In the process, we also saw how to read the cursor position with INT lOh
function 3, so we could move the cursor right one position after we wrote a
character. The reason: INT lOh function 9 doesn't move the cursor after it
writes just one character, unless it writes more than one copy of the character.
Finally, we put INT lOh function 6 to work clearing part of just one line.

In the next chapter, we'll get down to business again as we build the central
dispatcher.

THE DISPATCHER

The Dispatcher 218
Reading Other Sectors 224
Philosophy of the Following Chapters 226

217

19

218 hclip.th ' r

In any language it' nice to have a well-written program that does some
thing, but to really bring a program to life we need to make it interactive. It's
human nature to ay, "If I do thi , you do that," o we'll use thi chapter to add
some interactivity to D kpatch. We'll write a imple keyboard-input proce
dure and a central di patcher. Th di patcher' job will be to call the correct
procedure for each key pu hed. For xample, when we pre the Fl key to read
and di play the previou ector, th di patcher will call a procedure called
PREVIOUS_ E TOR. To do thi w '11 be making many changes to
Dskpatch. We'll tart by creating I PAT HER, th central di patcher, and
some other procedur for di play formatting. Next we'll add two new proce
dure , PREVIOU E T R and EXT_ E TOR, which we'll call through
DISPATCHER.

a
The Di patcher will be the central control for D kpatch, o all keyboard

input and editing will be done through it. DISPATCHER's job will be to read
character and call other procedure to do the work. You'll oon see how the
dispatcher doe it work, but first let's see how it fits into Dskpatch.

DISPATCHER will have it own prompt line, just under the half-sector dis
play where the cur or wait for keyboard input. You won't be able to enter hex
numbers in our first version of the keyboard-input procedure, but later on you
will. Here are our first modifications to DSKP ATCH.ASM; these add the data
for a prompt line:

Listing 19-1. Additions to DATA_SEG in DSKPATCH.ASM

HEADER_LINE_NO DB 0
HEADER_PART_1 DB 'Disk If Q

HEADER_PART_2 DB Sector I ,O
PUBLIC PROMPT_LINE_NO, EDITOR_PROMPT

PROMPT_LINE_NO DB 21
EDITOR_PROMPT DB 'Press function key, or enter'

DB 1 character or hex byte: It Q

We'll add more prompts later to take care of such matters as inputting a
new sector number, so we'll make our job simpler by using a common proce
dure, WRITE_PROMPT_LINE, to write each prompt line. Each procedure

. Peter Norton's Assembly Langua~c Book 219

that uses WRITE_PROMPT _LINE will supply it with the address of the
prompt (here, the address of EDITOR_PROMPT), and then write the prompt
on line 21 (because PROMPT_LINE_NO is 21). For example, this new ver
sion of DISK_PATCH (in DSKPATCH.ASM) uses WRITE_PROMPT_LINE
just before it calls DISPATCHER:

Listing 19-2. Additions to DISK PATCH in DSKPATCH.ASM

EXT RN CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR
EXT RN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXT RN WRITE_PROMPT_LINE:NEAR, DISPATCHER:NEAR

DISK PATCH PROC NEAR
CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE
CALL DISPATCHER
INT 2Dh

DISK PATCH ENDP

The dispatcher itself is a fairly simple program, but we do use some new
tricks in it. The following listing is our first version of the file
DISPATCH.ASM:

Listing 19-3. The New File DISPATCH.ASM.

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG SEGMENT PUBLIC

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR

This is the central dispatcher. During normal editing and viewing,
this procedure reads characters from the keyboard and, if the char
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer--this is the editing mode.

Uses: READ_BYTE

220 h

Listing 19-3. continued

DISPATCHER
PUSH
PUSH

DISPATCH_LOOP:
CALL
OR

JZ
JS

; do nothing
JllP

SPECIAL_KEY:

SPECIAL -

CllP
JE

LEA
LOOP :
CllP
JE
CllP
JE
ADD
JllP

DISPATCH:
INC
CALL
JllP

NOT_IN_TABLE:
JllP

END_DISPATCH:
POP
POP
RET

DISPATCHER

CODE_SEG

DATA_SEG

CODE_SEG
EXTRN
EXTRN

CODE_SEG

PROC NEAR
AX
BX

READ_BYTE
AH,AH

DISPATCH LOOP
SPECIAL_ EY

i h he character for nov
DISPATCR_LOOP

AL,60
E D_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR CBXJ,O
NOT_IN_TABLE
AL,[BXJ
DISPATCH
BX,3
SPECIAL_LOOP

BX
WORD PTR CBXJ
DISPATCH_LOOP

DISPATCH_LOOP

BX
AX

ENDP

ENDS

SEGMENT PUBLIC

SEGllENT PUBLIC
NEXT_SECTOR:NEAR
PREVIOUS_SECTOR:NEAR
ENDS

;Read charac er into AX
;AX = O if no character read, - 1
; for an ex ended code.
; o character read, try again
;Read extended code

;Read ano her charac er

; Fl.0--exi ?
;Yes, leave
;Use BX to look through table

;End of table?
;Yes, key vas not in the able
;Is it this table entry?
;Yes, then dispatch
;No, try next en ry
;Check next table entry

;Point to address of procedure
; Call procedure
;Wait for another key

;Do nothing, just read next character

;In DISK_IO.ASll
;In DISK_IO . ASll

Peter Norton's A sernbly Language Book 221

Listing 1CJ-3. continued

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB 72 ; Extended code for cursor up
DW OFFSET CGROUP:PHANTOM UP

DISPATCH_TABLE LABEL BYTE
DB 59 ; F1
DW OFFSET CGROUP:PREVIOUS SECTOR
DB 60 ; F2
DW OFFSET CGROUP:NEXT_SECTOR
DB D ;End of the table

DATA_SEG ENDS

END

DISPATCH_TABLE holds the extended ASCII codes for the Fl and F2
keys. Each code is followed by the address of the procedure DISPATCHER
should call when it reads that particular extended code. For example, when
READ_BYTE, which is called by DISPATCHER, reads an Fl key (extended
code 59), DISPATCHER calls the procedure PREVIOUS_SECTOR.

The addresses of the procedures we want DISPATCHER to call are in the
dispatch table, so we used a new pseudo-op, OFFSET, to obtain them. The line

DW OFFSET CGROUP:PREVIOUS_SECTOR

for example, tells the assembler to use the offset of our PREVIOUS_SECTOR
procedure. This offset is calculated relative to the start of our group CGROUP,
and it is why we need the CGROUP: in front of the procedure name. Had we
not put CG ROUP there, the assembler would calculate the address of PREVI
OUS_SECTOR from the start of the code segment, and that might not be
what we want. (As it turns out here, this CGROUP isn't absolutely necessary,
because the code segment is loaded first in our program. Still, in the interest
of clarity, we'll write OFFSET CGROUP: anyway.)

Notice that DISPATCH_TABLE contains both byte and word data. This
raises a few considerations. In the past, we've always dealt with tables of one
type or the other: either all words, or all bytes. But here, we have both, so we
have to tell the assembler which type of data to expect when we use a CMP or
CALL instruction. In the case of an instruction written like this:

CMP [BXJ,D

222 h

the assembler doe n t know wh ther we want to compare word or byte . But
by writing the in true ion like thi :

CMP BYTE PTR (BXJ , O

we tell th a mbler that BX p int to a b t and that w want a byte com
pare. imilarly, the in tructi n would compare
word . On the oth r hand, an in true ion lik MP AL,[BX] doe n't cau e any
problem becau AL i a byt r gi t r and th a mbl r know without
b ing told that w w nt a byt compar .

Then too, rememb r that ALL in truction can be ither a NEAR or a
FAR ALL. A EAR ALL n d on w rd for th addre , whil the FAR
CALL ne d two. Her the in truction:

CALL WORD PTR (BX]

tell the a embler, with W RD PTR that [BX] point to one word, o it
should generat a hort ALL and u the word pointed to by [BX] a the
addre , that b ing th addre we tored in DI PAT H_TABLE. (For a FAR
CALL which u e a wo-word addre we would u e the in truction ALL
DWORD PTR [BX]. DW RD tand for Double Word, or two word .)

A you ll ee in Chapter 22, we can ea ily add more key commands to
D kpatch imply by adding more procedure and placing new entries in DIS
PATCH_TABLE. Right now, however, we still need to add four procedures
before we can te t thi new er ion ofD kpatch. We're mis ing READ_BYTE,
WRITE_PROMPT_LI E PREVIOU _SECTOR, and NEXT_SECTOR.

READ _BYTE is a procedure to read characters and extended ASCII codes
from the keyboard. The final ver ion will be able to read special keys (such as
the function and cursor keys) ASCII characters, and two-digit hex numbers.
At this point, we'll write a simple version of READ _BYTE-to read either a
character or a special key. Here is the first version of KBD_IO.ASM, which is
the file in which we ll store all our procedures to read from the keyboard:

Listing 1q-~. The New File KBD_IO.ASM

CGROUP GROUP CODE_SEG
ASSUME CS:CGROOP, DS:CGROOP

CODE_SEG SEGMENT PUBLIC
PUBLIC READ_BYTE

Peter Norton's Assembly Language Book 223

Listing 19-t;. continued

This procedure reads a single ASCII character. This is just
a test version of READ BYTE.

Returns byte in

READ_BYTE PROC

AL
AH

NEAR

Character code (unless AH
1 if read ASCII char
-1 if read a special key

0)

MOV AH,7 ;Read character without echo
INT
OR
JZ

NOT EXTENDED: -
MOV

DONE_READING:
RET

EXTENDED_CODE:
INT
MOV
JMP

READ_BYTE

21h
AL,AL
EXTENDED CODE

AH,1

21h
AH,OFFh
DONE_READING
ENDP

CODE_SEG ENDS

END

I and place into AL
;Is it an extended code?
;Yes

;Signal normal ASCII character

;Read the extended code
;Signal extended code

We'll add WRITE_PROMPT_LINE to VIDEO_IO.ASM as follows:

Listing 19-5. Add This Procedure to VIDEO IO.ASM

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_END_OF_LINE:NEAR
EXTRN GOTO_XY:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN PROMPT_LINE_NO:BYTE

DATA_SEG ENDS

This procedure writes the prompt line to the screen and ~lears the
end of the line.

DS:DX

Uses:
Reads:

Address of the prompt-line message

WRITE_STRING, CLEAR_TO_END_OF_LINE, GOTO_XY
PROMPT LINE NO

224 fh Di pat h r

Listing 111-S. continued

WRITE_PROMPT_LINE PROC NEAR
POSH DX
XOR DL,DL
MOV DH,PROMPT_LINE_NO
CALL GOTO_XY
POP DX
CALL WRITE_STRING
CALL CLEAR_TO_END_OF_LINE
RET

WRITE_PROMPT_LINE E DP

;Write the prompt line and
; move the cursor there

There really i n't much to thi procedure. It move the cur or to the beginning
of the prompt line which we et (in DSKPATCH.ASM) to line 21. Then, it
write the prompt line and clear the rest of the line. The cur or is at the end
of the prompt when WRITE_PROMPT_LINE is done, and the rest of the line
is cleared by CLEAR_TO_E D_OF _LINE.

Other t r
Finally, we need the two procedures PREVIOUS_SECTOR and NEXT_

SECTOR, to read and redisplay the previous and next disk sectors. Add these
two procedures to DISK_IO.ASM:

Listing 1q-6. Add These Procedures to DISK_IO.ASM

PUBLIC PREVIOUS_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA SEG SEGMENT PUBLIC
EXTRN CORRENT_SECTOR_NO:WORO, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

This procedure reads the previous sector, if possible.

Uses:

Reads:
Writes:

PREVIOUS_SECTOR

WRITE_BEADER, READ_SECTOR, INIT_SEC_DISP
WRITE_PROMPT_LINE
CORRENT_SECTOR_NO, EDITOR_PROMPT
CORRENT_SECTOR NO

PROC NEAR
POSH AX
PUSH DX
MOV
OR

AX,CORRENT_SECTOR_NO
AX,AX

;Get current sector number
;Don't decrement if already 0

Peter Norton's Assembly Language Book 225

Listing 19-6. continued

JZ DONT_DECREMENT SECTOR
DEC AX
MOV CURRENT_SECTOR_NO,AX ;Save new sector number
CALL WRITE_HEADER
CALL READ_SECTOR
CALL IN I T_SEC_DISP ;Display new sector
LEA DX ,EDITOR_PROMPT
CALL WRITE_PROMPT_LINE

DONT DECREMENT SECTOR: -
POP DX
POP AX
RET

PREVIOUS_SECTOR ENDP

PUBLIC NEXT_SECTOR
EXTRN INIT_SEC_DISP:NEAR, WRITE_HEADER:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA SEG SEGMENT PUBLIC
EXTRN CURRENT_SECTOR_NO:WORD, EDITOR_PROMPT:BYTE

DATA_SEG ENDS

Reads the next sector.

uses:

Reads:
Writes:

NEXT_SECTOR
PUSH
PUSH
MOV
INC
MOV
CALL
CALL
CALL
LEA
CALL
POP
POP
RET

NEXT SECTOR

WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP
WRITE PROMPT_LINE
CURRENT_SECTOR_NO, EDITOR_PROMPT
CURRENT SECTOR NO

PROC NEAR
AX
DX
AX,CURRENT SECTOR_NO
AX ;Move to next sector
CURRENT_SECTOR_NO,AX
WRITE_HEADER
READ_SECTOR
INIT_SEC_DISP ;Display new sector
DX,EDITOR_PROMPT
WRITE_PROMPT_LINE
DX
AX

ENDP

Now, you're ready to assembly all the files we created or changed:
Dskpatch, Video_io, Kbd_io, Dispatch, and Disk_io. When you link the
Dskpatch files, remember there are now seven of them: Dskpatch, Disp_sec,
Disk_io, Video_io, Kbd_io, Dispatch, and Cursor.

If you are using Make, here are the additions you need to make to the file

226 fhc Di pat h r

Dskpatch (the backsla h at the end of the fourth line from the bottom tells
Make we're continuing the Ii t of file onto the next line):

Listing 19-7. Changes to the DSKPATCA Make File

cursor.obj: cursor.asm
masm cursor;

dispatch.obj: dispa ch.as
masm dispatch;

kbd_io.obj: kbd_io.as
masm kbd_io;

dskpatch.com: dskpa ch.obj disk_io.obj disp_sec.obj video_io.obj cursor .ob j \
dispa ch.obj kbd_io.obj
link dskpatch disk_io disp_sec video_io cursor dispatch kbd_io;
exe2bin dskpatch dskpatch.co

If you do not have ake, you may wi h to write the following short batch
file to hnk and create your .COM file:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CORSOR DISPATCH KBD_IO;
EXE2BIN DSKPATCH DSKPATCH.COM

As we add more files you'll only need to change this batch file, rather than
type this long link list each time you rebuild the .COM program.

This version of Dskpatch has three active keys: Fl read and displays the
previous sector, stopping at sector O; F2 reads the next sector; FlO exits from
Dskpatch. Give these keys a try. Your display should now look something like
Figure 19-1.

P · oso hy of the ollow·ng Cha ters
We covered far more ground than usual in this chapter, and in that respect

you've had a taste of the philosophy we'll be following in Chapters 20 through
27. From now on, we'll move along at a fairly rapid pace, so that we can get
through more examples of how to write large programs. You'll also find more
procedures that you can use in your own programs.

These chapters are here for you to learn from, hence the rather high density
of new procedures. But in the final two chapters of the book, we'll come back
to learning new subjects, so hang on, or (if you wish) skip the remaining chap-

Disk A

B0
1B
20
3B
4B
S0
6B
70
BB
9B
AB
BB
CB
DB
EB
re

Peter Norton's Assembly Language Book 227

Sector 8

BB B1 BZ B3 B4 BS B6 B7 BB 89 BA BB 8C BD 8E 8F 81234S67B9ABCDEF
I I I

EB 21 9B 49 42 4D 2B 20 33 ZE 31 B0 B2 B2 B1 8B
BZ 7B BB DB B2 FD B2 BB 89 BB BZ BB BB 88 BB Be
BB BB BB C4 SC BB JJ ED BB ce 07 BE DB 3J C9 BA
DZ 79 BE B9 1E 1E BB BC 06 2B 00 BB 16 22 00 B1
BZ BE CS BE DS BC 00 7C 51 FC 1E 36 CS 36 7B BB
BF 2J 7C B9 BB 80 F3 A4 1F BB BE zc BB AB 1B 00
AZ 27 80 BF 7B 0B BB 2J 7C AB 91 AB A1 16 00 D1
EB 4B EB Be 00 EB B6 8B BB 00 es SJ BB 01 EB AB
BB SF BE 73 01 B9 BB B8 90 F3 A6 7S 62 BJ C7 1S
B1 BB 9B 9B F3 A6 75 S7 26 BB 47 1C 99 BB BE BB
BB B3 C1 4B F7 F1 80 JE 71 B1 60 7S B2 BB 14 96
A1 11 BB B1 B4 DJ EB EB 3B BB FF J6 1E BB C4 1E
6F B1 EB 39 BB EB 64 BB ZB FB 76 0D EB 26 BB S2
F7 26 BB 8B BJ DB SA EB E9 CD 11 B9 02 BB DJ E0
BB E4 03 74 B4 FE C4 BA cc SB SB FF ZE 6F 01 BE
B9 B1 EB SS 9B B1 06 1E BB 11 2E 20 00 CJ A1 18

I I I

Press function key, or enter character or hex byte:

igu e 19-1. Dskpatch with the Prompt Line.

ters on Dskpatch until you're ready to write your own programs. When you're
ready to come back again, you'll find many useful tidbits for programming.

Of course, if you're champing at the bit and eager to write your own proce
dures, read the next chapter. There, you'll find a number of hints, and we'll
give you a chance to write the procedures in following chapters by giving you
enough details to forge ahead.

From Chapter 21 on, we'll present many different procedures and let you
discover how they work. Why? There are two reasons, both related to setting
you on your feet and on your way to assembly language programming. First,
we want you to have a library of procedures you can use in your own pro
grams; to use them comfortably, you need to exercise your own skills. Second,
by presenting this large programming example, we want to show you not only
how to write a large program, but to give you a feel for it as well.

So take the rest of this book in the way that suits you best. Chapter 20 is for
those of you eager to write your own programs. In Chapter 21, we'll return to
Dskpatch and build the procedures to write and move what we call a phantom
cursor: a reverse-video cursor for the hex and ASCII displays.

A PROGRAMMING
CHALLENGE

The Phantom Cursors 230
Simple Editing 232

20

Other Additions and Changes to Dskpatch 232

229

230 A Pn: gram ming h llcng ·

This book contains six more chapters of procedures. If you want to try navi
gating on your own, read this chapter. We'll chart a course for you here, and
plot your way through Chapters 21 and 22. Then you can try to write the
procedures in each chapter before you read it. If you don't wish to try writing
pieces of Dskpatch just yet, skip thi chapter for now. It' very brief and leaves
many details to your imagination.

If you decide to read through thi chapter, here's a suggestion on how to
proceed: Read one ection and then try to make your own corresponding
changes to D kpatch . When you feel you ve made enough progress, read the
chapter with the same name a the ection title. After you've read the corre
sponding chapter, then you can go on to read the next section.

Note: You may want to make a copy of all your files before you start
making changes. Then when you get to Chapter 21, you'll have the
choice of following along with the changes, or using your own version.

a to Cursor
In Chapter 21 we'll place two phantom cursors on the screen: one in the hex

window, and one in the ASCII window. A phantom cursor is similar to a nor
mal cursor, but it doesn't blink and the background turns white, with the
characters black, as you can see in Figure 20-1.

The phantom cursor in the hex window is four characters wide, the one in
the ASCII window is only one character wide.

How do we create a phantom cursor? Each character on the screen has an
attribute byte. This byte tells your IBM PC how to display each character. An
attribute code of 7h displays a normal character, while 70h displays a charac
ter in inverse video. The latter is exactly what we want for the phantom cur
sor, so the question is: How can we change the attribute of our characters to
70h?

INT lOh function 9 writes both a character and an attribute to the screen,
and INT lOh function 8 reads the character code at the current cursor posi-

· Peter Norton's Assembly Language Book 231

Disk A Sector 0

ee 01 ez 03 04 es B6 B7 BB 09 0A BB ec BD BE 0F
I I I

eB 1!J21 9B 49 42 4D ze ZB 33 ZE 31 ee ez ez e1 ee
1B B2 10 ee De ez FD BZ ee 09 ee ez ee ee ee ee ee
ze ee BB BB C4 SC ea 33 ED BB ce 07 BE DB 33 C9 BA
3B DZ 79 BE 89 1E 1E BB BC B6 ze ee 88 16 zz ee B1
40 ez BE cs BE DS BC ee 7C S1 FC 1E 36 cs 36 78 ee
50 BF 23 7C B9 BB BB F3 A4 1F BB BE 2C ee A0 1B 80
68 AZ 27 08 BF 7B B8 BB 23 7C AB 91 AB A1 16 08 D1
7B EB 4B EB BB BB EB B6 BB BB 8B 8S S3 BB 81 EB AB
BB BB SF BE 73 B1 B9 BB 0B 9B F3 A6 7S 62 B3 C7 1S
9B B1 BB 9B 9B F3 A6 7S S7 26 BB 47 1C 99 BB BE BB
AB BB B3 C1 4B F7 F1 BB 3E 71 B1 6B 7S BZ BB 14 96
BB A1 11 BB B1 84 D3 EB EB 3B BB FF 36 1E BB C4 1E
ce 6F 01 EB 39 8B EB 64 08 ZB FB 76 BD EB 26 B8 sz
DB F7 26 BB ee B3 DB SA EB E9 CD 11 B9 BZ BB D3 EB
EB BB E4 03 74 04 FE C4 BA CC SB 58 FF ZE 6F 01 BE
re 89 01 EB SS 9B 81 86 1E 08 11 ZE 20 ee C3 A1 18

I I I

Press function key, or enter character or hex byte:

01Z34S6789ABCDEF

m!EIBM 3.1899
8p .De28 o 8

-\a3-'1 L•At31
vlJHeU it e."
8AfA f' I Q1 £6f6x
,1111 in,en, u
6' ,x ,11%1%1- 'f
,;@§~ U l tS11f,~§~

_J sGlflcf Ei!ub&~§
lcfHi!uWli'GL~i'Hcf
tlH=±~>qQ'ue~qin

H l+D.n; 6£ _,
o&J§9 u +:vru R
=U tfZ69=<4DB l,;
~r•t••-e~cx .oQ:J
e96UEGlt£ ~. ~1t

igure 20-1. A Display with Phantom Cursors.

tion. We can create a phantom cursor in the hex window with the following
steps:

• Save the position of the real cursor (use INT lOh function 3 to read the
cursor position and save this in variables).

• Move the real cursor to the start of the phantom cursor in the hex
window.

• For the next four characters, read the character code (function 8) and
write both the character and its attribute (setting the attribute to 70h).

• Finally, restore the old cursor position.

We write a phantom cursor in the ASCII window in much the same way.
Once you have a working phantom cursor in the hex window, you can add the
extra code for the ASCII window.

Keep in mind that your first try is only temporary. Once you have a work
ing program with phantom cursors, you can go back and rewrite your changes,
so you have a number of small procedures to do the work. Look at the proce
dures in Chapter 21 when you're done, to see one way of doing this.

232 Pr grammmg

Once we have our phantom cursors we'll want to move them around on the
screen. We have to pay attention here to boundary conditions, in order to keep
the phantom cursors inside each of the two windows. We also want our two
phantom cursors to move together, ince they represent the hex and ASCII
representations of the same thing.

How can we move each phantom cur or? Each of the four cursor keys on the
keypad sends out a special function number: 72 for cursor up 80 for cursor
down, 75 for cursor left, and 77 for cur or right. These are the numbers we
need to add to DISPAT H_TABLE along with the addresses of the four pro
cedures to move the phantom cursor in each of these four directions.

To actually move each phantom cursor, erase it, then change it two coordi
nates and write it again. If you've been careful about how you wrote the phan
tom cursors, the four procedures to move them should be fairly simple.

Whenever you type a character on the keyboard, Dskpatch should read this
character and replace the byte under the phantom cur or with the character
just read. Here are the steps for simple editing:

• Read a character from the keyboard.
• Change the hex number in the hex window and the character in the

ASCII window to match the character just read.
• Change the byte in the sector buffer, SECTOR.

Here's a simple hint: You don t have to make many changes to add editing.
Dispatch requires little more than calling a new procedure (we've called it
EDIT_BYTE) that does most of the work. EDIT_BYTE is responsible for
changing both the screen and SECTOR.

C a f7 ~ to Dsk a h
From Chapter 23 through Chapter 27, the changes start to become some

what trickier and more involved. If you're still interested in writing your own
version, consider this: What more would you like to see Dskpatch do than it
does right now? We've used the following ideas in the remaining chapters.

We want a new version of READ_BYTE that will read either one character
or a two-digit hex number and wait for us to press the Enter key before it
returns a character to Dispatch. This part of our "wish list" isn't as simple as

.Peter Norton's Assembly Language Boo~ 233

it sounds, and we'll spend two chapters (Chapters 23 and 24) working on this
problem.

In Chapter 25, we'll go bug hunting, then in Chapter 26 we'll learn how to
write modified sectors back to the disk using the DOS INT 26h function,
which is analogous to the INT 25h that we used to read a sector from the disk.
(In Chapter 26, we won't check for read errors, but you'll find such checks in
the disk version of Dskpatch that is available with this book.)

Finally, in Chapter 27, we'll make some changes to Dskpatch so we can see
the other half of our sector display. These changes won't allow us to scroll
through the sector display as freely as we'd like but, again, those changes are
on the disk version of Dskpatch.

21

THE PHANTOM CURSORS

The Phantom Cursors 236
Changing Character Attributes 241
Summary 243

235

236 Th Phant m ur r

In this chapter we'll build the procedures to write and erase a phantom cur
sor in the hex window, and another in the ASCII window. A phantom cursor is
so called because it's not the PC's hardware cursor; it's a shadow ... albeit a
rather unusual shadow, since it inverts the character, turning the background
to white and the character to black. In the hex window, we have the room to
make this cursor four character wide o it will be easy to read. In the ASCII
window, our phantom cursor will be just one character wide, because there is
no room between characters.

We have a lot of procedures and code to cover here, o we'll describe these
procedures only briefly.

h
INIT_SEC_DISP is the only procedure we have that changes the sector dis

play. A new display appears when we start Dskpatch, and each time we read a
new sector. Since our phantom cursors will be in the sector display, we'll begin
our work here by placing a call to WRITE_PHANTOM in INIT_SEC_DISP.
That way, we'll write the phantom cursors every time we write a new sector
display.

Here is the revised-and final-versibn of INIT_SEC_DISP in DISP _
SEC.ASM:

Listing 21-1. Changes to INIT_SEC_DISP in DISP_SEC.ASM

POBLIC INIT_SEC_DISP
EXTRN WRITE_PATTERN : NEAR, SEND_CRLP:NEAR
EXTRN GOTO_XY:NEAR, WRITE_PHANTOM:NEAR

DATA SEG SEGMENT POBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE
EXTRN SECTOR_OFFSET:WORD

DATA_SEG ENDS

This procedu re initializes the half-sector display.

Oses :

Reads:

Writes:

WRITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NOMBERS, GOTO_XY, WRITE_PHANTOM
TOP_LINE_PATTERN, BOTTOM_LINE_PATTERN
LINES_BEFORE_SECTOR
SECTOR_OFFSET

Peter Norton's Assembly Language Book 237

Listing 21-1. continued

INIT_SEC_DISP PROC NEAR
PUSH DX
XOR DL,DL ;Move cursor into position
MOV DB,LINES_BEFORE_SECTOR
CALL GOTO_XY
CALL WRITE_TOP_HEX_NUMBERS
LEA DX,TOP_LINE_PATTERN
CALL WRITE_PATTERN
CALL SEND_CRLF
XOR DX,DX ;Start at the beginning of the sector
MOV SECTOR_OFFSET,DX ;Set sector offset to 0
CALL DISP_HALF_SECTOR
LEA DX,BOTTOM_LINE_PATTERN
CALL WRITE_PATTERN
CALL WRITE_PHANTOM ;Write the phantom cursor
POP DX
RET

INIT_SEC_DISP ENDP

Notice that we've also updated INIT_SEC_DISP to use and initialize vari
ables. It now sets SECTOR_ OFFSET to zero to display the first half of a
sector.

Let's move on to WRITE_PHANTOM itself. This will take quite a bit of
work. Altogether, we have to write six procedures, including WRITE_PHAN
TOM. The idea is fairly simple, though. First, we move the real cursor to the
position of the phantom cursor in the hex window and change the attribute of
the next four characters to inverse video (attribute 70h). This creates a block
of white, four characters wide, with the hex number in black. Then we do the
same in the ASCII window, but for a single character. Finally, we move the
real cursor back to where it was when we started. All the procedures for the
phantom cursors will be in PHANTOM.ASM, with the exception of WRITE_
ATTRIBUTE_N_TIMES, the procedure that will set the attribute of
characters.

Enter the following procedures into the file PHANTOM.ASM:

Listing 21-2. The New File PHANTOM.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE SEG SEGMENT PUBLIC

PUBLIC MOV TO HEX_POSITION
EXTRN GOTO_XY:NEAR

238 h Ph nt m ur r

Listing 21-2. continued

DATA_SEG SEGMENT PUBLIC
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS

This procedure moves the real cursor to the position of the phantom
cursor in the hex windo

Uses: GOTO_XY
Reads: LINES_BEFORE_SECTOR, PHA TOK_CURSOR_X, PHANTOM_CORSOR_Y

MOV_TO_HEX_POSITION PROC HEAR
POSH AX
POSH ex
POSH DX
MOV DH,LINES_BEFORE_SECTOR ;Find row of phanto (0,0)
ADD DH,2 ;Plus row of hex and horizontal
ADD DH,PHANTOK_CURSOR_Y ;DH = row of phantom cursor
MOV DL,O ;Inden on left side

bar

MOV CL,3 ;Each colu n uses 3 characters.so
MOV AL,PRANTOK_CURSOR_X

'
we must ultiply CORSOR_X by 3

MOL CL
ADD
CALL
POP

DL,AL
GOTO_XY
DX

;And add to the indent, to get column
; for phanto cursor

POP ex
POP AX
RET

MOV_TO_REX_POSITION ENDP

PUBLIC
EXTRN

DATA SEG
EXTRN

DATA_SEG

MOV_TO_ASCII POSITION
GOTO_XY: NEAR
SEGMENT PUBLIC
LINES_BEFORE_SECTOR:BYTE
ENDS

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

Uses: GOTO_XY
Reads: LINES_BEFORE_SECTOR, PHANTOM_CORSOR_X, PRANTOM_CORSOR_Y

MOV_TO_ASCII_POSITION PROC NEAR
POSH AX
POSH DX
MOV DR,LINES_BEFORE_SECTOR ;Find row of phantom (0,0)
ADD DH,2 ;Plus row of hex and horizontal
ADD DB,PBANTOM_CORSOR_Y ;DR = row of phantom cursor
MOV DL,59 ;Indent on left side
ADD DL,PRANTOM_CORSOR_X ;Add CORSOR_X to get X pos ition
CALL GOTO_XY

'
for phantom cursor

POP DX

bar

Peter Norton's Assembly Language Book 239

Listing 21-2. wntin~d

POP AX
RET

MOV_TO_ASCII POSITION ENDP

PUBLIC SAVE_REAL_CURSOR
;---;

This procedure saves the position of the real cursor in the two
variables REAL_CURSOR x and REAL_CURSOR Y.

Writes: REAL_CURSOR_X, REAL_CURSOR_Y

SAVE_REAL_CURSOR PROC NEAR
PUSR AX
PUSH BX
PUSR ex
PUSH DX
MOV AH,3 ;Read cursor position
XOR BH,BH ; on page D
INT 1Dh ; And return in DL,DH
MOV REAL_CURSOR_Y,DL ; Save position
MOV REAL_CURSOR_X,DH
POP DX
POP ex
POP BX
POP AX
RET

SAVE REAL_CURSOR ENDP

PUBLIC RESTORE REAL_CURSOR
EXTRN GOTO_XY: NEAR

This procedure restores the real cursor to its old position, saved in
REAL_CURSOR X and REAL_CURSOR_Y.

Uses: GOTO_XY
Reads: REAL_CURSOR_X, REAL_CURSOR_Y

RESTORE_REAL_CURSOR PROC NEAR
PUSH DX
MOV DL,REAL_CURSOR_Y
MOV DH,REAL_CURSOR_X
CALL GOTO_XY
POP DX
RET

RESTORE REAL_CURSOR ENDP

PUBLIC WRITE PHANTOM
EXTRN WRITE_ATTRIBUTE_N_TIMES:NEAR

240 The Ph nt m u r r

Listing 2:1-2. continued

This procedure uses CORSOR_X and CURSOR_Y, through HOV_TO_ .. ·I as the
coordinates for the phantom cursor. WRITE_PHANTOH writes this
phantom cursor.

Oses:

WRITE_PBANTO!'I
POSH
POSH
CALL
CALL
HOV
MOV
CALL
CALL
110V
CALL
CALL
POP
POP
RET

WRITE ATTRIBOTE_N_TIMES, SAVE RBAL_CORSOR
RESTORE_REAL_CORSOR, MOV_TO_BEX_POSITION
110V_TO_ASCII POSITION

PROC NEAR
ex
DX
SAVE REAL_CORSOR
MOV_TO_BEX_POSITIOH
CX,t;
DL,70h
WRITE_ATTRIBUTE_N_TIMES
110V_TO_ASCII_POSITION
cx,i
WRITE_ATTRIBOTE_N_Til1ES
RESTORE_REAL_CORSOR
DX
ex

;Coord. of cursor in hex window
;Hake phanto cursor four chars wide

;Coord. of cursor in ASCII window
;Cursor is one character wide here

WRITE PHANTOM ENDP

PUBLIC ERASE_PBANTOM
EXTRN WRITE_ATTRIBOTE_N_Til1ES:NEAR

This procedure erases the phaoto cursor, just the opposite of
WRITE PHANTOM.

Oses: WRITE_ATTRIBOTE_N_Til1ES, SAVE_REAL_CORSOR
RESTORE_REAL_CORSOR, MOV_TO_HEX_POSITION
HOV_TO_ASCII_POSITION

ERASE_PBANTOM PROC NEAR
POSH ex
POSH
CALL
CALL
110V
l'IOV
CALL
CALL
MOV
CALL
CALL
POP
POP
RET

DX
SAVE_REAL_CORSOR
MOV_TO_HEX_POSITION
CX,t;
DL,7
WRITE ATTRIBOTE_N_Til1ES
MOV_TO_ASCII _POSITION
CX,1
WRITE_ATTRIBUTE_N_TIMES
RESTORE_REAL_CORSOR
DX
ex

;Coord. of cursor in hex window
;Change back to white on black

Listing 21-2. oontin~d

ERASE_PHANTOM ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC
REAL_CURSOR_X
REAL_CURSOR_Y

DB
DB

0
0

Peter Norton's Assembly Language Book 241

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X DB 0
PRANTOM_CURSOR_Y DB 0
DATA_SEG ENDS

END

WRITE_PHANTOM and ERASE_PHANTOM are much the same. In fact,
the only difference is in the attribute used: WRITE_PHANTOM sets the at
tribute to 70h for inverse video, while ERASE_PHANTOM sets to attribute
back to the normal attribute (7).

Both of these procedures save the old position of the real cursor with
SAVE_REAL_CURSOR, which uses the INT lOh function number 3 to read
the position of the cursor and then saves this position in the two bytes REAL_
CURSOR_X and REAL_CURSOR_Y.

After saving the real cursor position, both WRITE_PHANTOM and
ERASE_PHANTOM then call MOV _TO_HEX_POSITION, which moves
the cursor to the start of the phantom cursor in the hex window. Next,
WRITE_ATTRIBUTE_N_TIMES writes the inverse-video attribute for four
characters, starting at the cursor and moving to the right. This writes the
phantom cursor in the hex window. In much the same way, WRITE_PHAN
TOM then writes a phantom cursor one character wide in the ASCII window.
Finally, RESTORE_REAL_ CURSOR restores the position of the real cursor
to the position it was in before the call to WRITE_PHANTOM.

The only procedure we have left unwritten is WRITE_ATTRIBUTE_N_
TIMES, so let's take care of it now.

Changing Character Attributes
We're going to use WRITE_ATTRIBUTE_N_TIMES to do three things.

