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Introduction 

I clearly remember the day I first plugged a new IBM Enhanced Graphics Adapter 
(EGA) into an IBM PC. It was good to have IBM’s new ‘‘enhanced”’ video hard- 
ware, with its better resolution and control over colors, as well as features not 
found in any of IBM’s earlier PC video hardware. Now I was ready to write some 
really sharp graphics applications. 

Or so I thought. The problem was, I couldn’t figure out how to program the con- 
traption. I had no technical documentation at all. (It arrived in the mail six 
months and $125 later.) I tried disassembling the EGA’s ROM BIOS, but studying 
6000 uncommented machine instructions soon raised more questions than it 
answered. I desperately tried the shotgun approach—changing the contents of 
memory locations and machine registers just to see what would happen—but this 
was like chopping out random pieces of an automobile just to see what would 
stop working. 

What I lacked was the details—conceptual descriptions of the hardware design, 
tables describing the programming interface, and, above all, source code exam- 
ples for some typical programming techniques. A few well-chosen source code 
examples would have saved many hours of experimentation and frustration when 
I was trying to understand how to program that video adapter. 

This book was inspired by the painful memory of that experience. It is filled with 
source code examples. Its text describes the source code, and vice versa. This 

book also has many tables and summary descriptions of the hardware program- 

ming interface. In short, this book is what I wish I’d had when I started to pro- 

gram PC video hardware. 

What This Book Is About 

The first chapter of this book is a general overview of the video display environ- 

ment. It describes the commonly used PC and PS/2 video hardware the rest of the 

book deals with. It also introduces you (if you aren’t already on speaking terms) 

to the well-known ROM BIOS video support routines. 

The next 10 chapters contain the nuts and bolts of IBM video programming. The 

earlier chapters cover the fundamentals, including hardware architecture, video 

display modes, and the nature of the interface between your programs and the 

hardware. The later chapters build upon the fundamentals to demonstrate a num- 

ber of techniques for producing text and graphics output. 

The last two chapters of this book take you to the low and high levels of video 

graphics programming. Chapter 12 is the hardware tinkerer’s chapter—if you 

want to work with vertical interrupts or play with bit planes, this one’s for you. 

Finally, Chapter 13 tells how to link your video hardware drivers to high-level 

programs and introduces you to several commercial video output packages. 

Introduction ix 



What You Need to Use This Book 

This book is not really meant for beginners. That’s not to say that a program- 

mer who is just learning how to write working code will not benefit from this 

material. On the contrary, the many working examples of useful source code 

should be valuable to anyone who plans to do serious programming for PCs or 

PS/2s. Nevertheless, the broader your programming background, the more tools 

you will have for solving the diverse and exacting problems involved in video 

programming. 

Languages 

I use assembly language and C for most of the programming examples in this 

book, although I intentionally avoid some of C’s more cryptic syntactic con- 

structs. If you are comfortable with assembly language and with a high-level 

language such as C, Pascal, FORTRAN, PL/1, or structured BASIC, you should 

have no problem reading the source code examples. 

Moreover, Chapter 13 discusses interfaces for several high-level languages using 

different memory models and subroutine-calling protocols. You can follow the 

guidelines there to convert any of the C-callable source code examples to the 

subroutine-calling protocol used by your favorite language translator. 

You might want to use some other programming tools if you plan to experiment 

with the source code examples that follow. For example, a good assembly- 

language debugger can be extremely helpful. You will probably need an object 

linker if you plan to call the assembly-language routines in this book from high- 

level-language programs. Also, as source files and object modules proliferate, you 

might find a UNIX-like make utility quite useful in keeping things straight. 

Operating System 

Everything in this book is intended to run under MS-DOS, or PC-DOS, version 2.0 

or later. However, there is nothing in any of the source code that verifies which 
operating system is in use, so be careful if you transport the code to earlier ver- 
sions of MS-DOS or to another operating system. 

Hardware 

Having a PC or PS/2 with a video display attached is essential. Video program- 
ming is like swimming: It’s one thing to read about it, but it’s quite another 
experience to try it yourself. In fact, if you plan to do a great deal of video pro- 
gramming, you should consider installing two different video subsystems and dis- 
plays in your PC. With two separate sets of video hardware in the same computer, 
you can run a debugger on one screen while a test program produces output on the 
other screen. This dual-display hardware configuration is a real timesaver, par- 
ticularly when you’re developing video graphics routines such as those described 
in Chapters 5 through 9. 
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Here is a list of the various computers and video adapters I used to develop the 
techniques discussed in this book: 

Computers 

IBM PC/XT 

IBM PC/AT 

IBM PS/2 Model 30 

IBM PS/2 Model 60 

Adapters 

IBM Monochrome Display Adapter 
IBM Color Graphics Adapter 

IBM Enhanced Graphics Adapter 

IBM PS/2 Display Adapter 

Hercules Graphics Card 

Hercules Graphics Card Plus 
Hercules Color Card 

Hercules InColor Card 

If you are using one of these computers or adapters, or a hardware-compatible 
clone, then you should be able to run the source code examples. 

Manuals 

To program IBM PC video hardware effectively, you need to know what the hard- 

ware is designed to do and how software and the system BIOS are expected to 

interact with it. This basic information is found in IBM’s Technical Reference 

manuals for the PC, PC/XT, PC/AT, and PS/2s and in its Options and Adapters 

Technical Reference manuals. Most second-source manufacturers of IBM PC 

video equipment also provide detailed technical information on their hardware. 

The material in this book is intended to complement the discussions in the manu- 

facturers’ technical documentation. I tried to follow the manufacturers’ terminol- 

ogy and hardware descriptions wherever possible. However, the manufacturers’ 

documentation goes somewhat awry at times. If you find a discrepancy between 

the official documentation and this book, you can (I hope) rely on this book to 

contain the right information. 

Still, in a book this size, I have certainly made some mistakes. I welcome your 

comments, criticisms, and suggestions. 

I have found that writing good video software is challenging, but the rewards are 

particularly satisfying. I hope to share some of the challenges—and some of the 

satisfaction— with you in this book. 

Introduction xi 



Special Offer 

Companion Disk to 

Programmer’s Guide to PC & PS/2 Video Systems 

Microsoft Press has created a valuable companion disk for PRO- 

GRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS. The disk 
contains all 69 assembly-language programs and 25 C programs from 

the book — close to 6000 lines of code in all. The disk also contains a 

helpful demonstration program that uses several routines from the 

book. Save time, avoid those inevitable typing errors, and start using 

the source code in your programs right away. 

If you have any questions about the files on the disk, you can send your 

written queries or comments to author Richard Wilton, c/o Microsoft 

Press, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717. 

The Companion Disk to PROGRAMMER’S GUIDE TO PC & PS/2 
VIDEO SYSTEMS is available only from Microsoft Press. To order, 

use the special reply card bound in the back of the book. If the card has 

already been used, send $21.95, plus sales tax if applicable (CA resi- 

dents 5% plus local option tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO 

4.225%, NY 4% plus local option tax, WA State 7.8%) and $2.50 per 

disk for domestic postage and handling, $6.00 per disk for foreign 

orders, to: Microsoft Press, Attn: Companion Disk Offer, 21919 20th 

Ave S.E., Box 3011, Bothell, WA 98041-3011. Please specify 5.25-inch 

or 3.5-inch format. Payment must be in U.S. funds. You may pay by 

check or money order (payable to Microsoft Press) or by American 

Express, VISA, or MasterCard; please include both your credit card 

number and the expiration date. All orders are shipped 2nd day air 
upon receipt of order by Microsoft. 

If this disk proves defective, please send the defective disk along with 
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th 
Way, Box 97017, Redmond, WA 98073-9717. 
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Microcomputer video systems keep getting better. Since the introduction of the 

IBM PC in 1981, engineering technology has improved, and the market for more 

powerful video hardware has widened. Both IBM and its competitors have re- 

sponded by developing increasingly sophisticated video adapters and displays, as 

well as the software to accompany them. 

This chapter provides an overview of the evolution of IBM PC and PS/2 video 
hardware. This overview is by no means comprehensive, but it covers the most 

widely used video equipment that IBM and Hercules offer. The chapter concludes 

with an introduction to IBM’s video BIOS, a set of drivers built into ROM in all 

IBM PCs and PS/2s, which provides a basic programming interface for video 

applications. 

IBM PC and PS/2 Video Hardware 

A “‘plain vanilla’’ IBM PC/XT or PC/AT contains no built-in video hardware, so 

you must select and install the video hardware yourself. In a typical configura- 

tion, a video display (monitor) is attached with a 9-wire cable to a video adapter 
installed inside the PC. A typical video adapter is a printed circuit board with a 

9-pin connector that attaches to the monitor’s cable and a 2-by-31-connection 

card-edge tab that inserts into one of the slots on the PC’s motherboard. Figure 1-1 

shows these connectors, as well as some of the integrated circuits common to 

many IBM video adapters. The circuitry in the video adapter generates the signals 

that control what is displayed on the monitor’s screen. 

When you purchase an IBM PC, you must decide which video adapter and monitor 

to use. The most widely used video adapters with the most software written for 

them are IBM’s Monochrome Display Adapter, Color Graphics Adapter, and En- 

hanced Graphics Adapter, and the monochrome Graphics Card made by Hercules. 

In contrast, all IBM PS/2 series computers are equipped with a built-in 

video subsystem, so purchasing a separate video adapter is unnecessary. The 

video subsystem in the PS/2 Models 25 and 30 is called the Multi-Color Graphics 

Array. In Models 50, 60, and 80, the integrated video subsystem is commonly 

known as the Video Graphics Array. The Video Graphics Array subsystem also is 
available as an adapter for the PC/XT, PC/AT, and PS/2 Model 30. This adapter has 
essentially the same hardware features as the integrated PS/2 subsystem. 

IBM Monochrome Display Adapter and Color Graphics Adapter 

When the PC was introduced in 1981, IBM offered two video adapters: the 
Monochrome Display Adapter (MDA) and the Color Graphics Adapter (CGA). 
The MDA is designed for use with a monochrome monitor (the IBM Monochrome 
Display) that displays 80 columns and 25 rows of alphanumeric text. The CGA 
supports either an RGB display (a monitor with separate input signals for red, 
green, and blue) or a home television set (which uses a composite video signal). 
The CGA, of course, can display graphics information on a dot-by-dot basis as 
well as alphanumeric text. 
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Figure 1-1. A typical IBM PC video adapter. 
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Even though both the MDA and the CGA can display 25 rows of 80-column text, 

most people find the MDA’s green monochrome display easier on the eyes. This is 

because the monochrome display used with an MDA has significantly higher 

resolution than that of any monitor you can use with the CGA. Its resolution is 720 

dots wide and 350 dots high; the maximum resolution of a CGA-driven display is 

640 dots wide and 200 dots high. 

Both adapters display characters in a rectangular matrix of dots. A simple calcu- 

lation shows that each character is 9 dots wide and 14 dots high on a Monochrome 

Display but only 8-by-8 dots on a CGA display. The MDA’s higher resolution pro- 

duces more crisply defined characters that are easier to read. For this reason, most 

PC users who need to read text prefer an MDA to a CGA. 

On the other hand, many computer users need to display charts, diagrams, and 

other graphics information in addition to alphanumeric text. Also, displaying 

colors on the screen is essential to many computer applications. Because the MDA 

can display only monochrome text, PC users who need graphics output can com- 

promise by using the CGA, with its dot-by-dot color graphics capability but less- 

readable text. 

Why not just attach the higher-resolution monochrome display to a Color 

Graphics Adapter and get the best of both worlds? Unfortunately, the video sig- 

nals generated by an MDA are incompatible with those required to drive a CGA 

monitor, and vice versa. Mismatching the monitor and the adapter leads to a mal- 

functioning monitor instead of a higher-resolution display. 

If you need sharp, readable text as well as color graphics, and you can afford the 

extra equipment, you can install both an MDA and a CGA in the same PC. You can 

then use the monochrome display (attached to the MDA) for text processing and an 

RGB color display (driven by the CGA) for color graphics. 

Hercules Graphics Card 

Hercules’ solution to the problem of displaying readable text and dot-by-dot 
graphics on the same monitor was to add graphics capability to a monochrome 
display adapter. The monochrome Hercules Graphics Card (HGC), introduced in 
1982, can display graphics and alphanumeric text on the same green monochrome 
display that is used with an IBM MDA. (In addition to its graphics capabilities, the 
HGC exactly duplicates the function of IBM’s original MDA.) The ability to dis- 
play a combination of readable text and monochrome graphics is sufficient for 
many applications, so many PC users find the HGC an economical option. 
Because it has received support from major software vendors, the HGC has 
become firmly established in the marketplace. 

Hercules Graphics Card Plus 

The HGC+ was released in June 1986. The big difference in this upgrade of the 
original HGC is that it can display customized, RAM-based alphanumeric charac- 
ter sets, whereas the MDA and HGC can display only one, predefined, ROM-based 
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alphanumeric character set. Because alphanumeric characters can be displayed 
much more rapidly than dot-by-dot graphics characters, using the HGC+ can dou- 
ble or triple the speed of some text-oriented applications. 

IBM Enhanced Graphics Adapter 

A different response to the demand for better text and graphics resolution is 

IBM’s Enhanced Graphics Adapter (EGA), released in early 1985. The EGA can be 

configured to emulate either an MDA or a CGA; what makes the EGA ‘“‘enhanced”’ 

is that it can also do things its predecessors cannot. Unlike the MDA, the EGA can 

produce dot-by-dot graphics on a monochrome display. Furthermore, the EGA im- 

proves on the CGA with the ability to generate 16-color alphanumeric or graphics 

images with 640-by-350 resolution. 

Although the resolution and color capabilities of the EGA are not that much 

greater than those of the CGA, both text and graphics appear much sharper on the 

EGA than on the CGA. The availability of low-priced EGA clones and of high- 

quality software applications that exploit the adapter’s capabilities have made the 

EGA a de facto hardware standard in the marketplace. 

Hercules InColor Card 

The Hercules InColor Card, introduced in April 1987, is essentially a 16-color ver- 

sion of the HGC+. The InColor hardware fully emulates the HGC+, so programs 

that run properly on the HGC+ can run without change on the InColor Card. The 

InColor Card’s resolution is the same as that of the HGC and HGC+: 720 horizon- 

tal by 348 vertical pixels. The adapter’s color capabilities equal those of the EGA. 

It can display 16 colors at once from a palette of 64 colors. The adapter must be 

used with an EGA-compatible color display that has 350-line vertical resolution. 

Don’t confuse the InColor Card with the Hercules Color Card, an aug- 

mented CGA clone designed for use in the same computer with an 

Ay -HGC or HGC+. 

Multi-Color Graphics Array 

The Multi-Color Graphics Array (MCGA) is the video subsystem integrated into 

the PS/2 Models 25 and 30. From a programmer’s perspective, the MCGA resem- 

bles the CGA in many ways, yet the MCGA has much better resolution (a max- 

imum of 640 horizontal by 480 vertical dots) and improved color-display 

capabilities. 

A significant difference between the MCGA and the above video adapters is that 

the MCGA generates analog RGB video signals, whereas the others produce digital 

RGB signals. The difference between digital and analog RGB is something like the 

difference between an on-off wall switch and a dimmer switch. With digital RGB 

signals, the video display must recognize only whether the signal for a particular 

color (red, green, or blue) is on or off. On the other hand, a video display that 
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uses analog RGB signals translates the voltage of each signal into a wide range of 

corresponding color intensities. Only an analog video display can be used with 

the MCGA. 

Some video monitors can be configured for either analog or digital 

video signals. If you use the right cable, these monitors can be con- 

nected to an MCGA if they are configured for analog video. 
tol oe | 

The justification for using analog video is that it can display a wider range of 

colors. The MCGA has a video Digital to Analog Converter (DAC) that enables the 

subsystem to display as many as 256 different colors at once from a palette of 

262,144 (256 K or 2!8) colors. In addition to an analog color display, IBM supplies 

an analog monochrome display for use with the MCGA. With a monochrome 

monitor, the MCGA can display as many as 64 shades of gray. 

Video Graphics Array 

The term Video Graphics Array (VGA) refers specifically to part of the circuitry 

of the video subsystem in PS/2 Models 50, 60, and 80. The VGA is actually a single 

chip that integrates the same set of functions performed by several chips on the 

EGA. Nevertheless, people generally use the abbreviation VGA to describe the en- 

tire video subsystem. 

The VGA’s programming interface is similar to the EGA’s, so many programs 

written for the EGA will run unchanged on the VGA. The VGA is capable of 

somewhat higher display resolution (as much as 720-by-400 in text modes, or 640- 

by-480 in graphics modes). Like the MCGA, however, the VGA contains a video 

DAC that can generate 256 colors at a time from a possible 262,144. Because the 

VGA generates the same analog RGB signals as the MCGA, it must be used with 
the same analog monochrome or color monitors. 

Introduction to the ROM BIOS Interface 

A set of BIOS (Basic Input/Output System) routines in ROM is built into every 
IBM PC and PS/2. The ROM BIOS routines provide an interface to standard hard- 
ware features, including the time-of-day clock, the keyboard, floppy and hard 
disks, and of course the video subsystem. The video BIOS routines comprise a set 
of simple tools for performing basic video programming tasks such as writing 
strings of characters to the screen, erasing the screen, changing colors, and so on. 

Although the ROM BIOS video routines are sometimes slow and relatively un- 
sophisticated, programs that use them are portable among different video sub- 
systems in IBM PCs and PS/2s. Furthermore, most manufacturers of IBM PC 
clones have duplicated the functions of IBM’s BIOS in their machines. Thus, a 
program that uses BIOS routines to access the video hardware is likely to be more 
portable than one that does not. 
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Interrupt 10H 

The BIOS routines are written in assembly language, so accessing them is easiest 

when you program in assembly language. All BIOS video routines are accessed by 

executing 80x86 software interrupt 10H. (The term 80x86 refers to the micropro- 

cessors in the Intel 8086 family: 8086, 8088, 80286, and 80386.) For this reason, the 

ROM BIOS video interface is widely known as the INT 10H interface. The ROM 

BIOS supports a number of video input/output functions, each accessed by execut- 

ing interrupt 10H. The functions are numbered; before executing interrupt 10H, 

you place the number of the desired function in 80x86 register AH. 

At the time the interrupt is executed, the remaining 80x86 registers usually con- 

tain parameters to be passed to the BIOS routines. If the INT 10H function returns 

data to your program, it does so by leaving the data in one or more of the 80x86 

registers. This register-based parameter-passing protocol is intended for use in 

assembly-language programs. 

To see how the INT 10H interface is typically used, examine the assembly- 

language routine Set Vmode () in Listing 1-1. This routine can be linked with a 

program written in Microsoft C. (The underscore preceding the procedure name, 

the near keyword in the PROC declaration, and the use of the stack to pass param- 

eters all follow Microsoft C conventions.) The heart of the routine is its call to the 

ROM BIOS to configure the video hardware for a particular video mode. (The 

details of this operation are discussed in Chapter 2 and in Appendix A.) 

TITLE Misa) = 17) © 

NAME Set Vmode 

PAGE 55 p sz 

; Name: Set Vmode 

; Function: Call IBM ROM BIOS to set a video display mode. 

; 

mecalleris Microsoft C: 

void SetVmode (n) ; 

Ne Ne Ne Ne Ne 

int 1; /* video mode */ 

ARGn EQU byte ptr [bp+4] ; stack frame addressing 

EQUIP_FLAG EQU byte ptr ds: [10h] 

CGAbits EQU 00100000b * bits for EQUIP FLAG 

MDAbits EQU 00110000b 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT 

PUBLIC _SetVmode 

_SetVmode PROC near 

Listing 1-1. SetVmode(). (continued) 
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Listing 1-1. Continued. 

push bp ; preserve caller registers 

mov bp, sp 

push ds 

mov ax, 40h 

mov ds,ax ; DS -> Video Display Data Area 

mov bl,CGAbits ; BL := bits indicating presence of CGA 

mov al,ARGn ; AL := desired video mode number 

mov ah,al ; test if desired mode is monochrome 

and ah,7 

cmp ah,7 

jne L01 ; jump if desired mode not 7 or OFh 

mov bl,MDAbits ; BL := bits indicating presence of MDA 

LO1: and EQUIP_FLAG, 11001111b 

or EQUIP _FLAG,bl ; set bits in EQUIP FLAG 

xor ah,ah ; AH := 0 (INT 10h function number) 

push bp 

int 10h ; call ROM BIOS to set the video mode 

pop bp 

pop ds ; restore caller registers and return 

mov sp,bp 

pop bp 
ret 

_SetVmode ENDP 

_TEXT ENDS 

END 

The actual call to the video BIOS is simple. First, the desired function number is 

placed into register AH (XOR AH, AH). Then, after preserving the contents of 
register BP on the stack (PUSH BP), the routine invokes the ROM BIOS function 

by executing interrupt 1OH (INT 108). 

In Listing 1-2, a complementary routine called Get Vmode () interrogates the 
BIOS for the number of the current video mode. The routine obtains this number 

by executing interrupt 10H function OFH. The ROM BIOS function leaves the 
mode number in register AL. Get Vmode () then returns the number to the call- 

ing program. 
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DETER Wiasting »1=20 
NAME Get Vmode 

PAGE DO oe 

7 Name: GetVmode 

# Funetion; Call IBM ROM BIOS to set a video display mode. 

+ Caller: Microsoft C: 

; int Get Vmode () ; 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

PUBLIC _GetVmode 

_GetVmode PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ah, OFh ; AH := OFh (INT 10h function number) 

push bp 

int 10h ; call ROM BIOS to get video mode number 

pop bp 

xor ah,ah ; AX := video mode number 

mov sp,bp 

pop bp 
ree 

_ Get Vmode ENDP 

_TEXT ENDS 

END 

Listing 1-2. GetVmode(). 

Video Display Data Area 

The code that precedes the actual call to the ROM BIOS in Listing 1-1 modifies 
one of several global variables that reflect the status of the PC’s video subsystem. 

These variables are updated and referenced by all ROM BIOS video routines. They 

are collected in a block of RAM called, in IBM’s technical documentation, the 

Video Display Data Area (or Video Control Data Area). The Video Display Data 

Area consists of two blocks of RAM. The first block is found between memory 

locations 0040:0049 and 0040:0066, the second between 0040:0084 and 0040:008A. 
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Some video BIOS routines also reference a 2-bit field in a global variable at 

0040:0010 (called EQUIP_FLAG in IBM’s technical documentation). Bits 4 and 5 

of this variable indicate a default video mode to be used when the computer is 

first booted. The code in Set Vmode () updates this bit field to conform with the 

video mode being selected. For example, if a Monochrome Display Adapter 

(MDA) is required for the desired video mode, the bit field in EQUIP_FLAG is up- 

dated accordingly. (Again, details on ROM BIOS video modes are found in Chap- 

ter 2 and in Appendix A.) 

Throughout this book are references to the INT 10H interface, the 

BIOS’s Video Display Data Area, and the symbolic names of specific 

locations in the Video Display Data Area that are of particular in- 

terest. If you aren’t already familiar with the available INT 10H func- 

tions and the contents of the Video Display Data Area, a perusal of 

Appendix A might be very helpful. 

Accessing the Video BIOS from a High-Level Language 

You can make ROM BIOS routines accessible in high-level language programs 

with an assembly-language routine such as Set Vmode () or Get Vmode (). List- 

ings 1-3 and 1-4 are short C programs that can be executed as MS-DOS commands. 

The program in Listing 1-3 calls Set Vmode () to select a video mode. This pro- 

gram may be executed interactively or from a batch file. The program in Listing 

1-4 calls Get Vmode () and returns the video mode number in a way that can be 

used in a batch file (that is, with IF ERRORLEVEL == commands). 

/* Listing 1-3 */ 

main( argc, argv ) 

plans argc; 

char **argv; 

{ 

int ModeNumber; 

void SetVmode () ; 

Te (argc m= 2) /* verify command line syntax */ 
{ 

printf( "\nSyntax: SETVMODE n\n" ); 

exiit(Si die 

} 

sscanf( argv[1], "%x", &ModeNumber ); /* get desired mode number */ 

SetVmode ( ModeNumber ); /* call ROM BIOS via INT 10h */ 
} 

Listing 1-3. A C program based on SetVmode(). 
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/* Listing 1-4 */ 

main () 

{ 

ae Get Vmode () ; 

return( GetVmode() ); 

} 

Listing 1-4. A C program based on GetVmode(). 

The overall process of generating an executable file for one of these programs 

consists of compiling the C code to produce an object module, assembling the 

assembly-language code to produce another object module, and linking the object 

modules to create the executable file. If the C source code in Listing 1-3 is con- 

tained in a file named SM.C and the assembly code in Listing 1-1 is saved in 

SETVMODE.ASM, you can build the executable file SM.EXE as follows: 

msc sm; (compile the C code) 

masm setvmode; (assemble the subroutine) 

link sm+setvmode; (link the object modules) 

Some high-level language compilers can generate appropriate object 

code for loading the 80x86 registers, executing interrupt 10H, and 

P copying the results from the registers to the calling program. If your 

compiler has this capability, you might prefer to access the INT 10H 

interface directly, instead of linking an assembly-language subroutine 

to your high-level program. For example, Listing 1-5 uses Microsoft 

C’s int 86() function to implement Get Vmode () . 

/* Listing 1-5 */ 

#include "dos.n”™ 

main () 

struct BYTEREGS regs; /* BYTEREGS defined in dos.h */ 

regs.ah = Ox0F; /* AH=0x0F (ROM BIOS function number) */ 

int86( 0x10, &regs, &regs ); /* perform interrupt 10h */ 

return( (int) regs.al ); 

} 

Listing 1-5. Microsoft C’s int86() function. 

Many other INT 10H functions are available in the ROM BIOS. Your application 

program accesses them by loading the appropriate registers and executing inter- 

rupt 10H. Although the INT 10H support for video input/output admittedly is less 

than perfect, it is widely used in operating-system software (including MS-DOS) 

as well as in countless applications. If you want to write effective video and 

graphics programs, become familiar with the capabilities and the limitations of 

the INT 10H interface. 
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This chapter describes IBM PC and PS/2 video hardware from a programmer’s 

point of view. It covers the basics: which parts of the computer’s video subsystem 

can be programmed, how a program interacts with the hardware, and how cal- 

culations for changing the video display format are performed. Many of the 

programming techniques in later chapters are based on the fundamental informa- 

tion discussed here. 

The purpose of this chapter is to demystify the hardware programming interface. 

Because most programmers rely on the video BIOS to perform most, if not all, 

hardware-level programming in their applications, an aura of mystery surrounds 

the way software interacts with video hardware. Of course, after you learn about 

it, you may wish it had remained a mystery— but the more you know, the more 

your programs will be able to do with the video hardware. 

Functional Components of IBM PC and PS/2 Video 
Subsystems 

As you write programs that interact with IBM video hardware, it helps to visualize 

the relationships among the programmable components of IBM video subsystems 

(see Figure 2-1). You do not need a circuit designer’s understanding of the hard- 

ware to write a good video interface. You do need to know where and how your 

program can interact with the hardware to produce video output efficiently. 

Attributes Attribute 

‘ decoder 
Video 

buffer 

Color, intensity, etc. 

Character codes 

Video ies 
signal — Me signals 

Alphanumeric generator (to video display) 
character 

generator 

Internal timings, 
buffer addressing, etc. Horizontal & vertical timing 

Mode 

control 

CRT 
Controller 

Figure 2-1. Programmable components (video buffer, attribute controller, and so on) of the 
IBM PC and PS/2 video subsystems. Some or all of these components are under software con- 
trol in each of the video subsystems described in this book. 
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Monitor 

The most tangible part of a computer’s video hardware is the monitor, or video 

display. However, there’s nothing you can directly program in the monitor’s hard- 
ware. It is the computer’s video subsystem that contains programmable hardware. 

The signals generated by the video subsystem control what appears on the screen. 

The monitor differs from a home television receiver in that a group of separate 

timing and color signals drives it. In contrast, a home TV decodes a single ‘‘com- 
posite’’ signal that contains timing, color, and audio information. Although some 

IBM PC video adapters can generate such composite video output signals, as well 

as the direct drive signals that computer monitors use, most people avoid using a 

home television with their computers. Both text and colors appear sharper on a 

computer monitor than they do on a composite television screen. 

All the video monitors discussed in this book are raster-scan devices. The image 

on the screen of a monitor is made up of a group of closely spaced horizontal lines 

called the raster. An electron beam scans each successive line from left to right, 

starting at the upper left corner of the display. As the beam sweeps each line, the 

color and brightness of each of several hundred points (pixels) in the line are 

varied, and the entire raster appears as a coherent image. 

Conceptually, you can regard the electron beam as having “‘color’’ and ‘‘inten- 

sity,’’ but in color video monitors the beam actually comprises three separate 

electron beams. Each beam controls the display of one of the three primary video 

colors (red, green, and blue) on the screen. Each pixel on a color display is 

physically represented by a small, closely spaced triad of red, green, and blue 

luminescent dots or stripes of phosphor. The three electron beams are masked in 

such a way that each illuminates dots of only one primary color. Thus, the rela- 

tive intensity of the beams as they sweep over each triad determines the color and 

brightness of the pixels. Of course, unless you use a magnifying glass or look 

closely at the display, you do not perceive the red, green, and blue dots individu- 

ally, but rather as blended colors. 

Video Buffer 

The video buffer is a block of RAM in the video subsystem where displayable data 

is stored. This RAM lies within the address space of the computer’s CPU, so a pro- 

gram may read from and write to the video buffer in the same way it accesses any 

other portion of RAM. 

The video subsystem’s display circuitry updates, or refreshes, the screen by con- 

tinually and repeatedly reading the data in the video buffer. Each bit or group of 

bits in the video buffer specifies the color and brightness of a particular location 

on the screen. The screen is refreshed between 50 and 70 times a second, depend- 

ing on which video subsystem is in use. Obviously, when a program changes the 

displayed contents of the video buffer, the screen changes almost immediately. 
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The actual amount of RAM available as a video buffer varies with the video sub- 

system. Most IBM video subsystems incorporate video buffers large enough to 

hold more than one screen of displayable data, so only part of the buffer is visible 

on the screen at any time. (Chapter 3 discusses how to make full use of available 

video RAM.) 

Color and Character Display Hardware 

All IBM video subsystems incorporate hardware that reads and decodes the data 
in the video buffer. For example, an alphanumeric character generator translates 

ASCII codes from the video buffer into the dot patterns that make up characters 

on the screen. An attribute decoder translates other data in the video buffer into 

the signals that produce colors, underlining, and so forth. Software can control 

these and other specialized components of the video subsystem; later chapters 

describe such programming in detail. 

CRT Controller 

The CRT Controller (or CRTC for short) generates horizontal and vertical timing 

signals. It also increments a video buffer address counter at a rate that is syn- 

chronized with the timing signals. The video display circuitry reads data from the 

video buffer using the CRTC’s address value, decodes the data, and sends the 

resulting color and brightness signals to the monitor along with the CRTC’s tim- 

ing signals. In this way the CRTC synchronizes the display of data from the video 

buffer with the timing signals that drive the video display. 

The CRTC performs several other miscellaneous functions. Among them are 

determining the size and displayed position of the hardware cursor, selecting the 

portion of the video buffer to be displayed, locating the hardware underline, and 

detecting light pen signals. (Chapter 3 contains examples of CRTC programming 
for some of these functions.) 

On the MDA, CGA, and Hercules cards, the CRTC is a single chip, the Motorola 

6845. On the EGA, the CRTC is a custom LSI (large-scale integration) chip 

designed by IBM. On the MCGA, the CRTC is part of its Memory Controller Gate 

Array. The VGA’s CRTC is one component of the single-chip Video Graphics Ar- 
ray. Regardless of the hardware implementation, the CRTC can be programmed to 
generate a variety of timing parameters in all these subsystems. Before delving 
into the techniques of CRTC programming, however, it is worthwhile to review 
how the CRTC’s timing signals control the monitor’s display of a raster-scan 
video image. 
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The Display Refresh Cycle 

The video image is refreshed in a cyclic manner between 50 and 70 times a sec- 

ond, depending on the configuration of the video subsystem. During each refresh 

cycle, the electron beam sweeps across the screen in a zigzag fashion, starting at 

the left side of the topmost horizontal line in the raster (see Figure 2-2). After 

scanning a line from left to right, the beam is deflected down to the start of the 

next line until the entire raster is scanned. Then the beam returns to the upper left 

corner of the display, and the cycle repeats. 
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Figure 2-2. The path followed by the electron beam in a raster scan. 

Horizontal Timing 

A number of carefully timed events occur as the beam moves across the display. 

At the beginning of each line, the electron beam is turned on in response to a Dis- 

play Enable signal that the CRTC generates. As the beam sweeps left to right 

across the line, the video display circuitry uses the CRTC’s address counter to read 

a sequence of bytes from the video buffer. The data is decoded and used to control 

the color and brightness signals sent to the monitor. As the beam sweeps across 

the screen, its color and brightness vary in response to these signals. 

Near the screen’s right edge, the CRTC turns off the Display Enable signal and no 

further data is displayed from the video buffer. The CRTC then generates a 

horizontal sync signal, which causes the monitor to deflect the electron beam left- 

ward and downward to the start of the next horizontal line in the raster. Then the 

CRTC turns the Display Enable signal back on to display the next line of data. 

The short period of time between the end of one line of video data and the begin- 

ning of the next is called the horizontal blanking interval. Because the horizontal 

retrace interval (the amount of time required to deflect the beam to the start of 

the next line) is shorter than the horizontal blanking interval, a certain amount of 

horizontal overscan is generated on both ends of each line (see Figure 2-3). 
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Vertical overscan 

Horizontal izontal i Horizonta Displayed video buffer data overscan 
overscan 

Vertical overscan 

Figure 2-3. Overscan. 

During periods of horizontal overscan, the electron beam can be left on, display- 

ing an overscan, or border, color. However, the primary reason horizontal over- 

scan is designed into a video subsystem is to provide a margin of error in 

centering the raster, so that no data is lost at the edges of the screen. 

Vertical Timing 

Once the electron beam has scanned all horizontal lines in the raster, the Display 

Enable signal is turned off. The CRTC then generates a vertical sync signal, which 

tells the monitor to deflect the electron beam from the bottom of the screen back 

to the upper left corner. The vertical retrace interval (during which the beam 

travels from the bottom to the top of the screen) is shorter than the vertical blank- 

ing interval (during which no data from the video buffer is displayed), so there are 

areas of vertical overscan at the top and bottom of the raster (see Figure 2-3). Like 

horizontal overscan, vertical overscan provides a border as well as a safety 

margin so that the raster can be centered on the screen. 

Programming the CRT Controller 

The CRTC programming interface is well defined and easy to use. The same gen- 

eral programming approach applies to all IBM PC and PS/2 video subsystems. 

MDA 

The Monochrome Display Adapter’s CRTC, the Motorola 6845, has nineteen 8-bit 
internal data registers. The contents of each register control various characteris- 
tics of the timing signals generated by the 6845 (see Figure 2-4). One of these 
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registers is an address register; its contents indicate which of the other 18 can be 

accessed. Most of the registers are write-only, but registers OEH and OFH, which 

control the position of the hardware cursor, may be read as well as written. On the 

MDA, the 6845’s Address register is mapped to an I/O port at 3B4H, and the re- 

maining 18 registers are all mapped to the next I/O port at 3B5H. 

To access the 6845’s data registers, you first write the register number to the 

6845’s Address register (I/O port 3B4H). Then you access the specified data regis- 

ter with an I/O write or read at port 3B5H. For example, Listing 2-1 shows how to 

determine the current cursor location by reading the contents of registers OEH and 

OFH on the 6845. These two registers (Cursor Location High and Cursor Location 

Low) contain the high-order and low-order bytes of the cursor location relative to 

the start of the video buffer. 

Register Name Read/Write Access 

OOH Horizontal Total Write only 
01H Horizontal Displayed Write only 
02H Horizontal Sync Position Write only 
03H Horizontal Sync Pulse Width Write only 
04H Vertical Total Write only 
05H Vertical Total Adjust Write only 
06H Vertical Displayed Write only 
07H Vertical Sync Position Write only 
08H Interlace Mode Write only 
09H Maximum Scan Line Write only 
OAH Cursor Start Write only 
OBH Cursor End Write only 
OCH Start Address High Write only 
ODH Start Address Low Write only 
OEH Cursor Location High Read/Write 
OFH Cursor Location Low Read/Write 
10H Light Pen High Read only 
11H Light Pen Low Read only 

Figure 2-4. Motorola 6845 CRTC data registers (for the MDA, CGA, and Hercules video 

adapters). 

mov ax, 40h 

mov es,ax ; ES := video BIOS data segment 

mov dx,es: [63h] ; DX := 3x4h (3B4h or 3D4h) 

mov al, 0Eh 

out dx,al ; select 6845 Cursor Location 

* High seeqister 

me dx 

in al,dx ; read selected register at 3x5h 

mov ah,al ; AH := high byte of cursor 

; location 

dec dx 

mov al, 0OFh 

out dx, al ; select Cursor Location Low register 

Listing 2-1. Reading the 6845 Cursor Location registers. (continued) 
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Listing 2-1. Continued. 

inc ax 

in al,dx ' AX Y="“Offset Of cursor refative 

to start of video buffer 

; convert to character row and column 

mov dx,es: [4Eh] ; DX = CRT START (buffer start offset 

; in bytes) 

shr ax, 1 ; convert to words 

sub ax, dx ; subtract from cursor offset 

div byte ptr es: [4Ah] ; divide by CRT_COLS 

xchg ah,al ; AH := row, AL := column 

With the MDA, there is rarely any reason to change the values in any of the 6845 

registers except OAH and OBH (Cursor Start and Cursor End) and 0EH and 0FH 

(Cursor Location High and Low). Registers 00H through 09H control the horizon- 

tal and vertical timing signals, which should not be changed. Registers 0CH and 

ODH (Start Address High and Start Address Low), which indicate what part of the 

MDA’s video buffer is displayed, should always be set to 0. 

CGA 

The Color Graphics Adapter’s CRTC is a Motorola 6845, as is the MDA’s. The 

same programming technique used to access the CRTC on the MDA also works on 

the CGA. On the CGA, however, the CRTC Address register is mapped to I/O port 

3D4H and the data registers are accessed at 3D5H. If you write a program that can 

run on either an MDA or a CGA, you can take advantage of the fact that the video 
BIOS routines in both the PC and PS/2 families maintain the value of the CRTC’s 

Address register I/O port in a variable. Many of the programming examples in 

this book reference this variable, ADDR_6845, which is located at 0040:0063 in the 

BIOS Video Display Data Area. 

Hercules Adapters 

Like the MDA and CGA, the Hercules Graphics Card, Graphics Card Plus, and In- 

Color Card all use a Motorola 6845 as a CRTC. The CRTC registers are mapped at 

I/O ports 3B4H and 3B5H on all Hercules adapters. Although it is a color adapter, 

the InColor Card uses the MDA’s I/O port and video buffer addresses in order to 

preserve compatibility with the MDA and with Hercules monochrome adapters. 

On all Hercules video adapters (as well as the EGA, MCGA, and VGA), 

you can set both the address and data registers of the CRTC with one 
16-bit port write (OUT DX, AX) instead of two 8-bit port writes 
(OUT DX, AL). For example, the two sequences of code that follow do 
the same thing to the CRTC. 
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Mov 

mov 

out 

EGA 

The Enhanced Graphics Adapter’s CRTC is a proprietary LSI chip with a set of 
registers different from those in the 6845 (see Figure 2-5). The programming in- 
terface is similar to the 6845’s, but the register assignments and formats are differ- 
ent enough that programs that write directly to CRTC registers on the MDA or 

CGA will probably crash on an EGA. 

dx, 3B4h 

al,0OCh 

dax,al 

ax 

al,8 

ax,all 

dx 

dx, 3B4h 

ax, 080Ch 

dax,ax 

; CRTC address register 

; CRTC register number 

; disable interrupts 

7 select this register 

7 DX 3= 

7 data 

* store data in register 

* restore interrupts 

+ CRTC address register 

>= reg number, AH ; 

; store data in register 

; AL 

3B5h (CRTC data register) 

data 

The EGA’s CRTC supports a wider set of control functions than does the 6845. For 

example, the CRTC can cause a hardware interrupt at the start of a vertical blank- 

ing interval. The CRTC also supports the simultaneous display of two noncontig- 

uous portions of the video buffer. (Chapter 12 describes these CRTC capabilities.) 

A curious feature of the EGA’s CRTC is its Overflow register (07H). Because the 

EGA can display a raster of more than 256 lines, the CRTC registers that contain a 

number of scan lines must be 9 bits wide instead of 8. The high-order bit in each 

of these registers is stored in the Overflow register. 

Register 

00H 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
0CH 
ODH 
OEH 
OFH 

Figure 2-5. EGA and VGA CRT Controller data registers. 

Name 

Horizontal Total 
Horizontal Display Enable End 
Start Horizontal Blanking 
End Horizontal Blanking 
Start Horizontal Retrace 

End Horizontal Retrace 

Vertical Total 

Overflow 

Preset Row Scan 

Maximum Scan Line Address 

Cursor Start 

Cursor End 

Start Address High 
Start Address Low 

Cursor Location High 
Cursor Location Low 

EGA Read/Write Access 

Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Write only 
Read/Write 
Read/Write 
Read/Write 
Read/Write 

(continued) 
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Figure 2-5. Continued. 

Register Name EGA Read/Write Access 

10H Vertical Retrace Start Write only 

10H Light Pen High Read only 

11H Vertical Retrace End Write only 

11H Light Pen Low Read only 

12H Vertical Display Enable End Write only 

13H Offset (Logical Line Width) Write only 

14H Underline Location Write only 
15H Start Vertical Blanking Write only 
16H End Vertical Blanking Write only 
17H Mode Control Write only 
18H Line Compare Write only 

MCGA 

In the MCGA, the functions of a CRTC are integrated into a circuit component 

called the Memory Controller Gate Array. The first 16 Memory Controller regis- 

ters are analogous to those in the 6845 (see Figure 2-6). As on the CGA, all MCGA 

Memory Controller registers, including the CRTC registers, are indexed through 

an address register at I/O port 3D4H. The data registers themselves may be ac- 

cessed at port 3DSH. 

Several features of the MCGA’s CRTC distinguish it from the CGA’s 6845. All of 

the Memory Controller registers can be read as well as written. Moreover, regis- 

ters OOH through 07H may be designated read-only so that horizontal and vertical 

timing parameters are not inadvertently disrupted. Setting bit 7 of the Memory 

Controller Mode Control register (10H) to 1 protects registers 00H through 07H. 

Another feature of the MCGA CRTC is that the hardware can compute the horizon- 

tal timing parameters for each of the available video modes. When bit 3 of the 

Mode Control register is set to 1, and when the values in registers 00H through 

03H represent appropriate horizontal timing values for 40-by-25 alphanumeric 

mode (video BIOS mode 0), the Memory Controller generates proper horizontal 

timing signals in all available video modes. 

If you compare the MCGA CRTC and the Motorola 6845 register by register, you 

will note several discrepancies in the interpretation of the values stored in some 

CRTC registers. In particular, the values expected in registers 09H, OAH, and 0BH 

are specified in units of two scan lines on the MCGA, instead of one scan line on 

the 6845. Because the default alphanumeric character matrix on the MCGA is 16 

scan lines high, this feature provides a certain amount of low-level compatibility, 

letting you use the same values for these registers as you would on a CGA. 
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Register Name Read/Write Access 

00H Horizontal Total Read/Write 
01H Horizontal Displayed Read/Write 
02H Start Horizontal Sync Read/Write 
03H Sync Pulse Width Read/Write 
04H Vertical Total Read/Write 
05H Vertical Total Adjust Read/Write 
06H Vertical Displayed Read/Write 
07H Start Vertical Sync Read/Write 
08H (reserved) 
09H Scan Lines per Character Read/Write 
OAH Cursor Start Read/Write 
OBH Cursor End Read/Write 
OCH Start Address High Read/Write 
ODH Start Address Low Read/Write 
OEH Cursor Location High Read/Write 
OFH Cursor Location Low Read/Write 
10H Mode Control Read/Write 
11H Interrupt Control Read/Write 
12H Character Generator, Sync Polarity Read/Write 
13H Character Generator Pointer Read/Write 
14H Character Generator Count Read/Write 
20—3FH (reserved) 

Figure 2-6. MCGA Memory Controller data registers. Registers OOH through OFH are com- 
parable to those in the CGA’s CRT Controller. 

VGA 

Functionally, the VGA’s CRTC registers (see Figure 2-5) comprise a superset of 

those in the EGA’s CRTC. The VGA’s CRTC register set is addressable at the same 

I/O ports as the EGA’s. A few more bit fields have been added to the register set, 

primarily so that the CRTC can handle 400-line and 480-line rasters. However, 

unlike the EGA’s CRTC, the VGA’s CRTC does not support the use of a light pen. 

More important, however, all the EGA’s CRTC register specifications have been 

carried over to the VGA. Thus, programs that write to the EGA’s CRTC registers 

can be run unchanged on VGA-based hardware. 

As on the MCGA, the VGA’s CRTC data registers can all be read as well as writ- 

ten. Also, the VGA horizontal and vertical timing registers (CRTC registers 00H 

through 07H) can be write-protected by setting bit 7 of the Vertical Retrace End 

register (11H) to 1. 

As on Hercules adapters, you can program the CRTC on the EGA, 

MCGA, and VGA using a 16-bit port write (OUT DX, AX). Moreover, 

you will find by experimenting that 16-bit port writes work on many 
non-IBM video adapters. But stay away from this technique on MDAs, 

CGAs, and clones if portability is important. 
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Basic CRTC Computations 

To use the CRTC effectively, you must be able to perform the basic computations 

necessary to specify the CRTC’s timings correctly. These computations are based 

on three constraints: the bandwidth of the video signal sent to the monitor and the 

monitor’s horizontal and vertical synchronization rates. 

Dot Clock 

IBM PC video subsystems display pixels at a rate determined by the hardware. 

This rate is variously known as the video bandwidth, the dot rate, or the pixel rate; 

the oscillator that generates this rate is called the dot clock. The MDA, CGA, and 

Hercules adapter use only one dot clock; on the EGA and VGA, more than one dot 

clock is available (see Figure 2-7). The higher the dot clock frequency, the better 

the displayed pixel resolution. 

Given the dot rate, the CRTC must be programmed so that the horizontal and ver- 

tical scan frequencies sent to the video display are limited to frequencies the dis- 

play can handle. Older displays, such as the IBM Monochrome Display, are 

designed to handle only one horizontal and one vertical scan rate. Newer displays, 

such as the NEC MultiSync, can synchronize with a range of horizontal and/or 

vertical scan rates. 

Video Bandwidth Horizontal Scan Vertical Scan 
IBM Subsystem (Dot Rate) in MHz Rate in KHz Rate in Hz 

MDA, HGC 

720x350 mono 16.257 18.43 50 

CGA 

640x200 color 14.318 15.75 60 

EGA 

640x350 color 16.257 21.85 60 

640x200 color 14.318 L575 60 
720x350 mono 16.257 18.43 50 

InColor 

720x350 color 19.000 21.80 60 

MCGA 

640x400 mono/color 25.175 31.50 70 

640x480 mono/color 25. AMIS 31.50 60 

VGA 

640x400 mono/color Dodd 31.50 70 

720x400 mono/color 28.322 31.50 70 
640x480 mono/color 25 Ni > 31.50 60 
640x350 mono/color 25.175 31.50 70 
a ee eee 

Figure 2-7. Basic timings for IBM video subsystems. 
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Horizontal Timing 

Consider how you would calculate the typical CRTC register values shown in 

Figure 2-8 for an MDA with an IBM Monochrome Display. The MDA’s video 

bandwidth (dot rate) is 16.257 MHz; that is, 16,257,000 dots per second. The mono- 

chrome display’s horizontal scan rate is 18.432 KHz (18,432 lines per second). 

Dividing the dot rate by the horizontal scan rate gives 882 dots per line. Each 

character displayed by the MDA is 9 dots wide, so the total number of characters 

in each line is 882 + 9, or 98. 

This value is used to program the CRTC’s Horizontal Total register. For the 

MDA’s CRTC, a Motorola 6845, the value you store in the Horizontal Total register 

must be 1 less than the computed total, or 97 (61H). 

Register Name Parameter Description 

00H Horizontal Total 97 (61H) (total characters per scan line) — 1 

01H Horizontal Displayed 80 (SOH) Characters displayed in each 
scan line 

02H Horizontal Sync Position 82 (52H) Position in scan line where 

horizontal retrace starts 
03H Horizontal Sync Width 15 (OFH) Duration of horizontal retrace in- 

terval (character clocks) 

04H Vertical Total 25 (19H) Total character rows in one frame 
05H Vertical Total Adjust 2 Remaining scan lines in one frame 
06H Vertical Displayed 25 (19H) Character rows displayed in 

each frame 

07H Vertical Sync Position 25 (19H) Position in frame where vertical 
retrace starts 

08H Interlace Mode Z Always set to 2 

09H Maximum Scan Line 13 (ODH) (height of one character in 

scan lines) — 1 

Figure 2-8. Typical CRTC parameters for the Monochrome Display Adapter. 

In terms of CRTC timings, the Horizontal Total value describes the amount of 

time, in ‘‘character clocks,’’ required to complete one horizontal scan. During 

this period, 80 characters are actually displayed. (This is the value used for the 

Horizontal Displayed register.) The other 18 character clocks are spent in horizon- 

tal overscan and in horizontal retrace. 

The duration of the horizontal retrace interval is about 10 to 15 percent of the 

Horizontal Total value. The exact value depends on the video subsystem. On the 

MDA, the horizontal retrace interval is set at 15 character clocks by storing this 

value in the CRTC Horizontal Sync Width register. This leaves 3 character clocks 

of horizontal overscan. The horizontal retrace signal is programmed to start 2 

character clocks after the rightmost displayed character by storing the value 82 

(52H) in the CRTC Horizontal Sync Position register. Thus, there are 2 character 

clocks of right horizontal overscan and 1 character clock of left overscan. 
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Changing the value in the Horizontal Sync Position register changes 

the size of the right and left overscan areas and thus the horizontal 

position of the displayed raster. For example, to shift the displayed 

raster to the left, increase the size of the right overscan interval by in- 

creasing the value in the CRTC Horizontal Sync Position register. 

Vertical Timing 

Similar considerations apply in programming the CRTC to generate appropriate 

vertical timings. The nominal horizontal scan rate in the MDA’s monochrome dis- 

play is 18.432 KHz (18,432 lines per second) with a vertical scan rate of 50 Hz (50 

frames per second), so the number of lines in one frame is 18,432 + SO, or 368. 

Since each character displayed is 14 lines high, 25 rows of characters account for 

350 lines. The MDA’s CRTC always uses 16 lines for vertical retrace; this leaves 

368 — (350 + 16), or 2 lines of vertical overscan. 

The CRTC programming follows these calculations. The height of each displayed 

character is specified by the value in the CRTC Maximum Scan Line register. 

Since characters are 14 scan lines high, the maximum scan line value is 13 (ODH). 

Taken together, the values for Vertical Total (25 character rows) and Vertical To- 

tal Adjust (2 scan lines) indicate the total number of scan lines in one frame. The 

number of character rows displayed (25) is indicated in the Vertical Displayed 

register. The position in the frame where vertical retrace starts (25) is specified 

by the value in the Vertical Sync Position register. 

The CRTCs on the MCGA, EGA, and VGA are more complex than the Motorola 

6845 CRTC on the MDA and CGA. Nevertheless, the registers that control horizon- 

tal and vertical timings in the newer video subsystems are similar in nomencla- 

ture and functionality to the 6845’s registers. The computations for the MCGA, 

EGA, and VGA CRTCs are derived from the dot rate, the character size, and the 

horizontal and vertical capabilities of the video display, just as they are for the 
MDA and CGA. 

The CRT Status Register 

All IBM video subsystems have a read-only CRT Status register. This register is 
located at I/O port 3BAH on the MDA and Hercules adapters and at 3DAH on the 
CGA and MCGA,; on the EGA and VGA, this register is at 3BAH in monochrome 
configurations and at 3DAH in color configurations. Generally, two of the eight 
bits in this register reflect the current status of the horizontal and vertical timing 
signals generated by the CRTC. These status bits can be used to synchronize video 
buffer updates with the screen refresh cycle to minimize interference with the dis- 
played image. (Chapter 3 contains examples of this type of programming.) 

Unfortunately, the exact interpretation of the status bits in the CRT Status register 
varies among the different IBM video subsystems (see Figure 2-9). Therefore, pro- 
grams should be designed to determine which hardware they are running on (Ap- 
pendix C) before they attempt to use the status information in this register. 
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Listing 2-2 shows how the status bits in the CRTC Status register are used to syn- 

chronize program operation with the video refresh cycle. This subroutine can be 

used on the CGA to time the horizontal blanking interval. The subroutine uses bit 

3 of the CRT Status register, which indicates when the CRTC’s vertical sync signal 

is active, to synchronize with the start of a refresh cycle. The loops at LO1 and 

L02 show how this is done. 

The loops at LO3 and L04 then synchronize with the Display Enable signal, using 

bit 0 of the CRT Status value. When the Display Enable signal goes off, the loop at 

LO5 decrements the value in CX during the horizontal blanking interval, that is, 

while the Display Enable signal is off. The number of iterations counted in CX 

can then be used as a timeout value to determine when the last horizontal line in 

the frame has been scanned. (See Chapter 3.) 

TITLE MiMmSe Lng. 2-20 

NAME HRTimeout 

PAGE So hoe 

; Name: HRTimeout 

7 Function: Determine a timeout value for the horizontal blanking interval 

7 Caller: Microsoft C: 

i 

; int HRTimeout (); 

rex SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT 

PUBLIC HRTimeout 

_HRTimeout PROC near 

push bp ; usual C prologue to establish 

mov bp, sp ; stack frame 

mov ax, 40h 

mov es, ax ; ES := video BIOS data segment 

mov dx,es: [63h] 7 DX == pore Loy CRIC Address register 

add dl,6 + DX := port for CRIC Status register 

; synchronize with start of refresh cycle 

LO1: in al,dx 7 AL t= CRIC status 

test al,8 7 test bit 3 

Jz L01 ; loop while NOT in vertical retrace 

02: in al,dax 

test al,8 

jnz LO02 ; loop during vertical retrace 

Listing 2-2. Timing the horizontal blanking interval on the CGA. (continued) 
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Listing 2-2. Continued. 

synchronize with a horizontal scan and time the horizontal blanking interval 
, 

mov cx, OFFFFhA - CX s= Loop counter 

aul lt ; disable interrupts 

L03: in al,dx 

test al,1 

jnz L03 ; loop while Display Enable is inactive 

L04: in al,dx 

EeSt al, 1 

az L04 ; loop while Display Enable is active 

L0O5:; in al,dx 

test al,1 
loopnz L05 ; decrement CX and loop while Display 

; Enable is inactive 

Sita ; enable interrupts again 

mov ax,Cx ; AX := loop counter 

neg ax 

shl ax, 1 ; AX := timeout value 

mov sp,bp ; discard stack frame and return to C 

pop bp 
ret 

_HRTimeout ENDP 

_ TEXT ENDS 

END 

Video Modes 

Despite the timing constraints imposed by the dot clock and the rated horizontal 

and vertical scan rates of available monitors, all IBM video subsystems except the 

MDA can be programmed with a variety of different CRTC parameters. This 
makes a number of video modes available. Each video mode is characterized by 

its resolution (the number of characters or pixels displayed horizontally and ver- 

tically), by the number of different colors that can be displayed simultaneously, 
and by the format of the displayable data in the video buffer. 

Resolution 

The horizontal and vertical resolution in a video mode is a function of the dot rate 

as well as the monitor’s horizontal and vertical scan rates. The number of pixels 
displayed in each frame corresponds to the dot rate divided by the vertical scan 

rate. The actual horizontal and vertical resolution then depends on the horizontal 

scan rate. 
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Colors 

The number and variety of colors that can be displayed in a video mode depend 

on the design of the video subsystem’s attribute decoding and video signal genera- 

tor components. The attribute decoder uses data stored in the video buffer to con- 

trol the color and brightness signals produced by the video signal generator. 

Establishing a particular video mode always involves programming a video sub- 

system’s attribute decoder in addition to updating its CRTC parameters. 

Video Buffer Organization 

The format of the data in video RAM also characterizes a video mode. In all PC 

and PS/2 subsystems, video modes can be classified as alphanumeric or graphics 

modes, depending on the video buffer data format. In alphanumeric modes, the 

data in the video buffer is formatted as a sequence of ASCII code and attribute 

byte pairs; the alphanumeric character generator translates the ASCII codes into 

displayed characters while the attribute bytes specify the colors used to display 

them (see Chapter 3). In graphics modes, the video buffer is organized as a se- 

quence of bit fields; the bits in each field designate the color of a particular pixel 

on the screen. 

Hardware Video Mode Control 

Establishing a video mode on an IBM PC or PS/2 video subsystem generally re- 

quires specific mode control programming apart from specifying CRTC parame- 

ters. For example, the alphanumeric character generator must be enabled in 

alphanumeric modes and disabled in graphics modes. Also, the subsystem’s inter- 

nal character clock, which determines the number of pixels generated for each al- 

phanumeric character code read from the video buffer, may run at different rates 
in different video modes. These and other internal functions are controlled by 

loading one or more specialized mode control registers with values appropriate 
for each video mode. 

MDA 

The MDA’s Mode Control register is a write-only register mapped to port 3B8H 
(see Figure 2-10). Only three of the eight bits in this register have meaning. Bit 0 
is set to 1 at powerup and must always remain set to 1. Bit 3, when set to 1, enables 
video refresh; clearing this bit blanks the screen. Bit 5 is the Enable Blink bit; it 
controls whether characters can blink. On the MDA, most programs leave bit 3 set 
at all times. Chapter 3 explains how to use bit 5 (the Enable Blink bit). 
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Bit Settings eee ee eee ee 

1 = adapter enabled (should always = 1) 
(unused, should always = 0) 
(unused, should always = 0) 
1 = video enabled 

0 = video disabled (screen blank) 

(unused, should always = 0) 

1 = blinking attribute enabled 
0 = blinking attribute disabled 
(unused, should always = 0) 

(unused, should always = 0) 

nn WNre © 

SN 

Figure 2-10. Bit settings for the MDA Mode Control register (3B8H). 

CGA and MCGA 

The Mode Control register on the CGA and MCGA is found at 3D8H (see Figure 
2-11a). The five low-order bits control internal timings appropriate for the video 
modes they select, while bit 5 is an Enable Blink bit just as it is on the MDA. The 

useful bit patterns for the CGA’s Mode Control register are listed in Figure 2-11b. 

These values correspond to the available BIOS video modes on the CGA. 

The Mode Control registers on the CGA and the MCGA have two differences. One 

is that the MCGA Mode Control register may be read as well as written; the CGA 

register is write-only. The other difference relates to the function of bit 2. On the 

CGA, setting bit 2 to 1 disables the color burst component of the composite video 

output signal. This can improve the quality of the display if you are using a com- 

posite green or amber monitor with a CGA. On the MCGA, which does not support 

Bit Settings 

0 1 = 80-character alphanumeric modes 
0 = 40-character alphanumeric modes 

1 1 = 320-wide graphics mode 
0 = (all other modes) 

2 1 = color burst disabled (CGA only) 

1 = foreground color from video DAC register 7 (MCGA only) 
0 = color burst enabled (CGA only) 

0 = foreground color from the video DAC register specified in bits 0—3 of 
the Palette register (3D9H) (MCGA only) 

5 1 = video enabled 
0 = video disabled (screen blank) 

4 1 = 640-wide graphics modes 
0 = (all other modes) 

5 1 = blinking attribute enabled 
0 = blinking attribute disabled 

6 (unused, should always = 0) 

7 (unused, should always = 0) 

Figure 2-1la. Bit settings for the CGA and MCGA Mode Control register (3D8RH). 
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BIOS Mode Value for Mode 

Number Description Control Register 

0 40x25 alpha 00101100b (2CH) 

(color burst disabled) 

1 40x25 alpha 00101000b (28H) 

80x25 alpha 00101101b (2DH) 

(color burst disabled) 

3 80x25 alpha 00101001b (29H) 

4 320x200 graphics 00101010b (2AH) 

5 320x200 graphics 00101110b (2EH) 

(color burst disabled) 

6 640x200 graphics 00011100b (1CH) 

7 80x25 alpha 00101001b (29H) 

(MDA only) 
11H 640x480 graphics 00011000b (18H) 

(MCGA only) 

Figure 2-11b. MDA, CGA, and MCGA Mode Control register options. 

a composite monitor, the function of bit 2 of the Mode Control register is to select 

between two sources for the foreground color in 2-color graphics modes. 

The MCGA has two additional mode control registers, which are not implemented 

on the CGA. The MCGA Memory Controller Mode Control register (10H) at port 

3D4H/3DS5H selects 640-by-480 2-color and 320-by-200 256-color graphics modes 

(see Figure 2-12). An Extended Mode Control register is mapped to I/O port 

3DDH. This register is used only during machine coldstart; it has no practical use 

in applications programs. 

Bit Settings 

0 1 = select 320x200 256-color mode 
0 = (all other modes) 

1 1 = select 640x480 2-color mode 
0 = (all other modes) 

2 (reserved) 

3 1 = horizontal timing parameters computed for video mode 
0 = horizontal timing parameters as specified in registers 00O—03H 
1 = enable dot clock (should always be 1) 
(reserved) 

Inverse of bit 8 of Vertical Displayed register (06H) 
1 = write-protect registers 00O—07H 
0 = allow updating of registers 00O-07H 

NADU 

Figure 2-12. Bit settings for the MCGA Memory Controller Mode Control register. 
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HGC 

The Hercules Graphics Card has two control registers whose contents affect the 
video mode configuration. The Mode Control register at 3B8H is functionally 
compatible with the MDA’s Mode Control register, but it maps additional mode 
configuration functions to bits 1 and 7 (see Figure 2-13). Bit 1, when set to 1, 
establishes internal timings for a 720-by-348 graphics mode. Setting bit 7 to 1 
while the adapter is in graphics mode displays the second half of the adapter’s 64 
KB video buffer at B800:0000. These bits have no function, however, unless the 
appropriate bits in the adapter’s Configuration Switch register are set properly. 