First, it will read the character under the cursor position. We'll do this be
cause the INT lOh function we use to set a character's attribute, function

242 Th Phant rn urs r

number 9, writes both the character and the attribute under the cursor. Thus,
WRITE_ATIRIBUTE_N_TIMES will change the attribute by writing the
new attribute along with the character just read. Finally, the procedure will
move the cursor right to the next character position, so we can repeat the
whole process N times. You can see the details in the procedure itself; place
WRITE_ATIRIBUTE_N_TIMES in the file VIDEO_IO.ASM:

Listing 21-3. Add This Procedure to VIDEO_IO.ASM

POBLIC WRITE_ATTRIBOTE_N_TIMES
EXTRN CORSOR_RIGAT:NEAR

This procedure sets the attribute for characters, starting at the
current cursor position.

ex
DL

Number of characters o set attribute for
New attribute for characters

Uses: CORSOR RIGAT

WRITE_ATTRIBOTE_N_TIMES PROC NEAR
POSH AX
POSH BX
POSB ex
POSA DX
MOV BL,DL ;Set attribute to new attribute
XOR BH,BB ;Set display page to O
MOV DX,CX ;CX is used by the BIOS routines
MOV CX,L ;Set attribute for one character

ATTR LOOP: -
MOV AB I 11 ;Read character under cursor
INT 10h
MOV AH,g ;Write attribute/character
INT 10h
CALL CORSOR_RIGBT
DEC DX ; Set attribute for N characters?
JNZ ATTR_LOOP ;No, continue
POP DX
POP ex
POP BX
POP AX
RET

WRITE_ATTRIBOTE_N_TIMES ENDP

This is both the first and final version ofWRITE_ATIRIBUTE_N_TIMES.
With it, we've also created the final version of VIDEO_IO.ASM, so you won't
need to change or assemble it again.

s

Peter Norton's As embly Language Book 243

Disk A Sector 8

88 81 82 83 84 BS 86 87 BB B9 0A 0B 0C 0D 0E 0F
I I I

B8 1]1121 98 49 42 4D 28 28 33 2E 31 88 82 02 81 08
18 82 7B 08 DB BZ FD 02 88 09 08 82 BB B8 88 08 88
28 80 88 00 C4 SC 0B 3J ED BB C8 87 BE DB JJ C9 0A
38 DZ 79 BE B9 1E iE 80 BC 06 20 BB BB 16 ZZ 80 B1
40 B2 BE CS BE DS BC BB 7C Si FC 1E J6 CS 36 7B 88
S0 BF 23 7C B9 BB BB F3 A4 1F BB BE ZC 00 AB iB BB
6B AZ 27 0B BF 7B 0B BB 23 7C AB 91 AB Ai 16 BB D1
7B EB 4B EB BB BB EB B6 BB BB BB 0S SJ BB B1 EB AB
BB BB SF BE 73 B1 B9 BB BB 9B FJ A6 75 62 B3 C7 15
9B B1 BB 9B 9B F3 A6 75 57 26 BB 47 iC 99 BB BE BB
AB BB B3 Ci 4B F7 F1 BB 3E 71 B1 6B 75 BZ BB 14 96
BB A1 11 BB B1 B4 DJ EB EB 3B BB FF J6 iE 88 C4 .1E
CB 6F B1 EB 39 88 EB 64 80 2B F0 76 BD EB 26 80 52
DB F7 26 0B BB 83 DB SA EB E9 CD i1 B9 82 BB DJ EB
EB 88 E4 BJ 74 B4 FE C4 BA CC SB SB FF 2E 6F 81 BE
FB 89 81 EB 55 9B B1 86 1E BB i1 2E 28 BB CJ A1 18

I I I

Press function key, or enter character or hex byte:

81234S67B9ABCDEF

1gure ~ - . 'creen Display with Phantom Cursors.

We now have eight files to link, with the main procedure still in Dskpatch.
Of these, we've changed two files, Disp_sec and Video_io, and created one,
Phantom. If you're using Make or the short batch file we suggested in Chapter
20, remember to add your new file, Phantom, to the list.

When you run Dskpatch now, you'll see it write the sector display, just as
before, but Dskpatch will also write in the two phantom cursors. (See Figure
21-1.) Notice that the real cursor is back where it should be at the very end.

In the next chapter, we'll add procedures to move our newly formed phan
tom cursors, and we'll add a simple editing procedure to allow us to change the
byte under the phantom cursor.

....

SIMPLE EDITING

Moving the Phantom Cursors 246
Simple Editing 249
Summary 253

245

22

246 impl itin

We've almost reached the point at which we can begin to edit our sector
display-change numbers in our half ector display. We'll soon add simple
versions of the procedure for editing byte in our display, but before we do,
we need some way to move the phantom cursor to different bytes within the
half sector display. This ta k turns out to be fairly imple, now that we have
the two procedures ERASE_PHANTOM and WRITE_PHANTOM.

in th h n m
Moving the phantom cur or in any direction depend on three basic steps:

Erasing the phantom cur or at it current position; changing the cursor posi
tion by changing one of the variable , PHANTOM_ CURSOR_X or PHAN
TOM_ CURSOR_ Y · and u ing WRITE_PHANTOM to write the phantom
cursor at this new position. In the proce , however, we must be careful not to
let the cursor move outside the window, which is 16 bytes wide and 16 bytes
high.

To move the phantom cur ors we'll need four new procedures, one for each
of the arrow key on the keyboard. DISPATCHER needs no changes, because
all the information on procedures and extended codes is in the table DIS
PATCH_ TABLE. We just need to add the extended ASCII codes and ad
dresses of the procedures for each of the arrow keys. Here are the additions to
DISP ATCH.ASM that will bring the cursor keys to life:

Listing 22-1. Changes to DISPATCH.ASM

DATA_SEG
CODE_SEG

SEGHENT PUBLIC
SEGHENT PUBLIC

EXTRN NEXT_SECTOR:NEAR
EXTRN PREVIOUS_SECTOR:NEAR
EXTRN PHANTOM_UP:NEAR, PHANTOH_DOWN:NEAR
EXTRN PHANTOM_LEPT:NEAR, PHANTOH_RIGHT:NEAR

CODE_SEG ENDS

;In DISK_IO.ASH
;In DISK_IO.ASl'I
;In PHANTOM.ASH

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB 72 ; Extended code for cursor up
DW OFFSET CGROUP:PHANTOH UP

Peter Norton's Assembly Language Book 247

Listing 22-1. continued

DISPATCH_TABLE LABEL BYTE
DB sci ;FL
DW OFFSET CGROUP:PREVIOUS SECTOR
DB 60 ;F2
DW OFFSET CGROUP:NEXT_SECTOR
DB 72 ;Cursor up
DW OFFSET CGROUP:PHANTOM_OP
DB llD ;Cursor down
DW OFFSET CGROUP:PBANTOM_DOWN
DB 75 ;Cursor left
DW OFFSET CGROOP:PHANTOM_LEFT
DB 77 ;Cursor right
DW OFFSET CGROUP:PHANTOM_RIGHT
DB 0 ;End of the table

DATA SEG ENDS -

As you can see, it's simple to add commands to Dskpatch: We merely place the
procedure names in DISPATCH_ TABLE and write the procedures.

Speaking of writing procedures, the procedures PHANTOM_ UP, PHAN
TOM_DOWN, and so on are fairly simple. They're also quite similar to one
another, differing only in the boundary conditions used for each. We've al
ready described how they work; see if you can write the'11. yourself, in the file
PHANTOM.ASM, before you read on.

Here are our versions of the procedures to move the phantom cursors:

Listing 22-2. Add These Procedures to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses:
Reads:
Writes:

PUBLIC
PHANTOM UP

CALL
DEC
JNS
MOV

WAS NT - AT_TOP:
CALL
RET

PHANTOM UP -
PUBLIC

ERASE_PHANTOM, WRITE_PHANTOM
PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

PHANTOM_ UP
PROC NEAR
ERASE_PHANTOM
PHANTOM_CURSOR Y
WASNT_AT_TOP
PHANTOM_CURSOR_Y,O

WRITE_PHANTOM

ENDP

PHANTOM DOWN -

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor
;Was at the top, so put back there

;Write the phantom at new position

248 implc Editing

Listing 22-2. continued

PHANTOM_DOWN PROC NEAR
CALL ERASE_PHANTOM
INC PHANTOM_CURSOR_Y
CMP PHANTOM_CURSOR_Y,1b
JB WAS T_AT_BOTTOM
MOV PffANTOlt_CORSOB_Y,15

WASNT_AT_BOTTOM:
CALL WRITE_PBANTOK
RET

PHANTOM_DOWN ENDP

PUBLIC
PHANTOM_LEFT

CALL
DEC
JNS
HOV

WASNT_AT_LEF'T:
CALL
RET

PHANTOM_LEFT

PUBLIC
PHANTOlt_RIGHT

CALL
INC
Cl1P
JB
MOY

WASNT_AT_RIGBT:
CALL
RET

PHANTOM_RIGHT

PHANTOM LEFT
PROC NEAR
ERASE_PHANTOM
PHANTOlf_CORSOR_X
WASNT_AT_LEPT
PHANTOM_CORSOR_X,O

WRITE_PHANTOM

ENDP

PHANTOM RIGHT
PROC NEAR
ERASE_PHANTOM
PHANTOK_CORSOR_X
PHANTOl1_CORSOR_X,1b
WASNT_AT_RIGRT
PRANTOM_CURSOR_X,15

ifRITE_PHANTOM

ENDP

;Erase at turrent position
;Kave cursor dovn one line
;Was it at the bottom?
;Ho, so write phantom
;Was at bottom, so put back there

;Write the phantom cursor

;Erase at current posi ion
;Move cursor left one column
;Was no a the left side, vrite cursor
;ifas at left, so put back there

;Write the phanto cursor

;Erase at current position
;Move cursor right one column
;Was it already at the right side?

;Was at right, so put back there

;Write the phantom cursor

PHANTOM_LEFT and PHANTOM_RIGHT are the final versions, but we'll
have to change PHANTOM_ UP and PHANTOM_DOWN when we begin to
scroll the display.

As Dskpatch stands now, we can see only the first half of a sector. In Chap
ter 27, we'll make some additions and changes to Dskpatch so we can scroll
the display to see other parts of the sector. At that time, we'll change both
PHANTOM_ UP and PHANTOM_DOWN to scroll the screen when we try to
move the cursor beyond the top or bottom of the screen. For example, when
the cursor is at the bottom of the half-sector display, pushing the cursor-down
key again should scroll the display up one line, adding another line at the
bottom, so that we see the next 16 bytes. Scrclling is rather messy, however,
so we'll keep these procedures until almost last. Through Chapter 26, we'll

Peter Norton's Assembly Language Book 249

develop the editing and keyboard-input sections of Dskpatch by using only the
first half sector.

Test Dskpatch now to see if you can move the phantom cursors around on
the screen. They should move together, and they should stay within their own
windows. Now, we'll go on to add editing, so we can change bytes on our
display.

Si pie Editing
We already have a simple keyboard-input procedure, READ_BYTE, which

reads just one character from the keyboard without waiting for you to press
the Enter key. We'll use this old, test version of READ _BYTE to develop edit
ing. Then, in the next chapter, we'll write a more sophisticated version of the
procedure that will wait until we press either the Enter key or a special key,
such as a function or cursor key.

Our editing procedure will be called EDIT_BYTE, and it will change one
byte both on the screen and in memory (SECTOR). EDIT_BYTE will take the
character in the DL register, write it to the memory location within SECTOR
that is currently pointed to by the phantom cursor, and then change the
display.

DISPATCHER already has a nice niche where we can place a CALL to
EDIT_BYTE. Here is the new version of DISPATCHER in DISPATCH.ASM,
with the CALL to EDIT_BYTE and the changes to go along with it:

Listing 22-3. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT_BYTE:NEAR

This is the central dispatcher. During normal editing and viewing, ;
this procedure reads characters from the keyboard and, if the character;
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
directly into the sector buffer--this is the editing mode.

Uses: READ_BYTE, EDIT_BYTE

250 impl Editm

Listing 22-3. continued

DISPATCHER PROC NEAR
PUSH AX
PUSH BX
PUSH DX

DISPATCH_LOOP:
CALL READ_BYTE
OR AH,AH

JZ DISPATCH LOOP
JS SPECIAL_KEY

do no hin9 th th c rac r
110V DL,AL
CALL EDIT_BYTE
JHP DISPATCH_LOOP

SPECIAL_KEY:
CMP AL,60
JE END_DISPATCH

LEA BX,DISPATCH_TABLE
SPECIAL LOOP:

CHP BYTE PTR (BX),O
JE NOT_IN_TABLE
CHP AL, [BX l
JE DISPATCH
ADD BX,3
JMP SPECIAL_LOOP

DISPATCH:
INC BX
CALL WORD PTR [BXJ
JMP DISPATCH LOOP

NOT_IN - TABLE:
JMP DISPATCH_LOOP

END DISPATCH:
POP DX
POP BX
POP AX
RET

DIS PATC HER ENDP

or no

;Read character in o AL
;AH = O if no character read , -1
; for an ex ended code.
;No character read, try again
;Read extended code

;Was nor al character, edit byte
;Read another charac er

;F10--exi ?
;Yes, leave
;Use BX to look hrough table

;End of table?
;Yes, key was not in the table
;Is i this table entry?
;Yes, then dispatch
;No, try next entry
;Check nex table entry

;Point to address of procedure
;Call procedure
;Wait for another key
;Do nothing, just read next character

The EDIT _BYTE procedure itself does a lot of work, almost entirely by call
ing other procedures, and this is one feature of modular design. With modular
design, we can often write rather complex procedures simply by giving a list of
CALLs to other procedures that do the work. Many of the procedures in
EDIT_BYTE work with a character in the DL register, but this is already set
when we call EDIT _BYTE, so the only instruction other than a CALL (or
PUSH, POP) is the LEA instruction to set the address of the prompt for

Peter Norton's Assembly Language Book 251

WRITE_PROMPT_LINE. Most of the procedure calls in EDIT_BYTE are for
updating the display when we edit a byte. You'll see the other details of
EDIT _BYTE when we come to the procedure listing in a moment.

Since EDIT _BYTE changes the byte on screen, we need another procedure,
WRITE_TO_MEMORY, to change the byte in SECTOR. WRITE_TO_MEM
ORY uses the coordinates in PHANTOM_CURSOR_X and PHANTOM_
CURSOR_ Y to calculate the offset into SECTOR of the phantom cursor, then
it writes the character (byte) in the DL register to the correct byte within
SECTOR.

Here is the new file, EDITOR.ASM, which contains the final versions of
both EDIT_BYTE and WRITE_TO_MEMORY:

Listing 22-~. The New File EDITOR.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSOME CS:CGROUP, DS:CGROOP

CODE_SEG SEGMENT PUBLIC

DATA_SEG SEGMENT PUBLIC
EXTRN SECTOR:BYTE
EXTRN SECTOR_O FFSET:WORD
EXTRN PAANTOM_CURSOR_X:BYTE
EXTRN PHANTOM_CURSOR_Y:BYTE

DATA SEG ENDS

This procedure writes one byte to SECTOR, at the memory location
pointed to by the phantom cursor.

DL Byte to write to SECTOR

The offset is calculated by
OFFSET SECTOR_OFFSET + (16 * PHANTOM_CURSOR_Y) + PHANTOM_CURSOR_X

Reads:
Writes:

PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y, SECTOR_OFFSET
SECTOR

WRITE_TO_MEMORY PROC NEAR
PUSH AX
PUSH BX
PUSH ex
MOV
MOV
XOR
MOV
SHL
ADD
MOV

BX,SECTOR_OFFSET
AL,PHANTOM_CURSOR_Y
AH,AH
CL,L;
AX,CL
BX,AX
AL,PHANTOM_CURSOR_X

;Multiply PHANTOM_CURSOR_Y by 16

;BX = SECTOR_OFFSET + (16 * Y)

-

252 impl E<litin

Listing 22-L.. continued

XOR
ADD
f'IOV
POP
POP
POP
RET

WRITE_TO_l1E110RY

DATA_SEG

PUBLIC
EXTRN
EXTRN
EXTRN
EXTRN

EXT RN
DATA_SEG

AH,AH
BX,AX
SECTOR[BXJ,DL
ex
BX
AX

ENDP

EDIT_BYTE

;That's the address!
;Now, store the byte

SAVE_REAL_COBSOR : NEAR, RESTORE_REAL_CORSOR:NEAR
f'IOV_TO_HEX_POSITION:NEAR, f'IOV_TO_ASCII_POSITION:NEAR
WRITE_PRANTOM:NEAR, WRITE_PROMPT_LINE:NEAR
COBSOR_RIGHT:NEAR, WBITE_HEX:NEAR, WRITE_CHAR:NEAR
SEGMENT PUBLIC
EDITOB_PROl'IPT:BYTE
ENDS

This procedure changes a byte in emory and on the screen.

DL

Uses:

Reads:

EDIT_BYTE
POSH
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
Ln
CALL
POP
RET

EDIT_BYTE

Byte to write in o SECTOR, and change on screen

SAVE_REAL_CORSOR, RESTORE_REAL_CORSOR
MOV_TO_BEX_POSITION, f'IOV_TO_ASCII_POSITION
WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT
WRITE_HEX, WRITE_CBAR, WRITE_TO_MEl'IORY
EDITOB_PROMPT

PROC
DX

NEAR

SAVE REAL_CORSOR
MOV_TO_REX_POSITION
CURSOR_RIGHT
WRITE_HEX
MOV_TO_ASCII POSITION
WRITE_(RAR
RESTOBE_REAL_CORSOR
WRITE_PHANTOM
WRITE_TO_HEMORY
DX,EDITOR_PROHPT
WRITE_PROMPT_LINE
DX

ENDP

;Move to the hex number in the
; hex window
;Write the new number
;Hove to the char. in the ASCII window
;Write the new character
;Hove cursor back where it belongs
;Rewrite the phantom cursor
;Save this new byte in SECTOR

CODE_SEG ENDS

END

~eter Norton's Assembly Language Book 253

Summary
Dskpatch now consists of nine files: Dskpatch, Dispatch, Disp_sec, Disk_io,

Video_io, Kbd_io, Phantom, Cursor, and Editor. In this chapter, we changed
Dispatch and added Editor. None of these files is very long, so none takes very
long to assemble. Furthermore, we can make changes fairly quickly by editing
just one of these files, reassembling it, and then linking all the files together
again.

In terms of our current version of Dskpatch, push any key and you'll see a
change in the number and character under the phantom cursor. Our editing
works, but it's not very safe as yet, since we can change a byte by hitting any
key. We need to build in some type of safeguard, such as pressing Enter to
change a byte, so we don't make an accidental change by leaning on the key
board unintentionally.

In addition, the current version of READ _BYTE doesn't allow us to enter a
hex number to change a byte. In Chapter 24, we'll rewrite READ _BYTE, both
so we'll have to push the Enter key before it will accept a new character, and
to allow us to enter a two-digit hex number. First, we need to write a hex
input procedure; in the next chapter, we'll write input procedures for both hex
and decimal.

23

HEX AND DECIMAL INPUT

Hex Input 256
Decimal Input 263
Summary 266

255

We'll encounter two new procedure for keyboard input in thi chapter: one
procedure for reading a byte by reading either a two-digit hex number or a
single character, and another for reading a word by reading the character of
a decimal number. These will be our hex and decimal input procedures.

Both procedures are ufficiently tricky that we need to u e a te t program
with them before we even con ider linking them into D kpatch. We'll be
working with READ _BYTE, and a te t procedure will be particularly im
portant here , becau e this procedure will (temporarily) lo e its ability to
read special function key . ince D kpatch relie on the function keys, we
won't be able to u e our new READ_BYTE with D kpatch . We'll also find
out why we can't read pecial function key with the READ_BYTE devel
oped here, and in the next chapter we'll modify the file to make our function
key problems go a way.

Hex ,n ut
Let's begin by rewriting READ_BYTE. In the last chapter, READ_BYTE

would read either an ordinary character or a special function key, and return
one byte to Dispatch. Dispatch then called the Editor if READ _BYTE read an
ordinary character, and EDIT_BYTE modified the byte pointed to by the
phantom cursor. Otherwi e, Dispatch looked for special function keys in DIS
p ATCH_ TABLE to see if the byte was there; if so, Dispatch called the proce
dure named in the table.

But, as mentioned in the last chapter, the old version of READ_BYTE
makes it much too easy to change a byte by accident. If you unintentionally
hit any key on the keyboard (other than special keys), EDIT _BYTE will
change the byte under the phantom cursor. All of us are sometimes clumsy,
and such an inadvertent change in a sector can lead to disaster.

We'll change READ_BYTE so that, henceforth, it won't return the char
acter we type until we press the Enter key. We'll provide this feature by
using the DOS INT 21h function OAh to read a string of characters. DOS
only returns this string when we press Enter, so we get our anti-clumsy fix.
But along the way, we lose special function keys, for reasons you'll see later.

To see exactly how our changes affect READ_BYTE, we need to write a test
program to test READ_BYTE in isolation. That way, if anything strange hap
pens, we'll know it's READ _BYTE and not some other part of Dskpatch. Our
job of writing a test procedure will be simpler if we use a few procedures from

Peter Norton's As embly Language Book 257

Kbd_io, Video_io, and Cursor to print information on the progress of READ_
BYTE. We'll use such procedures as WRITE_HEX and WRITE_DECIMAL to
print the character code returned and the number of characters read. The de
tails are here, in TEST .ASM:

Listing 23-1. The Test Program TEST.ASM

CGROOP GROOP CODE_SEG, DATA_SEG
ASSOME CS:CGROOP, DS:CGROUP

CODE SEG -
ORG

SEGMENT PUBLIC
100h

EXTRN
EXTRN
EXT RN

WRITE_HEX:NEAR, WRITE_DECIMAL:NEAR
WRITE_STRING:NEAR, SEND_CRLF:NEAR
READ_BYTE:NEAR

TEST PROC
LEA
CALL
CALL
CALL

NEAR
DX,ENTER_PROMPT
WRITE_STRING
READ_BYTE
SEND_cRLF

LEA
CALL

DX,CHARACTER PROMPT
WRITE_STRING

MOV DL,AL
CALL WRITE_HEX
CALL SEND_CRLF
LEA
CALL

DX,CHARACTERS READ_PROMPT
WRITE_STRING

MOV DL,AH
XOR DH,DH
CALL WRITE_DECIMAL
CALL SEND_CRLF
INT 20h

TEST ENDP

CODE SEG ENDS

DATA_SEG SEGMENT PUBLIC
ENTER_PROMPT DB
CHARACTER_PROMPT DB
CHARACTERS_READ_PROMPT DB
; and now dummy variables

PUBLIC HEADER_LINE_NO,
PUBLIC PROMPT_LINE_NO,

HEADER_LINE_NO DB
DISK_DRIVE_NO DB
AEADER_PART_1 DB
HEADER_PART_2 DB

'Enter characters: ', O
'Character code: 1 ,0
'Number of characters read : ' , O

DISK_DRIVE_NO, HEADER_PART_1, HE ADER PART_2
CURRENT_SECTOR_NO
0
0
0
0

....

258 . and D im I Input

Lis t ing 23 - 1. continued

PROMPT_LI NE_NO
CU RRENT_SECTO R_NO
DATA_S EG ENDS

EN D TEST

DB
DB

0
0

Try linking this with your current ver ions of Kbd_io Video_io, and Cur
sor (place Test fir t in the LINK li t). If you pres any special function key,
Test will tell you it read 255 character . Why? We placed the - 1 from AH
into DL and et the upper byte of DX to zero, leaving DX et to 255 (FFh), not
- 1 (FFFFh).

We won't be so careles when we actually use READ_BYTE in Dskpatch.
This is a test program and a long as we know what to expect, we can test
READ_BYTE and all it boundary condition . Before we move on to rewrite
READ_BYTE, however, we need to account for one feature ofTEST.ASM that
you may have noticed: it variable definitions.

The bulk of the instructions in TEST.ASM are for formatting-making the
display look nice. The variable definitions at the end of Test are included only
to satisfy the linker. When we link Test with Kbd_io, Video_io, and Cursor,
the linker searches for a number of variables used by Kbd_io, Video_io, and
Cursor. We defined the variables in Dskpatch, but since we aren't linking in
Dskpatch, we need to redefine these variables in TEST.ASM. We won't actu
ally use the variables, because we don't call any procedures in Video_io and
Cursor that require them. But we need these variables anyway, to satisfy the
linker there won't be any loose ends.

Let's move on to rewriting READ_BYTE to accept a string of characters.
Not only will this save us from our clumsiness when we use Dskpatch, it will
also allow us to use the Backspace key to delete characters if we change our
mind about what we want to type in-another nice feature since it's easy to
make mistakes. READ_BYTE will use the procedure READ_STRING to read
a string of characters.

READ _STRING is very simple, almost trivial, but we've placed it in a sepa
rate procedure so we can rewrite it in the next chapter to read special function
keys without having to press the Enter key. To save time, we'll also add three
other procedures that READ_BYTE uses: STRING_TO_UPPER, CON
VERT_HEX_DIGIT, and HEX_TO_BYTE.

STRING_TO_UPPER and HEX_TO_BYTE both work on strings.
STRING_TO_UPPER converts all the lowercase letters in a string to upper
case. That means you can type either f3 or F3 for the hex number F3h. By

Peter Norton's Assembly Language Book 259

allowing hex numbers to be typed in either lower- or uppercase letters, we add
user-friendliness to Dskpatch.

HEX_TO_BYTE takes the string read by DOS, after we call STRING_
TO_UPPER, and converts the two-digit hex string to a single-byte number.
HEX_TO_BYTE makes use ofCONVERT_HEX_DIGIT to convert each hex
digit to a four-bit number.

How do we ensure that DOS won't read more than two hex digits? The DOS
function OAh reads an entire string of characters into an area of memory de
fined like this:

CHAR_NOM_LIMIT DB
NUM_CHARS_READ DB
STRING DB

0
0
80 DUP (0)

The first byte ensures we don't read too many characters. CHAR_NUM_
LIMIT tells DOS how many characters, at most, to read. Ifwe set this to three,
DOS will read up to two characters, plus the carriage-return character (DOS
always counts the carriage return). Any characters we type after that will be
discarded-thrown a way-and for each extra character, DOS will beep to let
us know we've passed the limit. When we press the Enter key, DOS sets the
second byte, NUM_CHARS_READ, to the number of characters it actually
read, not including the carriage return.

STRING_TO_UPPER, READ_BYTE, and STRING_TO_UPPER all use
NUM_CHARS_READ. For example, READ_BYTE checks NUM_CHARS_
READ to find out whether you typed a single character or a two-digit hex
number. If NUM_CHARS_READ was set to one, READ_BYTE returns a
single character in the AL register. If NUM_CHARS_READ was set to two,
READ_BYTE uses HEX_TO_BYTE to convert the two-digit hex string to a
byte.

Without further ado, here is the new file KBD_IO.ASM, with all four new
procedures:

Listing 23-2. The New Version of KBD_IO.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROOP

CODE_SEG SEGMENT PUBLIC

PUBLIC STRING_TO_UPPER

260 ic n I ~im I Input

Listing 23-2. oontin~d

This procedure converts the s ring, using the DOS format for strings,
to all uppercase letters.

DS:DX

STRING_TO_UPPER
PUSH
PUSH
PUSH
MOV
INC
tlOV
XOR

UPPER LOOP:
INC

Address of string buffer

PROC NEAR
AX
BX
ex
BX,DX
BX
CL, CBXJ
CH,CH

BX

;Poin to character count
;Character count in 2nd byte of buffer
;Clear upper byte of count

;Point to next character in buffer
HOV ' AL,[BXJ
CHP
JB
CMP
JA
ADO
MOV

NOT LOWER: -
LOOP
POP
POP
POP
RET

STRING - TO_UPPER

AL, 1 a 1

NOT_LOWER
AL, I z I
NOT_LOWER
AL, 1 A1 - 1 a 1

[BXJ,AL

UPPER_LOOP
ex
BX
AX

ENDP

;See if it is a lo ercase letter
;Nope

;Convert to uppercase letter

This procedure converts a character fro ASCII (hex) to a nibble (~

bits).

Returns:
AL
AL

Character to convert
Nibble

CF Set for error, cleared otherwise

CONVERT_HEX_DIGIT PROC NEAR
CMP
JB
CMP
JA
SUB
CLC
RET

TRY HEX: -
CMP
JB
CMP

AL, I 0 I
BAD_DIGIT
AL, •q•
TRY_HEX
AL, I 0 I

AL, I A I
BAD_DIGIT
AL, 1 F1

;Is it a legal digit?
;Nope
;Not sure yet
;Might be hex digit
;Is decimal digit, convert to nibble
;Clear the carry, no error

;Not sure yet
;Not hex
;Not sure yet

Listing 23-2. oontin~d

JA BAD_DIGIT
SOB AL, 1 A1-10
CLC
RET

BAD DIGIT:
STC
RET

CONVERT_BEX_DIGIT ENDP

POBLIC HEX_TO_BYTE

Peter Norton's Assembly Language Book 2 61

;Not hex
;Is hex, convert to nibble
;Clear the carry, no error

;Set the carry, error

This procedure converts the two characters at DS:DX from hex to one
byte.

DS:DX
Returns:

Oses:

AL
CF

HEX_TO_BYTE
POSH
POSH
110V
110V
CALL
JC
110V
SHL
HOV
INC
MOV
CALL
JC
OR
CLC

DONE_HEX:

Address of two characters for hex number

Byte
Set for error, clear if no error

CONVERT_HEX_DIGIT

PROC NEAR
BX
ex
BX,DX
AL,[BX)
CONVERT HEX_DIGIT
BAD_HEX
ex, L;

AL,CL
AH, AL
BX
AL,[BX]
CONVERT_HEX_DIGIT
BAD_HEX
AL,AH

;Put address in BX for indirec t addr
;Get first digit

;Bad hex digit if carry set
;Now multiply by 16

;Retain a copy
;Get second digit

;Bad hex digit if carry set
;Combine two nibbles
;Clear carry for no error

POP ex
POP BX
RET

BAD_HEX:
STC
Jl1P

HEX_TO BYTE
DONE_HEX
ENDP

;Set carry for error

This is a simple version of READ STRING.

DS:DX Address of string area

262 n 1m I Input

Listing 23-2. continued

READ_STRING
PUSH
110V
INT
POP
RET

PROC NEAR
AX
AH,OAh ;Call for buffered keyboard input
21h ; Call DOS func ion for buffered input
AX

READ_STRING E DP

PUBLIC READ_BYTE

This procedure reads either a single ASCII charac er or a two-digit
hex nu ber. This is jus a es version of READ_BYTE.

Returns by e in AL
AH

Character code (unless AH 0)
1 if read ASCII char

Uses:
Reads:
Writes:

READ_BYTE
PUSH
110V
LEA
CALL
Cl1P
JE
JB
CALL
LEA
CALL
JC
110V

DONE READ:
POP
RET

NO_CBARACTERS:
XOR
Jl'IP

ASCII INPUT:
110V
110V
Jl1P

READ BYTE -

CODE_SEG

DATA_SEG
KEYBOARD INPUT

0 if no charac ers read
-1 if read a special key

HEX_TO_BYTE, STRING_TO_UPPER, READ STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

PROC NEAR
DX
CHAR_NU11_Lil1IT,3
DX,KEYBOARD_INPUT
READ_STRING

Ul1_CHARS_READ,1
ASCII_INPUT
NO_CHARACTERS
STRING_TO_UPPER
DX,CRARS
HEX_TO_BYTE
NO_CHARACTERS
AR,1

DX

AR,AH
DONE_READ

AL,CRARS
AH,1
DONE_READ
ENDP

ENDS

SEGMENT PUBLIC
LABEL BYTE

;Allo only o characters (plus Enter)

;See how any characters
;Just one, treat as ASCII character
;Only Enter key hit
;No, convert string to uppercase
;Address of string to convert
;Convert string fro hex to byte
;Error, so return •no characters read'
;Signal read one character

;Set to •no characters read'

;Load character read
;Signal read one character

Listing 23-2. continued

CH AR_N UM_LIMIT DB
NUM _CHA RS_READ DB
CHAR S DB
DAT A_SEG ENDS

END

0
0
110 DUP (0)

Peter Norton's Assembly Language Book 263

;Length of input buffer
;Number of characters read
;A buffer for keyboard input

Reassemble Kbd_io and link the four files Test, Kbd_io, Video_io, and Cur
sor to try this version of READ_BYTE.

At this point, we have two problems with READ_BYTE. Remember the
special function keys? We can't read them with DOS function OAh. It just
doesn't work. Try pressing a function key when you run Test. DOS doesn't
return two bytes, with the first set to zero as you might expect.

We have no way to read extended codes with DOS' buffered input, using
function OAh. We used this function so we could use the Backspace key to
delete characters before we press the Enter key. But now, since we can't read
special function keys, we have to write our own READ_STRING procedure.
We'll have to replace function OAh to ensure we can press a special function
key without pressing Enter.

The other problem with DOS' function OAh for keyboard input has to do
with the line-feed character. Press Control-Enter (line feed) after you type one
character, and then try the Backspace key. You'll find that you're on the next
line, with no way to return to the one above. Our new version of Kbd_io in the
next chapter will treat the line-feed character (Control-Enter) as an ordinary
character; then, pressing line feed won't move the cursor to the next line.

But before we move on to fix the problems with READ _BYTE and READ_
STRING, let's write a procedure to read an unsigned decimal number. We
won't use the procedure in this book, but the version of Dskpatch on the com
panion disk does use it so that we can, for example, ask Dskpatch to display
sector number 567.

De i a Input
Recall that the largest unsigned decimal number we can put into a single

word is 65536. When we use READ_STRING to read a string of decimal dig
its, we'll tell DOS to read no more than six characters (five digits and a car
riage return at the end). Of course, that means READ_DECIMAL will still be
able to read numbers from 65536 to 99999, even though these numbers don't

fit into one word. We'll have to keep watch for such numbers and return an
error code if READ _DECIMAL tries to read a number larger than 65535, or if
it tries to read a character that is not between zero and nine.

To convert our string of up to five digits into a word, use multiplication as
we did in Chapter 1: take the fir t (leftmo t) digit, multiply it by ten, tack on
the second digit, multiply it by ten, and o on. U ing this method, we could, for
example, write 49856 as:

t; . 104 • q 103 + 6•10 2 • s 1oi • b 10°

or, as we'll do the calculation:

10 (10*(10 (10 * t; +q) +6) +S) +b

Of course we mu t watch for error a we do the e multiplications and re
turn with the carry flag set whenever an error occurs. How do we know when
we try to read a number larger than 65535? With larger numbers, the last
MUL will overflow into the DX regi ter. The CF flag is set when DX is not
zero after a word MUL so we can u e a JC (Jump if Carry set) instruction to
handle an error. Here is READ_DECIMAL which also checks each digit for
an error (a digit that is not between 0 and 9). Place this procedure in the file
KBD_IO.ASM:

Listing 23-3. Add This Procedure to KBD 10.ASM

POBLIC READ_DECIHAL

This procedure takes the output buffer of READ_STRING and converts
the s t r ing of deci al digits to a word.

Oses:
Reads:

AX
CF

Writes:

READ_DECIMAL
PUSH
PUSH
POSH
MOV
LEA
CALL
MOV

Word converted from decimal
Set if error, clear if no error

RE!D_STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

PROC
BX
ex

NEAR

DX
CBAR_NUM_LIMIT,6
DX,KEYBOARD_INPUT
READ_STRING
CL,NUM_CBARS_READ

;Max number is 5 digits (65535)

;Get number of characters read

Listing 23-3. oontin~d

XOR
CMP
JLE
XOR
XOR

CONVERT_DIGIT:
MOV
MOL
JC
MOV
SOB
JS
CMP
JA
ADD
INC
LOOP

DONE DECIMAL:

CH,CH
CL,O
BAD_DECIMAL DIGIT
AX,AX
BX,BX

DX,10
DX
BAD_DECIMAL DIGIT
DL,CHARS[BXJ
DL, I 0 I
BAD_DECIMAL_DIGIT
DL,9
BAD_DECIMAL_DIGIT
AX,DX
BX
CONVERT DIGIT

POP DX
POP ex
POP BX
RET

BAD DECIMAL_DIGIT:
STC
JMP

READ DECIMAL
DONE DECIMAL
ENDP

Peter Norton's Assembly Language Book 265

;Set upper byte of count to 0
;Return error if no characters read
;No chars read, signal error
;Start with number set to 0
;Start at beginning of string

;Multiply number by 10
;Multiply AX by 10
;CF set if MOL overflowed one word
;Get the next digit
;And convert to a nibble (~ bits)
;Bad digit if < 0
;Is this a bad digit?
;Yes
;No, so add it to number
;Point to next character
;Get the next digit

;Set carry to signal error

To make certain it works properly, we need to test this procedure with all
the boundary conditions. Here is a simple test program for READ_DECIMAL
that uses much the same approach we used to test READ_BYTE:

Listing 23-~. Changes to TEST.ASM

CGROOP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE SEG

TEST

ORG
SEGMENT PUBLIC
100H

EXTRN WRITE_HEX:NEAR, WRITE_DECIMAL:NEAR
EXTRN WRITE_STRING:NEAR, SEND_CRLF:NEAR
EXTRN READ_DECIMAL:NEAR

PROC NEAR
LEA DX,ENTER_PROMPT
CALL WRITE_STRING
CALL READ_DECIMAL
JC ERROR

•

Listing 2 3-t;. continued

CALL SEND_CRLP
LEA DX ,N UMBER_READ_PROMPT
CALL WRITE_STRING
MOV DX,AX
CALL WRITE_DECitlAL

ERROR: CALL SEND_CRLF
INT 20h

TEST ENDP

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC
ENTER_PROHPT DB 'En er deci al number: 1 , 0
NUMBER_REA D_PROMPT DB ' u ber read: 1,0

variables
flEADER_LINE_NO,
PROl'IPT_LINE_NO,

; and now dummy
PUBLIC
PUBLIC

HEADER_LINE_NO
DISK_DRIVE_NO
HUDER_PART_1
HEADER_PART_2
PROMPT_LINE_NO
CURRENT_SECTOR_NO
DATA_SEG ENDS

END TEST

DB
DB
DB
DB
DB
DB

DISK_DRIVE_NO, HEADER_PART_1,
CORRENT_SECTOR_NO
0
0
0
0
0
0

HEADER_PART_2

Again, we need to link four files: Test (the preceding file), Kbd_io, Video_io,
and Cursor. Try the boundary conditions, using both valid digits and invalid
ones (such as A, which is not a valid decimal digit), and with such numbers as
0, 65535, and 65536.