The Configuration Switch register (3BFH) determines the function of the Mode 
Control register at 3B8H (see Figure 2-14). When bit 0 of the Configuration Switch 
register is 0, the HGC cannot be placed in its graphics mode, so bit 1 of the Mode 
Control register must also be 0. Bit 1 of the Configuration Switch register controls 
video buffer addressing when the adapter is used in combination with a CGA or 
compatible (see below). 

Bit Settings 

(unused) 

1 1 = 720x348 graphics mode 
0 = 80x25 alphanumeric mode 

2 (unused, should always = 0) 

3 1 = video enabled 
0 = video disabled (screen blank) 

4 (unused, should always = 0) 

= 1 = blinking attribute enabled 
0 = blinking attribute disabled 

6 (unused, should always = 0) 

iy 1 = graphics mode buffer displayed from B800:0000 (video page 1) 
0 = graphics mode buffer displayed from B000:0000 (video page 0) 

Figure 2-13. Bit settings for the Hercules Mode Control register (3B8H). This register is the 
same on the HGC, HGC+, and InColor Card. 

Bit Settings 

0 1 = allows graphics mode 
0 = prevents graphics mode 

1 1 = enables upper 32 KB of graphics mode video buffer at B800:0000 
0 = disables upper 32 KB of graphics mode buffer 

2-7 (unused) 

Figure 2-14. Bit settings for the Hercules Configuration Switch register (3BFH). This register 
is the same on the HGC, HGC+, and InColor Card. 
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HGC+ and InColor Card 

The HGC+ and InColor Card implement an extended mode control register (called 

the xMode register) in addition to the Mode Control and Configuration Switch 

registers found on the HGC. The xMode register is a write-only register address- 

able as register 14H at port 3B4H/3BS5H. (The register is addressed exactly as if it 

were a CRTC register.) The xMode register controls the alphanumeric character 

generator; Chapter 10 explains this in detail. 

EGA and VGA 

When you establish a video mode on the EGA and the VGA, you can control the 

internal timing and addressing of several different components of the video sub- 

system. These include the Sequencer, the Graphics Controller, and the Attribute 

Controller, each of which has several control registers. There is also a Miscel- 

laneous Output register, which controls I/O port and video buffer addressing and 

selects the dot clock frequency. 

All Sequencer, Graphics Controller, and Attribute Controller registers 

on the EGA are write-only registers, but on the VGA they can be read 

as well as written. 
P 

Sequencer 
The Sequencer generates internal timings for video RAM addressing. It has five 

programmable data registers (see Figure 2-15) mapped to ports 3C4H and 3CSH in 

a manner analogous to CRTC register mapping. The Sequencer’s Address register 

is located at 3C4H; its five data registers are selected by storing an index value be- 

tween 0 and 4 in the Address register and then accessing the corresponding data 

register at 3C5H. 

Register Name 

0 Reset 
1 Clocking Mode 
Z Map Mask 
3 Character Map Select 
4 Memory Mode 

Figure 2-15. EGA and VGA Sequencer registers. 

Graphics Controller 

The Graphics Controller mediates data flow between the video buffer and the 

CPU, as well as from the video buffer to the Attribute Controller. The Graphics 

Controller has nine data registers, plus an Address register (see Figure 2-16). The 
Address register maps to port 3CEH, and the data registers map to port 3CFH. 
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Register Name 

Set/Reset 

Enable Set/Reset 

Color Compare 
Data Rotate/Function Select 

Read Map Select ; 
Graphics Mode A Ce FE be 
Miscellaneous 

Color Don’t Care 

Bit Mask SAINDNMNAPWNK OS 

Figure 2-16. EGA and VGA Graphics Controller registers. 

Attribute Controller 
The Attribute Controller supports a 16-color palette on the EGA and VGA. It also 

controls the color displayed during overscan intervals. The Attribute Controller’s 

Address register and 21 data registers all map to I/O port 3COH (see Figure 2-17). 

A value written to port 3COH will be stored in either the Address register or a data 

register, depending on the state of a flip-flop internal to the Attribute Controller. 

Register(s) Function 

0—OFH Palette 

10H Attribute Mode Control 
11H Overscan Color } 

12H Color Plane Enable 3D LH 
13H Horizontal Pixel Panning 
14H Color Select (VGA only) 

Figure 2-17. EGA and VGA Attribute Controller registers. 

To set the flip-flop, perform an I/O read (IN AL, DX) of the CRT Status register 

(port 3BAH in monochrome modes, 3DAH in color modes). Listing 2-3 illustrates 

how this is done in updating an Attribute Controller register. On the VGA, At- 

tribute Controller data registers may be read as well as written. Do this by writing 

the register number to port 3COH and then reading the value from port 3C1H. 

; program the Attribute Controller directly 

mov ax, 40h 

mov es,ax ; ES := video BIOS data segment 

mov dx,es: [63h] ; DX := 3x4h (3B4h or 3D4h) 

add Guill; ; DX := 3xAh (CRT Status Register) 

ope ; clear the interrupts 

in al, dx ; reset Attribute Controller flip-flop 

push dx ; preserve Status Reg port 

Listing 2-3. Updating the EGA or VGA Attribute Controller register. (continued) 
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Listing 2-3. Continued. 

mov d1l,0COh 7 Dx) 3= 3COh 

mov al,RegNumber 

out dx,al ; write to Address Register 

jmp 4 ; waste a few cycles so that Attribute 

; Controller can respond 

mov al,DataValue 

out dx,al ; write to data register 

pop dx ; DX := 3xAh 

in al,dx ; reset that flip-flop 

mov dl, 0COh 7 he 4 

f> mov al,20h ; restore palette € praar, 

j out dx,al 4 : bs 

. sti ; enable interrupts bp PKA 

; using the video BIOS 

mov ax, 1000h ; AH := 10h (INT 10h function number) 

; AL := 0 (Set individual Attribute 

; Controller register) 

mov bl, RegNumber 

mov bh, DataValue 

int 10h 

You can use 16-bit port writes (OUT DX, AX) to store data in EGA and 

VGA Sequencer and Graphics Controller registers. On the EGA, you 

can use the same technique to program the Attribute Controller, 

which recognizes I/O port writes at 3C1H as well as 3COH. However, 

the VGA Attribute Controller does not emulate the EGA in this regard, 

so this technique should be used carefully when VGA compatibility is 

important. 

Video BIOS Support 

The video BIOS supports a number of different video modes on IBM PC and PS/2 

video subsystems (see Figure 2-18). The video BIOS routines, which can be called 

with INT 10H, let you establish a video mode simply by specifying its number. 

Not all of the BIOS video modes are available on all IBM PC video subsystems. 

Furthermore, the video BIOS does not support video mode configurations on 

non-IBM hardware unless it exactly emulates the corresponding IBM hardware. 

For example, all Hercules video adapters emulate IBM’s MDA exactly. Thus, the 

video BIOS can be used to select the monochrome alphanumeric mode (BIOS 

mode 7) on all Hercules products. However, the Hercules hardware also supports 

a 720-by-348 graphics mode which is not recognized by IBM’s video BIOS. Conse- 

quently, to set up the Hercules graphics mode, a program must configure the hard- 
ware directly (see Listing 2-4). 
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Ss 

M ode 
of Number Mode Buffer Sy or & Ry 

(hex) Resolution Colors Type Segment ores 

0 40x25 chars (320x200 pixels)*}+ 16 Alpha B800 eee Xx 
0 40x25 chars (320x350 pixels)t 16 Alpha B800 x x 
0 40x25 chars (320x400 pixels) 16 Alpha B800 xX 
0 40x25 chars (360x400 pixels)+ 16 Alpha B800 X 

1 40x25 chars (320x200 pixels)+ 16 Alpha B800 Xo on eX 
1 40x25 chars (320x350 pixels)+ 16 Alpha B800 X X 
1 40x25 chars (320x400 pixels) 16 Alpha B800 X 
1 40x25 chars (360x400 pixels)+ 16 Alpha B800 X 

2 80x25 chars (640x200 pixels)*+ 16 Alpha B800 Kame Kaur Xe neX 
2 80x25 chars (640x350 pixels)+ 16 Alpha B800 iK x 
2 80x25 chars (640x400 pixels) 16 Alpha B800 Xx 
2 80x25 chars (720x400 pixels)+ 16 Alpha B800 x 

3. 80x25 chars (640x200 pixels)+ 16 Alpha B800 eX sae EX 
3 80x25 chars (640x350 pixels)+ 16 Alpha B800 x x 
3 80x25 chars (640x400 pixels) 16 Alpha B800 x 
3. 80x25 chars (720x400 pixels)t 16 Alpha B800 i 

4 320x200 pixels 4 Graphics B800 Xue Xcuee Kom Xi 
5 320x200 pixels 4 Graphics B800 Xo eX BOX 

6 640x200 pixels 2 Graphics B800 Xo XC Xa 

7 80x25 chars (720x350 pixels)+ 2 Alpha BOO0 x x x 
7 80x25 chars (720x400 pixels)t+ 2 Alpha BO0O x 

8  (PCjr only) 
9 (PCjr only) 

OA (PCjr only) 

OB (used by EGA video BIOS) 

OC (used by EGA video BIOS) 

OD 320x200 pixels 16 Graphics A000 X 2 

OE 640x200 pixels 16 Graphics A000 X X 

OF 640x350 pixels 2 Graphics A000 Xx x 

*On the CGA, the color burst component of the composite video signal is disabled. This improves 
the appearance of a monochromatic green or amber display. On the EGA, MCGA, and VGA, mode 0 

is the same as mode 1, and mode 2 is the same as mode 3. 

tOn the VGA, the vertical pixel resolution in this mode is selected using INT 10H function 12H (see 

Appendix A). 

+On the CGA, color burst is disabled and the four-color palette contains black, cyan, red, and white 
(for details, see Chapter 4). On the EGA, MCGA, and VGA, mode 5 is the same as mode 4. 

§Only four colors can be displayed on an EGA with only 64 KB of video RAM. 

Figure 2-18. ROM BIOS video modes. (continued) 
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Figure 2-18. Continued. 

Mode Yow oY ey 
Number Z Mode Buffer § & § SS 
(hex) Resolution Colors Type Segment 

10 640x350 pixels§ 4 Graphics A000 xX 
10 640x350 pixels 16 Graphics A000 Xx x 

11 640x480 pixels 2 Graphics A000 XX 
12 640x480 pixels 16 Graphics A000 x 

13. 320x200 pixels 256 Graphics A000 Xe 

ETc ree es Piast ang  2—4 

NAME HercGraphMode 
PAGE oy SZ 

; Name: HercGraphMode 

7, BUNCeELon: Establish Hercules 720x348 graphics mode on HGC, HGC+, InColor 

; Caller: Muerosoft. Cs 

: void HercGraphMode () ; 

DGROUP GROUP _DATA 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT, ds:DGROUP 

PUBLIC _HercGraphMode 
_HercGraphMode PROC near 

push bp ; preserve caller registers 
mov bp, sp 

push Si 

push di 

7 Update Video BIOS Data Area with reasonable values 

mov ax, 40h 

mov es,ax 

mov di,49h 7 ES:DI := 0040:0049 (BIOS data area) 

mov si,offset DGROUP:BIOSData 

mov cx, BIOSDataLen 

rep movsb + update BIOS data area 

; Set Configuration Switch 

mov dx, 3BFh 7; DX := Configuration Switch port 
mov al,1 7; Al bit 1 := 0 (exclude 2nd 32K of 

7 video buffer) 

Listing 2-4. Configuring a Hercules adapter for 720-by-348 graphics mode. (continued) 
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Listing 2-4. Continued. 

out dx,al 

* AL bit 0 := 1 (allow graphics mode 
; setting via 3B8h) 

7; Blank the screen to avoid interference during CRTC programming 

mov 

xor 

out 

7 Program the CRTC 

LOWS 

sub 

mov 

mov 

lodsw 

out 

loop 

+ Set graphics mode 

_HercGraphMode 

_TEXT 

_DATA 

CRTCParms 

CRTCParmsLen 

add 

mov 

out 

pop 

pop 

mov 

pop 

ret 

ENDP 

ENDS 

SEGMENT 

DB 

DB 

DB 

DB 

DB 

DB 

DB 

DB 

DB 

EQU 

ax, 3B8h 

al,al 

dx,al 

d1,4 

si,offset 

cx, CRTCPar 

dx,ax 

L01 

dal,4 

al,CRTMode 

dx,al 

di 

si 

sp, bp 

bp 

word publi 

00h,35h ; 

Olh,2Dh ; 

02h, 2Eh ; 

03h,07h ; 

04h,5Bh ; 

05h,02h ; 

06h,57h ; 

O7h,57h ; 

09h,03h ; 

($-CRTCPar 

* DX := CRTC Mode Control register port 

; AL bit 3 := 0 (disable video signal) 

+ blank the screen 

* DX := CRTC Address reg port 3B4h 

DGROUP:CRTCParms 

msLen 

7 AL := CRTC register number 

; AH := data for this register 

; DX := 3B8h (CRTC Mode Control reg) 

; AL bit 1 = 1 (enable graphics mode) 

2 bit 3 = 1 (enable video) 

7; restore registers and exit 

c 'DATA' 

These are the parameters recommended by Hercules. 

They are based on 16 pixels/character and 

4 scan lines per character. 

Horizontal Total: 54 characters 

Horizontal Displayed: 45 characters 

Horizontal Sync Position: at 46th character 

Horizontal Sync Width: 7 character clocks 

Vertical Total: 92 characters (368 lines) 

Vertical Adjust: 2 scan lines 

Vertical Displayed: 87 character rows (348 lines) 

Vertical Sync Position: after 87th char row 

Max Scan Line: 4 scan lines per char 

ms) /2 

(continued) 
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Listing 2-4. Continued. 

BIOSData DB a i CRT_MODE 

DW 80 ; CRT_COLS 
DW 8000h ; CRT_LEN 
DW 0 ; CRT_START 
DW 8 dup(0) ; CURSOR _POSN 

DW 0 i CURSOR_MODE 

DB 0 , ACTIVE PAGE 

CRTCAddr DW 3B4h : ADDR_6845 

CRTMode DB OAh ; CRT_MODE SET (value for port 3B8h) 

DB 0 ; CRI PALETTE (unused) 

BlIOSDataLen EQU S$-BIOSData 

_DATA ENDS 

END 

Combinations of Video Subsystems 

IBM designed the original MDA and CGA such that both adapters can be used in 

the same PC. This is possible because the CRTC registers and other control and 

status registers are assigned to a different range of I/O ports on the MDA than on 

the CGA. The MDA’s port addresses range from 3B0H through 3BFH, while the 

CGA’s range from 3D0H through 3DFH. Also, the video buffers on the MDA and 

the CGA occupy different portions of the 80x86 address space: The MDA’s 4 KB 

video buffer is at BO00:0000, while the CGA’s 16 KB buffer starts at B800:0000. 

This separation was carried forward in the design of the EGA. The EGA’s I/O port 

and video buffer addressing are programmable. When the EGA is attached to a 

monochrome monitor, the MDA-compatible addresses are used. When the EGA is 

used with a color monitor, the CGA-compatible addresses are used. Thus, an EGA 

can coexist with either an MDA or a CGA. 

Figure 2-19 shows which PC and PS/2 video subsystems can coexist in the same 

computer. The table reflects the dichotomy between MDA-compatible and CGA- 

compatible I/O port and video buffer addressing. As a rule of thumb, you can 

usually combine one MDA-compatible adapter and one CGA-compatible adapter in 
the same system. 

NOTE: The Hercules InColor Card should be regarded as an MDA-compatible 
adapter, even though it is ostensibly a color card. In fact, if you use the InColor 
Card in a PS/2 Model 30 with a monochrome monitor attached to the Model 30’s 
MCGA, you end up with the strange combination of an MDA-compatible color sub- 
system and a CGA-compatible monochrome subsystem in the same computer. 

The BIOS video mode routines generally support dual-display configurations. The 
video BIOS routines use bits 4 and 5 of the variable EQUIP_FLAG at 0040:0010 in 
the BIOS video data area to choose between two video subsystems. If there are ad- 
dressing conflicts between two subsystems, the BIOS in the MCGA and VGA pro- 
vides a ‘“‘display switch’’ interface that lets you independently disable and enable 
each subsystem (see Appendix A). 
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MDA CGA EGA MCGA VGA Adapter HGC HGC+ InColor 

MDA x x x x 
CGA x xx Xx 1 X 
EGA x X x x x x 
MCGA x X x x x Xx 
VGA Adapter X i X X X 
HGC x X x x 
HGC+ x x x i 
InColor x x xX x 

Figure 2-19. Allowable combinations of IBM PC and PS/2 video subsystems. 

With some combinations of video adapters, the address space the two subsystems’ 
video buffers occupy may overlap even if their I/O port address assignments do 
not. In this situation you must selectively exclude part or all of one subsystem’s 
video buffer from the CPU memory map so that the CPU can access the other sub- 
system’s buffer without addressing conflicts. The technique for doing this varies 
with the hardware. 

MDA 

The MDA’s video buffer is mapped to the addresses between B000:0000 and 

B000:FFFF. The same buffer is also mapped to the 4 KB blocks of RAM starting at 

segments B100H, B200H, and so on through B700H, although there is no real 

reason for software to use these alternate address maps. The MDA’s video buffer 

address mapping cannot be disabled. 

Hercules 

On the HGC, the HGC+, and the InColor Card, the video buffer occupies the 64 KB 

of RAM starting at B000:0000. The second 32 KB of the video buffer overlaps the 

address space of a CGA’s video buffer (starting at B800:0000). For this reason 

these Hercules adapters are designed so that the second 32 KB can be selectively 

excluded from the CPU memory map. The extent of the video buffer address space 

depends upon the value you store in the Configuration Switch register (3BFH). 

When bit 1 of this register is 0 (the power-on default), video RAM occupies ad- 

dresses from B000:0000 through B000:7FFF, which excludes the second 32 KB por- 

tion from the CPU memory map and allows the card to be used with a CGA. To 

make the second half of the video buffer addressable, set bit 1 to 1. 

CGA 

The CGA’s video buffer maps to the addresses between B800:0000 and B800:3FFF. 

The same buffer is also mapped between BC00:0000 and BCO00:3FFF, although few 

programs use this alternate address map. As with the MDA, the CGA’s video 

buffer mapping cannot be altered. 
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This is not the case, however, for all CGA clones. The Hercules Color Card (not to 

be confused with the InColor Card) is a CGA work-alike whose video buffer can 

be excluded from the CPU’s address space. This is achieved by setting bit 1 of the 

card’s Configuration Switch register (3BFH) to 1. This register maps to the same 

/O port as the equivalent register on an HGC, HGC+, or InColor Card, but the 

polarity of the control bit is opposite that on the other Hercules cards. Thus, by 

toggling this bit, software can address the video buffers on both a Hercules Color 

Card and another Hercules adapter without addressing conflicts. 

EGA 

The EGA’s video buffer can be mapped to any of four locations, depending on the 

values of bits 2 and 3 in the Graphics Controller Miscellaneous register (see 
Figure 2-20). The default values for these bits depend on the video mode. When 

the video BIOS sets up a video mode, it sets these bits to appropriate values. 

Bit 3 Bit 2 Video Buffer Address Range 

b Nine (@) 0 0 A000:0000—B000:FFFF = pbanweaN 
0 1 A000:0000—A000:FFFF BG 
1 0 B000:0000—B000:7FFF ae 
1 1 B800:0000-B800:7FFF ot 

Figure 2-20. Control of EGA and VGA video buffer addressing with the Graphics Controller 
Miscellaneous register. 

The EGA also provides another level of control over the video buffer address map. 

When set to 0, bit 1 of the EGA’s Miscellaneous Output register (3C2H) excludes 

the entire video buffer from the CPU memory address space. 

MCGA 

The MCGA’s 64 KB video buffer occupies the addresses between A000:0000 and 
A000:FFFF, but the second 32 KB of the buffer, starting at A000:8000 (A800:0000), 
also maps to the CGA video buffer address range (B800:0000 through B800:7FFF). 
CPU addressing of the MCGA’s video buffer and I/O ports can be disabled by set- 
ting bit 2 of the system board control port at 65H to 0. Listing 2-5 shows how INT 
10H function 12H can be called to set or reset this bit. 

mov ah,12h >; AH 12h (INT 10h function number) 
mov aia Ae 1 (disable addressing) 

*# (use AL = 0 to enable addressing) 
mov bi, o2h 7 INT 10H subfunction number 
int 10h 

cmp al,12h 

jne ErrorExit 7; jump if BIOS does not support this 
; f£unction 

Listing 2-5. Enable or disable video I/O port and buffer addressing on an MCGA or VGA. 
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VGA 

Control over the VGA’s video buffer address map is the same as on the EGA. 

However, there are two different methods of disabling CPU addressing of the 

video subsystem, depending on whether you are using an integrated VGA (ina 

PS/2 Model 50, 60, or 80) or the VGA Adapter. In the integrated subsystem, the 

Video Subsystem Enable Register (3C3H) controls both video buffer addressing 

and I/O port addressing; setting bit 0 of this register to 0 disables addressing, and 

setting bit 0 to 1 enables addressing. 

On the VGA Adapter, the Video Subsystem Enable register does not exist. Instead, 

bit 3 of the control register at I/O port 46E8H enables and disables addressing: 

Writing a default value of 0EH to this port enables addressing; writing a value of 

6 disables addressing. 

In all VGA subsystems, however, INT 10H function 12H provides the same inter- 

face as it does on the MCGA (see Listing 2-5). Because of the hardware differences 

between the MCGA, the integrated VGA and the VGA Adapter, it is easier to use 

INT 10H function 12H to enable or disable addressing in the PS/2 video subsystems 

(see Listing 2-5). 
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Alphanumeric Modes 

Using Alphanumeric Modes 

BIOS and Operating-System Support 

Speed @ Compatibility 

Representation of Alphanumeric Data 

Attributes 

MDA @ HGC @ CGA @ EGA 

InColor Card @ MCGA @ VGA 

Gray-Scale Summing 

Border Color 

CGA @ EGA and VGA 

. Avoiding CGA Snow 

_ Blanking the Display 

Using the Vertical Blanking Interval 

Using the Horizontal Blanking Interval 

Using All the Video Buffer 
CGA Video Pages 

EGA, MCGA, and VGA Video Pages 

Cursor Control 

Cursor Size on the MDA and CGA 

Cursor Location on the MDA and CGA 

MCGA Cursor Control © EGA and VGA Cursor Control 

ROM BIOS Cursor Emulation 

An Invisible Cursor 



All IBM PC and PS/2 video subsystems except the MDA can be programmed to 

display characters in either alphanumeric or graphics modes. This chapter 

discusses what you need to know to use alphanumeric modes— the advantages 

and disadvantages of programming in alphanumeric modes; the basics of colors, 

blinking, and other character display attributes; and special techniques that ex- 

ploit the capabilities of the hardware to improve the on-screen appearance and 

performance of your programs. 

Using Alphanumeric Modes 

The video BIOS on all IBM PCs and PS/2s always selects an alphanumeric video 

display mode when you boot the computer. In the IBM PC family, switches on the 

motherboard, the video adapter, or both determine whether a 40-column or 80- 

column mode is selected and whether a color or monochrome display is used. In 

the PS/2 series, the initial video mode is always an 80-column alphanumeric 

mode. Furthermore, the video mode set by the ROM BIOS is the one the operating 

system initially uses. Until you run a program that changes the video mode, all 

video output appears in the default mode—which is alphanumeric. 

For this reason, the simplest way to write a program is to assume that it runs in an 

alphanumeric mode and to program the video interface accordingly. This assump- 

tion minimizes the coding required to send output to the screen. Not only are al- 

phanumeric video output routines simpler than equivalent routines for graphics 

modes, but in most cases the ROM BIOS or the operating system provides charac- 

ter output routines that can be used in any alphanumeric mode. 

BIOS and Operating-System Support 

In the IBM PC, operating-system output routines are usually based on the set of 

primitive routines in the ROM BIOS that are called with software interrupt 10H. 

You can send characters to the video display either by using operating-system 

calls or by calling the INT 10H routines directly. In either case, use of these rou- 

tines obviates the need for writing your own character output routines. 

An additional advantage to using BIOS or operating-system character output func- 

tions is that programs using only such functions are more likely to run on differ- 

ent video hardware. For example, a program using only MS-DOS function calls 

for video output will run in almost any MS-DOS environment, regardless of the 

video hardware, including (but not limited to) the entire IBM PC and PS/2 family. 

Of course, routing video output through an operating system is relatively slow 

compared with writing directly to the hardware. The use of operating-system 

character output routines introduces a certain amount of unavoidable overhead, 

particularly when such features as input/output redirection and multiprocessing 

are supported. Nevertheless, this overhead may be acceptable in many applica- 
tions. You should always consider whether the extra programming and decreased 
portability required to improve video output performance are worthwhile in your 
application. 
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Speed 

This is not to say that alphanumeric video output is inherently slow. When com- 

pared with character output in graphics modes, alphanumeric output is signifi- 

cantly faster, simply because much less data must be stored in the video buffer to 

display characters. In alphanumeric modes, each character is represented by a 

single 16-bit word; the video hardware takes care of displaying the pixels that 

make up the character. In graphics modes, every pixel in every character is repre- 

sented explicitly in a bit field in the video buffer. For this reason, graphics-mode 

output is much more costly than equivalent character output in alphanumeric 

modes, both in terms of display memory used and processing required. 

For example, in a 16-color graphics mode, each character drawn on the screen in 

an 8-by-8 dot matrix is represented by 32 bytes of data in the video buffer (8 x 8 x 

4 bits per pixel). The memory overhead increases rapidly, in direct relationship to 

increasing resolution and the addition of more colors, as does the amount of time 

the CPU spends in manipulating data in the video buffer. On newer video adapt- 

ers, dedicated graphics coprocessors such as the Intel 82786 or the TI 34010 may 

assume much of the computational burden of graphics-mode text display, thereby 

improving the speed of graphics-mode text output. Without a coprocessor, how- 

ever, output in graphics modes is much slower than in alphanumeric modes. 

Compatibility 

Writing a program that is compatible with different IBM video subsystems is 

easier if you use only alphanumeric video display modes. The reason is simple: 

All commonly used IBM video subsystems support an 80-column by 25-row al- 

phanumeric mode with the same video buffer format. If you design your video in- 

terface with an 80-by-25 alphanumeric display in mind, your program will run on 

a majority of PCs and compatibles with little or no modification. 

Unfortunately, high compatibility is generally achieved only by sacrificing speed. 

Fast video output routines usually take advantage of hardware idiosyncrasies, so 

they are less likely to be portable to different video hardware than routines that 

rely on slower but more universal BIOS or operating-system calls. This trade-off 

will be implicit in almost every video output routine you write. 

Representation of Alphanumeric Data 

All IBM PC and PS/2 video subsystems use the same format for storing alphanu- 

meric data in the video buffer. Each character is represented by a simple 2-byte 

data structure (see Figure 3-1). Characters are stored in the buffer in a linear se- 

quence that maps across and down the screen (see Figure 3-2). 
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Low-order byte High-order byte 

ASCII character Attribute 
code 

Figure 3-1. Alphanumeric character and attribute mapping in a 16-bit word. 

Video buffer oe 
ake Character row 0 ( Sa 
00A0 Character row 1 | Sa 
0140H Character row 2 | Sa 
01EOH 

Figure 3-2. Video buffer map in 80-by-25 alphanumeric modes. 

A hardware character generator converts each character code into the proper dot 

pattern on the display. At the same time, attribute decoder circuitry generates the 

appropriate attribute—color, intensity (brightness), blinking, and so on—for 

each character. Since each character code in the video buffer is accompanied by 

an attribute byte, you can independently control the displayed attributes of each 

character on the screen. 

The hardware character generator displays each alphanumeric character within a 

rectangular matrix of pixels. Within this character matrix, the character itself is 

composed of a set of foreground pixels. The colors of the character’s foreground 

and background pixels are specified by the low and high nibbles of the corre- 
sponding attribute byte. 

To display a character, you store its ASCII code and attribute in the proper loca- 

tion in the video buffer. Because of the linear mapping scheme, you can easily 
calculate the buffer address of a particular screen location. The general formula is 

offset = ((row X width) + column) x 2 

In this formula, width is the number of characters in each row. The factor of 2 is 
included because each character requires 2 bytes (one 16-bit word) of storage in 
the video buffer. The values for row and column are zero-based, starting in the up- 
per left corner of the screen. (The character in the upper left corner is located at 
row 0, column 0.) 

If you examine the contents of the video buffer, you can see how this data corre- 
sponds to characters on the screen (see Figure 3-3). Note how each character code 
is followed by its attribute byte. (All of the attribute bytes in the portion of the 
video buffer shown in Figure 3-3 have the value 07H.) 
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BOOO: 

BOOO 

BO0O00 

Figure 3-3. Hexadecimal dump of an alphanumeric video buffer. 
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Although all IBM PC and PS/2 video subsystems use the same pattern of alternat- 

ing character codes and attribute bytes to represent alphanumeric data, the way 

the attribute byte is interpreted varies. In general, the attribute byte is formatted 

as two 4-bit nibbles. The low-order nibble (bits 0 through 3) determines the char- 

acter’s foreground attribute; that is, the color and intensity of the character itself. 

The high-order nibble (bits 4 through 7) indicates the character’s background at- 

tribute, although bit 7 may also control blinking in some situations. 

The 4-bit foreground and background attributes are ultimately decoded into a set 

of signals that drive the video monitor. In the simplest case, on the CGA, the four 

bits correspond directly to the three color signals and the intensity signal. The 

decoding scheme on other video subsystems can be complex, as on the EGA, 

MCGA, VGA, and InColor Card, or comparatively simple, as on the MDA. 

MDA 

Although you may specify any of 16 (24) attributes for both foreground and back- 

ground attributes, the MDA only recognizes certain combinations (see Figure 3-4). 

Nevertheless, you can generate a useful variety of character attributes by creative- 

ly combining intensity, blinking, and underlining. You can also exchange the 

usual foreground and background attributes to obtain ‘“‘reverse video’’ —black 

characters on a normal-intensity background. 
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Not Underlined 
a cee 

Foreground ; 
Black Dim* Normal Intensity High Intensity 

Background 
Black 00 a 07 OF 
Dim* <* 88 87 8F 
Normal 70 78 ros ae 
High FO F8 sts ee 

* = not displayed by all monitors 
** = not available 

Underlined 

Foreground 
Normal Intensity High Intensity 

Background 
Black 01 09 
Dim* 81 89 

* = not displayed by all monitors 

Figure 3-4. MDA foreground-background attribute combinations (values in hex). Attribute 
values not in this table always map to one of the combinations shown. 

On the MDA, as well as on all other IBM video hardware, bit 7 of each character’s 

attribute byte can serve two purposes. By default, this bit controls whether a char- 

acter blinks when displayed; setting the bit to 1 causes the associated character to 

blink. Bit 7 controls blinking because bit 5 (the Enable Blink bit) of the MDA’s 

CRT Mode Control register (3B8H) is set to 1 by the video BIOS when the com- 
puter is powered up. 

If the Enable Blink bit is 0, however, bit 7 of the attribute byte no longer controls 
blinking (see Listing 3-1). Instead, bit 7 is interpreted as an intensity bit for the 
background attribute. When bit 7 is set in a character’s attribute byte, the charac- 
ter’s background attribute is intensified; that is, normal green becomes intense 
green and black becomes dim green. Thus, to obtain all possible combinations of 
monochrome attributes listed in Figure 3-4, you must zero the Enable Blink bit. 

mov ax, 40h 

mov es,ax * ES := video BIOS data segment 
mov dx,es: [63h] + DX := 3B4h (MDA) or 

; 3D4h (CGA) from ADDR_6845 
add d1,4 * DX := 3x8h (CRT Mode Control reg) 
mov al,es: [65h] 7 AL := current value of reg (CRT_MODE_ SET) 
and al,11011111b ;, Zero (bake. 5 
out dx,al ; update the register 
mov es: foohi jal 7 update the BIOS data area 

Listing 3-1. Resetting the Enable Blink bit on the MDA or CGA. 
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The value of the Mode Control register’s Enable Blink bit affects the interpreta- 

tion of bit 7 of all attribute bytes, so you can’t display both blinking characters 

and characters with intensified background at the same time. You must decide 

which attribute is more useful in your program and set the Enable Blink bit 

accordingly. 

All IBM PC and PS/2 video subsystems, including the MDA, blink alphanumeric 

characters by substituting the background attribute for the foreground attribute 

about twice a second. The effect is that each blinking character alternates with a 

blank character. 

If you fill the display with blinking characters, the overall effect can be discon- 

certing, because the screen is blanked and restored twice each second. But if your 

purpose is to attract attention to the display, using the blink attribute can be very 

effective. 

If you use the underline attribute (foreground attribute 1 or 9) on 

a Compaq portable, you won’t see underlined characters. This is 

because the Compaq portable decodes attribute values into 16 pro- 

gressively brighter shades of green; the underline attribute values 

of 1 and 9 therefore appear as shades of green. 

| 
| 
P 

Surprisingly, a few IBM MDAs generate color as well as monochrome 

output. Of course, the MDA’s green monochrome display uses only 

two signals to control attributes (video on/off and intensity on/off); it 

ignores any color video signals. However, a color display that can use 

the MDA’s 16.257 MHz horizontal sync and 50 Hz vertical sync signals 

will display eight colors (with and without intensity) when attached to 

some (but not all) MDAs. Unfortunately, you can never be certain 

which MDA will turn out to be a color adapter in disguise. 

HGC 

The HGC and HGC+ exactly emulate the MDA’s monochrome alphanumeric 

mode. Programs written for the MDA run unchanged on either of these adapters. 

CGA 

The CGA uses the same foreground-background attribute scheme as does the 

MDA. However, the CGA’s attribute decoder circuitry recognizes all 16 possible 

combinations of the four bits in each nibble of the attribute byte. For each charac- 

ter on the screen, you can independently specify any of 16 colors for foreground 

and background. 

The available colors are simple combinations of the primary colors red, green, 

and blue. Each bit in each nibble of the attribute byte corresponds to a signal that 

the CGA supplies to the video monitor (see Figure 3-5). The low-order three bits 
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Bit 5 2 1 0 

a boxe aaah 

Pin 5 

Pin 4 

Pin 3 

Pin 6 

Figure 3-5. CGA attributes and monitor color drive signals. Pin numbers refer to the CGA’s 

9-pin connector. 

of each nibble correspond to the red (R), green (G), and blue (B) signals. The eight 

possible combinations produce a gamut of red, green, blue, and their intermediate 

colors (see Figure 3-6). 

Color Binary (IRGB) Hexadecimal 

Black 0000 00 
Blue 0001 01 

Green 0010 02 

Cyan 0011 03 
Red 0100 04 
Violet 0101 05 
Yellow (brown) 0110 06 

White 0111 07 
Black (gray) 1000 08 
Intense blue 1001 09 
Intense green 1010 OA 
Intense cyan 1011 OB 
Intense red 1100 OC 

Intense violet 1101 OD 

Intense yellow 1110 OE 
Intense white 1111 OF 

Figure 3-6. CGA display attributes. 

Setting bit 3 of the attribute byte (the intensity bit in the foreground nibble) dis- 
plays the color designated in the R, G, and B bits (bits 0 through 2) with higher in- 
tensity. However, as on the MDA, the high-order bit (bit 7) of each attribute byte 
controls either background intensity or blinking. Again, the attribute displayed 
depends upon the state of a bit in a control register. 

Bit 5 of the CGA’s Mode Control register (I/O port 3D8H) is an Enable Blink bit 
analogous to bit 5 of the MDA’s CRT Control register. When you set the Enable 
Blink bit to 0, bit 7 of a character’s attribute byte signifies that the background 
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color specified in bits 4 through 6 should be intensified. When you set the Enable 
Blink bit to 1, only nonintensified background colors are displayed, but characters 
whose attribute bytes have bit 7 set to 1 will blink. 

The Enable Blink bit is set to 1 whenever you call the ROM BIOS to select an al- 
phanumeric video mode. By default, therefore, bit 7 of each character’s attribute 
byte controls blinking rather than background intensity. You must reset the Enable 
Blink bit to display characters with intensified background colors. 

Many CGA-compatible displays squeeze a bit more out of the 16 available colors 
(8 nonintensified, 8 intensified) by displaying low-intensity yellow as brown and 
high-intensity black as gray. Unfortunately, a program cannot determine whether - 
a particular display can do this. Be careful about displaying, for example, gray 
characters on a black background with a CGA, because such color combinations 
are invisible on some color displays. 

EGA 

In 16-color alphanumeric modes, the EGA uses the same attribute byte format as 
the CGA. However, the 4-bit foreground and background values do not correspond 
directly to the colors displayed. Instead, each 4-bit value is masked with the four 
low-order bits of the Attribute Controller’s Color Plane Enable register (12H); the 
resulting 4-bit value designates one of the EGA’s 16 palette registers (see Figure 
3-7). Each bit of the 6-bit color value contained in the designated palette register 
corresponds to one of the six RGB signals that drive the monitor (see Figure 3-8). 

An EGA-compatible color monitor is driven by six color signals—three primary 

(higher intensity) and three secondary (lower intensity). All 64 combinations of 

these six signals appear as different colors and/or intensities. With a 200-line 

color monitor—or in 200-line modes on an EGA-compatible monitor —bits 0, 1, 

and 2 control the color signals, while bit 4 controls the intensity signal. 

Logical AND Color Plane 

Enable register 
4-bit attribute 

Palette register 0-OFH 

6-bit digital output to video display 
(2 bits each for red, green, blue) 

Figure 3-7. Attributes and colors on the EGA. 
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ZCH| 

200-line monitors (CGA-compatible): 

Bit 

350-line color monitors (EGA-compatible): 

Bit 

350-line monochrome monitors (MDA-compatible): 

Bitte) Ore o> 64a wee Peau 

Palette register 

Pin 7 

Pin 6 

R,G,B = primary red, green, blue (higher intensity) 
r,g,b = secondary red, green, blue (lower intensity) 
I = intensity 
V = monochrome video 

Figure 3-8. EGA palette register values and corresponding monitor color drive signals. Pin 
numbers refer to the EGA’s 9-pin connector. 

The EGA’s method of generating colors indirectly through palette registers is 

more complex than the CGA’s direct scheme, but the EGA is more flexible. You 
can select the foreground and background colors for each character individually, 
yet you can produce global color changes by updating the value in a particular 
palette register. 

The high-order bit of each character’s attribute byte can control either blinking or 
background intensity, just as on the MDA and the CGA. Bit 3 of the EGA’s At- 
tribute Controller Mode Control register (register 10H at I/O port 3COH) is the 
Enable Blink bit. Setting it to 1 enables blinking, so only the low-order 3 bits of 
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the background nibble (bits 4 through 6 of the attribute byte) designate palette 

registers. Thus, when blinking is enabled, you can reference only the first eight 

palette registers to select the background color for a character. Setting the Enable 

Blink bit to 0 disables blinking, making all 16 palette registers available for back- 
ground colors (see Listing 3-2). 

mov b1,0 ; BL := value for Enable Blink bit 

mov ax, 1003h aan INT 10H function number 

subfunction number we Et lI 

int 10h 

Listing 3-2. Setting and resetting the Enable Blink bit on the MCGA, EGA, or VGA. 

When you select an alphanumeric video mode using the EGA BIOS, the palette 

registers are loaded with default values that correspond to the colors available on 

the CGA. The color values in the second eight palette registers are intensified ver- 

sions of those in the first eight. Thus, if you simply treat bit 7 of the attribute byte 

as a ‘‘background intensity or blink’’ bit, your program will run on both an EGA 

and a CGA. 

You can update the contents of any palette register either directly or with INT 10H 

function 10H (see Listing 3-3). Using the BIOS routine is more convenient and 

avoids the need to write hardware-dependent code. Moreover, the BIOS routine 

; updating a palette register directly: 

mov ax, 40h 

mov es,ax ; ES := video BIOS data segment 

mov dx,es: [63h] ; DX := CRTC address reg (3x4h) 

add al,6 ; DX := Status reg (3xAh) 

push dx ; preserve this value 

ers 

in al, dx ; reset Attribute Controller address 

eee OD 

mov dl, 0COh 2 DK F="3COh 

mov al, PaletteRegNumber 

out dx,al ; update one palette register 

mov al, PaletteRegValue 

out dx,al 

pop dx ; DX := Status register port 

in al,dx ; reset the flip-flop 

mov d1,0COh 

mov al,20h 4 

out dx,al Sec DLtVor of 

; Attribute Controller address reg 

SEL 

; updating a palette register using the video BIOS 

mOv bl, PaletteRegNumber 

mov bh, PaletteRegValue 

mov ax,1000h ; AH := INT 10H function number 

, AL s= subfunction number 

init 10h 

Listing 3-3. Palette register programming on the EGA or VGA. 
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can also load all 16 palette registers at once, given a table of color values (see 

Appendix A). Nevertheless, you may still need to program the palette registers 

directly to produce very rapid color changes such as might be required in some 

types of animation. 

In monochrome alphanumeric mode, the EGA emulates the MDA monochrome 

display attributes. The video BIOS initializes the palette registers with values that 

correspond to MDA attributes (see Figure 3-9). Bit 3 determines whether pixels are 

on or off, and bit 4 (if set in addition to bit 3) causes a higher-intensity display. 

The underline attribute is generated whenever a character’s foreground attribute 

is 1 or 9, regardless of the value in the corresponding palette register. 

Value Attribute 

0 Black 
8 Normal intensity 
10H Dim 
18H High intensity 

Figure 3-9. Monochrome alphanumeric attribute values for the EGA palette registers. 

The EGA also generates an underline attribute in 16-color alphanu- 

meric modes when the foreground attribute is 1 or 9 and the back- 

ground attribute is 0 or 8. However, you do not normally see an 

underline in 16-color modes because the video BIOS default value for 
the CRTC Underline Location register (14H) is 1FH. This value is 
greater than the number of scan lines normally displayed for alphanu- 
meric characters, so the underline does not appear. 

You can generate underlined characters in 16-color modes by storing a 
displayable value in the Underline Location register. Of course, only 
characters with attributes of 1, 9, 81H, or 89H will appear underlined, 
but you can change the values in the corresponding palette registers to 
produce underlined characters of any desired color. 

InColor Card 

The InColor Card can decode alphanumeric attributes in several different ways. 
The card has a set of 16 palette registers whose function is analogous to the EGA’s 
Attribute Controller palette registers, but the InColor Card can be configured by 
your program to bypass the palette registers and decode each character’s 4-bit 
foreground and background attributes in an MDA- or CGA-compatible manner. 
Bits 4 and 5 of the Exception register (17H) control how the InColor Card inter- 
prets alphanumeric attributes (see Figure 3-10). Bit 5 determines whether the 
InColor Card displays monochrome attributes (as on the MDA) or color attributes 
(as on the CGA or EGA). Bit 4 enables attribute mapping through the palette 
registers. 

56 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



When the InColor Card is powered up, Exception register bit 5 has the value 1 and 
bit 4 has the value 0. Thus, by default, the card interprets attributes as an MDA 
would. However, if you set both bits 5 and 4 to 0 (see Listing 3-4), alphanumeric 
attributes specify the same set of 16 colors as on a CGA (refer to Figure 3-6). 

mov ax,0017h ; AH bit 5 := 0 (disable 

* monochrome attributes) 

7 AH bit 4 := 0 (disable palette) 

7 AH bits 0-3 := 0 (default cursor color) 

* AL := 17h (Exception Register number) 

mov ax, 3B4h pax =" 1/0 perme 

out ax,ax 

Listing 3-4. /nColor Exception register programming. 

Bit 5 Bit 4 Attribute Emulation 

0 0 CGA 
0 1 EGA 
1 0 MDA 
1 1 MDA mapped through palette registers. 

Figure 3-10. Exception register control of attributes on the Hercules InColor Card. 

Setting bit 4 to 1 causes attributes to map to the card’s palette registers, regardless 

of the value of bit 5. Thus, if bit 4 is 1 and bit 5 is 0, the InColor Card interprets 

attributes as does the EGA. If bit 4 is 1 and bit 5 is 1, however, the card maps each 

character’s foreground and background attributes only to the palette registers that 

correspond to valid monochrome attribute values. In this case, the ‘‘black,”’ 

‘*dim,’’ ‘‘normal intensity,’’ and ‘‘high intensity’ attributes select palette regis- 

ters OOH, 08H, 07H, and OFH respectively. 

Bit 5 of the CRT Mode Control register at 3B8H is the Enable Blink bit. This bit 

controls background intensity regardless of the values of Exception register bits 4 

and 5. However, characters are blinked only when Exception register bit 5 is 1 

(MDA-compatible attributes); characters do not blink when bit 5 of the Exception 

register is 0 (CGA-compatible attributes), regardless of the Enable Blink bit’s 

setting. 

No video BIOS support is provided for the InColor Card’s palette registers. Your 

program must therefore update the palette by directly storing values in the palette 

registers. Listing 3-5 is an example of how you might do this. The initial I/O read 

(IN AL, DX) of the Palette register (1CH) resets an internal index which points to 

the first of the 16 internal palette registers. Each subsequent I/O write 

(OUT DX, AL) updates one internal palette register and increments the internal 

index to point to the next palette register, so all 16 registers can be loaded by ex- 

ecuting a simple loop. 
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Because monochrome attributes can be mapped through palette regis- 

ters, you can assign as many as four different colors to monochrome 

programs that run on the InColor Card. Do this by setting Exception 

register bits 4 and 5 to 1 and updating palette registers 00H, 08H, 07H, 

and OFH with the desired colors. 

mov dx, 3B4h ; DX := CRTC address register 

mov al,1Ch ; AL := 1Ch (Palette Register number) 

out dx,al 

inc dx 3; DX := SB5Sh 

in al,dx ; reset palette register index 

mov si,offset PaletteTable ; DS:SI -> PaletteTable 

mMOv cx,16 ; CX := number of palette registers 

L01: lodsb ; AL := next byte from table 

out dx,al ; update next palette reg 

loop L01 

PaletteTable db 00h, 01h, 02h, 03h,04h,05h,06h,07h ; palette regs 0-7 

db 38h, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh ; palette regs 8-OFh 

Listing 3-5. [nColor palette register programming. 

On the InColor Card, the colors of both the cursor and the underscore are inde- 

pendent of the foreground colors of the characters in the video buffer. The cursor 
color is specified in bits 0 through 3 of the Exception register, and the underscore 

color value is specified in bits 4 through 7 of the Underscore register (CRTC regis- 

ter 15H). When the InColor Card is displaying MDA attributes (that is, when bit 5 

of the Exception register is set to 1), you can specify only the three low-order bits 

of the cursor and underscore colors; the high-order bit of these color values is 

derived from the foreground attribute of the character where the cursor or un- 

derscore is displayed. 

When palette mapping is enabled (Exception register bit 4 is set to 1), both the 

cursor and underscore color values select palette registers. When palette mapping 

is disabled, the cursor and underscore color values are displayed using the usual 

CGA colors. Also, if you specify a value of 0 for either the underscore color or the 

cursor color, the InColor Card uses the value 7 instead. 

MCGA 

The components of the PS/2 Model 30’s video subsystem that transform attribute 

data into color video signals are the Video Formatter and the video Digital-to- 
Analog Converter (DAC). The Video Formatter gate array decodes attributes and 
generates an 8-bit digital output which is passed to the video DAC; from this, the 
DAC generates analog red, green, and blue signals for the video display. The DAC 
converts the 8-bit output from the Video Formatter to the three analog color sig- 
nals by using the 8 bits to select one of the DAC’s 256 color registers. Each DAC 
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color register is 18 bits wide, comprising three 6-bit values for red, green, and blue 
(see Figure 3-12). The DAC converts each 6-bit value into an analog signal with 
the highest value (3FH) corresponding to the highest-intensity signal. 

In alphanumeric modes, the four low-order bits of the Video Formatter’s 8-bit 
digital output are derived from attribute bytes, while the four high-order bits are 
always 0 (see Figure 3-11). Thus, only the first 16 of the video DAC’s color regis- 
ters are used in MCGA alphanumeric modes. The remaining 240 registers can be 
accessed only in 320-by-200 256-color graphics mode (see Chapter 4). When an 
MCGA is attached to a color display, the video BIOS initializes the first 16 video 
DAC color registers with the same colors found on the CGA. 

a The value in the video DAC Mask register (I/O port 3C6H) masks the 
, 8-bit value passed to the video DAC. The Mask register value is set to 

OFFH by the video BIOS initialization routines so that all 256 video 
DAC color registers can be accessed. IBM technical documentation 
recommends that this value not be modified. 

Logical AND 
4-bit attribute Video DAC Mask register 

Video DAC 
color register 0-OFH 

18-bit analog output to video display 
(6 bits each for red, green, blue) 

Figure 3-11. Attributes and colors on the MCGA. (The value in the video DAC Mask register 
should normally be OFFH.) 

6 bits 6 bits 6 bits 

Green Blue 

Pin 3 

Pin 2 

Pin 1 

Figure 3-12. Video DAC color register values and monitor color drive signals. Pin numbers 
refer to the MCGA’s 15-pin connector. 
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Unlike the EGA, an MCGA with a monochrome display does not emulate the 

MDA’s attributes. Instead, the 16 default video DAC color register values consist of 

four groups of four shades of gray. Each group is displayed with higher intensity 

than the preceding group. Within each group, the intensity increases from lower 

to higher attribute values. Thus, attribute values 0 through 3 make up a range of 

four shades of gray, values 4 through 7 a second range of somewhat higher inten- 

sity, and values 8 through OBH and OCH through OFH a third and fourth range of 

still higher intensity. 

Instead of this default MCGA monochrome gray-scale configuration, 

you might prefer to use gray-scale values that increase uniformly with 

increasing attribute values. The code in Listing 3-6 loads the video 

DAC registers with appropriate values for this gray-scale gamut. 

mov bx, OFh + BX := first video DAC 

; Color register number 

mov di,offset VDACTable ; DS:DI ->table 

LO1: mov dh, [bx+di] ; DH := red value 

mov ch, dh 

mov el, ah ; green and blue values are the same 

mov ax,1010h ; AH := INT 10h function number 

; AL := subfunction number 

int 10h 

dec bx 

jns L01 ; loop from register OFH through register 0 

VDACTable db 00h, 05h, 08h, OBh, OEh, 11h, 14h, 18h 

db 1Ch, 20h, 24h, 28h, 2Dh, 32h, 38h, 3Fh 

Listing 3-6. Loading an alternative MCGA monochrome gray-scale palette. 

VGA 

In general, the VGA exactly emulates EGA alphanumeric attribute decoding. How- 

ever, the VGA has both a video DAC and a set of 16 Attribute Controller palette 

registers. Each palette register value selects one of 256 video DAC color registers. 
The value in the selected video DAC color register determines the color displayed. 

> Depending on the value of bit 7 in the Attribute Controller’s Mode Control regis- 
ST ter you can use the palette register value to select a video DAC color register in 

one of two ways. When bit 7 is set to 0, the Attribute Controller combines the 6-bit 
palette-register value with bits 2 and 3 of its Color Select register (14H) to produce 
an 8-bit value that selects a video DAC color register (see Figure 3-13). Alter- 

natively, when bit 7 is set to 1, only the four low-order bits of each palette register 
are meaningful. The Attribute Controller derives the other four bits of the 8-bit 

value from bits 0 through 3 of the Color Select register (see Figure 3-14). 
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In the first case (when bit 7 of the Mode Control register is set to 0), the 6-bit 
palette registers are used to select one of four groups of 64 video DAC color regis- 
ters, and bits 2 and 3 of the Color Select register determine which group of color 
registers is used. In the second case (when bit 7 of the Mode Control register is set 
to 1), each palette register value selects one of 16 groups of 16 video DAC color 
registers, and bits 0 through 3 of the Color Select register specify one of the 16 
groups of DAC color registers. 

ace? g 
on Logical AND Color Plane 

Enable register 
4-bit attribute 

Color Select register 
(bits 2-3) 

Palette register 0-OFH cP 
aN 

Bits 0-5 of 
color register 
number 

Bits 6-7 of 
color register 
number 

Video DAC Mask — 
register 

in. 
\ pra 

Te wa 
Logical AND 

Video DAC 
3 arAuren 2 

color register 0-OFFH WA areas & 

18-bit analog output to video display 
(6 bits each for red, green, blue) 

Figure 3-13. Attributes and colors on the VGA (when bit 7 of the Attribute Controller’ s Mode 
Control register is set to 0). 

This added level of indirection, afforded by the combined use of palette registers 

and video DAC color registers, makes switching between palettes easy, since you 

can select any of 16 different 16-color palettes just by changing the value in the 

Attribute Controller’s Color Select register. If you store 16 palettes of gradually 

increasing intensity in the DAC color registers, you can accentuate characters on 

the screen by cyclically increasing and decreasing their intensity. This effect is 
more subtle than simply blinking the characters on and off, particularly when ap- 
plied to a large area of the display. 
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Color Plane 
Enable register 

Logical AND 
4-bit attribute 

Color Select register 
(bits 0-3) Palette register 0-OFH 

Bits 0-3 of Bits 4-7 of 
color register color register 
number number 

Video DAC Mask 
register 

Logical AND 

Video DAC 
color register 0-OFFH 

18-bit analog output to video display 
(6 bits each for red, green, blue) 

Figure 3-14. Attributes and colors on the VGA (when bit 7 of the Attribute Controller’ s Mode 
Control register is set to 1). 

T When the VGA emulates 80-by-25 16-color alphanumeric mode on a 

, monochrome display, the palette consists of the same four groups of 

" four gray-scaled values as does the corresponding palette on the 

MCGA. As on the MCGA, you can create a gray-scale palette with 

gradually increasing intensities. Listing 3-7 illustrates how you might 

do this. Note how the appropriate video DAC registers are selected by 

examining the values in the Attribute Controller’s palette registers. 

mov bx, OFh ; BX := first Palette register number 

mov di,offset VDACTable ; DS IDE —-—S"tabile 

L071 : mov dh, [bx+di] ; DH := red value 

mov ch,dh 

mov ei, an + green and blue values are the same 

Listing 3-7. Loading an alternative VGA monochrome gray-scale palette. (continued) 
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Listing 3-7. Continued. 

push bx * preserve Palette register number 
mov ax,1007h * AH := INT 10h function number 

7 AL := subfunction number 

9 (read Palette register) 
int 10h ; BH := Palette register value 
mov bly on 

xor bh, bh ; BX := desired video DAC 

~ Color register number 

mov ax,1010h 7 AH := INT 10h function number 

, AL := subfunction number 
int 10h 

pop bx 

dec bx ; BX := next Palette register number 
jns L01 ; loop from Palette registers 

; OFH through 0 

VDACTable db 00h, 05h, 08h, OBh, OEh, 11h, 14h, 18h 

db 1Ch, 20h, 24h, 28h, 2Dh, 32h, 38h, 3Fh 

The VGA emulates the MDA’s monochrome alphanumeric mode (video BIOS 
mode 7) on either a color or a monochrome display. The Attribute Controller 
palette register values and the control of blinking and underlining are the same as 
on the EGA. In this mode, the video DAC registers corresponding to the palette 

values 00H, 07H, 08H, and 18H are initialized with the appropriate gray-scale 
values. The palette and video DAC register values are the same in this mode 

regardless of whether a color or monochrome display is attached. 

Gray-Scale Summing 

Both the MCGA and the VGA BIOS contain logic which can transform the red- 

green-blue values in the video DAC registers into corresponding gray-scale 

values. This transformation is performed by taking a weighted average of the red, 

green, and blue components. To compute the gray-scaled equivalent value, the 

BIOS sums 30 percent of the red value, 59 percent of the green, and 11 percent of 

the blue. (These percentages approximate the displayed intensities of pure red, 

green, and blue.) For example, the default color for video DAC Color Register 02H 

(cyan) is made up of three 6-bit components. The value of the red component is 0, 

the green component 2AH, and the blue component 2AH. The gray-scale value is 

therefore 1DH, the sum of 

(S30 Xa lO ite (5 9 xX 2A) et le xX) 2A) 

INT 10H function 10H includes a subfunction (AL = 1BH) that reads a set of video 

DAC color registers and updates them with equivalent gray-scale values. Appen- 
dix A contains an example of the use of this video BIOS function. 
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On both the MCGA and the VGA, INT 10H function 0 uses gray-scale summing by 

default when a monochrome display is attached. With a color display, gray-scale 

summing is disabled by default. You can selectively enable or disable default 

gray-scale summing by executing INT 10H function 12H with BL = 33H. 

Border Color 

On the CGA, EGA, MCGA, and VGA, you can specify a color to be displayed 

during the vertical and horizontal overscan intervals. This overscan or border 

color is not represented by any data in the video buffer. Instead, a special control 

register contains the value of the color displayed. 

CGA 

On the CGA, you select the border color with the four low-order bits of the Color 

Select register at I/O port 3D9H (see Listing 3-8). The color values parallel those 

available for character attributes: bits 0, 1, and 2 select the blue, green, and red 

primaries, and bit 3 is interpreted as an intensity bit. 

; updating the CRT Color Register directly (CGA only) 

mov ax, 40h 

mov es,ax 7 ES := video BIOS data segment 

mov dx,es: [63h] 7 DX := 3D4H (ADDR_6845) 

add Cleo: ;, DXys= 3D9H (CRT Color Select reg) 

mov al,es: [66h] , AL := current value of reg (CRT_PALETTE) 
and al,11110000b 7; zero bits 0-3 

or al,BorderValue ; update bits 0-3 

out dx, ad ; update the register 

mov es: [66h],al ; update the BIOS data area 

7 using the video BIOS interface (CGA, EGA, VGA) 

mMOv bl, BorderValue 

mov bh, 0 ; BH := subfunction number 

mov ah, OBh ; AH := INT 10h function number 

int 10h 

Listing 3-8. Setting a border color. 

Using INT 10H function OBH to update the border color is probably more conve- 
nient than programming the Color Select register directly. The code is more por- 
table, and the BIOS routine saves the most recently written value of the Color 
Select register in its Video Display Data Area in the byte at 0040:0066 
(CRT_PALETTE). If you do write directly to the Color Select register, you should 
update CRT_PALETTE as in the example in Listing 3-8. 

64 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



The MCGA does not generate a colored border, regardless of the value 
in its Color Select register. 

|e 

EGA and VGA 

On the EGA and VGA, the overscan color is specified by the contents of register 
11H of the Saag oe Pore Con) You could write directly to the I h 
1/O port, but doing the job with an INT 10H call is usually easier. You can use the 30a iF 
EGA BIOS to update the overscan color in two ways. You can use function 0BH of L 
INT 10H or you can include the border color as the 17th and last entry in the table 
of palette register colors you pass to INT 10H function 10H (see Appendix A). 

On the VGA with a monochrome display, the only useful border at- 

tributes are 0 (black), 8 (normal), and 18H (intense). 

The 350-line video modes on the EGA have relatively short vertical and horizontal 

overscan intervals. The displayed border may be only 1 or 2 mm wide, or it may 

bleed across the screen during the horizontal retrace interval. For this reason you 

should avoid setting the border color in any 350-line mode on the EGA. 

You can increase the EGA’s horizontal and vertical overscan intervals 

in 350-line modes by modifying the CRTC horizontal and vertical tim- 

ing parameters. A reasonable border, about as wide as that displayed 

with the VGA, can be achieved by adding one or two characters to the 

Horizontal Total value and eight or ten scan lines to the Vertical Total 

value. The corresponding timing values for the Horizontal and Verti- 

cal Retrace and Blanking registers must be adjusted accordingly (see 

Figure 3-15). 

The problem with reprogramming the CRTC in this way is that the 

horizontal and vertical frequencies that drive the video display are 

somewhat lower than nominal. For example, with the CRTC values 

shown in Figure 3-15, the horizontal scan rate becomes 16.257 MHz + 

(94 chars/line x 8/char), or 21.62 KHz, which is about 1 percent lower 

than the nominal horizontal scan frequency of 21.85 KHz. Similarly, 

the vertical scan rate becomes 21.62 KHz + 374 lines, or 58 Hz, almost 

4 percent lower than the usual 60 Hz frame rate. Still, these scan rates 
are usually within the tolerances of an EGA-compatible video display. 
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80-by-25 16-Color Alphanumeric Mode: 

CRTC register Function Setting (default) 

0 Horizontal Total 5CH (5BH) 
2 Horizontal Blanking Start 54H (53H) 

3 Horizontal Blanking End 3CH (37H) 
4 Horizontal Retrace Start 52H (51H) 
5 Horizontal Retrace End SCH (S5BH) 

6 Vertical Total 76H (6CH) 

10H Vertical Retrace Start 64H (SEH) 
11H Vertical Retrace End 25H (2BH) 

15H Vertical Blank Start 64H (5EH) 
16H Vertical Blank End 11H (OAH) 

640-by-350 16-Color Graphics Mode: 

CRTC register Function Setting (default) 

0 Horizontal Total SCH (5BH) 
DZ Horizontal Blanking Start 53H (53H) 

3 Horizontal Blanking End 3CH (37H) 
4 Horizontal Retrace Start 53H (52H) 

5 Horizontal Retrace End OOH (00H) 
6 Vertical Total 76H (6CH) 

10H Vertical Retrace Start 64H (5EH) 
11H Vertical Retrace End 25H (2BH) 
15H Vertical Blank Start 64H (SEH) 
16H Vertical Blank End 11H (OAH) 

Figure 3-15. CRTC parameters for increased border width in 350-line EGA video modes. 
(Default register values are listed in parentheses.) 

Avoiding CGA Snow 
On the CGA, alphanumeric video display modes present a particular programming 
challenge whenever you are concerned about the speed of video display output. 
You must program carefully in alphanumeric modes to prevent interference with 
the display when you read or write data in the CGA’s video buffer. 

Directly accessing the contents of the CGA’s video buffer from your program has 
its pros and cons. On the positive side, it enables your program to completely con- 
trol the buffer’s contents, and thus what is displayed. The negative side is that 
when both the CPU and the display-refresh circuitry access the buffer at the same 
time, interference, or ‘‘snow,’’ can appear on the display. The snow can be barely 
noticeable or greatly distracting, depending on the amount of data transferred to 
or from the video buffer. 

In general, to avoid snow you must limit CPU accesses to the video buffer to inter- 
vals when data is not being fetched from the buffer to refresh the screen. In prac- 
tice, this means that your program must transfer data to and from the video buffer 
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only when the electron beam in the video display is moving through an overscan 
or retrace interval. 

This synchronization can be achieved in several ways, but, unfortunately, all of 

them introduce a certain amount of hardware dependency into your program. As a 

general rule, the more hardware-dependent tricks you play, the faster your pro- 

gram runs on a CGA but the less likely it is to run on another video adapter. 

Blanking the Display 

One technique for preventing display interference on the CGA is to turn off the 

electron beam whenever you access the display buffer. You then leave the beam 

off while data is transferred to or from the video buffer. This method is used in 
the ROM BIOS routines which scroll the display. 

The best time to blank the display is when it’s blank anyway, at the start of a ver- 

tical blanking interval. If you do not take care to turn the electron beam off dur- 

ing the vertical blanking interval, you will instead blank the screen while it is 

being refreshed. This can produce an annoying flicker or interference stripes. 

The technique is straightforward (see Listing 3-9). The trick is to synchronize 

buffer access with the start of a vertical blanking interval. Do this by detecting an 

interval when vertical blanking is not occurring. Then wait for the next subse- 

quent vertical blanking interval to begin. 

TITLE Whistang, 3-9! 

NAME DisplayText 

PAGE BO, 132 

; Name: DisplayText 

; Function: Display an alphanumeric string without interference on the CGA 

,uGalter: Microsoft C: 

int DisplayText1 (buf,n,offset) ; 

char *buf; /* buffer containing text in 

CGA alphanumeric format 

(alternating character codes 

and attribute bytes) */ 

? une ni /* buffer length in bytes */ 

; unsigned int offset; /* offset into video buffer */ 

Set 80X25 EQU (1 SHL 0) ; bit masks for Mode Control Register 

Set 320X200 EQU Ci Shy 1) 

BlackAndWhite EQU (1 SHL 2) 

EnableVideo EQU (| ‘SHie 3) 

Set 640X200 EQU (1 SHL 4) 

EnableBlink EQU (i SH ie) 

Listing 3-9. Display alphanumeric text on the CGA by blanking the display. (continued) 

Chapter 3: Alphanumeric Modes 67 



Listing 3-9. Continued. 

ARGbuf 

ARGn 

ARGoffset 

TIMEOUT 

TERE 

_DisplayText 

; Wait for stare on 

LO1: 

L02: 

L03: 

EQU 

EQU 

EQU 

EQU 

SEGMENT 

ASSUME 

PUBLIC 

PROC 

push 

mov 

push 

push 

mov 

mov 

mov 

mov 

mov 

shr 

mov 

mov 

in 

test 

jnz 

EeSE 

ae 

cli 

in 

test 

loopnz 

‘Steal 

az 

; blank the display 

; copy the data 

mov 

mov 

out 

word ptr [bp+4] ; stack frame addressing 

word ptr [bpt6] 

word ptr [bp+8] 

6 ; Horizontal timeout loop limit 

byte public 'CODE' 

cs; TEXT 

_DisplayText 

near 

bp ; usual C prologue to establish 

bp, sp ; stack frame and preserve registers 

di 

Sal 

ax, OB800h 

es,ax 

di, ARGoffset 7 ES:DI -> destination in video buffer 

si, ARGbuf ; DS:SI -> source buffer 

bx, ARGn 

bx, 1 ; BX := buffer length in words 

dx, 3DAh 7 DX := CGA Status Port 

vertical blanking interval 

cx, TIMEOUT 7 CX := loop counter (timeout value) 

al,dx ; AL := video status 

al,8 

L02 ; loop if vertical sync active 

eu 

L02 ; loop if Display Enable active 

; disable interrupts 

alcx 

al,1 

L03 ; loop until end of horizontal 

* blanking or timeout 

; reenable interrupts 

L01 7 loop if no timeout 

dl, 0D8h 7 DX := 3D8h (Mode Control register) 
al, (Set80X25 OR EnableBlink) 

ax jaw ; turn video off 

to the video buffer 

mov 
rep 

cx, bx * CX := buffer length in words 
MOVSw 

(continued) 
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Listing 3-9. Continued. 

*# reenable the display 

or al, EnableVideo 

out Cx ed 

pop a 7 usual C epilogue to restore registers 
pop di 7 and discard stack frame 
mov sp,bp 

pop bp 
ret 

_DisplayText ENDP 

_TEXT ENDS 

END 

The procedure for detecting the start of a vertical blanking interval requires you 
to first determine a timeout value for the horizontal retrace interval (see Listing 
2-2). This value is then used to wait for the last horizontal scan in the current 
frame. When the last horizontal blanking interval times out, the vertical blanking 
interval has begun. 

At this point, your program should explicitly disable the electron beam by reset- 
ting bit 3 of the CGA’s Mode Control register (port 3D8H). When this bit is 
zeroed, the electron beam is disabled and the display remains dark. While the dis- 
play is dark, you can move data to or from the video buffer without causing snow. 
When the data transfer is complete, restore the display by setting bit 3 of the 
Mode Control register to 1. 

It is not necessarily desirable to wait for another vertical blanking interval before 

reenabling the electron beam. If the period during which you transferred data left 

the screen dark long enough to cause noticeable flicker, waiting until the next ver- 

tical retrace will only prolong the duration of the flicker. If you reenable the dis- 

play somewhere in the middle of a refresh cycle, the flicker will be worse in the 

top part of the screen but better in the bottom part. Neither situation is ideal; it’s 
up to you to decide which alternative is preferable. 

The amount of time it takes to access the video buffer determines how long your 
program must keep the screen dark. Obviously, the longer the screen is dark, the 

more flicker you perceive. If your program is executed on one of the slower mem- 

bers of the IBM PC family (PC or PC/XT), the flicker effect can become annoying. 

Consider what might happen whenever you scroll an entire 80-by-25 screen up one 

line. Within the video buffer, 4000 bytes of data must be moved. On a vintage 

IBM PC, with its 4.77 MHz 8088, this data transfer takes about 21 milliseconds. 

Since each video frame lasts about 16.7 milliseconds ('40 second), the screen re- 

mains dark for about 1'4 frames. The resulting flicker is very noticeable, par- 

ticularly if the background color is not black. On the other hand, on a PC with a 
faster CPU, the data transfer takes less time, so the flicker is less apparent. 
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Using the Vertical Blanking Interval 

A technique that avoids the flicker problem is to access the video buffer only for 

the duration of the vertical blanking interval. However, this slows data transfer, 

because you can move only a limited number of bytes of data during a single ver- 

tical blanking interval. 

The limitations here are the duration of the vertical blanking interval (about 4 

milliseconds) and the rate at which the CPU can move data in the video buffer. A 

4.77 MHz 8088 in a PC or PC/XT can move about 450 words (900 bytes) of data 

before the vertical blanking interval ends and snow becomes visible. Obviously, a 

PC with a higher clock speed or with an 80286 or 80386 can move more data dur- 

ing a single vertical blanking interval. 

Using the Horizontal Blanking Interval 

70 

If your video output routine synchronizes with the start of horizontal blanking in- 

tervals, you have about 7 microseconds in which to access the video buffer at the 
end of each raster scan line without causing snow (see Listing 3-10). Although 7 

microseconds may not seem like much time, it is long enough to move 2 bytes into 

or out of the video buffer without causing display interference. Since each frame 

contains 200 horizontal blanking intervals, you can significantly increase perfor- 

mance by taking advantage of them. 

TITLE Minis Eng: Ss — 110" 

NAME DisplayText 

PAGE Sor SZ 

; Name: DisplayText 

7p RUNG eTen: Display an alphanumeric string without interference on the CGA 

Caller: Miczoso fis ‘Cs 

int DisplayText (buf,n, offset) ; 

char *buf; /* buffer containing text in 

CGA alphanumeric format 

(alternating character codes 

and attribute bytes) ¥*/ 

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne 

cinieeelne /* buffer length in bytes */ 

unsigned int offset; /* offset into video buffer */ 

ARGbuf EQU word ptr [bp+4] 

ARGn EQU word ptr [bp+6] 

(continued) 

oe 3-10. Display alphanumeric text on the CGA during horizontal and vertical blanking 
intervals. 
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Listing 3-10. Continued. 

ARGoffset 

TIMEOUT 

VBcount 

_TEXT 

_DisplayText 

EQU 

EQU 
EQU 

SEGMENT 

ASSUME 

PUBLIC 

PROC 

push 

mov 

push 

push 

mov 

mov 

mov 

mov 

mov 

shr 

mov 

word ptr [bp+8] 

6 

250 

byte public 

cs;_TEXT 

_DisplayText 

near 

bp 
bp, sp 
di 
si 

ax, OB800h 

es,ax 

di,ARGoffset 

si,ARGbuf 

cx, ARGn 

expat 

dx, 3DAh 

, 

, 

, 

"CODE' 

‘ 

, 

, 

horizontal timeout loop limit 

number of words to write during 

vertical blanking interval 

usual C prologue to establish 

stack frame and preserve registers 

ES:DI -> destination in video buffer 

DS:SI -> source buffer 

CX := buffer length in words 

DX t= CGA Status, Pore 

; write during remaining vertical blanking interval 

Os 

L02: 

, 

Oss 

L04: 

mov 

mov 

ere 

in 

test 

loopnz 

az 

movsw 

Stl 

mov 

loop 

jmp 

sti 

mov 

lodsw 

mov 

push 

mov 

ella! 

DI Ox 

cx, TIMEOUT 

al,dx 

ada 

L02 

L03 

Cry DX 

L01 

short L10 

ex, Dx 

bx,ax 

cx 

cx, TIMEOUT 

, 

, 

‘ 

preserve buffer length in BX 

CX := horizontal timeout 

disable interrupts during loop 

AL := video status 

loop while Display Enable inactive 

jump if loop did not time out 

copy one word 

CX := buffer length 

exit (entire string copied) 

; write during horizontal blanking intervals 

restore CX 

AL := character code 

AH := attribute 

BX := character and attribute 

preserve word loop counter 

CX := timeout loop limit 

clear interrupts during one scan line 

(continued) 
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Listing 3-10. Continued. 

L0O5: in 

test 

loopnz 

jnz 

L06: in 

test 

a 

xchg 

stosw 

sti 

pop 
loop 

jmp 

; write during entire vertical blanking 

LO: pop 

dec 

dec 

mov 

cmp 

jnb 

mov 

xOor 

jmp 

LO8: sub 

L09; rep 

mov 

test 

jnz 

L10: pop 

pop 
mov 

pop 
ret 

_DisplayText ENDP 

_TEXT ENDS 

END 

al,dx 

al,1 

LO5 

LO7 

al,dx 

aya 

LO06 

ax, bx 

cx 

L04 

short 

bx 

Si 

si 

cx, VBcount 

bx, Cx 

L08 

cx, bx 

bx, bx 

short 

bay cx 

movsw 

Cx, bx 

Cx, Cx 

L01 

Su 

di 

sp,bp 

bp 

L10 

LO09 

’ 

loop during horizontal blanking 

until timeout occurs 

jump if timed out (vertical 

blanking has started) 

loop while Display Enable is active 

AX := character & attribute 

copy 2 bytes to display buffer 

restore interrupts 

CX := word loop counter 

exit (entire string copied) 

interval 

, 

BX := word loop counter 

DS:SI -> word to copy from buffer 

CX .2= # of words, teycopy 

jump if more than VBcount words remain 

in buffer 

CX := # of remaining words in buffer 

BX := 0 

BX := (# of remaining words) - VBcount 

copy to video buffer 

CX := # of remaining words 

loop until buffer is displayed 

usual C epilogue to restore registers 

and discard stack frame 

Because the horizontal blanking interval is so short, synchronization is critical. 

The technique is parallel to that used for synchronizing with the vertical retrace 

interval. In this case, you determine the status of the Display Enable signal by 

testing bit 0 of the CRT Status register (3DAH). When this bit has a value of 1, the 

Display Enable signal is off and a horizontal blanking interval is in progress. 
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Keep in mind two considerations if you take the trouble to use the horizontal 
blanking intervals. First, you might as well use the vertical blanking intervals as 
well, since they’re there. Second, you should use MOVS or STOS instructions to 
do the actual data transfers. The slower MOV mem/reg instruction can take longer 
than the horizontal blanking interval lasts, so snow isn’t eliminated. 

The IBM ROM BIOS routines that write to the video buffer during horizontal 
retrace use the sequence 

mov ax,bx 

stosw 

to move a character and attribute into the buffer without snow. Nevertheless, if 
you use the same two instructions in a RAM-based program, you see snow ona 
CGA running on a 4.77 MHz PC. The reason is that, at the point where these in- 

structions are executed, the 4-byte instruction prefetch queue in the 8088 has 

room for only two more bytes. This means that the STOSW opcode cannot be 

prefetched. Instead, the 8088 must fetch the opcode from memory before it can 
be executed. 

That last memory access to fetch the STOSW instruction makes the difference. 

Because accesses to ROM are faster than accesses to RAM, the instruction fetch is 

slightly faster out of ROM, so no snow is visible because the STOSW can run 

before the horizontal blanking interval ends. The routine in Listing 3-10 sidesteps 

the problem by using XCHG AX, BX (a 1-byte opcode) instead of MOV AX, BX (a 

2-byte opcode). This avoids the extra instruction fetch, so the code executes fast 

enough to prevent display interference. 

Note how the interrupts are disabled in the loop that waits for the start of the 

horizontal blanking interval. Had an interrupt occurred between the JNZ L06 

and the following XCHG AX, BX instructions, the horizontal blanking interval 

would have ended long before control returned from the interrupt handler. Dis- 

abling interrupts while each word is transferred into the video buffer avoids this 

possible loss of synchronization. 

The routine in Listing 3-10 never explicitly detects the end of the ver- 

tical blanking interval, nor does it count the 200 horizontal scans in 

each display refresh cycle. Instead, the number of bytes that can be 

transferred during each vertical blanking interval (VBcount) is de- 
termined empirically for a ‘‘worst case’’ situation (for example, for a 

4.77 MHz IBM PC). 

The most important reason for this imprecision about the number of 

bytes to transfer during vertical blanking intervals is that interrupts 

can occur anywhere in a video output routine except where they are 

explicitly disabled. For example, clock-tick interrupts and keyboard 

interrupts can occur at any time. Because you can’t simply disable all 

interrupts for the duration, you must design video output routines to 

accommodate the unpredictable time spent in interrupt handlers. 
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The problem of snow is avoided in the hardware design of every other IBM PC 

and PS/2 video subsystem, including the MDA, EGA, MCGA, and VGA (and even 

the PCjr). Also, many second-source manufacturers of CGA-compatible adapters 

design their hardware to eliminate the problem. This means that retrace synchro- 

nization loops may not be needed in many applications. 

If you run a program either on a CGA (with snow) or on a CGA-compatible 

(without snow), the program should try to determine what type of hardware it is 

running on (see Appendix C). If the program is running on a machine without 

snow, it can skip over any vertical and horizontal synchronization loops. The 

slight extra overhead of detecting the presence of a CGA is repaid in greatly im- 

proved performance on video subsystems that have no snow problem. 

Using All the Video Buffer 

In alphanumeric video modes, the CGA, EGA, MCGA, and VGA have much more 

RAM available in their video buffers than is required to display one screen of text. 

In other words, you can display only a portion of the data in the video buffer at a 

time. In effect, what you see on the screen is a ‘‘window’”’ on the video buffer. 

For example, in 80-by-25-character alphanumeric modes, only 4000 bytes (80 x 25 

x 2 bytes per character) are displayed at any one time. However, the CGA has 16 

KB of video RAM, so you can actually store four 80-by-25 screens of data in the 

buffer. You can then program the CGA’s CRT Controller to display any 2000 con- 
secutive characters (4000 bytes) in the buffer. 

CGA Video Pages 

To program the CGA to display different portions of the buffer, you update two 
CRT Controller registers. When you call the ROM BIOS to select a video display 
mode, the BIOS initializes the CRTC to display the first 4000 bytes of the video 
buffer. It does this by storing 0, the offset of the first character to be displayed, in 
the CRTC Start Address registers (OCH and 0DH). 

You can display any arbitrary portion of the CGA’s video buffer by storing a 
video buffer offset in words (not bytes) in the CRTC Start Address registers. The 
high-order byte of the offset belongs in register OCH, the low-order byte in regis- 
ter ODH. For example, loading the Start Address registers with the word offset of 
the second row (50H) causes the display to begin there (see Listing 3-11). 

Loading the Start Address registers is a much faster operation than transferring 
characters into the video buffer. Thus, you might regard the 16 KB video buffer as 
a 102-line ‘‘virtual’’ screen of which only 25 lines can be displayed at a time. 
When the video buffer is filled with text, you can rapidly display any 25 consecu- 
tive lines simply by changing the value in the CRTC Start Address registers. 
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mov ax,40h 

mov es,ax ; ES := video BIOS data segment 
mov dx,es: [63h] ; DX := ADDR _6845 

mov al,0Ch ; AL := reg number (Start Address High) 
out ax, av 

NG dx ¢ DX. := 3x5h 

mov al,HiByte ; AL := high-order byte of start offset 
out axa 

dec dx , DK =) sx4h 

mov al,ODh ; AL := reg number (Start Address Low) 
out dx,al 

inc dx PED = 93x 5h 

mov al, LoByte 7 AL := low-order byte of start offset 

out ax, a 

mov ah, HiByte ; AX += start offset in words 

shl ax, 1 ; AX := offset in bytes 

mov es: [4Eh],ax ; update CRT START 

Listing 3-11. Setting the CRTC Start Address registers. 

Whenever you update the Start Address registers, also update the BIOS Video Dis- 

play Data Area word at 0040:004E (CRT_START). This helps to maintain func- 

tionality across video BIOS calls and with MS-DOS. 

Instead of deciding for yourself which portions of the video buffer to display, you 

might find it more convenient to adopt the conceptual model of the ROM BIOS, 

which supports four 80-by-25 (or eight 40-by-25) virtual ‘‘pages’’ in the CGA’s 

video buffer. To simplify addressing, each page starts on a 1 KB (1024-byte) 

boundary. The four 80-by-25 pages thus start at B800:0000, B800:1000, B800:2000, 
and B800:3000. You can selectively display any video page by calling INT 10H 

function 05H (see Listing 3-12). 

mov al, Vpage ; AL := video page number 

mov ah,5 ; AH := INT 10h function number 

int 10h 

Listing 3-12. Video page selection using the ROM BIOS. 

A technique that can improve CGA performance is to display one 

video page while you fill another (nondisplayed) video page with data. 

Then you display the newly filled video page and make the previous 

page available for more data transfers. Design your user interface so 

that while the user reads the display, a nondisplayed video page is 

filled with the next screen of information. Careful use of the video 

pages can make screen updates appear “‘instantaneous.”’ 

You must still avoid display interference by using one of the tech- 

niques for synchronizing the update with vertical or horizontal blank- 

ing intervals, even if you write to a nondisplayed portion of the buffer. 
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EGA, MCGA, and VGA Video Pages 

With the EGA, MCGA, and VGA, the techniques for using video RAM are similar 

to those used on the CGA. The Start Address registers in the CRT Controller are 

mapped to the same I/O port addresses as they are on the CGA’s CRTC. Further- 

more, the video BIOS supports video pages with the same interface used for the 

CGA. This simplifies writing a program to run on all of these video subsystems. 

One handy feature of the CRTC on the EGA, the MCGA, the VGA, and 

some but not all CGA look-alikes is that the Start Address registers 

Pp can be read as well as written. This feature can be useful in program- 

ming these registers directly, because you can determine their con- 

tents at any time simply by inspecting them. 

Cursor Control 

The CRT Controller also controls the size and screen location of the hardware cur- 

sor in alphanumeric modes. You specify the cursor’s size by loading a CRTC 

register with values that indicate its top and bottom lines. The top line is 0; the 

value for the bottom line depends on the size of the displayed character matrix — 

7 for an 8-by-8 matrix and ODH for a 9-by-14 matrix. The cursor’s location is 

specified with a word offset into the video buffer, exactly as you specify the CRT 

Controller’s start address. 

Cursor Size on the MDA and CGA 

CRTC registers OAH and OBH control the cursor size on all IBM PC and PS/2 video 
subsystems. On the MDA and the CGA, the low-order five bits of register OAH 

(Cursor Start) indicate the top line of the displayed cursor. The low-order five bits 

of register OBH (Cursor End) specify the bottom line. 

Changing the size of the hardware cursor is a matter of programming these two 

registers. For example, to display a “‘block’’ cursor, which is a rectangle filling 

an entire character space, set the Cursor Start register to 0 and the Cursor End 

register to one less than the height of the character matrix. To display the ROM 

BIOS’s default cursor, set the Cursor Start and Cursor End registers to the values 

for the last two lines of the character matrix, as is done in Listing 3-13. 

In most applications, however, you can use INT 10H function 1 (Set Cursor Type) 
to change the cursor’s size. Using this function ensures compatibility with the 

video BIOS on all IBM PC and PS/2 video subsystems. Although performing the 

software interrupt and executing the BIOS routine is slower than programming 

the CRTC directly, in general you modify the cursor size so infrequently that 
you’ll never notice the slight slowing of your program. 
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Also, the BIOS routine maintains the current cursor size in two bytes in the Video 
Display Data Area at 0040:0060 (CURSOR_MODE). On the MDA and CGA, the 
CRTC’s Cursor Start and Cursor End registers are read-only registers, so you 
might as well use the BIOS to keep track of the current state of the cursor. The 
byte at 0040:0060 represents the value in 6845 register OAH (Cursor Start), and the 
following byte, at 0040:0061, represents register OBH (Cursor End). If you do 
bypass the BIOS routine and program the 6845 directly, keep the values in 
CURSOR_MODE up to date. 

# updating the CRTC registers directly 

mov ax, 40h 

mov es,ax 7 ES := video BIOS data segment 
mov dx,es: [63h] 7 DX := ADDR 6845 

mov al, 0Ah , AL := reg number (Cursor Start) 
out dx,al 

inc dx 7 DX s= 38x5h 

mov al, TopLine 7; AL 3— top vscan Line for cursor 
out dx,al 

dec dx 7 DX := 3x4h 

mov al,OBh 7; AL := reg number (Cursor End) 
out dx,al 

ine dx 7 Dx t= ssxoh 

mov al, BottomLine 7 AL := bottom scan line for cursor 
out dx,al 

mov ah, TopLine , AX := top and bottom lines 

mov es: [60h],ax ; update CURSOR MODE 

; using the video BIOS interface 

mov ch, TopLine 

mov cl,BottomLine 

mov ah, 1 + AH := INT 10h function number 

int 10h 

Listing 3-13. Setting the cursor size. 

Cursor Location on the MDA and CGA 

To control the cursor’s location, load a buffer offset into the CRTC’s Cursor Loca- 

tion High (OEH) and Cursor Location Low (0FH) registers (see Listing 3-14). The 

Cursor Location offset is relative to the start of the video buffer. If you have 

changed the CRTC Start Address registers, you must adjust for the new Start Ad- 

dress offset in calculating the Cursor Location offset. 
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; updating the CRTC registers directly 

mov ax, 40h 

mov es,ax ; ES := video BIOS data segment 

mov dx,es: [63h] ; DX := ADDR_6845 

mov al, OEh ; AL := reg number (Cursor Location High) 

out dx,al 

inc dx 2 DX. t=, 3xon 

mov al,HiByte ; AL := high-order byte of cursor offset 

out dx,al 

dec dx ; Dx c= Seen 

mov al,OFh ; AL := reg number (Cursor Location Low) 

out dx,al 

Ine dx - DX = SKU 

mov al, LoByte ; AL := low-order byte of cursor offset 

out dx,al 

; using the video BIOS interface 

mov dh, CursorRow 

mov dl, CursorColumn 

mov bh, VideoPage 

mov ah,2 ; AH := INT 10h function number 

int 10h 

Listing 3-14. Setting the cursor location. 

MCGA Cursor Control 

The MCGA’s CRTC doubles the values you store in the Cursor Start and Cursor 

End registers and doubles the number of scan lines in the displayed cursor. Thus, 

the size of the MCGA’s alphanumeric cursor is a multiple of two scan lines. 

This doubling of the Cursor Start and Cursor End values allows you to specify 

default alphanumeric cursor sizes with the same values you would use on a CGA. 

For example, in the MCGA’s default alphanumeric modes, the character matrix is 

16 lines high. If you set Cursor Start to 6 and Cursor End to 7, as you would in a 

CGA alphanumeric mode, you see the MCGA’s cursor at the bottom of the charac- 

ter matrix in lines OCH through OFH. In this way the MCGA’s Cursor Start and 

End registers emulate the CGA’s despite the MCGA’s taller character matrix. 

However, there are several differences in the way the MCGA interprets the Cursor 

Start and Cursor End values (see Figure 3-16). On the MCGA, only the four low- 

order bits of the Cursor Start and Cursor End values are significant. Furthermore, 

since the character matrix can be at most 16 scan lines high, Cursor Start and 

Cursor End values are usually limited to the range 0 through 7. Values greater 

than 7 can produce a cursor that wraps around to the top of the character matrix 

(see Figure 3-16e). 
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EGA and VGA Cursor Control 

On the EGA and the VGA, the Cursor Start, Cursor End, Cursor Location High, 

and Cursor Location Low registers are mapped to the same CRTC register num- 

bers as on the MDA and CGA. This can lead to trouble if you’re concerned about 

portability and need to write to the CRTC registers directly. This is because the 

EGA and VGA Cursor Start and Cursor End registers do not function exactly as do 

those on the MDA, CGA, or MCGA. 

On the EGA, the value you specify for the Cursor End register must be 1 greater 

than the bottom line of the cursor (see Figure 3-17). The EGA’s CRT Controller 

displays the alphanumeric cursor from the character scan line specified in the 

Cursor Start register to the line specified by the Cursor End register minus 1. 

If the Cursor End value is less than the Cursor Start value, the cursor wraps 

around the character matrix. If the low-order four bits of the Cursor Start and 

Cursor End values are equal, the cursor appears only on the single line specified 

in the Cursor Start register. Finally, the Cursor End value must be less than the 
number of scan lines in the character matrix. Otherwise, the CRT Controller dis- 

plays a full-height cursor regardless of the Cursor Start register’s value. 

Cursor Start = 2 Cursor Start = 2 
Cursor End = 2 Cursor End = 4 

Scanlineo-1 [LLU Scan line 0-1 (ULL 
Scan line 2-3 COOL Hl Scan line 2-3 LLL [] 

Scan line 4-5 REGRG ER Scan line 4-5 

Scan line 6-7 [I] Scan line 6-7 [TRG 
Scan line 8-9 [LULL Scan line 8-9 EASHESER 

il Scan line 10-11 CO 

LJ Scan line 12-13 [] J JU) 
Scan line 14-15 COLL 

Scan line 10-11 [| [ 
Scan line 12-13 WOU 

Scan line 14-15 i] LU 

4. b. 

[ (=) Pl 

CLJLJLoIL_JL_l_t_) C=] is 
al =e) 

Cursor Start = 4 

Cursor End = 2 

Scan line 0-1 

Scan line 2-3) LLL 

Cursor Start = 3 

Cursor End = 7 

Scan line 0-1 COOOL 

scan line2-3 LLL 
Scan line 4-5 

Scan line 6-7 

Scan line 8-9 

nant 
CT 

Scan line 4-5 

Scan line 6-7 

Scan line 8-9 

Ez = 
] 

oe 

Scan line 10-11 HHRGHH 
Scan line 12-13 Negaaats 

Scan line 14-15 FUG 

Scan line 10-11 [J 

Scan line 12-13 || 

Scan line 14-15 

(continued) 

Figure 3-16. Sample MCGA alphanumeric cursor settings for an 8-by-16 character matrix. 
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Figure 3-16. Continued. 

Cursor Start = 3 

Cursor End = 8 

Scan line 0-1 BESRBASy 

Scan line 2-3 u Oo [| 

Scan line 4-5 Paaaae [] 

scan line 6-7 WRRRHGGE 
scaniine 8-9 [ERUGGHH 
Scan line 10-11 FEGHHGG 
Scan line 12-13 FERRHGH 
scan line 14-15 FUTGGG 

e€. 

The VGA’s Cursor Start and Cursor End values (see Figure 3-18) work slightly 

differently than do the EGA’s. The VGA’s Cursor End value indicates the last line 

of the displayed cursor (not the last line plus 1), and the displayed cursor does not 

wrap around to the top of the character matrix if the Cursor End value is less than 

the Cursor Start value. (Compare Figures 3-17 and 3-18.) 

Cursor Start = 4 Cursor Start = 4 
Cursor End = 4 Cursor End = 8 

Scan line 0 | | [| a Lh Scan line 0 TEIEGIee 

Sean line 1 | J JJ Scan line 1 MMOH 
Scan line 2 COO Scan line 2 MEREGZES 
Scan line 3 COL Scan line 3 NOGRURBE 
Scan line 4 Se Abele Scan line 4 faa 
Scan line 5 CO Scan line 5 RE CaGE 
Scan line 6 HOLL Scan line 6 TTT TTT 
Scan line 7 COLL Scan line 7 Hee FIR gE 

a. b. 

Cursor Start = 4 Cursor Start = 4 
Cursor End = 7 Cursor End = 2 

Scan line 0 | | | |] Scan line 0 FRRRRGG 
Scan line 1 

Scan line 2 Scan line 2 COO 
Scan line 3 (LL Scan line 3 COL 
Scan line 4 BERESIga Scan line 4 GoSSSRRE 
Scan line 5 BRRRaEEe Scan line 5 HEESRaSE 
Scan line 6 i EERE RS Scan line 6 TESesaee 
Scan line 7 | | [ELLE LT Scan line 7 HRGGGG 

(continued) 

Figure 3-17. Sample EGA alphanumeric cursor settings for an 8-by-8 character matrix. 
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Figure 3-17. Continued. 

Cursor Start = 4 

Cursor End = 0 

Scan line 0 HH 

Scan line 1 [7 
Scan line 2 aa UL 
Scan line 3 1 i 

Scan line 4 TEUNESaS 
Scan line 5 OeeaEaae 
Scan line 6 HUUHHHG0 
Scan line 7 CRRTRRRH 

1 

= 5 

Bits 5 and 6 of the Cursor End register (OBH) on the EGA and VGA 

control the rightward skew of the cursor. If bits 5 and 6 are not 0, the 

cursor appears one, two, or three characters to the right of the location 

that the Cursor Location registers specify. For most applications, the 

cursor skew should be 0. 

Cursor Start = 4 Cursor Start = 4 
Cursor End = 4 Cursor End = 8 

Scan line 0 COE Scan line 0 COLA 

Scan line 1 EOL Scan line 1 LL LL 

Scan line 2 CLE Scan line 2{{ [| [TL] 
Scan line 3 TOOL) Scan line 3 | | | EL 

Scan line 4 BRRELaaE Scan line 4 ORE RAG 

Scan line 5 (LU iL Scan line 5 gi aoy 

Scan line 6[ [1] i | | Scan line 6 EARS eRe 

Scan line 7 [| iL Ul Scan line 7 HUERRRE 

a. b. 

Cursor Start = 4 Cursor Start = 4 
Cursor End = 7 Cursor End = 2 Gin 1 

Scan line 0 LOL Scan line 0 ( ti 

Scan line 1 H+ | Scan line 1[] | [LI 
Scan line 2[ | | | ] Scan line 2 LULL 

Scan line 3| | | [LLL Scan line 3[ | | [LLL 

Scan line 4 ARasERTa Scan line 4 CU 

Scan line 5 Beaeewes Scan line 5| | | | LLU 
Scan line TTT TTL Scan line 6 TLL a 
Scan line 7 BRGCSRGE Scan line 7[ | | | | (LL 

Cc. d. 

Figure 3-18. Sample VGA alphanumeric cursor settings for an 8-by-8 character matrix. 
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ROM BIOS Cursor Emulation 

The ROM BIOS routine for INT 10H function 01H uses the values in 80x86 registers 

CH and CL to program the CRTC Cursor Start and Cursor End registers (see List- 

ing 3-13). On an MDA or CGA, these values are simply copied into the CRTC regis- 

ters. On an EGA or VGA, however, the BIOS can scale these values relative to an 

8-line character matrix and program the CRTC with the scaled results. This scal- 

ing is called ‘‘cursor emulation’’ in IBM’s technical manuals. 

When ROM BIOS cursor emulation is in effect, the values you specify to INT 10H 

function 01H represent the position of the start and end of the displayed cursor 

relative to an 8-line character matrix. When the actual character matrix is larger 

than 8 lines, the BIOS routine adjusts the Cursor Start and Cursor End values to 

maintain the cursor’s relative location in the matrix. 

Consider what happens, for example, when you call INT 10H function 01H with 

CH = 6 and CL = 7. If the character matrix is 8 lines high, the cursor appears on 

the bottom two lines. (This is the usual cursor in 200-line video modes.) If the 

character matrix is 14 lines high, however, the BIOS routine adjusts the Cursor 

Start and Cursor End values so that the cursor appears near the bottom of the 

matrix; that is, on lines OBH and OCH. Thus, cursor emulation allows programs 

that change the cursor size with INT 10H function 01H to run unchanged regard- 

less of the size of the character matrix. 

The BIOS carries out cursor emulation in INT 10H functions whenever bit 0 of the 

Video Display Data Area INFO byte (0040:0087) is set to 0. (This is the power-on 

default for both the EGA and the VGA.) You can disable cursor emulation by set- 

ting this bit to 1 before calling INT 10H function 01H. On the EGA, you must set 

and reset the bit directly, but on the VGA, you should use INT 10H function 12H to 
set the bit’s value. 

On the EGA, cursor emulation is implemented by adding 5 to any Cur- 

sor Start or Cursor End value greater than 4. This works well when 

the character matrix is the default 14 lines high. For character 

matrices of other heights, however, this simple algorithm breaks down 

and computes the Cursor Start and Cursor End values incorrectly. 

You should therefore disable cursor emulation when you program the 

EGA’s character generator to change the size of its character matrix 
(see Chapter 10). 

On the VGA, the cursor-emulation computation takes into account the 
height of the character matrix, so the emulated cursor is displayed cor- 
rectly regardless of character matrix dimensions. 
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An Invisible Cursor 

You can make the cursor “‘invisible’’ by programming the CRT Controller to dis- 
play it at an offscreen location. Do this by setting the Cursor High and Cursor 

Low registers to a non-displayed buffer offset. Another way to make the cursor 

vanish is to load the Cursor Start and Cursor End registers with values below the 
displayed character matrix. On the MDA, CGA, and VGA, load the Cursor Start 

register with the value 20H to make the cursor disappear. On the EGA, set Cursor 

Start to a value greater than or equal to the number of lines in the character 

matrix and set Cursor End to 0 (see Listing 3-15). 

mov cx,2000h ; CH := top scan line for cursor 

»> CL := bottom scan line for cursor 

mov ah, 1 ; AH := INT 10h function number 

int 10h 

Listing 3-15. An invisible alphanumeric cursor for IBM video subsystems. 
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Graphics Modes 

Using Graphics Modes 

Mapping Pixels to the Screen 

CGA @ HGC @ EGA 

Hercules InColor Card ® MCGA and VGA 

Pixel Coordinates 
Pixel Coordinate Scaling 

Aspect Ratio 

Pixel Display Attributes 

CGA @ HGC @ EGA 
Hercules InColor Card @ MCGA @ VG 



This chapter covers the basics of graphics-mode programming on the CGA, EGA, 

MCGA, VGA, and Hercules cards. First the chapter describes how pixels are repre- 

sented in the video buffer and how they are mapped to the screen. Then it focuses 

on pixel display attributes; that is, on how to determine a pixel’s color, intensity, 

and blinking. 

Using Graphics Modes 
In graphics modes, your program can manipulate the color of every pixel on 

the display. For this reason, graphics modes are sometimes called All Points 

Addressable (APA) modes. Because you have control over each pixel in the dis- 

played image, you can construct complex geometric images, fill arbitrary areas of 

the screen with solid colors or blends of colors, and display animated images that 

move smoothly across the screen. 

Most programmers, however, use graphics modes only when pixel-by-pixel 

control over the screen is essential to an application. The reason: The price you 

pay for total control over the screen is increased source code complexity and 

decreased performance. A simple comparison of the amount of data required 

to display a full screen of information in alphanumeric and in graphics modes 

shows why. 

For example, to display 25 rows of 16-color, 80-column text in alphanumeric mode 

on an EGA, you need to store 4000 bytes (80 x 25 x 2) in the video buffer. With a 

350-line monitor, the text is displayed with 640-by-350-pixel resolution. Obtaining 

the same resolution in a 16-color graphics mode requires 112,000 bytes (640 x 350 

x 4 bits per pixel + 8 bits per byte). Obviously, a program that must manipulate 

112,000 bytes of data is more complex and slower than a program that manipulates 

only 4000 bytes. 

Of course, the performance penalty for using graphics-mode video output is less 

apparent when you use a faster computer, such as an 80286-based or 80386-based 

machine whose CPU runs at a high clock speed. Still, before you leap into 

graphics-mode programming, you should carefully consider the alternatives. 

Alphanumeric modes are sufficient for displaying text and simple block graphics 

and, hence, for the majority of real-world applications. 

T An alternative in some applications is to use a video subsystem that 
, has an alphanumeric character generator capable of displaying RAM- 
" based character sets. (The EGA, MCGA, VGA, HGC+, and InColor 

Card all have this capability.) With these subsystems, you can design 
‘‘characters”’ that are actually subunits of a larger graphics image and 
then assemble the subunits into a complete image in an alphanumeric 
mode. (Chapter 10 explains the technique in detail.) 
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Mapping Pixels to the Screen 

PC and PS/2 video subsystems store pixel data as groups of bits that represent 

pixel values. The color of each pixel on the display is determined, directly or in- 

directly, by its pixel value. Furthermore, no pixel value is ever represented by 

more than eight bits, so one or more pixels are mapped into every byte in the 

video buffer. 

The format of the pixel map or bit map in the video buffer depends on the number 

of bits required to represent each pixel, as well as on the architecture of the video 

RAM. Obviously, the number of colors that a given graphics mode can display at 

one time is determined by the number of bits used to represent each pixel. 

When pixel values are smaller than eight bits, pixels are mapped in bit fields 

from left to right across each byte. The leftmost pixel represented in a given byte 

is always found in that byte’s high-order bit(s). This is true on all PC and PS/2 

video subsystems. 

Color Graphics Adapter 

On the CGA, each pixel is represented either by two bits, as in 320-by-200 4-color 

mode (see Figure 4-1a) or by one bit, as in 640-by-200 2-color mode (see Figure 

4-1b). Because two bits are used to represent pixels in 320-by-200 mode, a pixel 

Bit fields in one byte 

Pixels on screen 

Figure 4-1. Pixel mapping in CGA graphics modes. 
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can have any of four different pixel values, so this mode can display four different 
colors at a time. Only one bit is used to represent pixel values in 640-by-200 mode, 

so that mode can display only two colors at a time. 

The pixel data is mapped in two interleaved halves of the CGA’s 16 KB video 

buffer. Data for the 100 even-numbered scan lines starts at B800:0000, and data for 

the odd-numbered scan lines starts at B800:2000 (see Figure 4-2). If the scan lines 
are numbered consecutively from 0, the half of the video buffer in which the nth 

scan line is represented can be determined by calculating n MOD 2. 

This two-way buffer interleave lets the CGA’s CRT Controller display 

200 lines of graphics data without overflowing the 7-bit CRTC vertical 

timing registers. In CGA graphics modes, the CRTC is set up to display 

100 rows of ‘‘characters,’’ each two scan lines high. The top (even) 

line of each character is derived from the first half of the video buffer, 

and the bottom (odd) line is read from the second half of the buffer. 

Video Buffer Display 

eee Scan line 0 
0050 ; 
OOAO Scan line 1 

OOFO Scan line 2 

Scan line 3 

Scan line 4 

B800:2000 | Scan line 5 
2050 
20A0 
20F0 

Figure 4-2. Video buffer interleave in CGA graphics modes. 

Hercules Graphics Card 

In 720-by-348 graphics mode on the HGC and HGC+, pixel representation is simi- 
lar to that in the CGA’s 640-by-200 2-color graphics mode. One bit represents each 
pixel, so only two ‘‘colors’’ (pixel on or pixel off) are available. 

However, the HGC’s 348 90-byte lines of pixel data are interleaved using four 
separate areas of the video buffer (see Figure 4-3), each containing 87 (348 + 4) 
lines of data. With this buffer organization, the area in the buffer in which the nth 
scan line is represented can be determined by n MOD 4. 

On Hercules video adapters, the four-way interleave allows the CRTC to be pro- 
grammed to display 87 rows of characters which are four scan lines high. (See 
Listing 2-4 in Chapter 2.) Each of the four scan lines in a ‘‘character”’ is read 
from the corresponding location in one of the four interleaved portions of the 
video buffer. 
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Video Buffer 
Display 

Scan line 0 

Scan line 1 

Scan line 2 | | 

Scan line 3 | _ : 

Scan line 4 | 
Scan line 5 

Scan line 6 

Scan line 7 

Figure 4-3. Video buffer interleave in Hercules graphics mode. 

Enhanced Graphics Adapter 

When the EGA is configured to emulate a CGA graphics mode, pixels are mapped 

in the video buffer just as they would be on the CGA. However, in the EGA’s na- 

tive graphics modes (200-line 16-color modes and all 350-line modes), pixels are 

always mapped eight to a byte. 

This mapping is dictated by the architecture of the EGA’s video buffer. The 256 

KB video buffer consists of four 64 KB maps, or parallel banks of RAM. The maps 

are parallel in the sense that they occupy the same range of addresses in the CPU’s 

address space; the EGA’s Sequencer and Graphics Controller allow the maps to be 

accessed either individually or in parallel (more about this in Chapter 5). 

A pixel’s value is determined by the values of the corresponding bits at the same 

byte offset and bit offset in each map (see Figure 4-4). For this reason, in graphics 

modes, the four maps are called bit planes. You might imagine each pixel’s value 
as the result of concatenating one bit from the same location in each bit plane. 

The relationship of memory maps to bit planes is altered in 350-line 

graphics modes on an IBM EGA equipped with only 64 KB of video 

RAM. (To bring IBM’s original EGA up to 256 KB, you must install a 

piggyback board, called the Graphics Memory Expansion Card.) 

When you use INT 10H function 00H to select 640-by-350 graphics 

modes (mode OFH or 10H) on an EGA with a 64 KB video buffer, video 

buffer address decoding is altered so that even-numbered addresses in 
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the buffer reference the even-numbered maps and odd-numbered ad- 

dresses refer to odd-numbered maps (see Figure 4-5). 

In this way the four video buffer maps are chained together, with 

maps 0 and 1 forming bit plane 0 and maps 2 and 3 forming bit plane 

2. Routines that access pixels in the video buffer must accommodate 

this relationship between the bit planes and buffer addresses. 

Map 3 fifi fofojofo}i{i| 
CVE oe pies 

Bit uelds in Map 2 fo}1}o{i{ofo]1]o| 
corresponding byte io Gee 

in each map Map [1]0[1Jo]iJ0[O]1] — Color Plane 
PCE AAG le ae Enable register 

ee tee ae eee 
Pixel values 1011 1100 0011 0101 0010 0001 1101 1010 

5 Ge EE a Ol eee 
AND with Color 0011 0100 0011 0101 0010 0001 0101 0010 
Plane Enable tn ie hain 

map o [1[o]1 [a Jo[i [1 [o] 

Pixels on screen 

Figure 4-4, Pixel mapping in native EGA graphics modes. 

Bit fields in Map2 [o0]i[o][ifoJo]1]ol Color Plane correspondin 
P 8 CPV LIS le Lb El Enable register byte in each ma 

ae * Map o [1 foli [1 Jol Jol 
eee eee 

Pixel values 01 1001 ‘ os Pe 11 00 
; 2 vey AND with bits 2 and 0 01 1001 110001 1100 Note: Bits 2 and 0 

of Color Plane Enable HSU Ph. Wie AR Pet mask pixel values 
Pixels on screen BO Bits 3 and 1 

should be 0. 
a. 

Bit fields in Map3 [1 ]1]o[ofolol1]1] Color Plane aes = oh Bey aes gon os Ee Enable register 
Map 1|1]o[1[o]i]ifo]i| 0101 

OE: LP NY eras 
Pixel values i ie e 1 G ol y 10 11 

Soe eee AND with bits 2 and0 111901000101 1011 Note: Bits 2 and 0 of Color Plane Enable ia line list gil asl mask pixel values 
Pixels on screen BEREUROSS Bits 3 and 1 

should be 0. 
b. 

Figure 4-5. Video buffer maps in 350-line graphics modes (EGA with 64 KB video RAM ). Pixel values at even addresses are stored in maps 0 and 2 (Figure 4-5Sa); pixels at odd 
addresses are stored in maps I and 3 (Figure 4-5b). 
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In native EGA graphics modes, there is no line-by-line interleaving of the pixel 
data in the video buffer, as in CGA and HGC graphics modes. Instead, rows of pix- 
els are mapped linearly, just as rows of characters are mapped linearly in alpha- 
numeric video modes. 

Hercules InColor Card 

In its 720-by-348 graphics mode, the InColor Card’s video buffer has four parallel 
maps organized as four parallel bit planes. As on the EGA, a pixel’s value is deter- 
mined by concatenating the corresponding bits in each of the bit planes. However, 
video buffer addressing is not linear, as it is on the EGA. 

Pixels are stored in the InColor Card’s video buffer using the same four-way 

interleave that the HGC and HGC+ use. In the buffer, 348 lines of 90 bytes (720 

pixels) are mapped in a four-way interleave starting at B000:0000. The buffer 

also contains two video pages (as on the monochrome HGC), at B000:0000 and 

B000:8000. This aspect of the InColor Card’s design preserves its symmetry with 
Hercules monochrome graphics cards but differentiates it from the EGA. 

MCGA and VGA 

The PS/2 video subsystems support three graphics modes not found on earlier PC 

video adapters. The 640-by-480 2-color mode (MCGA and VGA) and 640-by-480 

16-color mode (VGA only) resemble the native EGA graphics modes: Both use a 

linear bit map starting at A000:0000. A similar linear pixel map also is used in 

320-by-200 (MCGA and VGA) 256-color mode, with one important difference: 

Each byte in the video buffer represents one pixel (see Figure 4-6). Since there are 

eight bits to a byte, each pixel can have any of 256 (28) different colors. 

Logical AND 
Video DAC mask 8-bit pixel value 

Video DAC 
color register 0-OFFH 

18-bit analog output to video display 
(6 bits each for red, green, blue) 

Figure 4-6. Color selection in MCGA and VGA 320-by-200 256-color mode. 
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On the VGA, 640-by-480 2-color mode is nearly identical to 640-by-480 

, 16-color mode. All four bit planes remain active in the 2-color mode 
" even though one bit plane is sufficient to store a full screen of pixels. 

The only difference between the two modes is that the video BIOS 

makes only two palette colors available in the 2-color mode, whereas 

it sets up 16 palette colors in the 16-color mode. 

Pixel Coordinates 

In graphics modes, the video buffer can be thought of as a flat, two-dimensional 

array of pixels with its origin at the upper left corner. What is visible on the 

screen is a subset of the pixels represented in the buffer. On the CGA, the video 

buffer can contain only one screenful of pixels, so the first byte in the buffer 

represents the pixels in the screen’s upper left corner. On the EGA, MCGA, and 

VGA, however, the video buffer can store several screenfuls of pixels. You can 

thus select which portion of the video buffer appears on the screen. 

Every pixel on the screen can be identified by a unique pair of (x,y) coordinates 

relative to the screen’s upper left corner. Each (x,y) pair also corresponds to a par- 

ticular byte offset in the video buffer and a bit offset in that byte. Thus, given a 

pixel’s (x,y) coordinates on the screen, you can compute where in the video buffer 

the pixel is represented. 

Converting from pixel coordinates to the corresponding byte and bit offsets is one 

of the most frequent operations in IBM video graphics programming. The pro- 

gram examples in Listings 4-1 through 4-5 demonstrate how to do this efficiently 
and in a uniform manner. 

TITLE ‘Listing 4-1! 
NAME PixelAddr04 

PAGE Doin 132 

; Name: PixelAddr04 

Fenn Cieet ons Determine buffer address of pixel in 320x200 4-color mode 

; Caller: AX y-coordinate (0-199) 

: BX x-coordinate (0-319) 

; Returns: AH = bit mask 

; BX = byte offset in buffer 

; CL’ = number of bits to shift left 
F ES = video buffer segment 

OriginOffset EQU 0 7 byte offset of (0,0) 
VideoBufferSeg EQU OB800h 

Listing 4-1. Computing a pixel’s address in 320-by-200 4-color mode. (continued) 
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Listing 4-1. Continued. 

SRERT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 
PUBLIC PixelAddr04 

PixelAddr04 PROC near 

mov Cuba! 2 Ch s= jow-order byte of x 

xchg ah,al 7 Ax y= 00h ‘vy 

shr ax, 1 * AL := 80h * (y&1) 

add bh,al ; BX := x + 8000h*(y&1) 

xor al,al 7; AX := 100h*(y/2) 

add bx, ax ; BX := x + 8000h*(y&1) + 100h*(y/2) 
shr ax, 

shr ax,1 7; AX := 40h*(y/2) 

add bx, ax ; BX := x + 8000h*(y&1) + 140h*(y/2) 
shr bx, 1 

shr ssc nl ; BX := x/4 + 2000h*(y&1) + 50h*(y/2) 

add bx, OriginOffset ; BX := byte offset in video buffer 

mov ax, VideoBufferSeg 

mov es,ax ; ES:BX := byte address of pixel 

mov ah,3 ; AH := unshifted bit mask 

and cl,ah eC C= Lees 

xor cl,ah peeG ene eae ee eS) 

shl cays ; CL := # bits to shift left 

ret 

PixelAddr04 ENDP 

_TEXT ENDS 

END 

TITLE Tiaisting.=4=2" 

NAME PixelAddr06 

PAGE 55, "SZ 

; Name: PixelAddr06 

; Function: Determine buffer address of pixel in 640x200 2-color mode 

7 Cadtdexs AX = y-coordinate (0-199) 

s BX = x-coordinate (0-639) 

; Returns: AH = bit mask 

BX = byte offset in buffer 

Fe CL = number of bits to shift left 

; ES = video buffer segment 

OriginOffset EQU 0 ; byte offset of (0,0) 

VideoBufferSeg EQU OB800h 

Listing 4-2. Computing a pixel’s address in 640-by-200 2-color mode. (continued) 
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Listing 4-2. Continued. 

TEXT SEGMENT byte public 'CODE' 

= ASSUME cs: TEXT 

PUBLIC PixelAddr06 

PixelAddr06 PROC near 

mov °* ed, bl ; CL := low-order byte of x 

xchg ah,al ; AX := 100h * y 

shr bx, 1 7 BX 2= x/2 

shr ax, 1 ; AL := 80h* (yé1) 

add bh,al ; BX := x/2 + 8000h*(y&1) 

xor al,al ; AX := 100h*(y/2) 

add bx,ax ; BX := x/2 + 8000h¥*(y&1) + 100h*(y/2) 

shr ax, 1 

shr ax, 1 ; AX := 40h*(y/2) 

add bx, ax > BX := x/2 + 8000h*(y&1) + 140h* (y/2) 

shr bs pat 

shr bx, 1 ; BX := x/8 + 2000h*(y&1) + 50h*(y/2) 

add bx, OriginOffset ; BX := byte offset in video buffer 

mov ax, VideoBufferSeg 

mov es,ax ; ES:BX := byte address of pixel 

and Cura - Che xe 

xor Cala, + (CL k= number of bits Eo shiit left 

mov ah, 1 ; AH := unshifted bit mask 

ret 

PixelAddr06 ENDP 

TERT ENDS 

END 

Transforming pixel coordinates to a buffer offset involves simple logic. Begin by 

calculating the offset of the start of pixel row y. (For CGA and Hercules graphics 

modes, this calculation accounts for the interleaving of the video buffer.) To this 

value, add the byte offset of the xth pixel in the row. Finally, add the byte offset of 

the start of the displayed portion of the video buffer to obtain the final byte offset 

of the pixel. 

PixelByteOffset = RowOffset(y) + ByteOffset(x) + OriginOffset 

The bit offset of the pixel within the byte that contains its value depends only on 
the number of pixels represented in each byte of the video buffer. You could ex- 

press the relationship this way: 

PixelBitOffset = PixelsPerByte - (x MOD PixelsPerByte) - 1 

However, it is more practical to represent a pixel’s bit offset as a bit mask rather 

than as an ordinal bit number. This can be done easily with a table lookup (for ex- 
ample, an assembler XLAT instruction) or with a logical shift instruction. (This is 

why Listings 4-1 through 4-4 return the bit offset as a number of bits to shift.) 
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TITLE "Listing 4-3' 

NAME PixelAddrHGC 

PAGE SO pnloe 

+ Name: PixelAddrHGC 

7 Function: Determine buffer address of pixel in 720x348 Hercules graphics 

* Caller: AX = y-coordinate (0-347) 

; BX = x-coordinate (0-719) 

; Returns: AH = bit mask 

Fe BX = byte offset in buffer 

iF CL = number of bits to shift left 

s ES = video buffer segment 

BytesPerLine EQU 90 

OriginOffset EQU 0 7 byte offset of (0,0) 

VideoBufferSeg EQU 0B000h 

BEExT SEGMENT byte public 'CODE! 
ASSUME cs:_ TEXT 

PUBLIC PixelAddrHGC 

PixelAddrHGC PROC near 

mov ed bi 7 CL := low-order byte of x 

shr ax, ; AX := y/2 

rer bx, 1 7 BX := 8000h*(y&1) + x/2 

shr ax, 1 7; AX := y/4 

rer bx, 1 ; BX := 4000h*(y&3) + x/4 

shr bx, 1 ; BX := 2000h*(y&3) + x/8 

mov ah, BytesPerLine 

mul ah ; AX := BytesPerLine* (y/4) 

add bx,ax ; BX := 2000h*(y&3) + x/8 + 

; BytesPerLine* (y/4) 

add bx, OriginOffset ; BX := byte offset in video buffer, 

mov ax, VideoBufferSeg 

mov es,ax ; ES:BX := byte address of pixel 

and cl 7 ; Clise x & 7 

xor el, © ; CL := number of bits to shift left 

mov ah, 1 ; AH := unshifted bit mask 

ret 

PixelAddrHGC ENDP 

_ Saar ENDS 

END 

Listing 4-3. Computing a pixel’s address in Hercules graphics mode. 
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TITLE 

NAME 

PAGE 

; Name: 

. Funceron: 

7 Caller: AX = 

F BX = 

; Returns: AH = 

; BX = 

; CL = 

H ES = 

EQU 

EQU 

EQU 

BytesPerLine 

OriginOffset 

VideoBufferSeg 

DLExT SEGMENT 

ASSUME 

PUBLIC 

PixelAddr10 PROC 

mov 

push 

mov 

mul 

pop 
shr 

shr 

shr 

add 

add 

mov 

mov 

and 

xor 

mov 

ret 

PixelAddr10 ENDP 

STExT ENDS 
END 

"Listing 4-4' 

PixelAddr10 

5S plis2 

PixelAddr10 

Determine buffer address of pixel in native EGA and VGA modes: 

16-color 

16-color 

16-color 

monochrome 

Z=é€olor 

16-color 

320x200 

640x200 

640x350 

640x350 

640x480 

640x480 

(4-color) 

y-coordinate 

x-coordinate 

bit mask 

byte offset in buffer 

number of bits to shift left 

video buffer segment 

80 ; bytes in one horizontal line 

0 7 byte offset of (0,0) 

OA000h 

byte public 'CODE' 

cs:_TEXT 

PixelAddr10 

near 

el, bl 7 CL := low-order byte of x 

dx 7 preserve DX 

dx,BytesPerLine ; AX := y * BytesPerLine 

dx 

dx 

bx, | 

ae, 

bx, 1 7B = lS 

bx, ax ; BX := y*BytesPerLine + x/8 
bx, OriginOffset ; BX := byte offset in video buffer 

ax, VideoBufferSeg 

es, ax ; ES:BX := byte address of pixel 

eueat 7, CL t= Slee 

Ga ; CL := number of bits to shift left 
ah,1 * AH := unshifted bit mask 

Listing 4-4. Computing a pixel’s address in CGA and VGA graphics modes. 
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Here is a high-level example of a pixel coordinate transformation for the CGA’s 
320-by-200 4-color graphics mode. As Figure 4-1a shows, each byte in the video 
buffer contains four pixels. At four pixels per byte, 80 bytes of data represent one 
row of 320 pixels. The origin of the screen—that is, the byte offset of the dis- 
played portion of the buffer—is 0, since the CGA video buffer contains only one 
screenful of pixels. 

int PixelsPerByte = 4; 

int BytesPerRow = 80; 

IMmiNOri ginOfriser = 0% 

static int Masks[] = { O0xC0, 0x30, OxOG RRO 08m ty 

unsigned int x,y; 

unsigned int ByteOffset,BitMask; 

/* buffer interleave (0 or 0x2000) */ 

ByteOffset = (y & 1) << 13; 

/* offset of start of row */ 

ByteOffset += BytesPerRow * (y/2); 

/* byte offset in screen */ 

ByteOffset += (x / PixelsPerByte) % BytesPerRow; 

/* byte offset in video buffer */ 

ByteOffset += OriginOffset; 

BitMask = Masks[x % PixelsPerByte]; 

The same routine in assembly language is much more efficient, because all arith- 

metic can be done in registers and register halves (refer to Listing 4-1). Also, if 

you know that the number of bytes per row of pixels is a constant, you can further 

increase performance by performing multiplication and division as a sequence of 

bit shifts. 

For example, in Listing 4-5, the y-coordinate is multiplied by 320 through a series 

of logical shift operations instead of a single MUL instruction. The resulting rou- 

tine runs about 40 percent faster on the 8086-based PS/2 Model 30 and about 10 
percent faster on the 80286-based PS/2 Model 60. This optimization complicates 

the assembly code somewhat, but the speed gained is worth the effort—low-level 

routines such as those in Listings 4-1 through 4-5 may execute many thousands of 

times in a graphics-oriented application. 
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; Name: 

; Function: 

> Caller 

; Returns: 

OriginOffset 

VideoBufferSeg 

Text 

PixelAddr13 

PixelAddr13 

_TEXT 

TITLE VLEsting (4ao. 

NAME PixelAddr13 

PAGE Sloe 

PixelAddr13 

Determine buffer address of pixel in 320x200 256-color mode 

AX = y-coordinate (0-199) 

BX = x-coordinate (0-319) 

BX = byte offset in buffer 

ES = video buffer segment 

EQU 0 ; byte offset of (0,0) 

EQU OA000h 

SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

PUBLIC PixelAddr13 

PROC near 

xchg ah,al ; AX := 256*y 

add Ibscpax 2 BX 2=—TZ50ty + ax 

shr ax, 1 

shr ax, 1 ; AX := 64*y 

add bx, ax > BX == 320*y + xX 

add bx,OriginOffset ; BX := byte offset in video buffer 

mov ax, VideoBufferSeg 

mov es,ax ; ES:BX := byte address of pixel 

ret 

ENDP 

ENDS 

END 

Listing 4-5. Computing a pixel’s address in 320-by-200 256-coior mode. 

Pixel Coordinate Scaling 

One characteristic of most IBM graphics modes is that horizontal pixel resolution 

differs from vertical pixel resolution. For example, in a 640-by-200 mode, a typi- 

cal 200-line color monitor displays about 70 pixels per horizontal inch, but only 

about 30 pixels per vertical inch. 

This discrepancy complicates the mapping of pixels in the display buffer to 

screen locations, as is shown in Figure 4-7. For example, in a 640-by-200 mode, 

a line drawn between the pixel at (0,0) in the screen’s upper left corner and the 

pixel at (100,100) has a mathematical slope of 1, so you would expect it to be dis- 
played at a 45-degree angle from the display’s top and left edges. However, the 

displayed line (line a, Figure 4-7) is ‘“compressed’”’ in the horizontal direction. 
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Displaying a line at a 45-degree angle requires scaling the pixel coordinates to 
account for the discrepancy in vertical and horizontal resolution. In a 640-by-200 
mode, the horizontal scaling factor is about 2.4 (horizontal resolution + vertical 
resolution). In the example, you would scale the x-coordinates of the endpoints to 
0 (0 x 2.4) and 240 (100 x 2.4). The scaled line (line b, Figure 4-7), with end- 
points at (0,0) and (240,100), appears at a 45-degree angle on the screen. 

You must scale the (x,y) coordinates of all pixels in all geometric figures in all 
graphics modes—unless, of course, the scaling factor happens to be 1. Otherwise, 
Squares appear as rectangles and circles as ellipses. Furthermore, you must adjust 
the scaling factor for the horizontal and vertical resolutions of each graphics 
mode. Figure 4-8 is a table of the horizontal-to-vertical scaling ratios for graphics 
modes on IBM video subsystems with typical monitors. 

(240,100) 
(100,100) 

Figure 4-7. Pixel coordinate scaling in 640-by-200 graphics. 

BIOS Mode Mode Scaling Factor 
Number Description (horizontal/vertical) 

4,5 320-by-200 4-color 1.20 
6 640-by-200 2-color 2.40 
ODH 320-by-200 16-color 1.20 
OEH 640-by-200 16-color 2.40 
OFH 640-by-350 monochrome 1.26 (monochrome monitor) 

10H 640-by-350 16-color 137, 
11H 640-by-480 2-color 1.00 
12H 640-by-480 16-color 1.00 
13H 320-by-200 256-color 2.40 

720-by-348 (Hercules) 1.43 (monochrome monitor) 

Figure 4-8. Pixel scaling values for PC and PS/2 graphics modes. An aspect ratio of 1.33 
(4:3) for color monitors, 1.45 for monochrome monitors, is assumed. 
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Aspect Ratio 

A related programming concern is the screen’s aspect ratio—the ratio of a 

screen’s width to its height. The color monitors commonly used with IBM video 

subsystems have aspect ratios of about 1.33 (4:3); for the typical green mono- 

chrome monitor, the aspect ratio is about 1.45. Because the screen is rectangular 

instead of square, the maximum potential width of a screen image exceeds its 

maximum potential height. This limitation must always be considered in scaling 

pixel coordinates. 

One attractive feature of the MCGA, the VGA, and other video sub- 

systems that offer 640-by-480 resolution is that horizontal resolution 

and vertical resolution are the same on a display with an aspect ratio 

of 4:3. You can think of the pixels in this situation as being “‘square.”’ 

With ‘‘square’’ pixels, mapping the video buffer to the screen is 

simpler because the pixel coordinate scaling factor is 1. 