Sm av
We'll return to the two simple test procedures later on, when we discuss

ways you can write your own programs. Then, we'll see how you can use a
slightly more advanced version of TEST.ASM to write a program that will
convert numbers between hex and decimal.

But now, we're ready to move on to the next chapter, where we'll write im
proved versions of READ_BYTE and READ_STRING .

24

IMPROVED KEYBOARD
INPUT

A New READ STRING 268 -

267

268 lmpr vcd K ·b ard Input

We mentioned we would present the development of Dskpatch just as we
fir t wrote it-including bug and clum ily designed procedures, some of
which you've already s en. In thi chapter, we'll write a new version of
READ_BYTE, and it will place a ubtle bug into Dskpatch. In the next chap
ter. we'll find a can of RAID to exorci e this mall bug but see if you can find
it your elf fir t. (Hint: Carefully check all the boundary conditions for
READ_BYTE when it' attached to D kpatch.)

Our modular-design philo ophy call for hort procedures, therefore no sin
gle procedure i too difficult to under tand. The new ver ion of READ_
STRING will be an example of a cl um y procedure: much too long. It should be
rewritten with more procedure , but we'll leave this rewrite to you. This book
is quickly drawing to an end, and we till have a few more procedures left to
write before Dskpatch i a useful program. Right now, we can still edit only
the fir t half of any sector, and we can t write this sector back to the disk yet.

In this chapter we'll give READ_ TRING a new procedure, BACK_
SPACE, to emulate the function of the Backspace key found in the DOS func
tion OAh. When we pu h the Back pace key, BACK_SPACE will erase the
last character typed, from both the screen and the string in memory.

On screen, BACK_SPACE will erase the character by moving the cursor
left one character, writing a space over it, and then moving right one charac
ter again. This sequence will perform the same backspace deletion provided
by DOS.

In the buffer, BACK_SP ACE will erase a character by changing the buffer
pointer, DS:SI +BX, so it points to the next lower byte in memory. In other
words, BACK_SPACE will simply decrement BX: (BX= BX - 1). The charac
ter will still be in the buffer, but our program won't see it. Why not? READ_
STRING tells us how many characters it's read. Ifwe try to read more than this
number from tie buffer we'll see characters we erased. Otherwise, we won't.

We have to be careful not to erase any characters when the buffer is empty.
Remember that Oill' ~tring-data area looked something like this:

CHAR_NUM_LIHIT DB
NUM_CHARS_READ DB
STRING DB

0
0
60 DOP (0)

Peter Norton's Assembly Language Book 269

The string buffer starts at the second byte of this data area, or at an offset of 2
from the start. So, BACK_SPACE won't erase a character if BX is set to 2, the
start of the string buffer, because the buffer is empty when BX equals 2.

Here is BACK_SPACE; place it into KBD_IO.ASM:

Listing 2~-1. Add This Procedure to KBD IO.ASM

PUBLIC BACK_SPACE
EXTRN WRITE_CHAR:NEAR

This procedure deletes characters, one at a time, from the buffer and
the screen when the buffer is not empty. BACK SPACE simply returns
when the buffer is empty.

DS:SI+BX Most recent character still in buffer

Oses: WRITE CHAR

BACK_SPACE PROC NEAR
POSH AX
POSH DX
CMP BX,2
JE END_BS
DEC BX
MOV AH,2
MOV DL,BS
INT 21h
MOV DL,2Dh
CALL WRITE_CHAR
MOV DL,BS
INT 21h

END_BS: POP DX
POP AX
RET

BACK_SPACE ENDP

;Delete one character

;Is buffer empty?
;Yes, read the next character
;Remove one character from buffer
;Remove character from screen

;Write space there

;Back up again

Let's move on to the new version of READ_STRING. It will be a large
mouthful; the listing you'll see is for only one procedure. By far the longest
procedure we've written, READ _STRING is, as we said, too large. That's be
cause it's complicated by so many possible conditions.

Why does READ_STRING do so many things? We added a few more fea
tures. If you press the Escape key, READ _STRING will clear the string buffer
and remove all the characters from the screen. DOS also erases all the charac
ters in the string buffer when you press Escape, but it doesn't erase any char
acters from the screen. Instead, it simply writes a backslash (\) character at
the end of the line and moves to the next line. Our version of READ_STRING
will be more versatile than the DOS READ _STRING function.

270

READ _STRING uses three special keys: the Backspace, Escape, and Enter
keys. We could write the ASCII code for each of these keys in READ_
STRING whenever we need them, but instead we'll add a few definitions to
the beginning of KBD_IO.ASM to make READ_STRING more readable.
Here are the definitions:

Listing 2~-2. Additions to KBD IO.ASM

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

BS
CR
ESC

CODE_SEG

EQU
EQU
EQU

6
13
27

SEGMENT PUBLIC

;Backspace character
;Carriage-return character
;Escape character

Here is READ_STRING. Although it's rather long you can see from the
listing that it's not very complicated-just long. Replace the old version of
READ_STRING in KBD_IO.ASM with this new version:

Listing 2~-3. The New READ STRING in KBD IO.ASM

PUBLIC READ_STRING
EXTRN WRITE_CBAR:NEAR

This procedure performs a function very similar to the DOS OAh
function. But this function will return a special character if a
function or keypad key is pressed--no return for these keys. And
ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte must
contain the maximum number of characters to read {plus
one for the return). And the second byte will be used
by this procedure to return the number of characters
actually read.

o No characters read
-1 One special character read
otherwise number actually read (not including

Enter key)

Uses: BACK_SPACE, WRITE_CBAR
;---;

L is ting 2 L; - 3 . continued

READ_STRING
PUSH

PROC
AX

NEAR

PUSH BX
PUSH SI
HOV

START_OVER:
HOV
HOV
INT
OR
JZ

NOT_EXTENDED:
CHP
JE
CHP
JNE
CALL
CHP
JE
JHP

NOT_BS: CHP
JE
CHP
JA
HOV
INC
PUSH
HOV
CALL
POP

READ NEXT_CHAR:
HOV
INT
OR

JNE
HOV
INT

SI,DX

BX,2
AH,7
21h
AL,AL
EXTENDED

AL,CR
END_INPUT
AL,BS
NOT_BS
BACK_SPACE
BL,2
START_OVER
SHORT READ_NEXT_CHAR
AL,ESC
PURGE_BUFFER
BL, [SI)
BUFFER_FULL
[SI+BXJ,AL
BX
DX
DL,AL
WRITE_CHAR
DX

AH,7
21h
AL,AL

NOT_EXTENDED
AR,7
21h

Peter Norton's Assembly Language Book 271

;Use SI for index register and

;BX for offset to beginning of buffer
;Call for input with no checking
; for CTRL-BREAK and no echo
;Is character extended ASCII?
;Yes, read the extended character
;Extnd char is error unless buf empty
;Is this a carriage return?
;Yes, we are done with input
;Is it a backspace character?
;Nope
;Yes, delete character
;Is buffer empty?
;Yes, can now read extended ASCII again
;No, continue reading normal characters
;Is it an ESC--purge buffer?
;Yes, then purge the buffer
;Check to see if buffer is full
; Buffer is full
;Else save char in buffer
;Point to next free character in buffer

;Echo character to screen

;An extended ASCII char is not valid
; when the buffer is not empty
; Char is valid

;Throw out the extended character

; Signal an error condition by sending a beep
; character to the display: chr$(7).

SIGNAL_ERROR:
PUSH DX
MOV
MOV
INT
POP
JMP

DL,7
AH,2
21h
DX
SHORT READ_NEXT_CHAR

;Sound the bell by writing chr$(7)

;Now read next character

272 lmpr d K • rd Input

Lis ing 2~-3. continlled

; E p y he s ring buffer and erase all the
; charac ers displayed on the screen.

PURGE_BUFFER:
PUSH
110V
XOR

PURGE LOOP: -
CALL
LOOP
POP
J p

ex
CL,[Sil
CH,CH

BAC'_SPACE
PURGE_LOOP
ex
START_OVER

;Backspace over axi um number of

characters in buffer. BACK_SPACE
ill keep he cursor from moving too

far back

;Can no
; since

read extended ASCII characters
he buffer is emp y

The buffer as ful , so can• read another
; charac er. Send a beep o aler user of
: buffer-full condi ion.

BUFFER_FULL:
JHP SHORT SIG AL_ERROR ;If buffer full, jus beep

Read the ex ended ASCII code and place this
; in he buffer as the only charac er, then
; re rn -1 as the n ber of characters read.

EXTENDED:
MO
I T
f'!OV
110V
Jl1P

AH,7
21h
[SI +2J,AL
BL,OFFh
SHORT E D_STRING

;Read an extended ASCII code

;Place just this char in buffer
;Num chars read = -1 for special

; save he count of the nu ber of characters
; read and return.

END_INPUT: ;Done with input
SUB BL,2 ;Count of character s r ead

END_STRING:
HOV [SI+1),BL ;Return nu ber of chars read
POP SI
POP BX
POP AX
RET

READ STRING ENDP -

Stepping through the procedure, we can see that READ _STRING first

P~ter Norton's Assembly Language Book 273

checks to see if we pressed a special function key. It allows us to do so only
when the string is empty. For example, if we press the Fl key after we press
the a key, READ_STRING will ignore the Fl key and beep to tell us we
pressed a special key at the wrong time. We can, however, press Escape, then
Fl, because the Escape key causes READ_STRING to clear the string buffer.

If READ_STRING reads a carriage-return character, it places the number
of characters it read into the second byte of the string area and returns. Our
new version of READ _BYTE looks at this byte to see how many characters
READ_STRING actuafly read.

Next, READ_STRING checks to see if we typed a backspace character. If so,
it CALLs BACK_SP ACE to erase one character. If the string buffer becomes
empty (BX becomes equal to 2, the start of the string buffer), then READ_
STRING goes back to the start, where it can read a special key. Otherwise, it
just reads the next character.

Finally, READ_STRING checks for the ESC character. BACK_SPACE
erases characters only when there are characters in the buffer, so we can clear
the string buffer by calling the BACK_SP ACE procedure CHAR_NUM_
LIMIT times, because READ_STRING can never read more than CHAR_
NUM_LIMIT characters. Any other character is stored in the string buffer
and echoed to the screen with WRITE_CHAR. Unless, that is, the buffer is
full.

In the last chapter, we changed READ_BYTE in such a way that it couldn't
read special function keys. We need only add a few lines here to allow READ_
BYTE to work with our new version of READ_STRING, which can read spe
cial function keys. Here are the changes to make to READ_BYTE in KBD_
IO.ASM:

Listing 2~-~. Changes to READ_BYTE in KBD_IO.ASM

POBLIC READ_BYTE
·---· ' ' This procedure reads a single ASCII character of a hex number.

Returns byte in AL
AH

Character code (unless AH = 0)

Oses:
Reads:

READ_BYTE
POSH

1 if read ASCII char or hex number
D if no characters read
-1 if read a special key

HEX_TO_BYTE, STRING_TO_OPPER, READ_STRING
KEYBOARD_INPUT, etc.

PROC
DX

NEAR

274 lmprmed Kc b ard Input

Listing 2£;-£;. continued

MOV
LEA
CALL

CHAR_NOM_LIMIT,3
DX,KEYBOARD_INPUT
READ_STRING

;Allow only two characters {plus Enter)

CMP NUM_CHARS_READ,1 ;See how any characters
JE ASCII_INPUT ;Just one, treat as ASCII character
JB NO_CRARACTERS ;Only En er key hit
CMP BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?
JE SPECIAL_KEY ; Yes
CALL STRING_TO_OPPER ;No, convert string to uppercase
LEA DX,CHARS ;Address of string to convert
CALL HEX_TO_BYTE ;Convert string from hex to byte
JC NO_CHARACTERS ;Error, so return ' no characters read'
HOV AR,1 ;Signal read one character

DONE_READ:
POP DX
RET

NO_CRARACTERS;
XOR
JMP

ASCII INPUT:
MOV
MOV
Jl1P

SPECIAL_KEY:
l'IOV
l'IOV
JMP

READ BYTE

AR,AR
DONE_READ

AL,CRARS
AH,1
DONE_ READ

AL, CHARS[OJ
AH,OFFh
DONE_ READ
ENDP

;Set to 'no characters read'

;Load character read
;Signal read one character

;Return the scan code
;Signal special key with -1

Dskpatch, with the new versions of READ_BYTE and READ_STRING,
should be much nicer to use. But there is a bug here, as we said. To try to find
it, run Dskpatch and try all the boundary conditions for READ _BYTE and
HEX_TO_BYTE.

Fixing DISPATCHER 276
Summary 278

275

25

276 In ... l'ar h of Bug

Ir you try the new version of D kpatch with ag, which isn't a hex number,
you'll notice that Dskpatch doesn't do anything when you pre s the Enter key.
Since the string ag isn't a hex number, there i nothing wrong with Dskpatch
ignoring it, but the program hould at lea t, erase it from the screen.

This error is the ort we can find only by thoroughly checking the boundary
conditions of a program. Not just the pieces, but the entire program. The bug
here isn't the fault of READ_BYTE even though it appeared when we re
wrote that procedure. Rather the problem is in the way we wrote DIS
PATCHER and EDIT_BYTE.

EDIT_BYTE is de igned o it call WRITE_PROMPT_LINE to rewrite the
editor prompt line and clear the re t of the line. Thi will remove any charac
ter we typed. But if we type a tring like ag, READ _BYTE report that it read
a string of zero length, and DISPATCH doesn't call EDIT_BYTE. What's the
solution?

Fixin DIS TCHE
There are actually two ways to solve this problem. The best solution would

be to rewrite Dskpatch to be more modular, and to redesign DISPATCHER.
We won't do that. Remember: Programs are never complete, but we have to
stop somewhere. Instead, we'll add a fix to DISPATCHER so it will rewrite
the prompt line whenever READ _BYTE reads a string of zero length.

Here are the modifications to DISPATCHER (in DISP ATCH.ASM) to fix
the bug:

Listing 25-1. Changes to DISPATCHER in DISPATCH.ASM

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT_BYTE:NEAR
EXTRN WRITE_PROMPT_LINE:NEAR

DATA_SEG SEGMENT PUBLIC
EXTRN EDITOR_PROMPT:BYTE

DATA_SEG ENDS

This is the central dispatcher. During normal editing and viewing, ;
this procedure reads characters from the keyboard and, if the character;
is a command key (such as a cursor key), DISPATCHER calls the
procedures that do the actual work. This dispatching is done for
special keys listed in the table DISPATCB_TABLE, where the procedure
addresses are stored just after the key names.

Peler Norton's Assembly Language Book 277

Listing 25-1. oontin~d

If the character is not a special key, then it should be placed
directly into the sector buffer--this is the editing mode.

Uses:
Reads:

READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE
EDITOR PROMPT

DISPATCHER
PUSH
PUSH

PROC
AX
BX

NEAR

PUSH DX
DISPATCH_LOOP:

CALL
OR

JZ
JS
110V
CALL
Jl1P

SPECIAL_KEY:
Cl1P
JE

LEA
SPECIAL_LOOP:

Cl1P
JE
Cl1P
JE
ADD
JMP

DISPATCH:
INC
CALL
JMP

NOT IN TABLE:
JMP

NO_CHARS_READ:
LEA
CALL
JMP

END DISPATCH:

READ BYTE
AH,AH

NO_CHARS READ
SPECIAL_KEY
DL,AL
EDIT_BYTE
DISPATCH_LOOP

AL,611
END_DISPATCH

BX,DISPATCH_TABLE

BYTE PTR [BX],0
NOT_IN_TABLE
AL,[BX]
DISPATCH
BX,3
SPECIAL_LOOP

BX
WORD PTR [BX]
DISPATCH_LOOP

DISPATCH_LOOP

DX,EDITOR_PROMPT
WRITE_PROMPT_LINE
DISPATCH_LOOP

POP DX
POP BX
POP AX
RET

DISPATCHER ENDP

;Read character into AX
;AX = D if no character read, -1
; for an extended code.
;No character read, try again
;Read extended code

;Was normal character, edit byte
;Read another character

; F10--exit?
;Yes, leave
;Use BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
; Call procedure
;Wait for another key

;Do nothing, just read next character

;Erase any invalid characters typed
;Try again

278 n rch f Bug

This bug fix doesn't create any great problems, but it does make DIS
PATCHER slightly less elegant. Elegance is a virtue to strive for. Elegance
and clarity o£ten go hand in hand, and our rules of modular design are aimed
at increasing elegance.

DISPATCHER is elegant because it's such a simple solution to a problem.
Rather than using many comparisons for each special character we might
type, we built a table we can search. Doing so made DISPATCHER simpler,
and hence more reliable, than a program containing different instructions for
each possible condition that might arise. By adding our small fix, we compli
cated DISPATCHER-not by much in this case, but ome bugs might require
us to really complicate a procedure.

If you find yourself adding fixes that make a procedure too complicated,
rewrite whichever procedures you must to remove this complexity. And al
ways check the boundary conditions both before and after you add a procedure
to your main program. You'll save yourself a lot of debugging effort if you do.

We can't overemphasize the importance of testing procedures with bound
ary conditions and of following the rules of modular design. Both techn"iques
lead to better and more reliable programs. In the next chapter, we'll look at
another method for debugging programs.

WRIT NG MODIFIED
SECTORS

Writing to the Disk 280
More Debugging Techniques 282
Building a Road Map 283
Tracking Down Bugs 285
Symdeb 287

Symbolic Debugging 287
Screen Swapping 288

Summary 290

279

26

.......__ .

280 Writing 1 dificd e tor

We almost have a usable Dskpatch program. In this chapter, we'll build the
procedure to write a modified sector back to disk, and in the next chapter,
we'll write a procedure to show the second half of a sector. Dskpatch won't be
finished then, as we said, programs never are; but the scope of our coverage in
this book will be complete. You'll find many extras in the version of Dskpatch
on the disk available to complement this book.

Dik
Writing a modified sector back to the di k can be disastrous if it's not done

intentionally. All of Dskpatch s function thus far depend on the function keys
Fl, F2, and FlO, and on the cur or keys. But any of these keys could be
pressed quite by accident. Fortunately the ame doesn't hold true for the
shifted function keys, so we'll use the hifted F5 key for writing a disk sector.
This will prevent us from writing a sector back to disk unless we really want
to.

Make the following changes to DISPATCH.ASM, to add WRITE_SECTOR
to the table:

Listing 26-1. Changes to DISPATCH.ASM

DATA_SEG SEGMENT PUBLIC
EXTRN NEXT_SECTOR:NEAR
EXTRN PREVIOOS_SECTOR:NEAR
EXTRN PRANTOH_OP:NEAR, PBANTOM_DOWN:NEAR
EXTRN PBANTOH_LEPT:NEAR, PHANTOM_RIGBT:NEAR
EXTRN WRITE_SECTOR:NEAR

;In DISK_IO.ASM
;In DISK_IO.ASl1
;In PHANTOM.ASM

;In DISK_IO.AStl

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB 72 ; Extended code for cursor up
DW OFFSET CGROUP:PHANTOM UP

DISPATCH_TABLE LABEL BYTE
DB 5q ;P1
OW OFFSET CGROOP:PREVIOOS SECTOR
DB 60 ; F2
DW OFFSET CGROOP:NEXT_SECTOR
DB 72 ;Cursor up
OW OFFSET CGROUP:PHANTOM_UP
DB 80 ; Cursor down

Peter Norton's Assembly Language Book 281

Listing 26-1. continued

DW OFFSET CGROUP:PHANTOM DOWN -
DB 75 ;Cursor left
DW OFFSET CGROUP:PHANTOM_LEFT
DB 77 ;Cursor right
DW OFFSET CGROUP:PHANTOM_RIGHT
DB 88 ; Shift FS
DW OFFSET CGROUP:WRITE_SECTOR
DB 0 ;End of the table

DATA SEG ENDS -

WRITE_SECTOR itself is almost identical to READ _SECTOR. The only
change is that we wish to write, rather than read, a sector. Whereas the INT
25h asks DOS to read one sector, its companion function, INT 26h, asks DOS
to write a sector to the disk. Here is WRITE_SECTOR; place it into DISK_
IO.ASM:

Listing 26-2. Add This Procedure to DISK IO.ASM

PUBLIC WRITE_SECTOR

This procedure writes the sector back to the disk.

Reads: DISK_DRIVE_NO, CURRENT_SECTOR_NO, SECTOR

WRITE_SECTOR PROC NEAR
PUSH AX
PUSH BX
PUSH ex
PUSH DX
MOV AL,DISK_DRIVE_NO ;Drive number
MOV CX,1 ;Write 1 sector
MOV DX,CURRENT_SECTOR_NO ;Logical sector
LEA BX,SECTOR
INT 26h ;Write the sector to disk
POPP ;Discard the flag information
POP DX
POP ex
POP BX
POP AX
RET

WRITE SECTOR ENDP

Now, reassemble both Dispatch and Disk_io, but don't try Dskpatch's write
function just yet. Find an old disk you don't care much about and put it in
drive A, with your program disk in some other drive, such as B. Run Dskpatch

....

282 riting Modifi d tor

from drive B (or whatever drive you choose), so that Dskpatch reads the first
sector from your scratch disk in drive A. Before you go on, make sure this is a
scratch disk you have no qualms about if it's destroyed.

Change one byte in your sector display and make a note of the one you
changed. Then, press the shifted F5 key. You'll see the red drive light come
on: You've just written a modified sector back to drive A.

Next, press F2 to read the next sector (sector 1), then Fl to read the previ
ous sector (your original sector, number 0 . You should see the modified sector
back again. Restore this sector and write it back to Drive A to restore the
integrity of your scratch disk.

D • u 1 u
What would happen if we had made a small error in our program?

Dskpatch is sufficiently large that we'd expect to have problems using
Debug to find the bug. Besides, Dskpatch is composed of nine different files
we must link to form DSKPATCH.COM. How do we find any one procedure
in this large program without tracing slowly through much of the program?
As you'll see in this chapter, there are two ways to find procedures: by using
a road map we can get from LINK, or by using Microsoft's SYMDEB in place
of DEBUG.

When we originally wrote Dskpatch something went wrong when we added
WRITE_SECTOR; pressing the Shift-F5 key caused our machine to hang. But
we couldn't find anything wrong with WRITE_SECTOR and the only other
changes were to DISPATCH_ TABLE. Everything appeared to be correct.

Finally, we traced the bug to a faulty definition in the dispatcher. The bug
turned out to be an error in the DISPATCH_ TABLE entry for WRITE_SEC
TOR. Somehow, we had typed a DW rather than a DB in the table, so
WRITE_SECTOR's address was stored one byte higher in memory than it
should have been. You can see the bug shown in italics here:

DISPATCB_TABLE LABEL BYTE

DATA_SEG

DB
DW
Dli
DW
DB

77
OFFSET CGROUP:PBANTOH_RIGBT
M
OFFSET CGROOP:WRITE_SECTOR
0
ENDS

;Cursor right

; Shift F5

;Ena of the table

Peter Norton's Assembly Language Book 283

As an exercise in debugging, make this change to your file DIS
p ATCH.ASM, then follow the directions in the next section.

B · d · g a Road Ma
Let's learn how to use LINK to build a map of Dskpatch. This map will help

us find procedures and variables in memory.
The LINK command we've used so far has grown to be fairly long:

LINK DSKPATCH DISK_IO DISP_SEC VIDEO_IO CORSOR DISPATCH KBD_IO PHANTOM EDITOR;

and we'll want to add even more to it. Does that mean we'll have to keep
typing file after file after file? No, there is a much easier way. LINK allows us
to supply an automatic response file containing all the information. With such
a file, which we'll call linkinfo, we can simply type:

LINK @LINKINFO

and LINK will read all of its information from this file.
With the file names that we've used so far, linkinfo looks like this:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CORSOR +

DISPATCH KBD_IO PHANTOM EDITOR

The plus (+) at the end of the first line tells LINK to continue reading file
names from the next line.

We can also add some more information that tells LINK to create a map of
the procedures and variables in our program to this simple linkinfo file. Here
is the entire linkinfo file:

DSKPATCH DISK_IO DISP_SEC VIDEO_IO CORSOR +
DISPATCH KBD_IO PHANTOM EDITOR
DSKPATCH
DSKPATCH /MAP;

The last two lines are new parameters. The first, dskpatch, tells LINK we
want the .EXE file to be named DSKPATCH.EXE; the second new line tells
LINK to create a listing file called DSKP A TCH.MAP-to create our road
map. The /map switch tells LINK to provide a list of all the procedures and
variables we've declared to be public.

Create the map file by relinking Dskpatch with this linkinfo response file.

284 \Vritin odi id

The map file produced by the linker i
long for us to reproduce in it entirety
particular interest . Here 1 our
DSKPATCH.MAP:

Warning: no stack seg en

Start Stop Leng h a e
OOOOOR 007ESR 007EbH CODE_SEG
007FOH 02q1FA 02L30H DATA_SEG

Origin Group
0000:0 CGROUP

Address

0000: Ob 77
OOOO:Ot:llF
OOOO:Ot:DL
0000:07F2
OOOO:Ot:Bl
0000:07Ft:
OOOO:Ot:FO
0000: OJ.F3

0000:0370
0000:0308
OOOO:ObFE
OOOO:Ot:t:O
OOOO:OL3A
OOOO:Ot:20

Address

0000:0120
0000:013A
0000:01St:
0000:017t:
0000:01qo
0000:01 F3

0000: 07PS
0000:07 Fb
0000 :07f7
0000:07 FD
OOOO :OOOE
OOOO:O OOF

Publics by a e

BACK_ SPACE
CLEAR_SCREE
CLEAR_TO_E D_OF_LI E
CORRE T_SECTOR_ 0
CORSOR_RIGHT
DISK_DRIVE_ 0
DISPATCHER
DISP_BALF_SECTOR

WRITE_BEX_DIGIT
RITE_PATTER

WRITE_PRANTO
WRITE_PROKPT - LI NE
WRITE_SECTOR

RITE_STRING

Publics by Value

READ_SECTOR
WRITE_SECTO R
PR EVIOUS _SECTOR
NE XT_SECTOR
INIT_SEC_DIS P
DISP_HALF_SECTOR

LINES_BEFORE_SECTOR
HEADER_LINE_NO
BEADER_PART_1
HEADER_PART_2
PROHPT_LINE_NO
EDITOR_PROMPT

about 120 line long. That's a bit too
o we'll reproduce the parts that are of
partial Ii ting of the map file,

Class

OOOO:OML;
0000:2912
ODDO: 2913

SECTOR
PHANTOM_CURSOR_X
PHANTOM_CURSOR_Y

Program entry point at 0000:0100

Peter Norton's Assembly Language Book 285

There are three main parts to this load map (so called because it tells us
where our procedures are loaded in memory). The first shows a list of seg
ments in our program. Dskpatch has just two segments, CODE_SEG and
DATA_SEG, which are grouped together, so you'll see these two segments in
the list.

The next part of the load map shows our public procedures and variables,
listed in alphabetic order. LINK lists only those procedures and variables
you've declared to be PUBLIC-visible to the outside world. If you're debug
ging a long program, you may want to declare all procedures and variables to
be public, just so you can find them in this map.

The final section of the map lists all the procedures and memory variables
again, but this time in the order they appear in memory.

Both of these lists include the memory address for each PUBLIC procedure
or variable. If you check this list, you'll find that our procedure DISPATCHER
starts at address 4FOh. We'll use this address now, to track down the bug in
Dskpatch.

ra king Down Bugs
If you were to try running the version of Dskpatch with the bug in it, you'd

find that everything works, with the exception of Shift-F5, which on our ma
chine caused Dskpatch to hang. You probably don't want to try Shift-F5;
there's no telling what it will do on your machine.

Since everything worked (and works now) except for Shift-F5, our first guess
when we wrote the program was that we had introduced a bug into WRITE_
SECTOR. To find this bug, we could start debugging Dskpatch by tracing
through WRITE_SECTOR. Instead, we'll take a somewhat different tack.

We know that DISPATCHER works correctly, because everything else (the
cursor keys, Fl, F2, and FlO) all work correctly. That means DISPATCHER is
a good starting point to search for the bug in Dskpatch.

If you look at the program listing for DISPATCHER (in Chapter 25), you'll
see that the instruction

CALL WORD PTR [BX]

--

286 riting M ifi d

is the heart of DISPATCHER, because it calls all the other routines. In partic
ular, this CALL instruction will call WRITE_SECTOR when we press Shift
F5. Let's start our search here.

We'll use Debug to start D kpatch with a breakpoint et on this instruction.
Of course, that means we need the addre of thi instruction, and we can find
that by unassembling DI PAT HER, which tarts at 4FOh. After a U 4FO,
followed by another U command, you hould ee the CALL command:

2C14:0517 EBF2
2c14: os1ci 4 3
2C14:051A FF17
2C14:051C EBOS

JHP
INC
CALL
JHP

OSOB
BX
CBXJ
04F3

Now that we know the CALL in truction i at location 51Ah, we can set a
breakpoint at this addre , then ingle- tep into and through WRITE_
SECTOR.

First, use the command G 51A to execute Dskpatch up to this instruction.
You'll see Dskpatch tart up, then wait for you to type a command. Press
Shift-F5, since this is the command that is cau ing problems. You'll see the
following:

-G 51A

AX=FFS8 BX=28A3
DS=2C14 ES=2C14
2C14: 051A FF17

CX=2820 DX=OBOF SP=FFFb
SS=2C14 CS=2C14 IP=051A

CALL [BXJ

BP=41ciA SI=03CC DI=0001
NV UP DI PL NZ NA PE NC

OS:28A3=3AOO

At this point the BX register is pointing to a word that should contain the
address of WRITE_SECTOR. Let's see if it does:

-D 28A3 L 2
2C14:28AO 00 3A

In other words, we're trying to CALL a procedure located at 3AOOh (remember
the lower byte is displayed first). But if we look at our memory map, we can
see that WRITE_SECTOR should be at 13Ah. In fact, we can also tell from

P~ter Norton's Assembly Language Book 287

this load map that we don't have any procedures at 3AOOh. The address is
totally wrong!

In our original bug-hunting, once we discovered that this address was
wrong, it didn't take us very long to find the error. We knew that DIS
p ATCHER and the table were basically sound, because all the other keys
worked, so we took a closer look at the data for Shift-F5 and found the DW
where we should have had a DB. Having a road map makes debugging much
simpler. Now let's take a look at Symdeb.

e
Symdeb (Symbolic Debugging) is a program that Microsoft includes with

version 3.00 and above of its macro assembler package. As you'll see in this
section, Symdeb is so useful that, if you don't have it, you may well want to
consider upgrading your macro assembler.

Since both Debug and Symdeb were written by Microsoft, Symdeb shares
most, if not all, of Debug's commands. It also includes a number of very useful
commands you won't find in Debug, and it includes some other features that
are worth their weight in gold. We'll use two of these new features in this
chapter: symbolic debugging and screen swapping.

Symbolic Debugging

Symbolic debugging, which gives Symdeb its name, lets us see procedure
and variable names, rather than addresses, in our Unassemble (U) listings.
For example, if we use Debug to unassemble the first line in Dskpatch, we
see:

2CM: 0100 E811C03 CALL 0£;8F

With Symdeb, on the other hand, we see the following:

32£;5:0100 EBBC03 CALL CLEAR_SCREEN

Which of these is easier to read? We rest our case.

288 Writin • fodified ect r

Screen Swapping

The second new feature, screen swapping, is handy for debugging Dskpatch.
Dskpatch jumps around the screen, writing in different places. In the last sec
tion, where we used Debug Debug started writing to this screen and we even
tually lost the Dskpatch creen.

Symdeb, however, maintains two eparate creens: one for Dskpatch and
one for itself. Whenever Dskpatch i active, we see its screen; whenever
Symdeb is active, we see it creen. We'll get a clearer idea of creen swapping
as we run through the following example .

Before we can use Symdeb' ymbolic debugging feature, we need to create a
symbol file with a program called Map ym. Map ym takes the .MAP file we
created earlier in this chapter and turns it into a symbol file:

A>MAPSYM DSK PATCH
Microsoft (R) Symbol File Generator Version 4.00
Copyright (C) Microsoft Corp 1q54, 1q8S . All rights reserv ed.

Progra entry point at 0000:0100

In this case, Mapsym has created a symbol file called DSKPATCH.SYM.
We then start Symdeb with both the symbol file and the .COM file:

A>SYM DEB / S DSKPATCff.SYM DSKPATCR.COH
Microsoft (R) Symbolic Debu9 Utility Version 4.00
Copyri9ht (C) Microsoft Corp 1qa ~ , 1q8s. All r i ghts r eserved.

Processor is (8086}

The IS switch in our command tells Symdeb to use its screen-swapping fea
ture. It doesn't use this feature by default, because screen swapping can make
Symdeb noticeably slower.

Before we run through a repetition of our previous debugging session, let's
take a quick look at the start of Dskpatch:

-u
33DE:D100 E88C03
330E:0103 EBF~02
330E:0106 E81700
330E : 01oq E88400
330E :010C BD160F08

CALL CLEAR_SCREEN
CALL WRITE_HEADER
CALL READ_SECTOR
CALL INIT_SEC_DISP
LEA DX,(EDITOR_PROMPTJ ,

330E:0110 E82D03
330E:0113 E8DA03
330E:0116 CD20

Pet.er Norton's Assembly Language Book 289

CALL WRITE_PROMPT_LINE
CALL DISPATCHER
INT 20

You can see how nicely Symdeb displays all the names, rather than the
addresses.

When we last unassembled DISPATCHER to find the address of the CALL
WORD PTR [BX] instruction, we first had to look in the map file to find the
address of the procedure, then type U 4FO to unassemble it. With Symdeb, life
is much simpler: We can simply type U DISPATCHER to unassemble our
procedure.

-0 DISPATCHER
CGROOP:DISPATCRER:
330E:Ot;FO SO POSH AX
330E:Ot;P1 53 PUSH BX
330E:Ot;F2 S2 PUSH DX
330E:Ot;P3 E80t;01 CALL READ BYTE -
330E: Ot;Fb OAEt; OR AH,AH
330E:Ot;F8 7t;26 JZ DISPATCHER+30 (OS20)
330E:Ot;FA 7807 JS DISPATCHER+13 (OS03)

After two more U commands, we find our CALL instruction:

330E: DSM 83C303 ADD BX,+03
33DE:OS17 EBF2 JMP DISPATCHER+1B (OSOB)
33DE: OSV1 t;3 INC BX
330E:OS1A FF17 CALL [BX]
33DE:DS1C EBDS JMP DISPATCHER+D3 (Ot;F3)

Type G 51A, as before, and follow that with Shift-F5. If you have Symdeb,
you'll see Dskpatch draw its screen. Then, you'll return to Symdeb after you
push Shift-F5. This time, though, you won't see the Dskpatch screen, because
Symdeb will swap screens. To flip back to the Dskpatch screen, press the back
slash(\) key and press Enter. Once the Dskpatch screen comes up, pressing
any other key will return you to Symdeb's screen again.

There is one subtle point you may have noticed about Symdeb as we've used
it here. If we look at the unassembly listings, we see instructions like this:

33DE:DS1C EBDS JMP DISPATCHER+D3 (Ot;F3)

290 Writing Modified Sectors

rather than this:

330E:051C EBDS JMP DISPATCB_LOOP

Why didn't Symdeb use the label DISPATCH_LOOP? We didn t defin the
labels in this procedure to be PUBLIC. If we went back and wrote PUBLI
declarations for all the labels in DISPATCHER, we'd ee these label in the
unassembly listing. (If you do this, remember to rebuild the symbol fil with
Mapsym).

That ends our discussion of debugging techniques. We have only thr ch p
ters left in the book. In the next chapter, we'll add the procedure to er 11th
screen between the two half sectors. Then, in the final two chap er w 11
learn more about the differences between .COM and .EXE file , nd t k a
last look at the ASSUME statement and segment override .