Pixel Display Attributes 
In general, pixel values determine video attributes—in other words, the bits that 

represent a pixel in the video buffer determine how the pixel looks on the screen. 

The way that pixel values are decoded in graphics modes is similar to the way 

that alphanumeric attributes are decoded. But in graphics modes, pixel values 

may range from one through eight bits, while alphanumeric attributes are four 

bits wide. 

Color Graphics Adapter 

In 640-by-200 2-color mode, one bit represents each pixel. If the bit is 0, the pixel 

is displayed as black. If the bit is 1, the pixel is displayed with the color specified 

in bits 0 through 3 of the CGA’s Color Select register (port 3D9H). This is the 

same register that specifies the overscan color in alphanumeric modes. If you 

change video modes by directly programming the CGA’s CRTC and Mode Control 

registers, you should avoid spurious border colors or pixel colors by programming 
the Color Select register as well. 

You can use INT 10H function OBH to select the displayed color of nonzero pixels 

in 640-by-200 2-color mode (see Listing 4-6). This BIOS function stores a color 

value in the Color Select register and updates the variable CRT_PALETTE in the 

Video Display Data Area at 0040:0066. If you bypass the video BIOS and program 

the Color Select register directly, you should also update CRT_PALETTE. 

mov ah, OBh ; AH := OBH (INT 10H function number) 

mov bh, 0 + BH := subfunction number 

mov bl,ColorValue 7 BL := desired color (0-OFH) 

aerate 10h 

Listing 4-6. Foreground color in CGA 640-by-200 2-color graphics. 
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In 320-by-200 4-color modes, two bits represent each pixel, so pixel values can 
range from 0 through 3. Pixels with the value 0 are displayed with the color value 
stored in the Color Select register at port 3D9H. A quirk of the CGA is that the 
Color Select register value determines both the overscan (border) color and the 
color for pixel value 0. This means you cannot specify a border color indepen- 
dently of the background color on the CGA in this video mode. 

The colors displayed for pixels with nonzero values are taken from one of three 
hardware palettes (see Figure 4-9). The palette is selected by the values of bit 5 of 
the Color Select register (port 3D9H) and of bit 2 of the Mode Control register at 
port 3D8H (Listing 4-7). If bit 2 of the Mode Control register is 1, the palette com- 
prises cyan, red, and white. If this bit is 0, bit 5 of the Color Select register selects 
either green, red, and yellow (if bit 2 in the Color Select register is 0), or cyan, 
violet, and white (if bit 2 in the Color Select register is 1). In effect, setting bit 2 in 
the Color Select register adds blue to the palette; that is, green plus blue produces 
cyan, red plus blue produces violet, and yellow plus blue produces white. 

Setting bit 2 of the CGA’s Mode Control register to 1 disables the color 
burst component of the adapter’s composite video output signal. If you 

use a black-and-white display, appropriate shades of gray are gener- 

ated for the four possible pixel values when bit 2 is set to 1. 

Bit 2 of Mode Control register = 0 
Bit 5 of Color Select register = 0 
Pixel Value Color Displayed 

1 Green 
2, Red 
3 Yellow 

Bit 5 of Color Select register = 1 
Pixel Value Color Displayed 

1 Cyan 
2 Violet 
3 White 

Bit 2 of Mode Control register = 1 
Pixel Value Color Displayed 

1 Cyan 
2, Red 
3 White 

Figure 4-9. Palettes available in CGA 320-by-200 4-color mode. 
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; cyan-red-white 

mov 

mov 

mov 

Ox 

mov 

out 

mov 

ax, 40h 

es,ax 

al,es: [65h] 

al,00000100b 

dx, 3D8h 

dx,al 

es: [65h],al , 

ES := Video BIOS data segment 

AL := CRT_MODE_ SET 

AL bit'2 2= 71 

DX := Mode Control I/O port 

update Mode Control register 

update CRT MODE SET 

; green-red-yellow or cyan-violet-white 

mov 

mov 

mov 

and 

mov 

out 

mov 

mov 

and 

or 

slg gyes 

out 

mov 

ax, 40h 

es,ax 

al,es: [65h] 

al U1 Ot te 

dx, 3D8h 

dx,al 

es: [65h],al 

al,es: [66h] 

aa Oe: tibhe 

al,PaletteSelect; 

ax 

ax, al 

es: [66h],al 

, 

, 

ES := Video BIOS data segment 

; AL := CRT_MODE SET 

AL bit 2 := 0 

DX := Mode Control I/O port 

update Mode Control register 

update CRT MODE SET 

AL” := CRE PALETTE 

AL bie 5 4=)0 

00000000b for green-red-yellow 

00100000b for cyan-violet-white 

DX := Color Select I/O port 

update Color Select register 

update CRT_PALETTE 

Listing 4-7. Four-color palettes in CGA 320-by-200 4-color mode. 

You can use INT 10H functions to select among the three 4-color palettes. The 

video BIOS assigns two video mode numbers to 320-by-200 4-color graphics 

mode: In BIOS mode 4, bit 2 of the Mode Control register is 0, and in mode 5, bit 2 

is set to 1. Thus, to select the cyan-red-white palette, use INT 10H function 0 to set 

mode 5. To select the other two palettes, use INT 10H function 0 to set mode 4, and 

then call INT 10H function OBH to choose either green-red-yellow or cyan-violet- 

white, as shown in Listing 4-8. 

; Cyan-red-white 

mov ax,0005 , AH := 0 (INT 10H function number) 

7 AL := 5 (320x200 4-color mode, 

; disabled) 

ont 10h 

* green-red-yellow or cyan-violet-white 

color burst 

mov ax,0004 + AH := 0 (INT 10H function number) 

7; AL := 4 (320x200 4-color mode, color burst 

; enabled) 

int 10h 

mov ah, OBh + AH := INT 10H function number 

mov bh, 1 

mov bl,PaletteID + 0 for green-red-yellow 

+ 1 for cyan-violet-white 
int 10h 

Listing 4-8. Four-color palettes in CGA 320-by-200 4-color mode using video BIOS. 
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You can select high-intensity colors in the 320-by-200 4-color palette by setting bit 
4 of the Color Select register to 1. When this bit is 0, the same four colors are dis- 
played with normal intensity. 

Hercules Graphics Card 

Life is easy with an HGC as far as graphics attributes are concerned. In the 
720-by-348 monochrome graphics mode on the HGC and HGC+, one bit represents 
each pixel. If the bit is set to 1, the pixel is displayed. If the bit is set to 0, the pixel 
is not displayed. 

Enhanced Graphics Adapter 

Although the EGA supports a number of graphics modes with pixel values rang- 

ing from 1 to 4 bits, it decodes pixel values in a straightforward manner. As in 

alphanumeric modes, each pixel’s value is masked by the value in the Attribute 

Controller’s Color Plane Enable register; the resulting 4-bit value selects one of 

the Attribute Controller’s 16 palette registers. Thus, a pixel’s displayed attribute 

is derived from the palette register that corresponds to the pixel value. 

When you use INT 10H function 0 to select an EGA video mode, the BIOS routine 

loads a default set of color values into the palette registers (see Figure 4-10). The 

actual values depend on the video mode, but each set maps the palette registers so 

that the color displayed for a given pixel value is the same as a CGA would dis- 

play. Using this function improves the portability of programs between the CGA 

and the EGA, since a program that never touches the palette registers can run with 

the same set of colors on both adapters. 

The BIOS default palette register values for 320-by-200 and 640-by-200 

16-color modes are correct for 200-line monitors but incorrect for 

some EGA-compatible monitors. IBM’s Enhanced Color Display con- 

verts the 4-bit default color values in 200-line graphics modes (see 

Figure 4-10) to 6-bit color values that emulate the 16 CGA colors. Un- 

fortunately, not all EGA-compatible monitors do this. Thus, if you use 

INT 10H function 0 to invoke these modes (mode numbers ODH and’ 

OEH), you generally should program the palette registers with an ap- 

propriate set of values, such as the default set used in 640-by-350 

16-color mode. 

CGA Emulation Modes 

In 640-by-200 2-color mode, when bit 3 of the Attribute Controller Mode Control 

register (10H) is 0, a pixel value of 0 designates palette register 0, and a pixel value 

of 1 designates palette register 1. When Mode Control bit 3 is 1, palette registers 8 

and 9 are used. With a CGA-compatible display, these four palette registers can 

contain any of the 16 displayable color values. With an EGA-compatible 350-line 

monitor, these registers can contain any four of the 64 displayable color values. 
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350-Line 16-Color Modes 
Palette Register 

00H 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
0CH 
ODH 
OEH 
OFH 

Color Value 

00H 
01H 
02H 
03H 
04H 
05H 
14H 
07H 
38H 
39H 
3AH 
3BH 
3CH 
3DH 
3EH 
3FH 

200-Line 16-Color Modes 
Palette Register 

00H 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
08H 
09H 
OAH 
OBH 
0CH 
0DH 
OEH 
OFH 

Color Value 

00H 
01H 
02H 
03H 
04H 
05H 
06H 
07H 
10H 
11H 
12H 
13H 
14H 
15H 
16H 
17H 

Attribute 

Black 
Mid-intensity blue 
Mid-intensity green 
Mid-intensity cyan 
Mid-intensity red 
Mid-intensity violet 
Brown 
Mid-intensity white 
Low-intensity white (gray) 
High-intensity blue 
High-intensity green 
High-intensity cyan 
High-intensity red 
High-intensity violet 
High-intensity yellow 
High-intensity white 

Attribute 

Black 
Blue 
Green 
Cyan 
Red 
Violet 
Yellow (brown) 

White 
Black (gray) 

High-intensity blue 
High-intensity green 
High-intensity cyan 
High-intensity red 
High-intensity violet 
High-intensity yellow 
High-intensity white 

640-by-350 Monochrome Graphics 
Palette Register Color Value Attribute 

00H 00H Not displayed 
01H 08H Normal intensity 
04H 18H High intensity 
05H 18H High intensity 
08H 00H Not displayed 
09H 08H Normal 
0CH 00H Not displayed 
ODH 18H High intensity 

ee SSSSSSSSSSsSsSSsSsSsSsSs— 

Figure 4-10. Default EGA and VGA palette register values. 
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In 320-by-200 4-color mode, each of the four possible pixel values (0 through 3) 
designates a corresponding palette register. When bit 3 in the Attribute Controller 
Mode Control register is 0, palette registers 0-3 are used; when bit 3 is 1, palette 
registers 8—OBH are used. With a CGA-compatible monitor, you can store any 
eight of the 16 displayable color values in these palette registers. With an EGA- 
compatible monitor, you can use any eight of the 64 displayable color values in 
these registers. 

In both CGA emulation modes, the video BIOS initializes the palette registers with 
default color values that match the colors in the CGA hardware palettes. In 640- 
by-200 2-color mode, the default colors are black, white, and intense white. In 
320-by-200 4-color modes, the BIOS supports the green-red-yellow and cyan- 
violet-white palettes in normal and high intensities. 

16-Color Modes 
In 320-by-200, 640-by-200, and 640-by-350 16-color modes, each 4-bit pixel value 
designates one of the 16 palette registers. For a CGA-compatible monitor, the 

palette registers can contain the usual 16 colors, but with an EGA-compatible 

monitor, you can specify any of the 64 displayable colors in each palette register. 

Monochrome Graphics 

There are two bits per pixel in the EGA’s 640-by-350 monochrome graphics mode, 

so pixel values can range from 0 through 3. However, this graphics mode uses 

only even-numbered bit planes, so the EGA’s Attribute Controller interprets only 

the even-numbered bits of the usual 4-bit pixel value. Thus, bits 0 and 1 of a 2-bit 

monochrome pixel value designate bits 0 and 2 of the corresponding 4-bit palette 

register number. (Bits 1 and 3 of the palette register number are always 0.) Thus, 

the four possible pixel values—0, 1, 2, and 3—actually reference palette registers 

0, 1, 4, and 5 respectively (see Figure 4-11). 

Pixel Value Corresponding Palette Register 

0 (OOB) 0 (OO00B) 
1 (01B) 1 (0001B) 
2 (10B) 4 (0100B) 
3 (11B) 5 (0101B) 

Figure 4-11. Pixel values and palette registers in 640-by-350 monochrome graphics. 

On EGAs with only 64 KB of video RAM, the odd bit planes represent 

pixels at odd buffer addresses, and the even bit planes represent pixels 

at even buffer addresses (see Figure 4-5). In this situation, pixel values 

in 640-by-350 monochrome and 640-by-350 4-color graphics modes are 

two bits in size, but bits 0 and 2 are used for pixels at even byte ad- 

dresses, while bits 1 and 3 are used for pixels at odd byte addresses. 
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Monochrome pixels can be undisplayed (palette register value 0), can be dis- 

played with normal intensity (08H), or can be displayed with high intensity (18H). 

INT 10H function 00H loads the palette registers with a default set of monochrome 

values whenever you select video mode OFH (see Figure 4-11). 

Blinking 

In native graphics modes on the EGA (as well as on the VGA), pixels can have a 

blinking attribute. As in alphanumeric modes, you select blinking by setting the 

Enable Blink bit of the Attribute Controller’s Mode Control register (bit 3 of 

register 10H at port 3COH) to 1. In 16-color modes, this causes the adapter to inter- 

pret the high-order bit (bit 3) of each 4-bit pixel value as a blink attribute, in the 

same way the high-order bit of a character’s attribute byte is used in alphanumeric 

modes. Thus, when the Enable Blink bit is set, pixels with values 8 through OFH 

blink, and pixels with values 0 through 7 do not. In monochrome graphics mode, 

all pixels blink regardless of their value. 

However, the EGA blinks pixels differently in graphics modes than it blinks char- 

acters in alphanumeric modes. In graphics modes, pixels are blinked by alter- 

nately selecting two different palette registers for each pixel’s value. The two 

registers are designated by turning bit 3 of the pixel value on and off at the blink 

rate (about twice per second). Thus, pixels are blinked by alternating the values in 

the first eight palette registers (registers 00H through 07H) with the values in the 

second eight (08H through OFH). 

For example, a pixel with a value of 0AH is blinked by repeatedly changing the 

value of bit 3 whenever the Enable Blink bit is set. Thus, the pixel’s color alter- 

nates between that designated by palette register OAH (1010B) and that in palette 

register 02H (0010B). If you use the set of BIOS default palette registers, this pixel 

blinks between green and high-intensity green. 

A peculiarity of the EGA’s blinking attribute in color graphics modes is what 

happens to pixels with values from 0 through 7; that is, where bit 3 of the pixel 

value is 0. These pixels do not blink, but they are displayed as if bit 3 were 1. For 

example, if you use the BIOS default palette values, pixels displayed at lower in- 

tensity (pixel values 0 through 7) become nonblinking pixels displayed at high 

intensity using palette registers 08H through OFH. 

Thus, in using the blinking attribute in graphics modes, you should reprogram the 

palette registers each time you change the Enable Blink bit, to maintain a consis- 

tent set of colors. For example, the palette register values shown in Figure 4-12 

might be useful in this context. This palette is designed for use as an alternative 
to the default BIOS palette (see Figure 4-10) when blinking is enabled. If this 
palette is used with the Enable Blink bit set to 1, all high-intensity pixels (pixel 
values 08H through OFH) blink, but all normal-intensity pixels do not. 

Border Color 

As in alphanumeric modes, you can set the overscan (border) color by storing a 
color value in the Attribute Controller’s Overscan Color register (register 11H, 
port 3COH). Techniques for setting the border color are covered in Chapter 3. 
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Palette Register Color Value Attribute 

00H 00H Black (background) 
01H 39H 
02H 3AH 
03H 3BH 
04H 3CH (high-intensity colors) 
OSH 3DH 
06H 3EH 
07H 3FH 
08H 00H Black (background) 
09H 01H 
OAH 02H 
OBH 03H 
OCH 04H (mid-intensity colors) 
0DH OSH 
OEH 14H 
OFH 07H 

Figure 4-12. Palette register values for blinking in 640-by-350 16-color mode. 

Hercules InColor Card 

On the InColor Card, the value of bit 4 of the Exception register (17H) determines 

whether the palette registers are used to decode pixel values, just as it does in al- 

phanumeric modes. When this bit is set to 1, each 4-bit pixel value specifies a 

palette register, and the 6-bit color value in the palette register determines the dis- 

played color of the pixel. 

Setting Exception register bit 4 to 0 bypasses the palette registers. Each 4-bit pixel 

value is extended to 6 bits by replicating the high-order bit, and the new value de- 

termines the color. This procedure, called sign extension, in effect causes the 

high-order bit of a pixel value to act as an “‘intensity’’ bit, similar to the way 

alphanumeric attributes are decoded. 

MCGA 

The MCGA emulates both of the CGA’s graphics modes and adds two of its own, a 

640-by-480 2-color mode and a 320-by-200 256-color mode. The 256-color mode is 

the only MCGA video mode that uses the video Digital to Analog Converter (DAC) 

to full advantage. 

2-Color Graphics Modes 

Pixel attributes in 640-by-200 and 640-by-480 2-color modes are directed through 

the video DAC registers. Pixels with the value 0 are always mapped through video 

DAC color register 0. Nonzero pixels also select a predesignated video DAC color 

register, but this is done in one of two ways, depending on the value of bit 2 of the 

Mode Control register at 3D8H. If bit 2 is 1, video DAC color register 7 is selected. 

If bit 2 is 0, bits 0 through 3 of the Color Select register (port 3D9H) designate a 

video DAC register. 
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On the MCGA, the background color in 2-color graphics modes is not necessarily 

black as it is on the CGA. Instead, both background and foreground can be any of 

the 256 K colors or the 64 gray-scale values that the MCGA can display. Use INT 

10H function 10H to set the appropriate video DAC color registers. 

When the video BIOS sets up 2-color graphics modes, it sets bit 2 of 

the Mode Control register to 0 and bits 0 through 3 of the Color Select 

register to 1111B (OFH). Since the first 16 video DAC color registers 

contain the 16 colors available on a CGA, this configuration emulates 

the default color configuration on a CGA in 640-by-200 2-color mode: 

Background pixels are displayed as black (the value in video DAC 

color register 0) and foreground pixels appear intense white (the value 

in video DAC color register OFH). 

4-Color Graphics Mode 
The MCGA faithfully emulates this CGA graphics mode. The major difference is 

that the MCGA maps the four available colors through the video DAC color regis- 

ters just as it does in 2-color graphics modes. Thus, all four colors can be selected 

from the 256 K possibilities that the video DAC offers. 

The MCGA combines bits 4 and 5 of the Color Select register (port 3D9H) with 

each pixel’s 2-bit value to create a 4-bit value that designates one of the first 16 

video DAC color registers (see Figure 4-13). The video BIOS initializes the video 

DAC color registers with CGA-compatible palettes. The colors are chosen so that 

3D9H Pixel Value 3D9H Video DAC 
Bit 4 Bit 5 Color Register 
(intensity) Bit 1 Bit 0 (palette) Number Default Color 

X 0 0 Xx 00H Black 

0 1 0 02H Green 
0 1 0 0 04H Red 
0 1 1 0 06H Brown 

1 0 1 0 OAH High-intensity green 
1 1 0 OCH High-intensity red 
1 1 1 0 OEH High-intensity yellow 

0 0 1 1 03H Cyan 
0 1 0 1 OSH Violet 
0 1 1 1 07H White 

1 0 1 1 OBH High-intensity cyan 
1 1 0 1 ODH High-intensity violet 
1 1 1 1 OFH High-intensity white 
Sipe Seep eters ae ate a gee ae tl gl 8 oe Se 
x = don’t care 

Figure 4-13. Pixel values and palettes in MCGA 320-by-200 4-color mode. 
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bit 5 of the Color Select register selects the green-red-yellow and cyan-violet- 

white palettes, and bit 4 toggles between normal- and high-intensity palettes, as 

they do on the CGA. Of course, you can establish completely arbitrary 4-color 

palettes by loading different color values into the video DAC color registers. 

256-Color Graphics Mode 
In 256-color mode, each pixel’s value designates one of the 256 video DAC color 

registers. To select a video DAC color register, a pixel’s value is combined (using 

CGA-compatible 
0-OFH default colors 

10-1FH gray scale 

High saturation 

20-67H Moderate saturation High intensity 

Low saturation 

High saturation 

68-AFH Moderate saturation Moderate intensity 

Low saturation 

High saturation 

Moderate saturation Low intensity BO-F7H 

Low saturation 

F8-FFH 

Figure 4-14. Default video DAC colors in 320-by-200 256-color mode (MCGA and VGA). 
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a logical AND) with the value in the video DAC Mask register (3C6H). The result- 

ing value selects a DAC color register (see Figure 4-6). Since you can store any of 

256 K color values in each video DAC color register, you can display a wide range 

of tones and intensities and create quite realistic video images. 

Normally, the video BIOS programs the video DAC registers with a default 
spectrum of color values (see Figure 4-14) when 320-by-200 256-color mode is 

selected. Registers 0 through OFH contain the default gamut of CGA-compatible 

colors. Registers 10H through 1FH contain a gray scale of gradually increasing 

intensity. The next 216 registers (20H through F7H) contain three groups of 72 

colors, with the first group (registers 20H through 67H) at high intensity, the sec- 

ond (registers 68H through AFH) at an intermediate intensity, and the third (regis- 

ters BOH through F7H) at low intensity. Each 72-color group is made up of three 

ranges of colors of decreasing saturation (increasing whiteness); each range varies 

smoothly in hue from blue to red to green. 

To disable or enable default video BIOS programming of the video 

DAC color registers, use INT 10H function 12H (see Appendix A). 

VGA 

As on the EGA, VGA pixel values are decoded by the Attribute Controller, using 
the palette registers, and then passed to the video DAC, following the same logic 
as in alphanumeric modes (see Chapter 3). Thus, a pixel value selects the corre- 
sponding palette register; the value in the palette register, along with the bit fields 
in the Attribute Controller’s Color Select register, selects one of the 256 video 
DAC color registers. The video DAC converts the 18-bit RGB value in its color 
registers to the corresponding analog RGB signals, which drive the monitor. 

The only exception to this scheme of attribute decoding occurs in 320-by-200 
256-color mode. In this mode, as on the MCGA, each 8-bit pixel value specifies 
one of the video DAC’s 256 color registers directly, without the Attribute Con- 
troller’s mediation. 
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Pixel Programming 

Bit-Plane Programming 

EGA and VGA @ InColor Card 

Reading a Pixel’s Value 

CGA @ HGC and HGC+ @ EGA 
InColor Card © MCGA @ VGA 

Setting a Pixel’s Value 
CGA @ HGC and HGC+ @ EGA 
InColor Card @ MCGA @ VGA 

& Filling the Video Buffer 
CGA @ HGC and HGC+ @ EGA and V 

InColor Card @ MCGA 



Many graphics programming techniques are based on routines that manipulate 

individual pixels in the video buffer. This chapter presents the fundamentals of 

pixel programming: reading a pixel’s value, setting the value of a pixel in the 

video buffer, and initializing an area of the video buffer with a pattern of pixels. 

Bit-Plane Programming 

There is a fundamental difference between graphics-mode programming using 

video subsystems whose video RAM is organized as parallel bit planes (the EGA, 

the VGA, and the InColor Card) and graphics-mode programming for the other 

IBM video subsystems. On the CGA, the MCGA, or the Hercules monochrome 

adapter, your program accesses pixels by directly reading and writing bytes in 

video RAM. In contrast, in native graphics modes on the EGA, VGA, or InColor 

Card, your program cannot access video RAM directly. Instead, special hardware 

logic in the video subsystem mediates accesses to pixels in the bit planes. 

The graphics-mode bit planes on the EGA, VGA, and InColor Cards are addressed 

in parallel; that is, when you execute a CPU read or write at a particular address in 

the video buffer, the address refers not to one byte, but to four bytes, one in each 

of the bit planes. 

When you execute an 80x86 instruction that attempts to read data from an address 

in the video buffer, four bytes of data are actually moved out of the buffer. The 

data does not go directly to the CPU, however. Instead, it is copied into a set of 

four 8-bit latches. Each latch is assigned to one of the four bit planes. Executing 

an 8-bit CPU read from an address in the video buffer thus has the effect of trans- 

ferring four bytes (32 bits) of data from the video buffer into the latches (see 

Figure 5-1a). Instructions such as MOV reg,mem, LODS, and CMP reg,mem 

require a CPU read, and thus cause the latches to be updated. 

Similarly, instructions such as MOV mem, reg, STOS, and XOR mem, reg cause 

a CPU write; in this case, all four bit planes can be updated in parallel using a 

combination of the data in the latches, the data byte that the CPU writes, and a 

predefined pixel value stored in a graphics control register (see Figure 5-1b). 

Some CPU instructions require both a CPU read and a CPU write. (The CPU reads 

a value from memory, performs an operation on it, and then writes the result back 

to memory.) MOVS is an obvious example, but OR mem, reg, AND mem, reg, 

and XOR mem, reg also generate a CPU read and write. When such an instruc- 

tion refers to an address in video RAM, the latches are updated during the CPU 

read, and then the bit planes are updated during the CPU write. 

The use of latches to process bit-plane data in parallel lets you write deceptively 

simple code. For example, consider the following fragment, which copies the 

second byte of pixels in the video buffer to the first byte. 
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KR ee a ae Ok 

8-bit CPU register 

4-bit pixel data 
(EGA, VGA: Set/Reset register) 

(InColor: Read/Write Color register) 

b. 

Figure 5-1. Graphics mode data flow on the EGA, the VGA, and the InColor Card during 

CPU (a.) read and (b.) write. 
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mov ax, VideoBufferSegment 

mov ds,ax 

mov es,ax 

mov Sa, | ; DS:SI -> second byte 

mov (o bre 10) 2 BSD — >) fest byte 

movsb 

This code looks straightforward. The MOVSB instruction apparently copies one 

byte from the memory location at DS:SI to the location at ES:DI— but this is not 

really what takes place in graphics modes that use bit planes in the EGA, VGA, or 

InColor video buffer. 

What actually happens is this: The MOVSB instruction causes a CPU read, fol- 

lowed by a CPU write. Because the CPU read references an address in the video 

buffer, a byte from each bit plane at that address is loaded into the latches. Then, 

because the CPU write references an address in the video buffer, the contents of 

the latches are copied into the bit planes at the specified address. Thus, the 

MOVSB actually causes four bytes of data to be moved instead of one. 

There is more to this example than meets the eye. Consider what 

would happen if you substituted a MOVSW instruction for the MOVSB. 

Without bit planes and latches, this would result in two bytes of data 

being copied instead of one byte. However, half of the pixel data 

would be lost on the EGA, the VGA, or the InColor Card. The reason is 

that the MOVSW executes as a sequence of two 8-bit CPU reads, fol- 

lowed by two 8-bit CPU writes, so the second CPU read updates the 

latches before the bytes latched by the first CPU read can be written. 

For this reason, you should use 16-bit 80x86 instructions cautiously 

when accessing the video buffer on the EGA, the VGA, and the InColor 

Card. Instructions such as OR mem, reg, AND mem, reg, and 

XOR mem, reg do not work properly with 16-bit data. 

The latches clearly improve efficiency in moving data to and from the video 

buffer, but the real fun begins in transferring data between the latches and the 

CPU. Since the latches contain 32 bits of data and a CPU byte register contains 

only eight bits, some sort of data compression must take place during CPU reads. 

Conversely, in transferring data from the CPU to the bit planes, you can combine 

the 8-bit CPU data byte with the contents of all four latches in a number of ways. 

The key to graphics-mode programming on the EGA, the VGA, and the InColor 

Card is to exploit the data transformations involving the CPU and the latches. 

EGA and VGA 

On the EGA and VGA, the Graphics Controller manages all transfers of data 

among the CPU, the latches, and the video buffer. The EGA’s Graphics Controller 

consists of two LSI chips; the VGA’s is part of the Video Graphics Array chip. 

The Graphics Controller has nine registers addressable at port 3CFH via an 
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address register at port 3CEH. The values you store in the registers control the 
way the Graphics Controller processes latched data during CPU reads and writes. 

In a sense, the Graphics Controller lets you manipulate the latched pixel data two- 
dimensionally. Some of the operations you can perform on the latched data are 

byte-oriented; they affect each latch separately. Other operations are pixel- 
oriented in that they regard the latched data as a set of eight pixel values; these 
operations affect each pixel value separately. 

The Graphics Controller can perform three different byte-oriented operations on 

latched data. It can copy the contents of the latches to and from the video buffer; 

this action occurs implicitly when a CPU write or read is executed. It can return 

the contents of one of the latches to a CPU register during a CPU read. It can also 

combine a data byte from a CPU register with the bytes in any or all of the latches 

during a single CPU write. 

The Graphics Controller also processes latched data pixel by pixel. During a CPU 

read, the Graphics Controller can compare each latched pixel value with a pre- 

defined value and return the result of the comparison to the CPU. During CPU 

writes, it can combine a 4-bit CPU value with any or all pixel values in the 

latches; it can use an 8-bit CPU value as a mask that indicates which of the eight 

latched pixels are copied back to the bit planes; and it can combine the latched 

pixel values with a predefined 4-bit value. 

Both byte-oriented and pixel-oriented operations are programmed by selecting a 

write mode and a read mode. Each write mode sets up a predefined sequence of 

byte-oriented and pixel-oriented operations which occur when a CPU write is exe- 

cuted. Similarly, each read mode defines a set of actions performed during CPU 

reads. The EGA has three write modes and two read modes; the VGA has these 

five modes and one additional write mode. 

Until you become familiar with each of the Graphics Controller’s read and write 

modes, their raison d’ etre may seem a bit obscure. However, each mode has practi- 

cal advantages in certain programming situations, as the examples in this and 

subsequent chapters demonstrate. 

The Graphics Controller’s Mode register (05H) contains two bit fields whose 

values specify the graphics read and write mode. For example, to establish read 

mode 1 you would set bit 3 of the Mode register to 1; to set up write mode 2, you 

would store the value 2 (10B) in bits 0 and 1 of the Mode register (Listing 5-1). 

mov ax,0105h ; AH := 1 (reg 5 value) 

; bit 3 := 0 (read mode 0) 

; bits 0-1 := 1 (write mode 1) 

; AL := register number 

mov ax, 3CEh ; DX := Graphics Controller port 

out Gx, ax 

Listing 5-1. How to set Graphics Controller read and write modes. This example sets read 

mode 0 and write mode 1 in in 640-by-350 16-color mode. 
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The video BIOS default values for the Graphics Controller’s Mode 

register and its other registers are listed in Figure 5-2. It is good prac- 
tice to restore the Graphics Controller registers to their default values 

after you modify them in your program. 

Register Function Value 

0 Set/Reset 0 
1 Enable Set/Reset 0 
2 Color Compare 0 
3 Data Rotate 0 
4 Read Map Select 0 
5 Mode Bits O—3 always 0 
6 Miscellaneous (depends on video mode) 

7 Color Don’t Care OFH (16-color modes) 
01H (640-by-480 2-color mode) 

8 Bit Mask FFH 

Figure 5-2. Default ROM BIOS values for EGA and VGA Graphics Controller registers. 

Read mode 0 

In graphics read mode 0, the Graphics Controller returns the contents of one of 

the four latches to the CPU each time a CPU read loads the latches (see Figure 5-3). 

The value in the Read Map Select register (04H) indicates which latch to read. 

Read mode 0 thus lets you read bytes from each individual bit plane; this is useful 

in transferring data between the bit planes and system RAM or a disk file. 

Read Map Select register 

ex Oxtix xx 7020 

ee = = = = =- = = = = 
== 

CPU data 

Ls OSL Oriy 120 

Figure 5-3. EGA and VGA graphics read mode 0. 

Read Mode 1 
In graphics read mode 1, each of the eight pixel values latched during a CPU read 
is compared with the value in the Color Compare register (02H). The result of the 
comparison is returned to the CPU as a single byte (see Figure 5-4). Where a pixel 
value matches the Color Compare value, a bit in the CPU data byte is set to 1; 
where the values are different, the corresponding bit in the data byte is 0. 
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Note how the value in the Color Don’t Care register (07H) interacts with the pixel 
value and Color Compare value. In effect, setting a bit to 0 in the Color Don’t 
Care value excludes a latch from the comparison. For example, a Color Don’t 
Care value of 0111B causes only the three low-order bits of each pixel value to 
participate in the comparison. Another example: If you store a 0 in the Color 
Don’t Care register, all four bits in the comparison become ‘‘don’t care’’ bits, so 
all pixel values match the Color Compare value, and the CPU always reads the 
value 11111111B in read mode 1. 

latches 

bit planes 
P Color Don't Care register 

UL) 

pixel values 1011 1100 0011 0101 0010 0011 1101 1010 

AND with 

Color Don't Care 

101 1100 0011 0101 0010 0011 1101 1010 
COMPARE with 
(Color Compare AND 
Color Don't Care) 

00100100 
CPU data byte Color Compare register 

Figure 5-4. EGA and VGA graphics read mode 1. 

Write mode 0 

Graphics write mode 0 sets up a combination of byte-oriented and pixel-oriented 

operations that occur when a CPU write is executed. The data byte written by the 

CPU can be used to update any or all of the bit planes; at the same time, a pre- 

defined pixel value can be used to update any or all of the eight pixels involved. 

This two-dimensional update of the latches is controlled in several different ways 

using the values in the Enable Set/Reset, Data Rotate/Function Select, and Bit 

Mask registers (see Figure 5-5). 

The Bit Mask register (08H) specifies how the new value of each of the eight pix- 

els in the video buffer is derived. Where a bit in the Bit Mask register equals 0, the 

corresponding pixel value is copied directly from the latches into the video 

buffer. For each 1 bit in the Bit Mask value, the corresponding pixel is updated 

with the latched pixel value combined with either the CPU data or the pixel value 

in the Set/Reset register. Thus, if a CPU write immediately follows a CPU read at 
the same address, the only pixels updated are those for which the corresponding 

bit in the Bit Mask register is set to 1. 
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Data Rotate/Function Select register 

xe ORO SRK eX 

replace, AND, OR, XOR | 

latches 

bit 
planes 

(—— pee er eee lak 

Set/Reset register|_ x_x_x x 0 1 1 COC Crit 
Ne hae ie ae eat aa Bit Mask register 
Lpeedmalerilmnt som . veg (Pixels 0-3 are derived 
x xxxi1i1i1d1 from Set/Reset; 

‘ pixels 4-7 are copied Enable Set/Reset register fran Watches} 

a. 

latches 

bit 
planes 

! 00010111 Bit Mask register 
(Pixels 0-3 are derived 

Rotate from CPU data; 
ihe the Aaa govt pixels 4-7 are copied 

aoa from latches.) 

x x x 00000 

Data Rotate/Function CPU data byte 
Select register 

b. 

Figure 5-5. EGA and VGA graphics write mode 0: (a.) Enable Set/Reset Value = 111 IB, 
(b.) Enable Set/Reset value = OOOOB. 
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The Data Rotate/Function Select register (03H) contains two bit fields whose con- 

tents affect the way the latched pixels are updated. Bits 3 through 4 are important 
because their value specifies which bitwise logical operation (AND, OR, XOR, or 
replace) is used to update the pixels (see Figure 5-6). Bits 0 through 2 specify the 

number of bits by which to right-rotate the CPU data byte before combining it 
with latched data. 

Bit Value Function 
Bit 4 Bit 3 

0 0 Replace 
0 1 AND 
1 0 OR 
1 1 XOR 

Figure 5-6. Functions available for updating pixels in EGA and VGA write modes 0, 2, and 
3. Bits 3 and 4 of the Data Rotate/Function Select register specify which is used. 

This data-rotate capability is not particularly useful. In practice, it is 

generally easier to let the CPU rotate and shift data before writing it to 

the bit planes than it is to program the Graphics Controller to do this. 

The value in the Enable Set/Reset register (register 01H) determines whether the 

bit planes are updated byte by byte or pixel by pixel. When the Enable Set/Reset 

value is OFH (1111B), each pixel is updated by combining the latched pixel value 

with the value in the Set/Reset register (register 00H) using the logical operation 

that the Data Rotate/Function Select register specifies (refer to Figure 5-Sa). 

When the Enable Set/Reset value is 0, the rotated CPU data byte is combined with 

the bytes in each of the latches, again using the function that the Data Rotate/ 

Function Select register specifies (see Figure 5-5b). In either case, only the pixels 

masked by the Bit Mask register are updated. 

Of course, you can set the Enable Set/Reset register to any value from 

0 through OFH. Each bit in each pixel is then updated by combining it 

either with the corresponding bit in the Set/Reset register or with the 

corresponding bit in the CPU data byte—depending on the value of 

the corresponding bit in the Enable Set/Reset register. Needless to say, 

this kind of programming is tricky and infrequently used. 

Write mode 1 

In write mode 1, the latches are copied directly to the bit planes when a CPU write 

occurs (see Figure 5-7). Neither the value of the CPU data byte nor those of the 

Data Rotate/Function Select, the Bit Mask, the Set/Reset, and the Enable Set/Reset 

registers affect this process. Clearly, for a write mode 1 operation to make sense, 

you must first perform a CPU read to initialize the latches. 
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latches 

Figure 5-7. EGA and VGA graphics write mode 1. 

bit planes 

Write mode 2 

In write mode 2, the low-order bits of the byte written by the CPU play the same 

role as the Set/Reset register value in write mode 0. That is, the bit planes are up- 

dated by combining the pixel values in the latches with the CPU data, using the 

logical operation specified in the Data Rotate/Function Select register (see 

Figure 5-8). As in write mode 0, the Bit Mask register specifies which pixels are 

updated using the combined pixel values and which pixels are updated directly 

from the latches. 

Data Rotate/Function Select register 

replace, AND, OR, XOR 

latches 

110000990 

| 

ONO OC Tek oe af 

B 

| 

0 

it Mask register CPU data 

Figure 5-8. EGA and VGA graphics write mode 2. 

Write mode 3 
In write mode 3 (supported on the VGA only), the pixels are updated by combin- 

ing the pixel values in the latches with the value in the Set/Reset register. Again, 

the Data Rotate/Function Select register specifies the logical operation used to 

combine the values. The CPU data byte is rotated by the number of bits indicated 

in the Data Rotate/Function Select register and combined with the value in the Bit 
Mask register using a logical AND. The resulting bit mask then plays the same 

role as the Bit Mask register value in write modes 0 and 2; that is, it determines 

which pixels in the bit planes are updated by combining the latched pixel values 

with the Set/Reset value, and which are updated directly from the latches (see 
Figure 5-9). 
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Enable Set/ 
Reset register LX_X_X xX 1 1 1 1 

Set/Reset 
register 

110000 

bit 
planes 

replace, AND, 

OR, XOR 

— 
LE LRNH LO ONILO fi[O40 eI T1000 

Data Rotate/Function Select CPU data 

register 

Figure 5-9. VGA graphics write mode 3. 

Sequencer Map Mask 
One additional level of control is available in all of the EGA’s and the VGA’s 

Graphics Controller write modes. You can use the Sequencer Map Mask register 

(Sequencer register 02H) to selectively enable or disable data transfers to the bit 

planes. In 16-color graphics modes, bits 0 through 3 of this register are normally 

set to 1 to allow graphics writes to access all four maps. However, by zeroing one 

or more of these bits, you can write-protect the corresponding memory maps. 

The Sequencer Map Mask register is not often used, because the Graphics 

Controller provides better control for pixel-oriented operations. Use of this regis- 

ter is better suited to techniques such as bit-plane layering (see Chapter 12). 

InColor Card 

The InColor Card has two gate arrays, the Encoder and the Decoder, which medi- 

ate CPU accesses to video RAM. The Encoder gate array participates in CPU 

writes to video RAM. The Decoder gate array manages the transfer of data from 

video RAM to the CPU, as well as to the card’s attribute-decoding circuitry. 
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The programming interface to the InColor Card’s graphics-mode hardware, in- 

cluding the Encoder and Decoder chips, is unified through the card’s control 

register set at I/O ports 3B4H and 3BS5H (see Figure 5-10). There is no distinction 

between the Encoder, the Decoder, and their associated circuitry from a software 

point of view. The InColor Card’s graphics-mode control registers are similar to 

control registers on the EGA and the VGA (see Figure 5-11). 

a 

Register Number Register Function Read/Write Status 

18H Plane Mask register Write only 
19H Read/Write Control register Write only 
1AH Read/Write Color register Write only 
1BH Latch Protect register Write only 

Figure 5-10. Graphics control registers on the Hercules InColor Card. 

InColor EGA and VGA 

Plane Mask register Sequencer Map Mask register 
Attribute Controller Color Plane 

Enable register 
Read/Write Control register Graphics Controller Mode register 

Graphics Controller Color Don’t Care 
register 

Read/Write Color register Graphics Controller Set/Reset register 
Palette register Attribute Controller Palette registers 

Figure 5-11. Functionally similar control registers on the EGA, VGA, and InColor Card. 

As on the EGA and VGA, video RAM accesses in graphics mode are performed 
using a set of four 8-bit latches. CPU reads and writes cause bytes to be trans- 
ferred in parallel between the latches and the corresponding bit planes. When a 
CPU read is executed, the Decoder latches a byte from each bit plane and returns a 
single byte of data to the CPU. When a CPU write is executed, the Encoder com- 
bines the latched data with the pixel values stored in the Read/Write Color regis- 
ter and updates the bit planes with the result. 

Like the EGA and VGA, the InColor Card can process CPU data and latched data 
in several ways. The card supports four graphics write modes (see Figure 5-12), 

Write Mode CPU Data Bit = 0 CPU Data Bit = 1 

0 Background value Foreground value 
1 Latch Foreground value 
2 Background value Latch 
3 NOT latch Latch 

eee 

Figure 5-12. Source of pixel data in InColor graphics write modes. 
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selected by bits 4 and 5 of the Read/Write Control register (19H). There is only 

one graphics read mode, which is similar to read mode 1 on the EGA and VGA. 

Write modes 0-3 

In all four InColor graphics write modes, the CPU data functions as an 8-bit mask. 

The Encoder uses the value of each bit in the mask to determine how to update the 

corresponding pixel value in the latches. That is, the source of the pixel value at a 

particular bit position is determined by the value of the corresponding bit in the 

CPU data byte. 

For example, in graphics write mode 1, when a bit in the CPU data byte is 1, the 

corresponding pixel in the video buffer is replaced with the foreground value in 
the Read/Write Control register; when a bit in the CPU data byte is 0, the corre- 

sponding pixel value is copied from the latches. For example, in Figure 5-13, the 

pixels corresponding to bits 0 through 3 are replaced with the Read/Write Control 

register foreground value, while the remaining pixels are updated from the pixel 

values in the latches. 

Similarly, in the other three graphics write modes, the value of each bit in the 

CPU data byte controls how the corresponding pixel is updated. The write modes 

differ only in how the pixel values are derived (see Figure 5-12). In write mode 0, 

either the foreground or the background value in the Read/Write Control register 

replaces the pixels in the bit planes. In write mode 2, for each 0 bit in the CPU 

data byte, the Read/Write Control register background value is used to update the 

corresponding pixel in the bit planes. In write mode 3, each 0 bit in the CPU data 
byte causes the corresponding pixel in the video buffer to be replaced with the bit- 

wise NOT of the pixel value in the latches. 

Plane Mask register 

Oc OP OPOPKTXE xX? x 

latches 

Read/Write Color CPU data 

register (Pixels 0-3 copied from foreground value 
in R/W Color register; 

pixels 4-7 copied from latches.) 

Figure 5-13. InColor graphics write mode 1. 
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CPU writes affect only those bit planes specified in the Plane Mask register (18H). 

This register’s function is thus analogous to that of the EGA’s Sequencer Map 

Mask register. Bits 4 through 7 of this register control which of the four bit planes 

are writable; setting any of these bits to 1 prevents updating of the corresponding 

bit planes during CPU writes. 

Read mode 
The InColor Card has only one graphics read mode (see Figure 5-14). It resembles 

read mode 1 on the EGA and the VGA. When a CPU read is executed, the latches 

are loaded with data from the bit planes. Unlike the EGA and the VGA, however, 

the InColor Card lets you control which individual pixel values are latched during 

a CPU read. The bit mask value in the Latch Protect register (1BH) indicates 

which pixel values are latched. Where a bit in the Latch Protect register is 0, the 

corresponding pixel value is latched; where a bit is 1, the corresponding pixel 

value in the latch remains unchanged. 

000 0 0 0 0 O | Latch Protect register 

——>1 15700511 

bit ——>| 0 1:50 10910 
Planes ____»/7 91501401 

10110710 Read/Write 

Control register 

xe 1) SixeOsT0 TOKO 

Read/Write 
Color register 

rr 
Ne-----.------- 

pixel values 1011 1100 0011 0101 0010 0011 1101 1010 

OR with 
Don't Care value 

1011 1100 0011 0101 0010 0011 1101 1010 
COMPARE with 
(background value PQ scerss eee certeenee! 
OR Don't Care value) 

0-0=1--0-0-1 0.0 

XOR with 
Mask Polarity bit 

CPU data 
11611611 

Figure 5-14. InColor graphics read. 

After the specified pixel values in the latches have been updated from the bit 
planes, the Decoder compares each pixel value in the latches with the background 
value in the Read/Write Color register. The 8-bit result of the comparison is 
returned to the CPU. This is similar to read mode 1 on the EGA and the VGA. 
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Bits 0 through 3 of the Read/Write Control register are ‘‘don’t care’’ bits 

analogous to the Color Don’t Care value on the EGA and the VGA. Setting a Read/ 

Write Control ‘‘don’t care’’ bit to 1 has the effect of excluding a latch from the 

background value compare operation. If you set all four ‘‘don’t care’’ bits to 1, all 

pixel values match the background value no matter what it is. 

The polarity of the bits in the result returned to the CPU depends upon the value 

of the Mask Polarity bit (bit 6 of the Read/Write Control register). When this bit 

is 0, bits in the result are 1 where a pixel value in the latches matches the back- 

ground value. Setting the Mask Polarity bit to 1 inverts the result; that is, bits are 

1 where a pixel value in the latches does not match the background value. 

Reading a Pixel’s Value 
Now it is time to turn to some specific programming techniques for manipulating 
pixels on the various PC and PS/2 video subsystems. Once you calculate the byte 

and bit offsets of a particular pixel in the video buffer, determining the pixel’s 
value is a matter of isolating the bits that represent it in the buffer. This is as true 

on the CGA and HGC, with their simpler video RAM architecture, as it is on more 

complicated video subsystems that use bit planes. 

CGA 

In 640-by-200 2-color mode, the value of a pixel is determined simply by reading 

the byte that contains the pixel from the video buffer and testing the value of the 

bit that represents the pixel (see Listing 5-2). 

TITLE ‘TListang o-2. 

NAME ReadPixel06 

PAGE 55,132 

Name: ReadPixel06 

Function: Read the value of a pixel in 640x200 2-color mode 

Caller: Microsoft C: 

int ReadPixel06(x,y); 

Ne Ne Ne Ne Ne Se Ne Ne Ne Se Ne 

int 7 V5 /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpt6é] 

TEXT SEGMENT byte public 'CODE' 
ASSUME cs: _TEXT 

EXTRN PixelAddr06:near 

Listing 5-2. Determining a pixel value in CGA 640-by-200 2-color mode. (continued) 
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Listing 5-2. Continued. 

PUBLIC 

_ReadPixel106 PROC 

push 

mov 

mov 

mov 

call 

mov 

shr 

and 

xor 

mov 

pop 
ret 

_ReadPixel06 ENDP 

_TEXT ENDS 

END 

_ReadPixel06 

near 

bp ; preserve caller registers 

bp, sp 

ax, ARGy pes yy 
bx, ARGx 3 BX s=)x 

PixelAddr06 ; AH := bit mask 

; ES:BX -> buffer 

7 CL “2=cF bits, to shure 

al,es: [bx] ; AL := byte containing pixel 

al,cl ; shift pixel value to low-order bits 

al,ah ; AL := pixel value 

ah,ah ; AX := pixel value 

sp,bp ; restore caller registers and return 

bp 

The technique for determining the value of a pixel in 320-by-200 4-color graphics 

mode, as shown in Listing 5-3, is similar. After isolating the bits that represent the 

pixel, however, your program must shift them rightward so that the value 
returned represents the actual pixel value. 

TITLE "Listing 5-3! 
NAME ReadPixel04 

PAGE S52 

; Name: ReadPixel04 

7; Function: Read the value of a pixel in 320x200 4-color mode 

; Caller: Mrerosore Gr 

: int ReadPixel04 (x,y); 

; divi: soe Vi /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 
ARGy EQU word ptr [bp+6] 

_ TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

EXTRN PixelAddr04:near 

Listing 5-3. Determining a pixel value in CGA 320-by-200 4-color mode. (continued) 
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Listing 5-3. Continued. 

PUBLIC _ReadPixel04 

_ReadPixel04 PROC near 

push bp ; preserve caller registers 
MOv bp, sp 

Mov ax, ARGy 7; AX := y 

mov bx, ARGx PBS se se 

call PixelAddr04 > AH := bit mask 

; ES:BX -> buffer 

7 Cli = # bits to shirt 

mov al,es: [bx] ; AL := byte containing pixel 

shr al,cl ; shift pixel value to low-order bits 

and al,ah ; AL := pixel value 

xor ah,ah ; AX := pixel value 

Mov sp, bp # restore caller registers and return 

pop bp 
Fret 

_ReadPixel04 ENDP 

_ TEXT ENDS 

END 

HGC and HGC+ 

The only difference between the pixel-read routines for the Hercules mono- 

chrome adapters and the ones used in the CGA’s 640-by-200 2-color mode lies in 

how the pixel’s address is computed. For example, you can adapt the CGA routine 

shown in Listing 5-2 for the HGC simply by substituting PixelAddrHGC for 

PixelAddr06. 

EGA 

In CGA-emulation modes, the routines used for the CGA work unchanged. 

However, in 16-color 200-line modes and in 350-line modes, you must program 

the Graphics Controller to isolate the bits that represent a pixel in the video 

buffer’s bit planes, as the routine in Listing 5-4 does. 

TITLE Wisting.5=4" 

NAME ReadPixel10 

PAGE So, se 

7 

; Name: ReadPixel10 

; Function: Read the value of a pixel in native EGA graphics modes 

7 Callens Mirerosoft C: 

, 

int ReadPixel10(x,y); , 

Listing 5-4. Determining a pixel value in native EGA graphics modes. (continued) 
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Listing 5-4. Continued. 

; mts eso V 5 /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpt+6] 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: _TEXT 

EXTRN PixelAddr10:near 

PUBLIC _ReadPixel10 

_ReadPixel10 PROC near 

push bp ; preserve caller registers 

mov bp, sp 
push si 

mov ax, ARGy 7; AX 3= y 

mov bx, ARGx ; BX 3= =x 

call PixelAddr10 ; AH := bit mask 

7 BS: BX => busier 

7 CL ¢= # bits; to shite 

mov ch,ah 

shl olny tent ; CH := bit mask in proper position 

mov si,bx ; ES:SI -> regen buffer byte 

xor bl,bl ; BL is used to accumulate the pixel value 

mov dx, 3CEh ; DX := Graphics Controller port 

mov ax, 304h ; AH := initial bit plane number 

; AL := Read Map Select register number 

L0O1: out dx, ax ; select bit plane 

mov bh,es: [si] ; BH := byte from current bit plane 

and bh, ch 7 mask one bit 

neg bh +; bit 7 of BH := 1 (if masked bit = 1) 

; bit 7 of BH := 0 (if masked bit = 0) 

rol bx, 1 ; bit 0 of BL := next bit from pixel value 

dec ah ; AH := next bit plane number 

jge L01 

mov al,bl ; AL := pixel value 

xor ah,ah ; AX := pixel value 

pop si 7 restore caller registers and return 

mov sp,bp 

pop bp 
ret 

_ReadPixel10 ENDP 

_ TEXT ENDS 

END 
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This routine uses the Graphics Controller’s read mode 0 to read a single byte from 

each of the EGA’s planes. As the bytes are read, the desired pixel’s bits are 

masked and concatenated to form the pixel’s value. 

In 640-by-350 monochrome graphics mode, only bit planes 0 and 2 are 

used to represent pixel values. In these modes, only bits from these 

two planes are concatenated to form a pixel value (see Listing 5-5). 

As described in Chapter 4, 640-by-350 graphics modes are mapped 

differently on an EGA with only 64 KB of video RAM than on an EGA 

with more memory. Memory maps 0 through 1 and 2 through 3 are 

chained to form two bit planes. Pixels at even byte addresses are 
represented in maps 0 and 2, while pixels at odd byte addresses are 
represented in maps 1 and 3. A routine to read pixel values in these 

modes must use the pixel’s byte address to determine which maps to 

read (see Listing 5-6). 

TITLE ihastang /5—9"" 

NAME ReadPixel0F 

PAGE 5S petaz 

; Name: ReadPixel0F 

; Function: Read the value of a pixel in 640x350 monochrome mode 

; Caller: Microsoft C: 

; int ReadPixel0F (x,y); 

; int Vy? /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bp+6] 

TEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT 

EXTRN PixelAddr10:near 

PUBLIC _ReadPixel0F 

_ReadPixel0F PROC near 

push bp j; preserve caller registers 

mov bp, sp 

push si 

mov ax, ARGy Fie es ny: 

mov bx, ARGx 7 EBk oe 

call PixelAddr10 ; AH := bit mask 

; ES:BX -> buffer 

CL 2= * bits to shrtt 

Listing 5-5. Determining a pixel value in EGA monochrome graphics mode. (continued) 
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Listing 5-5. Continued. 

’ concatenate bits from bit planes 2 and 0 

mov ch,ah 

shl chyel ; CH := bit mask in proper position 

mov si,bx ; ES:SI -> regen buffer byte 

mov dx, 3CEh ; DX := Graphics Controller port 

mov ax,204h ; AH := initial bit plane number 

; AL := Read Map Select register number 

xor bi bil ; BL is used to accumulate the pixel value 

LO1: out dx,ax ; (same as before) 

mov bh,es: [si] 

and bh, ch 

neg bh 

rol bx, 1 

sub ah, 2 ; decrement map number by 2 

jge L01 

mov al,bl 

xor ah,ah 

pop Si 

mov sp,bp 

pop bp 
ret 

_ReadPixel0F ENDP 

_TEXT ENDS 

END 

TITLE ‘Listing 5-6' 
NAME ReadPixel10 

PAGE S57 132 

; Name: ReadPixel10 

7 Function: Read the value of a pixel in 640x350 modes on 64K EGA 

7 Caller: Microsoft C: 

; aint ReadPixel10 (x,y); 

; anes, Vr /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bp+6] 

(continued) 

Listing 5-6. Determining a pixel value in 640-by-350 modes on an EGA with 64 KB. 
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Listing 5-6. Continued. 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

EXTRN PixelAddr10:near 

PUBLIC _ReadPixel10 
_ReadPixel10 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

push si 

mov ax, ARGy 7; AX 3=y 

mov bx, ARGx 7 BX 2= x 

call PixelAddr10 ; AH := bit mask 

7 BSSBX => butter 

7 CL V="*F bits to shite 

+ concatenate bits from bit planes 2 and 0 (even byte address) 

7 or 3 and 1 (odd byte address) 

mov ch,ah 

shl ch,cl ; CH := bit mask in proper position 

mov S270 ; ES:SI -> regen buffer byte 

Mov ah,bl ; AH := low-order byte of address 

and ax,100h ; AH := low-order bit of address 

; AL := 0 

add ax,204h ; AH := initial bit plane number (2 or 3) 

; AL := Read Map Select register number 

mov dx, 3CEh ; DX := Graphics Controller port 

xor bl,bl ; BL is used to accumulate the pixel value 

LO1: out dx,ax ; (same as before) 

mov bh,es: [si] 

and baycm 

neg bh 

rol bx, | 

sub ah, 2 

jge L01 

mov al,bl 

xor ah,ah 

pop si 

mov sp, bp 

pop bp 
ret 

_ReadPixel10 ENDP 

_ TEXT ENDS 

END 
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InColor Card 

As with the EGA, to read a pixel’s value on the InColor Card requires reading 

each bit plane separately. To do this, you must use the “‘don’t care’’ bits in the 

Read/Write Control register along with the background value in the Read/Write 

Color register to isolate the contents of each latch. 

The routine in Listing 5-7 accumulates a pixel’s 4-bit value by concatenating one 
bit from each of the InColor card’s four bit planes. The routine determines the 

contents of each of the bit planes by setting the background value in the Read/ 
Write Color register to OFH (1111B) and by individually zeroing each Read/Write 

Control register “‘don’t care’’ bit. When each CPU read is executed (with the AND 

CH, ES: [SI] instruction), the value returned to the CPU is thus the 8-bit value in 

one of the four latches. This value is ANDed with the bit mask in CH, and the iso- 
lated bits are accumulated in BL. 

TITLE "Listing 5-7' 

NAME ReadPixelInc 

PAGE 557 ls2 

’ 

; Name: ReadPixelInc 

; Function: Read the value of a pixel in InColor 720x348 16-color mode 

+ Caller: Microsoft C: 

2 int ReadPixelInC (x,y) ; 

z int x,V; 

ARGx EQU word ptr [bp+4] ; stack frame addressing 
ARGy EQU word ptr [bp+6] 

DefaultRWColor EQU OFh ; default value for R/W Color Register 

BIE SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

EXTRN PixelAddrHGC:near 

PUBLIC —_ReadPixelInc 

_ReadPixelInc PROC near 

push bp * preserve caller registers 
mov bp, sp 

push si 

mMOv ax, ARGy ; AX := y 
mov bx, ARGx 7; BX 3= x 
call PixelAddrHGC + AH := bit mask 

+ ES:BX -> buffer 

: CL 3=> # bits to shaft 

Listing 5-7. Determining a pixel value in InColor graphics mode. (continued) 
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Listing 5-7. Continued. 

; set up to examine 

mov 

shl 

mov 

Mov 

mov 

out 

mov 

dec 

each bit plane separately 

si,bx 5 

ah,cl 

el ali ; 

dx, 3B4h ; 

ax, OFO1Ah fj 

ax, ax : 

bx, 800h iO 

ax ; 

; loop across bit planes by updating "don 

LO1: mov 

xor 

out 

mov 

and 

neg 

rel 

shr 

jnz 

ah,bh ; 

ah,1111b ; 

dx, ax 7 

eh,.cl ; 

ch,es: [sil] : 

ch ; 

bl,1 ; 

bh, 1 ; 

L01 ; 

; restore default state 

_ReadPixelInc 

“rex 

mov 

out 

inc 

mov 

out 

mov 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

END 

ah, 40h ; 

dx,ax 

ax ; 

ah, DefaultRWColor 

dx, ax 

ax, bx ; 

si ; 

sp,bp 
bp 

, 

ES:SI -> buffer 

CL := bit mask in proper position 

DX := graphics control port 

AH bits 4-7 := 1111b (background value) 

AL := 1Ah (R/W Color Register) 

set background value 

BH = 10005 “Guitial “don"t eare” bits) 

BL := 0 (initial value for result) 

AL := 19h (R/W Control Register number) 

t care" bits 

AH bits 0-3 := next "don’t care" bits 

AH bit 6 := 0 (Mask Polarity bit) 

invert "don’t care" bits 

set R/W Control Register 

CH := bit mask 

latch bit planes 

CH <> Osa f batt in latches set 

GE set Af sCHe<> 10 

accumulate result in BL 

BH := shifted "don’t care" bits 

loop until shifted out of BH, 

at which point BX = pixel value 

AH := default R/W Control Register value 

AL := 1Ah (R/W Color Register number) 

AX := pixel value 

restore caller registers and return 
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As usual in bit-plane programming, the tricky part of this process is 

in setting up the control register values to produce the desired result. 

For example, here is what happens when the AND CH, ES: [ST] in- 

struction executes: 

1. One byte from each bit plane is copied into the latches. 

2. Each of the eight pixels in the latches is compared with the back- 

ground value (1111B), and the eight bits that reflect the result of 

the eight comparisons are returned to the CPU. Because only one 

of the four ‘‘don’t care’’ bits in the Read/Write Control register is 

0, only one of the four bits in each pixel value participates in each 

comparison. If this bit is 1, the comparison is true, and the Decoder 

returns a 1 in the bit position corresponding to this pixel value. 

3. The eight bits returned to the CPU are ANDed with the bit mask in 

CH to give the desired result. 

That’s a lot of action for a single AND instruction. 

MCGA 

In 640-by-200 2-color and 320-by-200 4-color modes, the routines written for the 

CGA (shown in Listings 5-2 and 5-3) also work on the MCGA. The two other 

MCGA graphics modes pose no additional problems (see Listings 5-8 and 5-9), 

because they use no buffer interleave as do CGA-compatible modes, and because 
there are no bit planes to worry about. 

TITLE TLastang o=6'" 

NAME ReadPixeli1 

PAGE SS taZ 

; Name: ReadPixel11 

? Function: Read the value of a pixel in 640x480 2-color mode (MCGA or VGA) 

; Caller: Microsoft C: 

; int ReadPixel11 (x,y); 

; ani Ky /* pixel coordinates */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 
ARGy EQU word ptr [bp+6] 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

EXTRN PixelAddr10:near 

(continued) 

Listing 5-8. Determining a pixel value in MCGA and VGA 640-by-480 2-color mode. 
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Listing 5-8. Continued. 

_ReadPixel11 

_ReadPixel11 

_TEXT 

; Name: 

; Function: 

* Caller: 

ARGx 
ARGy 

_TEXT 

PUBLIC 

PROC 

push 

Mov 

mov 

mov 

call 

mov 

shr 

and 

xor 

mov 

pop 
ret 

ENDP 

ENDS 

END 

TITLE 

NAME 

PAGE 

_ReadPixel11 

near 

bp ; 
bp, sp 

ax, ARGy 2 

bx, ARGx ; 

PixelAddr10 ; 

al,es: [bx] 3 

al,cl ; 

al,ah ; 

ah,ah ; 

sp, bp ; 

bp 

"Listing 5-9! 

ReadPixel13 

55; 1132 

ReadPixel13 

preserve caller registers 

AX := y 

BX := x 

AH := bit mask 

ES:BX -> buffer 

CL := # bits to shift 

AL := byte containing pixel 

shift pixel value to low-order bits 

AL := pixel value 

AX := pixel value 

restore caller registers and return 

Read the value of a pixel in 320x200 256-color mode 

(MCGA and VGA) 

Microsoft C: 

EQU 

EQU 

SEGMENT 

ASSUME 

EXTRN 

int ReadPixel13(x, 

int x,y; 

word ptr [bpt+4] ; 

word ptr [bpt6] 

byte public 'CODE' 

cs;_TEXT 

PixelAddr13:near 

yy)? 