By the way: Don't forget to fix the bug we placed in DISP AT H_ T L

27

THE 0 HER HALF SECTOR

Scrolling by Half a Sector 292
Summary 295

291

292 The Other Half Sector

Ideally, Dskpatch should behave like a word processor when you try tom ve
the cursor below the bottom of the half-sector display: The display hould
move up one line, with a new line appearing at the bottom. The ver ion of
Dskpatch on the disk available with this book does just that, but we won,t g t
quite so sophisticated here. In this chapter, we'll add skeletal version of the
two procedures, SCROLL_ UP and SCROLL_DOWN, that croll the er n.
In the disk version of Dskpatch, SCROLL_ UP and SCROLL_DOWN can
scroll by any number of lines from one to sixteen (there are ixteen lin in
our half-sector display). The versions of SCROLL_ UP and S R LL_ W
that we'll add to Dskpatch here scroll by full half sectors o we 11
the first or second half of the sector.

Scrolling by a
Our old versions of PHANTOM_ UP and PHANTOM DOW r tor the

cursor to the top or bottom of the half-sector display whenever we try to move
the cursor off the top or bottom of the display. We'll change PHA T M_UP
and PHANTOM_DOWN so that we call either SCROLL_ UP or LL_
DOWN when the cursor moves off the top or bottom of the di play Th two
new procedures will scroll the display and place the cursor at it new po it10n.

Here are the modified versions of PHANTOM_ UP and PHANTOM_D WN
(in PHANTOM.ASM):

Listing 27-1. Changes to PHANTOM.ASM

PHANTOM_UP
CALL
DEC
JNS
rrnv
CALL

WASNT_AT_TOP:
CALL
RET

PHANTOM_UP

PHANTOM_DOWN
CALL

PROC NEAR
ERASE PHANTOM -
PHANTOM_CURSOR_Y
WASNT_AT_TOP
PHANTO - r o_y,o -
SCROLL_DOWN

WRITE_PHANTOM

ENDP

PROC NEAR
ERASE_PHANTOM

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor

b
;Was at the top, scroll

;Write the phantom at new position

;Erase at current position

Listing 27-1. oontin~d

INC
CMP
JB

Ov
CALL

WASNT_AT_BOTTOM:

PHANTOM_CORSOR_Y
PHANTOM_CORSOR_Y,16
WASNT_AT_BOTTOM
P~ANTOM_CURSOQ_Y,15

SCROLL_ UP

CALL .WRITE PHANTOM
RET

PBANTOM_DOWN ENDP

Peter Norton's Assembly Language Bo k 293

;Move cursor up one line
;Was it at the bottom?
;No, so write phantom
;Was at bottom, so put back there
;Was at bottom, scroll

;Write the phantom cursor

Don't forget to change the comment header for PHANTOM_ UP and PHAN
TOM_DOWN, to mention that these procedures now use SCROLL_UP and
SCROLL_DOWN:

Listing 27-2. Changes to PHANTOM.ASM

These four procedures move the phantom cursors.

Uses:

Reads:
Writes:

ERASE_PHANTOM, WRITE_PHANTOM
SCROLL_DOWN, SCROLL_UP
PAANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

SCROLL_ UP and SCROLL_DOWN are both fairly simple procedures,
since they switch the display to the other half sector. For example, if we're
looking at the first half sector, and PHANTOM_DOWN calls SCROLL_ UP,
we'll see the second half sector. SCROLL_ UP changes SECTOR_ OFFSET to
256, the start of the second half sector, moves the cursor to the start of the
sector display, writes the half sector display for the second half, and finally
writes the phantom cursor at the top of this display.

You can see all the details for both SCROLL_ UP and SCROLL_DOWN in
the following listing. Add it to PHANTOM.ASM.

Listing 27-3. Add These Procedures to PHANTOM.ASM

EXTRN DISP_HALF_SECTOR:NEAR, GOTO_XY:NEAR
DATA_SEG SEGMENT PUBLIC

EXTRN SECTOR_OFFSET:WORD
EXTRN LINES_BEFORE_SECTOR:BYTE

DATA_SEG ENDS

294 The Other Half Sector

List i ng 27 - 3. continued

These two procedures move between the two half-sector displays.

Oses:

Reads:
Writes:

WRITE_PHANTOM, DISP_HALF_SECTOR, ERASE_PHANTOM, GOTO_XY
SAVE_REAL_CORSOR, RESTORE_REAL_CORSOR
LINES_BEFORE_SECTOR
SECTOR_OPFSET , PHANTOM_CORSOR_Y

;---,
SCROLL_UP

PUSH
CALL
CALL
XOR
MOV
ADD
CALL
MOV
MOV
CALL
CALL
MOV
CALL
POP
RET

SCROLL OP

SCROLL_DOWN
POSH
CALL
CALL
XOR
MOV
ADD
CALL
XOR
MDV
CALL
CALL
MOV
CA LL
PO P
RET

SC ROLL_DOWN

PROC NEAR
DX
ERASE_PHA.NTOM
SAVE_REAL_CURSOR
DL,DL
DH,LINES_BEFORE_SECTOR
DH,2
GOTO_XY
DX,256
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_CURSOR
PRANTOM_CURSOR_Y,O
WRITE_PRANTOM
DX

ENDP

PROC NEAR
DX
ERASE_PHANTOM
SAVE_REAL_CURSOR
DL,DL
DH,LINES_BEFORE_SECTOR
DH,2
GOTO_XY
DX,DX
SECTOR_OFFSET,DX
DISP_HALF_SECTOR
RESTORE_REAL_CURSOR
PBANTOM _CURSOR_Y,15
WRITE_PHANTOM
DX

ENDP

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

;Display the second half sector

;Restore the real cursor position
;Cursor at top of second half sector
;Restore the phanto cursor

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

;Display the first half sector

;Restore the real cursor position
;Cursor at bottom of first half sector
;Restore the phantom cursor

SCROLL_UP and SCROLL_DOWN both work nicely, although there is
one minor problem with them as Dskpatch stands now. Start Dskpatch and
leave the cursor at the top of the screen. Press the cursor-up key, and you'll
see Dskpatch rewrite the first half-sector display. Why? We didn't check for

Peter Norton's A sembly Language Book 295

this boundary condition. Dskpatch rewrites the screen whenever you try to
move the cursor off the top or bottom of the half-sector display.

Here's a challenge for you: Modify Dskpatch so that it checks for two bound
ary conditions. If the phantom cursor is at the top of the first half-sector dis
play and you press the cursor-up key, Dskpatch should do nothing. If you're at
the bottom of the second half-sector display and press the cursor-down key,
again Dskpatch should do nothing.

s ry

This ends our work on Dskpatch in this book. Our intent was to use
Dskpatch as a "live" example of the evolution of an assembly language pro
gram, at the same time providing you with a usable program, and a set of
procedures you'll find helpful in your own programming. But the Dskpatch
you've developed here isn't as finished as it could be. You'll find more features
in the disk version of Dskpatch available with this book. And you may find
yourself changing that disk version, for "a program is never done ... but there
comes a time when it has to be shipped to users."

We'll wrap up this book with a change of pace. In the next two chapters
we'll move on to two advanced subjects: relocation and more about segments.

PART IV

Odds and Ends

Multiple Segments 300
Relocation 304
.COM versus .EXE Programs 307

299

28

300 elocation

One subject that always seems to be shrouded in mystery is the difference
between .EXE and .COM files and the meaning of relocatable programs. As
part of our change of pace in these final two chapters, let's look at relocation
and see how you can build programs larger than 64K-not that you'd necessa
rily want to, although many people do.

Multi e Se ments
As soon as we start to build programs that use more than 64K of memory

we find ourselves running into problems with .COM files . Why? That what
we're here to find out.

First of all, any program must be built from one or more egrnent , each no
more than 64K long. But many program extend their u e of memory by u ing
several different segments; for example, a code segment for the program, a
data segment for the data, and a stack egment for the tack and temporary
data. If each of these three segments were fully used we'd fill 3 * 64K = 192K
of memory. That's how we gain access to more memory and that's where the
difference between .COM and .EXE program come in: .EXE program are
designed specifically for this kind of job.

All our programs in this book have been .COM file , with either one seg
ment or one group. Remember that the GROUP p eudo-op imply combines
several different segments into a single unit that acts like one segment. If we
wanted to use more than one segment to span more than 64K of memory we'd
have to do some more work. Let's look at an example.

Our program for printing a string of characters in Chapter 3 will serve nice
ly. That example, written with groups in assembly language, looks like this:

CGROUP GROUP CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE_SEG
ORG

WRITE_STRING
MOV
MOV
INT
INT

WRITE_STRING

SEGMENT PUBLIC
10Dh
PROC PAR
AB,g ;Call for string output
DX,OPFSET CGROUP:STRING ;Load address of string
21h ;Write string
2Dh ; Return to DOS
ENDP

CODE_SEG

DATA_SEG
STRING DB
DATA_SEG

END

ENDS

SEGMENT POBLIC
"Hello, DOS here.$"
ENDS

WRITE_STRING

Peter Norton's Assembly Language Book 301

The two segments CODE_SEG and DATA_SEG are placed into a single 64K
group, CGROUP, so OFFSET CGROUP:STRING gives the offset of STRING
from the beginning of the group CGROUP.

When DOS loads a .COM program into memory, it sets all four segment
registers (CS, DS, ES, and SS) to the start ofCGROUP, therefore DS:OFFSET
CGROUP:STRING is the full address of STRING. What if we had two differ
ent segments and no group? We wouldn't have a limit of 64K for two seg
ments: it would be 128K. How would we set the segment registers to point to
their respective segments? By using an .EXE program, which allows us to use
several segments, all starting at different addresses.

DOS allows us to set the segment registers for an .EXE program with the
help of some assembler instructions. These assignments aren't as simple as
they might seem, but we'll come back to that. First, let's rebuild WRITE_
STRING as an .EXE program.

I

We must have at least two segments for any .EXE program: the code seg-
ment and the stack segment. These two segments are special cases for DOS.
DOS sets the four registers-CS, SS, IP, and SP-when it loads an .EXE pro
gram into memory. DOS sets the CS:IP register to point to the first instruc
tion whose address appears after the END pseudo-op. In an .EXE program,
this first instruction can be anywhere, whereas in a .COM program, this in
struction must be the first instruction in the code segment.

Similarly, SS:IP points to the end of stack region defined with the SEG
MENT STACK pseudo-op. For example, the following version of WRITE_
STRING contains a stack that is 80 bytes long, thus IP will be set to 80-the
end of this stack region within the stack segment. Here is the program:

ASSOf'IE CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

CODE_SEG
WRITE_STRING

f'IOV
f'IOV
110V
110V

SEGMENT POBLIC
PROC FAR
AX,DATA_SEG
DS,AX
AH,9
DX,OFFSET STRING

;Segment address for DATA_SEG
;Set up OS register for DATA_SEG
;Call for string output
;Load address of string

302 Relocation

INT

PUSH
XOR
PUSH

RET
WRITE_STRING

CODE_SEG

DATA_SEG

21h

ES
AX,AX
AX

ENDP

ENDS

SEGl1ENT PUBLIC

;Write string

;Save return address for long RET below
;There is an I NT 20h inst . at ES: O

;Return to DOS

STRING DB "Bello , DOS here. $11

DATA_SEG ENDS

STACK_SEG SEG MENT STACK
DB 10 DOP ('STACK I) ; 1 STACK 1 follo ved by three spaces

STACK_SEG EN DS

EN D ii RITE_STRI NG

This program will be ready to run after you link it, but first erase
WRITESTR.COM. If you have two versions of a file , one with the extension
.COM and one with the extension .EXE DOS will execute the .COM file.

There are a number of differences between this .EXE file and our original
.COM file. In place of the INT 20h instruction to return to DOS, we now have
several cryptic instructions, beginning with PUSH ES. The two PUSH in
structions push a long return address, ES:O, onto the stack. This is the address
of the first byte in the 256 byte data area DOS puts into memory before our
program, and the first instruction in this data area is an INT 20h instruction.

The CS register must point to the start of this data area when we execute
the INT 20h instruction. This was the case in our .COM program, right from
the start. But our .EXE program begins with the CS register set to the start of
the code segment, not the the data area. By doing a FAR RET to ES:O, we set
CS to the start of the data area and, as you can see. ES:O holds the INT 20h
instruction:

A>DEBUG WRITESTR.EXE
-U ES:O
39AF:OOOO CD20
39AF:0002 006000

INT
ADD

20
[BX+SI+OO J ,A B

Peter Norton's Assembly Language Book 303

The GROUP pseudo-op is missing, because we now have three different seg
ments that are not confined to a total area of 64K or less. Each of these three
segments is independent, and each of the segment registers (CS, DS, and SS)
points to a different segment. Both CS and SS are set by DOS, as we can see
with the help of Debug:

A>DEBOG WRITESTR.EXE
-R
AX=OOOO BX=DDOO CX=010 0 DX=OOOO SP=OOSO BP=OOOO SI=DDDD DI=DDDD
DS=39AP ES=39AP SS=39C3 CS=39BP IP=OOOO NV UP DI PL NZ NA PO NC
39BF:OOOO B8C139 MOV AX,39C1

DS and ES point to a segment lower in memory than either CS or SS. As
you saw in Chapter 11, both DS and ES point to the data area, 256 bytes long,
placed by DOS before our program. In .COM program, we reserved this area
with an ORG lOOh statement. For .EXE files, we don't need to do the same,
because the code and data segments are in different parts of memory. The
data segment is elsewhere, but DS isn't pointing to DATA_SEG. This is the
reason for the first instruction in WRITE_STRING. The MOV AX,DATA_
SEG instruction moves the segment number of DATA_ SEG into the AX reg
ister. If we look at our program in memory:

-U
39BF:OODO B8C139 MOV AX,39C1
39BF:0003 8ED8 MOV DS,AX
39BF:0005 Bt;09 MOV AH,09
39BF:0007 BADDOO MOV DX,0000
39BF:OOOA CD21 INT 21
39BF:OODC 06 PUSH ES
39BF:OOOD 33CD XOR AX,AX
3C!BF:OOOF 50 PUSH AX
39BF:DD10 CB RETF
3C!BP:OD11 DODO ADD [BX+SIJ,AL

we see that this MOV instruction has been translated into MOV AX,39Cl,
where 39Cl is the segment number of for DATA_SEG. We needed two MOV
instructions to move this number into the DS register, because we can't move
a number directly into any segment register. (See the chart of addressing
modes in Appendix E.)

Where did the 39Cl come from? Surely, neither the assembler nor the
linker knew ahead of time where DOS would load this program; only DOS can

304 elocati n

know that. In fact, it is DOS that sets this number to 39 1 and the proce of
calculating such numbers is known a relocation. DO make relocation calcu
lations for .EXE programs, but not for .COM program . It i for th1 rea on
that .COM programs load into memory more quickly. Th y are al o mor com
pact, because they don't contain the pecial information D u e to make
relocation calculations.

Out of curiosity, let' see what happen if we try to convert our .EXE pro
gram into a .COM program u ing Exe2bin:

A>EXE2BIN WRITESTR WRITESTR.COM
File cannot be converted
A>

Exe2bin know that it can't creat a . M program from our fil , but it
doesn't tell us why. It leave u to figur that out for our lv . L t tak a
look at the problem

DOS load a .COM program dir ctly into m mory aft r it er at th 256
byte header. If we want different egment a in WRITE_ TRIN and want
to create a .COM file, we have to do any relocat10n our lv , with in truc
tions in our program. It' not very difficult, and we'll how you how it done
so you can get a better in ight into the way D r locat program . If you
ever need to write a large .COM program that n d to u more than 64K of
memory, you'll find this technique u eful.

• catio
Our goal is to set the DS register to the beginning of DATA_ EG, and the

SS register to the beginning of STACK_SEGMENT. We can do thi with a bit
of trickery. First, we need to ensure that our three egment are loaded into
memory in the correct order:

Code segment
Data segment
Stack segment

Fortunately, we've already taken care of this. The linker loads these three
segments in the order in which they appear in our file. A word of warning
though: When you use the following technique in a .COM file to set segment
registers, make sure you know the order in which LINK will load your
segments.

Peter Norton's Assembly Language Boo~ 305

How do we calculate the value for DS? Let's begin by looking at three labels
we've placed into various segments in the following listing. Those labels are
END_OF_CODE_SEG, END_OF_DATA_SEG, and END_OF_STACK_
SEG. They aren't exactly where you might have expected them to be. Why
not? Well, when we define a segment like:

CODE_SEG SEGMENT PUBLIC

we don't really tell the linker how to stitch together various segments. So, it
starts each new segment on a paragraph boundary-at a hex address that
ends with a zero, such as 32C40h. Because the Linker skips to the next para
graph boundary to start each segment, there will very often be a short, blank
area between segments. By placing the label END_OF _CODE_SEG at the
beginning of DATA_SEG, we include this blank area. If we had put END_
OF_ CODE_SEG at the end of CODE_SEG, we wouldn't include the blank
area between segments. (Look at the unassemble listing of our program on
page 307. You'll see a blank area filled with zeros that is 15 bytes long.)

As for the value of the DS register, DATA_SEG starts at 39AF:0130, or
39C2:0000. The instruction OFFSET CODE_SEG:END_OF _CODE_SEG
will return 130h, which is the number of bytes used by CODE_SEG. Divide
this number by 16 to get the number we need to add to DS so that DS points to
DATA_SEG. We use the same technique to set SS.

Here's the listing for our program, including the relocation instructions
needed for a .COM file:

ASSUME CS:CODE_SEG, DS:DATA_SEG, SS:STACK_SEG

CODE_SEG
ORG

WRITE_STRING
MOV
MOV
SRR
MOV
ADD
MOV

MOV
SRR
ADD
MOV
MOV
MOV

SEGMENT PUBLIC
10Dh
PROC FAR

;Reserve data area for .COM program

AX,OFFSET CODE_SEG:END_OF_CODE_SEG
CL,~ ;Calculate number of paragraphs
AX,CL ; (16 bytes) used by the code segment
BX,CS
AX,BX ;Add CS to this
DS,AX ;Set the OS register to DATA_SEG

BX,OFFSET DATA_SEG:END_OF_DATA_SEG
BX,CL ;Calculate paras used by data segment
AX,BX ;Add to value used for data segment
SS,AX ;Set the SS register for STACK_SEG
AX,OFFSET STACK_SEG:END_OF_STACK_SEG
SP,AX ;Set SP to end of stack area

306 clocation

MOV AH,g
MOV DX,OFFSET STRING
INT 21h

POSA ES
XOR AX,AX
PUSH AX
RET

WRITE STRING ENDP -

CODE_SEG ENDS

DATA_SEG SEGMENT PUBLIC
END_OF_CODE SEG LABEL BYTE
STRING DB "Bello, DOS here.S 11

DATA_SEG ENDS

STACK_SEG SEGMENT
END_OF_DATA_SEG

DB 10 DUP
END_OF_STACK_SEG
STACK_SEG ENDS

LABEL
('STACK

LABEL

END WRITE_STRING

PUBLIC
BYTE

I)

BYTE

;Call for string output
;Load address of string
; Write string

;Save return address for long RET below
;There is an INT 20h inst. a ES:O

;Return to DOS

; 1 STACK 1 followed by three spaces

You can see the results of all thi work in the following Debug e 10n:

A>DEBUG WRITESTR.COM
-0
3gAF: 0100 B83001 HOV AX,0130
3gAF: 0103 B10t; HOV CL,Ot;
3gAF:0105 D3E8 SHR AX,CL
3gAF:0107 8CCB MOV BX,CS
3gAF: 01og 03C3 ADD AX,BX
3gAF:010B 8ED8 MOV DS,AX
3gAF:010D BB2000 MOV BX,0020
3gAF: 0110 D3EB SHR BX,CL
3gAF: 0112 03C3 ADD AX,BX
3gAF:01M 8EDO MOV SS,AX
3gAF:0116 B85000 MOV AX,0050
3gAF: 011g 8BEO MOV SP,AX
3gAF:011B Bt;Qg MOV AH,og
3gAF:011D BAOOOO MOV DX,0000
-0
3gAF:0120 CD21 INT 21
3gAF: 0122 06 PUSH ES
3gAF:0123 33CO XOR AX,AX
3gAF:0125 so PUSH AX
3gAF: 0126 CB RETF

Peter Norton's Assembly Language Boo~ 307

3'lAP:D127 ODDO ADD [BX+Sil,AL
3'lAF:012'l ODDO ADD [BX+SI),AL
3'lAP:012B ODDO ADD [BX+Sil,AL
3'1AF:012D ODDO ADD [BX+SI),AL
3'1AP:012F 00~865 ADD [BX+SI+65),CL
3'lAF:0132 6C DB 6C
3'1AP:0133 6C DB 6C
3'lAF:013~ 6F DB 6F
3'lAF:0135 2C20 SUB AL,20
3'1AF:0137 ~~ INC SP
3'1AF:0138 ~F DEC DI
3'1AP:013'l 53 PUSH BX
3'lAF:013A 206865 AND [BX+SI+65l,CH
3'lAF:D13D 7265 JB 01A~

3'1AF:013F 2E CS:
3'lAF: OMO 2~00 AND AL,00
-G 120

AX=D'150 BX=DDD2 CX=DDO~ DX=DDDD SP=OD50 BP=DDOD SI=ODOO DI=OOOD
DS=3'1C2 ES=3'1AP SS=3'1C~ CS=3'lAF IP=0120 NV UP DI PL NZ NA PO NC
3'lAP:D120 CD21 INT 21

By doing the relocation for more than one segment ourselves, we've in
creased the amount of memory the .COM program can use. Most people never
have need of such tricks, but knowing how relocation works helps us under
stand how DOS does the relocation with .EXE files.

• is .E E Programs
We'll finish this chapter by summarizing the difference between .COM and

.EXE files.
A .COM program stored on disk is essentially a memory image of the pro

gram. Because of this, a .COM program is restricted to a single segment, un
less it does its own relocation, as we did in this chapter.

An .EXE program, on the other hand, lets DOS take care of the relocation.
This delegating makes it very easy for .EXE programs to use multiple seg
ments. For this reason, most large programs are .EXE rather than .COM
programs.

For our final look at .COM versus .EXE programs, let's take a closer look at
how DOS loads and starts both of them. This should make the differences be
tween these types of program clearer and more concrete. We'll begin with
.COM programs.

When DOS loads a .COM program into memory, it follows these steps:

308 Rel cation

• First, DOS creates the program segment prefix (PSP), which is the 256
byte scratch area we saw in Chapter 11. Among other things, this PSP
contains the command line typed.

• DOS next copies the entire .COM file from the disk into memory imme
diately after the 256 byte PSP.

• DOS then sets all four segment registers (CS, DS, ES and SS) to the
start of the PSP.

• Finally, DOS sets the IP register to lOOh (which is the start of the .COM
program) and sets the SP register to the end of the egment--u ually
FFFE, which is the last word in the egment.

In contrast, the steps involved in loading an .EXE file are omewhat more
involved, because DOS does the relocation. Where doe DOS find the infor
mation it needs to do the relocation?

As it turns out, every .EXE file has a header that's stored at the start of the
file. This header, or relocation table, is always at least 512 byte long, and
contains all the information DOS need to do the relocation. With recent re
leases of its macro as embler, Microsoft ha included a program called EX
EMOD we can use to look at some of the information in thi header:

A>EXEHOD WRITESTR
Microsoft (R) EXE Pile Header Utility Version 4.00
Copyright (C) Microsoft Corp 1qa5. All rights reserved.

WRITESTR

.EXE size (bytes)
Minimum load size (bytes)
Overlay number
Initial CS: IP
Initial SS: SP
Minimum allocation (para)
Maximum allocation (para)
Header size (para)
Relocation table offset
Relocation entries

A>

(hex)

21:\0
GO

0
0000:0000
0004:0050

0
PFPF

20
1E

1

(dee)

b5b
144

0

ao
0

65535
32
30
1

At the bottom of this table, you can see that we have a single relocation entry
for our program WRITESTR. Anytime we make a reference to a segment ad
dress, as we did with MOV AX,DATA_SEG, LINK will add a relocation entry

Peter Norton' A sembly Language Book 309

to the table. The segment address isn't known until DOS loads our program
into memory, so we must let DOS supply the segment number.

There are also some other interesting pieces of information in the table; for
example, the initial CS:IP and SS:SP values. These pairs tell us the initial
values for IP and SP. The table also tells DOS how much memory our program
needs before it can run: the Minimum load size.

Because DOS uses this relocation table to supply absolute addresses for
such locations as segment addresses, there are a few extra steps it takes when
loading a program into memory. Here are the steps DOS follows in loading an
.EXE program:

• DOS creates the program-segment prefix (PSP), just as it does for a
.COM program.

• Second, DOS checks the .EXE header to find where the header ends and
the program starts. It then loads the rest of the program into memory
after the PSP.

• Next, using the header information, DOS finds and patches all the refer
ences in the program that need to be relocated, such as references to
segment addresses.

• DOS then sets the ES and DS registers so they point to the start of the
PSP. If your program has its own data segment, your program needs to
change DS and/or ES so they point to your data segment.

• Finally, DOS sets the CS register to the start of the code segment, with
IP set from the information in the .EXE header. Similarly, it sets SS:SP
according to the information in the .EXE header. In the case illustrated,
the header states that SS:SP will be placed at 0004:0050. That means
DOS will set SP to 0050, and set SS so that it is four paragraphs higher
in memory than the end of the PSP.

29

ORE 0 SEGMENTS AND
ASSUME

Segment Override 312
Another Look at ASSUME 314
Phase Errors 315
Closing Words 316

311

312 \fore n cgment and A UME

In this, our final chapter, we'll take another look at the ASSUME statement
and see how it relates to our use of segments. Along the way, we 11 learn about
a feature called segment overrides, which we touched on very briefly. We'll see
that segment overrides go hand in hand with the ASSUME tatement.

rride
So far we've always read and written data located in the data egment.

We've been dealing with a single segment in this book (through the use of
groups), so we've had no reason to read or write data in other egment .

But, as we've seen, .EXE program contain multiple egm nt , and even
.COM programs can contain or use multiple egmen . A cla ic example i
writing directly to the creen: Many commercial program write to the creen
by moving the data directly into creen memory and completely bypa ing the
ROM BIOS routine in the interest of peed. er en memory on the IBM PC i
located at segment B800h for a color/graphic adapter and at egment BOOOh
for monochrome display adapter . To write directly to the creen means we'd
want to write in different segment .

In this section, we'll write a short program bowing how we can write to two
different segments, using the DS and E regi ter to point to the two seg
ments. In fact, many program that write directly to creen memory do use
the ES register to point to creen memory.

Here is our program. Its very short, and you can ee that it has two data
segments, along with one variable in each data segment:

DATA_SEG
DS_VAR
DATA_SEG

EXTRA_SEG
ES_ VAR
EXTRA_SEG

STACK_SEG
DB

STACK_SEG

CODE_SEG

SEGMENT PUBLIC
DW 1
ENDS

SEGMENT POBLIC
DW 2
ENDS

SEGMENT STACK
10 DUP ('STACK ')
ENDS

SEGMENT PUBLIC

;'STACK' followed by three spaces

TEST

TEST

CODE SEG

Peter Norton's Assembly Language Book 313

ASSUME CS:CODE_SEG, DS:DATA_SEG, ES:EXTRA_SEG, SS:STACK_SEG

POSA
XOR
POSH

110V
110V
110V
110V

l'lOV
110V

RET

END

PROC FAR
ES
AX,AX
AX

AX,DATA_SEG
DS,AX
AX,EXTRA_SEG
ES,AX

AX,DS_VAR
BX,ES:ES_VAR

ENDP

ENDS

TEST

;Save return address for long RET below
;There is an INT 20h inst. at ES:O

;Segment address for DATA_SEG
;Set up OS register for DATA_SEG
;Segment address for EXTRA_SEG
;Set up ES register for EXTRA_SEG

;Read a variable from data segment
;Read a variable from extra segment

;Return to DOS

We'll use this program to learn about both the ASSUME pseudo-op and seg
ment overrides.

Notice we've put both data segments and the stack segment before our code
segment, and that we've also put the ASSUME pseudo-op after all the seg
ment declarations. As we'll see in this section, this arrangement is a direct
result of using two data segments.

Let's take a look at the two MOV instructions in this program:

110V AX,DS_VAR
l'lOV BX,ES:ES_VAR

The ES: in front of the second instruction tells the 8088 to use the ES, rather
than the DS, register for this operation (to read the data from our extra seg
ment). Every instruction has a default segment register it uses when it refers
to data. But, as we've done with the ES register here, we can also tell the 8088
we want to use some other segment register for data.

Here's how it works: The 8088 has four special instructions, one for each of
the four segment registers. These instructions are the segment-override in
structions, and they tell the 8088 to use a specific segment register, rather
than the default, when the following instruction tries to read or write
memory.

314 Mor on gm nt and A UME

For example, our instruction MOV AX,ES:ES_ VAR is actually encoded as
two instructions. You'll see the following if you unassemble our test program:

2CFt;: 001'.L 26
2CFt;:0012 8B1EOOOO

ES :
110V BX, (0000]

This shows that the assembler tran lated our in truction into a egment-over
ride inntruction, followed by the MOV instruction. Now the MOV instruction
will read its data from the ES, rather than the D , egment.

If you trace through this program, you 11 see that the fir t MOV instruction
sets AX equal to 1 (DS_ VAR) and the econd M V ets BX equal to 2 (ES_
VAR). In other words: We've read data from two different segment .

t E
Let's take a look at what happ n when we remove the ES: from our pro

gram. Change the line:

MOV BX1ES:ES_VAR

so it reads:

We're no longer telling the assembler we want to use the ES register when we
read from memory, so it should go back to u ing the default segment CDS),
right? Wrong.

Use Debug to look at the result of this change. You'll see that we still have
the ES: segment override in front of our MOV instruction. How could the as
sembler possibly have known that our variable is in the extra, rather than the
data, segment? By using the information we gave it in the ASSUME
pseudo-op.

Our ASSUME statement tells the assembler that the DS register points to
the segment DATA_SEG, while ES points to EXTRA_SEG. Each time we
write an instruction that uses a memory variable, the assembler searches for
a declaration of this variable to see which segment it's declared in. Then, it
searches through the ASSUME list to find out which segment register is
pointing to this segment. The assembler uses this segment register when it
generates the instruction.

Peter Norton's Assembly Language Boo~ 315

In the case of our MOV BX,ES_ VAR instruction, the assembler noticed
ES_ VAR was in the segment called EXTRA_SEG, and that the ES register
was pointing to that segment, so it generated an ES: segment-override in
struction on its own. If we were to m9ve ES_ VAR into STACK_SEG, the as
sembler would generate an SS: segment-override instruction. The assembler
automatically generates any segment-override instructions we need, pro
vided, of course, that our ASSUME pseudo-ops reflect the actual contents of
the segment registers.

se Err rs
Sometimes you'll find that the assembler displays a cryptic error message,

such as P"hase error between passes. This message can mean a number of
things, but we'll look at one particular case to help you understand it.

Basically, the assembler makes a number of passes through a program as it
generates the machine language version of it. Sometimes, as we'll see here,
the program changes size between passes.

Using our sample program again, move the two data segments (DATA_
SEG and EXTRA_SEG) so they appear after your code SEGMENT. The as
sembler will now assemble the main program before it even looks at the data
segments. As a result, it will generate a normal MOV instruction for MOV
BX,ES_ VAR, because it doesn't realize that this variable is in another
segment.

Next, the assembler will assemble the two data segments. At this point, it
will store the information that ES_ VAR is in the segment EXTRA_SEG. On
its next pass through this program, the assembler will notice it now needs
room for a segment-override instruction. Since it didn't reserve room for this
instruction the first time through, the assembler issues the error message:
P"hase error between passes.

This is why we placed all our data segments before the code segment: So the
assembler would know which segments contained which variables. What isn't
so obvious, though, is why we placed the ASSUME statement in CODE_SEG,
rather than at the top of this file.

We also receive a phase-error message if we place our ASSUME first thing
in the file . For some reason (not clear to us), we have to declare the segments
before the ASSUME pseudo-op, if we're going to have any implicit segment
overrides. The safest approach, then, is to declare all data before the code seg
ment and to place the ASSUME pseudo-op in the code segment.

•
10 or

By now you've seen many examples of as embly-language program .
Throughout this book, we've constantly empha ized programming rather
than the details of the 8088 microproce or in ide your IBM P r onal om
puter. As a result, you haven't een all the 08 in truction , nor the a m
bler pseudo-ops. But most assembly language program can writt n with
what you've learned here and no more. Your be t approach to 1 arning mor
about writing assembly language program i to take th program in thi
book and modify them.

If you think of a better way to write any part of D kpatch by all m n d
so. This is how we fir t learned to writ pr gram . ack th n th pr gram
were in BASIC, but the idea till hold . We fi und pro am writt n in BA I
and began to learn about the languag it If by r writin bit and pi c of
those programs. You can do h am with kpatch.

After you've tried ome of the xampl you 11 b r ady to writ your own
programs. Don't start from er tch her ith r; that rath r difficult for your
first time out. To begin with, u th pr gr m in thi b ok fr m work.
Don't build a completely new tructur or t chniqu (your equi l nt of m du
lar design) until you feel comfortabl with writing m ly langu ge
programs.

If you really become enthrall d by a m ly langu ou'll al n d a
more complete book for u e a a r fer nee to the 0 in truction . H re i a
list of good reference book avail le t the time we wrot thi book. Thi Ii t
is by no mean complete, and the book Ii t d h re are only th on we'v
read.

The following two book are good programmer ' referenc :

iAPX 88 Book Intel, 1981. Thi i th definitive ource book, and a very
good reference.

Rector, Russel and Alexy George, The 80 6 Book 0 borne cGraw-Hill,
1980. This is another good reference, but rather thick and dense.

The next three books were all written for the IBM PC. Much of the informa
tion in each of these is generic· only the examples in the latter part of these
books are specific to the IBM PC. We recommend that you look at all three
books in a bookstore to see which one you find most interesting:

Scanlon, Leo J., IBM PC & XT A sembly Language: A Guide for Program
mers, Enhanced and Enlarged, Brady Communication Co., 1985. This book

Peter Norton's Assembly Language Book 317

is easy reading. It's a complete introduction to 8088 assembly language. If
you're still feeling somewhat shaky about assembly language, this might be
a good book for you. Otherwise, look at Morse's book.

Willen, David C. , and Krantz, Jeffrey I., 8088 Assembler Language Pro
gramming: The IBM PC, Howard W. Sams & Co., 1983. This is another
good second book on the 8088 microprocessor, written for the IBM PC.

Bradley, David J ., Assembly Language Programming for the IBM Personal
Computer, Prentice-Hall, 1984. The author helped design the IBM PC, and
he's included many examples for the IBM PC. These examples aren't com
plete, but they may give you ideas of programs to work on. He also talks
about more advanced subjects, such as the 8087 numeric processor, than do
the authors of the preceding two books.

The next recommendation is neither a reference book, nor an introduction
for the IBM PC. It's an introduction to the 8088 microprocessor, written by a
member of the design team at Intel:

Morse, Stephen P ., The 808618088 Primer, Hayden, 1982. This is a delight
ful book. As one of the designers at Intel, Morse provides many insights into
the design of the 8088 and also talks about some of the design flaws and
bugs in the 8088. While not very good as a reference, this book is complete,
and it's very readable and informative.

Finally, the last book is a reference that's useful to anyone programming
the IBM PC. We like to think of it as a compendium of everything a program
mer might need to know about the IBM PC and 8086 microprocessor family.

Norton, Peter, Programmer's Guide to the IBM PC, Microsoft Press, 1985.
Includes a complete reference to all DOS and BIOS functions, descriptions
of important memory locations, a summary of 8086 instructions, and a host
of other useful (or at least interesting) information.

APPENDIX A

GUIDE TO THE DISK

Chapter Examples 320
Advanced Version of Dskpatch 321

319

320 uide t th Di k

The companion disk to this book contain mo t of the D kpatch example
you've seen in the preceding chapters, a well a an advanced ver ion of the
program that includes a lot of improvements. The file are in tw group : the
chapter examples and the advanced D kpatch program. Thi app ndix will
explain what's on the disk, and why.

All the chapter example are from hap r 9 throu h 27. Th xampl in
earlier chapters are hort enough o you c n typ th m in quickly. ut tart
ing in Chapter 9, we began to build kpatch which by th nd f thi b ok,
had grown to nine different file .

In any one chapter only a few of th nin fi l chang d. inc th y do
evolve throughout each chapter, how v r, th r w n't nough room n th
disk to store each ver ion of each xampl . You will find th xampl on the
disk, as they stand aft r each ch pter. Thu if w m dify a pr gram veral
times in say Chapter 19, th di k cont in th fin 1 er ion.

The table on page 324 how wh n each fil ch ng . It 1 o how the name
of the disk file for that chapt r. lf you w nt tom k ure you're till on cour e,
or you don't feel like typing in the chang for om chapter, ju t look at thi
table to find the name of then w file . Th n you c neither ch ck your work
or copy the file(s) to your di k.