/* pixel coordinates */ 

stack frame addressing 

(continued) 

Listing 5-9. Determining a pixel value in MCGA and VGA 320-by-200 256-color mode. 
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Listing 5-9. Continued. 

PUBLIC _ReadPixel13 

_ReadPixel13 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy PP = VY 

mov bx, ARGx peBX ss=0x 

call PixelAddr13 ,AESEBS => buffer 

mov al,es: [bx] ; AL := pixel value 

xOr ah, ah ; AX := pixel value 

mov sp,bp 

pop bp 
ret 

_ReadPixel13 ENDP 

_ TEXT ENDS 

END 

Once you write pixel-read routines for the CGA, the EGA, and the MCGA, you 

have covered all the bases as far as the VGA is concerned. The only VGA graphics 

mode not available on the other subsystems is 640-by-480 16-color mode. How- 

ever, pixel representation and addressing are the same in this mode as in the 

EGA’s 640-by-350 16-color mode, so you can use the routine in Listing 5-4 

for both. 

Setting a Pixel’s Value 
In some ways, setting a pixel’s value is the converse of determining its value. 

Once the byte and bit offsets of a particular pixel have been calculated, setting 

its value is a simple matter of putting the right bits in the right places in the 

video buffer. 

What complicates pixel-setting routines is that you may not always wish simply to 

replace a pixel’s old value with a new value. It is sometimes desirable to derive a 
pixel’s new value by performing a bitwise logical operation on its old value. This 

is why the EGA and the VGA Graphics Controllers directly support logical AND, 
OR, and XOR operations on pixel values, as well as direct replacement of old 

values with new ones. 

Since the bulk of the overhead in a pixel-setting routine is in calculat- 

ing the pixel’s location in the video buffer, you can keep your code 

small and modular by integrating different pixel-value manipulations 

into a single routine rather than writing separate routines to replace 
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CGA 

pixels and to perform bitwise logical operations on them. The exam- 

ples in this chapter combine these different pixel-value operations into 

unified routines. 

Where each bitwise operation requires a different subroutine, the sub- 

routine’s address is stored in a variable (Set PixelOp). This tech- 

nique is more flexible than coding a jump to the desired pixel 

operation (replace, AND, OR, or XOR), because you can change the 

address in the variable with another independent subroutine. 

The examples in this chapter do not include code for updating a 

pixel’s value by performing a bitwise NOT operation. You can use the 

XOR operation to obtain the same result as NOT without decreasing 

performance and without writing additional code. 

To set a pixel in 640-by-200 2-color mode, mask the appropriate bit in a byte in the 

video buffer and then set the bit’s value. The routine in Listing 5-10 implements 

four different ways of setting the value—by replacing the old pixel value with a 

new value and by using the logical operations OR, AND, and XOR. 

TITLE "Listing 5-10' 
NAME SetPixel06 

PAGE 555132 

; Name: SetPixel06 

; Function: Set the value of a pixel in 640x200 2-color mode 

+ Caller: Microsoft C: 

3 void SetPixel(x,y,n); 

: int. x,y; /* pixel coordinates */ 

- int. mn; /* pixel value */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpt6] 

ARGn EQU byte ptr [bpt+8] 

DGROUP GROUP _DATA 

TEXT SEGMENT byte public 'CODE' 

a ASSUME cs:_TEXT,ds:DGROUP 

EXTRN PixelAddr06:near 

PUBLIC _SetPixel06 

Listing 5-10. Setting a pixel value in CGA 640-by-200 2-color mode. (continued) 
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Listing 5-10. Continued. 

_SetPixel06 PROC 

push 

mov 

mov 

mov 

call 

mov 

shl 

jmp 

ReplacePixel06: not 

and 

or 

jmp 

ANDPixel06: test 

jnz 

L0O1: not 

and 

jmp 

ORPixel06: test 

72 

OF, 

jmp 

XORPixel06: test 

jz 

xor 

LO2: mov 

pop 
ret 

_SetPixel06 ENDP 

near 

bp 
bp, sp 

ax, ARGy 

bx, ARGx 

PixelAddr06 

al,ARGn 

ax,cl 

preserve caller registers 

AX := y 

BX := x 

AH := bit mask 

ES:BX -> buffer 

CL := # bits to shift left 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

word ptr SetPixelOp06 7 jump to Replace, AND, 

ah 

es: [bx],ah 

es: [bx],al 

short L02 

al,al 

L02 

ah 

es: [bx],ah 

short L02 

al,al 

LO2 

es: [bx],al 

short L02 

al,al 

L02 

es: [bx],al 

sp, bp 
bp 

; 

; OR or XOR routine 

routine to Replace pixel value 

AH := inverse bit mask 

zero the pixel value 

set the pixel value 

routine to AND pixel value 

do nothing if pixel value = 1 

AH := inverse of bit mask 

set bit in video buffer to 0 

routine to OR pixel value 

do nothing if pixel value = 0 

set bit in video buffer 

routine to XOR pixel value 

do nothing if pixel value = 0 

XOR bit in video buffer 

restore caller registers and return 

(continued) 
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Listing 5-10. Continued. 

STEXT ENDS 

_DATA SEGMENT word public 'DATA' 

SetPixelOp06 DW ReplacePixel06 j; contains addr of pixel operation 

_ DATA ENDS 

END 

The routine for 320-by-200 4-color mode is similar. This routine, shown in 

Listing 5-11, differs from the routine for 640-by-200 2-color mode (see Listing 

5-10) only in its technique for computing pixel addresses and in its representation 

of pixels in bit fields that are two bits wide. 

TITLE “hasting o- 

NAME SetPixel04 

PAGE 5S poe 

; Name: SetPixel04 

; Function: Set the value of a pixel in 320x200 4-color mode 

a Caters Microsoft Cs 

; void SetPixel(x,y,n); 

- int x;y? /* pixel coordinates */ 

; int, a /* pixel value */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpté6] 

ARGn EQU byte ptr [bpt+8] 

DGROUP GROUP _DATA 

TEXT SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT,ds:DGROUP 

EXTRN PixelAddr04:near 

PUBLIC SetPixel04 

_SetPixel04 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy SAX Sy 

mov bx, ARGx ; BX := x 

Listing 5-11. Setting a pixel value in CGA 320-by-200 2-color mode. (continued) 
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Listing 5-11. Continued. 

ReplacePixel04: 

ANDPixel04: 

ORPixel04: 

XORPixel04: 

L02: 

_SetPixel04 

TEXT 

_DATA 

SetPixeloOp04 

_DATA 

HGC and HGC+ 

call 

mov 

shl 

jmp 

not 

and 

jmp 

not 

or 

and 

jmp 

OL: 

jmp 

xOr 

mov 

Pop 

ret 

ENDP 

ENDS 

SEGMENT 

DW 

ENDS 

END 

PixelAddr04 AH := bit mask 

ES:BX -> buffer 

CL := # bits to shift left 

al,ARGn 

ax,cl ; AH := bit mask in proper position 

; AL := pixel value in proper position 

word ptr SetPixelOp04 ; jump to Replace, AND, 

; OR or XOR routine 

routine to Replace pixel value 

ah ; AH := inverse bit mask 

es: [bx],ah 

es: [bx],al 

short L02 

ah 

al,ah 

es: [bx],al 

short L02 

es: [bx],al 

short L02 

es: [bx],al 

sp,bp 

bp 

word public 

ReplacePixel04 

zero the pixel value 

set the pixel value 

routine to AND pixel value 

; AH := inverse bit mask 

; AL all 1’s except pixel value 

routine to OR pixel value 

routine to XOR pixel value 

restore caller registers and return 

7 contains addr of pixel operation 

As you might expect, a routine for writing a pixel in the HGC’s 720-by-348 mono- 
chrome graphics mode can be derived from the equivalent routine for the CGA’s 
640-by-200 2-color mode in Listing 5-10 by substituting the HGC’s pixel-address 
computation routine (Pixe1lAddrHGC) for the CGA’s. 
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EGA 

You don’t need to worry about CGA-emulation modes (640-by-200 2-color and 
320-by-200 4-color), because the routines that work on the CGA work equally well 
on the EGA. However, things become considerably more complicated in the EGA’s 
native graphics modes. In these modes, there are several different ways you can 
program the Graphics Controller to set the value of an individual pixel. Also, the 

pixel-setting routine must properly handle the video memory maps in mono- 

chrome and 640-by-350 4-color graphics modes (on an EGA with 64 KB). 

Write mode 0 
The method for setting a pixel’s value in write mode 0 is shown in Listing 5-12. 
First, as usual, you calculate the byte offset and bit mask, which identify the 

pixel’s location in the video buffer. Then you program the Graphics Controller: 

Set up write mode 0, store the bit mask value in the Bit Mask register, and con- 

figure the Set/Reset and Enable Set/Reset registers for the pixel value. Then you 

can perform a CPU read to latch the bit planes, followed by a CPU write to copy 

the contents of the latches and the new pixel value into the bit planes. 

TITLE "Listing 5-12' 
NAME SetPixel10 

PAGE 55; 132 

Name: SetPixel10 

Function: Set the value of a pixel in native EGA graphics modes. 

*** Write Mode 0, Set/Reset *** 

Caller: Microsoft C: 

void SetPixel(x,y,n); 

Re Ne Ne Se Ne Se Se Ne Se Ne Be Na Ne Ne Ne 

int XV; /* pixel coordinates */ 

ine 117 /* pixel value */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpt6] 

ARGn EQU byte ptr [bp+8] 

RMWbits EQU 18h ; vead-modify-write bits 

TEXT SEGMENT byte public 'CODE' 
ASSUME cs: _ TEXT 

EXTRN PixelAddr10:near 

PUBLIC _SetPixel10 

(continued) 

Listing 5-12. Setting a pixel value in native EGA graphics modes using write mode 0. 
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Listing 5-12. Continued. 

_SetPixel10 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy ; AX := y 

mov bx, ARGx ie BK Ss 

call PixelAddr10 ; AH := bit mask 

; ES:BX -> buffer 

; CL t= # Drts to shite Lett 

; set Graphics Controller Bit Mask register 

shl ah,cl ; AH := bit mask in proper position 

mov dx, 3CEh ; GC address register port 

mov al,8 ; AL := Bit Mask register number 

out dx,ax 

; set Graphics Controller Mode register 

mov ax,0005h ; AL := Mode register number 

; AH := Write Mode 0 (bits 0,1) 

; Read Mode 0 (bit 3) 

out dx, ax 

; set Data Rotate/Function Select register 

mov ah, RMWbits ; AH := Read-Modify-Write bits 

mov ali S ; AL Data Rotate/Function Select reg 

out dx, ax 

; set Set/Reset and Enable Set/Reset registers 

mov ah, ARGn ; AH := pixel value 

mov al,0 ; AL := Set/Reset reg number 

out dx, ax 

mov ax,O0FOih ; AH := value for Enable Set/Reset (all 

+ bit planes enabled) 

7 AL := Enable Set/Reset reg number 
out dx,ax 

; set the pixel value 

or es: [bx]),al + load latches during CPU read 

; update latches and bit planes during 

; CPU write 

7 restore default Graphics Controller registers 

mov . ax, 0OFFO8h ; default Bit Mask 

out ax, ax 

Mov ax, 0005 7 default Mode register 

out dx, ax 

mov ax,0003 ; Gefault Function Select 
out ax, ax 

(continued) 
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Listing 5-12. Continued. 

mov ax, 0001 ; default Enable Set/Reset 

out dx, ax 

mov sp, bp * restore caller registers and return 

pop bp 
Bet 

_SetPixel10 ENDP 

_TEXT ENDS 
END 

Note how the contents of the Graphics Controller registers determine how the bit 

planes are updated during the CPU write in the OR instruction. The value in the 
Bit Mask register has only one nonzero bit, so only one pixel is updated. This 

pixel takes its value from the Set/Reset register. (The other seven pixels are up- 

dated from the latches; since the CPU read loaded the latches with these same pix- 

els, the CPU write doesn’t change them.) The Enable Set/Reset value is 1111B, so 

the CPU data byte in AL plays no part in the operation. 

IBM’s EGA BIOS uses write mode 0 to set the values of individual pix- 

els in INT 10H function OCH, but the BIOS routine does not use the 

Set/Reset register to specify the pixel value. Instead, it first zeroes the 
pixel by using the Bit Mask register to isolate it and by writing a CPU 

data byte of 0. Then the BIOS programs the Sequencer Map Mask 

register to select only those bit planes in which the desired pixel value 

contains a nonzero bit. The routine then performs a second CPU write 

to set the nonzero bits, as shown in Listing 5-13. 

This technique has two weaknesses: There are easier ways to do the 

same job, and the routine requires extra coding if you want to AND, 

OR, or XOR the pixel value in the video buffer. For both reasons, 

video BIOS INT 10H function OCH is limited in both speed and 

flexibility. 

TITLE "Listing 5-13' 
NAME SetPixel10 

PAGE Sai? 

; Name: SetPixel10 

; Function: Set the value of a pixel in native EGA graphics modes. 

*kk Write Mode 0, Sequencer Map Mask *** 

(continued) 

Listing 5-13. Setting a pixel value in native EGA graphics modes using the Sequencer Map 

Mask. 
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Listing 5-13. Continued. 

>; Galler: Microsoft €; 

void SetPixel(x,y,n); 

; int x,y; /* pixel coordinates */ 

z Lee ms /* pixel value */ 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bp+é6] 

ARGn EQU byte ptr [bp+8] 

TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

EXTRN PixelAddr10:near 

PUBLIC _SetPixel10 

_SetPixel10 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy 7; AX 3= y 

mov bx, ARGx ¢; BKos= x 

call PixelAddr10 ; AH := bit mask 

, ES BX => buffer 

7; (CL $= # bits bovysha ft Tere 

; set Graphics Controller Bit Mask register 

shl ah,cl ; AH := bit mask in 

7 proper position 

mov dx, 3CEh ; Graphics Controller address 

7 reg poxrt 

mov al,8 7; AL := Bit Mask register number 

out dx, ax 

; zero the pixel value 

mov al,es: [bx] ; latch one byte from each 

; bit plane 

mov byte ptr es:[bx],0 ; zero masked bits in 

; all planes 

; set Sequencer Map Mask register 

mov dl1,0C4h ; DX := 3C4h (Sequencer addr 

; reg port) 

mov ah, ARGn 7 AH := value for Map Mask 

; register 

* (nonzero bits in pixel 

+ value select 

# enabled bit planes for 

; Sequencer) 

(continued) 
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Listing 5-13. Continued. 

_SetPixel10 

mov are ; AL := Map Mask register number 
out dx,ax 

set the nonzero bits in the pixel value 

mov byte ptr es: [bx],0FFh ; set bits in enabled 

bit planes -. 

restore default Sequencer registers 

mov ah, 0OFh ; AH := value for Map Mask reg 

P (all bit 

7 planes enabled) 

out Ox,.ax 

restore default Graphics Controller registers 

JREXT 

Write mode 2 

mov dl, OCEh +; DX := 3CEh (Graphics 

, Controller port) 

mov ax, OFFO8h ; Gefault Bit Mask 

out dx, ax 

mov sp,bp ; restore caller registers 

* and return 

pop bp 
ret 

ENDP 

ENDS 

END 

A somewhat simpler way to set the value of an individual pixel is to use write 

mode 2. The routine in Listing 5-14 demonstrates this technique. As in write mode 

0, the Bit Mask register determines how each of the eight pixels is updated. In 

write mode 2, however, new pixel values are derived by combining the CPU data 

byte with the latched pixel values; this avoids the need to program the Set/Reset 

and Enable Set/Reset registers and leads to shorter, faster code. 

, 

, 

, 

, 

. 
, 

, 

Name: 

Function: 

TITLE ‘Listing 5-14! 
NAME SetPixel10 

PAGE 55, 122 

SetPixel10 

Set the value of a pixel in native EGA graphics modes. 

*#* Write Mode 2 *** 

(continued) 

Listing 5-14. Setting a pixel value in native EGA graphics modes using write mode 2. 
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Listing 5-14. Continued. 

; Caller: 

ARGx 

ARGy 

ARGn 

RMWbits 

_TEXT 

_SetPixel10 

; set Graphics 

; set the pixel 

Microsoft C: 

void SetPixel (x,y,n); 

int x,y; /* pixel coordinates */ 

int Dy /* pixel value */ 

EQU word ptr [bpt+4] ; stack frame addressing 

EQU word ptr [bp+6] 

EQU byte ptr [bp+8] 

EQU 18h ; xvead-modify-write bits 

SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT 

EXTRN PixelAddr10:near 

PUBLIC _SetPixel10 

PROC near 

push bp ; preserve stack frame 

mov bp, sp 

mov ax, ARGy 7; AX 3] ¥ 

mov bx, ARGx ; BX 3:= x 

call PixelAddr10 ; AH := bit mask 

3; ES?BX +> buffer 

; CL := # bits to shift left 

Controller Bit Mask register 

shl ah,cl ; AH := bit mask in proper position 

mov dx, 3CEh 7 GC address register port 

mov al,8 ; AL := Bit Mask register number 

out dx, ax 

7 set Graphics Controller Mode register 

mov ax,205h ; AL := Mode register number 

; AH := Write Mode 2 (bits 0,1) 

: Read Mode 0 (bit 3) 

out dx, ax 

; set Data Rotate/Function Select register 

mov ah, RMWbits ; AH := Read-Modify-Write bits 

MOv al,3 ; AL := Data Rotate/Function Select reg 
out ax,ax 

value 

mov al,es: [bx] ; latch one byte from each bit plane 

mov al, ARGn + AL := pixel value 

mov es: [bx],al + update all bit planes 

(continued) 
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Listing 5-14. Continued. 

*# restore default Graphics Controller registers 

Mov ax, OFFO8h ; Gefault Bit Mask 

out dx, ax 

mov ax,0005 ; default Mode register 

out dx,ax 

mov ax,0003 ; default Function Select 

out dx, ax 

mov sp,bp 7 restore stack frame and return 

pop bp 
ret 

_SetPixel10 ENDP 

STEXT ENDS 

END 

The routines in Listings 5-12 armd 5-14 are designed to work correctly when the 

Function Select register specifies the AND, OR, or XOR function. Thus, you need 

write no extra code to perform these alternative pixel manipulations in the EGA’s 

native graphics modes. 

Furthermore, if you are careful to use the proper pixel values, the routines in List- 

ings 5-12 and 5-14 can be used in any native EGA graphics mode. To ensure that 

the appropriate bits in the memory maps are updated in 640-by-350 monochrome 

mode, use pixel values of 0, 1, 4, and 5 only. On an EGA with 64 KB of RAM, use 

pixel values 0, 3, OCH, and OFH. 

InColor Card 

The routine in Listing 5-15 updates a single pixel in the InColor Card’s 720-by-348 

16-color mode. The InColor Card lacks a functional equivalent of the EGA’s Func- 

tion Select register, so this routine contains four separate subroutines which per- 

form AND, OR, or XOR operations on pixel values. 

void SetPixel (x,y,n); 

TITLE histaing 3-15" 

NAME SetPixelInc 

PAGE 55,132 

; Name: SetPixelInC 

; Function: Set the value of a pixel in 720x348 16-color mode 

7; Caller: Microsoft C: 

7 

; 

Listing 5-15. Setting a pixel value in InColor graphics mode. (continued) 
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Listing 5-15. Continued. 

ARGx 

ARGy 

ARGn 

DefaultRWColor 

DGROUP 

TEXT 

_SetPixeliInc 

ReplacePixeliInc: 

EQU 

EQU 

EQU 

EQU 

GROUP 

SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

PROC 

push 

mov 

mov 

mov 

call 

shl 

mov 

jmp 

mov 

mov 

out 

anc 

mov 

out 

and 

jmp 

EEmiteme p over /* pixel coordinates */ 

int n; /* pixel value */ 

word ptr [bpt+4] ; stack frame addressing 

word ptr [bp+6] 

byte ptr [bp+8] 

OFh ; default value for R/W Color Register 

_DATA 

byte: public CODE 

cs:_TEXT, ds :DGROUP 

PixelAddrHGC:near 

_SetPixeliInc 

near 

bp ; preserve caller registers 

bp, sp 

ax, ARGy ,; AX :=y 

bx, ARGx 7; BX := x 

PixelAddrHGC ; AH := bit mask 

; -—ES:BX => buffer 

PruCh t=Ltsbieseco Shite Lett 

ah,cl ; AH := bit mask in proper position 

dx, 3B4h peDX =—CRIC port 

word ptr SetPixelOpInC ; jump to Replace, AND, 

; OR or XOR routine 

; routine to Replace pixel value 

ch, ah ; CH := bit mask for pixel 

ax, 1F19h ; AH bit 6 := 0 (Mask Polarity) 

; AH bits 5-4 := 1 (Write Mode) 

; AH bits 3-0 := "don’t care" bits 

; AL := R/W Control Register number 

dx, ax ; set R/W Control Register 

ax ; AL := 1Ah (R/W Color Reg number) 

ah, ARGn 7; AH := foreground value 

dx,ax 7; set R/W color register 

es: [bx],ch ; update bit planes 

short L01 

(continued) 
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Listing 5-15. Continued. 

ANDPixelInc: 

ORPixelInc: 

XORPixellInc: 

mov 

mov 

out 

dec 

mov 

mov 

shl 

or 

out 

mov 

out 

and 

jmp 

mov 

mov 

out 

dec 

mov 

not 

mov 

shl 

or 

out 

mov 

out 

and 

jmp 

mov 

mov 

out 

ch,ah 

ax, 1F19h 

dx, ax 

ax 

ah, ARGn 

el,.4 

ah,cl 

ah, OFh 

ax, ax 

ax,001Ah 

ax, ax 

es: [bx],ch 

short LO1 

ch,ah 

ax, 1F19h 

dx,ax 

ax 

ah, ARGn 

ah 

cl1,4 

ah,cl 

ah, OFh 

dx,ax 

ax, OF1Ah 

dx,ax 

2s. (bx) ,cn 

short LO1 

ch,ah 

ax, 3F19h 

dx,ax 

se oNe 

Saleen we eels! 

“ 

Re Ne Ne 

routine to AND pixel value 

CH = bit mask for pixel 

AH bit 6 := 0 (Mask Polarity) 

AH bits 5-4 := 1 (Write Mode) 

AnPDits S=0e3= “dont care” bits 

AL := R/W Control Register number 

set R/W Control Register 

AL := 18h (Plane Mask Register number) 

AH := pixel value 

AH bits 7-4 := writeable plane mask 

AH bits 3-0 := visible plane mask 

set Plane Mask Register 

AH := 0 (foreground value) 

AL := 1Ah (R/W Color reg) 

set R/W Color Register 

update bit planes 

routine to OR pixel value 

CH := bit mask for pixel 

AH bit 6 := 0 (Mask Polarity) 

AH bits 5-4 := 1 (Write Mode) 

AH bits 3-0 := "don’t care" bits 

AL := R/W Control Register number 

set R/W Control Register 

AL := 18h (Plane Mask Register number) 

AH := pixel value 

AH := complement of pixel value 

AH bits 7-4 writeable plane mask 

AH bits 3-0 := visible plane mask 

set Plane Mask Register 

AH := 0 (foreground value) 

AL := 1Ah (R/W Color reg) 

set R/W Color Register 

update bit planes 

routine to XOR pixel value 

CH := bit mask for pixel 

AH bit 6 := 0 (Mask Polarity) 

AH bits 5-4 := 3 (Write Mode) 

AH bits 3-0 := "don’t care" bits 

AL := R/W Control Register number 

set R/W Control Register 

(continued) 
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Listing 5-15. Continued. 

dec ax ; AL := 18h (Plane Mask Register number) 

mov ah, ARGn ; AH := pixel value 

not ah ; AH := complement of pixel value 

mov cl1,4 

shl ah,cl ; AH bits 7-4 := writeable plane mask 

or ah, OFh ; AH bits 3-0 := visible plane mask 

out dx, ax ; set Plane Mask Register 

xor es: [bx],ch ; update bit planes 

jmp short L0O1 

TOs mov ax, OF18h 

out dx,ax ; restore default Plane Mask value 

mov ax, 4019h ; restore default R/W Control value 

out Gs, 

inc ax ; restore default R/W Color value 

mov ah, DefaultRWColor 

out dx, ax 

mov sp,bp ; restore caller registers and return 

pop bp 
ret 

_SetPixeliInc ENDP 

_TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

SetPixelOpInc DW ReplacePixelInc ; contains addr of pixel operation 

_DATA ENDS 

END 

Each one of these subroutines begins by programming the Read/Write Control, 

Read/Write Color, and Plane Mask registers. Then a CPU read loads the latches, 

and a subsequent CPU write updates the bit planes. 

Each subroutine starts by programming the Read/Write Control register for one of 

the four graphics write modes. At the same time, the ‘don’t care”’ bits are all set 

to 1 and the Mask Polarity bit is zeroed so that the Decoder always returns 

11111111B as the result of a CPU read. Then the Plane Mask and Read/Write Color 

foreground values are set up; these values depend upon whether the pixel value is 

to be replaced or manipulated by an AND, OR, or XOR operation. 

The instruction AND ES: [BX] , CH (or XOR ES: [BX], CH for the pixel XOR 

operation) causes the CPU read and write. During the CPU read, the latches are 

loaded and the value 11111111B is returned to the CPU; the CPU ANDs (or XORs) 

this value with the bit mask in CH and writes the result back to the same address 

in the video buffer. In this way, the bit mask in CH selects which pixel value is 

updated during the CPU write. 
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Except for the pixel that the bit mask specifies, the contents of the latches are 

copied back into the bit planes from which they were just read; the value of the 

pixel being updated derives from the foreground value in the Read/Write Color 

register. Only the bit planes that the Plane Mask register specifies are modified, 

so the only bits in the bit planes that are updated are those that the replace, AND, 
OR, or XOR operation modifies. 

T It is instructive to compare the interaction of the write mode, fore- 

, ground color, and Plane Mask values within each of the subroutines. 

The logical operation that takes place (replace, AND, OR, or XOR) is 

not programmed explicitly with an 80x86 instruction. It is implicit in 

the contents of the graphics control registers, which are programmed 

to emulate the logical operation by modifying the individual bits in 

the updated pixel. 

MCGA 

In CGA-compatible graphics modes, the same routines for setting pixel values run 

unchanged on both the CGA and the MCGA. The two non-CGA modes (640-by-480 

2-color and 320-by-200 256-color) can be handled easily with simple modifications 

to the routine for 640-by-200 2-color mode. Listings 5-16 and 5-17 show the neces- 

sary changes. 

TITLE “esting so= 16. 

NAME SetPixel11 

PAGE bop ioe 

; Name: SetPixell1 

; Function: Set the value of a pixel in 640x480 2-color mode (MCGA or VGA) 

7; Caller: Microsoft C: 

void SetPixel(x,y,n); 

; rate hy VF /* pixel coordinates */ 

; int /* pixel value */ 

ARGx EQU word ptr [bpt4] ; stack frame addressing 

ARGy EQU word ptr [bpt6] 

ARGn EQU byte ptr [bp+8] 

DGROUP GROUP _DATA 

TEXT SEGMENT byte public 'CODE' 
ASSUME cs: _TEXT,ds:DGROUP 

(continued) 

Listing 5-16. Setting a pixel value in MCGA or VGA 640-by-480 2-color mode. 
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Listing 5-16. Continued. 

EXTRN 

PUBLIC 

_SetPixellt PROC 

push 

mov 

mov 

mov 

Gall 

mov 

shl 

jmp 

not 

and 

or 

jmp 

ReplacePixel11: 

ANDPixel11: test 

jnz 

LO1: not 

and 

jmp 

ORPixel11: test 

JZ 

or 

jmp 

XORPixel11: test 

jz 

xOr 

L02: mMOv 

pop 
ret 

PixelAddr10:near 

_SetPixel11 
near 

bp 
bp, sp 

ax, ARGy 

bx, ARGx 

PixelAddr10 

al,ARGn 

ax,cl 

word ptr SetPixelOp11 Fi 

ah 

es: [bx],ah 

es: [bx],al 

short L02 

al,al 

L02 

ah 

es: [bx],ah 

short L02 

aya 

L02 

es: [bx],al 

short L02 

al,al 

LO2 

es: [bx],al 

sp, bp 

bp 

7) AH += 

preserve caller registers 

Pee — ay) 

Sx 

AH := bit mask 

ES:BX -> buffer 

CL >= # bits to shitt Left 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

jump to Replace, AND, 

; OR or XOR routine 

routine to Replace pixel value 

inverse bit mask 

zero the pixel value 

set the pixel value 

routine to AND pixel value 

do nothing if pixel value = 1 

AH := inverse of bit mask 

set bit in video buffer to 0 

routine to OR pixel value 

do nothing if pixel value = 0 

set bit in video buffer 

routine to XOR pixel value 

do nothing if pixel value = 0 

XOR bit in video buffer 

restore caller registers and return 

(continued) 
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Listing 5-16. Continued. 

_SetPixeli1 

_TEXT 

_DATA 

SetPixelOp11 

_DATA 

; Name: 

; Function: 

; Caller: 

ARGx 

ARGy 

ARGn 

DGROUP 

PERT 

_SetPixel13 

ENDP 

ENDS 

SEGMENT word public 'DATA' 

DW ReplacePixell1 ; contains addr of pixel operation 

ENDS 

END 

TITLE TRE SCEG ome 

NAME SetPixel13 

PAGE Soy SZ 

SetPixel13 

Set the value of a pixel in 320x200 256-color mode (MCGA or VGA) 

Microsoft C: 

void SetPixel(x,y,n); 

anc 3c5,V 7 /* pixel coordinates */ 

art My /* pixel value */ 

EQU word ptr [bp+4] ; stack frame addressing 

EQU word ptr [bp+6] 

EQU byte ptr [bp+8] 

GROUP _DATA 

SEGMENT byte public 'CODE' 

ASSUME cs: TEXT,ds:DGROUP 

EXTRN PixelAddr13:near 

PUBLIC _SetPixel13 

PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy 7, AX = -y, 

mov bx, ARGx ; BX 3= x 

call PixelAddr13 ; ES:BX -> buffer 

mov al,ARGn ; AL := pixel value 

(continued) 

Listing 5-17. Setting a pixel value in MCGA or VGA 320-by-200 256-color mode. 
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Listing 5-17. Continued. 

jmp 

ReplacePixel13: mov 

jmp 

ANDPixel13: and 

jmp 

ORPixel13: or 

jmp 

XORPixel13: xor 

OT: mov 

pop 
ret 

_SetPixel13 ENDP 

_TEXT ENDS 

_DATA SEGMENT 

SetPixel0Op13 DW 

_DATA ENDS 

END 

VGA 

word ptr SetPixelOp13 ; jump to Replace, AND, 

; OR or XOR routine 

es: [bx],al 

short L0O1 

esa (bx]),.an 

short L0O1 

es: [bx],al 

short L0O1 

es: [bx],al 

sp,bp ; restore caller registers and return 

bp 

word public 'DATA' 

ReplacePixel13 

Once you create routines to update pixels on the MCGA and EGA, doing the same 

for the VGA is easy. The only VGA video mode that does not exist on the other 

subsystems is 640-by-480 16-color mode. Pixel addressing in this mode is the same 

as in the EGA’s 640-by-350 16-color mode, so the routines in Listings 5-12 through 

5-14 may be used. 

Filling the Video Buffer 

Usually the first thing you do after selecting a new video mode is clear the video 

buffer by filling it with a uniform background of repetitive data. In alphanumeric 

modes, it is easy and efficient to fill the buffer with blanks or nulls by using the 

80x86 STOSW instruction. 

Filling the video buffer in graphics modes is more of a challenge. Zeroing the en- 

tire buffer is relatively easy, but filling the screen with a solid color or pixel pat- 

tern is more difficult, particularly on the EGA, the VGA, and the InColor Card. 

154 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



CGA 

On the CGA, you can set the entire buffer to a single pixel value or a pattern of 
vertical stripes with a REP STOSW operation, as the routine in Listing 5-18 does. 
Because of the two-way interleave in the video buffer map, this technique fills all 
even-numbered scan lines before filling the odd-numbered lines. You might 
prefer to clear the buffer from the top down by filling it a line at a time. This 
technique, used in Listing 5-19, achieves a slightly smoother appearance, but re- 
quires slower and bulkier code. 

mov di, 0B800h 

Mov es, di 

xor di,di 7 BS:DI -> start of video buffer 

mov al,11110000b 7 AL := pixel pattern 

mov ah,al ; AX := replicated pixel pattern 

mov cx, 2000h 7 CX := number of words in video buffer 

rep stosw ; fill buffer with pixel pattern 

; this may also be accomplished using the video BIOS 

mov ah, 0Fh 7 AH := OFh (INT 10H function number) 

int 10h * get current video state; AH = number of 

7; character columns 

mov dl,ah ; DL := number of character columns 

mov ax, 600h 7 AH := 6 (INT 10H function number) 

; AL := 0 (number of rows to scroll) 

mov bh, 11110000b ; BH := pixel pattern 

mov Cx0 7; CH := 0 (upper left character column) 

; CL := 0 (upper left character row) 

mov dh, 18h ; DH := 18h (lower right character row) 

dec dl ; DL := lower right character column 

int 10h 

Listing 5-18. Simple CGA graphics buffer fill. 

mov di, 0B800h 

mov es, di 

xOx di,di J ESD => start’ of video butter 

mov al,11001100b ; AL pixel pattern 

mov ah,al ; AX := replicated pixel pattern 

mov bx, 100 ; BX := number of pairs of rows 

L01: mov cx, 40 ; CX := number of words in each row 

rep stosw ; fill even row 

add di, 2000h-80 ; ES:DL => odd row 

mov cx, 40 

rep stosw 7 Lill oade row 

sub di,2000h ; ES:DI -> next even row 

dec bx 

jnz L01 

Listing 5-19. CGA graphics buffer fill using two-way interleave. 
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You can exploit the two-way interleave in the video buffer map to create a color 

blend or a simple pattern (see Listing 5-20). In this case, the pixel pattern in the 

even-numbered scan lines is shifted in position from the pattern in the odd- 

numbered scan lines. This creates a dithered or halftone pattern on the screen. 

‘Because the pixels are so close together, the eye blends them, perceiving the dith- 

ered pattern as gray in 640-by-200 2-color mode or as an intermediate color blend 

in 320-by-200 4-color mode. 

mov di, OB800h 

mov es,di 

xor di,di ; ES:DI -> start of pixel row 0 

mov al,10101010b ; AL := pixel pattern for even rows 

mov ah,al ; AX := replicated pixel pattern 

mov ex, 1000h ; CX := number of words in video buffer 

rep stosw ; fill even pixel rows 

mov di,2000h 7 ESS Diy => (Start Of ps1 xel rowed 

mov al,01010101b ; AL := pixel pattern for odd rows 

mov ah,al 

mov cx, 1000h 

rep stosw ; £i11 odd pixel rows 

Listing 5-20. CGA graphics buffer fill with different pixel pattern in odd and even rows. 

HGC and HGC+ 

You can use the same basic techniques for clearing the video buffer in the HGC’s 

720-by-348 monochrome graphics mode as in the CGA’s 640-by-200 2-color mode. 

However, your routine must be able to clear either of the two displayable portions 
of the HGC’s video buffer. Listing 5-21 demonstrates how you can do this. Again, 

you can take advantage of the interleaved video memory map to create a dithered 

pattern as you clear the buffer. 

mov es, BufferSeg 7 ES := OBO000h for first video page 

5 or OB800h for second video page 

xor aie, Ga: ; BS:DI-=>"first’ byte to £217 

mov al,10101010b ; AL pixel pattern 

mov ah,al + AX := replicated pixel pattern 

LOM: mov cx, 1000h ; CX := number of words in 

7 each 8 KB buffer interleave 

rep stosw ; fill interleave; increment DI by 2000h 

ror ax, 1 ; shift pixel pattern between rows 
or ai, dai 

jns L01 + jump if DI < 8000h 

Listing 5-21. HGC graphics buffer fill using four-way interleave. 
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EGA and VGA 

The Graphics Controller can provide a certain amount of hardware assistance in 
filling the EGA and VGA video buffer. Also, because the buffer holds more data 
than can be displayed on the screen, you can choose to clear only the displayed 
portion, an undisplayed portion, or the entire buffer. 

In 640-by-200 2-color and 320-by-200 4-color modes you can use the routines for 
the CGA (see Listings 5-18 through 5-20). Remember, however, that the EGA and 
the VGA have enough video RAM to support two screens of data in 320-by-200 
4-color mode. Your routine should therefore be capable of clearing any designated 
area of the buffer. Filling the video buffer in 640-by-480 2-color mode (see Listing 
5-22) and 320-by-200 256-color mode (see Listing 5-23) is also a relatively easy 
task, because pixel addressing in these modes is simple. 

mov di, 0OA000h 

mov es,di 

xor di,di 7; ES=DE => Start of video butter 

mov al,01010101b ; AL := pixel pattern 

mov ah,al 7 AX := replicated pixel pattern 
mov cx, 480*40 ; CX := (pixel rows) * (words per row) 

rep stosw ; £111 buffer with pixel pattern 

; this may also be accomplished using the video BIOS 

mov ax,1130h 7 AH := 11h (INT 10H function number) 

+ AL := 30h (character generator info) 

int 10h 7 get info; DL = number of 

; character rows - 1 

mov ax, 600h ; AH := 6 (INT 10H function number) 

+ AL := 0 (number of rows to scroll) 

mov bh,01010101b ; BH := pixel pattern 

mov cx, 0 ; CH := 0 (upper left character column) 

; CL := 0 (upper left character row) 

mov dh, dl ; DH := lower right character row 

mov d1,4Fh 7 DL := 4Fh (lower right character column) 

int 10h 

Listing 5-22. MCGA and VGA 640-by-480 2-color graphics buffer fill. 

mov di, 0A000h 

mov es,di 

xor di,di 7; ES3:DI => start of video buffer 

mov ah,PixelValue1 ; AX := 2-pixel pattern 

mov al,PixelValue2 

mov bx, 100 ; BX := number of pairs of rows 

(continued) 

Listing 5-23. MCGA and VGA 320-by-200 256-color graphics buffer fill. This routine fills 
alternate pixel rows separately to allow dithered pixel patterns. 
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Listing 5-23. Continued. 

LO1: mov cx, 160 ; CX := number of words per row 

rep stosw ; £111 even-numbered row 

xchg ah,al ; exchange pixels in pattern 

mov cx, 160 

rep stosw ; £111 odd-numbered row 

xchg ah,al ; exchange pixels in pattern 

dec bx 

jnz L01 

In 16-color 200-line graphics modes and all 350-line graphics modes, your rou- 

tines should program the Graphics Controller to exploit its parallel processing 

capabilities. The most efficient way to fill the video buffer with a solid color is to 
use write mode 0 to repeatedly copy the Set/Reset value into the video buffer. Be- 

cause no CPU read is required for this operation, you can set the entire video buffer 

to a solid color with a single REP STOSW instruction as shown in Listing 5-24. 

mov di, 0A000h 

mov es,di 

xor Gae.aas ; ES;DI .=-> start of video buffer 

mov dx, 3CEh # DX := Graphics Controller I/O port 

mov ah, PixelValue ; AH := pixel value for fill 

mov al,0 ; AL := 0 (Set/Reset register number) 

out dx,ax 7 load Set/Reset register 

mov ax, O0F01 7 AH := 1111b (mask for Enable Set/Reset) 

7 AL := 1 (Enable Set/Reset reg number) 
out dx, ax ; load Enable Set/Reset register 

mov cx,PixelRows*40 ; CX := (pixel rows) * (words per row) 

rep stosw ; fill the buffer 

mov ax,0001 7 AH := 0 (default Enable Set/Reset value) 

; AL := 1 (Enable Set/Reset reg number) 
out dx, ax + restore default Enable Set/Reset 

Listing 5-24. Solid buffer fill for EGA and VGA native graphics modes. The code assumes 
that the Graphics Controller is already in write mode 0 (the BIOS default). 

Filling the video buffer with an arbitrary pixel pattern is more difficult. Although 
the basic technique is the same, each component of the pattern must be written 
separately to the bit planes. The example in Listing 5-25 fills the video buffer with 
an 8-by-2 pattern of pixels in the VGA’s 640-by-480 16-color mode. You can adapt 
the routine to 200-line and 350-line 16-color modes on both the EGA and VGA. 
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mov 

mov 

xor 

Mov 

mov 

out 

mov 

L011: mov 

mov 

rep 

mov 

mov 

rep 

dec 

jnz 

mov 

out 

di, 0A000h 

es,di 

aijrat 

dx, 3CEh 

ax,105h 

ax,ax 

ax, PixelRows/2 

eines sa 

cx, 40 

stosw 

cl,es: [50h] 

cx, 40 

stosw 

ax 

L01 

ax,0005 

dax,ax 

r 

, 

ESRDE -> start of video buffer 

DX := Graphics Controller I/O port 

AH bits 0-1 := 01b (write mode 1) 

AL := 5 (Graphics Mode register) 

establish write mode 1 

AX := number of pairs of rows to fill 

latch pixel pattern for even rows 

CX := words per row of pixels 

copy latches across even-numbered row 

latch pixel pattern for odd rows 

fill odd-numbered row 
3 

loop down the buffer 

restore write mode 0 (default) 

Listing 5-25. Patterned buffer fill for EGA and VGA native graphics modes. The code 
assumes that the desired pixel pattern is already stored in the first eight pixels of the first two 
rows of the video buffer (that is, at A000:0000 and A000:0050). 

InColor Card 

As with the EGA and the VGA, you should use the InColor Card’s graphics data 

latches to update the four bit planes in parallel. Filling the video buffer with a 

solid color is straightforward, as shown in Listing 5-26. Filling it with a pixel pat- 
tern demands the same sort of logic used in the equivalent routine for the EGA 

and VGA (shown in Listing 5-27). 

mov 

xOr 

mov 

mov 

mov 

out 

mov 

out 

mov 

mov 

rep 

es, BufferSeg 

di, di 

dx, 3B4h 

ah, PixelValue 

al,1Ah 

dx,ax 

ax,4019h 

dx,ax 

ax, OFFFFh 

cx, 4000h 

stosw 

ES := OBO00h for first video page 

or 0B800h for second video page 

HS: Die=> first byte to £120! 

DX := control register I/O port 

AH := pixel value for fill 

AL := 1AH (Read/Write Color register number) 

load Read/Write Color register 

AH bits 5-6 := 00b (write mode 0) 

AL := 19H (Read/Write Control register) 

load Read/Write Control reg 

AX pixel bit mask 

CX := number of words in buffer 

fill the buffer 

(SZKe/ 72) 

Listing 5-26. Solid buffer fill for Hercules InColor graphics mode. 
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mov 

xOr 

mov 

mov 

out 

mov 

LOW: mov 

mov 

rep 

mov 

mov 

rep 

or 

jns 

mov 

out 

es, BufferSeg 

di, di 

dx, 3B4h 

ax, 6019h 

dx, ax 

ax, OFFFFh 

cl,es: [0] 

ex, 1000h 

stosw 

cl,es:[2000h] 

cx, 1000h 

stosw 

di,di 

L01 

ax,4019h 

dx, ax 

’ 

, 

ES := OBOOOh for first video page 

or 0B800h for second video page 

ES:DI -> first byte to fill 

DX := control register I/O port 

AH bits 5-6 := 10b (write mode 2) 

AL := 19H (Read/Write Control register) 

load Read/Write Control reg 

AX := pixel bit mask 

latch pixel pattern for even rows 

CX := number of words in 

each 8 KB buffer interleave 

fill even-numbered interleave; 

increment DI by 2000h 

latch pixel pattern for odd rows 

fill odd-numbered interleave 

loop while DI < 8000H 

restore default value of 

Read/Write Control register 

Listing 5-27. Patterned buffer fill for InColor Card. The code assumes that the desired pixel 
pattern is already stored in the first eight pixels of the first two rows of the video buffer (that 
is, at offsets 0 and 2000H in BufferSeg). 

MCGA 

You can use the routines written for the CGA and the VGA to fill the video buffer 

in equivalent graphics modes on the MCGA. 
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Most video graphics applications rely on routines that draw straight lines on the 

screen. Straight lines are components of many graphics images, including 

polygons, filled areas (made up of groups of contiguous lines), and curves (made 

up of a series of short line segments joined end to end). Because lines are used 

frequently in video graphics, you need fast line-drawing subroutines to obtain 

high-performance video graphics. This chapter describes how to construct effi- 

cient and flexible line-drawing routines for IBM video subsystems. 

An Efficient Line-drawing Algorithm 

Imagine what would happen if you tried to draw a straight line on a piece of 

paper by painting through the square holes in a sieve (see Figure 6-1). The result 

would not really be a line, but a group of square dots that approximates a line. 

> 
ba 

msm 

Figure 6-1. Line painted through a sieve. 

A raster video display’s rectangular grid of pixels resembles an electronic 

‘‘sieve’’ when it comes to drawing straight lines and geometric curves. The best 

you can do is to represent each line or curve with a group of pixels that closely 

approximates it. The process of determining which set of pixels in the video 

buffer best approximate a particular geometric figure is called scan-conversion. 

The visual consequence of scan-conversion is that mathematically 

smooth lines and curves appear jagged on the screen. Consider the 

nearly horizontal line in Figure 6-2a. The only way to represent such a 

line within a grid of pixels is as a series of connected horizontal line 

segments. The more nearly horizontal or vertical the line, the more 

jagged it appears. Although sophisticated software techniques can 

minimize the jagged appearance of a scan-converted line, the easiest 

way to smooth out a line is to ‘‘use a finer sieve’’; that is, to use a 

higher-resolution video mode or higher-resolution video display hard- 
ware (see Figure 6-2b). 
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b. 

Figure 6-2. A nearly horizontal line displayed with (a) low resolution and (b) higher 
resolution. 

Scan-converting a Straight Line 

The simplest way to draw a line is to use the equation of the line 

y=mx+b 

where m is the slope of the line and b is the y-intercept (the value of y at the point 

where the line crosses the y-axis). You can use this equation to calculate the cor- 

responding y-coordinate for each pixel x-coordinate between the line’s endpoints 

as shown in Listing 6-1. This technique is slow, but it is easy to implement. 

/* Listing 6-1 */ 

BACK SEV Mie RS VS ya Ty) 

int Bae Flas /* endpoint */ 

int S2 V2" /* endpoint */ 

int n; /* pixel value */ 

{ 
int x,Vr 

float m; /* slope */ 

float De /* y-intercept */ 

2Z£ (x2 == x1) /* vertical line */ 

{ 
Pen (ye ye) 

Swap( &y1, &y2 )j /* force yl < y2 */ 

for (y=yl; y<=y2; ytt) /* draw from yl to y2 */ 

SetPixel( x1, vy, nm) 

return; 

} 

mie et eke) /* force x1 < x2 */ 

{ 
Swap( &x1, &x2 ); 

Swap( &y1, &y2 ); 

} 

Listing 6-1. Drawing a line using the equation of the line. (continued) 
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Listing 6-1. Continued. 

m = (float) (y2-y1) / (float) (x2-x1); /* compute m and b */ 

Oyen at) 

£om (k=x1y x<=e27 xt) /* draw from x1 to x2 */ 

{ 
y = m*x + b;, 

SetPrxeli( x, vy, mu)? 

Swap( a, b ) /* exchange values of a and b */ 

int calito 

{ 
int te 

ea Faby 
*Q = *b; 

*bh = t; 

The problem is that the computational overhead in performing the multiplication, 

addition, and rounding necessary to generate y for each x in the line is consider- 

able. Furthermore, the slope m must be maintained as a floating-point number, 

and using floating-point arithmetic in the calculations slows them down. 

Bresenham’s Algorithm 

Incrementally calculating the appropriate y-coordinates is much more efficient. 

Given the x- and y-coordinates of the first pixel in the line, you can calculate the 

location of each subsequent pixel by incrementing the x- and y-coordinates in pro- 

portion to the line’s slope. The arithmetic is simpler and faster than that involved 

in directly using the equation of the line. 

The algorithm presented by J. E. Bresenham in 1965 (IBM Systems Journal 4 (1) 

1965, pp. 25-30) plots the set of pixels that lie closest to the line between two 

given pixels —(x/,y/) and (x2,y2)—assuming that x/ is less than x2 and that the 

slope of the line is between 0 and 1. To simplify the equation of the line, the 

algorithm assumes the location of the first endpoint (x/,y/) is (0,0). The equation 

of the resulting line is 

y = (dy/dx) * x 

where 

dy = y2 - yl 

and 

dx = x2 - x1 

To visualize how Bresenham’s algorithm works, consider the portion of a line 
shown in Figure 6-3. The algorithm proceeds by iteratively determining the corre- 
sponding y-coordinate for each value of x from x/ to x2. After plotting the pixel at 
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@j7 sia) B 

Given (%;-7 .Yi-1): 
if (a<b), (;,y;) = pixel A 
else (x; ,y;) = pixel B 

Figure 6-3. Bresenham’s incremental line-drawing algorithm. Given the pixel at (x;_1,Y;-1), 
the algorithm selects either pixel A or B depending on the values of a and b. 

(x;_),);_,), for example, the algorithm determines whether pixel A or pixel B is 

closer to the exact line and plots the closer pixel. 

The difference between pixel A’s y-coordinate and the y-coordinate on the exact 

line at x; is 

a = (yy+1) - (dy/dx)*x, 

where (dy/dx) represents the line’s slope. Similarly, the distance b from pixel B to 

the line is 

bes (dy/dx) *x, = Ys 

If distance b is smaller than distance a, pixel B lies closer to the exact line. If a is 

smaller than b, pixel A is closer. In other words, the sign of the difference (b — a) 

determines whether pixel A or pixel B is closer to the line. 

Now, this may seem like much more work than simply using the equation for the 

line. However, the values of a and b can be compared implicitly for each x; by 

iteratively computing the value of (b — a) for each succeeding x; in terms of 

simpler quantities like dy and dx. The resulting computation is simple, although 

deriving it requires a bit of algebra. 

To derive the computation, combine the equations for a and b: 

i= a) eee eI CL cle oe EV ay 1 

Since x/ is less than x2, dx is always positive, so dx *(b — a) can be used instead 

of (b — a) to decide whether to plot pixel A or pixel B: 

dx*(b-a) = 2*dy*x, - 2*y,*dx - dx 

2* (dy*x, - dx*y,;) —- dx 
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Let d, represent the quantity dx«(b — a). To calculate d, iteratively, you need to 

know how to compute it from d;_;: 

(dd, _4) = (2 # (ay 2% yd aty)) (2% (dy#x%s.5- ~--Ox*y yoy) 

ll Ze {AY "een mig) ~ OX* (yer ya ie 

x, — X;_, is always 1, and y; — y,_, is either 1 (if pixel A at (x,y; + 1) is plotted) or 0 

(if pixel B at (x,,y;,) is plotted). Thus, computing the difference between d; and d,_; 

is easy, and d, can be calculated simply by incrementing d;_, with one of two 

constants: 

If d,_, >= 0, plot pixel A at (x;,y; + 1). The increment for d,_; is then 

(dj-d,_,) = 2* (dy-dx) 

If d,_, <0, plot pixel B at (x;,y,). The increment for d;_, is then 

(d,-d,_,) = 2*dy 

To calculate d,’s initial value, remember that the first pixel in the line is assumed 

to be at (0,0). Substituting x; = 1 and y, = 0 into the equation for d; gives 

d, = 12*dy = dx 
ele 

The resulting algorithm is efficient, because the most complicated calculations 

are performed only once, outside the loop that plots the pixels (see Listing 6-2). 

Within the loop, incrementally determining which pixels lie closest to the desired 

line (using the decision variable d,) eliminates the need for time-consuming 
floating-point arithmetic. The result is a faster line-drawing algorithm. 

Optimization 

Nevertheless, there is still room for improvement. The slowest part of the line- 

drawing primitive in Listing 6-2 is the call to Set Pixel (), which calculates the 
pixel’s address in the video buffer and then sets the pixel’s value. The pixel ad- 

dress calculation is clearly the slowest part of the procedure. 

/* Listing 6-2 */ 

Lannea, Vili exon Vee Te) /* for lines with slope between -1 and 1 */ 
int x1,yl1; 

int RO eae /* endpoints */ 

int mie /* pixel value */ 

{ 

int d,dax, dy; 

int Ainer, Bincr, yiner; 

int X,Yi 

EAE ed (Sea a> mee) 

{ 

Swap( &x1, &x2 ); 

Swap( &y1, &y2 ); 

} 

/* force x1 < x2 */ 

Listing 6-2. A high-level implementation of Bresenham’ s algorithm. (continued) 
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Listing 6-2. Continued. 

ce Cy2) > yl) /* determine increment for y */ 
yincr = 1; 

else 

yincr = -1; 

dx = x2 - x1; /* initialize constants */ 
dy = abs( y2=y1 ); 

d= 2 * dy - dx; 

haner = 2 * (dy = dx) 
Bincr = 2 * dy; 

<= 1 /* initial x and y */ 
Ye Oy iis 

SsetPixel ( x, y, n ); /* set pixel at (x1,y1) ¥*/ 

for (x=x1+1; x<=x2; x++)s /* do from x1+1 to x2 */ 
{ 

if (d >= 0) 

{ 
y += yincr; /* set pixel A */ 
d += Aincr; 

} 
else /* set pixel B */ 

ad += Bincr; 

Seretxed () x fy, er _)is 

Swap( pa, pb ) 

int *pa, *pb; 

{ 
int t; 

t = *pa; 

*pa oa *pb; 

*pb = t; 

Efficient Pixel Addressing 

Fortunately, you can optimize the pixel address calculation significantly: The 

pixel addresses themselves can be calculated incrementally, in the same way you 
increment the decision variable d,;. After calculating the address of the first pixel 

in the line, you can find its neighbors in the video buffer either by incrementing 

the pixel’s byte offset or by rotating the bit mask that represents its bit offset. Cal- 

culating pixel addresses incrementally is significantly faster than performing the 

computation from scratch for each (x,y) coordinate pair in the line. 

For example, you can identify the pixel immediately to the right of a given pixel 

by rotating the given pixel’s bit mask one pixel position to the right. (If the given 
pixel is the rightmost pixel in its byte, increment the byte offset as well.) To find 
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the pixel immediately above a given pixel, decrement the byte offset by the num- 

ber of bytes per row of pixels, but keep the bit mask the same. This calculation is 

slightly more complicated in video modes with an interleaved video buffer map, 

but the principle is the same. 

Performance Comparisons 

When you compare the techniques for scan-converting lines, the performance 

gains from using an incremental line-drawing algorithm and incremental address 

calculations are remarkable (see Figure 6-4). Writing your line-drawing routines 

in assembly language also helps. Coding and optimizing bit mask manipulation 

and address computations is much easier in assembly language than in a high- 

level language. 

Algorithm Language Pixels per Second 

Algorithm based on the equation C 4,800 
of a line 

Bresenham’s algorithm C 16,000 
Bresenham’s algorithm Assembler 26,000 

Bresenham’s algorithm with Assembler 70,000 
incremental pixel address calculation 

Figure 6-4. Performance of line-drawing algorithms in C and in assembly language. Timings 
were obtained on a 6 MHz IBM PCIAT with a Hercules Graphics Card. 

Special Cases 

To further improve the overall performance of your video graphics drivers, use 

special routines for drawing horizontal and vertical lines. In many applications, 

these special cases account for a surprising percentage of the calls to the line- 

drawing primitive. This is especially true if you use lines to fill regions. 

/* Listing 6-3 */ 

PilledRectangle( xi), yl, x2, y2Z, nm ) 

int Sl avalie /* upper left corner */ 

int x2, 25 /* lower right corner */ 

int n; /* pixel value */ 

{ 

aint Vie 

for (y=yl; y<=y2; yt+) /* draw ‘rectangle as a set of */ 
Liane (Ui, CV yeeX2 play) eR) S /* adjacent horizontal lines */ 

} 

Listing 6-3. A routine that draws horizontal lines. 

For example, the routine FilledRectangle() in Listing 6-3 calls on the 
line-drawing function to draw horizontal lines exclusively. If you fill a rectangle 
that is 100 pixels high, the line-drawing function is called 100 times to draw 
a horizontal line. When the line-drawing function recognizes the special 
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case of horizontal lines, functions such as FilledRect angle () run signifi- 
cantly faster. 

A special-purpose routine can draw horizontal lines 10 times faster than a 
general-purpose line-drawing routine. For vertical lines, a special-purpose routine 
is about 25 percent faster. Horizontal lines are represented in the video buffer by 
contiguous sequences of bytes you can fill with an 80x86 REP STOSB instruction, 
which runs much faster than the iterative loop the general line-drawing primitive 
requires. In drawing vertical lines, no logic is required to determine pixel loca- 
tions. You simply increment the pixel address. Again, the resulting code is 
simpler and faster. 

PC and PS/2 Implementations 
Implementations of Bresenham’s line-drawing algorithm on IBM video hardware 

are strongly influenced by the CPU’s capabilities and by the idiosyncrasies of 

pixel mapping in the video buffer in various graphics modes. Nevertheless, once 

you write a line-drawing routine for one graphics mode, you can adapt the source 

code to other graphics modes or to other video hardware with little difficulty. 

Modular Routines 

You should build your line-drawing routines with a modular structure. One prac- 

tical way to break your code into modules is to write separate routines for hori- 

zontal lines, vertical lines, lines with slope less than 1, and lines with slope 

greater than 1. Each module itself comprises a set of modules for performing each 

of the necessary pixel manipulations— XOR, AND, OR, and pixel replacement. 

Bresenham’s algorithm as derived in this chapter is applicable only to 

lines whose slope lies between 0 and 1. However, it is easy to use the 

same algorithm for lines with other slopes. For lines with slopes be- 

tween —1 and 0, simply change the sign of the y-increment (see Listing 

6-2). For lines with slopes less than —1 or greater than 1 (that is, 

| (dy/dx)| > 1), use the same algorithm but exchange the x- and y- 
coordinates. 

For example, each of the assembly-language line-drawing routines in 

this chapter contains two similar subroutines, one for | (dy/dx)| <= | 

and another for | (dy/dx)| > 1. Each routine contains a prologue that 

detects the special cases of horizontal and vertical lines, initializes 

the appropriate increment values, and selects the proper subroutine 

for the slope. 

Breaking your routines into modules helps when you customize your code for an 

application. It also simplifies the task of writing code to run symmetrically in dif- 

ferent graphics modes. For example, a routine that draws a vertical line in 640- 

by-200 2-color mode on a CGA requires little modification to run properly in 

320-by-200 4-color mode. 
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Minimizing Video Buffer Accesses 

In the 8086 family of microprocessors, data transfer instructions of the form 

MOV mem, reg are among the slowest. Try to minimize use of this CPU instruc- 

tion within your line-drawing primitives. Neighboring pixels in a line frequently 

are grouped in the same byte in the video buffer. (Obviously, such groups occur 

more frequently in more nearly horizontal lines.) You can speed your line- 

drawing routines by updating all neighboring pixels in each byte you store in 

the video buffer. 

Efficient Address Calculations 

To maximize performance, use CPU registers carefully to hold the values most 

frequently updated in the inner loops of your routines: the pixel bit mask, the 

buffer offset, and the decision variable. In Listing 6-4, for example, registers DH 

and DL hold bit masks, register BX holds the buffer offset, and the decision vari- 

able d is maintained in register DI. These values are the ones most frequently up- 

dated in these routines, so they are the ones you should try to keep in registers 

rather than in memory variables. 

If you neglect to use the CPU registers effectively, your routines may run much 

slower than necessary. Consider what would happen if you rewrote the routine in 

Listing 6-4 to store the decision variable in a memory variable instead of in regis- 

ter DI. Just this minor change would cause the routine to run about 20 percent 

slower. (Not only does this emphasize why you must make the best possible use of 

the CPU registers, but it also suggests why writing highly optimized video 

graphics primitives in a high-level language is very difficult.) 

CGA 

Listing 6-4 contains code for drawing lines in the CGA’s 640-by-200 2-color 
graphics mode. The routine consists of a prologue and four line-drawing modules. 
The prologue puts the endpoints in ascending order by their x-coordinates, sets 
up appropriate vertical increments for computing the pixel address within the 
inner loop, and selects an appropriate line-drawing module according to the 
slope of the line. The line-drawing modules (Vert Line06, HorizLine06, 
LoSlopeLine06, and HiSlopeLine06) contain the inner loops that actually 
update pixels and increment addresses. 

TITLE "Listing 6-4' 

NAME, Line06 

PAGE Soles 

Name: Line06 

i Function: Draw a line in 640x200 2-color mode 

z Caller: Microsoft Cs: 

Listing 6-4. A line-drawing routine for CGA 640-by-200 2-color mode. (continued) 
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Listing 6-4. Continued. 

ARGx1 

ARGy1 
ARGx2 

ARGy2 
ARGn 

VARleafincr 

VARincr1 

VARincr2 

VARroutine 

ByteOffsetShift 

DGROUP 

_TEXT 

_Line06 

7 Borce xX XZ 

EQU 
EQU 
EQU 

EQU 

EQU 

EQU 
EQU 

EQU 

EQU 

EQU 

GROUP 

SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

PROC 

push 

mov 

sub 

push 

push 

mov 

mov 

mov 

sub 

42 

jns 

neg 

mov 

xchg 

mov 

mov 

xchg 

mov 

void Line06(x1,y1,x2,y2,n); 

SRECR Py 1, K2, V2 /* pixel coordinates */ 

dan Ee rhe /* pixel value */ 

word ptr [bpt+4] ; 

word ptr [bp+6] 

word ptr [bp+8] 

word ptr [bp+10] 

byte ptr [bp+12] 

word ptr [bp-6] 

word ptr [bp-8] 

word ptr [bp-10] 

word ptr [bp-12] 

stack frame addressing 

3 7 used to convert pixels to byte offset 

_DATA 

byte public 'CODE' 

cs: _TEXT,ds:DGROUP 

PixelAddr06:near 

_Line06 
near 

bp ; preserve caller registers 

bp, sp 
sp, 8 ; stack space for local variables 

si 

di 

si,2000h ; increment for video buffer interleave 

di, 80-2000h ; increment from last to first interleave 

cx, ARGx2 

cx, ARGx1 A Cx B= ee =e 

VertLine06 ; jump if vertical line 

L01 PUD eae te ok 

Cx ; (GX =) x1 = MZ 

bx, ARGx2 ; exchange x1 and x2 

bx, ARGx1 

ARGx2,bx 

bx, ARGy2 ; exchange y1 and y2 

bx, ARGy1 

ARGy2,bx 

(continued) 
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Listing 6-4. Continued. 

; calculate dy = ABS(y2-y1) 

LO1: mov 

sub 

jnz 

jmp 

L02: jns 

neg 

neg 

neg 

xchg 

bx, ARGy2 

bx, ARGy1 

L02 

HorizLine06é 

L03 

bx 

Si 

di 

si,di 

; select appropriate routine for slope of 

LOS mov 

mov 

cmp 

jle 

mov 

xchg 

VARleafincr,di , 

VARroutine, offset 

bx,cx 

L04 , 

VARroutine, offset 

Dx pox , 

; calculate initial decision variable and 

L04: shl 

mov 

sub 

mov 

sub 

mov 

+ calculate first pixel 

push 

mov 

mov 

call 

mov 

shl 

mov 

not 

pop 
inc 

test 

jz 

xchg 

bx, 1 

VARincr1,bx 

bx,cx 

di,bx 

bx, cx 

VARincr2,bx 

address 

cx 

ax, ARGy1 

bx, ARGx1 

PixelAddr06 

al,ARGn 

ax,cl 

dx, ax 

dh 

Cx 

Cx 

bx, 2000h 

LO5 

si,VARleafincr 

, 

, 

BX 3= y2 = y1 

jump if horizontal line 

BXas= yl —ay2 

negate increments for buffer interleave 

exchange increments 

line 

save increment for buffer interleave 

LoSlopeLine06 

jump if dy <= dx (slope <= 1) 

HiSlopeLine06 

exchange dy and dx 

increments 

BX := 2 * dy 

ine) += 2e*idy 

Di v="d ="2ae dy — ax 

iner2 := 2% (dy — dx) 

preserve this register 

AX := y 

BX := x 

AH := bit mask 

ES:BX -—> buffer 

Cihes="* bLitsHio shite Pete 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

DH := bit mask 

DL := pixel value 

DH := inverse bit mask 

restore this register 

CX := # of pixels to draw 

set zero flag if BX in 1st interleave 

exchange increment values if 1st pixel 
lies in 1st interleave 

(continued) 
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Listing 6-4. Continued. 

LOS: jmp VARroutine ; jump to appropriate routine for slope 

; routine for vertical lines 

VertLine0dé: mov ax, ARGy1 m aX 2S sy 

mov bx, ARGy2 pa ene Vie) 

mov ex, bx 

sub cx, ax ; CX := dy 

jge L31 * jump if dy >= 0 

neg cx + force dy >= 0 

mov ax,bx ; AX 3= y2 

37s inc cx + CX := # of pixels to draw 

Mov bx, ARGx1 y BX =x 

push cx ; preserve this register 

call PixelAddr06 ; AH := bit mask 

; ES:BX -> video buffer 

; CL := # bits to shift left 

mov al,ARGn ; AL := pixel value 

shl ax,cl ; AH := bit mask in proper position 

; AL := pixel value in proper position 

not ah ; AH := inverse bit mask 

pop cx ; restore this register 

test x7 S4- ; set zero flag if BX in 1st interleave 

jz L32 

xchg si,di ; exchange increment values if 1st pixel 

; lies in ist interleave 

32's test al,al 

nz L34 ; jump if pixel value = 0 

LSS = or es: [bx],al ; set pixel values in buffer 

add bx, si ; increment to next portion of interleave 

xchg B14, AL ; toggle between increment values 

loop L33 ; loop down the line 

jmp short L35 

L34: and es: [bx],ah ; reset pixel values in buffer 

add bx, si ; increment to next portion of interleave 

xchg Si ,aL ; toggle between increment values 

loop L34 

L35: jmp Lexit 

; routine for horizontal lines (slope = 0) 

HorizLine0é: mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr06 ; AH := bit mask 

; ES:BX -> video buffer 

CL ¢= * bits to shitt Lert 

mov di,bx ; ES:DI -> buffer 

(continued) 
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Listing 6-4. Continued. 

mov dh, ah 

not dh ; DH := unshifted bit mask for leftmost 

; byte 

mov dl, OFFh ; DL := unshifted bit mask fox 

z rightmost byte 

shl dh jel ; DH := reverse bit mask for first byte 

not dh ; DH := bit mask for first byte 

mov cx, ARGx2 

and Clad 

xor Cua : CL := number of bits to shift left 

shl di ,.er: ; DL := bit mask for last byte 

; determine byte offset of first and last pixel in the line 

mov ax, ARGx2 Pe ee 

mov bx, ARGx1 7s BXP SCX 

mov cl, ByteOffsetShift ; number of bits to shift to 

; convert pixels to bytes 

shr ax,cl ; AX := byte offset of x2 

shr bx ied ; BX := byte offset of x1 

mov cx, ax 

sub Cx, Dx > CXlc=" (#e bytes an Line) = "1 

; propagate pixel value throughout one byte 

mov bx, offset DGROUP:PropagatedPixel 

mov al, ARGn ; AL := pixel value 

xlat 

; set pixels in leftmost byte of the line 

or dh,dh 

js L43 ; jump if byte-aligned (x1 is leftmost 

7 pixel in byte) 

or Cx nex 

jnz L42 ; jump if more than one byte in the line 

and dl,dh ; bit mask for the line 

jmp short L44 

L42: mov ah,al 

and ah, dh ; AH := masked pixel bits 

not dh ; DH := reverse bit mask for 1st byte 

and es: [di],dh ; zero masked pixels in buffer 

or es: [di],ah ; update masked pixels in buffer 

Ine di 

dec cx 

7 use a fast 8086 machine instruction to draw the remainder of the line 

L43: rep stosb + update all pixels in the line 

; set pixels in the rightmost byte of the line 

(continued) 
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Listing 6-4. Continued. 

L44: and aad 

not dal 

and es: [di],dl 

or es: [di],al 

jmp Lexit 

7 routine for dy <= dx (slope <= 1) 

LoSlopeLine0é: 

L10: mov ah,es: [bx] 

Rais and ah,dh 

or ah,dl 

ror ay 

ror dh, 1 

jnc L14 

; bit mask not shifted out 

Or di,di 

jns L12 

add di, VARincr1 

loop L11 

mov es: [bx],ah 

jmp short Lexit 

ais add di, VARincr2 

mov es: [bx],ah 

add bx, Si 

xchg si, VARleafincr 

loop L10 

jmp short Lexit 

; bit mask shifted out 

L14: mov es: [bx],ah 

LAC bx 

or di,di 

jns L15 

add di, VARincr1 

loop L10 

jmp short Lexit 

AL := masked pixels for last byte 

zero masked pixels in buffer 

update masked pixels in buffer 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

SI = buffer interleave increment 

DI = decision variable 

AH := byte from video buffer 

zero pixel value at current bit offset 

set pixel value in byte 

rotate pixel value 

rotate bit mask 

jump if bit mask rotated to 

leftmost pixel position 

test sign of d 

jump if d >= 0 

dis= dot aneri 

store remaining pixels in buffer 

a p= dit sanerZ 

update buffer 

increment y 

exchange interleave increment values 

update buffer 

BX := offset of next byte 

test sign of d 

jump if non-negative 

a s= d+ ines 

(continued) 
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Listing 6-4. Continued. 

LS 

; routine for dy > dx 

HiSlopeLine0é: 

L202 

L22: 

L23: 

Lexit: 

_Line06 

_TEXT 

_DATA 

add 

add 

xchg 

loop 

jmp 

and 

or 

add 

xchg 

or 
jns 

add 

loop 

jmp 

add 

ror 

ror 

cmc 

adc 

loop 

pop 

pop 
mov 

pop 
Cec 

ENDP 

ENDS 

SEGMENT word public 

di, VARincr2 

bx, si 

si,VARleafincr 

L10 

short Lexit 

(slope > 1) 

es: [bx],dh 

es: [bx],dl 

bx, si 

si, VARleafincr 

aiyida. 

L23 

di, VARincr1 

L21 

short Lexit 

di, VARincr2 

dl, 1 

dh, 1 

bx, 0 

L21 

di 
Si 

sp,bp 

bp 

, 

"'DATA' 

dei=td + inex? 

increment y 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

Sr buffer interleave increment 

DI decision variable 

I 

zero pixel value in video buffer 

set pixel value in byte 

increment y 

exchange interleave increment values 

test sign of d 

jump if d >= 0 

d ad Panes 

d d + iner2 

rotate pixel value 

rotate bit mask 

cf set if bit mask not rotated to 

leftmost pixel position 

BX := offset of next byte 

restore registers and return 

(continued) 
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Listing 6-4. Continued. 

PropagatedPixel DB 00000000b 220 

DB UPA A 1.4 15 nel 

_DATA ENDS 

END 

Most of the execution time in this routine is spent in the inner loops of the four 

line-drawing modules. To optimize the speed of the inner loops, as much com- 

putation as possible is performed outside of them. In particular, the inner loop of 

HorizLine06 (at label L43) is very fast because it consists only of a single 

80x86 machine instruction. 

The routines LoSlopeLine06 and HiSlopeLine06 implement Bresenham’s 

algorithm. The inner loop of HiSlopeLine06 (at L21) is simpler than the inner 

loop of LoSlopeLine06 (at L11). This is because HiSlopeLine0é6 incre- 

ments the pixel y-coordinate, and thus the buffer offset, on every iteration, so the 

only other code needed in the loop is the code to increment the decision variable 

and update the pixel bit mask. In LoS lopeLine06, the x-coordinate is incre- 

mented on each iteration by rotating the pixel bit mask. This necessitates some 

extra code to update the bit mask and buffer offset in accordance with the decision 

variable’s value. 

The routine for 320-by-200 4-color mode, shown in Listing 6-5, is similar to the 

one for 640-by-200 2-color mode. In fact, you could write a single routine that 

works in either mode without undue sacrifice in performance. The differences lie 

in how the address of the first pixel in the line is calculated (that is, a call to 

PixelAddr04 versus one to PixelAddr06) and in how many bits are masked 

and updated for each pixel in the buffer. The bit mask is 1 bit wide in 640-by-200 

2-color mode and 2 bits wide in 320-by-200 4-color mode. 

TITLE MSE ing) b=" 

NAME Line04 

PAGE 55), tz 

Name: Line04 

Function: Draw a line in 320x200 4-color mode 

Caller: Mieresoft Cs 

void Line04 (x1,y1,x2,y2,n); 

We Ne Se Ne Se Ne Ne Se Ne Se Ne Ne Ne 

intext, Vips2eves /* pixel coordinates */ 

PME 7H? /* pixel value */ 

Listing 6-5. A line-drawing routine for CGA 320-by-200 4-color mode. (continued) 
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Listing 6-5. Continued. 

ARGx1 EQU word ptr [bpt4] ; stack frame addressing 

ARGy1 EQU word ptr [bp+6] 

ARGx2 EQU word ptr [bp+8] 

ARGy2 EQU word ptr [bp+10] 

ARGn EQU byte ptr [bp+12] 

VARleafincr EQU word ptr [bp-6] 

VARincr1 EQU word ptr [bp-8] 

VARincr2 EQU word ptr [bp-10] 

VARroutine EQU word ptr [bp-12] 

ByteOffsetShift EQU 2 ; used to convert pixels to byte offset 

DGROUP GROUP _DATA 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: _TEXT,ds:DGROUP 

EXTRN PixelAddr04:near 

PUBLIC _Line0Q4 

_Line04 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

sub sp,8 ; stack space for local variables 

push si 

push al 

mov si,2000h ; increment for video buffer interleave 

mov di, 80-2000h ; increment from last to first interleave 

mov cx, ARGx2 

sub cx, ARGx1 hy CX 3 x2 = 1 

jz VertLine04 ; jump if vertical line 

7 Loree, xile< x2 

jns L01 A jump ai 2295501 

neg cx 7 CX S= e Sexe 

mov bx, ARGx2 ; exchange x1 and x2 

xchg bx, ARGx1 

mov ARGx2,bx 

mov bx, ARGy2 * exchange yl and y2 

xchg bx, ARGy1 

mov ARGy2,bx 

7 Calculate dy = ABS(y2-y1) 

L0O1: mov bx, ARGy2 

sub bx, ARGy1 7; BXat= y2 = yi 

jnz L02 

jmp HorizLine04 * jump if horizontal line 

(continued) 

178 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Listing 6-5. Continued. 

L02: jns 

neg 

neg 

neg 

xchg 

L03 

bx 

Sa 

di 

si,di , 

+ select appropriate routine for slope of 

L03: mov 

mov 

cmp 

jle 

mov 

xchg 

VARleafincr, di , 

VARroutine, offset 

Dxpex 

L04 , 

VARroutine, offset 

bx, Cx , 

7 calculate initial decision variable and 

L04: shl 

mov 

sub 

mov 

sub 

mov 

; calculate first pixel 

push 

mov 

mov 

call 

mov 

shl 

mov 

not 

pop 
inc 

test 

jz 

xchg 

LOS: jmp 

bx, 1 

VARincr1,bx 

bx, cx 

di,bx 

bx, cx 

VARincr2,bx 

address 

Cx 

ax, ARGy1 

bx, ARGx1 

PixelAddr04 

al, ARGn 

aAxpeL 

dx,ax 

dh 

Cx 

Cx 

bx, 2000h 

LOS 

si, VARleafincr 

VARroutine 

™ 

Ne oN fe 

BkeVS' y| —sy2 

negate increments for buffer interleave 

exchange increments 

line 

save increment for buffer interleave 

LoSlopeLine04 

jump if dy <= dx 

HiSlopeLine04 

exchange dy and dx 

(slope <= 1) 

increments 

BX := 2 * dy 

inex| 2= 2°* dy 

Dir s= "d=" 2-4 dy = dx 

INGE2 = 2 (dy Nd) 

preserve this register 

AX "=" Vy 

Bike = x 

AH := bit mask 

ES:BX -> buffer 

CL’ <= # bits’ to shift left 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

DH := bit mask 

DL := pixel value 

DH := inverse bit mask 

restore this register 

CX := # of pixels to draw 

set zero flag if BX in Ist interleave 

exchange increment values if 1st pixel 

lies in ist interleave 

jump to appropriate routine for slope 

(continued) 
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Listing 6-5. Continued. 

routine for vertical lines , 

VertLine04: mov ax, ARGy1 7; AX s= yl 

mov bx, ARGy2 7) BX Ba sy 

mov cx, bx 

sub Cx, ax 2 ICX s= dy 

jge L31 ; jump if dy >= 0 

neg cx ; force dy >= 0 

mov ax,bx WAX. s= YZ 

E31) inc cx , Cy += + of pixels to draw 

mov bx, ARGx1 7 <BxX gS 

push cx ; preserve this register 

call PixelAddr04 ; AH := bit mask 

; ES:BX -> video buffer 

7; (CL S= fF bits fo shitt Lete 

mov al,ARGn ; AL := pixel value 

shl ax, el ; AH := bit mask in proper position 

; AL := pixel value in proper position 

not ah ; AH := inverse bit mask 

pop cx 7 restore this register 

test bx, Si 7 set zero flag if BX in 1st interleave 

4z 1 

xchg si, di 7 exchange increment values if 1st pixel 

; lies in 1st interleave 

nei and es: [bx],ah 7 (zero pixeljan buffer 

or es: [bx],al ; set pixel value in buffer 

add bx, Si ; increment to next portion of interleave 

xchg si,di ; toggle between increment values 

loop L32 

jmp Lexit 

7 routine for horizontal lines (slope = 0) 

HorizLine04: mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr04 ; AH s= bit mask 

+ ES:BX -> video buffer 

7 CL s= # bits-to shift left 
mov Ga ox 7; ES: DI -> buffer 

mov dh, ah 

not dh * DH := unshifted bit mask for leftmost 

; byte 
mov dl, OFFh + DL := unshifted bit mask for 

; rightmost byte 

shl dh, cl ; DH := reverse bit mask for first byte 
not dh *; DH := bit mask for first byte 

(continued) 

180 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Listing 6-5. Continued. 

mov cx, ARGx2 

and eis 

xor eia 

shl ona + CL := number of bits to shift left 

shl abpeu + DL := bit mask for last byte 

; determine byte offset of first and last pixel in the line 

mMOv ax, ARGx2 PAX go=e x2 

mov bx, ARGx1 : BX. = -x1 

mov cl, ByteOffsetShift - numbex of bits to shift to 

7 convert pixels to bytes 

shr ax,cl ; AX := byte offset of x2 

shr peel + BX := byte offset of x1 

mov Cx, ax 

sub Ckypbs (CAM S=E(@te Dy tess ah chune) =a 1 

; propagate pixel value throughout one byte 

mov bx,offset DGROUP:PropagatedPixel 

mov al,ARGn ; AL := pixel value 

xlat ; AL := propagated pixel value 

; set pixels in leftmost byte of the line 

or dh, dh 

js L43 7 jump if byte-aligned (x1 is leftmost 

; pixel in byte) 

or ex, cx 

jnz L42 7 jump if more than one byte in the line 

and d1,dh ; bit mask for the line 

jmp short L44 

L42: mov ah,al 

and ah, dh ; AH := masked pixel bits 

not dh ; DH := reverse bit mask for 1st byte 

and es: [di],dh ; zero masked pixels in buffer 

or es:[di],ah ; update masked pixels in buffer 

inc di 

dec ex 

use a fast 8086 machine instruction to draw the remainder of the line 

L43: rep stosb ; update all pixels in the line 

set pixels in the rightmost byte of the line , 

L44: and al,dl ; AL := masked pixels for last byte 

not dl 

and es: [di],dl ; zero masked pixels in buffer 

or es:[di]J,al ; update masked pixels in buffer 

jmp Lexit 

(continued) 

Chapter 6: Lines 181 



Listing 6-5. Continued. 

; routine for dy <= 

LoSlopeLine04: 

L10: 

lel aya 

mov 

and 

or 

ror 

ror 

EOE 

KOE 

jne 

dx (slope <= 1) 

ah,es: [bx] 

ah,dh 

ah,dl 

dl, 1 

dl,1 

dh, 1 

dh, 1 

L14 

; bit mask not shifted out 

bii2s 

; bit mask shifted out 

L14: 

Lat Sue 

or 

jns 

add 

loop 

mov 

jmp 

add 

mov 

add 

xchg 

loop 

jmp 

mov 

Hae 

jns 

add 

loop 

jmp 

add 

add 

xchg 

di, di 

L12 

di, VARincr1 

L14 

es: [bx],ah 

short Lexit 

di, VARincr2 

es: [bx],ah 

bx, Si 

si,VARleafincr 

L10 

short Lexit 

es: [bx],ah 

bx 

di, di 

AS 

di, VARincr1 

L10 

short Lexit 

di, VARincr2 

bx Si 

si, VARleafincr 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

SI = buffer interleave increment 

DI = decision variable 

AH := byte from video buffer 

zero pixel value at current bit offset 

set pixel value in byte 

rotate pixel value 

rotate bit mask 

jump if bit mask rotated to 

leftmost pixel position 

test sign of d 

jump if d >= 0 

d= depanex} 

store remaining pixels in buffer 

a s=7%d + aner2 

update buffer 

increment y 

exchange interleave increment values 

update buffer 

BX := offset of next byte 

test sign of id 

jump if non-negative 

d at inert 

d a ck ainiem2 

increment y 

(continued) 
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Listing 6-5. Continued. 

, coutine for dy > dx 

HiSlopeLine04: 

L21: 

L224 

L23: 

Lexit: 

_Line0d4 

_TEXT 

_DATA 

loop 

jmp 

and 

or 

add 

xchg 

jns 

add 

loop 

jmp 

add 

ror 

ror 

ror 

ror 

cmc 

adc 

loop 

pop 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

SEGMENT word public 

L10 

short Lexit 

(slope > 1) 

es: [bx],dh 

es: [bx],dl 

bx, si 

si, VARleafincr 

di,di 

L23 

di, VARincr1 

L21 

short Lexit 

di, VARincr2 

dl,1 

dl,1 

dh, 1 

dh, 1 

bx, 0 

L21 

si 

sp, bp 

bp 

'DATA' 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL pixel value in proper position 

SI buffer interleave increment 

DI = decision variable 

i 

zero pixel value in video buffer 

set pixel value in byte 

increment y 

exchange interleave increment values 

test sign of d 

jump if d >= 0 

d a+ incr1 

d Cerne re 

rotate pixel value 

rotate bit mask 

cf set if bit mask not rotated to 

leftmost pixel position 

BX := offset of next byte 

restore registers and return 

(continued) 
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Listing 6-5. Continued. 

PropagatedPixel DB 00000000b He 0) 

DB 01010101b ee) 

DB 10101010b rae. 

DB At td tip 213 

_DATA ENDS 

END 

On the CGA, the code that handles vertical increments is complicated by the need 

to step across the interleaves in the video buffer. The pixel address is incremented 

by 2000H to move from the first interleave (even y-coordinates) to the second in- 

terleave (odd y-coordinates). To increment from a pixel at an odd y-coordinate to 

the pixel just below it, you add —2000H (to increment from the second to the first 

interleave) plus 80 (the number of bytes in each pixel row in the buffer). The in- 

crement is thus OEOSOH (80 — 2000H). 

The routines for the CGA presented in Listings 6-4 and 6-5 can only 

copy the specified pixel value into the video buffer. To perform a 

XOR, an OR, or an AND operation on the preexisting values in the 

buffer using the specified pixel value, change the inner loops of each 

of the four line-drawing modules. 

In selecting among pixel operations (XOR, AND, and so on), you face 

the usual trade-off between speed and code size. To maximize speed, 

write a separate line-drawing module for each pixel operation (AND, 

OR, XOR, and replace). To minimize redundant code, call a short 

subroutine, or add some branching logic to perform one of the pixel 
operations. 

HGC 

The routine for the HGC, contained in Listing 6-6, is similar to the one for the 

CGA’s 640-by-200 2-color mode. The important difference is in how the HGC’s 

video buffer is mapped. Because of the Hercules video buffer’s four-way in- 
terleave, the pixel address is incremented by adding the buffer interleave value 
(2000H or —2000H) until the result exceeds the limit of valid buffer offsets. 
Because valid buffer offsets lie in the range 0 through 7FFFH, the routine detects 
the overflow condition by examining the high-order bit of the result. When the 
result overflows, it adds another value (90 — 8000H or 8000H — 90) to it, so that the 
new result is the proper offset in the next buffer interleave. 

TITLE "Listing 6-6! 
NAME LineHGC 

PAGE Boyne 

(continued) 

Listing 6-6. A line-drawing routine for Hercules monochrome graphics mode. 
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Listing 6-6. Continued. 

; Name: 

7 Function: 

Caller; 

Ne Me Ne Ne Ne Ne Se Ne Ne 

ARGx1 

ARGy1 

ARGx2 

ARGy2 
ARGn 

VARleafincr 

VARincr1 

VARincr2 

VARroutine 

ByteOffsetS 

DGROUP 

_TEXT 

_LineHGC 

; force x1 

hift 

<ixZ 

LineHGC 

Draw a line in HGC or HGC+ 720x348 graphics 

Microsoft C: 

EQU 

EQU 

EQU 
EQU 
EQU 

EQU 

EQU 

EQU 
EQU 

EQU 

GROUP 

SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

PROC 

push 

mov 

sub 

push 

push 

mov 

mov 

mov 

sub 

jz 

jns 

neg 

mov 
xchg 

mov 

void LineHGC(x1,y1,x2,y2,n); 

BME oS ay llpRe py 2s /* pixel coordinates */ 

aaa T's /* pixel value */ 

word ptr [bp+4] ; stack frame addressing 

word ptr [bp+6] 

word ptr [bp+8] 

word ptr [bp+10] 

byte ptr [bpt12] 

word ptr [bp-6] 
word ptr [bp-8] 

word ptr [bp-10] 

word ptr [bp—1/2] 

3 7 used to convert pixels to byte offset 

_DATA 

byte public 'CODE' 

cs:_TEXT,ds:DGROUP 

PixelAddrHGC:near 

_LineHGC 

near 

preserve caller registers = bp 
bp, sp 

sp, 8 ; 

si 

di 

stack space for local variables 

increment for video buffer interleave 

increment from last to first interleave 

si,2000h F 

di, 90-8000h ; 

cx, ARGx2 

cx, ARGx1 GX, Pe Ze me SE 

VertLineHGC 7 Jump Lt vertical Line 

L01 7 jump wh x2 x1 

Gx 7 Cx = x =a 2 

bx, ARGx2 ; exchange x1 and x2 

bx, ARGx1 

ARGx2,bx 

(continued) 
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Listing 6-6. Continued. 

mov bx, ARGy2 

xchg bx, ARGy1 

mov ARGy2,bx 

; calculate dy = ABS(y2-y1) 

OW: Mov bx, ARGy2 

sub bx, ARGy1 

jz HorizLineHGC 

jns L03 

neg bx 

neg si 

neg di 

, 

; select appropriate routine for slope of 

L03: mov 

mov 

cmp 

jle 

mov 

xchg 

VARleafincr,di , 

VARroutine, offset 

bisy,.Cx 

L04 , 

VARroutine, offset 

bx, cx , 

; calculate initial decision variable and 

L04: shl 

mov 

sub 

mov 

sub 

mov 

* calculate first pixel 

push 

MOV 

mov 

eall 

mov 

shl 

mov 

not 

pop 
inc 

jmp 

bx, 1 

VARincr1,bx 

bx,.Cx 

da, bx 

brick 

VARincr2,bx 

address 

cx 

ax, ARGy1 

bx, ARGx1 

PixelAddrHGC 

al,ARGn 

ax) GL 

ax, ax 

dh 

Cx 

Cx 

VARroutine 

exchange y1 and y2 

BYAe= Vous ya 

jump if horizontal line 

BX S="yl = y2 

negate increments for buffer interleave 

line 

save increment for buffer interleave 

LoSlopeLineHGC 

jump if dy <= dx (slope <= 1) 

HiSlopeLineHGC 

exchange dy and dx 

increments 

BX i= 2° * dy 

incr! := 2 * dy 

DI := d= 2 * dy - dx 

#NncE2 s= 212 (dy = dx) 

preserve this register 

AX := y 

BX := x 

AH := bit mask 

ES:BX -> buffer 

CL := # bits to shift left 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

DH := bit mask 

DL := pixel value 

DH := inverse bit mask 

restore this register 

CX := # of pixels to draw 

jump to appropriate routine for slope 

(continued) 
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Listing 6-6. Continued. 

* routine for vertical lines 

VertLineHGC: mov ax, ARGy1 ; AX := yl 
mov bx, ARGy2 fOBX. 2= y2 

mov Cx, Dx 

sub CX, ax ¢ CXeR= dy 

jge L31 * Jump if dy S= 0 

neg Cx + force dy >= 0 

mov ax,bx ; AX 3= y2 

Eis inc ex + CX := # of pixels to draw 
mov bx, ARGx1 aS ker ex 
push cx * preserve this register 

call PixelAddrHGC + AH := bit mask 

+; ES:BX -> video buffer 

) Clhat= + bitsato shitty lett 

mov al,ARGn ; AL := pixel value 

shl ax, cl ; AH := bit mask in proper position 

7 ; AL := pixel value in proper position 

not. ah ; AH := inverse bit mask 

pop cx 7; restore this register 

7 Graw the line 

test al,al 

jz L34 ; jump if pixel value is zero 

L32: or es: [bx],al ; set pixel values in buffer 

add bx, si ; increment to next portion of interleave 

jns L33 

add bx, Ai ; increment to first portion of interleave 

L333 loop L32 

jmp short L36 

L34: and es: [bx],ah ; reset pixel values in buffer 

add bx, si ; increment to next portion of interleave 

jns E35 

add bx, Gu ; increment to first portion of interleave 

ESS loop L34 

L36: jmp Lexit 

; routine for horizontal lines (slope = 0) 

HorizLineHGC: mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddrHGC ; AH := bit mask 

; ES:BX -> video buffer 

i Cl) t= # bits te vshice lett 

mov di, bx ; ES:DI -> buffer 

mov dh, ah 

not dh ; DH := unshifted bit mask for leftmost 

: byte 

mov dal, OFFh ; DL := unshifted bit mask for 

5 rightmost byte 

(continued) 
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Listing 6-6. Continued. 

shl dh,cl ; DH := reverse bit mask for first byte 

not dh ; DH := bit mask for first byte 

mov cx, ARGx2 

and Clie) 

xor 61,7 ; CL := number of bits to shift left 

shl dl,ek ; DL := bit mask for last byte 

; determine byte offset of first and last pixel in the line 

mov ax, ARGx2 ; AX := x2 

mov bx, ARGx1 ; BX s= x1 

mov cl, ByteOffsetShift ; number of bits to shift to 

; convert pixels to bytes 

shr axpeL ; AX := byte offset of x2 

shr bx,cl ; BX := byte offset of x1 

mov cx, ax 

sub cx, bx ; CX := (# bytes in line) - 1 

; propagate pixel value throughout one byte 

mov bx,offset DGROUP:PropagatedPixel 

mov al,ARGn ; AL := pixel value 

xlat ; AL := propagated pixel value 

; set pixels in leftmost byte of the line 

or dh, dh 

js L43 ; jump if byte-aligned (x1 is leftmost 

* pixel in byte) 

or Cx ex 

jnz L42 ; jump if more than one byte in the line 

and dl,dh ; bit mask for the line 

jmp short L44 

L42: mov ah,al 

and ah, dh ; AH := masked pixel bits 

not dh ; DH := reverse bit mask for 1st byte 

and es:[di],dh ; zero masked pixels in buffer 

or es:[di],ah ; update masked pixels in buffer 

inc di 

dec cx 

; use a fast 8086 machine instruction to draw the remainder of the line 

L43: rep stosb ; update all pixels in the line 

+ set pixels in the rightmost byte of the line 

L44: and al,dl ; AL := masked pixels for last byte 

not dl 

and es: [di],dl ; zero masked pixels in buffer 

or es: [di],al ; update masked pixels in buffer 

jmp Lexit 

(continued) 
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Listing 6-6. Continued. 

* routine for dy <= 

LoSlopeLineHGC: 

L10: 

Bits 

mov 

and 

or 

ror 

LOL 

jnc 

(slope <= 1) 

ah,es: [bx] 

ah,dh 

ah,dl 

dl, 1 

dh, 1 

L14 

; bit mask not shifted out 

Li: 

Gio 

; bit mask shifted out 

L14: 

Eroe 

or 

jns 

add 

loop 

mov 

jmp 

add 

mov 

add 

jns 

add 

loop 

jmp 

mov 

inc 

or 

jns 

add 

loop 

jmp 

add 

add 

jns 

add 

di,di 

L12 

di, VARincr1 

L11 

es: [bx],ah 

short Lexit 

di, VARincr2 

es: [bx],ah 

bx, si 

L13 

bx, VARleafincr 

L10 

short Lexit 

es: [bx],ah 

bx 

di, di 

L15 

di, VARincr1 

L10 

short Lexit 

di, VARincr2 

bx, si 

L16 

bx, VARleafincr 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

SI = buffer interleave increment 

DI = decision variable 

AH := byte from video buffer 

zero pixel value at current bit offset 

set pixel value in byte 

rotate pixel value 

rotate bit mask 

jump if bit mask rotated to 

leftmost pixel position 

test sign of d 

jump if d >= 0 

dem a+) Winer! 

store remaining pixels in buffer 

a s= d + sinerZ 

update buffer 

increment y 

jump if not in last interleave 

increment into next interleave 

update buffer 

BX := offset of next byte 

test sign of d 

jump if non-negative 

d d + incr 

d ad + iner2 

increment y 

jump if not in last interleave 

increment into next interleave 

(continued) 
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Listing 6-6. Continued. 

L16: loop 

jmp 
L10 

short Lexit 

~ coutine, for dy > dx (slope > 1) 

HiSlopeLineHGC: 

E20 

L22% 

G23): 

Lexit: 

_LineHGC 

ErExXe 

_DATA 

PropagatedPixel 

_DATA 

and 

or 

add 

jns 

add 

or 

jns 

add 

loop 

jmp 

add 

OK 

OG 

cmc 

adc 

loop 

pop 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

SEGMENT 

DB 

DB 

ENDS 

END 

es: [bx],dh 

es: [bx],dl 

bx, si 

L22 

bx, VARleafincr 

dai, da. 

L23 

di, VARincr1 

L21 

short Lexit 

di, VARincr2 

dai, 1 

dh; 1 

bx, 0 

L21 

si 

sp,bp 

bp 

word public 

00000000b 

ay 15 

'DATA' 

loop until all pixels are set 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

SI = buffer interleave increment 

DI = decision variable 

zero pixel value in video buffer 

set pixel value in byte 

increment y 

jump if not in last interleave 

increment into next interleave 

jump if d >= 0 

da a aimner | 

d Gy et nerZ 

rotate pixel value 

rotate bit mask 

cf set if bit mask not rotated to 

leftmost pixel position 

BX := offset of next byte 

restore registers and return 
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The routines for the HGC never access the video buffer with 16-bit read/write opera- 
tions such as MOVSW or AND [BX], DX. Avoiding these 16-bit operations ensures 
that the routines will run on the InColor Card as well as on the HGC and HGC+. 

You can use the same line-drawing routines on either of the HGC’s 

video pages by setting the appropriate value for VideoBufferSeg 

in PixelAddrHGC. For video page 0, set VideoBuf ferSeg to 
BOOOH. For video page 1, use B800H. 

EGA 

For the EGA, three line-drawing routines can cover all available graphics modes. 

The routines for the CGA’s 640-by-200 2-color and 320-by-200 4-color modes work 

equally well in equivalent modes on the EGA. The routine for the remaining 

graphics modes (200-line 16-color modes and all 350-line modes) is complicated 

by the need to program the Graphics Controller, but simplified in that the 

Graphics Controller hardware handles some pixel manipulations that must be 

performed in software on the CGA. 

The routine in Listing 6-7 uses Graphics Controller write mode 0 to update the 
video buffer. The routine stores the pixel value for the line in the Set/Reset regis- 

ter. For each pixel updated in the buffer, the routine writes the appropriate bit 
mask to the Bit Mask register. Thus, a single 80x86 instruction can read, update, 

and rewrite up to 8 pixels at a time. 

TITLE "LBusting 6=7* 

NAME Line10 

PAGE 55) 132 

; Name: Line10 

; Function: Draw a line in the following EGA and VGA graphics modes: 

200-line 16-color modes 

350-line modes 

640x480 16-color 

Caller: Microsoft C: 

void Line10(x1,y1,x2,y2,n); 

ee 

tnt slp Vy) Aker vor /* pixel coordinates */ 

ant 2 /* pixel value */ 

ARGx1 EQU word ptr [bp+4] ; stack frame addressing 

ARGy1 EQU word ptr [bp+6] 

ARGx2 EQU word ptr [bpt+8] 

ARGy2 EQU word ptr [bpt10] 

ARGn EQU byte ptr [bpt+12] 

Listing 6-7. A line-drawing routine for native EGA graphics modes. (continued) 
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Listing 6-7. Continued. 

VARvertincr EQU 

VARincr1 EQU 

VARincr2 EQU 

VARroutine EQU 

ByteOffsetShift EQU 

BytesPerLine EQU 

RMWbits EQU 

_TEXY. SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

_Line10 PROC 

push 

mov 

sub 

push 

push 

word ptr [bp-6] 

word ptr [bp-8] 

word ptr [bp-10] 

word ptr [bp-12] 

3 ; used to convert pixels to byte offset 

80 
0 ; value for Data Rotate/Func Select reg 

byte public 'CODE' 

cs:_TEXT 

PixelAddri0:near 

_Line10 

near 

bp ; preserve caller registers 

bp, sp 

sp, 8 ; stack space for local variables 

si 

di 

; configure the Graphics Controller 

mov 

mov 

xOr 

out 

mov 

out 

mov 

mov 

out 

dx, 3CEh ; DX := Graphics Controller port addr 

ah, ARGn ; AH := pixel value 

al,al ; AL := Set/Reset Register number 
dx, ax 

ax, OFO1h 7 AH := 1111b (bit plane mask for 

; Enable Set/Reset) 

dx,ax ; AL := Enable Set/Reset Register # 

ah, RMWbits 7 bits 3 and 4 of AH 3= function 

al, 3 ; AL := Data Rotate/Func Select reg # 
dx, ax 

; check for vertical line 

mov 

mov 

sub 

az 

+ force x1 < x2 

jns 

neg 

Mov 

xchg 

mov 

si,BytesPerLine ; increment for video buffer 

cx, ARGx2 

cx, ARGx1 ¢; CX := x2 = x1 

VertLine10 ; jump if vertical line 

L01 7. jump af x2 S34 

cx , CK x1 x2 

bx, ARGx2 7 exchange x1 and x2 
bx, ARGx1 

ARGx2,bx 

(continued) 
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Listing 6-7. Continued. 

, calculate dy 

LOT: 

, 

mov bx, ARGy2 . 

xchg bx, ARGy1 

mov ARGy2,bx 

= ABS (y2-y1) 

mov bx, ARGy2 

sub bx, ARGy1 : 

jz HorizLine10 ; 

jns L03 ; 

neg bx ; 

neg si ; 

select appropriate routine for slope of 

L03: 

, 

mov 

mov 

cmp 

jle 

mov 

xchg 

VARvertincr,si ; 

VARroutine, offset 

bx, cx 

L04 ; 

VARroutine, offset 

bx, cx ; 

calculate initial decision variable and 

L04: 

, calculate first pixel 

shl 

mov 

sub 

mov 

sub 

mov 

push 

mov 

mov 

call 

mov 

shl 

mov 

mov 

pop 
inc 

jmp 

Dx | ; 

VARincr1,bx i 

bx, cx 

sil, bx ; 

lopaneb.< 

VARincr2,bx 3 

address 

Cx ; 

ax, ARGy1 ; 

bx, ARGx1 ; 

PixelAddr10 . 

di,bx ; 

ah,cl ; 

bl,ah ; 

al,8 ; 

Cx ; 

cx ; 

VARroutine Fi 

exchange yl and y2 

BS 0y.2 = yi 

jump if horizontal line 

jump if slope is positive 

Bxee= yal aye 

negate increment for buffer interleave 

line 

save vertical increment 

LoSlopeLine10 

jump if dy <= dx 

HiSlopeLine10 

exchange dy and dx 

(slope <= 1) 

increments 

BX := 2 * dy 

iner!l := 2 * dy 

Sie Ga= 92 ea Cryer. Clix 

iner2) = 2° 4 (dy = dx) 

preserve this register 

AX 3:= y 

BX := x 

AH := bit mask 

ES:BX -> buffer 

Ch f= + bes to shift. lere 

ES:DI -> buffer 

AH := bit mask in proper position 

AH,BL := bit mask 

AL := Bit Mask Register number 

restore this register 

CX := # of pixels to draw 

jump to appropriate routine for slope 

(continued) 
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Listing 6-7. Continued. 

; routine for vertical lines 

VertLine10: mov ax, ARGy1 ; AX := yl 

mov bx, ARGy2 * BK t= y2 

mov cx, bx 

sub CX, ax 7 (CX s= dy 

jge L31 A gump it “dya>= 0 

neg cx ; force dy >= 0 

mov ax, bx ; AX := y2 

L31: inc Cx 7 CX 3= # of pixels to draw 

mov bx, ARGx1 , BX := x 

push ex ; preserve this register 

call PixelAddr10 ; AH := bit mask 

; ES:BX -> video buffer 

7; Ch i= # Dits to shite Letre 

; set up Graphics Controller 

shl ah,cl ; AH := bit mask in proper position 

mov al,8 ; AL := Bit Mask reg number 

out dx, ax 

pop cx ; restore this register 

; draw the line 

mee or es: [bx],al 7 set pixel 

add bx, si ; increment to next line 

loop L32 

jmp Lexit 

; routine for horizontal lines (slope = 0) 

HorizLine10: 

push ds 7 preserve DS 

mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr10 ; AH := bit mask 

7 ES:BX -> video buffer 

7 CL 3= # bits, toe shitt Lett 

mov di,bx ; ES:DE => buffer 

mov dh, ah 7 DH := unshifted bit mask for leftmost 
; byte 

not dh 

shl dh,cl ; DH := reverse bit mask for first byte 
not dh ; DH := bit mask for first byte 

mov cx, ARGx2 

and cued 

xor Claw 7 CL := number of bits to shift left 
mov dl, OFFh * DL := unshifted bit mask for 

: rightmost byte 
shl a cu 7 DL := bit mask for last byte 

(continued) 
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Listing 6-7. Continued. 

; determine byte offset of first and last pixel in the line 

mov ax, ARGx2 p 

mov bx, ARGx1 Z 

mov cl, ByteOffsetShift 

shr azx,el ; 

shr xc ed ; 

mov Cx; ax 

sub ex, bx : 

AX := x2 

BXeaS 

7 number of bits to shift to 

; convert pixels to bytes 

AX := byte offset of x2 

BX := byte offset of x1 

CX := (# bytes in line) - 1 

* get Graphics Controller port address into DX 

mov ba, dx ; BH := bit mask for first byte 

—;-BL-:= bit mask for last byte 

mov ax; 3CEh ; DX := Graphics Controller port 

mov al,8 ; AL := Bit Mask Register number 

+ make video buffer addressable through DS:SI 

7 set pixels in 

L42: 

, 

L43: 

7; Set pixels in 

L44: 

push es 

pop ds 

mov Si, GL ; 

leftmost byte of the line 

or bh,bh 

js L43 ; 

or Gx Ox 

jnz L42 ; 

and bl,bh ; 

jmp short L44 

mov ah,bh 5 

out dx,ax ; 

movsb ; 

dec ex 

mov an piiddd dit 5 

out dx,ax ; 

rep movsb ; 

the rightmost byte of the 

mov ah,bl i 

out dx, ax ; 

movsb ; 

pop ds ; 

jmp short Lexit 

DS:SI -> video buffer 

jump if byte-aligned (x1 is leftmost 

pixel in byte) 

jump if more than one byte in the line 

BL := bit mask for the line 

AH := bit mask for 1st byte 

update Graphics Controller 

update bit planes 

use a fast 8086 machine instruction to draw the remainder of the line 

AH := bit mask 

update Bit Mask Register 

update all pixels in the line 

line 

AH := bit mask for last byte 

update Graphics Controller 

update bit planes 

restore DS 

(continued) 
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Listing 6-7. Continued. 

; routine for dy >= dx (slope <= 1) 

LoSlopeLine10: 

L10: mov ah, bl 

Bi: or ah,bl 

ror bl, t 

Ve L14 

; bit mask not shifted out 

or Sisk 

jns L12 

add si, VARincr1 

loop L11 

out ax,ax 

or Sean, aa 

jmp short Lexit 

L12: add si,VARincr2 

out dx, ax 

or es:[di],al 

add di, VARvertincr 

loop L10 

jmp short Lexit 

; bit mask shifted out 

L14: out dx,ax 

or es: [di],al 

inc di 

or Siok 

jns L15 

add si,VARincr1 

loop L10 

jmp short Lexit 

D154 add Si, VARincr2 

add di, VARvertincr 

loop L10 

jmp short Lexit 

, 

ES:DI -> video buffer 

AL = Bit Mask Register number 

BL = bit mask for ist pixel 

CX = # pixels to draw 

DX = Graphics Controller port addr 

SI = decision variable 

AH := bit mask for next pixel 

mask current pixel position 

rotate pixel value 

jump if bit mask rotated to 

leftmost pixel position 

test sign of d 

jump if d >= 0 

a.2=Sceteer | 

update Bit Mask Register 

set remaining pixel(s) 

Aer—= id See ines? 

update Bit Mask Register 

update bit planes 

increment y 

update Bit Mask Register 

update bit planes 

increment x 

test sign of d 

jump if non-negative 

d dit ines 

d := d + incer2 

vertical increment 

(continued) 
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Listing 6-7. Continued. 

* routine for dy > dx 

HiSlopeLine10: 

L2it< 

Li22is 

23s 

mov 

out 

OF 

add 

or 

jns 

add 

loop 

jmp 

add 

ror 

adc 

loop 

(slope > 1) 

bx, VARvertincr 

dx,ax 

es: [di],al 

da, bs 

Say, Su 

L23 

si,VARincr1 

L21 

short Lexit 

si,VARincr2 

ah,1 

di,0 

L21 

= 

‘e 

ES:DI -> video buffer 

AH = bit mask for 1st pixel 

AL = Bit Mask Register number 

CX = # pixels to draw 

DX = Graphics Controller port addr 

SI = decision variable 

BX := y-increment 

update Bit Mask Register 

update bit planes 

increment y 

testesign of d 

jump if d >= 0 

Ce at ner | 

a 2= detainee? 

rotate bit mask 

increment DI if when mask rotated to 

leftmost pixel position 

; restore default Graphics Controller state and return to caller 

Lexit: 

_Line10 

TERT 

xor 

out 

ine 

out 

mov 

out 

mov 

out 

pop 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

END 

ax,ax 

dx,ax 

ax 

dx,ax 

al3 

dx,ax 

ax, OFFO8h 

dx,ax 

di 
si 

sp,bp 

bp 

~ AH := 0, AL := 0 

restore Set/Reset Register 

AH := 0, AL := 1 

restore Enable Set/Reset Register 

AH. := 0, AL := 3 

AL Data Rotate/Func Select reg # i} 

AW f= (101 111b, ALY = <8 

restore Bit Mask Register 

restore registers and return 
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Within the line-drawing modules, the value 3CEH (the port for the Graphics Con- 

troller Address register) is maintained in DX, the value 8 (the Bit Mask register 

number) is kept in AL, and the current pixel bit mask is kept in AH. This lets you 
update the bit planes with only two machine instructions: OUT DX, AX to update 

the Bit Mask register and a MOVSB or OR ES: [DI], AL instruction that causes a 

CPU read and CPU write to occur. 

This routine makes careful use of the 80x86 registers and the Graphics Controller. 

The Graphics Controller’s parallel processing helps the routine run at about the 

same speed as do CGA and HGC line-drawing routines. 

Native EGA graphics modes use no video buffer interleave, so locating a pixel’s 

vertical neighbors in the video buffer is easy. If each line contains n bytes of pix- 

els, the next pixel up from a given pixel is —n bytes away, and the next pixel down 

is n bytes away. The code for incrementing pixel addresses vertically is thus 

simpler than the corresponding code for the CGA or the HGC. (Compare, for ex- 

ample, the code in the loop at label L32 in Listings 6-4 and 6-7.) 

The Graphics Controller handles any of four pixel operations for you (KOR, AND, 

OR, and replace), so the only extra code required to support these functions con- 

sists of a few instructions to load the Data Rotate/Function Select register (03H). 

This task is part of the ‘‘configure the Graphics Controller’’ code near the begin- 
ning of the routine in Listing 6-7. 

You can use this Jine-drawing routine in 640-by-350 4-color and mono- 

chrome modes. Be sure to specify the proper pixel value in these modes 

so that the routine sets bits in the proper bit planes (see Chapter 4). 

MCGA 

In CGA-compatible modes, you can use the CGA line-drawing routines on the 
MCGA. The non-CGA modes (640-by-480 2-color and 320-by-200 256-color) re- 
quire their own routines, as shown in Listings 6-8 and 6-9, but these are easily 
derived from the code for 640-by-200 2-color mode. 

TITLE "Listing 6-8' 

NAME Line11 

PAGE SS ul si 

, 

; Name: Line11 

; Function: Draw a line in 640x480 2-color mode (MCGA, VGA) 

Calter: Microsoft C: 

void Line11 (x1,y1,x2,y2,n); 

(continued) 

Listing 6-8. A line-drawing routine for MCGA and VGA 640-by-480 2-color mode. 
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Listing 6-8. Continued. 

LG Vp ee Ver /* pixel coordinates */ 

/* pixel value */ 

stack frame addressing 

; bytes in one row of pixels 

used to convert pixels to byte offset 

preserve caller registers 

stack space for local variables 

7 int ne 

ARGx1 EQU word ptr [bpt+4] ; 

ARGy1 EQU word ptr [bp+6] 

ARGx2 EQU word ptr [bp+8] 

ARGy2 EQU word ptr [bp+10] 

ARGn EQU byte ptr [bp+12] 

VARincr1 EQU word ptr [bp-6] 

VARincr2 EQU word ptr [bp-8] 

VARroutine EQU word ptr [bp-10] 

BytesPerLine EQU 80 

ByteOffsetShift EQU 3 A 

DGROUP GROUP _DATA 

ScExT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP 

EXTRN PixelAddr10:near 

PUBLIC _Line11 

_Line11 PROC near 

push bp ; 

mov bp, sp 

sub sp, 6 ; 

push si 

push di 

check for vertical line , 

mov si,BytesPerLine 

mov cx, ARGx2 

sub cx, ARGx1 

zs VertLine11 

“—Toreca xh < x2 

jns L01 

neg Cx 

mov bx, ARGx2 

xchg bx, ARGx1 

mov ARGx2,bx 

mov bx, ARGy2 

xchg bx, ARGy1 

mov ARGy2,bx 

Si initial y-increment , 

CX x2) eel 

jump if vertical line 

jump if x2 > x1 

CX <1 x2 

exchange x1 and x2 

exchange y1 and y2 

(continued) 
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Listing 6-8. Continued. 

; calculate dy = ABS(y2-y1) 

L01: mov bx, ARGy2 

sub bx, ARGy1 

jnz L02 

jmp HorizLinel1 

L02: jns L03 

neg bx 

neg si 

, 

; select appropriate routine for slope of 

LO3% mov VARroutine, offset 

cmp beyex 

jle L04 i 

mov VARroutine, offset 

xchg bx, Cx ; 

; calculate initial decision variable and 

L04: shl oscput 

mov VARincr1,bx 

sub psaa7ex 

mov ai, bx 

sub bx,cx 

mov VARincr2,bx 

; calculate first pixel address 

push Cx 

mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr10 

mov al,ARGn 

shl axpeL 

mov dx, ax 

not dh 

pop cx 

inc Cx 

jmp VARroutine 

;. routine for vertical lines 

VertLine11: mov ax, ARGy1 

mov bx, ARGy2 

mov cx, bx 

sub CX,ax 

jge L31 

Bxs= Vy Ze ya 

jump if horizontal line 

Be=ny1 — y2 

negate y-increment 

line 

LoSlopeLine11 

jump if dy <= dx 

HiSlopeLine11 

exchange dy and dx 

(slope <= 1) 

increments 

BX := 2 * dy 

Iner|. <= 92 = dy 

Dies= d = 25+ dy — dx 

incr2 := 2 * (dy - dx) 

preserve this register 

Bey 
BX := x 

AH := bit mask 

ES:BX -> buffer 

CL := # bits to shift left 

AL := unshifted pixel value 

AH := bit mask in proper position 

AL := pixel value in proper position 

DH := bit mask 

DL := pixel value 

DH := inverse bit mask 

restore this register 

CX := # of pixels to draw 

jump to appropriate routine for slope 

AX := yl 

BX := y2 

CX := dy 

jump if dy >= 0 

(continued) 
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Listing 6-8. Continued. 

neg cx ; force dy >= 0 

mov ax,bx 7; AX := y2 

L313 inc ex ; CX := # of pixels to draw 
mov bx, ARGx1 ; BX 3s= x 

push ex ; preserve this register 

call PixelAddr10 ; AH := bit mask 

; ES:BX -> video buffer 

; CL 3= # bits to shift left 
mov al,ARGn ; AL := pixel value 

shl ax,cl ; AH := bit mask in proper position 

; AL := pixel value in proper position 

not ah ; AH := inverse bit mask 

pop Cx ; restore this register 

; draw the line 

test al,al 

AZ L33 ; jump if pixel value = 0 

ES2s or es: [bx],al ; set pixel values in buffer 

add bx, Ss 

loop L32 

jmp short L34 

L33: and es: [bx],ah ; reset pixel values in buffer 

add Dx, Sa 

loop L33 

L34: jmp Lexit 

; routine for horizontal lines (slope = 0) 

HorizLine11: mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr10 ; AH := bit mask 

; ES:BX -> video buffer 

, CL t=! # bits to shift Left 

mov di,bx > ES:DI -—> buffer 

mov dh,ah 

not dh ; DH := unshifted bit mask for leftmost 

; byte 

mov dl, OFFh ; DL := unshifted bit mask for 

c rightmost byte 

shl dh,cl ; DH := reverse bit mask for first byte 

not dh ; DH := bit mask for first byte 

mov cx, ARGx2 

and Ce 

xor Cl 7 > CL s= number of bits to shift left 

shl al ol ; DL := bit mask for last byte 

(continued) 
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Listing 6-8. Continued. 

mov 

mov 

mov 

shr 

shr 

mov 

sub 

ax, ARGx2 

bx, ARGx1 

cl, ByteOffsetShift 

ax,cl 

bx, CL 

cx,ax 

cx, bx 

, 

. 
, 

, 

. 
, 

, 

determine byte offset of first and last pixel in the line 

AX := x2 

BX := x1 

; number of bits to shift to 

; convert pixels to bytes 

AX := byte offset of x2 

BX := byte offset of x1 

Cx) s= (# bytes in tine) — 3) 

; propagate pixel value throughout one byte 

mov 

mov 

xlat 

bx, offset DGROUP:PropagatedPixel 

al,ARGn , 

; set pixels in leftmost byte of the line 

or 

js 

or 

jnz 

and 

jmp 

L42: mov 

and 

not 

and 

or 

nC 

dec 

dh, dh 

L43 

ex, cx 

L42 

dl,dh 

short L44 

ah,al 

ah, dh 

dh 

es: [di],dh 

es:[dij],ah 

di 

cx 

, 

AL := pixel value 

jump if byte-aligned (x1 is leftmost 

pixel in byte) 

jump if more than one byte in the line 

bit mask for the line 

AH masked pixel bits 

DH := reverse bit mask for 1st byte 

zero masked pixels in buffer 

update masked pixels in buffer 

; use a fast 8086 machine instruction to draw the remainder of the line 

L43: rep 

; set pixels in the 

L44: and 

not 

and 

or 

jmp 

; routine for dy <= dx (slope <= 1) 

stosb ’ 

rightmost byte of the 

al, dl 

dl 

es: [di],dl 

es:[di],al 

Lexit 

. 
, 

update all pixels in the line 

line 

AL := masked pixels for last byte 

zero masked pixels in buffer 

update masked pixels in buffer 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL = pixel value in proper position 

SI = bytes per pixel row 

DI = decision variable 

(continued) 
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Listing 6-8. Continued. 

LoSlopeLine11: 

L10: mov 

Bis and 

or 

ror 

ror 

jne 

ah,es: [bx] 

ah,dh 

ah,dl 

dl,1 

dh, 1 

L14 

7 bit mask not shifted out 

or 

jns 

add 

loop 

mov 

jmp 

Te 258 add 

mov 

add 

loop 

jmp 

; bit mask shifted out 

L14: mov 

inc 

or 

jns 

add 

loop 

jmp 

Lies add 

add 

loop 

jmp 

di,di 

L12 

di,VARincr1 

L11 

es: [bx],ah 

short Lexit 

di, VARincr2 

es: [bx],ah 

bx, Si 

L10 

short Lexit 

es: [bx],ah 

bx 

ai dil 

L15 

di, VARincr1 

L10 

short Lexit 

di, VARincr2 

bx, Sz 

L10 

short Lexit 

# xoutine for dy > dx (slope > 1) 

HiSlopeLine11: 

eds and 

or 

es: [bx],dh 

esi; [bx], dal 

AH := byte from video buffer 

zero pixel value at current bit offset 

set pixel value in byte 

rotate pixel value 

rotate bit mask 

jump if bit mask rotated to 

leftmost pixel position 

test= sign of) d 

jump if d >= 0 

Qe dee ince 

store remaining pixels in buffer 

ad ead Se inenZ 

update buffer 

increment y 

update buffer 

BX := offset of next byte 

test sign of d 

jump if non-negative 

dis= d+ anecri 

d aa aner2 Hl 

increment y 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = inverse bit mask 

DL pixel value in proper position 

SI = bytes per pixel row 

DI decision variable 

HI 

zero pixel value in video buffer 

set pixel value in byte 

(continued) 

Chapter 6: Lines 203 



Listing 6-8. Continued. 

add bx, Si ; increment y 

227 or di,di ; test sign of d 

jns L23 ? jump if d >= 0 

add di, VARincr1 7 @2=d + ineri 

loop L21 

jmp short Lexit 

ZK add di, VARincr2 7d = de imerZ 

ror al ; rotate pixel value 

ror dh, 1 ; rotate bit mask 

cmc ; cf set if bit mask not rotated to 

; leftmost pixel position 

adc bx, 0 ; BX := offset of next byte 

loop L21 

Lexit: pop di ; restore caller registers and return 

pop si 

mov sp,bp 

pop bp 
ret 

_Line11 ENDP 

_TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

PropagatedPixel DB 00000000b 7 10 

DB V11141111b be 

_DATA ENDS 

END 

TITLE "Listing 6-9' 
NAME Line13 

PAGE 55,132 

; Name: Line13 

7, EUNnGE LON. Draw a line in MCGA/VGA 320x200 256-color mode 

(continued) 

Listing 6-9. A line-drawing routine for MCGA and VGA 320-by-200 256-color mode. 
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Listing 6-9. Continued. 

7 Caller: Microsoft C: 

; void Line13(x1,y1,x2,y2,n); 

; dntiax pvp koe ves /* pixel coordinates */ 

; int n; /* pixel value */ 

ARGx1 EQU word ptr [bp+4] ; stack frame addressing 
ARGy1 EQU word ptr [bp+6] 

ARGx2 EQU word ptr [bp+8] 

ARGy2 EQU word ptr [bp+10] 

ARGn EQU byte ptr [bpt+12] 

VARincr1 EQU word ptr [bp-6] 

VARincr2 EQU word ptr [bp-8] 

VARroutine EQU word ptr [bp-10] 

BytesPerLine EQU 320 

_TEXT SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT 

EXTRN PixelAddr13:near 

PUBLIC _Line13 
_Line13 PROC near 

push bp 7 preserve caller registers 

mov bp, sp 

sub sp, 6 ; stack space for local variables 

push si 

push di 

; check for vertical line 

mov 

mov cx, ARGx2 

sub cx, ARGx1 

jz 

2 force x1 < 5x2 

jns L01 

neg ex 

mov bx, ARGx2 

xchg bx, ARGx1 

mov ARGx2,bx 

mov bx, ARGy2 

xchg bx, ARGy1 

mov ARGy2,bx 

si,BytesPerLine ; 

VertLine13 - 

initial y-increment 

2) CX B= exe =a) 

jump if vertical line 

, up et, x2e> x1 

f° CXecm x] gore 

; exchange x1 and x2 

; exchange y1 and y2 

(continued) 
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Listing 6-9. Continued. 

; calculate dy = ABS(y2-y1) 

L01:; mov bx, ARGy2 

sub bx, ARGy1 ; 

zs HorizLine13 A 

jns L03 ; 

neg bx ; 

neg si ; 

; select appropriate routine for slope of 

L03: push si i 

mMOv VARroutine, offset 

cmp bx, ex 

jle L04 c 

mov VARroutine, offset 

xchg lap, epi , 

; calculate initial decision variable and 

L04: shl bx, 1 F 

mov VARincr1,bx ; 

sub bx, Cx 

mov si,bx ; 

sub ba,cx 

mov VARincr2,bx 5 

; calculate first pixel address 

push cx ; 

mov ax, ARGy1 ; 

mov bx, ARGx1 F 

call PixelAddr13 ; 

mov di,bx ; 

pop cx 

ane cx ; 

pop bx ; 

jmp VARroutine ; 

; routine for vertical lines 

VertLine13: mov ax, ARGy1 ; 

mov bx, ARGy2 , 

mov CX), OX 

sub Gx, ax ; 

jge L31 e 

neg Cx 6 

mov ax,bx ; 

Bieit= oy 2 a ayal 

jump if horizontal line 

jump if slope is positive 

BX f= y= "v2 

negate y-increment 

line 

preserve y-increment 

LoSlopeLine13 

jump if dy <= dx (slope <= 1) 

HiSlopeLine13 

exchange dy and dx 

increments 

BX := 2 * dy 

inex <=82> tady 

Si s= d= 2 °* dy = dx 

incr2 := 2°* (dy = dx) 

preserve this register 

AX 3= y 

BX 3=9= 

ES:BX -> buffer 

ES:DL => buffer 

restore this register 

CX := # of pixels to draw 

BX := y-increment 

jump to appropriate routine for slope 

AX := yl 

BX := y2 

CX := dy 

jump if dy >= 0 

force dy >= 0 

AX := y2 

(continued) 
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Listing 6-9. Continued. 

G3 inc cx ; CX := # of pixels to draw 
mov bx, ARGx1 } BXit= x 

push cx 7 preserve this register 

call PixelAddr13 7 ES:BX -> video buffer 
pop cx 

mov di,bx ; ES:DI -> video buffer 

dec si + SI := bytes/line - 1 

mov al,ARGn ; AL := pixel value 

L32 stosb ; set pixel value in buffer 

add Qa, Si ; increment to next line 

loop L32 

jmp Lexit 

* routine for horizontal lines (slope = 0) 

HorizLine13: 

push cx ; preserve CX 

mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddr13 ; ES:BX -> video buffer 

mov Gi, Dx PenSowDi => but fer 

pop cx 

inc cx ; CX := number of pixels to draw 

mov al,ARGn 7 AL := pixel value 

rep stosb ; update the video buffer 

jmp short Lexit 

7; xoutine for dy <= dx (slope <= 1) ; ES:DI -> video buffer 

; BX = y-increment 

; CX = # pixels to draw 

; SI = decision variable 

LoSlopeLine13: 

mov al,ARGn ; AL := pixel value 

ahahes stosb ; store pixel, increment x 

or si,si ; test usign of +d 

jns L12 ; jump if d >= 0 

add si,VARincr1 ; d s= da + incr! 

loop L11 

jmp short Lexit 

(continued) 
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Listing 6-9. Continued. 