Here's the complete list of all the file on the companion di k (not including
the advanced ver ion of D kpatch :

VIOEo_q.Ast!
DISP_SM. ASK
DISK_I1S.ASPI
DSKPAT17.AS/1
DISK_I17. ASl'I
DISPAT1q.ASPI
DISP_S21.ASl1
EDITOR22.ASl'I
KBD_I02,.ASl'I
PRANT027.ASl'I

'IIDE0_10. ASl'I
CURSOR1,.ASl1
DISP_S1b.ASl'I
DISP_S17.ASl1
CURSOR18.ASK
KBD_IQ'.l.q. ASl'I
PBANT021.ASP!
PRANT022.ASl1
DISPAT2S.ASl'I

'IIDE0_13. ASl1
VIDE0_1(.ASl1
VIDE0_1b. ASK
CORSOR17.ASK
VIDE0_10. Sl1
VIDEO_ q.ASl1
VIDE0_21.ASl'I
KBD_I023.AS!I
DISPAT2b.ASl1

TEST13. S
OISP_S1S.AS!'I
DIS _I1b.AS
VIDE0_17.AS
DSKPAT1G.ASI!
DISK_I1q. ASP!
DISPAT22.AS
TEST23.ASll
DISK_I2b.AStl

Peter Norton's Assembly Language Book 321

ed Vers · o of Dskpatch
The disk contains more thanjust the examples in this book. We didn't really

finish Dskpatch by the end of Chapter 27, and there are many things we
should have put into Dskpatch to make it a usable program. The disk contains
an almost-finished version. Here's a quick overview of what you'll find there.

As it stands in this book, Dskpatch can only read the next or previous sec
tor . Thus, if you wanted to read sector 576, you'd have to push the F2 key 575
times. That's too much work. What if you wanted to look at sectors within a
fi le? Right now, you'd have to look at the directory sector and figure out where
to look for the sectors of that file . Again, not much fun. The disk version of
Dskpatch can read either absolute sectors, just as the book version can, or it
can read sectors within a fi le. In its advanced form, Dskpatch is a very usable
program.

The advanced version of Dskpatch has too many changes to describe in detail
here, so let's look at the new functions we added to the disk version. You'll find
many of the changes by exploring Dskpatch and making your own changes.

The advanced Dskpatch still has nine files, all of which you'll find on the
disk:

DSKPATCB. ASM DI SPATCB.AS M DISP_SEC.ASM KBD_IO.ASM
CORSOR.AS M EDITOR.ASM PB ANTOM . ASM VIDEO_IO.ASM
DISK_IO.ASM DSKPATCB.COM

You'll also find an assembled and linked .COM version ready to run, so you
can try out the new version without assembling it.

When you do, you'll be able to tell that there are several improvements just
by looking at the screen display. The advanced Dskpatch now uses eight func
tion keys. Th at's more than you can remember, if you don't use Dskpatch very
often, so the advanced Dskpatch has a "key line" at the bottom of the display.
Here's a description of the function keys:

F l , F2 were used in this book. Fl reads the previous sector, and F2 reads
the next sector.

F3 changes the disk-drive number or letter. Just press F3 and enter a
let ter, such as A (without a colon,:), or enter a drive number, such
as 0. When you press the Enter key, Dskpatch will change drives
and read a sector from the new disk drive. You may want to
change Dskpatch so that it doesn't read a new sector when you
change drives. We set it up so that it's very difficult to write a
sector to the wrong disk.

322 Guide to the Di k

F4 changes the sector number. Just press F4 and type a sector
number, in decimal. Dskpatch will read that sector.

F5 is in this book. Press the Shift key and F5 to write a sector back to
the disk.

F6 changes Dskpatch to file mode. Just enter the file name and
Dskpatch will read a sector from that file. From then on, Fl (Pre
vious Sector) and F2 (Next Sector read ector from within that
file. F3 ends file mode and witche back to ab olute- ector mode.

F7 asks for an off: et within a file . Thi i ju t like F4 (Sector) except
that it reads sector within a file. If you enter an offset of 3
Dskpatch will read the fourth sector in your file.

FlO exits from Dskpatch. If you accidentally pr thi key, you'll find
yourself back in DO , and you 11 lo e any change you've made to
the last sector. You may want to change kpatch so that it a ks
if you really want to leave D kpatch.

A number of other changes aren't a obviou a tho e ju t mentioned. For
example, Dskpatch now scrolls the creen one line at a time. If you move the
cursor to the bottom line of the display and pre the Cursor-Down key,
Dskpatch will scroll the di play by one line, putting a new line at the bottom.

In addition, some of the other keys on the keyboard also work now:

Home moves the phantom cursor to the top of the half- ector display and
scrolls the display so you ee the fir t half- ector.

End moves the phantom cursor to the bottom right of the half-sector display
and scrolls the display so you ee the econd half-sector.

PgUp scrolls the half-sector display by four lines. This is a nice feature
when you want to move partway through the sector display. If you press
PgUp four times, you'll see the last half sector.

PgDn scrolls the half-sector display by four lines in the opposite direction
from PgUp.

If you like, you can modify the advanced Dskpatch to better suit your own
needs. That's why the disk has all the source files for the advanced Dskpatch:
So you can modify Dskpatch any way you like and learn from a complete ex-

Peter Norton's Assembly Language Book 323

ample. For instance, you might spruce up the error-checking capabilities. As
it stands, if pressing F2 causes you to fall off the end of a disk or file, Dskpatch
doesn't reset the sector to the last sector on the disk or file. If you feel ambi
tious, see if you can modify Dskpatch so it catches and corrects such errors.

Or, you may want to speed up screen updates. To do this you'd have to re
write some of the procedures, such as WRITE_ CHAR and WRITE_ATTRI
BUTE_N_TIMES, to write directly to screen memory. Now, they use the very
slow ROM BIOS routines. If you're really ambitious, try to write your own
character-output routines that send characters to the screen very quickly.

Good luck.

Disk A Sector 8

ee Bi e2 83 84 es e6 e1 ea 89 eA eB ec eD eE er
~ I I I

88 ~2i 98 49 42 4D 28 28 33 ZE 3i 88 82 82 8i 88
ie e2 1e ee De ez FD ez ee 89 ee 02 ee ee ee ee ee
28 88 88 88 C4 SC 8B 33 ED BB ce 87 BE DB 33 C9 8A
38 DZ 79 8E B9 iE iE 88 BC 86 28 88 BB i6 22 ee Bi
48 ez BE cs BE DS BC 88 7C Si re 1E 36 cs 36 7B 88
se BF 23 7C B9 BB ee F3 A4 iF BB BE zc 88 AB iB ee
68 AZ 27 ee BF 7B 88 BB 23 7C AB 9i AB Ai i6 88 D1
78 EB 48 EB BB 8B EB B6 B0 BB ee es S3 B8 81 EB AB
BB B8 SF BE 73 8i B9 BB 88 90 F3 A6 7S 62 B3 C7 i5
9B Bi 8B 98 98 F3 A6 75 S7 26 BB 47 1C 99 BB 8E BB
A8 88 83 Ci 4B F7 Fi BB 3E 7i 81 68 7S 82 BB 14 96
BB Ai 11 88 Bi 84 D3 EB EB 3B 08 FF 36 iE 88 C4 1E
C8 6F 8i EB 39 88 EB 64 08 ZB re 76 8D EB 26 88 52
D8 F7 26 0B ee 03 DB SA EB E9 CD 11 B9 82 80 D3 EB
E8 BB E4 83 74 84 FE C4 BA CC SB SB FF ZE 6F 8i BE
re B9 8i EB 55 98 0i 86 iE 88 ti ZE 28 00 C3 At iB

I I I

Press function key, or enter character or hex byte:

8i234S6789ABCDEF

Figure A-1. The Advanced Version of Dskpatch

Chapter
Number D~KPATCH 01':.PATCH DISP _SFC 1".RD_IO

9

10

13

14 011-lP _Sl-1 ASM

15 OISP _S15 ASM

16 DISP _S16 AS~1

17 DSKPATl7 ASM OISP _Sl7 ASM

18

t
19 DSK PATl9 ASM OISPATl9 ASM KBO_IOl!I ASM

21 OISP _S21 AS~f

22 OISPA1'.!2 ASM

23 . KBD_ lll23 AS~I

24 KBD_l02~ ASM

25 DISPAT25 ASM

26 0 1SPAT26 ASM

27

CURSOR EDITOR P•IANTOM VIDEO_IO

VIDE0_9ASM

VlDEO_JO ASM

VIOEO_l3 ASM

CURSORl~ASM V!DEO_l4 ASM

\.10EO_l6 ASM

CURSORl7 AS,\! \'IDF.0_17 ASM

CUHSOR18 ASM Vt0f:O_l8 ASM

VIDE0_19 ASM

PllAN1\r21.AS,o.t V1DE0_21 ASM

t:DITOR22.ASM PllANro22.ASM

t PllANT<t27 ASM

DISK_IO TEST

TEST13 ASM

DISK_llS ASM

DISK_ll6 ASM

DISK_ll7 Al>M

OL"iK_ll9 ASM

T~'T23 ASM

OISK _ l:l6 ASM

w
N
~

CJ
c
5:
~

....
0
:r

0
iii '
:ii;--

APPENDIX B

LISTING OF DSKP ATCH

Descriptions of Procedures 326
Program Listings for the Dskpatch Procedures 332

DSKPATCH Make File 332
CURSOR.ASM 333
DISK_IO.ASM 33 7
DISP A TCH.ASM 341
DISP_SEC.ASM 344
DSKP A TCH.ASM 350
EDITOR.ASM 352
KBD 10.ASM 355
PHANTOM.ASM 365
VIDEO 10.ASM 372 -

325

326 Listing of DSKPATCH

This appendix contains the final version of Dskpatch. If you're writing your
own programs, you'll find many general-purpose procedures in this appendix
to help you on your way. We've included short descriptions of each procedure.

Descri tions of Procedur

CURSOR.ASM
CLEAR_SCREEN Like the BASIC CLS command; clears the text

screen.

CLEAR_TO_END_OF _LINE Clear all the characters from the
cursor position to the end of the current line.

CURSOR_RIGHT Moves the cursor one character po ition to the
right, without writing a space over the old character.

GOTO _XY Very much like the BASIC LOCATE command; moves the
cursor on the screen.

SEND_ CRLF Sends a carriage-return/line-feed pair of characters to the
screen. This procedure simply moves the cur or to the start of the next line.

DISK_IO.ASM
NEXT_SECTOR Adds one to the current sector number, then reads

that sector into memory and rewrites the Dskpatch screen.

PREVIOUS_SECTOR Reads the previous sector. The procedure sub
tracts one from the old sector number (CURRENT_SECTOR_NO) and reads
the new sector into the memory variable SECTOR. It also rewrites the screen
display.

READ _SECTOR Reads one sector (512 bytes) from the disk into the
memory buffer, SECTOR.

Peter Norton's Assembly Language Boo~ 327

WRITE_SECTOR Writes one sector (512 bytes) from the memory
buffer, SECTOR, to the disk.

DISPATCH.ASM
DISPATCHER The central dispatcher, reads characters from the key

board and then calls on other procedures to do all the work of Dskpatch. Add
any new commands to DISPATCH_ TABLE in this file.

DISP SEC.ASM
DISP _HALF _SECTOR Does the work of displaying all the hex and

ASCII characters that appear in the half-sector display by calling DISP _
LINE 16 times.

DISP LINE Displays one line of the half-sector display. DISP _HALF_
SECTOR calls this procedure 16 times to display all 16 lines of the half-sector
display.

INIT _SEC_DISP Initializes the half-sector display you see in
Dskpatch. This procedure redraws the half-sector display, along with the
boundaries and top hex numbers, but does not write the header or the editor
prompt.

WRITE_ TOP _HEX_NUMBERS Writes the line of hex numbers
across the top of the half-sector display. The procedure is not useful for much
else.

DSKPATCH.ASM
DISK_PATCH The (very short) main program of Dskpatch. DISK_

PATCH simply calls a number of other procedures, which do all the work. It
also includes many of the definitions for the variables used throughout
Dskpatch.

328 Listing of DSKPATCH

EDITOR.ASM
EDIT _BYTE Edits a byte in the half-sector display by changing one

byte both in memory (SECTOR) and on the screen. Dskpatch uses this proce
dure to change bytes in a sector.

WRITE_TO_MEMORY Called upon by EDIT_BYTE to change a
single byte in SECTOR. This procedure change the byte pointed to by the
phantom cursor.

KBD 10.ASM
BACK_SPACE Used by the READ_STRING procedure to delete one

character, both from the screen and from the keyboard buffer, whenever you
press the Backspace key.

CONVERT _HEX_DIGIT Converts a ingle A CII character into its
hexadecimal equivalent. For example, the procedure convert the letter A into
the hex number OAH. NOTE: CONVERT_HEX_ !GIT works only with up
percase letters.

HEX_TO_BYTE Convert a two-character tring of characters from a
hexadecimal string, such as A5 into a single byte with that hex value. HEX_
TO_BYTE expects the two character to be digit or upperca e letter .

READ _BYTE Uses READ _STRING to read a tring of characters. This
procedure returns the special function key, a single character, or a hex byte if
you typed a two-digit hex number.

READ _DECIMAL Reads an an unsigned decimal number from the
keyboard, using READ _STRING to read the characters. READ _DECIMAL
can read numbers from 0 to 65535.

READ _STRING Reads a DOS-style string of characters from the key
board. This procedure also reads special function keys; the DOS READ_
STRING function does not.

Peter Norton's Assembly Language Book 329

STRING_ TO_ UPPER A general-purpose procedure, converts a DOS
style string to all uppercase letters.

PHANTOM.ASM
ERASE_PHANTOM Removes the two phantom cursors from the

screen by returning the character attribute to normal (7) for all characters
under the phantom cursors.

MOV _TO _ASCII_POSITION Moves the real cursor to the start of
the phantom cursor in the ASCII window of the half-sector display.

MOV _TO _HEX_POSITION Moves the real cursor to the start of
the phantom cursor in the hex window of the half-sector display.

PHANTOM_DOWN Moves the phantom cursor down and scrolls the
screen if you try to move past the sixteenth line of the half-sector display.

PHANTOM LEFT Moves the phantom cursor left one entry, but not
past the left side of the half-sector display.

PHANTOM RIGHT Moves the phantom cursor right one entry, but
not past the right side of the half-sector display.

PHANTOM UP Moves the phantom cursor up one line in the half-sec
tor display, or scrolls the display if you try to move the cursor off the top.

RESTORE_REAL_CURSOR Moves the cursor back to the position
recorded by SA VE_REAL_ CURSOR.

SA VE_REAL_CURSOR Saves the position of the real cursor in two
variables. Call this procedure before you move the real cursor if you want to
restore its position when you've finished making changes to the screen.

SCROLL_DOWN Displays the first half of the sector. You'll find a
more advanced version of SCROLL_DOWN on the disk available with this
book. The advanced version scrolls the half-sector display by just one line.

330 Li ting of DSKPATCH

SCROLL_ UP Called by PHANTOM_DOWN when you try to move the
phantom cursor off the bottom of the half-sector display. The version in this
book doesn't actually scroll the screen: It writes the second half of the sector.
On the disk, more advanced versions of SCROLL_ UP and SCROLL_DOWN
scroll the display by one line, instead of 16.

WRITE_PHANTOM Draws the phantom cursors in the half-sector
display: one in the hex window, and one in the ASCII window. This procedure
simply changes the character attribute to 70H, to use black characters on a
white background.

VIDEO_IO.ASM

Contains most of the general-purpose procedure you 11 want to u e in your
own programs.

WRITE ATTRIBUTE_N_TIME A handy procedure you can use
to change the attributes for a group of N character . WRITE_PHANTOM
uses this procedure to draw the phantom cur ors and ERA E_PHANTOM
uses it to remove the phantom cursors.

WRITE CHAR Writes a character to the creen. Since it uses the
ROM BIOS routines, this procedure doe n t attach pecial meaning to any
characters. A carriage-return character will appear on the screen as a musical
note (the character for ODH). Call SEND_CRLF if you want to move the cur
sor to the start of the next line.

WRITE_CHAR_N_ TIMES Writes N copies of one character to the
screen. This procedure is useful for drawing lines of characters, uch as the
ones used in patterns.

WRITE_DECIMAL Writes a word to the screen as an unsigned deci
mal number in the range 0 to 65535.

WRITE_HEADER Writes the header at the top of the screen you see
in Dskpatch. There, the procedure displays the disk-drive number and the
number of the sector you see in the half-sector display.

Peter Norton's Assembly Language Book 331

WRITE HEX Takes a one-byte number and writes it on the screen as a
two-digit hex number.

WRITE_HEX_DIGIT Writes a single-digit hex number on the
screen. This procedure converts a four-bit nibble into the ASCII character and
writes it to the screen.

WRITE_PATTERN Draws boxes around the half-sector display, as
defined by a pattern. Use WRITE_PATTERN to draw arbitrary patterns of
characters on the screen.

WRITE_STRING A very useful, general-purpose procedure with
which you can write a string of characters to the screen. The last character in
your string must be a zero byte.

WRITE_PROMPT _LINE Writes a string at the prompt line, then
clears the rest of the line to remove any characters from the old prompt.

332 i ting of D KP TC

Program Li ti gs r

DSKP ATCH Make File

at r

Here is the Make file that you can u e with Micro off M ke u ility to build
Dskpatch automatically.

DSKPATCR.OBJ: DSKPATCR.ASM
MA SM DSKPATCR;

DISK_IO.OBJ: DISK_IO . ASK
MA SM DISK_IO;

DISP_SEC.OBJ: DISP_SEC.ASM
MASM DISP_SEC;

VIDEO_IO.OBJ: VIDEO_IO.ASM
MASM VIDEO_IO;

CURSOR.OBJ: CURSOR.ASH
MASM CURSOR;

DISPATCH.OBJ: DISPATCH.ASK
MASM DISPATCH;

KBD_IO.OBJ: KBD_IO.ASM
MASH KBD_IO;

PHANTOM.OBJ: PHANTOM.ASK
MASH PHANTOM;

EDITOR.OBJ: EDITOR.ASH
MASM EDITOR;

DSKPATCB.COM: DSKPATCH.OBJ DIS _IO.OBJ DISP_SEC.OBJ VIDEO_IO.OBJ CURSOR.OBJ
DISPATCH.OBJ KBD_IO.OBJ PRA TOM.OBJ EDITOR.OBJ

LI NK UINKINFO
EXE2BIN DSKPATCB DSKPATCR.COM

Peter Norton's A sembly Language Book 333

CURSOR.ASM

CR EQU 13
LF EQU 10

CG ROUP GROUP CODE SEG
ASSUME CS:CGROUP, DS:CGROUP

COOE SEG SEGMENT PUBLIC

PUBLIC SEND CRLF

;Carriage return
;Line feed

............................. _ .. _______ .. ____ .., __ ... _____________________________________ .
I I

This routine just sends a carriage-return/line-feed pair to the
display, using the DOS routines so that scrolling will be handled
correctly.

;
.
I

;
... ·--- -- -...................... -...... --- --- -- --- ------- ... ----- -- ... ---- -- ----- - -----. I I

SEND CRLF PROC NEAR
PUSH AX
PUSH DX
HOV AH,2
MOV DL,CR
INT 21h
HOV DL,LF
INT 21h
POP DX
POP AX
RET

SEND CRLF ENDP

PUBLIC CLEAR SCREEN
·----------------------------- -- -----------------------------------·-···· I I

; This procedure clears the entire screen •
. ... ----.. - .. -............ ---• · .. - ... -.... -- --............ -- .. -- .. -.... --------.... -- .. ---------..........
I I

CLEAR SCREEN PROC NEAR
PUSH AX
PUSH BX
PUSH ex
PUSH DX
XOR AL,AL ;Blank entire window
XOR cx,cx ;Upper left corner is at (0,0)

334 i tin f D KPAT

CURSOR.ASM continued

HOV DH,24
HOV DL,79
HOV BH,7
HOV AH,6
INT 10h
POP DX
POP ex
POP BX
POP AX
RET

CLEAR SCREEN ENDP

PUBLIC GOTO XY

;Bottom line of screen is line 24
;Right side is at collllTI 79
;Use normal attribute for blanks
;Call for SCROLL_UP function
;Clear the window

; .. -- --------·-----------···----·-····-···---····-·-··-----·--·---·-··--· ;
; This procedure moves the cursor

;

DH Row (Y)

DL ColliTl'l (X)

... , ,
GOTO XY PROC NEAR

PUSH AX

PUSH BX
HOV BH,0 ;Display page 0
MOV AH,2 ;Call for SET CURSOR POSIT ION

INT 10h
POP BX
POP AX
RET

GOTO XY ENDP

PUBLIC CURSOR RIGHT -
;·-----------··--------··---·--···---·--·-····· .. ·-----··-···-·-··-·-··-·;
; This procedure moves the cursor one position to the right or to the

next line if the cursor was at the end of a line.

; Uses: SEND CRLF
;-·-····------·-------·------·--··----·--------····---·-··---··-·--·-·--;

CORSOR.ASM

CURSOR RIGHT
PUSH
PUSH
PUSH
PUSH
MOV
MOV
INT
MOV
INC
CMP
JBE
CALL
JMP

OK: INT
DONE: POP

POP
POP
POP
RET

CURSOR RIGHT

PUBLIC

continued

PROC NEAR
AX
BX
ex
DX
AH,3
BH,0
10h
AH,2
DL
DL, 79
OK
SEND CRLF
DONE
10h
DX
ex
BX
AX

ENDP

CLEAR TO END OF LI NE - - - -

Peter Norton's Assembly Language Book 335

;Read the current cursor position
;On page 0
;Read cursor position
;Set new cursor position
;Set column to next position
;Make sure column <= 79

;Go to next line

; .. -.... -- .. --.......... -...... - .. -------- -- ------... -.... ---- -- -- --- -- --- ---- .. -----... --... -;

; This procedure clears the line from the current cursor position to
; the end of that line. ;
;-····----····--····-··-····--··-·-·-·--·-----··- .. --------------·----··-;
CLEAR TO END OF LINE - - - -

PUSH AX
PUSH BX
PUSH ex
PUSH DX
MOV AH,3
XOR BH,BH
INT 10h
MOV AH,6
XOR AL,AL
MOV CH,DH

PROC NEAR

;Read current cursor position
; on page 0
;Now have (X,Y) in DL, DH
;Set up to clear to end of line
;Clear window
;All on same line

336 i ting of KPATCH

CORSOR.ASM. continued

MOV CL,OL
MOV DL,79
HOV BH,7
INT 10h

POP DX
POP ex
POP BX
POP AX

RET
CLEAR TO END OF LINE ENOP -

CODE SEG ENDS

END

;Start at the cursor position
;And stop at the end of the line
;Use normal attribute

Peter Norton', Assembly Language Book 337

DISK_IO.ASM

CGROUP GROUP CODE_SEG, DATA SEG
ASSUME CS:CGROUP, OS:CGROUP

CODE SEG SEGMENT PUBLIC

PUBLIC READ SECTOR
DATA SEG SEGMENT PUBLIC

EXT RN SECTOR:BYTE
EXT RN DISK DRIVE NO:BYTE - -
EXT RN CURRENT SECTOR NO:UORO - -

DATA SEG ENDS
·- · ·-- ·- ··- --- --- --- --------- -- - , ,

This procedure read~ one sector (512 bytes) into SECTOR.

Reads:
\Jrites:

CURRENT_SECTOR_NO, DISK_DRIVE_NO
SECTOR

; -... .. --......... - --- .. -......................... - - - - - -................. - - - ;

READ SECTOR PROC NEAR
PUSH AX
PUSH BX
PUSH ex
PUSH ox
HOV AL,OISK_DRIVE_NO ;Drive number
MOV ex, 1 ;Read only 1 sector
MOV DX,CURRENT_SECTOR_NO ;Logical sector number

\

LEA BX,SECTOR ;Where to store this sector
INT 25h ;Read the sector
POPF ;Discard flags put on stack by DOS
POP ox
POP ex
POP BX
POP AX
RET

READ SECTOR ENDP

338 i ting of D KPAT H

DISK I 0. AS M continued)

PUBLIC \.IRITE SECTOR
; -. -......... - -...... -.... -.............. -..... - - -.............. - -- - - ;

This procedure writes the sector back to the disk .

Reads: DISK_DRIVE_NO, CURRENT_SECTOR_NO, SECTOR
;-·--·-·-··-····---·--·-------·--·- -······-··· -------- ·-·---···-------·· ;
\./RITE SECTOR PROC NEAR

PUSH AX
PUSH BX
PUSH ex
PUSH DX
MOV AL,DISK_D RIVE_NO ;Drive nl.JTlber
MOV ex, i ;\.lrite 1 sector

HOV DX,CURRENT_SECTOR_NO ;Logical sector

LEA BX, SECTOR
INT 26h ;\.lrite the sector

POPF ;Discard the flag
POP DX
POP ex
POP BX
POP AX

RET
\./RITE SECTOR ENDP

PUBLIC PREVIOUS SECTOR

DATA SEG

DATA SEG

EXTRN INIT_SEC_DISP:NEAR, \./RITE HEADER:NEAR
EXT RN

EXT RN

\./RITE PROMPT LINE:NEAR - -
SEGMENT PUBLIC
CURRENT_SECTOR_NO:\.IORD, EDITOR PROMPT:BYTE
ENOS

to disk
information

; ----. --.......... -................................ --................ ---... --;

; This procedure reads the previous sector, if possible.

; Uses:

Reads:

Writes:

WRITE_HEADER, READ_SECTOR, INIT_SEC_DISP
WRITE PROMPT LINE
CURRENT_SECTOR_NO, EDITOR PROMPT
CURRENT SECTOR NO - -

. ,
;
. ,

;---------····------------------·-·--·--·······--··----·--·----------·--;

Peter Norton' As embly Language Book 339

DISK IO.ASM

PREVIOUS SECTOR
PUSH
PUSH
MOV
OR
JZ

DEC
HOV
CALL
CALL
CALL
LEA
CALL

DONT DECREMENT
POP
POP
RET

PREVIOUS SECTOR

continued)

PROC NEAR
AX
ox
AX,CURRENT_SECTOR_NO
AX,AX
DONT_OECREMENT_SECTOR
AX
CURRENT_SECTOR_NO,AX
WRITE HEADER
READ SECTOR
INIT SEC DISP
DX,EDITOR_PROMPT
WRITE PROMPT LINE - -

SECTOR:
DX
AX

ENDP

;Get current sector number
;Don't decrement if already 0

;Save new sector number

;Display new sector

PUBLIC NEXT SECTOR
EXT RN
EXT RN

DATA SEG

INIT_SEC_DISP:NEAR, WRITE HEADER:NEAR
WRITE PROMPT LINE:NEAR - -
SEGMENT PUBLIC

EXTRN CURRENT_SECTOR_NO:WORD, EDITOR PROMPT:BYTE
DATA SEG ENDS

... , ,
Reads the next sector.

Uses:

Reads:
\Jrites:

WRITE_HEADER, READ_SECTOR, INIT_SEC_OISP
WRITE PROMPT LINE - -
CURRENT_SECTOR_NO, EDITOR PROMPT
CURRENT SECTOR NO

;

;

;
. ,
. ,
;

..
I I

NEXT SECTOR
PUSH
PUSH

PROC
AX
ox

NEAR

HOV AX,CURRENT_SECTOR_NO

340 i ting of D KPAT H

DISK IO.ASM continued)

INC AX ;Move to next sector
MDV CURRENT _SECTOR_NO,AX
CALL WRITE HEADER
CALL READ SECTOR
CALL INIT SEC DISP ;Display new sector
LEA DX,EDITOR_PROMPT
CALL WRITE PROMPT LINE - -
POP DX
POP AX
RET

NEXT SECTnR ENOP -

COOE SEG ENDS

END

Peter Norton's Assembly Language Book 341

DISPATCH.ASM

CGROUP GROL;P CODE_SEG, DATA_SEG
ASSUME CS:CGROUP, OS:CGROUP

CODE SEG SEGMENT PUBLIC

PUBLIC DISPATCHER
EXTRN READ_BYTE:NEAR, EDIT BYTE:NEAR
EXTRN ~RITE PROMPT LINE:NEAR - -

DATA SEG SEGMENT PUBLIC
EXTRN EDITOR PROMPT:BYTE

DATA SEG ENDS
................................. -
t I

Th;s ;s the central d;spatcher. Dur;ng normal ed;t;ng and v;ew;ng, ;
th;s procedure reads .characters from the keyboard.and ;f the char ;
;s a coomand key (su,ch as a cursor key), DISPATCHER calls the
procedures that do tne actual work. This dispatching is done for
special keys listed in the table DISPATCH_TABLE, where the procedure
addresses are stored just after the key names.

If the character is not a special key, then it should be placed
; directly into the sector buffer-- this is the editing mode.

Uses:
Reads:

READ_BYTE, EDIT_BYTE, WRITE_PROMPT_LINE
EDITOR PROMPT

;

....
I I

DISPATCHER PROC NEAR
PUSH AX
PUSH BX
PUSH ox

DISPATCH LOOP:
CALL READ BYTE ;Read character into AX
OR AH,AH ;AH = 0 if no character read, - 1

; for an extended code.
JZ NO CHARS READ - - ;No character read, try aga;n

JS SPECIAL KEY ;Read extended code
MOV DL,AL
CALL EDIT BYTE ;Was normal character, edit byte

JMP DISPATCH LOOP ;Read another character

342 i ting of DSKP AT H

DISPATCH.ASM oontin~d

SPECIAL KEY:

SPECIAL

CMP
JE

LEA
LOOP:
CMP
JE
CMP
JE
ADO
JMP

DISPATCH:
INC
CALL
JMP

NOT IN TABLE: -
JMP

NO CHARS READ: - -
LEA
CALL
JMP

END DISPATCH:
POP
POP
POP
RET

DISPATCHER

CODE SEG

DATA SEG

AL,68
ENO DISPATCH

BX,DISPATCH_TABLE

BYTE PTR [BXJ , 0
NOT IN TABLE
AL I CBXJ
DISPATCH
BX,3
SPECIAL LOOP

BX
\./ORO PTR [BXJ
DISPATCH LOOP

DISPATCH LOOP

DX,EDITOR_PROMPT
~RITE PROMPT LINE - -
DISPATCH LOOP

DX
BX
AX

ENDP

ENDS

SEGMENT PUBLIC

;F10--exit?
;Yes, leave
;Use BX to look through table

;End of table?
;Yes, key was not in the table
;Is it this table entry?
;Yes, then dispatch
;No, try next entry
;Check next table entry

;Point to address of procedure
;Call procedure
;~ait for another key

;Do nothing, just read next character

;Erase any invalid characters typed
;Try again

Peter Norton's Assembly Language Book 343

DISPATCH.ASM oontin~d

COOE SEG SEGMENT PUBLIC
EXTRN NEXT SECTOR:NEAR ;In DISK_IO.ASM
EXTRN PREVIOUS SECTOR:NEAR ;In DISK 10.ASM
EXTRN PHANTOM_UP:NEAR, PHANTOM_DOWN:NEAR ;In PHANTOM.ASM
EXTRN PHANTOM_LEFT:NEAR, PHANTOM RIGHT:NEAR
EXTRN WRITE SECTOR:NEAR ;In DISK_IO.ASM

CCX>E SEG ENDS
·---------·----··-··--·----------··--·--------······--·-·-·-----·-----·-· I I

This table contains the legal extended ASCII keys and the addresses
of the procedures that should be called when each key is pressed.

The format of the table is
DB 72 . ; Extended code for cursor up
OW OFFSET CGROUP:PHANTOM UP

..........
I I

DISPATCH TABLE LABEL BYTE
DB 59 ; F1
OW OFFSET CGROUP:PREVIOUS SECTOR
DB 60 ;F2

OW OFFSET CGROUP:NEXT SECTOR
DB 72 ;Cursor up
OW OFFSET CGROUP:PHANTOM UP
DB 80 ;Cursor down
OW OFFSET CGROUP:PHANTOM_DOWN
DB 75 ;Cursor left
OW OFFSET CGROUP:PHANTOM_LEFT

DATA SEG

DB n ;Cursor right
ow
DB
ow
DB

END

OFFSET CGROUP:PHANTOM RIGHT
88 ;Shift FS
OFFSET CGROUP:WRITE SECTOR
0 ;End of the table
ENDS

344 Li ting of D KP A CH

DISP_SEC.ASM

CGROUP GROUP COOE_SEG, DATA SEG
ASSUME CS:CGROUP, DS:CGROUP

;Group two segments together

·-----····--------·-··-----·------·-·---··---------- .. . , ,
; Graphics characters for border of sector.
;----··--------··------------------···- ... -------·-·-·'"''"'·---·-··--·-------;
VERTICAL BAR EQU OB Ah
HORIZONTAL BAR EQU OCDh

UPPER LEFT EQU OC9h
UPPER RIGHT EQU OBBh
LO'WER_LEFT ECU 0C8h
LO'WER RIGHT ECU OB Ch
TOP T BAR ECU OCBh
BOTT OH_ T _BAR ECU OCAh
TOP TICK EQU 001h
BOTTOM TICK ECU OCFh

COOE SEG SEGMENT PUBLIC

PUBLIC IN IT SEC DI SP
EXT RN WRITE_PATTERN:NEAR, SEND_CRLF:NEAR
EXT RN GOTO_XY:NEAR, WRITE_PHANTOH:NEAR

DATA SEG SEGMENT PUBLIC
EXT RN LINES BEFORE SECTOR:BYTE - -
EXT RN SECTOR OFFSET:\JORD

DATA SEG ENDS
; -- -----.... -............... ----. - ... - - - .. -... - - --.......... - -- .. ;

This procedure initializes the half-sector display.
;

; Uses: ~RITE_PATTERN, SEND_CRLF, DISP_HALF_SECTOR
WRITE_TOP_HEX_NUMBERS, GOTO_XY, WRITE_PHANTOH

. Reads= TOP_LINE_PATTERN, BOTTOM LINE PATTERN , - -
LINES BEFORE SECTOR . , - -. Writes: SECTOR OFFSET I

;-····-----------·--······-·--·--------···-···----------····------------;
INIT_SEC_DISP PROC NEAR

PUSH DX

Peter Norton's Assembly Language Book 345

DISP SEC. ASM continued

XOR
MOV
CALL
CALL
LEA
CALL
CALL

DL,DL ;Move cursor into position
DH,LINES_BEFORE_SECTOR
GOTO XY
WRITE TOP HEX NUMBERS - - -
DX,TOP_LINE_PATTERN
WRITE PATTERN
SEND CRLF

XOR
MOV

DX,DX
SECTOR_OFFSET,DX
DISP HALF SECTOR

;Start at the beginning of the sector
;Set sector offset to 0

CALL
LEA

CALL
CALL
POP
RET

INIT SEC DISP

EXT RN
EXT RN

- -
DX,BOTTOM_LINE_PATTERN

WRITE PATTERN
WRITE PHANTOM
DX

ENDP

;Write the phantom cursor

WRITE_CHAR_N_TIMES:NEAR, WRITE_HEX:NEAR, WRITE_CHAR:NEAR
WRITE_HEX_DIGIT:NEAR, SEND_CRLF:NEAR

. -•· -........ -...... ------......... -. -----... -... ------- .. -. -----. ----------.... -----..... ----. t I

This procedure writes the index numbers CO through F) at the top of
the half-sector display.