Tanleene add 

add 

loop 

jmp 

; routine for dy > dx 

HiSlopeLinel3: 

“21% 

L22: 

L233 

Lexit: 

shine 13 

Sra 

VGA 

mov 

stosb 

add 

or 

jns 

add 

dec 

loop 

jmp 

add 

loop 

pop 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

END 

si, VARincr2 

Gin, x 

L11 

short Lexit 

(slope > 1) 

al, ARGn 

di, bx 

si,si 

L23 

si,VARincr1 

di 

L21 

short Lexit 

si, VARincr2 

L21 

di 

si 

sp, bp 

bp 

d, t=ed + inerZ 

increment y 

ES:DI -> video buffer 

BX = y-increment 

CX = # pixels to draw 

SI = decision variable 

; AL := pixel value 

update next pixel, increment x 

increment y 

test sign of d 

jump if d >= 0 

a vd 4h nerd 

decrement x (already incremented 

by stosb) 

Q =a + ines2 

restore registers and return 

Once you implement routines for the EGA and the MCGA, you can draw lines in 

any of the VGA’s graphics modes. To draw lines in 640-by-480 16-color mode, use 

the 640-by-350 16-color routine. 
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InColor Card 

Because pixel addressing in the video buffer is the same on the InColor Card as 

on Hercules monochrome cards, the only significant difference in the line- 

drawing routines for the InColor Card, as you’ll see in Listing 6-10, is some extra 

code to select the specified pixel value. Note how the InColor Card’s write mode 

1 is used along with an appropriate foreground value in the Read/Write Color 

register to set the values of neighboring pixels in each byte of the buffer. This 
technique parallels the use of write mode 0 and the Set/Reset register on the EGA. 

; Name: 

; Function: 

2 Cakilers 

ARGx1 

ARGy1 
ARGx2 

ARGy2 

ARGn 

VARleafincr 

VARincr1 

VARincr2 

VARroutine 

ByteOffsetShift 

DefaultRWColor 

_TEXT 

_LineInc 

PST "Listing 6-10' 
NAME LineInc 

PAGE Sop oe 

LineInC 

Draw a line in Hercules InColor 720x348 16-color mode 

Mierosore Cs 

void LinemnG(xlpyl,*%2,V2,a) 7 

ie xy Vly key oe /* pixel coordinates */ 

aUnite aay /* pixel value */ 

EQU word ptr [bp+4] ; stack frame addressing 

EQU word ptr [bp+6] 

EQU word ptr [bp+8] 

EQU word ptr [bp+10] 

EQU byte ptr [bpt12] 

EQU word ptr [bp-6] 

EQU word pte [ipp=8]] 

EQU word ptr [bp-10] 

EQU word ptx [bp—2] 

EQU 3 ; used to convert pixels to byte offset 

EQU OFh ; default value for R/W Color register 

SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT 

EXTRN PixelAddrHGC:near 

PUBLIC _LineInC 
PROC near 

push bp ; preserve caller registers 

mov bp, sp 

sub sp,8 ; stack space for local variables 

push si 

push di 

(continued) 

Listing 6-10. A line-drawing routine for the InColor Card’ s 720-by-348 16-color mode. 
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Listing 6-10. Continued. 

mov 

mov 

si,2000h ; 

di, 90-8000h ; 

; set up InColor control registers 

mov 

mov 

out 

ine 

mov 

out 

mov 

sub 

az 

7 force xi < x2 

jns 

neg 

mov 

xchg 

mov 

mov 

xchg 

mov 

dx, 3B4h ; 

ax, 5F19h 7 

dx,ax ; 

ax ; 

ah, ARGn ; 

dx,ax ; 

cx, ARGx2 

cx, ARGx1 ; 

VertLineInC B 

L01 is 

ex ; 

bx, ARGx2 a 

bx, ARGx1 

ARGx2, bx 

bx, ARGy2 , 

bx, ARGy1 

ARGy2,bx 

; Calculate dy = ABS(y2-y1) 

LO1: mMOv 

sub 

Nz 

jns 

neg 

neg 
neg 

bx, ARGy2 
bx, ARGy1 9 

HorizLineInC ; 

L03 

bx : 

sa ; 

di 

; select appropriate routine for slope of 

LO3: MOV 

mov 

cmp 

jle 

mov 

xchg 

VARleafincr,di ; 

VARroutine, offset 

bx, Cx 

L04 ; 

VARroutine, offset 

Bx, Cx iz 

increment for video buffer interleave 

increment from last to first interleave 

DX = CRIC 1/0 port 

AH bit 6 := 1 (Mask Polarity) 

AH bits 5-4 := 1 (Write Mode) 

AH bits 3-0 := "don’t care" bits 

AL := R/W Control Register number 

set R/W Control Register 

AL 1Ah (R/W Color Reg number) 

AH := foreground value 

set R/W color register 

CXapaox2e eed 

jump if vertical line 

qump LE 22> x1 

Gx s=  -ax2 

exchange x1 and x2 

exchange yl and y2 

BX := y2 - yl 

jump if horizontal line 

BX = yio-gy2 

negate increments for buffer interleave 

line 

save increment for buffer interleave 

LoSlopeLineInC 

jump if dy <= dx (slope <= 1) 

HiSlopeLineIncC 

exchange dy and dx 

(continued) 
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Listing 6-10. Continued. 

; calculate initial decision variable and increments 

L04: shl bx, 1 ; BX := 2 * dy 

mov VARincr1,bx fener sas 2e) dy 

sub bx ,ex 

mov di,bx 7; DIE s= d= 2: * dy = dx 

sub bx, ck 

mov VARincr2,bx 7 ANCE2S =i 2N+e (dy = dx) 

; Calculate first pixel address 

push Cx * preserve this register 

mov ax, ARGy1 ; AX t= y 

mov bx, ARGx1 PBX ek 

call PixelAddrHGC ; AH 3;= bit mask 

; ES:BX -> buffer 

reClet——7 OLese tosh tte le fits 

shl ah,cl 

mov dh,ah ; DH := bit mask in proper position 

pop Cx ; restore this register 

inc cx ; CX := # of pixels to draw 

jmp VARroutine ; jump to appropriate routine for slope 

; routine for vertical lines 

VertLinelInc: mov ax, ARGy1 ; AX := yl 

mov bx, ARGy2 7; BX c= y2 

mov cx, bx 

sub Cx, ax 7, CX = dy 

jge L31 7 Jump at dy >= 0 

neg ex ; force dy >= 0 

mov ax,bx , AX G= y2 

Bots inc Cx ; CX := # of pixels to draw 

mov bx, ARGx1 a BX sux 

push cx ; preserve this register 

call PixelAddrHGC ; AH := bit mask 

; ES:BX -> video buffer 

} Ciniv= 4 bits) to shitt Lett 

shl ah,cl ; AH := bit mask in proper position 

pop cx ; restore this register 

SZ: or es: [bx],ah ; update pixel in buffer 

add bx, si ; increment to next portion of interleave 

jns Ess 

add bx, di ; increment to first portion of interleave 

LS 3's loop L32 

jmp Lexit 

(continued) 
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Listing 6-10. Continued. 

; routine for horizontal lines (slope = 0) 

HorizLineIncC: mov ax, ARGy1 

mov bx, ARGx1 

call PixelAddrHGC e 

mov Gil ox : 

mov dh,ah 

not dh F 

’ 

mov dl, OFFh . 

shl dh,cl ; 

not dh 5 

mov cx, ARGx2 

and ely 7 

xor lle 7) K 

shl ai Fed: © 

; determine byte offset 

mov 

mov 

mov 

shr 

shr 

mov 

sub 

of £ixst and last 

ax, ARGx2 ; 

bx, ARGx1 ; 

cl,ByteOffsetShift 

axy,el ; 

bx, el: ; 

cx,ax 

ex, DX ; 

; set pixels in leftmost byte of the line 

Or 

js 

or 

jnz 

and 

jmp 

L42: or 

ince 

dec 

dh, dh 

L43 ; 

cx, CX 

L42 ; 

d1,dh i 

short L44 

es:[di],dh ; 

di 

ex 

AH := bit mask 

ES:BX -> video buffer 

Chis= # bits toushife Left 

ES:DI -> buffer 

DH := unshifted bit mask for leftmost 

byte 

DL := unshifted bit mask for 

rightmost byte 

DH := reverse bit mask for first byte 

DH := bit mask for first byte 

€L := number of bits to shift left 

Di. ?= bit mask for Last byte 

pixel in the line 

AX := x2 

BXet= x1 

; number of bits to shift to 

; convert pixels to bytes 

AX := byte offset of x2 

BX := byte offset of x1 

CX := (# bytes in line) - 1 

jump if byte-aligned (x1 is leftmost 

pixel in byte) 

jump if more than one byte in the line 

bit mask for the line 

update masked pixels in buffer 

; use a fast 8086 machine instruction to draw the remainder of the line 

L43: mov 

rep 

al, OFFh i 

stosb i 

8-pixel bit mask 

update all pixels in the line 

; set pixels in the rightmost byte of the line 

L44: or 

jmp 
es: [di],dl ; 

Lexit 

update masked pixels in buffer 

(continued) 
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Listing 6-10. Continued. 

7 xvoutine for dy <= dx (slope <= 1) 

LoSlopeLineInc: 

L10: mov ah,es: [bx] 

LVi3 or ah,dh 

ror dh, 1 

4c L14 

; bit mask not shifted out 

or Gi 7a 

jns L12 

add di, VARincr1 

loop L11 

mov es: [bx],ah 

jmp short Lexit 

BV2: add di, VARincr2 

mov es: [bx],ah 

add Dx, Sd. 

jns his 

add bx, VARleafincr 

L13: loop L10 

jmp short Lexit 

; bit mask shifted out 

L14;: mov es: [bx],ah 

inc bx 

or di, ai 

jns L15 

add di, VARincr1 

loop L10 

jmp short Lexit 

Titois add di, VARincr2 

add bx, Si 

jns L16 

add bx, VARleafincr 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = bit mask 

SI buffer interleave increment 

DI decision variable 

latch bit planes 

AH := 0 because all planes 

are "don’t care" 

set pixel value in byte 

rotate bit mask 

jump if bit mask rotated to 

leftmost pixel position 

test sign of d 

jump if d >= 0 

ad sid ane 

store remaining pixels in buffer 

Gl GES ol eS eWalohat 

update buffer 

increment y 

jump if not in last interleave 

increment into next interleave 

update buffer 

BX := offset of next byte 

test sign of d 

jump if non-negative 

d (oll ae pbaloha| 

d ad + aner2 

increment y 

jump if not in last interleave 

increment into next interleave 

(continued) 
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Listing 6-10. Continued. 

Des loop 

jmp 

L10 

short Lexit 

; routine for dy > dx (slope > 1) 

HiSlopeLineInC: 

2a: or 

add 

jns 

add 

L22: or 

jns 

add 

loop 

jmp 

nZ3% add 

1g(@)ia 

adc 

loop 

jmp 

Lexa: mov 

mov 

out 

MOV 

out 

LMe 

mov 

out 

pop 

pop 
mov 

pop 
ret 

_LineIncC ENDP 

_TEXT ENDS 

END 

es: [bx],dh 

bx, si 

L22 

bx, VARleafincr 

di,di 

L23 

di, VARincr1 

L21 

short Lexit 

di, VARincr2 

dh, 1 

bx, 0 

L21 

short Lexit 

dx, 3B4h 

ax,0F18h 

Giscp ras 

ax,4019h 

ax, ax 

ax 

ah, DefaultRWColor 

dx,ax 

di 

si 

sp, bp 

bp 

loop until all pixels are set 

ES:BX -> video buffer 

CX = # pixels to draw 

DH = bit mask 

SI = buffer interleave increment 

DI = decision variable 

set pixel value in video buffer 

increment y 

jump if not in last interleave 

increment into next interleave 

jump if d >= 0 

a sd = anert 

Qu s=ea+ “snen2 

rotate bit mask 

BX := offset of next byte (incremented 

if bit mask rotated to 

leftmost pixel position) 

DX := CRTC I/O port 

restore default Plane Mask value 

restore default R/W Control value 

restore default R/W Color value 

restore registers and return 
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Line Attributes 

The line-drawing algorithm in this chapter draws lines that are exactly one pixel 
wide. Consequently, diagonal lines appear less bright than horizontal or vertical 
lines. You can fatten diagonal lines by modifying the pixel-setting inner loop of a 
Bresenham line-drawing routine so that it always sets pixel B before selecting the 
next pixel in the line. The resulting lines are fatter, but the modified routine runs 
more slowly because it must update more pixels, particularly in lines with slopes 
near 1 or -1. 

To draw wider lines, simply draw contiguous, neighboring parallel lines. If you 
are using a pointing device to draw a wide line interactively, use a series of 
neighboring horizontal or vertical lines. After implementing a fast routine for 
drawing horizontal lines, you can write a high-level routine that paints wide lines 
by calling the horizontal line primitive. 

In some applications, you may wish to draw dashed lines or multicolored lines 
that incorporate a pattern of pixel values. To do this, modify the inner loop of 
your line-drawing routine to select pixel values from a circular list of possible 
values. Rotate the list each time you set a pixel. 

Clipping 

Not one of the assembly-language routines in this chapter validates the pixel coor- 
dinates you supply as endpoints. For example, if you call the 640-by-200 2-color 

routine to draw a line from (0,0) to (1000,1000), the routine blithely updates about 

800 pixels at memory locations that don’t exist in the available video RAM, all the 

way from (200,200) through (1000,1000). To avoid this sort of error, you must de- 

termine which part of any arbitrary line lies within a given area of the video 
buffer. This process is known as clipping. 

In the case of 640-by-200 2-color mode, the area into which lines must be clipped 
is the rectangular region defined by (0,0) in the upper left corner and (639,199) in 

the lower right corner. You would therefore clip a line with endpoints at (0,0) and 

(1000,1000) so that only the portion from (0,0) to (199,199) is drawn. In avoiding 

the error of updating nonexistent RAM, you might also improve your program’s 

performance, since the line-drawing primitive will not attempt to update those 
nonexistent pixels. 

Pixel-by-Pixel Clipping 

A simplistic approach to clipping is to include a clipping test in the inner loop of 

your line-drawing routines. Just before setting the value of each pixel, your rou- 
tine could compare the current pixel bit mask and buffer address with a set of pre- 

calculated limits. If the address, the bit mask, or both exceeded the limits, the 

routine would not update the video buffer. However, the overhead involved in 

clipping in this manner can be considerably greater than the work required to 

calculate and draw the pixels in the line. 
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In general, avoid integrating code for line clipping into low-level line- 

drawing routines, regardless of how efficient the code might be. Keep- 

" ing the functions separate can improve performance, because an 

application can invoke the line-drawing routines directly, bypassing 

the clipping code altogether when it’s not needed. 

A Brute-Force Approach 

Another way to clip a line is to use its equation to calculate where, if anywhere, 

the line segment to be drawn intersects the edges of the rectangular display 

region. For example, in Figure 6-5, the slope m of the line is 

m = dy/dx = (y2-y1)/(x2-x1) = (100-40)/(750-150) = 0.1 

The y-intercept can be calculated by substituting x/ and y/ into the equation of 

the line: 

1) Ail a ae i SAO is ESO) 2S: 

The equation of the line is thus 

yo= O71*x +. 25 

To calculate the coordinates of the intersections of the line and the edges of the 

window, substitute the x-coordinates of the window’s vertical edges and the 

y-coordinates of its horizontal edges into the equation. Each time you solve the 

equation for one side of the rectangle, check the result to see whether the inter- 

section point actually lies within the line segment to be drawn as well as within 

the rectangle. 

(0,0) 

(150,40) 

(639,89) 

(750,100) 

(639,199) 

F sieht 6-5. Line segment (150,40)-(750,100) clipped at (639,89) in 640-by-200 2-color 
mode. 
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This approach to line clipping involves a lot of computation, primarily because 
the equation of the line must be solved four times for every line segment you clip. 
You must also check the results against the limits of the line segment to deter- 
mine whether the intersection points fall between the endpoints. Furthermore, 
you must still handle special cases such as horizontal and vertical lines or degen- 
erate “‘lines’’ consisting of a single pixel. This computational burden makes 
brute-force clipping impractical. 

A Better Algorithm 

A more efficient algorithm for line clipping compares the endpoints of the line 
segment with the boundaries of the rectangular region before computing intersec- 
tion points. Thus, little computation is performed for lines that need not be 
clipped. The Sutherland-Cohen algorithm, which uses this approach, is widely 
known because of its simplicity and computational efficiency. (See Sproull and 
Sutherland, *‘A Clipping Divider,’ Conference Proceedings, Fall Joint Computer 
Conference, volume 33, pp. 765-776. AFIPS Press, 1968.) 

Conceptually, the algorithm extends the edges of the rectangular clipping region, 
dividing the plane into nine regions (see Figure 6-6). Each endpoint of the line 
segment to be clipped falls into one of these regions. Identifying the region that 
corresponds to each endpoint makes it easy to determine the location of the line 
segment relative to the rectangular clipping area. 

Mapping of bits 
in 4-bit codes 

bit 0: 1 =left 

1: 1 =above 

i 2: 1=right 
(X15Y1,) 3: 1=below 

1001 1100 

Figure 6-6. Rectangular clipping using the Sutherland-Cohen algorithm. 

The algorithm uses a computational shortcut to determine the relative location of 

the line segment. Each of the nine regions is represented by a 4-bit code; each bit 

corresponds to whether the region is above, below, left, or right of the clipping 

rectangle. The relationship of the endpoints to the rectangle is then quickly deter- 

mined by bitwise combination of the 4-bit codes. 

If the logical OR of the two codes is 0 (that is, the 4-bit code for both endpoints is 

0), both endpoints lie within the rectangle, and no clipping is needed. If the logi- 

cal AND of the two 4-bit codes is nonzero, both endpoints lie on the same side of 

the rectangle, and the entire line is clipped out. These tests can be performed 

rapidly, because both the bitwise AND and OR operations can be implemented in 

single 80x86 machine instructions. 
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If the logical OR of the endpoints’ 4-bit codes is nonzero but the logical AND is 0, 

then the line segment is clipped against one of the rectangle’s edges. The values 

of the 4-bit codes then determine which edge is used. The resulting intersection 

point becomes a new endpoint for the line segment. 

This process is repeated for the new line segment. The 4-bit codes are recal- 

culated, the bitwise comparison is again performed, and, if necessary, a new end- 

point is calculated. Since a rectangle has four sides, the algorithm requires at most 

four iterations. 

The routine Clip () in Listing 6-11 is a C illustration of the Sutherland-Cohen 

algorithm. The while block repeats while neither of the two termination condi- 

tions (Inside or Out side) is true. The 4-bit codes are used to determine which 

of the four sides of the rectangle the clipping calculation uses. The intersection 

point between the line segment and the side of the rectangle becomes a new end- 
point. At the bottom of the while block, the 4-bit code for the new endpoint is 

calculated, and the loop repeats. 

/* Listing 6-11 */ 

struct EndpointStruct /* endpoints for clipped line */ 

{ 
int Syke 

int x2,y2; 

}e 

struct RegionStruct /* rectangular clipping region */ 

{ 
int xu 

int Yuu 

int SS; 

int Veber 

he 

union OutcodeUnion /* outcodes are represented as bit fields ¥*/ 
{ 

struct 

{ 

unsigned code0 : 

unsigned codel 

unsigned code2 : 

unsigned code3 : 

/* 

/* 

/* 

/* 

Xul */ 

Yul */ 

Xlr */ 

VYire«/ < eK MK VY VAN Me Ne Ne Ne 

OCs; 

int outcodes; 

be 

#define X1 ep->x1 

#define Y1 ep->y1 
#define X2 ep->x2 

(continued) 

Listing 6-11. An implementation of the Sutherland-Cohen clipping algorithm. 
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Listing 6-11. Continued. 

#define Y2 ep->y2 

#define XUL r->Xul 

#define YUL ¥r=>Yul 

#define XLR r->Xlr 

#define YLR r->Ylr 

Clip (ep,r) 

struct EndpointStruct *ep; 

struct RegionStruct ce 

{ 
union OutcodeUnion 

int Inside; 

int Outside; 

/* initialize 4-bit 

SetOutcodes( &o0cul, 

SetOutcodes( &0cu2, 

Inside 

Outside 

while (!Outside && 

{ 
if (ocul.outcodes 

{ 
Swap( &X1, &X2 

Swap( &Y1, &Y2 

==() 

ocul,ocu2; 

codes */ 

Cyl Yolen er /* 

Be OL NEES NEE: 

((ocul .outcodes | ocu2.outcodes) 

((ocul.outcodes & ocu2.outcodes) 

! Inside) 

initial 4-bit codes */ 

== 0); 
Ve Oi) 

/* swap endpoints if necessary so */ 

/* that (x1,y1) needs to be clipped */ 

); 

)e 

Swap( &£0cul, &ocu2 ); 

if (ocul.ocs.code0) /* 

{ 
YT +=" (Tong) (x2 

X1 = XUL; 

else if (ocul.ocs 

=Y¥1) * (XUL=X1) / (X2=X1) 7 

.code1) /* 

X1 += (long) (X2=X1) *(YUL=Y1) / (Y2=Y1);7 

Y= YUL; 

else if (ocul.ocs .code2) /* 

Y1 += (long) (Y2-Y1) * (XLR-X1) / (X2-X1) ; 

X1 = XLR; 

else if (ocul.ocs .code3) /* 

X1 += (long) (X2-X1) * (YLR-Y1) / (Y2-Y1) + 

Y¥1 = YLR; 

clip left */ 

clip above */ 

elip right) */ 

clip below */ 

(continued) 
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Listing 6-11. Continued. 

SetOutcodes( &o0cul, £, X1, Y1 )7 /* update for (x1,y1) */ 

Inside = ((ocul.outcodes | ocu2.outcodes) == 0); /* update */ 

Outside = ((ocul.outcodes & ocu2.outcodes) != 0); /* 4-bit codes */ 

} 

return( Inside ); 

SeEOureodes (Ww, i, 20y) 

union OutcodeUnion *u; 

struct RegionStruct we 

int ye 

{ 
u->outcodes = 0; 

u->ocs.code0 = (x < XUL); 

u->ocs.codel = (y < YUL); 

u->ocs.code2 = (x > XLR); 

u->ocs.code3 = (y > YLR); 

Swap( pa, pb ) 

int *pa, *pb; 

{ 
int dere 

t= pa), 

*pa = *pb; 

*pb = t; 
} 

A program could call Clip () before drawing a line with a fast primitive such as 

Line ().If you are careful to define the values XUL, YUL, XLR, and YLR as 

variables rather than constants, you can use Clip () in any video mode. Further- 

more, line clipping need not be limited to clipping lines to the limits of available 

RAM in the video buffer. You may instead want to define an arbitrary rectangular 

region in the video buffer and clip lines against it. A good high-level video 

graphics interface supports clipping into such arbitrary regions. 
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Circles and Ellipses 

Circles and Pixel Scaling 

An Ellipse-drawing Algorithm 

Scan-converting an Ellipse 

An Incremental Algorithm 

A Typical Implementation 

Problems and Pitfalls 

Accuracy 

Optimization 

Clipping 

True Circles 



Circles and ellipses are probably the most common graphics elements other than 

straight lines. This chapter describes techniques for displaying circles, ellipses, 

and arcs with IBM video hardware. These techniques are similar to the algo- 

rithms and programming examples for displaying straight lines (described in 

Chapter 6). Although an ellipse-drawing routine is somewhat more complicated 

than a routine for drawing straight lines, the algorithmic design and programming 

techniques are similar. 

Circles and Pixel Scaling 

The only way to draw a circle on the IBM video subsystems discussed in this book 

is to calculate and draw an ellipse. The reason is that the horizontal scale in 

which pixels are displayed differs from the vertical scale in most graphics modes 

(Chapter 4). If you display a ‘‘circle’’ whose pixels are computed without scaling, 

what you see on the screen is an ellipse. For example, Figure 7-1a shows a 

‘circle’ with a radius of 100 pixels in both horizontal and vertical directions as 

displayed in a 640-by-200 graphics mode. 

Because of this problem of pixel scaling, drawing a circle on the screen requires 

that you compute the pixels that correspond to a mathematical ellipse. In other 

100 pixels 100 pixels 

1) b. 

a. 

F igure 7-1. In Figure 7-la, a mathematical circle with a 1 00-pixel radius appears elliptical 
in 640-by-200 2-color mode. In Figure 7-1b, an ellipse whose axes have been properly scaled 
appears circular when displayed in this mode. 

ma 
oO 

* 
e 

S 
— 
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words, to draw a circle that really looks like a circle, you must compute an ellipse 
whose major and minor axes are in the same ratio as the pixel coordinate scaling 
factor. On the screen, such an ellipse appears circular (see Figure 7-1b). For this 
reason, this chapter concentrates on a practical algorithm for drawing ellipses. 

An Ellipse-drawing Algorithm 

Scan-converting an Ellipse 

You can use the algebraic formula for an ellipse to compute x- and y-coordinates 
for all of the pixels that represent a given ellipse. As in the case of scan- 
converting a straight line, many of these pixel coordinates will necessarily ap- 
proximate the actual values, and the resulting figure will be jagged. This effect is 
especially noticeable when displaying a very thin ellipse (see Figure 7-2), but in 
most cases this side effect is acceptable. 

Figure 7-2. A thin ellipse can appear jagged when it is scan-converted. 

You can use the equation of the ellipse 

Rar ee eee (Yves et 
a2 b2 

to scan-convert and display an ellipse. This equation describes an ellipse centered 

at (xc,yc) with major and minor axes a and D parallel to the x- and y-axes. 

However, the computational overhead of drawing ellipses by solving this equa- 

tion, as in Listing 7-1, is very large. The multiplication, division, and square-root 

operations to determine each pixel’s coordinates are very time-consuming. A bet- 

ter approach is to compute pixel coordinates incrementally in a manner similar to 

that used in the line-drawing algorithm in Chapter 6. 

/* Listing 7-1 */ 

Hilipse( xe, ye, a0, bo) /* using equation of ellipse */ 

int Repyce /* center of ellipse */ 

int a0,b0; /* major and minor axes */ 

{ 

double x = 0; 

double y = b0; 

double Bsquared = (double)b0 * (double) b0; 

double Asquared = (double)a0 * (double) a0; 

double sqrt(); 

Listing 7-1. Drawing an ellipse using the equation of the ellipse. (continued) 
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Listing 7-1. Continued. 

do /* do while dy/dx >= -1 */ 

{ 
y = sqrt ( Bsquared — ((Bsquared/Asquared) * x * x) ); 

Set4Pixels( (int)x, (int)y, xc, ye, PixelValue ); 

++X 7 

} 
while ( (x <= a0) && (Bsquared*x > Asquared*y) ); 

while (y >= 0) /* do while dy/dx < -1 */ 

{ 
x = sqrt( Asquared - ((Asquared/Bsquared) * y*y) ); 

Set4Pixels,( (int), Kimt)y, «¢, ye, PaxelkValue |); 

VF 

} 
} 

Ser4Pixelis\(( x, Vv, XC, ye, mR) /* set pixels in 4 quadrants by symmetry */ 

int SVG 

mate XC, YC; 

Dts n; 

SPRUNG (Kets, yiCa ya7 ale 

SPHUNG (XC—sx Vie ry, Mp 

SPEUNC( Xe hia, Vie— vip O)iy 

SPFunc (xe=x, yeo-y, 2) 7 

An Incremental Algorithm 

The derivation of an incremental algorithm for drawing ellipses resembles the 

derivation of Bresenham’s line algorithm. The ellipse-drawing algorithm draws 

an ellipse pixel by pixel. After drawing each pixel, the algorithm selects the next 

pixel by determining which of the current pixel’s two neighbors is closer to the 
actual ellipse. 

Creating an ellipse-drawing algorithm is easiest for an ellipse centered at the 

origin of the coordinate system, with major and minor axes congruent with the 

x- and y-axes (see Figure 7-3). The equation of such an ellipse is 

exs Fas = aebe = 10 

Because the ellipse is symmetric in relation to both the x- and y-axes, you only 

need derive an algorithm to draw one of its quadrants. Your routine can then de- 

termine the pixel coordinates in the other three quadrants by symmetry. 

T If you need an algorithm to draw ellipses with axes that are not paral- 
, lel to the video buffer’s x- and y-axes, refer to M. L. V. Pitteway, 
" ‘Algorithm for Drawing Ellipses or Hyperbolae with a Digital Plot- 

ter,’’ Computer Journal vol. 11 no. 3 (November 1967), p. 282. 

The algorithm presented here is known as the ‘‘midpoint algorithm.’’ It draws an 
ellipse iteratively, pixel by pixel. For each pixel it draws, the algorithm selects 
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Figure 7-3. An ellipse centered at the origin of the coordinate system. 

which of the pixel’s neighbors is closer to the ellipse by computing whether the 

point halfway between the pixels lies inside or outside the ellipse (see Figure 7-4). 

(This algorithm was described by J. R. Van Aken in ‘‘An Efficient Ellipse- 

Drawing Algorithm,’’ JEEE Computer Graphics and Applications, September 1984, 

p. 24, and improved by M. R. Kappel in ‘‘An Ellipse-Drawing Algorithm for Ras- 

ter Displays,’’ Fundamental Algorithms for Computer Graphics, R. A. Earnshaw 

[editor], Springer-Verlag 1985, p. 257.) 

To determine which pixel lies closer to the ellipse, the algorithm uses the value of 

the equation of the ellipse at the midpoint between the pixels. If the value is 0, 

the midpoint lies on the ellipse. If the value is negative, then the midpoint lies in- 

side the ellipse; if the value is positive, the midpoint is outside the ellipse. Thus, 

the algorithm can choose which of the two pixels lies closer to the ellipse by ex- 

amining the value’s sign. 

One complication lies in determining which pair of neighboring pixels to investi- 

gate at each step in the iteration. This depends on dy/dx, the slope of the tangent to 

the ellipse (see Figure 7-5). When dy/dx is greater than —1, the algorithm chooses 

between two vertically oriented pixels (see Figure 7-6a). When dy/dx is less than 

—1, the choice is between two horizontally oriented pixels (see Figure 7-6b). 

While dy/dx is greater than —1, the algorithm iteratively determines, for each pixel 

it draws, whether neighboring pixel A or B is closer to the ellipse. This is done by 

deciding whether the midpoint between A and B lies inside or outside the exact 

ellipse. In Figure 7-6a, the pixel selected in the previous iteration is at (x;_7,);_7). 

The midpoint between A and B is therefore (x,_,+/,y;_;—‘2). 

The algorithm chooses between pixel A and pixel B by examining the sign of the 

value of the ellipse equation evaluated at the midpoint: 

d= eZ (x. 

The variable d, the value of the function at the midpoint, is the algorithm’s deci- 

sion variable. As in Bresenham’s line algorithm, the key to this algorithm’s speed 

pte + <a? (Y. 2, = 17 2) 2,482 
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Figure 7-4, Three iterations of the midpoint algorithm. After drawing the black pixel in 
illustration 7-4a, the algorithm chooses to draw either pixel A or pixel B by comparing the 
midpoint M to the actual ellipse. Because M is inside the ellipse, it chooses pixel A. Illustra- 
tions 7-4b and 7-4c represent the next two iterations. 
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Figure 7-5. The slope of the tangent to the ellipse within the first quadrant. 

(eps Vez) A (x, 41, yi1) 

(x. » Vin) 

exact ellipse 

(4.7 +1, Y;.) 

b. 

Figure 7-6. The midpoint algorithm chooses between A and B by substituting x and y at the 

midpoint M into the formula for the ellipse and testing the sign of the result. If the result is 

positive, pixel B is chosen; if the result is negative, pixel A is chosen. 
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is that it can compute d iteratively on the basis of its value at each previous step 

in the iteration. The difference between the current value of d and its previous 

value is 

dd, af" = 1b? (xi, A ae a2 yy get 2) = Pee 
Mean sage 4 ia alee ee _ a*b2] 

=e (2 cea all) 

= 2b2x,_, + b? 

Now, finding the difference between d; and d,_, (that is, dx) still involves 
multiplying the previous value of x by a constant. You can avoid this multiplica- 

tion, however, by computing dx, as well as d, incrementally; that is, by adding 2b 

to dx at each step of the iteration. 

If pixel A is nearer to the ellipse (that is, d; > 0), the newly calculated value of d; 

can be used as d;_, in the next iteration. If pixel B is nearer, however, d; must be 
adjusted for the downward step in the y direction. In this case, the value of the 

equation of the ellipse for the midpoint below pixel B must be computed. If 

(x;_),y;-, +2) is the midpoint between pixels A and B, then (x,_;,y;_;—“2) is the 
midpoint below pixel B, and dy is then 

Cle=OG_4 = joe (X;_,) 24 42 (Ya -—'/2)2 — a2b2] - 

[b2(x,_,)2 + a2(y,_,+'/2)2 - a2b2] 

= ~2a*y,.; 

When dy/dx is less than —-1, pixels A and B are horizontal rather than vertical 

neighbors (see Figure 7-6b). The values of dy and dx are therefore computed 

somewhat differently. When pixel B is chosen, the midpoint at (x,_,+/2,y;_,-1) is 
used, so the increment for d is 

Aj-dycy =) To? ey F102)" + at(yy <1) i— a2b2]-= 
[b2 (X,_,4+1 2) cata (Yaey ) a= a2b2] 

ll ae (= e2yneenn i) 

Zaye a 

Also, when pixel A is chosen, d must be adjusted for the step in the rightward 
direction: 

Gi-dy_y =) [be (x, 142) 4+ a4 (yy) Peay = 

[b? (xy 4 = 172) 4 eae (Yo) 2 OSS] 

EO eke 

These derivations provide a way to draw an ellipse iteratively, with only simple 
addition and subtraction required within the iterative loops. The analysis distin- 
guishes between the case where dy/dx is greater than —1 and the case where dy/ldx 
is less than —1. You determine when dy/dx has reached —1 by differentiating the 
equation of the ellipse and setting dy/dx to -1. 
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d 
eS (b2x2 ae a*y4 = a2b2) = 0 

dx 

262x277 Zaey ae 0 
ex 

dy =a 

ax  2a2y 

Thus, at the point where dy/dx = —-1, 

2b?x = 2a2y 

Because the algorithm already keeps track of the quantities 2b2x and 2a7y to com- 

pute the differentials dx and dy, these quantities can be used to detect where dy/dx 

reaches —1. The algorithm can then start at the point (0,b) on the y-axis and pro- 

ceed clockwise around the ellipse until it reaches (a,0). 

Initially, the quantity dy/dx is greater than —1, and the choice is made iteratively 

between vertically oriented pixels (see Figure 7-6a). When dy/dx reaches —1, the 

algorithm chooses between horizontally oriented pixels (see Figure 7-6b) and con- 

tinues to do so until it reaches the x-axis. 

The only remaining computation occurs when the algorithm reaches the pixel for 

which dy/dx = —1. At this point, a new value for d will already have been com- 

puted (M_,,, in Figure 7-7) under the assumption that the next midpoint would have 

been between two vertically oriented pixels. Therefore, the value of d must be ad- 

justed to reflect the value of the ellipse function at the midpoint between two 

horizontally oriented pixels (M,,,,,, in Figure 7-7). The increment for d (from M,)4 

to M_,..) in this case is 
new. 

Gide. © Ib (kt 1/2)2 + a? (yy4-1)* = arb?) - 

eee I) cl yeaa ee = a2b2] 

ll b2 (-x, 
24 
wa 374A) toa? krVaeit 3/4) 

Ps(a-—-b-)/4 — (0-x,_,  a-y._7) 

Again, since the algorithm already uses the quantities 2b2x and 2a7y, the incre- 

ment for d at this point can be computed by 

=a, ="s4e--b) /4 = (2b7xi 1+ Zaeys 7/2 

Adding this value to d at the point where dy/dx = —1 gives the new value for d. 
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(X12 > Vir) 

M old 

(& .) +1,9 1-3) 

ant ai =} 

Figure 7-7. When the value of dy/dx reaches —1, a new midpoint (M,,,,,) is selected, and d, 
which has already been computed for M ,1q, is adjusted to reflect the value of the equation of 
the ellipse at M,,.)- 

A Typical Implementation 

The C routine in Listing 7-2 is fast and efficient because all decision-variable 

computation within the inner iterative loops has been reduced to addition and 

subtraction. The routine eliminates multiplication within the inner loops by pre- 

calculating the values of a?, b?, 2a?, and 2b2. The initial values for the decision 

variables are computed assuming that the first pixel to be drawn is at (0,b). Thus, 

the initial value of d is calculated for the midpoint between the pixels at (/,b) and 

(/,b—1); that is, at (1,b—/2): 

des b=(1)\i2 ae (b—1,/ 2) 45 — az 

= b2 — atb + a2/4 

The initial values for dx and dy are 

dx = 2b2(x,) = 0 

and 

dy = 2a*(y,)) = 2a2b 

The routine Ellipse () follows the algorithm closely. It first draws all the pix- 
els between (0,b) and the point where dy/dx becomes —1. Then it updates d as in 
Figure 7-7. Iterative pixel selection continues until the routine reaches the x-axis. 
The routine calls the function Set 4Pixels () to replicate each pixel in each of 
the four quadrants of the ellipse. Set 4Pixels () also translates each pixel’s 
coordinates relative to the actual center of the ellipse. 

/* Listing 7-2 */ 

Eillipse( xc, yc, a0, b0O ) 

ate xCpy.cy /* center of ellipse */ 
int a0,b0; /* semiaxes */ 

Listing 7-2. A high-level implementation of the midpoint algorithm. (continued) 
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Listing 7-2. Continued. 

{ 
int x = 0; 

int y = b0; 

long a = a0; /* use 32-bit precision */ 
long b = bO; 

long Asquared = a * a; /* initialize values outside */ 

long TwoAsquared = 2 * Asquared; {* ‘of loops */ 

long Bsquared = b * b; 

long TwoBsquared = 2 * Bsquared; 

long ay 

long dx, dy; 

d = Bsquared - Asquared*b + Asquared/4L; 

dx = 0; 

dy TwoAsquared * b; 

while (dx<dy) 

{ 
Set4Pixels( x, y, xc, yc, PixelValue ); 

rE Cd > 01) 

{ 
Vir 

dy -= TwoAsquared; 

d -= dy; 
} 

ime 

dx += TwoBsquared; 

d += Bsquared + dx; 

d += (3L* (Asquared-Bsquared) /2L - (dx+dy)) / 2L; 

while (y>=0) 

{ 
Set4Pixels( x, y, xC, yc, PixelValue ); 

Af (d < OL) 

{ 
++X} 

dx += TwoBsquared; 

d += dx; 

--y; 

dy -= TwoAsquared; 

d += Asquared - dy; 

(continued) 
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Listing 7-2. Continued. 

SetAPaxeksu( Xp ey ye Ser ey Cy) ie) /* set pixels by symmetry in 4 quadrants */ 

int nya 

ant XC, Cr 

aeinite ny 

{ 
SetPixeli( xetx, yey, ia diy 

SeePaxell(Gxe=x, yoery, Mm )i7 

SetPixel ( xc+x, ye-y, 1 ); 

Serr uxell(txe—x, Vie—-y,ean yer 

} 

Problems and Pitfalls 

One difficult problem you’!l encounter is that tiny ellipses appear somewhat 

angular rather than elliptical when they are scan-converted. When an ellipse is 

small and comparatively few pixels are used to display it, the best approximation 

generated by the algorithm can appear polygonal. 

Although it is possible to redesign the ellipse-drawing algorithm to draw ‘‘fatter”’ 

or ‘‘thinner’’ ellipses in this situation, a better solution is to display the ellipses 

with higher resolution. Tiny ellipses look much better with 640-by-480 resolution 

than they do with 320-by-200 resolution. 

A related problem is that very eccentric ellipses may be drawn inaccurately at 

the points where they curve most sharply. This happens when the point where 

dy/dx = —1 lies nearly adjacent to either the x-axis or the y-axis. Again, you can 

modify the algorithm to accommodate this situation, but if your application re- 

quires accurate representations of very thin ellipses, a better solution is to display 

them at higher resolution. 

A further consideration involves “‘degenerate’’ ellipses for which the length of 

either the major or minor axis is 0 (that is, a= 0 or b= 0). Because either dy or 
dx is 0 in this situation, the iterative routines do not terminate correctly. In these 

cases, either test for the special condition before executing the loops (and draw 

the appropriate straight line) or modify the termination conditions of the loops. 

Accuracy 

As does Bresenham’s line algorithm, the midpoint algorithm attempts to mini- 
mize the vertical or horizontal distance to the ellipse from the pixels it selects. 
This is faster than minimizing the distance between each pixel and the nearest 
point to it on the ellipse, but if you examine its performance closely, you may 
find rare occasions when the pixel that the midpoint algorithm selects is not the 
one closest to the ellipse. Nevertheless, the accuracy of the midpoint algorithm in 
selecting the best pixels to represent the ellipse is sufficient for nearly all applica- 
tions. (For more discussion of this topic, see Van Aken and Novak, ‘‘Curve- 
Drawing Algorithms for Raster Displays,’’ ACM Transactions on Graphics, April 
1985, p. 147, or Kappel, *““An Ellipse-Drawing Algorithm for Raster Displays,”’ 
Fundamental Algorithms for Computer Graphics, p. 257.) 

: 
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Although the source code in Listing 7-2 is a straightforward implementation of the 
algorithm, you need to remember a few details if you plan to modify the code or 
translate it into another language. It is important to compute all decision variables 
as 32-bit integers. Because these values involve the squaring of pixel coordinates, 
16 bits are inadequate to maintain precision. 

Another detail to remember is that this routine can draw the same pixels twice. 
This is an artifact of the ellipse’s four-way symmetry. For example, the pixels at 
(+a,0) and (0,+b) are updated twice by Set 4Pixels () in Listing 7-2. This be- 
comes a problem when you use the routine to XOR pixels into the video buffer. If 
you perform a XOR on these pixels twice, they disappear. To avoid this, either test 
for these special cases in Set 4Pixels () (Listing 7-3) or modify Ellipse () 
to draw these pixels separately. 

/* Listing 7-3 */ 

See4Pixeiis( x, y, xe, yo, n ) /* avoids setting the same pixel twice */ 
int X,Ve 

int ZC, YES 

almals n; 

{ 

if (x!=0) 

{ 
SeEPAxci( xCEx, Viety, 5 

SGePixed (exc=x, yery, mi; 

if (y!=0) 

{ 

SCEPaxeH (XC ey Ve-Vi7 hit Die 

Serra xe (C= K VC —y- eine 

} 

} 
else 

{ 
SetPixel( xc, yety, n ); 

if (y!=0) 

SeePixel( xe, ye=-y, ne 

} 

Listing 7-3. A modified version of Set4Pixels that avoids updating the same pixel twice. 

Optimization 

For many applications, a high-level language implementation such as the one in 

Listing 7-2 is fast enough. The slowest part of the high-level version of 

Ellipse () is its repeated calls to the pixel-setting routine, which recomputes 

pixel addresses with every iteration. By writing Ellipse () in assembly 

language, you can calculate the pixel addresses much more efficiently. The 

resulting assembly-language routine is about three times faster than the equivalent 

high-level version. 

Listing 7-4 is a typical assembly-language implementation, in this case for the 

EGA. Note how the routine Set 4Pixels maintains a set of four buffer offsets 

and bit masks instead of (x,y) coordinates for the four pixels it updates. When 

Chapter 7: Circles and Ellipses 233 



Set 4Pixels increments a pixel x-coordinate, it rotates a bit mask in the proper 

direction. The y-coordinates are incremented by adding the number of bytes in 

each line of pixels to the buffer offset. (This is the same technique used in the line 

routines in Chapter 6.) This method of video buffer addressing is much faster than 

making a call toa Set Pixel () function for every pixel in the ellipse. 

TITLE "Listing 7-4' 

NAME Ellipse10 

PAGE Doig UZ 

; Name: Ellipse10 

Pp Pumet von: Draw an ellipse in native EGA/VGA graphics modes. 

*, Callers Microsoft C: 

; void Ellipse10(xc,yc,a,b,n); 

; int xc, yc; /* center of ellipse */ 

; Tents eb Oe /* major and minor axes */ 

i. Anite Ay /* pixel value */ 

ARGxc EQU word ptr [bp+4] ; stack frame addressing 
ARGyc EQU word ptr [bp+6] 

ARGa EQU word ptr [bp+8] 

ARGb EQU word ptr [bp+10] 

ARGn EQU byte ptr [bp+12] 

ULAddr EQU word ptr [bp-6] 

URAddr EQU word ptr [bp-8] 

LLAddr EQU word ptr [bp-10] 

LRAddr EQU word ptr [bp=12] 

LMask EQU byte ptr [bp-14] 

RMask EQU byte ptr [bp-16] 

VARA EQU word ptr [bp-20] 

VARAx EQU word ptr [bp-24] 
VARdy EQU word ptr [bp-28] 

Asquared EQU word ptr [bp-32] 
Bsquared EQU word ptr [bp-36] 
TwoAsquared EQU word ptr [bp-40] 
TwoBsquared EQU word ptr [bp-44] 

RMWbits EQU 00h + read-modify-write bits 
BytesPerLine EQU 80 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

EXTRN PixelAddr10:near 

(continued) 

Listing 7-4. An assembly-language implementation of the midpoint algorithm. 
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Listing 7-4. Continued. 

_Ellipse10 

’ 

, 

, 

, 

, 

PUBLIC _Ellipse10 

PROC near 

push bp ; 

mov bp, sp 

sub sp, 40 ; 

push si 

push di 

set Graphics Controller Mode register 

mov dx, 3CEh So DX. is 

mov ax,0005h ; AL := 

; AH := 

out dx, ax ; 

set Data Rotate/Function Select register 

mov ah, RMWbits ; AH := 

mov aes ; AL 3:= 

out dx,ax 

set Set/Reset and Enable Set/Reset registers 

initial constants 

plot pixels from (0,b) 

; bit planes enabled) 

preserve caller registers 

reserve local stack space 

Graphics Controller I/O port 

Mode register number 

Write Mode 0 (bits 0,1) 

Read Mode 0 (bit 4) 

Read-Modify-Write bits 

Data Rotate/Function Select reg 

pixel value 

Set/Reset reg number 

value for Enable Set/Reset (all 

Enable Set/Reset reg number 

mov ah, ARGn ; AH’ := 

mov al,0 ; AL := 

out dax,ax 

mov ax, O0FO1h ; AH := 

out dx,ax i Bi = 

mov ax, ARGa 

mul ax 

mov Asquared, ax 

mov Asquared+2,dx 7; a%2 

shl ax pl 

Bok dx, 1 

mov TwoAsquared, ax 

mov TwoAsquaredt+2,dx ; 2 * a%2 

mov ax, ARGD 

mul ax 

mov Bsquared, ax 

mov Bsquared+2, dx Peja, 

shl ax, 1 

Bed dx, 1 

mov TwoBsquared, ax 

mov TwoBsquared+2,dx ; 2 * b*2 

until dy/dx = -1 

initial buffer address and bit mask 

(continued) 
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Listing 7-4. Continued. 

mov ax,BytesPerLine ; 

mul ARGb , 

mov si,ax 

mov di,ax 

mov ax, ARGyc z 

mov bx, ARGxc , 

call PixelAddr10 ; 

mov ah,1 

shl ah,cl az 

mov LMask, ah 

mov RMask, ah 

add si,bx , 

mov ULAddr, si 

mov URAddr, si 

sub bx, Gi ; 

mov LLAddr, bx 

mov LRAddr, bx 

; initial decision variables 

xor ax,ax 

Mov VARdAxX, ax 

mov VARGX+2, ax : 

mov ax, TwoAsquared 

mov dx, TwoAsquared+2 

mov cx, ARGb 

call LongMultiply z 

mov VARdy, ax 

mov VARdy+2, dx . 

mov ax, Asquared 

mov dx, Asquared+2 F 

sar dx, 1 

ror ax, 1 

sar (be || 

BCH ax, 1 g 

add ax, Bsquared 

adc dx, Bsquared+2 ; 

mov VARd, ax 

mov VARd+2, ax 

mov ax, Asquared 

mov dx, Asquaredt2 

mov cx, ARGb 

call LongMultiply 5 

sub VARd, ax 

sbb VARd+2,dax : 

? loop until dy/dx >= -1 

mov bx, ARGb ; 

AX := video buffer line length 

AX := relative byte offset of b 

Rega Vc 

BX = XC 

AH := bit mask 

ES:BX -> buffer 

CL sSre i bits-torshreey ere 

AH := bit mask for first pixel 

SI := offset of (0,b) 

AX := offset of (0,-b) 

dx = 0 

perform 32-bit by 16-bit multiply 

dy = TwoAsquared * b 

DX:AX = Asquared 

DX:AX Asquared/4 

DX:AX = Bsquared + Asquared/4 

DX:AX = Asquared*b 

d = Bsquared - Asquared*b + Asquared/4 

BX := initial y-coordinate 

(continued) 
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Listing 7-4. Continued. 

xor Gx por ij CH = 10. (interal y-increment) 

* CL := 0 (initial x-increment) 
Li: mov ax, VARdx 

mov dx, VARGx+2 

sub ax, VARdy 

sbb dx, VARdy+2 

jns L20 # jump if dx>=dy 

call Set4Pixels 

mov Cx + CH := 0 (y-increment) 

, CL := 1 (x-increment) 
cmp VARd+2, 0 

js L11 7 jump oUt d.<20 

mov ch, 1 + increment in y direction 
dec bx ; decrement current y-coordinate 

mov ax, VARdy 

mov dx, VARdy+2 

sub ax, TwoAsquared 

sbb dx, TwoAsquared+2 ; DX:AX := dy - TwoAsquared 
mov VARdy, ax 

mov VARdy+2, dx ; dy -= TwoAsquared 

sub VARd, ax 

sbb VARd+2, dx 7; a’-= dy 

Bit: mov ax, VARdx 

mov dx, VARdx+2 

add ax, TwoBsquared 

adc dx, TwoBsquared+2 ; DX:AX := dx + TwoBsquared 

mov VARdx, ax 

mov VARGx+2,dax ; dx += TwoBsquared 

add ax, BSquared 

adc dx, Bsquaredt+2 ; DX:AX := dx + Bsquared 

add VARd, ax 

adc VARd+2,dx 7 ad += dx + Bsquared 

jmp L10 

7; plot pixels from current (x,y) until y <0 

, 

; initial buffer address and bit mask 

L20: push bx ; preserve current y-coordinate 

push Cx ; preserve x- and y-increments 

mov ax, Asquared 

mov dx, Asquared+2 

sub ax, Bsquared 

sbb dx, Bsquared+2 ; DX:AX := Asquared-Bsquared 

(continued) 
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Listing 7-4. Continued. 

mov 

mov 

sar 

rer 

add 

adc 

sub 

sbb 

sub 

sbb 

sar 

ECE 

add 

adc 

7 loop unk y <0 

pop 

pop 

L21: call 

mov 

cmp 

jns 

mov 

mov 

mov 

add 

adc 

mov 

mov 

add 

adc 

L22: mov 

mov 

sub 

sbb 

mov 

mov 

sub 

sbb 

sub 

sbb 

dec 

jns 

bx, ax 

cx,dx ; 

dx, 1 

ax, 1 i 

ax, bx 

ax, cx ; 

ax, VARdx 

dx, VARdx+2 

ax, VARdy 

dx, VARdy+2 ; 

dx, 1 

ax, 1 ; 

VAR, ax 

VARd+2, dx 2 

cx 5 

bx - 

Set4Pixels 

cx, 100h . 

VARG+2,0 

L22 : 

ela ; 

ax, VARAx 

dx, VARdx+2 

ax, TwoBsquared 

dx, TwoBsquared+2 

VARAx, ax 

VARAx+2,dax . 

VARd, ax 

VARd+2, dx ; 

ax, VARdy 

dx, VARdy+2 

ax, TwoAsquared 

dx, TwoAsquared+2 

VARdy, ax 

VARdy+2,dax i 

ax, Asquared 

dx, Asquared+2 . 

VARd, ax 

VARd+2, ax ; 

bx 5 

L21 ; 

CX:BX 

DX:AX 

DX:AX 

DX:AX 

DX: AX 
(a2 

updat 

CH, CL 

CH 

Chi = 

(As 

ed 

ey: 

= 1 
0 

(Asquared-Bsquared) 

(Asquared-Bsquared) /2 

3* (Asquared-Bsquared) /2 

3* (Asquared-Bsquared) /2 - (dx+dy) 

quared-Bsquared) /2 - (dxtdy) )/2 

y- and x-increments 

(y-increment) 

(x-increment) 

wuMpeLe a S=e0 

increment in x direction 

7 DX:AX := dx + TwoBsquared 

dx += TwoBsquared 

dad += dx 

; DX:AX := dy - TwoAsquared 

dy -= TwoAsquared 

DX:AX := dy - Asquared 

d += Asquared - dy 

decrement y 

loop if y >= 0 

(continued) 
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Listing 7-4. Continued. 

7 restore default Graphics Controller registers 

Lexit: mov ax, OFFO8h +; Gefault Bit Mask 
mMOv dx, 3CEh 

out dx,ax 

MOV ax, 0003 7 default Function Select 
out dx, ax 

mov ax, 0001 + default Enable Set/Reset 
out dx,ax 

pop di 

pop si 

mov sp,bp 

pop bp 
Fret 

_Ellipse10 ENDP 

Set4Pixels PROC near 7 aCadhl awl thie CH := y-increment (0, -1) 

. CL := x-increment (0, 1) 

push ax ; preserve these regs 

push bx 

push dx 

mov dx, 3CEh ; DX := Graphics Controller port 

xor bx bx SUBK B= 0 

test ch,ch 

jz L30 ; jump if y-increment = 0 

mov bx,BytesPerLine ; BX := positive increment 

neg bx ; BX := negative increment 

L30: mov al,8 ; AL := Bit Mask reg number 

Pepixels at. (xc—-x,yvety) and (xe—-x, yc-y) 

xor Si ,3% 4 Sl. 4= "0 

mov ah, LMask 

rol ah,cl ; AH := bit mask rotated horizontally 

rel Shey ; SI := 1 if bit mask rotated around 

neg si 7 Ot = 0) LO 

mov di,si ; SI,DI := left horizontal increment 

add si,ULAddr ; SI := upper left addr + horiz incr 

add Si bx ; SI := new upper left addr 

add di, LLAddr 

sub Gi pbx ; DI := new lower left addr 

mov LMask, ah ; update these variables 

mov ULAddr,si 

mov LLAddr, di 

(continued) 
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Listing 7-4. Continued. 

out dx,ax ; update Bit Mask register 

mov ch,es: [si] ; update upper left pixel 

mov essa}, ch 

mov ch,es: [di] ; update lower left pixel 

mov es: [di],ch 

* pixels at (xctxpycty) and (xctx,yc—y) 

xor Say Sa 7 (SDS 40 

mov ah, RMask 

ror Ellays oul ; AH := bit mask rotated horizontally 

rel Si, 1 ; SI := 1 if bit mask rotated around 

mov ais, Sa ; SI,DI := right horizontal increment 

add si, URAddr 7 SI := upper right add= + horiz incr 

add Si, bx ; SI := new upper right addr 

add di, LRAddr 

sub di,bx ; DI := new lower right addr 

mov RMask, ah 7 update these variables 

mov URAddr, si 

mov LRAddr, di 

out dx,ax 7 update Bit Mask register 

mov ches: [sai] 7 update upper right pixel 

mov es:[si],ch 

mov chyess [din] + update lower right pixel 

mov es: [di],ch 

pop dx 7 restore these regs 

pop bx 

pop ax 

ret 

Set4Pixels ENDP 

LongMultiply PROC near perCaldiers DX = ul (hi-order word 

; of 32-bit number) 

; AX = u2 (lo-order word) 
: CX = vi (16-bit number) 
; Returns: DX:AX = 32-bit result) 

push ax ; preserve u2 

mov ax, ax ; AX ¢= a1 

mul cx 7 AX := hi-order word of result 
xchg ax, Cx + AX := v1, CX := hi-order word 

pop dx a Dike = 02 
mul dx 7 AX := lo-order word of result 

7 DX s=hcarry 
add axex 7 CX := hi-order word of result 
ret 

(continued) 
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Listing 7-4. Continued. 

LongMultiply ENDP 

_ TEXT ENDS 

END 

One optimization technique used in Chapter 6 is omitted here. In practice, 
minimizing video buffer accesses by setting more than one pixel at a time in each 
byte of the buffer is not worthwhile. The overhead involved in keeping track of 
which bytes contain more than one updated pixel is greater than the time saved in 
reducing video buffer accesses. Besides, the code is complicated enough already. 

Clipping 

If you clip an ellipse within a rectangular window, the result is an arc (see Figure 
7-8). The place to perform the clipping is in the Set 4Pixels () routine. You 
can clip each pixel’s (x,y) coordinates against the window boundary before you 
call SetPixel () to update the video buffer. 

clipping window 

Figure 7-8. Clipping an ellipse produces an arc. : 

Implementing clipping in this way slows the ellipse-drawing routine somewhat. If 

your application rarely requires clipping, consider implementing two different 

versions of Set 4Pixels (), one that performs clipping and one that omits it. 

Before calling Ellipse (), you can compare the maximum and minimum coor- 

dinate values of the pixels in the ellipse (xc + a,yc + b) with the clipping bound- 

aries to determine whether it can be drawn without clipping. Only if clipping is 

required do you need to use the slower, clipping version of Set 4Pixels(). 
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True Circles 

After you implement the ellipse routine, you can draw true circles in all graphics 

modes on PC and PS/2 video subsystems. To display a circle, draw an ellipse with 

its major and minor axes scaled in proportion to your video display’s horizontal 
and vertical resolutions. Listing 7-5 shows how you might do this in a 640-by-350 

graphics mode on an EGA. 

Because the scaling varies with the video mode, the same routine cannot draw cir- 

cles in different video modes unless it accommodates the pixel coordinate scaling 
in each mode. Figure 4-9 in Chapter 4 is a table of pixel scaling factors for all 
graphics modes. 

/* Listing 7-5 */ 

Ca eeleOne xy. ViGpeexiy) Venu i) /* circles in 640x350 16-color mode */ 

int xepyes /* center of circle */ 
int xe, VGe /* point on circumference */ 

int oe /* pixel value */ 

{ 

double x,y; 

double sqrt(); 

double Scale10 = 1.37; /* pixel scaling factor */ 
int a,b; 

X = xr - xc; /* translate center of ellipse */ 
y = (yr -— ye) * Scalel0; /*® to origin */ 

ale esqre(ex*sx hay eye je /* compute major and minor axes */ 
b =a / Scalel0; 

Bldipsel0( xe, ye, a, b, m)s /* draw it */ 
} 

Listing 7-5. Using pixel coordinate scaling to display a circle in 640-by-350 16-color mode. 
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Region Fill 

What Is a Region? 

Interior and Border Pixels @ Connectivity 

Simple Fills with Horizontal Lines 

Three Region Fill Algorithms 

Simple Recursive Fill 

Line-Adjacency Fill 

Border Fill 

Comparing the Algorithms 



This chapter describes several methods for filling a region of the video buffer 

with a pattern of pixels. Region fill techniques are used in many areas of com- 

puter graphics programming, including color manipulation, shading, and repre- 

sentation of three-dimensional objects, as well as in applications such as image 

processing, image data transmission, and computer animation. 

This chapter contains working source code for three region fill algorithms, but 

the discussion is by no means comprehensive. These algorithms and implementa- 

tions are intended to be working models that you can experiment with, modify, 

and optimize for your own applications. 

What Is a Region? 
A region is a connected group of pixels in the video buffer that is delineated by 

some sort of boundary. You can think of a region in the video buffer as compris- 

ing an interior and a border. To understand how the algorithms in this chapter are 

implemented, however, it is worth considering how a region can be clearly 

defined in terms of pixel values and pixel geometry in the video buffer. 

Interior and Border Pixels 

In this chapter, a region is assumed to be surrounded by pixels whose values dis- 

tinguish them from the pixels in the interior. You could assume, for instance, that 

all interior pixels have the same value, in which case a border pixel is simply any 

pixel whose value differs from the values of pixels in the interior (see Figure 

8-1a). You could also assign a range of allowable pixel values to both interior and 

border pixels. The algorithms in this chapter adhere to the convention that all pix- 

els in the border have one specified value and pixels in the interior can be of any 

other value (see Figure 8-1b). 

In many applications, it is practical to use a range of pixel coordinates to define 

all or part of a region’s border. The definition of a ‘border pixel’’ can thus be 

broadened to include pixels outside a predetermined range of (x,y) coordinates. In 

this way a region can be bounded by the limits of the screen buffer or by a soft- 

ware window, as well as by pixels of a predetermined value or range of values. 

a. b. 

Figure 8-1. In Figure 8-1a, a region is defined by interior pixels of a given value. In Figure 
8-1b, a region is defined by border pixels of a given value. 
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Connectivity 

To distinguish border pixels from interior pixels, you must also specify the way 
the pixels are connected. If you allow interior pixels to be connected diagonally 
as well as orthogonally (horizontally and vertically), you must assume that the 
border pixels surrounding the region are always connected orthogonally (see 
Figure 8-2a). Conversely, if you allow border pixels to be diagonally connected, 
you must constrain interior pixels to orthogonal connections (see Figure 8-2b). 
Consider the reason for this constraint: If both border and interior pixels could be 
diagonally connected, then interior pixels could be connected to pixels outside the 
border at places where border pixels are diagonally connected. 

Figure 8-2. Connectivity of pixels. In Figure 8-2a, border pixels ( black) are orthogonally 
connected, while interior pixels (gray) are both orthogonally and diagonally connected. In 
Figure 8-2b, border pixels are both orthogonally and diagonally connected, so interior pixels 
are only connected orthogonally. 

Chapter 8: Region Fill 245 



Simple Fills with Horizontal Lines 

Before you become involved with the intricacies of region fill algorithms, remem- 

ber that you can fill many regular geometric shapes without using a specialized 

algorithm. A common application of this technique is shown in Listing 8-1. This 

routine fills a rectangular region in the video buffer with pixels of a specified 

value. It is fast, because the subroutine that draws horizontal lines is fast. 

/* Listing 8-1 */ 

FilledRectangle( x1, yl, x2, y2, n ) 

int Ay Vill /* upper left corner */ 

int x2 Vier /* lower right corner */ 

int n; /* pixel value */ 

{ 
int yi 

for (y = yl7 y<.= y27 yr) /* draw rectangle as a set of */ 

Gainer xp oy en Vie Me a /* adjacent horizontal lines */ 

} 

Listing 8-1. Filling a rectangle with horizontal lines. 