Uses: WRITE_CHAR_N_TIMES, WRITE_HEX, WRITE_CHAR
WRITE_HEX_DIGIT, SEND_CRLF

;
.
I

. --...... - -......... -........... - - ... - ... -...... --........... - - - .. -.. ---- ... ---................. --.... --- ... ---- .. .
I I

WRITE TOP HEX NUMBERS PROC NEAR - - -
PUSH ex
PUSH DX
MOV
MOV
CALL

DL, I I

CX,9
WRITE CHAR N TIMES

XOR DH,DH
HEX NUMBER LOOP: - -

HOV DL,DH
CALL WRITE HEX
MOV DL, I I

CALL WRITE CHAR

;Write 9 spaces for left side

;Start with 0

346 .,i ting of DS A TCH

DISP SEC. ASM continued

INC DH
CMP DH,10h ;Done yet?
JB HEX NUMBER LOOP

MOV DL, I I ;Write hex nl.illbers over ASCII window
MOV CX,2
CALL WRITE CHAR N TIMES
XOR DL,DL

HEX DIGIT LOOP: - -
CALL WRITE HEX DIGIT -
INC DL
CMP DL I 10h
JB HEX DIGIT LOOP -
CALL SEND CRLF
POP DX
POP ex
RET

WRITE TOP HEX NUMBERS ENDP -

PUBLIC DISP_HALF_SECTOR
EXT RN SEND CRLF:NEAR

...
I

; This procedure displays half a sector (256 bytes)

DS:DX Offset into sector, in bytes··should be rrultiple of 16

; Uses: DISP_LINE, SEND_CRLF
;····· ... ·- ;

DISP HALF SECTOR PROC NEAR - -
PUSH ex
PUSH DX
MOV ex, 16 ;Display 16 lines

HALF SECTOR:
CALL DISP LINE
CALL SEND CRLF
ADD DX, 16
LOOP HALF SECTOR
POP DX

Peter Norton's Assembly Language Boo~ 347

DI S P _SEC • AS M continued

POP ex
RET

DISP HALF SECTOR ENDP

PUBLIC DISP LINE
EXTRN WRITE HEX:NEAR
EXTRN WRITE CHAR:NEAR
EXTRN WRITE CHAR N TIMES:NEAR

; - .. -... -· --...... -.... ---- -- ------- .. -- ---- -. ---.... ---........ -.... -- -;

; This procedure displays one line of data, or 16 bytes, first in hex,
then in ASCII. ;

.
I

DS:DX Offset into sector, in bytes

Uses:
Reads:

WRITE_CHAR, WRITE_HEX, WRITE_CHAR_N_TIMES
SECTOR ;

.... -........ ---............ --.. -- --.... --.... --- .. --
I I

DISP LINE PROC NEAR
PUSH BX
PUSH ex
PUSH DX
MOV BX,DX ;Offset is more useful in BX
MOV DL, I I

MOV CX,3 ;Write 3 spaces before line
CALL WRITE CHAR N TIMES

;Write offset in hex
CMP BX, 100h ;Is the first digit a 1?
JB WRITE ONE ;No, white space already in DL
MOV DL I

1 11 ;Yes, then place 1 11 into DL for output
WRITE ONE:

CALL WRITE CHAR
HOV DL,BL ;Copy lower byte into Dl for hex output

CALL WRITE_HEX
;Write separator

HOV DL, I I

CALL WRITE CHAR
HOV DL, VERTICAL_BAR ;Draw left side of box

348 Li ting of D KP A TCH

DISP SEC. ASM continued

CALL WRITE CHAR
MOV DL, I I

CALL IJRITE CHAR

MOV ex, 16

PUSH BX
HEX LOOP:

MOV DL,SECTOR(BXJ
CALL WRITE HEX
MOV DL, I I

CALL WRITE CHAR
INC BX
LOOP HEX LOOP

MOV DL,VERTICAL_BAR
CALL WRITE CHAR
MOV DL, I I

CALL WRITE CHAR
MOV ex, 16

POP BX
ASCII LOOP:

MOV DL I SECTOR (BX)
CALL WRITE CHAR
INC BX
LOOP ASCII LOOP

MOV DL, I I

CALL \JRITE CHAR
MOV DL,VERTICAL_ BAR
CALL WRITE CHAR

POP DX
POP ex
POP BX
RET

DISP LINE ENDP -

CODE SEG ENDS

;Now write out 16 bytes
;Dl.Wlll 16 bytes
;Save the offset for ASCII LOOP

;Get one byte
;Dl.WJll this byte in hex
;Write a space between nunbers

;Write separator

;Add another space before characters

;Get back offset into SECTOR

;Draw right side of box

DISP SEC. ASM continued

DATA SEG
EXT RN

TOP LINE PATTERN

SEGMENT PUBLIC
SECTOR:BYTE

LABEL BYTE

DB I I, 7
DB UPPER_LEFT,1
DB HORIZONTAL_BAR,12
OB TOP_TICK,1
DB HORIZONTAL_BAR,11
OB TOP_TICK,1
OB HORIZONTAL_BAR,11
DB TOP_TICK,1
OB HORIZONTAL_BAR,12
OB TOP_T_BAR,1
DB HORIZONTAL_BAR,18
OB UPPER_RIGHT,1
OB 0

BOTTOM LINE PATTERN LABEL BYTE

DATA SEG

DB
DB
DB
DB
OB
DB
DB
DB
DB
OB
OB
DB
DB

END

I I
1
7

LO\JER_LEFT, 1
HORIZONTAL_BAR,12
BOTTOM_TICK, 1
HORIZONTAL_BAR,11
BOTTOM_TICK, 1
HORIZONTAL_BAR,11
BOTTOM_TICK, 1
HORIZONTAL_BAR,12
BOTTOM_T_BAR, 1
HORIZONTAL_BAR, 18
LO\JER_RIGHT,1
0

ENDS

Peter Norton's A embly Language B k 349

350 Ji ting f D KPAT H

DSKPATCH.ASM

CGROUP GROUP COOE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

CODE SEG
ORG

EXT RN
EXT RN
EXT RN

DISK PATCH
CALL
CALL
CALL
CALL
LEA
CALL
CALL
INT

DISK PATCH

CODE SEG

DATA SEG

SEGMENT PUBLIC'
100h

CLEAR_SCREEN:NEAR, READ_SECTOR:NEAR
INIT_SEC_DISP:NEAR, ~RlTE_HEADER:NEAR

\JRITE_PROMPT_LINE:NEAR, DISPATCHER:NEAR
PROC NEAR
CLEAR SCREEN
\JRITE HEADER
READ SECTOR
lNIT SEC DISP
DX,EDITOR_PROMPT
\JRITE PROMPT LINE - -
DISPATCHER
20h

ENDP

ENDS

SEGMENT PUBLIC

PUBLIC SECTOR OFFSET
..
I I

; SECTOR_OFFSET is the offset of the half
; sector display into the full sector. It rtJJst ;
; be a JTaJltiple of 16, and not greater than 256 ;
;·····-···;
SECTOR OFFSET D\J 0

PUBLIC CURRENT_SECTOR_NO, DISK_DRIVE_NO
CURRENT_SECTOR_NO D\J 0 ;Initially sector 0
DISK_DRIVE_NO OB 0 ;Initially Drive A:

PUBLIC LINES_BEFORE_SECTOR, HEADER LINE NO

Peter Norton's Assembly Language Book 351

DSKPATCH. ASM continued

PUBLIC HEAOER_PART_1, HEAOER_PART_2
·····-----··----------····-------------·--------· I I

; LINES_BEFORE_SECTOR is the number of . lines
; at the top of the screen before the half·
; sector display •

.
I

;

...
I I

LINES BEFORE SECTOR - -
HEADER LI NE NO - -
HEADER PART 1 - -
HEADER PART 2 - -

OB
OB
OB
OB

2
0

'Disk ',0

Sector ',0
PUBLIC PROMPT_LINE_NO, EDITOR PROMPT

PROMPT LINE NO OB 21 - -
EDITOR PROMPT OB 'Press function key, or enter'

OB ' character or hex byte: 1 ,0

PUBLIC SECTOR
;·--;
; The entire sector (up to 8192 bytes) is ;
; stored in this part of memory.
·----------------------------------···--------·-· I I

SECTOR OB 8192 OUP (0)

DATA SEG ENOS

ENO DISK PATCH

352 i ting of D KPAT H

EDITOR.ASM

CGROUP GROUP COOE_SEG, DATA SEG
ASSUME CS:CGROUP, DS:CGROUP

COOE SEG

DATA SEG

DATA SEG

EXT RN
EXT RN
EXT RN
EXT RN

SEGMENT PUBLIC

SEGMENT PUBLIC
SECTOR:BYTE
SECTOR OFFSET:\JORD
PHANTOM CURSOR X:BYTE - -
PHANTOM_CURSOR_Y:BYTE
ENDS

;-----------···-···---------·······--·----·--···----··-···----··-·····--;
This procedure writes one byte to SECTOR, at the memory location

; pointed to by the phantom cursor.
. ,
; DL Byte to write to SECTOR

The offset is calculated by
OFFSET = SECTOR_OFFSET + (16 * PHANTOM_CURSOR_Y) + PHANTOM CURSOR X

Reads:
Writes:

PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y, SECTOR OFFSET
SECTOR

. ,

. ,
. -----.. - .. ----------........... -........................... -................. -...... -.... ---.......... -................ - .. -.... .
I I

WRITE TO MEMORY PROC NEAR
PUSH AX
PUSH BX
PUSH ex
MOV BX,SECTOR_OFFSET
MOV AL,PHANTOM_CURSOR_Y
XOR AH,AH
MOV CL,4
SHL AX,CL
ADD BX,AX
MOV AL,PHANTOM_CURSOR_X
XOR AH,AH
ADD BX,AX
MOV SECTOR [BX) ,DL

;Multiply PHANTOM_CURSOR_Y by 16

;BX = SECTOR OFFSET + (16 * Y)

;That's the address!
;Now, store the byte

Peter Norton's Assembly Language Book 353

EDITOR. ASM continued

POP ex
POP BX
POP AX
RET

WRITE TO MEMORY ENOP

DATA SEG

PUBLIC EDIT BYTE
EXTRN SAVE_REAL_CURSOR:NEAR, RESTORE_REAL_CURSOR:NEAR
EXTRN MOV_TO_HEX_POSITION:NEAR, MOV_TO_ASCII_POSITION:NEAR
EXT RN
EXT RN

WRITE_PHANTOM:NEAR, WRITE_PROMPT_LINE:NEAR
CURSOR_RIGHT:NEAR, WRITE_HEX:NEAR, WRITE CHAR:NEAR
SEGMENT PUBLIC

EXTRN EDITOR PROMPT:BYTE
DATA SEG ENOS
; •· .. --- .. ---.. -- .. -------......... --.. -.. -.... ---- .. -.... ---------- .. -----... -...... -.... -.. ----;

; This procedure changes a byte in memory and on the screen. ;

;

DL Byte to write into SECTOR, and change on screen

; Uses:

Reads:

SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR
MOV_TO_HEX_POSITION, MOV_TO_ASCII_POSITION
WRITE_PHANTOM, WRITE_PROMPT_LINE, CURSOR_RIGHT
WRITE_HEX, WRITE_CHAR, WRITE_TO_MEMORY
EDITOR PROMPT

;

:

;

;
...
I I

EDIT BYTE
PUSH
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL
CALL

PROC NEAR
ox
SAVE REAL CURSOR - -
MOV TO HEX POSITION
CURSOR RIGHT
WRITE HEX
MOV_TO_ASCII POSITION
WRITE CHAR
RESTORE REAL CURSOR - -
WRITE PHANTOM
WRITE TO MEMORY

LEA DX,EDITOR_PROMPT

;Move to the hex number in the
; hex window
;Write the new number
;Move to the char. in the ASCII window
;Write the .new character
;Move cursor back where it belongs
;Rewrite the phantom cursor
;Save this new byte in SECTOR

EDITOR. ASM continued

CALL
POP
RET

EDIT BYTE

COOE SEG

END

~RITE PROMPT LINE
DX

ENDP

ENDS

KBD_IO.ASM

CGROUP GROUP COOE_SEG, DATA SEG
ASSUME CS:CGROUP, DS:CGROUP

BS
CR
ESC

EQU
EQU
EQU

8
13

27

CODE SEG SEGMENT PUBLIC

PUBLIC STRING TO UPPER

Peter Norton's Assembly Language Book 355

;Backspace character
;Carr;age-return character
;Escape character

;- -... --·-- --- .. -..... -... -·-·- ----. ---- ------ ----- ----- .. -- ---- .. --- .. --- .. -- ;

Th;s procedure converts the str;ng, us;ng the DOS format for str;ngs, ;
to all uppercase letters. .

I

DS:DX Address of str;ng buffer ;
... --- .. --.......... - .. -.......... --- --- ---- ------- --- --- - .. --- -- - ... --.... --- - .
I I

STRING TO UPPER
PUSH
PUSH
PUSH
HOV
INC
HOV
XOR

UPPER LOOP:
INC
HOV
CHP
JB
CHP
JA
ADD
HOV

NOT LOWER:
LOOP
POP

PROC
AX
BX
ex
BX,DX
BX
CL, [BX]
CH,CH

BX
AL, CBXl
AL,'a'
NOT LOWER
AL, I z I

NOT LOWER
AL'' A'.' a'
CBXJ ,AL

UPPER LOOP
ex

NEAR

;Po;nt to character count
;Character count ;n 2nd byte of buffer
;Clear upper byte of count

;Po;nt to next character ;n buffer

;See ;f ;t ;s a lowercase letter
;Nope

;Convert to uppercase letter

356 Li ting of D KPAT H

KBD IO. AS M continued

POP BX
POP AX
RET

STRING TO UPPER ENDP

................ -. _ ... ___ ________ _____ .. .
I I

;

This procedure converts a character from ASCII (hex) to a nibble (4

bits).

Returns:
AL
AL
Cf

Character to convert
Nibble
Set for error, cleared otherwise

~ ,

·----------- ----- -- · ·-·- -·--·------- ----- · --······ · ···· · ·- .. - ·--- · --··-··· I I

CONVERT HEX DIGIT PROC
CMP
JB
CMP
JA
SUB
CLC
RET

TRY HEX:
CMP
JS
CMP
JA
SUB
CLC
RET

BAO DIGIT:
STC
RET

AL, 1 0 1

BAD DIGIT
AL, 1 9 1

TRY HEX
Al, I 0 I

AL, 'A'
BAD DIGIT
AL, IF'

BAO DIGIT
AL I I A I • 10

CONVERT HEX DIGIT ENDP

NEAR
; ts it a legal digit?
;Nope
;Not sure yet
;Might be hex digit
;Is decimal digit, convert to nibble
;Clear the carry, no error

;Not sure yet
;Not hex
;Not sure yet
;Not hex
; Is hex, convert to nibble
;Clear the carry, no error

;Set the carry, error

Peter Norton' A sembly Language Book 357

KBD IO. ASM continued

PUBLIC HEX TO BYTE
.... ----. -...... ---..... ---.......... -- -.... --· --- ... -... -- --.. -..... ---... ---- -.... --......... -. , ,

. ,

This procedure converts the two characters at DS:DX from hex to one
byte.

DS:DX Address of two characters for hex nl.mber
Returns:

AL Byte
CF Set for error, clear if no error

Use~: CONVERT HEX DlGIT

. ,

·--·---·-·-··--·---··--··-··-- · - .. ·--·-- --·-----------------··--------· -· · , ,
HEX TO BYTE

PUSH
PUSH
HOV
HOV
CALL
JC
HOV
SHL
HOV
INC
HOV
CALL
JC
OR
CLC

DONE HEX:
POP
POP
RET

BAD HEX:
STC
JMP

HEX TO BYTE

PROC
BX
ex
BX,DX
AL, (BX]
CONVERT
BAD HEX
CX,4
AL,CL
AH,AL
BX
Al, (BX]
CONVERT
BAD HEX
AL,AH

ex
BX

-

DONE HEX
ENDP

NEAR

HEX DIGIT

HEX DIGIT

;Put address in BX for indirect addr
;Get first digit

;Bad hex digit if carry set
;Now ITl.Jltiply by 16

;Retain a copy
;Get second digit

;Bad hex digit if carry set
;Conbine two nibbles
;Clear carry for no error

;Set carry for error

358 ~i ting f D KPAT H

KBD_IO. ASM continued

PUBLIC READ STRING
EXTRN WRITE CHAR:NEAR

; ----.. -. -------......... -... --........ -.... -----....... -...... • · -- - - - - .. - - - ---- .. --- .. - .. - - - - - - - - ;
.
I

;
.
I

;
.
I

.
I

,
.
I

;

;

This procedure performs a function very similar to the DOS OAh
function. But this function will return a special character if a

function or keypad key is pressed··no return for these keys. And
ESC will erase the input and start over again.

DS:DX Address for keyboard buffer. The first byte m..ist
contain the maxil'TLfTl nl.mber of characters to read <plus
one for the return). And the second byte will be used

Uses:

by this procedure to
actually read.

return the nLJTlber of characters

0 No characters read
• 1 One special character read
otherwise nl.lllber actually read (not including

Enter key)

BACK_SPACE, WRITE_CHAR

.
I

.
I

;
.
I

;

;···---------·-----·--·····-····------···-··--·-·-···--··-····-········--;
READ STRING

PUSH
PROC
AX

NEAR

PUSH BX
PUSH SI
MOV

START OVER:
MDV
HOV
INT
OR
JZ

NOT EXTENDED:
CMP
JE
CMP
JNE
CALL

CMP
JE

Sl,DX

BX,2
AH,7
21h
AL,AL
EXTENDED

AL,CR
END INPUT
AL,BS
NOT BS
BACK SPACE

BL,2
START OVER

;Use SI for index register and

;BX for offset to beginning of buffer
;Call for input with no checking
; for CTRL·BREAK and no echo
;Is character extended ASCII?
;Yes, read the extended character
;Entnd char is error unless buf empty
;Is this a carriage return?
;Yes, we are done with input
;Is it a backspace character
;Nope
;Yes, delete character

; Is buffer efll)ty?
;Yes, can now read extended ASCII again

KBD IO.ASM continued

JMP SHORT READ NEXT CHAR - -
NOT BS: CMP AL,ESC

JE PURGE BUFFER
CMP BL, [Sil
JA BUFFER FULL
MOV [SI +BX] I AL
INC BX
PUSH DX
MOV DL,AL
CALL WRITE CHAR
POP DX

READ NEXT CHAR: - -
MOV
INT
OR

JNE
MOV
INT

AH,7
21h
AL,AL

NOT EXTENDED
AH,7
21h

Peter Norton's Assembly Language Book 359

;No, continue reading normal characters
;Is it an ESC··purge buffer?
;Yes, then purge the buffer
;Check to see if buffer is full
;Buffer is full
;Else save char in buffer
;Point to next free character in buffer

;Echo character to screen

;An extended ASCII char is not valid
; when the buffer is not empty
;Char is val id

;Throw out the extended character

........................
I I

; Signal en error condition by sending a beep
; character to the display: chr$(7) .
...
I I

SIGNAL ERROR:
PUSH DX
MOV DL,7 ;Sound the bell by writing chr$(7)
HOV AH,2
INT 21h
POP DX
JMP SHORT READ NEXT CHAR ;Now read next character

; -- -· -· --........ -- .. -- ----- ;
; Empty the string buffer and erase all the
; characters displayed on the screen.

;
. ,

...
I I

PURGE BUFFER:
PUSH ex

360 Li ting of D KP TCH

KBD IO.ASM continued

MOV Cl, CSIJ
XOR CH,CH

PURGE LOOP:
CALL BACK SPACE
LOOP PURGE LOOP
POP ex
JMP START OVER

;Backspace over maxillLfTI number of

characters in buffer. BACK SPACE
will keep the cursor from moving too
far back

;Can now read extended ASCII characters
; since the buffer is empty

;-- ... ···-·--··-···-··--··-··--····--····-····--·-;
The buffer was full, so can't read another
character. Send a beep to alert user of

; buffer·full condition.
; ... ;

BUFFER FULL:
JMP SHORT SIGNAL ERROR ;If buffer full, just beep

; -........ - -............. -...... -.................... - -- .. "' --..... ;

; Read the extended ASCII code and place this
in the buffer as the only character, then

; return · 1 as the nl..ITlber of characters read .
... - -- --·- - -- .. - .
I I

EXTENDED:
HOV
INT
HOV
HOV
JHP

AH, 7
21h
cs I +2) I AL
BL I OFFh
SHORT END STRING

;Read an extended ASCII code

;Place just this char in buffer
;NLm chars read = -1 for special

... _ .. .
I I

; Save the count of the number of characters
; read and return .
.. , ,
END INPUT:

SUB
END STRING:

HOV
POP

BL,2

CSl+1J ,BL
SI

POP BX

;Done with input
;Count of characters read

;Return number of chars read

Peter Norton's Assembly Language B ok 361

KBD IO. ASM continued

POP AX
RET

READ STRING ENDP

PUBLIC READ BYTE
;- -. -......... -......... --........ -- .. -....................... -- ... --- ---- --- -- -- ;

This procedure reads either a single ASCII character or a two-digit ;
hex nl.ITlber. This is just a test version of READ BYTE. ;

;
Returns byte in AL

AH
Character code (unless AH = 0)

1 if read ASCII char

Uses:
Reads:
\Jrites:

0 if no characters read
·1 if read a special key

HEX_TO_BYTE, STRING_TO_UPPER, READ STRING
KEYBOARD_INPUT, etc.
KEYBOARD_INPUT, etc.

;

;

;······-···--------------·-·------------------·----------- --- ----------·;
READ BYTE

PUSH
HOV
LEA
CALL
CMP
JE
JB
CMP
JE
CALL
LEA
CALL
JC
MOV

DONE READ:
POP
RET

NO CHARACTERS:
XOR

PROC NEAR
DX
CHAR_NUM_LIMIT,3
DX,KEYBOARD_INPUT
READ STRING

;Allow only two characters (plus Enter)

NUM_CHARS_READ,1 ;See how many characters
ASCII INPUT ;Just one, treat as ASCII character
NO_CHARACTERS ;Only Enter key hit
BYTE PTR NUM_CHARS_READ,OFFh ;Special function key?

SPECIAL KEY
STRING TO UPPER
DX,CHARS
HEX TO BYTE
NO CHARACTERS
AH, 1

DX

AH,AH

;Yes
;No, convert string to uppercase
;Address of string to convert
;Convert string from hex to byte
;Error, so return •no characters read•
;Signal read one character

;Set to •no characters read'

362 i ting of D KPAT H

KBD IO.ASM continued

JMP DONE READ
ASCII INPUT:

HOV AL,CHARS
HOV AH, 1
JMP DONE READ

SPECIAL KEY:
HOV AL, CHARS [OJ
HOV AH,OFFh
JMP DONE READ

READ BYTE ENDP

PUBLIC READ DECIMAL

;Load character read
;Signal read one character

;Return the scan code
;Signal special key with ·1

; ----------·-··-- ;

This procedure takes the output buffer of READ STRING and converts
the string of decimal digits to a word.

Uses:

AX
CF

Reads:
~rites:

~ord converted from decimal
Set if error, clear if no error

READ STRING
KEYBOARD_I MPUT, etc.
KEYBOARD_I NPUT, etc.

; .. ;

READ DECIMAL
PUSH
PUSH
PUSH
HOV
LEA
CALL
HOV
XOR
CMP
JLE
XOR
XOR

CONVERT_DIGIT:
HOV

PROC NEAR
BX
ex
DX
CHAR_NUM_LIMIT,6
DX,KEYBOARD_INPUT
READ STRING
CL,NUM_CHARS_READ
CH,CH
CL,0
BAO DECIMAL DIGIT - -
AX,AX
BX,BX

DX, 10

;Max nl.J'l'ber is 5 digits (65535)

;Get nurber of characters read
;Set upper byte of count to 0
;Return error if no characters read
;Mo chars read, signal error
;Start with nurber set to 0
;Start at beginning of string

;Multiply nlllt>er by 10

KBD IO.ASM continued

MUL DX
JC BAD DECIMAL DIGIT - -
HOV DL,CHARSCBXl
SUB DL, 1 0 1

JS BAD DECIMAL DIGIT - -
CMP DL,9
JA BAD DECIMAL DIGIT - -
ADD AX,DX
INC BX
LOOP CONVERT DIGIT

DONE DECIMAL:
POP DX
POP ex
POP BX
RET

BAD DECIMAL DIGIT: - -
STC
JHP DONE DECIMAL

READ DECIMAL ENDP

PUBLIC BACK SPACE
EXT RN WRITE CHAR:NEAR

Peter Norton's Assembly Language B 363

;Multiply AX by 10
;CF set if MUL overflowed one word
;Get the next digit
;And convert to a nibble (4 bits)
;Bad digit if < 0

;Is this a bad digit?
;Yes
;No, so add it to nl.ITlber
;Point to next character
;Get the next digit

;Set carry to signal error

;····· ··· ·---···-·--···-·······------------------------ -----------------;
; This procedure deletes characters, one at

the screen when the buffer is not empty.
; when the buffer ;s errpty .

a time, from the buffer and ;
BACK SPACE si01>lY returns ;

.
I

Uses:

DS:Sl+BX
;

Most recent character still in buffer
;

WRITE CHAR ;
........ , ,
BACK SPACE PROC NEAR

PUSH AX
PUSH DX
CMP BX,2 ;Is buffer empty?
JE END BS ;Yes, read the next character
DEC BX ;Remove one character from buffer
HOV AH,2 ;Remove character from screen

364 Li ting of D KP A TCH

KBD IO.ASM continued

HOV OL,BS
INT 21h
HOV DL,20h
CALL WRITE CHAR
HOV DL,BS
INT 21h

END BS: POP ox
POP AX
RET

BACK SPACE ENOP

CODE SEG ENOS

DATA SEG SE GHENT PUBLIC
KEYBOARD INPUT LABEL BYTE -
CHAR_NUH_LI MIT OB 0
NUH CHARS READ DB 0 - -
CHARS OB 80 OUP
DATA SEG ENDS

ENO

(0)

;Write space there

;Back up again

;Length of ;nput buffer
;Nurt>er of characters read
;A buffer for keyboard ;nput

PHANTOM.ASM

CGROUP GROUP COOE_SEG, DATA_SEG
ASSUME CS:CGROUP, DS:CGROUP

COOE SEG SEGMENT PUBLIC

PUBLIC HOV TO HEX POSITION
EXTRN GOTO XY:NEAR

DATA SEG SEGMENT PUBLIC

Peter Norton•s Assembly Language Book 365

EXTRN LINES BEFORE SECTOR:BYTE - -
DATA SEG ENDS
..
I I

This procedure moves the real cursor to the position of the phantom ;
cursor in the hex window. ;

Uses: GOTO XY ;
Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

..
I I

MOV TO HEX POSITION PROC NEAR - - -
PUSH AX
PUSH ex
PUSH DX
HOV
ADD
ADD
HOV
HOV
HOV
HUL
ADD
CALL
POP

DH,LINES_BEFORE_SECTOR
DH,2
DH,PHANTOM_CURSOR_Y
DL,8
CL,3
AL,PHANTOM_CURSOR X
CL
DL,AL
GOTO XY
DX

POP ex
POP AX
RET

MOV TO HEX POSITION ENDP

PUBLIC HOV TO ASCII POSITION
EXTRN GOTO XY:NEAR

DATA SEG SEGMENT PUBLIC

;Find row of phantom (0,0)
;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Each column uses 3 characters, so
; we must multiply CURSOR_X by 3

;And add to the indent, to get column
; for phantom cursor

366 i ting of KPATCH

PHANTOM. ASM continued

EXTRN LINES BEFORE SECTOR:BYTE - -
DATA SEG ENDS
······--·--··--·----··--··------·---·····--·----·-·---·-·············-···
' '

This procedure moves the real cursor to the beginning of the phantom
cursor in the ASCII window.

Uses: GOTO XY
Reads: LINES_BEFORE_SECTOR, PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

...
' ,

MOV TO ASCII POSITION PROC NEAR - - -
PUSH AX
PUSH DX
MOV
ADD
ADD
MOV
ADD
CALL
POP

DH,LINES_BEFORE_SECTOR
DH,2
DH,PHANTOM_CURSOR_Y
DL,59
DL,PHANTOM_CURSOR_X
GOTO XY
ox

POP AX
RET

MOV TO ASCII POSITION ENDP

PUBLIC SAVE REAL CURSOR - -

;Find row of phantom (0,0)
;Plus row of hex and horizontal bar
;DH = row of phantom cursor
;Indent on left side
;Add CURSOR_X to get X position
; for phantom cursor

......................
' '

This procedure saves the position of the real cursor in the two
variables REAL CURSOR X and REAL CURSORY.

\.Jrites: REAL CURSOR_X, REAL CURSOR Y
;---·----··-··-··-···----·---·------·-------··--·-·----·--···---···-·---;
SAVE REAL CURSOR PROC - -

PUSH AX
PUSH BX
PUSH ex
PUSH DX
MOV AH,3
XOR BH,BH
INT 10h
MOV REAL_CURSOR_Y,DL
MOV REAL_CURSOR_X,DH

NEAR

;Read cursor position
; on page 0
;And return in DL,DH
;Save position

Peter Norton's Assembly Language B o~ 367

PHANTOM.ASM continued

POP DX
POP ex
POP BX
POP AX
RET

SAVE REAL CURSOR ENDP

PUBLIC RESTORE REAL CURSOR
EXT RN GOTO XY:NEAR

.. ------ .. --- , ,
This procedure restores the real cursor to its old position, saved in
REAL CURSOR X and REAL CURSORY.

Uses: GOTO XY
Reads: REAL_CURSOR_X, REAL_CURSOR_Y

;

;· -................................. -... -- ... -- -.... --.................................... -....... ;

RESTORE REAL CURSOR PROC NEAR - -
PUSH DX
MOV DL,REAL_CURSOR_Y
MOV DH,REAL_CURSOR_X
CALL GOTO XY
POP DX
RET

RESTORE REAL CURSOR ENDP - -

PUBLIC WRITE PHANTOM
EXTRN WRITE_ATTRIBUTE N TIMES:NEAR

;--·;
; This procedure uses CURSOR_X and CURSOR_Y, through MOV_TO_ ••• ,

coordinates for the phantom cursor. WRITE PHANTOM writes this
phantom cursor.

;
; Uses: WRITE_ATTRIBUTE_N_TIMES, SAVE_REAL_CURSOR

RESTORE_REAL_CURSOR, MOV_TO_HEX_POSITION
MOV TO ASCII POSITION

as the . ,
;

;

;

;
. ,
. ,

;---;
WRITE PHANTOM

PUSH
PROC
ex

PUSH DX

NEAR

368 Li ting of D KPAT

PHANTOM.ASM continued

CALL
CALL
HOV
HOV
CALL
CALL
HOV
CALL
CALL
POP
POP
RET

SAVE REAL CURSOR
HOV TO HEX POSITION
CX,4
DL,70h
\JRITE ATTRIBUTE N TIMES - -
HOV TO ASCII POSITION
ex, 1

\JRITE_ATTRIBUTE_N_TIMES
RESTORE REAL CURSOR - -
DX
ex

;Coord. of cursor in hex window
;Make phantom cursor four chars wide

;Coord. of cursor in ASCII window
;Cursor is one character wide here

\JR ITE PHANTOM ENDP

PUBLIC ERASE PHANTOM
EXTRN WRITE ATTRIBUTE N TIMES:NEAR

....
I I

;

;

This procedure erases the phantom cursor, just the opposite of
WRITE PHAN TOH.

Uses: WRITE_ATTRIBUTE __ TIMES, SAVE_REAL_CURSOR
RESTORE_REAL_CURSOR, HOV_TO_HEX_POSITION
HOV TO ASCII POSITION

;

. -........................ - - .. -........... -.. - ... ----..................... -- ... - .. -........................... ·--. , '
ERASE_PHANTOM PROC NEAR

PUSH ex
PUSH DX
CALL
CALL
HOV
HOV
CALL
CALL
HOV
CALL
CALL
POP
POP

SAVE REAL CURSOR - -
HOV TO HEX POSITION - - -
CX,4
DL,7
\JRITE_ATTRIBUTE_N_TIMES
HOV TO ASCII POSITION - - -
ex, 1

\./RITE ATTRIBUTE N TIMES - - -
RESTORE REAL CURSOR - -
DX
ex

;Coord. of cursor in hex window
;Change back to white on black

Peter Norton's Assembly Language Book 369

PHANTOM. ASM continued

RET

ERASE PHANTOM ENDP

···-··-·········-----·-----·-········----------·-·-----------------····-· , ,
These four procedures move the phantom cursors. ;

;
Uses: ERASE_PHANTOM, WRITE_PHANTOM

SCROLL_DO\JN, SCROLL_UP ;
Reads: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y

; Writes: PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y ;

·-------------------·-------------------·------------------------·------· ' ,

PUBLIC
PHANTOM UP

CALL
DEC
JNS
CALL

WASNT AT TOP:
CALL
RET

PHANTOM UP

PUBLIC
PHANTOM DO\JN

CALL
INC
CMP
JB
CALL

WAS NT AT BOTTOM: -
CALL
RET

PHANTOM DOWN

PUBLIC
PHANTOM LE FT

CALL
DEC

PHANTOM UP
PROC NEAR
ERASE PHANTOM
PHANTOM CURSOR y

WASNT AT TOP
SCROLL DO\JN

WRITE PHANTOM

ENDP

PHANTOM DO\JN
PROC NEAR
ERASE PHANTOM
PHANTOM CURSOR Y - -
PHANTOM_CURSOR_Y,16
WASNT AT BOTTOM
SCROLL UP

WRITE PHANTOM

ENDP

PHANTOM LEFT
PROC NEAR
ERASE PHANTOM
PHANTOM CURSOR X - -

;Erase at current position
;Move cursor up one line
;Was not at the top, write cursor
;Was at the top, scroll

;Write the phantom at new position

;Erase at current position
;Move cursor up one line
;Was; it at the bottom?
;No, so write phantom
;Was at bottom, scroll

;Write the phantom cursor

;Erase at current position
;Move cursor left one colunn

370 Li ting of D KPATCH

PHANTOM.ASM

JNS
HOV

WASNT AT LEFT:
CALL
RET

PHANTOM LEFT

PUBLIC
PHANTOM RIGHT

CALL
INC
CMP
JB

MOV
WAS NT AT RIGHT:

CALL
RET

PHANTOM RIGHT

EXT RN
DATA SEG

DATA SEG

EXT RN
EXTRN

continued

WASNT AT LEFT
PHANTOM_CURSOR_X,0

WRITE PHANTOM

ENDP

PHANTOM RIGHT
PROC NEAR
ERASE PHANTOM
PHANTOM CURSOR X - -
PHANTOH_CURSOR_X, 16
WASNT AT RIGHT
PHANTOM_CURSOR_X, 15

WR l TE PHAN.TOH

ENDP

;Was not at the left side, write cursor
;Was at left, so put back there

;Write the phantom cursor

;Erase at cursor position
;Move cursor right one colLmn
;Was it already at the right side?

;Was at right, so put back there

;Write the phantom cursor

DlSP_HALF_SECTOR:N EAR, GOTO XY:NEAR
SEGMENT PUBLIC
SECTOR OFFSET:WORD
LINES_BEFORE_SECTOR: BYTE
ENDS

.... -....... ... --..... .. ---. - -. -. -.. - -· -............... ----.... .
I I

These two procedures move bPt~een the two half · sector displays .
.
I

.
I

;
.
I

Uses:

~eads:

\Jrites:

WRITE_PHANTOH, DISP_HALF_SECTOR, ERASE_PHANTOH, GOTO XY
SAVE_REAL_CURSOR, RESTORE_REAL_CURSOR
LINES BEFORE SECTOR
SECTOR_OFFSET, PHANTOM_CURSOR Y

·-·-------·-------····--------·-- ---·-- --·-·--·------------- .. -----------· I I

SCROLL_UP
PUSH
CALL
CALL
XOR
MOV

PROC
ox

NEAR

ERASE PHANTOM
SAVE REAL CURSOR - -
DL,DL
DH,LINES_BEFORE_SECTOR

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half-sector display

PHANTOM. ASM continued

ADD
CALL
HOV

DH,2
GOTO XY
DX,256

MOV SECTOR_OFFSET,DX
CALL DISP HALF SECTOR - -
CALL
HOV
CALL

RESTORE REAL CURSOR - -
PHANTOM_CURSOR_Y,0
\.IR ITE PHANTOM

POP DX
RET

SCROLL UP ENDP

SCROLL DO\.IN PROC NEAR
PUSH DX
CALL
CALL
XOR
HOV

ERASE PHANTOM
SAVE REAL CURSOR - -
DL,DL
DH,LINES_BEFORE_SECTOR

ADD DH,2
CALL GOTO XY
XOR
HOV
CALL
CALL
HOV
CALL

DX,DX
SECTOR_OFFSET,DX
DISP HALF SECTOR - -
RESTORE REAL CURSOR - -
PHANTOM_CURSOR_Y, 15
\.IRITE PHANTOM

POP DX
RET

SCROLL DO\.IN

CODE SEG

DATA SEG
REAL CURSOR X - -

ENDP

ENDS

SEGMENT PUBLIC
DB 0

REAL CURSOR Y DB 0 - -

Peter Norton's Assembly Language Boo~ 3 71

;Display the second half sector

;Restore the real cursor position
;Cursor at top of second half sector
;Restore the phantom cursor

;Remove the phantom cursor
;Save the real cursor position
;Set cursor for half·sector display

;Display the first half sector

;Restore the real cursor pos1t1on
;Cursor at bottom of first half sector
;Restore the phantom cursor

PUBLIC PHANTOM_CURSOR_X, PHANTOM_CURSOR_Y
PHANTOM CURSOR X DB 0
PHANTOM CURSOR Y DB 0 - -
DATA SEG ENDS

END

372 Li ting of DSKPATCH

VIDEO 10.ASM
CGROUP GROUP COOE_SEG, DATA_SEG

ASSUME CS:CGROUP, DS:CGROUP

CODE SEG
ORG

SEGMENT PUBLIC
100h

PUBLIC WRITE HEX
;----------- ----·-------------·-···----·----·-········-----·-·· ····--·--;
; This procedure converts the byte in the DL register to hex and writes ;
; the two hex digits at the current cursor position.
;

DL Byte to be converted to hex ;
;

; Uses: WRITE HEX DIGIT
;··---·····-·-- ·-··-----------·- .. ;
WRITE HEX PROC NEAR ;Entry point

PUSH ex ;Save registers used in this procedure
PUSH DX
MOV DH,DL ;Make a copy of byte
MOV CX,4 ;Get the upper nibble in DL
SHR DL,CL
CALL WRITE HEX DIGIT ;Display first hex digit
MOV DL,DH ;Get lower nibble into DL
AND DL,OFh ;Remove the upper nibble
CALL WRITE HEX DIGIT ;Display second hex digit
POP DX
POP ex
RET

WRITE HEX ENDP

PUBLIC WRITE HEX DIGIT
;-----····------·--···-··---······-····------------·-·------·-·---------;

This procedure converts the lower 4 bits of DL to a hex digit and
; writes it to the screen.
;

DL Lower 4 bits contain nl.J'Tlber to be printed in hex

; Uses: WRITE CHAR

;

;- ;

VIDEO IO. ASM continued

WRJTE_HEX_DIGIT PROC NEAR
PUSH DX
CMP DL, 10
JAE HEX LETTER
ADD DL, 11011

JMP Short WRITE DIGIT
HEX_LETTER:

ADD DL,"A"-10
WRITE DIGIT:

CALL WRITE CHAR
POP DX
RET

WRITE_HEX_DIGIT ~NOP

PUBLIC WRITE CHAR
EXTRN CURSOR RIGHT:NEAR

Peter Norton's Assembly Language Book 373

;Save registers used
;Is this nibble <10?
;No, convert to a letter
;Yes, convert to a digit
;Now write this character

;Convert to hex letter

;Display the letter on the screen
;Restore old value of AX

;····------· · -··· · ···········-------- ---·-·········-·· · · · ---------------;
; This procedure outputs a character to the screen using the ROM BIOS

routines, so that characters such as the backspace are treated as

.
I .
I

; any other character and are displayed. .
I

; This procedure ITlJst do a bit of work to update the cursor position. ;
.
I ;

DL Byte to print on screen ; . ,
Uses: CURSOR RIGHT .

I

;-- ---- ------·----------------------------···· --------------------------;
WRITE CHAR PROC NEAR

PUSH AX
PUSH BX
PUSH ex
PUSH ox
HOV AH,9 ;Call for output of character/attr i bute
HOV BH,0 ;Set to display page 0
HOV ex, 1 ;Write only one character
HOV AL,DL ;Character to write
HOV BL,7 ;Normal attribute
INT 10h ;Write character and attribute
CALL CURSOR RIGHT ;Now move to next cursor position

374 Li ting of D kp tch

VIDEO IO. ASM continued

POP DX
POP ex
POP BX
POP AX
RET

\JR ITE CHAR ENDP

PUBLIC IJRITE_DECIMAL
·---····-----·------·---------- ·--------- ----------·--········-··-·-----,

This procedure writes a 16-bit, unsigned nl.nber in decimal notation.

;
DX N : 16-bit, unsigned nl.nber

Uses:
.............................. ,
IJRITE DECIMAL

PUSH
PUSH
PUSH
PUSH
HOV
HOV
XOR

NON ZERO:
XOR
DIV
PUSH
INC
OR
JNE

IJRITE HEX DIGIT

PROC
AX
ex
ox
SI
AX,OX
SI, 10
cx,cx

DX,DX
SI
DX
ex
AX,AX
NON ZERO

NEAR

WRITE DIGIT LOOP:
POP
CALL
LOOP

END_DECIMAL:
POP
POP
POP
POP

DX
WRITE HEX DIGIT
IJRITE DIGIT LOOP

SI
DX
ex
AX

- -

;Save registers used here

;\Jill divide by 10 using SI
;Count of digits placed on stack

;Set upper word of N to 0
;Calculate N/10 and (N mod 10)
;Push one digit onto the stack
;One more digit added
;N = 0 yet?
;Nope, continue

;Get the digits in reverse order

Peter Norton's Assembly Language Book 375

VIDEO IO. ASM continued

RET

WRITE DECIMAL ENDP

PUBLIC WRITE CHAR N TIMES
...
I I

;

This procedure writes more than one copy of a character

Uses:

DL
ex

Character code
Nl.lllber of times to write the character

WRITE CHAR

.
I

;

...
I I

WRITE CHAR N TIMES PROC NEAR
PUSH ex

N TIMES:
CALL \JR ITE CHAR
LOOP N TIMES
POP ex
RET

\.JRITE CHAR N TIMES ENDP

PUBLIC \JRITE PATTERN
;······-----··------------------------------------·---------------------;

This procedure writes a line to the screen, based on data in the
form i

DB {character, number of times to write character}, 0 ;
\Jhere {X} means that x can be repeated any number of times

DS:DX Address of above data statement

; Uses: \JRITE CHAR N TIMES
. . ..
I I

WRITE PATTERN PROC NEAR
PUSH AX
PUSH ex
PUSH DX

376 Li ting of D KPATCH

VIDEO IO. ASM continued

PUSH SI
;Save the direction flag PUS HF

CLO ;Set direction flag for increment
MOV SI ,DX ;Move offset into SI register for LODSB

PATTERN LOOP:
LOO SB
OR AL ,AL
JZ END PATTERN

;Get character data into AL
;Is it the end of data (Oh)?
;Yes, return

MOV DL,AL
LOO SB

;No, set up to write character N times
;Get the repeat count into AL

MOV CL,AL ;And put in CX for ~RITE_CHAR_N_TIHES
XOR CH,CH ;Zero upper byte of CX
CALL WRITE CHAR N TIMES
JMP PATTERN LOOP

END PATTERN:
POPF ;Restore direction flag
POP SI
POP DX
POP ex
POP AX
RET

WRITE PATTERN ENDP

PUBLIC WRITE HEADER
DATA SEG SEGMENT PUBLIC

EXT RN HEADER LINE NO:BYTE - -
EXT RN HEADER PART 1:BYTE - -
EXT RN HEADER PART 2:BYTE - -
EXT RN DISK DRIVE NO:BYTE - -
EXT RN CURRENT SECTOR NO:~ORD - -

DATA SEG ENDS
EXT RN GOTO_XY:NEAR, CLEAR_TO_END_OF_LINE:NEAR

··········---·--··-···--·---·-····----·--···-----·--···--------·········. I I

; This procedure writes the header with disk·drive and sector nl.ITlber.

Uses:
;

Reads:

GOTO_XY, ~RITE_STRING, ~RITE_CHAR, ~RITE_DECIMAL

CLEAR TO END OF LINE
HEADER_LINE_NO, HEADER_PART_1, HEADER PART 2
DISK_DRIVE_NO, CURRENT_SECTOR_NO

;

;

...
I •

Peter Norton's Assembly Language Book 377

VIDEO IO. ASM continued

\JRITE HEADER PROC NEAR
PUSH DX
XOR DL,DL . ;Move cursor to header line number
MOV DH,HEADER_LINE_NO
CALL GOTO XY
LEA DX,HEADER_PART_1
CALL WRITE STRING
MOV DL,DISK_DRIVE_NO
ADD DL, 'A' ;Print drives A, B, •••
CALL WRITE CHAR
LEA DX,HEADER_PART_2
CALL WRITE STRING
MOV DX,CURRENT_SECTOR_NO
CALL WRITE DECIMAL
CALL CLEAR TO END OF LINE ;Clear rest of sector number
POP DX
RET

\JR ITE HEADER ENOP -

PUBLIC WRITE STRING
·--·-··--··--·-·----------------------·---------------------------------· , ,

This procedure writes a string of characters to the screen. The ;
; string rBJst end with DB 0 ;
. , ;

DS:OX Address of the str~ng ;

Uses: WRITE CHAR
·------·------------------------·---------------------------------------· , ,
WRITE STRING PROC NEAR

PUSH AX
PUSH ox
PUSH SI
PUSHF ;Save direction flag
CLO ;Set direction for increment (forward)
MOV SI ,DX ;Place address into SI for LOOSB

STRING LOOP:
LOO SB ;Get a character into the AL register
OR AL,AL ;Have we found the 0 yet?

378 Listing of D KPATCH

VIDEO IO. ASM continued

JZ ENO OF STRING ;Yes, we are done with the string

HOV DL,AL ;No, write character

CALL WRITE CHAR
JMP STRING LOOP

ENO OF STRING: -
POPF ;Res t ore direction flag

POP SI
POP ox
POP AX
RET

WRITE STRING ENDP -

PUBLIC WRITE_PROMPT_LINE
EXTRN CLEAR_TO_ENO_OF_LINE : NEAR
EXT RN

DATA SEG
EXT RN

DATA SEG

GOTO XY:NEAR
SEGMENT PUBLIC
PROMPT LINE NO:BYTE - -
ENOS

;· · - ·· · · - - -- ·-----········· --· ---·-···-··· ·· ·· · ·· - -·----· - --------·-·---;
; This procedure writes the pr~t line to the sc reen and clears the
; end of the l ine
;

; OS:DX Address of the prompt · li ne message

Uses:
Reads:

WRITE_STRING, CLEAR_TO_ENO_OF_LINE, GOTO_XY
PROMPT LINE NO . ,

....

WRITE PROMPT LINE PROC NEAR - -
PUSH DX
XOR DL,DL
HOV DH,PROMPT_LINE_NO
CALL GOTO XY
POP ox
CALL WRITE STRING
CALL CLEAR TO ENO OF LINE - - - -
RET

WRITE_PROMPT LINE ENOP

PUBLIC WRITE_ATTRIBUTE N TIMES
EXTRN CURSOR_RIGHT:NEAR

,

;Write the prorrpt line end
; move the cursor there

Peter Norton's Assembly Language Book 379

VIDEO IO. ASM continued

·-----···-·········------·-····-···----·--··-···--·-··-· -·······------·-· I I

This procedure sets the attribute for N characters, starting at the
; current cursor position.

;

;

Uses:

ex
DL

Nll'Tlber of characters to set attribute fo1r

New attribute for characters

CURSOR RIGHT

;
.
I

.
I

..
I I

WRITE ATTRIBUTE N TIMES - - -
PUSH AX
PUSH BX
PUSH ex
PUSH DX
MOV BL,DL
XOR BH,BH
MOV DX,CX
MOV ex, 1

ATTR LOOP:
MOV AH,8
INT 10h
MOV AH,9
INT 10h
CALL CURSOR RIGHT
DEC DX
JNZ ATTR LOOP
POP DX
POP ex
POP BX
POP AX
RET

WRITE ATTRIBUTE N TIMES ENDP - - -

CODE SEG ENDS

END

PROC NEAR

;Set attribute to new attribute
;Set display page to 0
;CX is used by the BIOS routines
;Set attribute for one character

;Read character under cursor

;Write attribute/character

;Set attribute for N characters?
;No, continue

APPENDIX C

SEGMENT LOAD ORDER

Segment Load Order 382
Phase Errors 384
EXE2BIN File Cannot be Converted 386

381

382 Segment Load O rder

The IBM Macro Assembler (version 1.0 and 2.0 loads segments in an order
different from that used by all the more recent versions of the Microsoft Macro
Assembler. In this appendix, we'll look at the question of segment load order,
and see how knowledge of this order can be useful when EXE2BIN gives you
the error message File cannot be converted.

Segment Lo d Or e
All of the examples after Chapter 13 u e two egments, CODE_SEG and

DATA_SEG. The IBM version of the a embler tell LINK to load these seg
ments into memory in alphabetic order. o when we wrote:

CGROUP GROUP CODE_SEG, DATA_SEG
ASSOl1E_CS:CGROOP, DS:CGROOP

DATA_SEG
DATP._SEG

CODE_SEG
CODE_SEG

END

SEGMENT PUBLIC
ENDS

SEGMENT PUBLIC
ENDS

The IBM versions of the Macro As embler tell LINK to load DATA_SEG into
memory after loading CODE_SEG. Let's turn this code fragment into a real
program so that we can look at the load map.

Here's our new version. It doesn't do much, but it's enough for us to see how
LINK loads the segments into memory.

CGROOP GROUP COOE_SEG, DATA_SEG
ASSUME CS:CGROOP, DS:CGROUP

DATA_SEG
OB

OATr_SEG

CODE_SEG
ORG

11AIN: INT
CODE_SEG

END

SEGMENT PUBLIC
a
ENDS

SEGMENT PUBLIC
100h
20h
ENDS

11AIN

Peter Norton's Assembly Language Book 383

Type in this file, name it SEGTEST.ASM, and then assemble and link it to
create a load map:

A>LINK SEGTEST,SEGTEST,SEGTEST / MAP;

If you've got an IBM version of the assembler, you'll see this load map:

Wa r ning : no stack segment

Start Stop Length Name
OOOOOH 00101 H 00102H CODE SEG
00110H 0011 0H 0000 1H DATA_SEG

Origin Group
0000:0 CGROO P

Address Pu bl ics by Name

Address Publics by Value

Program entry poi nt at 0000 : 0100

Class

LINK loaded CODE_SEG into memory before DATA_SEG. This is exactly
the order we want. In fact, CODE_SEG must be the first segment in memory,
so our program will begin at lOOh from the start of the group.

On the other hand, your map may have had these two segments in reverse
order. That's a sign that you have a Microsoft version of the assembler. If you
do, you'll see the following load map, instead:

Warning: no stack segment

Start Stop Le ng th Name
OOOOOH OOO OOH 00001H DATA SEG
00010H 00111 H 00102H CODE_SEG

Origin Grou p
0000:0 CG ROUP

Add ress Publics by Name

Address Publics by Value

Progra m en tr y point at 0000 : 0110

Class

384 Segment Load Order

Nothing's right in this load map. DATA_SEG appears in memory before
CODE_SEG, and that means the ORG lOOh statement gives us an off: et from
the end of DATA_SEG, rather than from the tart of the group.

The last line in this map hows that the starting addre of our program is
now llOh. But it ha to be at lOOH for a .COM file . o, what will happen if we
try to create a .COM file from thi ?

Run EXE2BI and you'll see the following:

A>EXE2BIN SEGTEST SEGTEST. COM
Fi l e cannot be converted
A>

That' not a very u eful err r me age-it do n't gi e u a clu about why it
can't convert our program. But that' wh re th l ad map com in handy. By
looking at th load m p, we can ee h t LI K load d our egm nt int mem
ory in the wrong order. Then we ju t ha to figur out h w to fix the problem.

We've been careful in thi bo k t make ur that all the program will run
with both the Micro oft and M r ion of th a mbler. Thi i th rea on
we've placed the data egm nt after th code gm nt in all of our ourc file .

If, in your work with a mbly language program , you eith r creat or en
counter program in which the data ent pp ar at th top of the file, u e
the IA witch available with the Micro oft v r ion of MA M. The IA option
tell" MASM you want segments load d in alph b tic l order. To try out this
option reassemble our sample te t program, TE T.A M with the follow
ing command:

A>MASM SEGTEST/ A;

Link this file again and create a new load map. You hould now see the two
segments in alphabetic order, with CODE_SEG fir tin the file.

Phase Errors
We've been very careful that the examples run with all versions of the

Macro Assembler-IBM and Microsoft-by placing the data segment at the
end of our files. But this is not a good idea in many cases. In this section we'll
look at the problems, and at better ways to organize your segments.

Let's look at a concrete example:

Peter Norton's Assembly Language B ok 385

CODE_SEG SEGMENT PUBLIC
ASSUME CS:CODE_SEG, ES:DATA_SEG

BEGIN PROC NEAR
MOV AX,DATA_SEG ;Get the segment number
MOY ES,AX ;Set ES so it points to our data
MOV AL, VARIABLE ;Read ""variable'' into AL
MOV AH,t;Ch ;Exit to DOS
INT 21h

BEGIN ENDP

CODE _SEG ENDS

DATA_SEG SEGMENT PUBLIC
VARIA BLE DB 0
DATA_SEG ENDS

END BEGIN

We've placed the data segment at the end of this program to ensure that
DATA_SEG will be loaded into memory after CODE_SEG. But the assembler
generates a phase error message when we try to assemble it:

A>MASM TEST;
Microsoft (R) Macro Assembler Version t;.OO
Copyright (C) Microsoft Corp 1981, 1983, 198t;, 1985. All rights reserved.

TEST.ASM(10) : error 6: Phase error between passes

51036 Bytes symbol space free

0 Warning Errors
1 Severe Errors

What does phase error mean?
It turns out that the Macro Assembler makes several passes through a file

as it assembles it. On the first pass, it collects information it needs, such as
the type and segments of variables. In the interest of efficiency, the assembler
also starts to assemble the program on the first past; here is where we run
into problems.

MASM assembles the instruction MOV AL,VARIABLE before it knows
what segment contains VARIABLE, so it assembles the MOV instruction as if
we don't need a segment override (which is ES: in this case). On the second
pass, however, MASM notices that it needs to add a segment override since
VARIABLE is in the segment pointed to by the ES register. Unfortunately,

386 egrnent Load Ord r

MASM didn't reserve room for this override instruction during the first pass
(or phase), so it generates a phase error message.

We need to declare all variables before we use them in a file . If we do this,
and we're using the Microsoft Macro Assembler, the data segment will be first
in memory, which usually isn't a problem with .EXE files where we're most
likely to use multiple segments.

If, on the other hand you want the code segment to be loaded into memory
first, there is a simple solution: Simply place a dummy segment before your
data segment. You can see the detail in the following example.

CODE_SEG
CODE_SEG

DATA_SEG
VARIAB LE
DATA_SEG

SEGMENT PDBLIC
ENDS

SEGMENT PUBLIC
DB 0
ENDS

CODE_SEG SEGMENT POBLIC
ASSUME CS:CODE_SEG, ES:DATA_SEG

BEGIN PROC NEAR
HOV AX,DATA_SEG
110V ES,AX
HOV AL, VARIABLE
110V AH,~Ch

I NT 21h
BE GI N ENDP

CODE_SEG ENDS

END BEGI N

2BIN b

;Load CODE_SEG firs

;Get he seg ent number
; Se ES so 1 points o our data
;Read ttvariablett into AL
;Exit to DOS

onve
If you have problems with EXE2BIN, first check the load map to make sure

that CODE_SEG is the first segment. Also, make certain you only have two
segments listed. It's possible to have several different versions of the same
segment listed. For example:

OOOOOH 00103R 0010 ~ B CODE_SEG
001108 001058 000068 DATA_SEG
001208 00101R 001028 CODE_SEG

Peter Norton's Assembly Language Bo k 387

In this case, CODE_SEG is fragmented. If you see more than one piece of a
single segment in the load map, it means you've got problems, and they could
stem from several possible sources.

• You may not have a PUBLIC pseudo-op after all of your segment
definitions.

• You may have slightly different SEGMENT definitions in your source
files. Check all your source files and verify that all the SEGMENT defi
nitions are identical.

• One of your source files may be missing a GROUP statement or the
GROUP statement may not be correct. Check all of the group statements
carefully to make sure they're the same.

• If the GROUP statements are in order, check the ASSUME statements
to make sure they read:

ASSUME CS:CGROUP, DS:CGROUP

• You've defined a STACK segment .. COM programs don't need a STACK
segment, and, in fact, you must not define one.

• The entry point is not at lOOh. This may be because you didn't place the
starting procedure's name after the END pseudo-op in the main source
file, or that you've linked the files in the wrong order. The main proce
dure must be in the first file named in the LINK list.

You'll also find more information on error messages and what they may mean
in Appendix D.

APPENDIX D

COMMON ERROR MESSAGES

MASM 390
LINK 391
EXE2BIN 392

389

390 Common Error Me age

This appendix lists many of the more common error messages you may en
counter as you use MASM, LINK, and EXE2BIN. If you don't find an error
message listed here, check either your macro assembler or your DOS manual.

The error messages are in three groups: one for MASM, one for LINK, and
one for EXE2BIN. Within each section, you'll find the error messages listed
alphabetically.

MASM
Block n ting error You'll probab y see thi error me sage along with

either an Open procedures or an Open egment me age. ee the following
descriptions for these two error me age .

End of file, no END directiv You re either mi ing the END state-
ment at the end of your file , or you need to add a blank line after the existing
END statement. The Microsof ver ions of the macro as embler expect to find
a blank line at the very end of the file. If you don t have at lea tone blank line
after END, MASM won't read the END tatement.

Must be declared in pa 1 Thi error me age u ually appears in con
nection with a GROUP statement. It mean you haven't defined one of the
segments you listed in the GROUP tatement. For example, if you have the
line CGROUP GROUP CODE_SEG, DATA_SEG, but you never defined a
segment called DATA_SEG, you'll probably ee thi me age. Verify that
you've declared all the segments listed in the GROUP statement.

No or unreachable CS MASM needs to see an ASSUME statement in
order to know how to assemble some instructions, such as branch or CALL
instructions. This error message means MASM either couldn't find an AS
SUME statement or the ASSUME it found had an error in it. Check your
source file to make sure you have an ASSUME statement in it, and that the
statement is correct.

Open procedures This means that either you're missing a PROC or an
ENDP statement, or that the names aren't the same on one PROC/ENDP pair.
Make sure every PROC has a matching ENDP statement, and check the pro-

Peter Norton's Assembly Language Book 391

cedure name in both the PROC and the ENDP statements to make sure they
match.

Open segments You're missing a SEGMENT or cu1 E:NDS statement, or
the names aren't the same on one SEGMENT/ENDS pair. Make sure every
SEGMENT has a matching ENDS statement, and check the procedure name
in both the SEGMENT and ENDS statements to make sure they match.

Symbol not defined There are three things you should look for if you see
this error message:

1. You may have misspelled a name. Check the line you see in the error
display to make certain you've typed the name correctly.

2. You may have misspelled the name when you first declared a PROC or
a variable. Check the spelling of the names you see in the faulty line
against the names in the PROC or variable declarations.

3. You may be missing an EXTRN declaration, or the name in the EXTRN
may be misspelled.

Fixup offset exceeds field width This is a tricky one, and it's often the
hardest bug to swat. This message usually means you've declared some proce
dure as a FAR procedure, but later declared that same procedure as a NEAR
procedure in an EXTRN declaration.

It can also mean that a group has grown larger than the the 64K limit for
groups. You can check for such errors by looking at the size field in the map
file.

This message can also appear when your segment has become fragmented.
In such cases, the two fragments may be more than 64K apart, which means
that CALLs must be FAR CALLs to work. You'll find more information on
fragmented segments in Appendix C.

If that doesn't seem to be the problem, you'll have to search deeper. Read
Appendix C carefully, then create a load map of your program. You may find a
hint in this load map. For example, check the order of the segments. You may
find they are out of order.

Symbol defined more than once This means you've probably defined
the same procedure or variable in two source files. Make sure you've defined

392 Common Error M ag

each name in only one ource file, then use EXTRNs in other places where you
need to use the same procedure or variable.

Unresolved external When you see this me age either a PUBLIC i
missing from the file in which you declared the procedure or variable or you
misspelled the name in an EXTRN declaration in ome other ource file.

Warning: no tack gment This i n't really an error me sage it' im
ply a warning. You ll see thi warning me age for the example in thi book,
because we're creating .COM file , and .COM file don t u e a eparate eg
ment for the stack. See Chapter 2 for a ample program that do n't cau e
LINK to di play thi warning.

2
File cannot b conv rt d Thi i probably the only rror me age you'll

see from EXE2BIN and it' not a ry h lpful on . Mo t of the time it can
mean one of three thing :

1. Your egment are in the wrong ord r thu you have a egment in
memory before ODE_ E . heck the 1 ad map to ee if thi i your
problem. For more information, read App ndix

2. Your main program i not the fir t file you Ii t d in your LINK li t. It
mu t be, so try relinking to make sure thi i n't the problem. Again, you
can often pot thi type of problem by looking at the load map.

3. Your main program doe not have an ORG lOOh a the fir t tatement
after the CODE_SEG EGMENT PUBLIC declaration. Al o, make
sure the END tatement in your main ource file include the label of
the instruction at which you want to tart-for example, END
DSKPATCH.

If the e sugge tion don't help, check Appendix C for more information.

APPENDIX E

MISCELLANEOUS TABLES

ASCII Character Codes 394
Extended Keyboard Codes 396
Table of Addressing Modes 397
INT lOh Functions 398
INT 21h Functions 401

393

394 Mi llan u Tabl

Table £ .. 1. ASCII Character Codes

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

8 8 43 2B + 86 S6 v 129 81 u
1 1 g 44 2C 87 S7 w 138 82 ' z 2 a 4S 2D 88 SB x 131 B3 ' 3 3 ' 46 2E 89 59 '{ 132 84 I
4 4 • 47 2F I 98 SA z 133 es l
s s t 48 38 e 91 SB [134 86 1
6 6 t 49 31 1 92 SC \ 135 87 s
7 1 58 32 2 93 SD 1 136 8B • • e
8 8 a 51 33 3 94 SE A 137 89 e
9 9 0 52 34 4 95 SF 13B BA ' e

18 A m 53 35 5 96 68 139 BB i'
11 B G 54 36 6 97 61 l 148 BC ..

1
12 c ¥ 55 37 1 9B 62 ~ 141 SD ' 1
13 p r 56 3B 8 99 63 c 142 BE A
14 E n 57 39 9 108 64 ti 143 BF • A
15 r • SB 3A 101 65 e 1H 98 £
16 I ~ 59 3B 102 66 r 145 91 I
17 11 ~ 68 3C < 103 67 g 146 92 R
18 12 i 61 3D = 104 6B h 147 93 6
19 13 !! 62 3E) 105 69 148 94 0
28 14 • 63 3F ? 186 6A J 149 95 0
21 15 § 64 48 i 187 6B k 158 96 A u
22 16 65 41 A 10B 6C 1 151 97 ' • u
23 17 l 66 42 B 189 6D • 152 98 .. y
24 1B t 67 43 c 118 6E n 153 99 ~
25 19 ' 68 44 D 111 6F 0 154 9A Ll
26 1A ~ 69 45 E 112 78 p 155 9B ¢
27 1B • 70 46 F 113 71 f(156 9C £
28 1C L 71 47 G 114 72 I' 157 91) ¥
29 1D .. 72 4B H 11S 73 s 15B 9£ I
38 1E ' 73 49 I 116 74 t 159 9F I
31 1F ' 74 4A J 117 75 u 168 AB I
32 ZB 75 4B)(118 76 161 Ai I v l
33 Z1 ! 76 4C L 119 77 w 162 AZ 6
34 22 " 77 4D t1 128 78 163 A3

,
x u

35 23 I 78 4E " 121 79 y 164 A4 ii
36 24 $ 79 4F 0 122 7A z 165 AS N
37 25 :.< 88 58 p 123 7B { 166 A6 !

3B 26 a 81 51 Q 124 7C 167 A7 !

39 27 ' 82 52 R 125 ?D } 16B AB l
48 28 (83 53 s 126 7E 169 A9 ,.
41 29) 84 54 T 127 7F 6 178 AA ,
42 ZA • 85 55 u 128 88 ~ 171 AB %

Peter Norton's Assembly Lan 1uag B ok 395

Table E-1. continued

Dec Hex Char Dec Hex Char Dec Hex Char Dec Hex Char

172 AC % 19J C1 J. 214 DG

f
2J5 EB ' 17J AD i 194 C2

T
215 D7 2JG EC •

174 AE c 195 CJ 21G DB 2J7 ED -17S AF • 196 C4 - 217 D9 2JB EE E
176 BB I 197 cs

1
21B DA

'
239 EF n

177 B1 198 CG 219 DB 24e re -
178 12 199 C7 22e DC

~
241 F1 ±

179 BJ 208 CB 221 DD 242 F2 ~
188 B4 201 C9 I 222 DE 24J FJ i
1B1 BS 202 CA ZZJ DF 244 F4 I 182 BG 20J CB 1 224 E8 IC 245 rs
18J B7 204 cc 225 E1 " 24G FG .

1 .
184 BB

t
20S CD = 22G E2 r 247 F7 --18S B9 20G CE • 227 EJ I 248 FB •

18G BA 287 CF I 22B E4 I 249 F9
187 BB] 208 De I 229 ES r 258 FA
188 BC 209 Di 'f 2J8 EG JI 2S1 FB .J
189 BD J 218 DZ 2J1 E7 T 252 FC I

190 BE J 211 DJ I 2JZ EB I 25J FD z
191 BF l 212 D4 " 2JJ E9 e 254 FE I

192 c0 L 21J DS f 2J4 EA Q 25S FF

396 isc llan ou Table

Many of the keys on the keyboard (such as the function keys) return a two
character code when you read the keys through DOS: A decimal 0 followed by
a scan code. The following table show the scan code for all the keys that
have no equivalent ASCII code.

15
16-25
30-3
44-50
59-6
71
72
73
75
77
79
0
1
2
3
4-93

94-103
104-113
114
115
116
117
11
119
120-131
132

Tabl E-2. Extended Keyboard Cod

hift Tab
Alt ke ~ r , W, E, R, T, Y, U, I, , P
Alt ke · for A, , , F, G, H, J, K, L
Alt ke fi r Z, , C. , B , M
Fl thr u h FlO
Hm

ur r U
PgU

ur r L ft
ur r Right

En<l
Cur r own
p On
In
DI

hift Fl thr u h FIO
C ntr I Fl chrou h FIO
Alt Fl rhr ugh FlO
C ntrol Prt c
Contr l L ft Cur or
Contr l Right Cur r
C ntrol End
Contr I PgDn
C ntrol Home
Coner I Alt for I, 2, 3, 4, 5, 6, 7, , 9, 0, ~, -
Control PgUp

Peter Norton's Assembly Language Book 397

Addressing Mode

Register

Immediate

Register Indirect

Base Relative*

Direct Indexed*

Base Indexed*

String Commands:

Table£ ..). The Addressing Modes

Format of Address

register (such as AX)

data (such as 12345)

Memory Addressing Modes

[BX]
[BP]
[DI]
[SI]

label[BX]
label[BP]

label[DI]
label[SI]

label[BX + SI]
label[BX +DI]
label [BP + SI]
label[BP+ DI]

(MOVSW, LODSB, and so on)

Segment Register Used

None

None

DS
SS
DS
DS

DS
SS

DS
DS

DS
DS
SS
SS

Read from DS:SI
Write to ES:DI

* Label[...] can be replaced by [disp + ...], where disp is a displacement.
Thus, we could write [lO+BX] and the address would be 10 +BX.

398 i. i cellan ou Table

(AH)=O

(AH)= 1

(AH)=2

(AH)=3

Table E .. 4. INT lOh Functions

Set the display mode. The AL registers contain the
mode number.

(AL) =0
(AL)= 1
(AL) =2
(AL) =3
(AL)= 7

CAL)=4
(AL)=5
CAL) =6

TEXT MODE
40 by 25, black and white mode
40 by 25, color
80 by 25, black and white
80 by 25, color
80 by 25, monochrome display adapter

RAPHI M E
320 by 200, color
320 by 200 black and white
640 by 200 black and white

Set the cur or ize.
(CH Starting can line of the cur or. The top line is

0 on both the monochrome and color graphics
di play while the bottom line is 7 for the col
or graphic adapter and 13 for the mono
chrome adapter. Valid range: 0 to 31.

(CL La t can line of the cursor.

The power-on etting for the color graphics adapter is
CH=6 and CL=7. For the monochrome display: CH= 11
and CL= 12.

Set the cursor position.
(DH DL) Row, column of new cursor position; the up

per, left corner is (0,0).

(BH) Page number. This is the number of the dis
play page. The color-graphics adapter has
room for several display pages, but most pro
grams use page 0.

Read the cursor position.
(BH) Page number
On exit (DH,DL)

CCH,CL)
Row, column of cursor
Cursor size

Peter Norton's A sembly Langu. ge B k 399

Table E-4. (continued)

(AH)=4

(AH)=5

(AH)=6

(AH)=7

(AH =8

(AH)=9

(AH)= 10

(AH)= 11 to 13

Read light pen position (See Tech. Ref. Man.)

Select active display page.
(AL) New page number (from 0 to 7 for modes 0

and 1; from 0 to 3 for modes 2 and 3)

Scroll up.
(AL)

(CH,CL)
(DH,DL)
(BH)

Number of lines to blank at the bottom of the
window. Normal scrolling blanks one line. Set
to zero to blank entire window.

Row, column of upper, left corner of window
Row, column of lower, right corner of window
Display attribute to use for blank lines

Scroll down.

Same as scroll up (function 6), but lines are left blank at
the top of the window instead of the bottom

Read attribute and character under the cursor.
(BH) Display page (text modes only)
(AL) Character read
(AH) Attribute of character read (text modes only)

Write attribute and character under the cursor.

(BH) Display page (text modes only)
(CX) Number of times to write character and attri-

bute on screen
(AL) Character to write
(BL) Attribute to write

Write character under cursor (with normal attribute).

(BH) Display page
(CX) Number of times to write character
(AL) Character to write

Various graphics functions. (See Tech. Ref. Man. for
the details.)

400

Table E .. 4. (continued)

(AH)= 14

(AH) = 15

Write teletype. Write one character to the creen and
move the cur or to the next po ition.

AL) haracter to write
(BL) olor of charact r graphic mode only
(BH) Di play page text m d

Return curr nt vid o tate.

AL Di pla m de curr ntly et
(AH) umb r of charact r p r lin
BH Activ di pl y p g

Peter Norton's Assembly Language Book 401

This table contains the INT 21h functions used in this book. For a more
complete list, you should buy the IBM DOS Technical Reference manual.

(AH)=l

CAH)=2

(AH)=8

CAH)=9

(AH)=OAh

Table E-5. INT 21h Functions

Keyboard input. This function waits for you to type a char
acter on the keyboard. It echoes the character to the screen,
and returns the ASCII code in the AL register. For extended
keyboard codes, this function returns two characters: an ASCII
0 followed by the scan code (see Table E-2).

(AL) Character read from the keyboard.

Display output. Displays one character on the screen. Sev
eral characters have special meaning to this function:

7
8

9

OAh
ODh

(DL)

Beep: Send a one-second tone to the speaker.
Backspace: move the cursor left one character posi
tion.
Tab: Move to the next tab stop. Tab stops are set to
every 8 characters.
Line feed: Move to the next line.
Carriage return: Move to the start of the current
line.

Character to display on the screen.

Keyboard input without echo. Reads a character from the
keyboard, but doesn't display the character on the screen.

(AL) Character read from keyboard.

Display string. Displays the string pointed to by the DS:DX
pair of registers. You must mark the end of the string with the
$ character. ·

DS:DX Points to the string to display.

Read string. Reads a string from the keyboard. See Chapter
23 for more details.

402 \fi ccllanc u Table

Table E .. 5. (continued)

(AH)= 4Ch Exit to DOS. Returns to DOS, like INT 20h but it works
for both .COM and .EXE programs. The INT 20h function used
in this book only works for .COM program .

(AL) Return code. Normally et to 0, but you can set it to
any other number and u e the DO batch com
mand IF and ERRORLEVEL to detect error .

INDEX

A
A, Debug's assemble command, 40
ADC, 49
ADD, 24, 25
Adding one, INC, 77
Addition with carry, 49
Addition, hexarithmetic command, 6
Addresses, 24

CALL and segments, 127
CS:IP pair, 118
effective and LEA, 171
interrupt instruction, vectors, 131
labels, 96
locations in memory, 23
map files , 288
modes, 150, 397

base indexed, 156
base relative, 153, 156
direct mode, 156
direct indexed, 156
immediate, 156
indirect memory, 153
register, 156
register indirect, 156
table, 397

OFFSET pseudo-op, 221
PUBLIC, 290
RET and segments, 127
segment override, 312
segments, 120

AL register, the LODSB instruction, 185
AND instruction, 66
Area in front of programs, scratch, 123, 124
Arithmetic shift, SHL, 72
ASCII, codes, 37, 394
ASCII, extended, 396
Asm, '.asm' source file , 88
Assemble in Debug, 40
Assembler

automatic, 166
comments, 94
labels, 94
output, object file , 89
passes, 315
phase errors, 315
pseudo-op, 91

ASSUME, 126

403

Assembler pseudo-op (continued)
BYTE, 222
DB, 121
DUP, 121
END, 91, 301
ENDP and PROC, 101
ENDS and SEGMENT, 125
EQU, 159
EXTRN, 141
FAR and NEAR, 101, 128
GROUP, 154
NEAR and FAR, 101, 128
OFFSET, 221
PROC and ENDP, 101
PTR, 155
PUBLIC, 105, 140
SEGMENT and ENDS, 101, 125
WORD, 222

segment load order, 382
segment override, 312

Assignment, EQU pseudo-op, 159
Assignment, the MOV instruction, 41
ASSUME pseudo-op, 126, 313

groups, 153
segment overrides, 126

Attributes, inverse and normal, 210
WRITE ATTRIBUTE_N_TIMES, 241
writing characters and, 210

Automatic assembly, 166
Automatic response, LINK, 283
AX, general purpose register, 22

B
B, binary numbers, 16
BACK_SPACE, 268
Base 16, hex, 8
Base 2, binary, 16
Base relative addressing mode, 153
BASIC CLS command, 199
Basic input output system, ROM BIOS, 194
Binary numbers, 16

converting to decimal, 110
group of four bits, Nibble, 64 .

BIOS, Basic input output system m ROM,
194
functions in VIDEO_IO ROM, 194

404 lnde

BIOS (continued)
INT lOh function 2, set cursor position,

195
INT lOh function 3, read cursor

position, 196, 212, 215
INT lOh function 6, croll page up, 196,

213, 215, 230
INT lOh function 9, write
char./attribute, 197, 210, 215

Bits, 19
group of four, Nibble, 64
setting with OR, 114

Block nesting error, 390
Boundary condition , 63, 72
Boundary condition printing a numb rm

hex, 63
Breakpoint for Debug' G, 54
BS, back space constant, 270
Bug , finding, 282, 2 5
BX, general purpo e regi ter, 22
Byte, 16
BYTE p eudo-op, 222
BYTE PTR, 222
Byte regi ter , changing in Debug, 30
Bytes and words, mixing. 222

ALL instruction, 76, 102
NEAR and FAR, 12
segments 127
the stack, 78

Carry Flag, 48
Central dispatcher, 21
CF, the Carry Flag, 48

errors, 145
CGROUP, group name, 154
Changing memory in Debug, 24, 28
Changing registers in Debug, R, 22
Character attributes, WRITE
A'ITRIBUTE_N_TIMES, 24l

Character codes, 394
extended, 396
reading a string, 269
reading with READ_BYTE, 222
writing attributes and, 210
writing strings of, 206

Characters, 70
CL, count register and rotates, 64, 72
CLD instruction, 186
Clear direction flag, CLD, 186
Clearing registers with XOR, 113

Clearing the creen, 199
BASIC CLS, 199

Clearing window , 198
CLEAR_SCREEN, 19
CLEAR_TO_END_OF _LINE, 213
Clock interrupt, 130
CLS, the BA IC command, 199
CMP, compare in ruction, 60

comparing to 0 with OR, 113
ode egment, 27
ode gmen regi ter, , 11

M, '.com' file , 92
creating '.com' file , 152
group and '.com' fil , 154

ommand file, LI K, 2 3
ommand lin , 132
omm nl h ader, 146
omm n and modular d ign, 106
ommen , th , 94
ommon error m ag , 390
ompar with R, 113
omput r , kludge , 11
ondition l Jump in truction , 59
J ' 2
JB, 2
JL, 63
JLE, 71
J Z, 60
JZ, 60
on tan , R, B , and ESC, 270

Con tan , E U p udo-op, 159
Converting binary to d cirnal number , 110

onvertmg D cimal to Hex, 12
Con erting Hex to Decimal, 9

onverting negative number to two'
complement, 19

CONVERT _HEX_DIGIT, 259
CR, carriage return con tant, 270
CR, carriage return or enter, 159
CRLF, carriage return/line feed, 158, 159
CS, code egment, 27
CURRENT_SECTOR_NO, 202, 205
Cur or movement, INT lOh function 2, 195,
199-201

Cur or position, read, 211
Cursor, moving the, 199
Cursor, moving to right, 211
Cursor.asm, 159, 198, 199, 204, 211, 213
CURSOR_RIGHT, 211
ex, general purpose register, 22
ex, the count register, 145
CY, the carry flag, 48

D
D, Debug's dump command, 44
Data segment, 120

multiple, 312
segment for variables, 153

Data types, mixing, 222
Data

ASSUME pseudo-op, 313
DISPATCH_TABLE, 220, 282
immediate addressing mode, 150
segment override, 312

DB, define byte, 129
Debug, 136

G command, breakpoints, 54
how tracing works, 36-38
load command, L, 134
starting and leaving, 5
trace command, 27, 36

Debugging, 5
PUBLIC, 140
symbolic, 287
techniques, 282, 285

Decimal numbers, converting from binary,
110

Decimal, converting Hex to, 9
Decimal, converting to Hex, 12
Define byte, DB pseudo-op, 121
Define with EQU pseudo-op, 159
Deleting characters, BACK_SPACE, 268
Designers of the 8088, Intel , 317
Destination Index register, 112
DI register, 112
Direct addressing mode, 156
Direction flag, 186
Directories, diskette, 134
Disk directories, 134
Disk sectors, 134

reading sectors with INT 25h, 1 73
reading with READ SECTOR 184
writing, 281 - '
writing modified sectors with F5, 280

DISK_DRIVE_NO, 202, 203
Disk_io.asm, 173, 184, 198, 203, 224, 281
DISK_PATCH, 202, 207, 219
Dispatch.asm, 219, 246, 249, 276, 280
Dispatcher, 218, 219, 249, 276
DISPATCH_TABLE, 220, 282
Display header, 205
Display registers, 22
Display, INIT_SEC_DISP, 184
Display, using ROM BIOS with, 194

Peter Norton's Assembly Language Book 405

DISP _HALF _SECTOR, 158, 168
DISP_LINE, 156, 162, 176, 177, 179, 181
Disp_sec.asm, 151, 156, 160, 167, 176, 177,

179, 181, 184, 187, 200, 202, 236
DIV, 33
Dividing memory into segments, 24
Division, 33

remainder, 14
Documentation, comment header, 146
DOS function 25h, reading sectors, 1 73
DOS functions, 401
DS, data segment, 120
Dskpatch.asm, 201, 207
Dumping memory with Debug's D, 44
DUP, the assembler pseudo-op, 121
Duplicate, the assembler DUP pseudo-op
121 '

DX, general purpose register, 22

E
E, Debug's enter command, 24, 28
Echoing characters, 81
Editing memory, EDIT_BYTE, 250
Editor.asm, 251
EDITOR_PROMPT, 219
EDIT_BYTE, 250
Effective address, LEA, 171
End of file, no END directive, 390
End of lines, clear to, 212
END pseudo-op, 91, 301

.EXE files and, 301
use in separate source files, 142

Endless, see Loop
End-of-string marker, 206
ENDP pseudo-op, procedures, 101, 125
Enter, Debug's enter command, 24, 28
Entering programs, 40
EQU pseudo-op, 159
Equate, the EQU pseudo-op, 159
ERASE_PHANTOM, 241
Erasing characters, BACK_SPACE, 268
Error messages

EXE2BIN, 386
MASM, 390
phase errors, 385
possible causes, 390

Errors, debugging to remove, 5
Errors, the carry flag, 145
ES, extra segment, 120
ES, segment override, 120, 312
ESC, escape constant, 270

406 lndc ·

Exclusive OR, 113
EXE, '.exe' and '.com' file , 120, 121
EXE, '.exe' file , 92
Exe2bin, 92

file cannot be converted, 3 6
Execute, 26
Execution, ingle- tep, 26
Exit d kpatch-FlO, 226
Exit, the I T 20H in truction, 3
Extended keyboard code , 70, 396
External, EXTR p udo-op, 141
Extra egment, 120
EXTRN p eudo-op, 141

linking file together, 143

F
Fl-FlO, p cial function k y mput 70

Fl-read pr iou ctor, 226
F2-read n xt ctor, 226
F5-write mod1fi d ctors, 2 0
Fl~xit d kpatch, 226

Far CALL, 127
FAR p eudo-op, 12
Far RET, 12
File cannot be convert d, 3 6
File directorie , 134
File, make format, 167
File , name in D ug, 42
File , writing in Debug, 43
Finding procedur in memory, 2 5
Fixup off: et exceed field width, 391
Flag

carry, 4
direction flag, 1 6
IRET and, 130
overflow, 59
POPF in truction, 173
regi ter, 130
aving and re toring, 1 6

INT in truction and, 130
ign, 59

zero 58
Floppy disks, 134

directories, 134
sectors, 134

reading with INT 25h, 172
reading with READ_SECTOR 184
writing 281

FOR-NEXT, the LOOP instruction, 50
Fragmented segments, 387, 391

Function key , 70
Fl-read pre iou ector, 226
F2-read next ctor, 226
F5-write modified ctor , 2 0
Fl~xit dskpatch, 226

Function numb r for ROM BIO VIDEO_
I , 194
function 2, t cur or po itlon, 195
function 3, read cur or po ition, 196, 212,
215

function 6, croll pag up, 196, 213, 215,
230

function 9, writ ch r ./attr. 197, 210, 215

H, h xanthmehc, 6
hexadecimal numb r , 9

H, for hexadecimal number in the
a embler, 9

Header at top of screen, 205
HEADER_LI E_ 0, 202
HEADER_P ART _I, 202
HEADER_P ART _2, 202
Hexadecimal, 7

converting Decimal to, 12
converting to Decimal, 9
number in the as embler, 89
origins, 7
printing in, 66
reading a single digit, 71

Hexarithmetic, 6
HEX_TO_BYTE, 259
Humans, 40
Hyphen, Debug' prompt, 6

I
IF-THEN, conditional jumps, 59, 60

CMP instruction, 60
status flags, 59, 60

Immediate mode, 156
INC instruction, 36, 77
Incrementing, INC, 77
Index registers, SI and DI, 112
Indirect memory addressing mode, 153
INIT_SEC_DISP, 184, 198, 200, 236
Instruction addresses, CS:IP, 118
Instruction pointer, 26, 27

IP register, 118
Instructions, machine language, 24

LEA, 171
LODSB, 185
segment override, 312

INT instruction, 36, 130
INT 1, single-step interrupt, 131
INT lOh functions , 194, 398

function 2, set cursor position, 195
function 3, read cursor position, 196,
212, 215

function 6, scroll page up, 196, 213,
215, 230

function 9, write char./attr. , 197, 210,
215

INT lOh, Video_io in ROM BIOS, 194
INT 20H, 38
INT 21H, 36
INT 21h functions, 401

function 1, read character, 70-71, 73
function 8, reading characters without
echo, 81

function 9, write string, 43
INT 25h, DOS function to read disk
sectors, 170

tracing with the P command, 54
Intel, 317
Interrupt vectors, 131
Interrupt, stack after an, 130
Interrupt, the clock, 130
Interrupt, the INT instruction, 129
Interrupts, return from, 131
Intersegment CALL, 127
lntersegment RET, 128
lntrasegment CALL, 127
Intrasegment RET, 128
Inverse video, 210
IP register, 118

Peter Norton's Assembly Language Bool< 407

IP, instruction pointer, 26, 27
IRET, return from interrupt, 130

J
JA, jump if above, 82
JB, jump if below, 82
JL, jump if less than, 63
JLE, jump if less than or equal, 71
JNZ, jump if not zero, 60
JZ, jump if zero, 60

K
Kbd_ io.asm, 222, 259, 264, 269, 270, 273
Keyboard codes, extended, 396
Keyboard input without echo, 81
Keyboard input, INT 21h function 1, 401
Keys, function codes, 70
Kludge, a make-shift fix, 118

L
L, Debug's load command, 134
Labels, 94

addresses, 24
segments, and ASSUME, 126
symdeb and, 287

Large programs, 140
debugging, 282

Laws, the three of modular design, 144
LEA instruction, 1 70
Leaving dskpatch -- FlO, 226
LET, the MOV instruction, 41
LF, line feed, 158
LIFO, last in first out, 78

the stack, 78
Limbo, 27
Line, writing prompt, 223
Lines, clear to end of, 212
LINES_ BEFORE_SECTOR, 202
LINK, 92

automatic response, 283
map files and, 283
/map switch, 283
PUBLIC pseudo-ops, 105
segment load order, 161, 382

Linkinfo, LINK response file, 283
Linking, 92

separate files , 143
together files , 152

408 In

Listing a program, Debug' U, 39
Load map, 2 5
Load order of segmen , 161 , 3 2
LOad trmg Byte, LOD B in truction, 1 5
Loading a byte with L D B, 1 5
Loading ector , Debug' L, 134
Local variable , 1
L ATE, cur or movement, 199
Location m memory, addr e , 24
L D B in truction, 1 5
Logical in truction , A , 65
Logical op ration , the X R, 113
Long ALL, 127
Long RET, 127
L P, 5
Loop, e End!

Machine od , 24
Machin languag , 24, 2
Mak , 166

Make fil , form t , 167
Mak fil , new er ion , 225
Make htft fix , kludg , 11
Map fil , er atmg, 2 3, 2
Map ym, creating map fil , 2
MAM

A UME p udo-op, 315
error me ag , 390
pha e error 315, 3 5

gment load order, 3 2
egment override, 312

Memory, 24
addre ing in truction with :IP, 11
addre ing mode , 150, 397
A UME p eudo-op, 126, 315
ba e relative addre mg, 153, 156
data egment, 152
DB p eudo-op, 121
direct addre ing, 156
dividing into egmen , 24
editing with EDIT_BYTE, 250
how words are tored , 115
indirect memory addre ing, 153
label for , 24
map, 283
offset 24
order of segments in , 3 2
PUBLIC and, 290
ROM chip 194
segment overrides, 126

Memory (cont in u d)
egment r gi ter , 120
egmenting, 11
tack in, 123
ymdeb and , 2 7

wntmg to with WRITE_T _MEMORY,
251

N, Debug's name command, 42
Names in Debug, 42
Name in Symdeb, 287
NC, the carry flag, 48

0

function ,

Near CALL, 128
Near labels, 96
NEAR pseudo-op, 101, 128
Near RET, 128
Negative numbers, 18, 29

sign bit, 18
sign flag, 59

New programs, starting point, 107
Next instruction, 27
Next sector, F2, 226
NEXT _SECTOR, 224
NG, sign flag, 59
Nibble, 64
No or unreachable CS, 390
Normal attribute, 210
Numbers, converting binary to decimal, 110
Numbers, overflow flag, 59
Numbers, sign flag, 59
NV, overflow flag, 59
NZ, zero flag , 58

OBJ, '.obj' files, 91
Object file , assembler output, 91
OFFSET pseudo-op, 221
Offset within segment, 24
Open procedures, 390
Open segments, 391
OR instruction, 113

CMP a number with 0, 113
setting bits, 113

Order of segments, 382
ORG lOOh and the scratch area, 124
OV, overflow flag, 59
Overflow flag, 59
Overflow, the Carry Flag, 48
Overrides, segment, 136, 312

p

P, the proceed trace command, 54
Passes, assembler, 315

phase errors, 315, 385
Passing information, standards, 145
Patterns, WRITE_PATI'ERN, 182
PC-DOS and Debug, 136
Phantom.asm, 237, 247, 292, 293
PHANTOM_CURSOR_X, 238
PHANTOM_DOWN, 247
PHANTOM_LEFT, 248
PHANTOM_RIGHT, 248

Peter Norton's Assembly Languag Boo1 409

PHANTOM_UP, 247
Phase errors, 385

meaning o~, 315
PL, sign flag, 59
POP and PUSH to save and restore
registers, 145

Pop off the stack, 79
POPF instruction, 173, 186
POS, reading cursor position, 212
Position, read cursor, 212
Positive numbers, overflow flag, 59
Positive numbers, sign flag, 59
Previous sector, Fl , 226
PREVIOUS_SECTOR, 224
PRINT, INT 21H function 9, 43
Printaj .asm, 102
Printing in hexadecimal, 66
PRINT_A_J, 101
PROC pseudo-op, procedures, 101
Procedure addresses, OFFSET pseudo-op,
221

Procedures, 76
BACK_SPACE, 268
CLEAR_SCREEN, 198
CLEAR_TO_END_OF _LINE, 213
CONVERT_HEX_DIGIT, 259
CURSOR_RIGHT, 211
DISK_PATCH, 207, 219
DISPATCHER, 218, 249, 276
EDIT _BYTE, 250
ERASE_PHANTOM, 241
external, 141
finding in memory, 285
HEX_ TO _BYTE, 259
INIT_SEC_DISP, 236
local variables, 81
make 'em short, 145
MOV _TO_ASCII_POSITION, 240
MOV _TO_HEX_POSITION, 240
NEXT _SECTOR, 224
PHANTOM_DOWN, 247
PHANTOM_LEFT, 248
PHANTOM_RIGHT, 248
PHANTOM_UP, 247
PREVIOUS_SECTOR, 224
PROC and ENDP, 101
READ _BYTE, 223, 259, 273
READ _DECIMAL, 263
READ_STRING, 258, 270
RESTORE_REAL_CURSOR, 239
SAVE_REAL_CURSOR, 239
saving and restoring registers, 80, 145
SCROLL_DOWN, 293

410 n

Procedures (continued)
SCROLL_UP, 293
STRING_TO_UPPER, 259
Symdeb and, 287
TEST, 257, 266
WRITE_ATTRIBUTE TIMES 241
WRITE_CHAR, 210 - - '
WRITE_HEADER, 205 , 214
WRITE_PHANTOM, 237
WRITE_PROMPT_ Ll E, 223
WRITE_ E T R, 2 1
WRITE_ TRING, 207
WRITE_TO_MEM RY, 251

Proce d, the P trac command, 54
Program text, source file ,
Program trace, the P command, 54
Program , keletal , 107
Prompt line, writing, 224
PR MPT _LINE_ , 21 , 219
P eudo-op , 94

a embler comm nd , 91
A UME. 126
BYTE, 222
DB, 121
DUP, 121
E D, 91 , 301
ENDP and PR , 101
E D and EGME T 125
EQU , 159
EXTRN, 141
FAR and NEAR, 101, 12
GROUP, 154
NEAR and FAR 101, 12
OFF ET, 221
PRO and ENDP, 101
PTR, 155
PUBLIC, 105 140
SEGMENT and END , 101, 125
WORD, 222

P P , Program Segment Prefix, 124
PTR p eudo-op, 155
PUBLIC p eudo-op, 105, 140

map files and, 283
Symdeb and, 287

PUSH and POP to ave and re tore
registers, 145

Push onto tack 79
PUSHF in truction 1 6

Quitting dskpatch-FlO, 226

R
R, Debug' regi ter command 22

changing byte regi ters, 30
1

RCL, 49
Read cur or po ition, 212
Read next ctor, F2, 226
Read only memory chip, ROM, 194
Read previo ctor Fl , 226
Reading a tring of character , 269
Reading character

INT 21h function l , 70.-71 73
READ_BYTE, 223
tring of character , 1 5

without cho, 1
Reading d1 k tor , DO function 25h, 172
R ading h xad c1mal digi , 71
Reading m mory , L D B 1 5
Reading ctor

D bu L, 135
D function 25h , 172
PR VI U _ E TOR and NEXT

E T R, 224 -
R A _ E T R, l 4

READ_ BYTE, 223, 259, 273
READ_ IMAL, 263

le tin , 265
READ_ E T R, 169 1 4, 202
READ_ TRI G, 25 , 270
REAL_ U R_X, 239
REAL_ URS R_Y, 239
Regi ter , 22

A UME and egment, 126
changing byte with Debug's R, 30
changing them in Debug, 22
c . 11
di play with Debug's R, 22
flag, 130
general purpo e, 22
IP, 11
mode 150

ba e indexed, 156
base relative, 153, 156
direct mode, 156
direct indexed, 156
immediate 156
indirect memory, 153
register, 156
register indirect, 156

saving and re toring, 145
segment, 120

ASSUME, 314
overrides, 126

SI and DI registers, 112

Registers (continued)
special purpose, 22
usage, 145

REM, comment statements, 94
Remainder, 14, 31, 33
Removing errors, debugging, 5
Repeat count, the LOOP instruction, 50
RESTORE_REAL_CURSOR, 239
Restoring flags, POPF, 186
Restoring registers from the stack, 79
RET instruction, 77, 102

NEAR and FAR, 128
segments, 127
the stack, 78

Return address, the stack, 78
Return from interrupt, IRET, 130
RETURN, the RET instruction, 76
Reverse video, 210
Road map, map files , 283
ROM, read only memory chip, 194
ROM BIOS functions in VIDEO_IO, 194

INT lOh function 2, set cursor position,
195

INT lOh function 3, read cursor position,
196, 212, 215

INT lOh function 6, scroll page up, 196,
213, 215,

INT lOh function 9, write char./attribute,
197, 210, 215

Rotate instruction, 49
Rotate through carry, 49
Rotates, SHR, 64
Rotates, the count register, 64
Routines, in ROM BIOS, 194

s
SAVE_REAL_CURSOR, 239
Saving a file to disk from Debug, 43
Saving and restoring registers, 106, 145
Saving flags with INT instruction, 130, 131
Saving registers on the stack, 78
Saving the flags, PUSHF, 186
Scan code, 70
Scratch area in front of programs, 123, 124
Screen functions, 398

see also ROM BIOS
Screen swapping, 288

Symdeb, 288
Screen, clearing the, 199
Screen, using ROM BIOS with, 194
Scrolling the sector display, 292
Scrolling, SCROLL_ UP and SCROLL_
DOWN, 293

Peter Norton's Assembly Language Book 411

SECTOR, 151, 160, 201, 202
Sector display, INIT_SEC_DISP, 184
Sector dispk.y, scrolling the, 292
Sectors, disk, 130

editing with EDIT _BYTE, 250
Fl previous sector, 226
F2 next sector, 226
F5 key to write modified, 280
previous and next with Fl and F2, 226
reading, 134

Debug's L, 134
DOS INT 25h function, 1 72
PREVIOUS_SECTOR and NEXT_
SECTOR, 224

READ _SECTOR, 184
writing disk, 281

SECTOR_OFFSET, 201
SEG, segment override, 313
Segment offset, 24
Segment overrides, 126

ASSUME and, 126
instruction, 312
phase errors, 385

SEGMENT pseudo-op, 126
Segment registers, 120

ASSUME pseudo-op, 126
CS, 118

Segments, 24
ASSUME pseudo-op, 126
CALL and RET, 127
ENDS and SEGMENT, 101, 125
FAR, 127
fragmented, 387, 391
GROUP pseudo-op, 154
labeling, 24
load order, 151, 152
multiple, 312
NEAR, 96, 127
PUBLIC pseudo-op, 140
SEGMENT and ENDS pseudo-op, 101,

125
SEND_CRLF, 158
Separate source files, 140

linking, 141, 152
modular design, 144

Setting bits with OR, 113
Shift, SHL, 72
SHL, shift left instruction, 72
Short CALL, 127
Short RET, 127
SI register, 112
Sign bit, 18, 59
Signed numbers, 15

412 Index

Single-step execution, 27
breakpoints, 54
trap flag and, 131

Skeletal program, 107
Software interrupt, INT instruction, 129
Source file, 91

Cursor.asm, 159, 198, 204, 211, 213
Disk_io.asm, 170, 184, 198, 203, 224, 281
Dispatch.asm, 159, 167, 171, 173, 219,
246, 249, 276, 280

Disp_sec.a m, 176, 177, 179, 181, 1 4,
187, 200, 202, 236

Dskpatch.asm, 201, 207, 219
editor.asm, 251
kbd_io.a m 222, 254, 264, 269, 270, 273
phantom.a m, 237, 247, 292, 293
separate, 140
Te t .a m, 140, 257
Te t_seg.a m, 120
Video_io.a m, 142, 151, l 0, 1 2, 205,
206, 223, 242

ource Index regi ter, 112
SP, tack point r, 7
Special function key

keyboard input, 70
reading with REA _BYTE, 223
table, 396

Special purpo e regi ter , 22
S, tack egment, 7 , 120
S :IP 301

: P, top of tack, 122
tack, 7 , 301
after an INT instruction, 130
LIFO, 78
pointer 78
pop off the, 79
pu h onto, 79
aving and re taring regi fer , 0
aving flags on the, 130
egment, 78

top of stack, 122
Standards, 144
Starting point for new program , 107
Status flags , 58

CMP instruction, 60
direction flag, 186
JA, 82
JB, 82
JL, 63
JLE, 71
JZ, 60
OR instruction, 113
overflow, 59

Status flags (continued)
saving and restoring, 186
sign, 59

Statu register, POPF, 173
see also status flags

String in tructions, LODSB, 185
String , reading 269
String , writing with WRITE_STRING, 207

TRING_TO_UPPER, 259
SUB, 29

ubroutine , 76
see al o procedures

Subtraction, 2
MP instruction, 60

Swapping, ymd b and ere n, 28
witch
LINK and /map, 2 3

ymdeb I , 2
ymbol defined more than once, 391
ymbol file ,
yrnbol not d fined, 391
ymbolic debugging, 2 7
ymbol and PUBLI , 290
ymdeb, 287

er n wappmg, 2 8

T
T, D bug' trace command, 27
Ta bl

characters, 394
ROM BIO function for VIDEO_IO, 194
addre ing mode , 397
extended keyboard code , 396
INT lOh functions, 398
INT 21h functions, 401

Temporary torage, the tack, 78
TE T, 257, 266
Te t .asm, 257
Testing limits, boundary conditions, 63, 72
Testing READ_BYTE with TEST, 257
Te ting READ_DECIMAL, 265
Te t_seg.asm, 120
TEST_WRITE_DECIMAL, 112, 140
TEST_WRITE_HEX, 104
Text, source file, 88
The three laws of modular design, 144
Top of stack, 122
Trace, 27
Tracing with the P command, 54
Tracking down bugs, 285
Trap flag, single stepping, 131
Truth table, AND, 66
Two screens, Symdeb's screen swapping, 288

Two's complement, negative numbers, 18,
29
overflow flag, 59
sign flag, 59

u
U Debug's Unassemble, 39
Unassemble, 39
Unresolved externals, 392
Unsigned numbers, 15

JA and JB, 82
overflow flag, 59

v
Variable usage, 146
Variables and symdeb, 287
Variables

addressing modes, 150
BO'ITOM_LINE_PA 'ITERN,
CURRENT_SECTOR_NO, 202, 205
data segment, 152
DB pseudo-op, 121
DW pseudo-op,
DISK_DRIVE_NO, 202, 203
DISPATCH_TABLE, 220, 282
EDITOR_PROMPT, 219
HEADER_LINE_NO, 202
HEADER_PART_l, 202
HEADER_PART_2, 202
labels, 94
LINES_BEFORE_SECTOR, 202
memory, 201
PHANTOM_CURSOR_X, 238
PHANTOM_CURSOR_Y, 238
PROMPT_LINE_NO, 218, 219
REAL_CURSOR_X, 239
REAL_CURSOR_ Y, 239
registers as, 22
SECTOR, 151, 160, 201, 202
SECTOR_OFFSET, 201
segment overrides, 126
TOP _LINE_PA'ITERN,

Vectors, interrupt, 131
Video-io INT lOh functions, 194, 398

2, set cursor position, 195
3, read cursor position, 196
6, scroll page up, 196
9, write char./attribute, 197

Video_io.asm, 103, 142, 151, 180, 182, 205,
206, 210, 214, 223, 242

Peter Norton's Assembly Language Boo~ 41 3

w
W, Debug's write command, 43
Warning messages, possible sources, 390
Warning: no stack segment, 392
Windows, clearing, 198
Word, 16
Word multiply, 31
WORD pseudo-op, 222
WORD PTR, 222
Words and bytes, mixing, 222
Words, how they're stored in memory, 115
Writestr.asm, 88
WRITE_ATTRIBUTE_N_TIMES, 241
WRITE_CHAR, 101, 102, 143, 157, 210
WRITE_CHAR_N_TIMES, 180
WRITE_DECIMAL, 111, 143
WRITE_HEADER, 205, 214
WRITE_HEX, 104
WRITE_HEX_DIGIT, 104, 142
WRITE_PATTERN, 182
WRITE_PHANTOM, 236
WRITE_PROMPT_LINE, 223
WRITE_SECTOR, 281
WRITE_STRING, 207
WRITE_TOP _HEX_NUMBERS, 187
WRITE_TO_MEMORY, 251
Writing a file in Debug, 43
Writing a string, 43
Writing attributes, WRITE_A TTRIBUTE_
N TIMES, 242

Writing characters and attributes, 210
Writing disk sectors, 281
Writing modified sectors, F5 key, 280
Writing strings of characters, 206
Writing to memory, WRITE_TO_
MEMORY, 251

x
XOR instruction, 113

clearing registers, 113

Zero flag, 58
JNZ, 60
JZ, 60

ZR, zero flag, 58

z

Ab h A r
Peter Norton i well-known in the per onal computing arena for both hi writ

ing and programming. tarting in the earlie t day of the IBM Per onal Com
puter, he began writing about the IB helping other people under tand how
the e wonderful machine work. He ha written a half a dozen book on the P
family , including the be t- elling Jn id the IBM P · hi column appear in each
i ue of PC and PC Week magazin . H1 t of program called Th Norton Utili
tie ha help d many P u er r cu lo t data and explore th inner working of
their comput r . P ter grew up in a tl Wa hington, attended R d Colleg m
Portland, r gon· h now li in anta Monica, alifornia with hi wife.

John ocha i b tt r known for h1 pu lie-domain utiliti than b hi name.
In th early day of th IBM P , h wrot a column for th now d funct magazine

oftalk, wh r h publi h d uch program a er n av th fir t ere n
blanker), Kbd uIB r (xtend th k board buIB r and Wh r I (find file on a
hard di k). Aft r th d mi of oftalk, John cone ntra d on fini hing hi PhD
in Phy ie and writing a comm re1al program call d Th orton ommander.
John gr w up m th wo d of W1 con m earn d a B d gr in Electrical Engi
n ering from th ni e ity of Wi on in, and a PhD in Appli d Phy ic from

orn II ni r ity; he now Ii m outh rn ahfornia .

11111111111111111111111111 111111111111111

1. An inside look at how
Disk Operation Systems
work as only Peter Norton
can give. A how-to-book
for beginners and experi
enced users alike. Practi
cal and simply written, this
book has all you 'll need to
understand the operating
system of your microcom
puter as well as practical
advice about what to buy
and what to use. $17.95
(0-89303-645-5)

2. Peter Norton has updated and
expanded his bestseller to include
every model of the IBM microcom
puter family. Beginning with a review
of the fundamentals, the book then
moves on to discover new ways to
master the important facets of using
your microcomputer to its fullest
potential. $21.95
(0-89303-583-1)

3. The most comprehen
sive guide available from
America's most respected
authority, Peter Norton,
PC-DOS tells you every
thing you need to know to
use your operating system
to customize your PC. $18.95
(0-89303-752-4)

Now at your book or computer store. 2o1 7 6 7 5 g 3 7
Or order today. - -

r;re~e-;,;11;,:s;- - - - - - - - N;,; - - - - - - - - - - - - - =l
c/o Simon & Schuster Address

I
I
I
I

Mall Order Department City State I
Route 59 at Brook Hiii Drive Zip ---------- ----------

West Nyack, NY 10994 ---"-M:..::.e:..::rc:..:;ha::..:n:=:.d1.:::.:se:_T.:..::o~ta'-I ------+------------
Circt .. the numbers of the titles you want below Add I sales tax for your state I

Ptee1se r harge my J Mastercard J Visa
Credit Card=---=---------- I 7% postage+ handling • I

•r, Dot'~ -- S1gna1ure ------- Total, check enclosed
Enc1CJ$ed 15 my check or money order I
Bill 1ne ·Publisher pays postage + handling charges

tor prepaid and charge card orders

3 (0-89303-752-4) I I 1 (0-89303-645-5) L _____ _ 2 (0-89303-583-1) _ ____ _J

!II/Brady

5 A defln111ve reference IHI tor ednnced
progremmeu You II hnd over 150 d•scus·
slons ot common herdw1re-<:ontrol IH • (tn
BASIC. Pase.al . or C) u well H u..,..bl.r
overlays dnvers end reel-tome operetors
S22 95

Assembly
language
Routines'°' K

6 Perfect tor both beginners end up.rt
enced progremrners you 11 llnd everything
lrom the besocs of comp<Jler numbenng
through to step-by-1t91> 1n11ructions tor
us1ng the IBM Macro AsMmble< With com
plete coverage ot BIOS and a bbrery ot over
JO macros tor IHler progremm1ng $11 9S
(Dosi< evaoleble)

3 LMrn t!M ted1ruquu uMd lor creatJng
• Mmbly nguage u11t11 1 Includes 10 ot
llM moll poputer Vllht,.t tuch u DBUG
SCA CLOCIC , UNDELETE. E KEY,
PC/I.LC tcutetor end no1epec1 tnd n ...
OC'-tt $21 5 (0.al! evt•lebie)

7 Here • • compendium ol many ot the
most useful . but otten neglected •c:tv•nced
progremmong eoncepu A tutorial n format
ll'lat UMI BASIC tor uemplu It COYef•
-hntqUH tuch as hnked date 11NCtures
recurlMO<'I plpeonong and dynamic lloreqe
eltoceuon Include• liallnga lor 25 aut>
routinH S21 95 (Dial! evel18ble)

• Include• code ll•llnga tor tl'lree WO<lllng
~· 1nctuel•n11 ting ... • P9fng. crou
referencing and rnepp<ng UllllU .. $19 95
(Dfu available)

a TM totle moghl uy ec:tvenced b<.ol you II
flnd •guide that begins wolh IM fund•
mental• of BASIC gr•phtcs and takes you
through truly sophl11JUted 3-D usembly
routines Includes block graphics creating
a graphics editor. directly programming
IBM s color grophoca adapter. and much
more $11 95

Now at your book or computer store 800-624-0023 In New Jersey
Or order toll-free today 800-624-0024 r----- ------------------- I

BRADY COMMUNICATIONS COMPANY. INC. Ace t # Exp date __ _
I c/o Prentice Hall I Signature ______________________ _

I
P.O. Box 512. W. Nyack, NY 10994

Name --------------------------- I Circle the numbers of the titles you want below I (Payment must be enclosed. or use your charge Address ------------------------ I
card) Add $1 50 for postage and handling City State ____ Zip ____ _

I Enclosed IS check for$ ___ or charge to (ew Jersey resoden(S please add apphcallle saies lair , I
CJ MasterCard C VISA Dept 3

I 1 (o-89303-4 73-8)

L _ 5~-8~o~8~) _

2 (0-89303-409-6)
6 (0-89303-484-3)

3 (0-89303-584-X)
7 (0-89303-481-9)

4 (o-09303-s07-4J I
8 (0-89303-476-2)

-------~
11 Brady

0

Peter Norton's
Assembly Language Book
for the IBM PC
ARE YOU HUNGRY TO LEARN ASSEMBLY LANGUAGE
BUT FEAR THAT IT S BEYOND YOUR GRASP?

Do you want more control over your PC? More power?
More raw speed-five times , even ten times the speed of your
existing programs?
Then speak to your IBM PC in the language it knows best ...
ASSEMBLY LANGUAGE
AND LEARN IT FROM THE PC'S MASTER PROGRAMMER ...

PETER NORTON

Assembly language is the most direct way you can control each
and every aspect of your machine, and Peter Norton 's Assembly
Language Book for the IBM PC 1s the easiest way to learn
assembly language.

You 'll learn the instructions of the Intel 8088 microprocessor
the very heart of the IBM PC. And , once you understand the 8088,
many elements you see 1n other programs and 1n high-level
languages will have greater meaning for you . Not only that , you 'll
learn how to write full-scale assembly language programs : text
editors . utilities, and more!

You can use this book with an IBM PC, XT, AT, or compatible ,
a minimum of 128K and one disk drive, PC or MS-DOS version 2.0
or higher, and the IBM or Microsoft Macro assembler.

Peter Norton, of Peter Norton Computing , is the designer and
author of the now-legendary Norton Utilities (as well as numerous
Brady Books including Inside the IBM PC and PC DOS: Introduction
to High Performance Computing) .

John Socha, also of Peter Norton Computing is the designer
and author of The Norton Commander, the latest product from
Peter Norton Computing .

6

21898 66190

Front cover photo © Douglas Kirkland/Sygma

A Brady Boo
Published by Prentice Hall Press • · ew York

ISBN 0-13-661901-0

	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	037
	038
	039
	040
	041
	042
	043
	044
	045
	046
	047
	048
	049
	050
	051
	052
	053
	054
	055
	056
	057
	058
	059
	060
	061
	062
	063
	064
	065
	066
	067
	068
	069
	070
	071
	072
	073
	074
	075
	076
	077
	078
	079
	080
	081
	082
	083
	084
	085
	086
	087
	088
	089
	090
	091
	092
	093
	094
	095
	096
	097
	098
	099
	100
	101
	102
	103
	104
	105
	106
	107
	108
	109
	110
	111
	112
	113
	114
	115
	116
	117
	118
	119
	120
	121
	122
	123
	124
	125
	126
	127
	128
	129
	130
	131
	132
	133
	134
	135
	136
	137
	138
	139
	140
	141
	142
	143
	144
	145
	146
	147
	148
	149
	150
	151
	152
	153
	154
	155
	156
	157
	158
	159
	160
	161
	162
	163
	164
	165
	166
	167
	168
	169
	170
	171
	172
	173
	174
	175
	176
	177
	178
	179
	180
	181
	182
	183
	184
	185
	186
	187
	188
	189
	190
	191
	192
	193
	194
	195
	196
	197
	198
	199
	200
	201
	202
	203
	204
	205
	206
	207
	208
	209
	210
	211
	212
	213
	214
	215
	216
	217
	218
	219
	220
	221
	222
	223
	224
	225
	226
	227
	228
	229
	230
	231
	232
	233
	234
	235
	236
	237
	238
	239
	240
	241
	242
	243
	244
	245
	246
	247
	248
	249
	250
	251
	252
	253
	254
	255
	256
	257
	258
	259
	260
	261
	262
	263
	264
	265
	266
	267
	268
	269
	270
	271
	272
	273
	274
	275
	276
	277
	278
	279
	280
	281
	282
	283
	284
	285
	286
	287
	288
	289
	290
	291
	292
	293
	294
	295
	296
	297
	298
	299
	300
	301
	302
	303
	304
	305
	306
	307
	308
	309
	310
	311
	312
	313
	314
	315
	316
	317
	318
	319
	320
	321
	322
	323
	324
	325
	326
	327
	328
	329
	330
	331
	332
	333
	334
	335
	336
	337
	338
	339
	340
	341
	342
	343
	344
	345
	346
	347
	348
	349
	350
	351
	352
	353
	354
	355
	356
	357
	358
	359
	360
	361
	362
	363
	364
	365
	366
	367
	368
	369
	370
	371
	372
	373
	374
	375
	376
	377
	378
	379
	380
	381
	382
	383
	384
	385
	386
	387
	388
	389
	390
	391
	392
	393
	394
	395
	396
	397
	398
	399
	400
	401
	402
	403
	404
	405
	406
	407
	408
	409
	410
	411
	412
	413
	414
	415
	416
	417
	418
	419
	420
	421
	422
	423
	424
	425
	426
	427
	428
	429
	430
	431
	432
	433
	434
	435
	436