Creating similar routines to draw filled triangles, hexagons, and circles is not 

difficult, because of these objects’ regularity and symmetry. Writing a general- 

purpose routine that can fill convex or irregular polygons is more difficult; in 

this case, you must scan-convert each of the polygon’s sides (using, for example, 

Bresenham’s algorithm from Chapter 6) to create a list of the pixels that define 

the border of the polygon. This list contains pairs of pixels that can then be con- 

nected with horizontal lines to fill the interior of the polygon. 

pe Several good textbooks deal with the problem of scan-converting and 
| a 
, filling arbitrary polygons. For example, see Fundamentals of Interac- 

" tive Computer Graphics by J. D. Foley and A. VanDam (Addison— 

Wesley 1982). 

Though polygon fill techniques have many uses, some applications require filling 

a region with completely arbitrary borders, such as a map or an irregular shape 

that was drawn interactively. In this case, your fill routine must define the region 
using only the pixel values in the video buffer. The remainder of this chapter pre- 
sents algorithms and working source code for three such routines. 

Three Region Fill Algorithms 
The three algorithms described here are all designed with IBM video subsystems 
in mind. They use the pixel manipulation and line-drawing subroutines developed 
in Chapters 4, 5, and 6. Also, all three algorithms assume that border pixels can 
be diagonally connected and that interior pixels must be orthogonally connected 
(as in Figure 8-2b). You can thus fill regions with boundaries drawn using the 
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line-drawing and ellipse-drawing routines in Chapters 6 and 7, since those line 
and ellipse routines draw diagonally connected figures. 

Furthermore, all three algorithms can fill a region that contains a hole in its 
interior (see Figure 8-3). Such holes are collections of border pixels that are 
not contiguous with the pixels in the region’s outer border. Each algorithm is 
designed to detect the presence of holes and to properly fill the interior pixels 
surrounding them. 

Figure 8-3. A region whose interior (gray pixels) contains two holes. 

Simple Recursive Fill 

One way to fill a region is to start by filling a given ‘‘seed’’ pixel in its interior, 

and then to fill each of the seed’s immediate neighbors, each of the neighbors’ 

neighbors, and so on until the entire region is filled. The C routine in Listing 8-2, 

PixelFill(), shows how to do this. In Pixel Fill (), as in the other 

algorithms in this chapter, pixels in the interior of the region are assumed to be 

connected horizontally and vertically, but not diagonally. (PixelFill() can 

be easily modified to fill diagonally connected regions if so desired.) 

/* Listing 8-2 */ 

int FillValue; /* value of pixels in filled region */ 

int BorderValue; /* value of pixels in border */ 

PixelFill( x, y ) 

int Steir 

{ 
st War 

v = ReadPixel( x, y )7 

Listing 8-2. A simple recursive region fill. (continued) 
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Listing 8-2. Continued. 

if ( (vl=FillValue) && (v!=BorderValue) ) 

{ 
SetPixel( x, y, FillValue ); 

Pixe lms lI Sx=1, ye) 

Pace la (sects ee yinw) ae 

PuxelPa li x, yo )ip 

PixelFill( x, yr )s 

} 

Before it fills a pixel, Pixel1Fill() examines the pixel’s value to determine 

whether filling is required. If the pixel is neither a border pixel nor a previously 

filled pixel, the routine updates the pixel value and calls itself recursively. Be- 

cause PixelFill() does not fill previously filled pixels, the routine works 

properly even in regions with holes. 

Although simple, Pixe1Fill () is inefficient. One reason is that on average 

only one of the four recursive calls to Pixel Fil1() ever does anything. (Each 

pixel can only be filled once, but each time a pixel is filled, four recursive calls 

are made to the function. The only exception is in the case of the seed pixel.) 

Thus, Pixel Fill() accomplishes nothing about 75 percent of the time, which 

is not very efficient. 

Another problem with Pixe1Fil1 () is that the depth of recursion 

can increase beyond the limits of available stack memory. For exam- 

ple, the default stack space for code generated with the Microsoft C 

compiler is 2 KB. You can easily exceed this limit by using 

PixelFill() to fill even relatively small regions. 

Line-Adjacency Fill 

A better approach is to regard the interior of the region as a group of adjacent line 

segments that are connected vertically instead of as a group of pixels connected 

both vertically and horizontally. An algorithm that fills adjacent line segments 

tends to be much more efficient than a pixel-by-pixel recursive fill, because it in- 

spects and fills pixels more efficiently. Also, this conception of the region is 

closer to the physical representation of pixels in the video buffer, in which pixels 
are arranged in horizontal rows to be displayed during the raster scan. 

The routine in Listing 8-3, LineAdjFil1 (), implements a line-adjacency 

algorithm for filling a region. Its general strategy is to locate each group of 

horizontally connected pixels in the interior of the region. Like the simple recur- 
sive fill, this algorithm also starts at a seed pixel known to be in the region’s in- 

terior. It scans left and right to find the ends of the seed pixel’s row, then fills the 

entire row. 
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/* Listing 8-3 */ 

#define UP -1 

#define DOWN 1 

LineAdjFill( SeedxX, Seedy, D, PrevxXL, PrevxXR ) 

int Seedx, SeedY; /* seed for current row of pixels */ 

int Dis /* direction searched to find current row */ 

int PrevxXL, PrevXR; /* endpoints of previous row of pixels */ 

{ 
int SSyie 

int lip x ioe 

int Vv; 

y = Seedy; /* initialize to seed coordinates */ 
xl = Seedx; 

xr = Seedx; 

ScanLeft( &xl, &y ); /* determine endpoints of seed line segment */ 

ScanRight( &xr, &y ); 

Line( xl, y, xr, y, FillValue ); /* £111 line with FillValue */ 

/* find and fill adjacent line segments in same direction */ 

EGG (x) =) sl <= XT ects) /* inspect adjacent rows of pixels */ 

{ 
v = ReadPixel( x, y+D ); 

if ( (v != BorderValue) && (v != FillValue) ) 

xX = LineAdjFill( x, ytD, D, xl, xr ); 

} 

/* find and fill adjacent line segments in opposite direction */ 

for (x = xl; x < Prevx; x+t) 

{ 
v = ReadPixel( x, y-D ); 

if ( (v != BorderValue) && (v != FillValue) ) 

Re hIneaaye mle x, YD; =D, XL, XE); 

} 

fou (x = Prevxks x < xr; xt) 

{ 
v = ReadPixel( x, y-D ); 

if ( (v != BorderValue) && (v != FillValue) ) 

x = DineAdjFill( x, y-D, =—Dyexl, xx) + 

return( xr ); 

ScanLeft( x, y ) 

int #x,*y; 

{ 
int aie 

Listing 8-3. A line-adjacency fill routine. (continued) 
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Listing 8-3. Continued. 

do 

{ . 

==1(*x))7 /* move left one pixel */ 

v = ReadPixel( *x, *y )7 /* determine its value */ 

} 
while ( (v != BorderValue) && (v != FillValue) ); 

++ (*x)7 /* x-coordinate of leftmost pixel in row */ 

} 

ScanRight( x, y ) 

int #x, FY; 

{ 
Lat Vi 

do 

{ 
++ (*xX) ; /* move right one pixel */ 

v = ReadPixel( *x, *y ); /* determine its value */ 

} 
while ( (v != BorderValue) && (v != FillValue) ); 

—-(*x); /* x-coordinate of rightmost pixel in row */ 

} 

The algorithm proceeds by locating all groups of horizontally connected pixels 

that are vertically adjacent to the group it just scanned. Each time it finds an adja- 

cent group of not-yet-filled pixels, LineAdjFill1() is called recursively to fill 

them. The algorithm terminates when all interior pixels have been filled. 

Figure 8-4 illustrates the order in which LineAdjFil1 () fills a simple region 

comprising seven line segments. The seed pixel is assumed to lie inside line seg- 

ment 1, and the routine is initially called with an upward search direction. The 

routine first searches the row of pixels above the seed (that is, line segment 2) for 

unfilled pixels. Because the row has not yet been filled, the routine is called 

recursively to fill it. Similarly, line segments 3 and 4 are filled by subsequent 

recursive calls to LineAdjFil1(). At this point, neither line segment 4 nor line 

Figure 8-4. Given a seed pixel in line segment 1, LineAdjFill() fills the adjacent line seg- 
ments in this region in numerical order. 
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segment 3 has any unfilied pixels adjacent to it, but when the pixels below line 
segment 2 are scanned, line segment 5 is discovered and filled. Finally, line seg- 
ments 6 and 7 are filled recursively. 

A line-adjacency graph (LAG) is essentially a diagram of the connec- 
tions between the adjacent line segments in the interior of a region 
(see Figure 8-5). The problem of filling a region is equivalent to tra- 
versing its LAG in such a way that all nodes in the graph are visited. 
In practice, traversing the LAG is relatively easy (there are several 
textbook algorithms for graph traversal) compared to generating the 
graph given only the pixels in the video buffer (which is essentially 
what LineAdjFill() does). For more information see ‘‘Filling 
Regions in Binary Raster Images: A Graph-Theoretic Approach’’ by 
U. Shani (SIGGRAPH Proceedings 1980, pp. 321-327). 

Figure 8-5. A simple line-adjacency graph (LAG). 

LineAdjFill() is much more efficient than Pixe1lFill (), because it rarely 

visits a pixel more than once to determine whether it needs to be filled. Each time 

the routine is called, it fills one line segment and then inspects the adjacent rows 
of pixels for unfilled pixels. The routine does not examine pixels that were in- 
spected during the previous invocation of the routine (that is, pixels between 
PrevxXL and PrevxXR), nor does it inspect pixels to be filled by subsequent in- 

vocations (that is, pixels between the current value of x and the value returned 

from a call to LineAdjFil1 () ). The recursive logic becomes clear when you 

trace the execution of the routine as it fills a region such as the one diagrammed 

in Figure 8-4. 

If you implement a line-adjacency fill algorithm in assembly 

language, you can improve its efficiency by maintaining a push-down 

stack of parameters and executing the function iteratively rather than 
recursively. The skeleton of the algorithm then becomes 

push (°.. initial parameters on stack .. ); 

while ( .. stack not empty .. ) 

LineAdjFill(); 
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The fill routine pops the topmost parameters off the stack and pushes 

new sets of parameters instead of calling itself recursively. 

LineAdjFill 

{ 
pop (.. current parameters off of stack .. ) 

if ( .. adjacent line needs to be filled .. ) 

push ( .. new parameters .. ) 

} - 

In assembly language, a single machine instruction can perform each 

push and pop, so the algorithm’s performance is greatly improved. 

A line-adjacency algorithm can be adapted to fill a region with a pattern of pixels 

as well as with a single pixel value. For this reason, it is used commonly in com- 

mercial graphics packages. (IBM BASICA and Microsoft GW-BASIC are exam- 

ples.) Modifying the algorithm to do patterned fills requires that the horizontal 

line-drawing routine be replaced with a pattern-drawing routine and that the test 

that determines whether a pixel has been filled take into account the pixel values 

in the fill pattern. 

These modifications may seem innocuous, but they can significantly degrade the 

fill routine’s performance. The logic required to detect the presence of previously 

filled pixels can be complicated, particularly if you allow the fill pattern to con- 

tain pixels with the same value as border pixels. 

Border Fill 

Because the border of a region defines the extent of its interior, it is possible to fill 

a region by following the connected border pixels at the ends of the adjacent line 

segments that make up the interior. (See ‘‘Contour Filling in Raster Graphics’’ by 

T. Pavlidis, Computer Graphics, August 1981, p. 29). As long as you fill the region 

at the same time that you trace the border, however, this kind of border-tracing 

fill algorithm offers no clear advantage over a line-adjacency algorithm. 

However, if you separate the problem of tracing the border from that of filling the 
region’s interior, the resulting algorithm becomes more flexible. The process of 
filling a region then breaks down into three discrete steps: 

1) Create an ordered list of the border pixels (trace the border). 

2) Scan the interior of the region for holes. 

3) ‘‘Connect the dots’’ in the list from left to right with horizontal lines, thereby 
filling the region. 

The routine BorderFill () in Listing 8-4 performs a region fill using this 
three-step method. The algorithm executes the three steps iteratively, once for the 
boundary of the region and once for each hole in the interior of the region. 
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/* Listing 8-4 */ 

#define 

#define 

#define 

#define 

struct 

{ 

ame 

int 

int 

int 

BorderFill( x, 

Ene 

{ 

ScanRegion( x, 

int 

{ 

Listing 8-4. A region fill routine that traces a region’s border. 

BLOCKED 

UNBLOCKED 

TRUE 

FALSE a = p= 

BPstruct 

int 

int 

X,Y 

flag; 

BP [3000]; 

BP Start; 

BPend = 0; 

FillValue; 

BorderValue; 

iy my) 

X,Y; 

do 

{ 
TraceBorder( x, y ); 

SOEtBP( BP )+ 

ScanRegion( &x, &y ); 

} 
while (BPstart < BPend); 

FillRegion(); 

y ) 
*x,*y; 

int ~ = BPstart; 

int ve ae 

while (i < BPend) 

{ 
if (BP[i].flag == BLOCKED) 

Fora 

else 

LEM (BE tah sy = 

eae 

BP[i+1].y) 

else 

{ 
Pee(ee ae BP tei]. x—4,) 

{ 
xe = (ScanRight( BP [i].xt1, 

ate 

{ 
xX = 

zy 

(xr<BP [i+1] .x) 

x7 

BE aay 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

/* 

table of border pixels */ 

(increase if necessary) */ 

of table */ 
empty cell in table */ 

of pixels in filled region */ 

of pixels in border */ 

start 

fais 

value 

value 

do until entire table is scanned */ 

trace border starting 

sort the border pixel 

look for holes in the 

at x,y */ 

table */ 

interior */ 

use the table to fill the interior */ 

skip pixel if blocked */ 

skip pixel if last in line */ 

if at least one pixel to fill */ 
/* scan the line */ 

BP! evan) ie 

/* if a border pixel is found */ 

/* return its x,y coordinates */ 

(continued) 
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Listing 8-4. Continued. 

break; 

BPstart = i; 

SortBP () 

{ 
rie CompareBP () ; 

gsort ( BP+BPstart, 

CompareBP( argl, arg2 ) 

SELUCE S BPSELUGCE SS Farg1, tanqZyy 

{ 

int vs 

te—larg| Sys sarg2—>y, 

WES (i aih="0)) 

Mecurn (Atte FO ee — Apel.) 

eee rage see 

PES (ES! =10) 

ngeyeroe ag (= Xl Ke 10) ay) Ge ie inn 

i = argi—>filag = arg2->filag; 

return) (<0) 52 = a ye 

} 

FillRegion () 

{ 
int aye 

for(i = 0; i < BPend;) 

{ 
Ef (BP [i].flag == BLOCKED) 

al a 

else 

if (BP[i].y != BP[it+1].y) 

toile 

else 

{ 

Z£ (BP [ij < BP fit] .x=1) 

Line( BP[i].x+1, BP tag Vir 

a 

BPend-BPstart, 

/* returns -1 

/* advance past this pair of pixels */ 

/* uses Microsoft C library quicksort routine */ 

sizeof (struct BPstruct), CompareBP ); 

if argl<arg2, 1 if arg1>arg2 */ 

sort by y-coordinate */ 

hit eeacOr 1 sara SO ees (return 

sort by x-coordinate */ 

/* sort by flag */ 

/* skip pixel if blocked ¥*/ 

/* skip pixel if last in line */ 

/* if at least one pixel to fill 
/* draw a line */ 
BP[i+1].x-1, BP[i+1].y, 

*/ 

FillValue ); 

(continued) 
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Listing 8-4. Continued. 

/* border tracing routine */ 

struct BPstruct CurrentPixel; 

ae, De /* current search direction */ 
int PrevD; /* previous search direction */ 
int PrevV; /* previous vertical direction */ 

TraceBorder( StartX, StartyY ) 

int Startx, StaxrtyY; 

{ 

int NextFound; /* flags */ 

ime Done; 

/* initialize */ 

CurrentPixel.x = StartxX; 

CurrentPixel.y = StartyY; 

D = 6; /* current search direction */ 

PrevD = 8; /* previous search direction */ 
PrevV = 2; /* most recent vertical direction */ 

/* loop around the border until returned to the starting pixel */ 

do 

{ 
NextFound = FindNextPixel (); 

Done = 

(CurrentPixel.x == StartX) && (CurrentPixel.y == StartyY); 

} 

while (NextFound && !Done); 

/* if only one pixel in border, add it twice to the table */ 

if (!NextFound) /* pixel has no neighbors */ 

{ 
AppendBPList( StartX, StartY, UNBLOCKED ); 

AppendBPList( StartX, StartY, UNBLOCKED ); 

} 

/* if last search direction was upward, add the starting pixel to the table */ 

else 

if ( (PrevD <= 3) && (PrevD >= 1) ) 

AppendBPList( StartX, StartY, UNBLOCKED ); 

FindNextPixel () 

{ 
int i; 

int flag; 

for (R= =i <= 5; i++) 

{ 
flag = FindBP( (Dti) & 7 ); /* search for next border pixel */ 

(continued) 
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Listing 8-4. Continued. 

if (flag) /* flag is TRUE if “found +7 

{ 
id) = (ONE) fe Ge /* (D+i) MOD 2 */ 
break; /* exit from loop */ 

return( flag ); 

} 

FindBP(d ) 

int d; /* direction to search for next border pixel */ 

{ 

int X,Yi 

x = CurrentPixel.x; 

y = CurrentPixel.y; 

NextXY( &x, &y, d ); /* get x,y of pixel in direction d */ 

if ( BorderValue == ReadPixel( x, y ) ) 

{ 
AddBPList(d ); /* add pixel at x,y to table */ 

CurrentPixel.x = x; /* pixel at x,y becomes current pixel */ 

CurrentPixel.y = y; 

return( TRUE ); 

} 

else 

return( FALSE ); 

} 

NextXY( x, y, Direction ) 

int *x,*y; 

int Direction; 

{ 

switch( Direction ) /* BNP */ 

{ /* 4 0 */ 

case 1: /* SGuay */ 
case 2: 

case 3: 

hve Sail? /* up */ 
break; 

case 5: 

case 6: 

case 7? 

Venta eal /* down */ 
break; 

} 

switch (Direction) 

{ 

case 3: 

case 4; 

case 5: 

as /* left */ 
break; 

(continued) 

256 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Listing 8-4. Continued. 

case 1: 

case 0: 

case 7: 

Seba ye 

break; 

AddBPList(d ) 

int ar 

{ 

if (d == PrevD) 

SameDirection() ; 

else 

{ 
DifferentDirection(d ); 

PrevV = PrevD; 

PrevD = d; 

SameDirection () 

{ 

if (PrevD == 0) 

BP [BPend-1].flag = BLOCKED; 

else 

if (PrevD != 4) 

AppendBPList ( CurrentPixel.x, 

DifferentDirection( d ) 

int Cz 

{ 

/* previously moving left */ 

EE 

{ 

(PrevD 4) 

if (Prevv == 5) 

BP [BPend-1].flag = BLOCKED; 

AppendBPList ( CurrentPixel.x, 

} 

/* previously moving right */ 

else 

if (PrevD == 0) 

{ 
BP [BPend-1].flag = BLOCKED; 

ie 4a =="7) 

/* right */ 

/* new previous vertical direction */ 

/* new previous search direction */ 

/* moving right */ 

/* block previous pixel */ 

/* if not moving horizontally */ 

CurrentPixel.y, UNBLOCKED ); 

/* if from above * / 

/* block rightmost in line */ 

CurrentPixel.y, BLOCKED ); 

/* previously moving right */ 

/* block rightmost in line */ 

/* if line started from above */ 

AppendBPList ( CurrentPixel.x, CurrentPixel.y, BLOCKED ); 

else 

AppendBPList ( CurrentPixel.x, CurrentPixel.y, UNBLOCKED ); 

(continued) 
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Listing 8-4. Continued. 

/* previously moving in some vertical direction */ 

else 

{ 
AppendBPList ( CurrentPixel.x, CurrentPixel.y, UNBLOCKED Wie 

/* add pixel twice if local vertical maximum or minimum */ 

if ( ( (d>=1) 6& (d<=3) ) && ( (PrevD >= 5) && (PrevDs<= 111) || 

( (d>=5) && (d<=7) ) && ( (PrevD >= 1) && (PrevD <= 3) ) ) 

AppendBPList ( CurrentPixel.x, CurrentPixel.y, UNBLOCKED ); 

} 

AppendBPList( p, q, f ) 

int P, ai /* pixel x,y coordinates */ 

int fi /* flag */ 

{ 
BP [BPend] .x = p; 

BP [BPend].y = qs 

BP (BPend].flag = f; 

I 

++BPend; /* increment past last entry in table */ 

} 

/* routine to scan a line for a border pixel */ 

ae Xmax; /* largest valid pixel x-coordinate */ 

ScanRight ( x, y ) 

int Sep Vie 

{ 
while ( ReadPixel( x, y ) != BorderValue ) 

{ 
Seay /* increment x */ 

Le) (x == Xmax) /* if end of line in buffer ... */ 

break; /* exit from the loop */ 

} 

return( x ); 

} 

The module TraceBorder () creates a table that contains the pixel address 

of every pixel in the region’s border. Sort BP () then sorts the table of border 

pixels by increasing y- and x-coordinates. The routine ScanRegion () 
examines the interior line segment between each pair of border pixels in the 

table. If it detects a border pixel within the line segment, ScanRegion () 

assumes it has encountered a hole in the region; it then returns the border pixel’s 

(x,y) coordinates so that TraceBorder() and Sort BP () can update the table 

with the hole’s border pixels. This process continues until the entire interior of 

the region has been scanned. Then Fill Region () uses the sorted list of border 

pixels to fill the region by drawing a horizontal line between each pair of pixels 
in the list. 
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TraceBorder () starts with a seed pixel on the right-hand border of the region. 

It steps clockwise from pixel to pixel in the border. Because the search proceeds 

clockwise, the interior of the region is always to the right of the direction in 

which the search is moving. If a pixel is not adjacent to the interior, the algorithm 
does not identify it as a border pixel. The algorithm ensures that the border pixels 

it detects are indeed adjacent to the interior by always examining pixels to the 

right of the search direction first. 

The algorithm identifies its search direction with one of the eight numeric codes 
shown in Figure 8-6. (This technique is taken from ‘‘Algorithms for Graphics and 

Image Processing”’ by T. Pavlidis [Computer Science Press, 1982].) Thus, in Figure 

8-7, the algorithm moves from pixel b to pixel c in direction 6 (downward). To 

find the next pixel in the border, the algorithm starts by examining the pixel to 

the right of direction 6; that is, direction 4. This pixel is not a border pixel, but the 

pixel in direction 5 (pixel d) is, so d is added to the list. The algorithm continues 

to trace the border until it returns to the starting pixel. (The search terminates im- 

mediately in the case of a degenerate ‘‘border’’ consisting of only one pixel.) 

TraceBorder () performs another task in addition to identifying the pixels in 

the border. It also indicates whether each border pixel defines the left or right end- 

point of a horizontal interior line segment. (Because FillRegion() draws 

horizontal lines from left to right, TraceBorder () marks each border pixel 

with a flag indicating whether the pixel can be used as a left border.) Further- 

more, if a pixel can serve as both a left and a right border (see Figure 8-8), 

Figure 8-6. Numeric codes for border pixel trace directions. 

Direction 

a+b 6 

boc 6 

c—d 5 

d-e 5 

ef 4 

f +g 4 

Figure 8-7. Border pixel identification in TraceBorder‘(). 
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Figure 8-8. Pixels may border the interior on the left, right, or both directions: Pixelaisa 

border pixel on the right of a row of interior pixels; it is blocked to its right by other border 

pixels. Pixel b serves as both a left and a right border. 

TraceBorder () adds it to the table twice. The logic in SameDirection () 

and DifferentDirection() accomplishes these tasks. 

TraceBorder () may seem complex, but it is a relatively fast routine. The 

slowest steps in BorderFill () are actually Sort BP (), which sorts the table 

of border pixels, and ScanRegion (), which searches for border pixels in the 

interior of the region. If Sort BP () and ScanRegion () are slow, 

BorderFill() will be slow, because these routines are executed iteratively, 

once for each hole in the region. 

You can significantly improve BorderFil1l ()’s performance by modifying 

TraceBorder () so that it builds its list of border pixels in the proper order to 

begin with, avoiding the sort altogether. You can build the ordered list efficiently 

using any of several data structures, including a linked list, a heap, or a fixed-size 

table. This type of modification is particularly effective when the algorithm is 

used to fill regions that contain one or more holes. Instead of sorting the list each 

time it detects a hole, the modified algorithm simply inserts the hole’s border pix- 

els into the list. 

Writing ScanRegion() ina high-level language is relatively easy, but because 

the routine examines all pixels in the interior of the region, you should write it in 

assembly language so it will execute rapidly. Furthermore, using assembly 

language on the EGA, the VGA, and the InColor Card offers a distinct advantage, 

because the graphics control hardware in these subsystems can examine eight 

pixels at a time and indicate which, if any, match the border pixel value. The 

assembly-language routine ScanRight () in Listing 8-5, which can be used in 

EGA and VGA 16-color graphics modes, runs 50 times faster than the C version 
in Listing 8-4. 

TITLE ‘Listing 8-5" 
NAME ScanRight10 

PAGE 597 32 

; Name: ScanRight10 

Listing 8-5. An assembly-language version of ScanRight(). (continued) 
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Listing 8-5. Continued. 

7 EuNnceLon: Scan for a pixel of a given value in 16-color EGA/VGA graphics 

: Caller: Microsoft C: 

: int ScanRight10 (x,y); 

; imt x, ye /* starting pixel */ 

: extern int BorderValue; /* value of border pixel */ 

; Returns the x-coordinate of the rightmost border pixel. 

ARGx EQU word ptr [bp+4] ; stack frame addressing 

ARGy EQU word ptr [bpt6é] 

ByteOffsetShift EQU 3 ; used to convert pixels to byte offset 

BytesPerLine EQU 80 ; 80 for most 16-color graphics modes 

Fi (40 for 320x200 16-color) 

DGROUP GROUP _DATA 

_ TEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP 

EXTRN PixelAddr10:near 

PUBLIC —_ScanRight10 

_ScanRight10 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

push di 

push Si 

; calculate pixel address of (0,y) 

mov ax, ARGy PAs ay 

xor bx, bx 7; Bx ese 0) 

call PixelAddr10 ; ES:BX -> buffer 

mov di, bx ; ES:DI -> buffer 

; calculate offset of x in row 

mov ax, ARGx 

mov si,ax eS pax reo 

mov cl, ByteOffsetShift 

shr si,cl ; SI := offset of x in row y 

add ai, sz - DL s= offset of x in butter 

calculate a bit mask for the first byte to scan 
, 

mov ela 

and el Cl ¢= <6 7 7 

mov ch, OFFh 

shr ch, cl ; CH := bit mask for first scanned byte 

(continued) 
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Listing 8-5. Continued. 

; configure the Graphics Controller 

mov dx, 3CEh 2 

mov ah, BorderValue ; 

mov alge ; 

out dx,ax 

mov ax, 805h z 

out ax,ax i 

mov ax, OFO7h i. 

out dx, ax ; 

; byte for border pixels inspect the first 

mov al,es: [di] ; 

inc di ; 

and al, ch : 

jnz L01 ; 

scan remainder of line for border pixels , 

mov cx,BytesPerLine 

sub exis . 

; 

dec cx ; 

repe scasb 7 

compute x value of border pixel , 

mov al,es: [di-1] ; 

LO1: sub di,bx ; 

mov cl, ByteOffsetShift 

shl ai, ea : 

mov exe 2 

THOZ: shl al,1 : 

7c L03 

loop L02 

L03: sub di ,.ex 9 

7 restore default Graphics Controller stat 

mov ape i. 

out ax, ax : 

mov al,5 ’ 

out dx, ax a 

DX := Graphics Controller port addr 

AH := pixel value for Color Compare reg 

AL := Color Compare Reg number 

AH := 00001000b (Read Mode 1) 

AL := Mode reg number 

AH := 00001111b (Color Compare reg value) 

AL := Color Compare reg number 

AL := nonzero bits corresponding to 

border pixels 

ES:DI -> next byte to scan 

apply bit mask 

jump if border pixel(s) found 

CX BytesPerLine - 

starting pixel) 

CX # of bytes to scan 

(byte offset of 

scan until nonzero byte read; i.e., 

border pixel(s) found 

AL last byte compared 

DI offset of byte past the one which 

contains a border pixel 

DI MI x-coordinate of 1st pixel in byte 

CX loop limit 

isolate first border pixel 

DI x-coordinate of border pixel 

e and return to caller 

AH 0 (default Color Compare value) 
restore Color Compare reg 

AH <= 0, AL 3) 

restore Mode reg 

(continued) 
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Listing 8-5. Continued. 

mov ax,di ; AX := return value 

pop si 7 restore caller registers and return 
pop di 

mov sp, bp 

pop bp 
ret 

_ScanRight10 ENDP 

EER ENDS 

_DATA SEGMENT word public 'DATA' 

EXTRN _BorderValue:byte 

_DATA ENDS 

END 

The fastest step in BorderFil1 () is the fill itself, because horizontal lines can 

be drawn rapidly. Thus, if you need to fill the same region repeatedly or to copy 

the same filled region several times, you can preserve the list of border pixels 

generated the first time you execute BorderFill (). This greatly accelerates 

subsequent fills, because you can skip the border-tracing and sorting steps. 

Comparing the Algorithms 

Which region fill algorithm is best? Each algorithm described in this chapter has 
its pros and cons. You can compare them in several ways. A valid comparison 

considers the simplicity of the algorithm, the speed of the compiled code, and the 

suitability of each algorithm for particular types of region fills. 

The recursive, pixel-by-pixel algorithm implemented as Pixe1Fil1() is about 

as simple as you can get. The source code is short and easy to implement in 

assembly language as well as in a high-level language. However, Pixel Fill () 

is too inefficient and too highly recursive to be generally useful. 

The line-adjacency fill algorithm LineAdjFil1() is more complicated than 

PixelFill(). Nevertheless, LineAdjFill() improves on the performance 

of PixelFill() because it examines pixel groups instead of individual pixels. 

LineAdjFill() also runs faster when it is written to access the video buffer in 

one-byte increments instead of one-pixel increments. LineAdjFil1() is also 

much less recursive than PixelFill (), so its runtime memory requirements 

are smaller than those of PixelFill(). 

The three-step algorithm implemented in BorderFill() is more complicated 

and somewhat slower than the other two algorithms. The advantage of using 
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BorderFill () is its generality. Its modules can be readily adapted to alternate 

types of region fills, including pattern fills and fills of regions defined as numeric 

lists of (x,y) coordinates. 

The performance of BorderFill() depends on the number of holes in the 

region. It is as fast as LineAdjFil1 () in filling a region without holes. 

However, when the region to be filled looks like Swiss cheese, BorderFill() 

slows down because it must update the sorted list of border pixels whenever it 

fills around a hole. 

Nevertheless, BorderFill() can do several things that the other algorithms 

cannot. For example, it can reliably fill regions that contain previously filled pix- 

els. Unlike BorderFill(), both PixelFill() and LineAdjFill() rely 

on the implicit assumption tht no interior pixels have the same value as the fill 

value. Thus, BorderFill() correctly fills the region shown in Figure 8-9, but 

both of the other routines fail. 

F igure 8-9. A test case for fill algorithms. Neither PixelFill() nor LineAdjFill() can correctly 
fill this region with gray pixels, because the “‘holes’’ are treated as if they have been already 
filled. 

You could modify a routine such as LineAdjFill () so that its a} : : ; 
7 detection of holes in the region does not depend on the presence of 
P previously filled pixels. This means the algorithm must somehow 

keep track of pixels it has already filled. One way to do this is to keep 
track of points where the border reaches a local minimum or max- 
imum (see Figure 8-10). These locations can identify the top and bot- 
tom of a hole in the region, enabling the fill algorithm to determine 
when to stop working its way around the hole. 
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Figure 8-10. An algorithm can detect the presence of a hole in a region by 
locating the border’s local maximum and minimum. Pixels marked a identify a 
local maximum. Pixels marked b identify a local minimum. 

For some applications, BorderFill() has a strong advantage over the other 

algorithms, because its border-tracing and sorting steps generate a list of numeric 

pixel coordinates. This list completely defines a two-dimensional region of pixels. 

You can translate or change the scale of the region by applying the appropriate 

conversions to the list of border pixels. As long as you preserve the pixels’ order 

in the list, you can use the FillRegion() routine in BorderFill () to fill 

the region the list defines. For this reason, the BorderFill() algorithm is best 
suited for applications that must copy arbitrary regions, change their scale or size, 

or draw them repeatedly into the video buffer. 

Furthermore, by modifying the horizontal line routine in BorderFill() you 

can easily fill a region with an arbitrary pattern or allow pixel AND, OR, and 

XOR functions. Although you can augment PixelFill() or LineAdjFill () 

in this way, the source code can become complicated because these algorithms in- 

spect pixels to determine whether they have been filled. 

The trade-offs in complexity and performance in these algorithms leave a great 

deal to your programming judgment. No single region fill algorithm is best for all 

possible graphics applications. Your choice of implementation should depend on 

your performance demands, the requirements of the application itself, the 

capabilities of your video display hardware, and the effort you can afford to 

expend in integrating and optimizing the code. 
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Few programs are complete without some sort of text display. Most graphics ap- 

plications incorporate text with graphics images. In graphics modes, the software 

that draws characters requires the same thoughtful design and construction as do 

routines that draw geometric figures such as lines and ellipses. 

In alphanumeric video modes, of course, displaying text is easy. You simply place 

a character code and attribute in the video buffer and let the hardware character 

generator put pixels on the screen. In graphics modes, however, your program 

must store every pixel of every character in the video buffer. 

This chapter discusses how to translate character codes into the pixel patterns that 

form characters in graphics modes. The programming examples are hardware- 

specific, of course, but you can adapt the table-driven character generator 

described here for use with other computers and in other graphics applications. 

Character Definition Tables 

Every character that an IBM video subsystem displays is made up of a pattern of 

contiguous pixels. The pixels are arranged to appear as coherent, recognizable 

characters on the screen. The pixel pattern that represents a character is the same 

no matter where in the buffer or on the screen the character is located. 

The most convenient way to describe the pixel patterns that represent the charac- 

ters in a character set is to create a table in which bit patterns represent the pixel 

patterns. Such a character definition table contains a bit pattern for every display- 

able character (see Figure 9-1). Each character’s bit pattern is defined within a 

rectangular matrix. When the character matrix is the same size for all characters 

in the table, and the definitions in the table are organized by character code, con- 

verting a character code to an offset into the table is easy. 

You can use a character definition table formatted in this way in alphanumeric as 

well as graphics modes in video subsystems that support RAM-based alphanu- 

meric character definitions. Chapter 10 covers this topic in detail. 

Binary 

01111110 g fa 

1ooo0001 MH | | | {| | 
| 10100101 

F000: FA6E 

F000:FA76 10000001 
F000:FA7E 10111101 
F000:FA86 10011001 
F000:FA8E 
F000:FA96 10000001 
F000:FA9E 01111110 i 
FOO00:FAA6 

F000: FAAE 

Figure 9-1. The beginning of the bit patterns that define IBM’s ROM BIOS 8-by-8 character 
definitions. 
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Video BIOS Support 

The PC and PS/2 ROM BIOS contains default character definition tables for use in 
graphics modes. The size of the characters in the table depends on the vertical 
resolution of the video mode. In 200-line, CGA-compatible video modes, the 
default character matrix is 8 pixels wide and 8 pixels high; in 350-line graphics 
modes, it is 8 wide by 14 high; in 400-line and 480-line modes, it is 8 by 16. In all 
graphics modes, the default characters are 8 pixels wide simply because there are 

8 bits in a byte. Because each byte in a character definition table represents 8 

horizontal pixels, defining characters as a multiple of 8 pixels in width makes the 
table easy to manipulate in software. 

No equivalent constraint applies to the height of characters defined in a character 

definition table. In practice, however, the character matrix used with IBM video 

subsystems should rarely be smaller than 8 by 6 pixels or larger than 8 by 16 pix- 

els. With a character matrix outside this range, the displayed height and width of 

the characters become disproportionate and the characters tend to appear too 

short or too elongated to be easily read. 

Default CGA Characters 
Figure 9-1 shows the beginning of the character definition table for the default 

character set in CGA graphics modes. The table contains an 8-byte definition for 

each of the first 128 ASCII characters (0 through 7FH). The first eight bytes of the 

table correspond to character code 0, the second eight bytes to character code 1, 

and so forth. The bit pattern in each group of eight bytes represents the pixel pat- 

tern displayed for the corresponding row of pixels in the character. The first of 

the eight bytes in each group corresponds to the topmost row of eight pixels. 

This table of 8-by-8 character definitions is located at FO00:FA6E in the mother- 

board ROM on all PCs and PS/2s. However, the table defines only the first 128 

ASCII characters. Character definitions for the second group of 128 ASCII codes 

(80H through OFFH) are found in a table whose address is stored in interrupt vec- 

tor 1FH (0000:007C). Because the motherboard BIOS contains no definitions for 

these characters, the address is initialized to 0000:0000. If you use the ROM BIOS 

to display ASCII characters between 80H and OFFH in CGA graphics modes 

without pointing this interrupt vector to a character definition table, the ‘‘charac- 

ters’ you see on the screen are whatever binary patterns happen to lie in the first 

1024 bytes of RAM. 

The MS-DOS utility GRAFTABL leaves a table of definitions for char- 

acters 80H through OFFH resident in RAM and updates the interrupt 
1FH vector to point to it. The characters defined in GRAFTABL are 

the same as those the alphanumeric character generator displays for 

ASCII codes 80H through OFFH. 
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Default EGA, VGA, and MCGA Characters 

The ROM BIOS in the EGA, VGA, and MCGA subsystems contains definitions for 

all 256 ASCII codes for all graphics modes. (You can access these tables directly; 

their addresses may be obtained by calling INT 10H function 11H with AL = 30H.) 

When you select a graphics mode with INT 10H function 0, the video BIOS loads 

the address of the appropriate character definition table for the graphics mode 

into interrupt vector 43H (0000:010C). In CGA-compatible 200-line graphics 

modes, the BIOS also points the interrupt 1FH vector to the definitions for charac- 

ters 80H through OFFH. 

Creating a Character Definition Table 

The easiest way to obtain a character definition table is to use one of the default 

BIOS tables. If the staid, placid characters in those tables aren’t to your liking, you 

can find many others commercially available or in the public domain. 

Several standard character sets are defined and registered with the 

International Standards Organization (ISO). IBM refers to these char- 

acter sets as code pages and has assigned arbitrary identification num- 

bers to them. For example, the standard IBM PC ASCII character set is 

designated by code page 437; the Canadian French code page is 863; 

and code page 850 is the general-purpose ‘‘multilingual’’ character set 

devised by IBM for languages that use a Latin alphabet. 

Both MS-DOS (starting in version 3.3) and OS/2 allow applications to 

switch between code pages on an EGA or VGA. When a program dis- 

plays characters with operating system function calls, the operating 

system uses the character definitions in the currently selected code 

page. Applications that use foreign language character sets should, 

whenever possible, exploit the code pages supported by the operating 
system. 

When you define your own character set, you can select among several alternative 
methods. The ugly alternative is to build your character definition table by speci- 
fying every byte in source code. Figure 9-2 shows the beginning of such a table. A 
more elegant alternative is to use a character-set editing program. With such edi- 
tors, you use cursor-control keys or a pointing device such as a light pen or mouse 
to specify the bit patterns in the table. Character-set editors are also available both 
commercially and in the public domain. (You can even write your own, using the 
routines in this book.) 

Another approach is to start with one of the BIOS character sets and transform the 
bit patterns in a regular way. For example, you could reverse the bit patterns ina 
table by converting 0s to 1s and 1s to 0s (that is, apply a bitwise logical NOT to 
each byte in the table), thus creating a ‘‘reverse’’ character set. 
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CharDefs db 000h, 000h, 000h, 000h, 000h, 000h, 000h,000h ; character 
db 03Ch, 066h, 0COh, 0COh, 0COh, 066h, 03Ch,000h ; character 

db OFCh, 066h, 066h, 07Ch, 06Ch, 066h, OE6h,000h ; character 

db OFEh, 062h, 068h, 078h, 068h, 062h, OFEh,000h ; character 

YD UBP WNYC 

db 078h, 0CCh, 0CCh, 078h, 0CCh, OCCh, 078h,000h ; character 

db 078h, 030h, 030h, 030h, 030h,030h,078h,000h ; character 

db OCCh, 0CCh, 0CCh, 0CCh, 0CCh, 078h,030h,000h ; character 

character db OFEh, 062h, 068h, 078h, 068h, 062h, OFEh,000h ; 

Figure 9-2. A hand-coded character definition table. 

Software Character Generators 

A software routine that uses the bit patterns in a character definition table to draw 

characters in the video buffer is called a software character generator. A software 

character generator performs several functions. It locates the bit pattern for a 

given character code, translates the bit pattern into a corresponding pattern of 

pixels, and updates pixels at a specified location in the video buffer. 

Video BIOS Support 

The video BIOS provides a software character generator that is used whenever INT 

10H functions 09H, OAH, OEH, and 13H are called in graphics modes. The soft- 

ware character generator in the IBM PC and AT uses only the 8-by-8 characters 

defined at F000:FAGE and at the address indicated by interrupt vector 1FH. The 

version in the EGA and PS/2 BIOS uses the table to which interrupt vector 43H 

points; this version determines the height of displayed characters from the BIOS 

variable POINTS at 0040:0085. 

You can use the BIOS software character generator to display characters from any 

character definition table by updating the appropriate interrupt vectors with the 

address of the table. On the EGA and PS/2s, use INT 10H function 11H to do this. 

The BIOS character generator is convenient to use, but it is somewhat limited in 

its capabilities. In particular, it can only store byte-aligned characters in the video 

buffer. If you are willing to sacrifice compatibility with the INT 10H interface, 

you can write a faster software character generator that is more powerful than the 

default video BIOS version. 

Pixel Handling 

You store characters in the video buffer by changing the values of the appropriate 

pixel groups. You can update the video buffer simply by replacing old pixel 

values with new ones. You can also perform bitwise logical operations (AND, OR, 

or XOR) to update the pixels. 
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Your routine to display text in graphics modes can handle the background pixels 

in the character matrix in one of two ways. One is to preserve the contents of the 

video buffer as much as possible by updating only foreground pixels; that is, by 

updating only those pixels that represent the character itself (see Figure 9-3a). The 

other is to update all foreground and background pixels within the bounds of the 

rectangular character matrix (see Figure 9-3b). 

a. b. 

Figure 9-3. Characters written without background pixels (a.) and with background 
pixels (b.). 

Updating only the character’s foreground pixels preserves as many pixels in the 

video buffer as possible. This may be the best way to display text in front of a 

detailed or patterned graphics image. However, reading the displayed characters 

can be difficult if the graphics image in some way blends with the character. For 

example, text is invisible against a region filled with pixels having the same value 

as the character’s foreground pixels. 

To avoid such problems, you can update all foreground and background pixels in 

the character matrix each time you store a character in the buffer. This avoids a 

background pattern inadvertently masking the characters. The trade-off is that 

each time you store a character in the buffer you must replace the previous con- 
tents of the buffer with a rectangular blot. 

The source code for the two types of graphics text routines is similar. The exam- 

ples in this chapter demonstrate the second type, which makes them more compli- 

cated than routines that draw only foreground pixels. You can convert the routines 

to draw only the foreground pixels by eliminating the code for incorporating the 
background pixels. 

272 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Designing a Software Character Generator 
Software character generators for IBM PC video subsystems have a number of 

design considerations in common. Because the performance of your character 

generator strongly influences the overall performance of many graphics applica- 

tions, always consider the trade-offs between function and simplicity in your 
character generator routines. 

Horizontal Alignment 

In graphics modes, the left edge of a character is not necessarily byte-aligned. 

When a character is written so that its leftmost pixels fall somewhere in the mid- 

dle of a byte in the video buffer (see Figure 9-4a), the character generator must 

shift and mask the character matrix so that only pixels that are part of the charac- 

ter are updated. 

Usually, however, characters are written into the video buffer at byte-aligned 

pixel addresses (see Figure 9-4b). This is the case, for example, whenever the dis- 

play is used in a “‘teletype mode’’; that is, when each line of characters starts at 

the left edge of the display. Generating byte-aligned characters requires no rota- 

tion or masking of pixels, so using a separate routine for byte-aligned characters 

improves the character generator’s performance. 

Figure 9-4. Alignment of characters in the video buffer. In Figure 9-4a, characters are not 

aligned; in Figure 9-4b, characters are byte-aligned. 

Variable Character Sizes 

Writing a character generator that accommodates characters of different heights is 

relatively easy. The height of a character corresponds to the number of bytes in its 

definition in the character definition table. You can thus use the height of your 

characters as a loop limit inside the character generator routine without signifi- 

cantly affecting the complexity of the routine. 
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Handling characters of different widths is more difficult. If the width of a charac- 

ter does not fit exactly into an integer number of bytes, you must mask each row 

of pixels in the character as you store it in the video buffer. Again, the extra over- 

head of forming the appropriate bit mask and masking pixels in the video buffer 

complicates and slows the character generator routine. 

Clipping 

You can clip characters in several ways. The simplest is to clip the entire charac- 

ter before you store it in the video buffer; if any portion of the character matrix 

would lie outside the clipping area, don’t write the character. 

Clipping a character so that only a portion of it is stored in the video buffer is 
more difficult. One way to do this is to modify the character generator so that any 

clipped portion of a character is not written to the buffer. Another approach is to 

write the entire character into an auxiliary buffer and then copy the clipped char- 

acter into the video buffer with a pixel block copy routine (see Chapter 11). 

Character Orientation 

Usually, characters are displayed so that they can be read from left to right and 

from the top down. To change this orientation, apply the appropriate transforma- 

tion to the bit patterns in the character definition table. For example, the sub- 

routine in Listing 9-1 rotates the 8-byte bit pattern that represents an 8-by-8 

character so that the displayed characters read upward. With this transformation, 

you can use the same character generator to display vertically or horizontally 

oriented characters. Only the bit patterns differ. 

mov si,seg OldCharDef 

mov ds,si 

mov si,offset OldCharDef > DS:SI -> old character definition 

mov di,seg NewCharDef 

mov es,di 

mov di,offset NewCharDef 7 ES:DI -> new character definition 

mov bsp Feo = 10 

7 BL := bit mask 

LO1: push si + preserve SI 

mov cx, 8 ; CX := number of bits in each byte 

L02;: lodsb ; AL := next byte in old 

* character definition 

and al,bl 7 mask one bit 

cmp bh,al # Set carry flag af mask bit 

is nonzero 

(continued) 

Listing 9-1. A routine that rotates an 8-by-8 character definition by 90 degrees. 
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Listing 9-1. Continued. 

aCe ah, 1 # rotate bit into AH 

loop L02 + loop across old character definition 

mov al,ah 

stosb + store next byte in new 

; character definition 

pop si MLO => Start of old 

; character definition 

shl as , BL := new bit mask 

jnz L01 ; loop until bit mask is 

shifted out of BL 

Cooperating with the Video BIOS 

Even if your character definition tables and character generator software avoid 

using video BIOS functions, you should nevertheless try to preserve compatibility 

by cooperating with the BIOS routines when possible. In 200-line graphics modes, 

you should update the address in interrupt vector 1FH whenever you use an 8-by-8 

character definition table that includes the second 128 ASCII characters. On the 

EGA, VGA, and MCGA, you should generally use INT 10H function 11H to keep 

the BIOS interrupt vectors and Video Display Data Area variables up to date. 

More Power, More Complexity 

You can add functionality to a software character generator in several ways. You 

might, for example, write a character generator that refers to a table of relative 

character widths to display proportionally spaced characters. As your routine 

reads bit patterns from the character definition table, you might have it shift them 

to the right by a predetermined number of pixels to generate bold or italic charac- 

ter sets. You might apply a pattern of pixel values to the foreground pixels you 

update. You might allow a character definition table to extend beyond the usual 
range of 256 characters; the more characters you define, the wider range of char- 

acters you can display at one time. Any of these possibilities adds power and flex- 

ibility to your software character generator, but all of them complicate your 

source code and ultimately slow it down. 

Implementing a Software Character Generator 
All software character generator examples in this chapter require that you specify 

the x- and y-coordinates of the pixel in the upper left corner of the displayed char- 

acter matrix. Each routine detects the special case where the character matrix is 

byte-aligned in the video buffer, but the routines do not validate pixel coordinates 

or perform any clipping. All the routines except DisplayChar10 () update 

pixels in the video buffer by replacing their values. To perform a bitwise AND, 

OR, or XOR operation, you must modify the routines (see Chapter 5). 
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CGA 

In 640-by-200 2-color mode on the CGA, the software character generator applies 
the bit patterns in the character definition table directly to the pixels in the video 

buffer (see Listing 9-2). When the character is byte-aligned in the video buffer, 

the routine copies pixel values directly from the character definition table. Other- 

wise, for each row of eight pixels in the character, a rotated 16-bit mask is used to 
zero the proper eight pixels in the buffer. Then the pixels from the character 

definition table are rotated into position and stored in the buffer using a bitwise 
OR operation. 

7; Name: 

; Function: 

TITLE TULseangeI—2. 

NAME DisplayChar06 

PAGE Doe 

DisplayChar06 

Display a character in 640x200 2-color mode 

7 Caller: Microsoft C: 

; void DisplayChar06(c,x,y,fgd,bkgd) ; 

2 TeR egy /* character code */ 

G TEN Vp /* upper left pixel */ 

¢ int fgd,bkgd; /* foreground and background 
; pixel values */ 

ARGc EQU word ptr [bp+4] ; stack frame addressing 
ARGx EQU word ptr [bp+6] 
ARGy EQU word ptr [bp+8] 
ARGfgd EQU byte ptr [bp+10] 
ARGbkgd EQU byte ptr [bp+12] 

VARmask EQU [bp-8] 
VARtoggle EQU [bp-10] 

LEX? SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

EXTRN PixelAddr06:near 

PUBLIC DisplayChar06 
_DisplayChar06 PROC near 

push bp * preserve caller registers 
mov bp, sp 

sub sp,4 # stack space for local variables 
push di 

push si 

push ds 

Listing 9-2. A software character generator for 640-by-200 2-color mode. (continued) 
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Listing 9-2. Continued. 

7 set up foreground 

7 calculate first pixel 

mov 

ror 

cwd 

not 

mov 

mov 

mov 

call 

xOr 

mov 

ror 

mov 

pixel toggle mask 

ah, ARGfgd 

ah, 1 

dx 

VARtoggle, dx 

address 

ax, ARGy 

bx, ARGx 

PixelAddr06 

CA 

ax, OFFOOh 

ax, el 

VARmask, ax 

; set up video buffer addressing 

mov 

mov 

test 

Fz 

xchg 

dx, 2000h 

di, 80-2000h 

bx, 2000h 

L01 

di, dx 

, 

AH := 0 or 1 (foreground pixel value) 

high-order bit of AH := 0 or 1 

propagate high-order bit through DX 

DX := 0 if foreground = 1 

or FFFFh if foreground 0 

AX 3= y 

BX := x 

ES:BX -> buffer 

Clic= Febits; to shift left 

CL := # bits to rotate right 

AX := bit mask in proper position 

increment for video buffer interleave 

increment from last to first interleave 

set zero flag if BX in 1st interleave 

exchange increment values if 1st pixel 

lies in 1st interleave 

; set up character definition table addressing 

LO1: 

L02: 

push 

mov 

mov 

mov 

xOr 

mov 

mov 

cmp 

jae 

mov 

jmp 

mov 

sub 

bx 

ax,40h 

ds,ax 

ch, ds: [85h] 

ax,ax 

ds,ax 

ax,ARGc 

al,80h 

L02 

bx, 43h*4 

short L03 

bx, 1Fh*4 

al, 80h 

’ preserve buffer address 

DS := segment of BIOS Video 

Display Data area 

CH := POINTS (pixel rows in character) 

DS := absolute zero 

AL := character code 

DS:BX -> int 43h vector if char < 80h 

DS:BX -> int 1Fh vector if char >= 80h 

put character code in range of table 

(continued) 
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Listing 9-2. Continued. 

LO3: lds Si, as sos DS:SI -> start of character table 

mul ch AX := offset into char def table 

(POINTS * char code) 

add si,ax SI := addr of char def 

pop bx restore buffer address 

test eure test # bits to rotate 

gn L20 jump if character is not byte-aligned 

; routine for byte-aligned characters 

mov ah, VARtoggle ; AH := foreground toggle mask 

xchg chyicl 7; CX s= POINTS 

L10: lodsb ; AL := bit pattern for next pixel row 

xor al,ah ; toggle pixels if foreground = 0 

mov es: [bx],al ; store pixels in buffer 

add bx, dx ; BX := next row, in buffer 

xchg i Cx ; swap buffer increments 

loop L10 

jmp short Lexit 

; routine for non-byte-aligned characters 

L20: mov ax, VARmask 

and es: [bx],ax ; mask character pixels in buffer 

xor ah, ah 

lodsb ; AX := bit pattern for next pixel row 

xor al, VARtoggle ; toggle pixels if foreground = 0 

ror ax,cl ; rotate pixels into position 

or es: [bx],ax ; store pixels in buffer 

add bx, ax ; BX := next row in buffer 

xchg di, dx ; swap buffer increments 

dec ch 

jnz L20 

Lexit: pop ds ; restore caller registers and return 
pop si 

pop di 

mov sp, bp 

pop bp 
ret 

_DisplayChar06 ENDP 

SIEXT ENDS 

END 
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The routine for 320-by-200 4-color mode in Listing 9-3 is more complicated 

because each bit in the character definition must be expanded into the appropriate 

2-bit pixel value. A 0 bit in the character definition table becomes a 2-bit back- 

ground pixel value; a 1 bit in the table is expanded into a 2-bit foreground pixel 

value. Thus, each byte in the table is transformed into a word of pixels. 

7 Name: 

; Function: 

TITLE "hastang 9=3." 

NAME DisplayChar04 

PAGE 55,132 

DisplayChar04 

Display a character in 320x200 4-color graphics mode 

; Caller: Microsoft C: 

; void DisplayChar04 (c,x,y, fgd,bkgd) ; 

i inicecr /* character code */ 

; ete cpr /* upper left pixel */ 

- int fgd,bkgd; /* foreground and background 

; pixel values */ 

ARGc EQU word ptr [bp+4] ; stack frame addressing 

ARGx EQU word ptr [bp+6] 

ARGy EQU word ptr [bp+8] 

ARGfgd EQU [bp+10] 
ARGbkgd EQU [bp+12] 

VARshift EQU word ptr [bp-8] 

VARincr EQU word ptr [bp-10] 

DGROUP GROUP _DATA 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP 

EXTRN PixelAddr04:near 

PUBLIC _DisplayChar04 

_DisplayChar04 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

sub sp,4 ; stack space for local variables 

push di 

push si 

push ds 

Listing 9-3. A software character generator for 320-by-200 4-color mode. (continued) 
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Listing 9-3. Continued. 

; propagate pixel values 

mov 

mov 

xlat 

mov 

mov 

mov 

xlat 

mov 

mov 

7 CaliculaLesturstspixe) 

mov 

mov 

call 

mov 

shl 

xOr 

mov 

bx, offset DGROUP:PropagatedPixel 

al, ARGfgd 

ah,al 

ARGfgd, ax 

al, ARGbkgd 

ah,al 

ARGbkgd, ax 

address 

ax, ARGy 

bx, ARGx 

PixelAddr04 

ch, OFCh 

ch,cl 

Cuno 

VARshift,cx 

; set up video buffer addressing 

mov 

mov 

ESE 

jz 

xchg 

di,2000h 

VARincr, 80-2000h 

bx, 2000h 

L01 

VARincr,di 

, 

’ 

, 

, 

, 

propagate foreground pixel value 

propagate background pixel value 

10, 

BX := 

ES: BX 

CL := 

ee 
x 

-> buffer 

# Dirts to shift Tefe 

to mask pixel 

CH := 

CL, s= 

into 

bit mask for right side of char 

6 - CL (# bits to rotate char 

position) 

increment for video buffer interleave 

; increment from last to first interleave 

set zero flag if BX in 1st interleave 

exchange increment values if 1st pixel 

lies 

; set up character definition table addressing 

L01: push 

mov 

mov 

mov 

xOr 

mov 

mov 

cmp 

jae 

mov 

jmp 

O24 mov 

sub 

bx 

ax, 40h 

ds,ax 

ch, ds: [85h] 

ax,ax 

ds,ax 

ax, ARGc 

al, 80h 

L02 

bx, 43h*4 

short L03 

bx, 1Fh*4 

al,80h 

, 

se 

in 1st interleave 

preserve buffer address 

DS := segment of BIOS Video 

Display Data area 

CH := 

DS: BX 

DS: BX 

POINTS (pixel rows in character) 

absolute zero 

character code 

-> int 43h vector if char < 80h 

-> int 1Fh vector if char >= 80h 

put character code in range of table 

(continued) 
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Listing 9-3. Continued. 

L03: lds si,ds: [bx] 

mul ch 

add si,ax 

pop bx 

xchg ch,ecl 

test Gh, ch 

jnz L20 

7 routine for byte-aligned characters 

L10: 

eMht 2 

; routine for non-byte-aligned characters 

L20: 

TZ) = 

L225 

lodsb 

xor Gs, aac 

mov ah,8 

shr ada 

rer ax, | 

sar Goo al 

dec ah 

jnz L11 

mov ax, ax 

and ax,ARGfgd 

not dx 

and dx, ARGbkgd 

or ax, dx 

xchg ah,al 

mov es: [bx],ax 

add bx da 

xchg di, VARincr 

loop L10 

jmp short Lexit 

xOxr ch,ch 

push cx 

mov cx, VARshift 

lodsb 

xor dx, dx 

mov ah, 8 

shr al,1 

rer dx, 1 

; AH 

DS:SI -> start of character table 

AX := offset into char def table 

(POINTS * char code) 

SI := addr of char def 

restore buffer address 

CH := # bits to rotate 

CL POINTS I 

test # bits to rotate 

jump if character is not byte-aligned 

; AL := bit pattern for next pixel row 

DX := initial value for doubled bits 

= # of bits in pattern 

cf := lo-order bit of AL 

hi-order bit of CX := cf 

double hi-order bit of DX 

loop 8 times 

AX,DX := doubled bit pattern 

AX := foreground pixels 

DX := background pixels 

AX := eight pixels 

put bytes in proper order 

update video buffer 

BX := next row in buffer 

swap buffer increments 

CX := POINTS 

preserve CX 

CH := mask for right side of char 

Cims= #F bits to rotate 

AL := bit pattern for next pixel row 

DX := initial value for doubled bits 

AH := # of bits in pattern 

DX := double bits in AL 

(same as above) 

(continued) 
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Listing 9-3. Continued. 

sar 

dec 

jnz 

xchg 

mov 

and 

not 

and 

or 

EOE 

mov 

xOr 

and 

not 

and 

or 

mov 

not 

and 

and 

Oi 

add 

xchg 

pop 
loop 

Lexit: pop 

pop 

pop 
mov 

pop 
mee 

_DisplayChar04 ENDP 

SLEXT, ENDS 

_DATA SEGMENT 

PropagatedPixel DB 

DB 

DB 

DB 

_DATA ENDS 

END 

dx, 1 

ah 

L22 

dh, dl 

ax, dx 

ax, ARGfgd 

dx 

dx, ARGbkgd 

dx,ax 

as, ek 

al,ch 

ah,ah 

es: [bx],ax 

ax 

ax, ax 

es: [bx],ax 

alv,ch: 

al 

es: [bx+2],al 

ch,dl 

es: [bx+2],ch 

bx, di 

di, VARincr 

cx 

L21 

si 

di 

sp,bp 
bp 

word public 

00000000b 

01010101b 

10101010b 

TANS ATS 

, 

’ 

’ 

, 

"DATA' 

DH := 

DL := 

AX := 

DX. := 

DX := 

DH i= 

DL := 

AX := 

update pixels in left and middle bytes 

AL := 

mask pixels in right-hand byte in buffer 

update pixels in right-hand byte 

BX := 

restore CX 

restore caller registers and return 

GIN = ©& 
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bits for right half of char 

bits for left half of char 

foreground pixels 

background pixels 

eight pixels 

left and right side pixels 

middle pixels 

mask for left and middle 

bytes of char 

zero pixels in video buffer 

mask for right-hand byte 

next row in buffer 

swap buffer increments 



In Listing 9-3, when the character is byte-aligned in the video buffer, the routine 

moves the 16-bit word of pixels directly into the buffer. A character that is not 

byte-aligned spans three bytes in the buffer. In this case, the routine must rotate 
the eight pixels in each row of the character into position. Then the first two bytes 

of the character in the buffer are masked and updated, followed by the third 

(rightmost) byte of the character. 

HGC and HGC+ 

A routine for the 720-by-348 monochrome graphics mode on the HGC and the 

HGC+ can use the same bit-masking technique that the CGA 640-by-200 2-color 

routine uses. You could convert DisplayChar06() into a Hercules-compatible 

routine by revising the call to PixelAddr06() and by changing video buffer 

addressing to accommodate the different buffer interleaves on the two adapters. 

It is worthwhile, however, to exploit the HGC’s 720-pixel horizontal resolution by 

displaying characters in a matrix that is 9 pixels wide, so that each row on the 

screen contains 80 evenly spaced characters. The routine in Listing 9-4 does this 

by appending a ninth bit to each 8-bit pattern it reads from the character defini- 

tion table. The ninth bit is 0 except for box-drawing characters (ASCII OCO—ODFH). 

For these characters, the ninth bit is a copy of the rightmost bit in the bit pattern. 

(This mimics the function of the hardware character generator in alphanumeric 

modes. See Chapter 10.) 

TITLE "Listing 9-4' 

NAME DisplayCharHGC 

PAGE 5a iS2 

; 

; Name: DisplayCharHGC 

Function: Display a character in Hercules 720x348 monochrome graphics mode 

Caller: Microsoft C: 

void DisplayCharHGC (c,x,y,fgd,bkgd) ; 

int c; /* character code */ 

Imes xp Vie /* upper left pixel */ 

int fgd,bkgd; /* foreground and background 

pixel values */ 

Me Se Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne 

ARGc EQU word ptr [bp+4] ; stack frame addressing 

ARGx EQU word ptr [bpt6] 

ARGy EQU word ptr [bp+8] 

ARGfgd EQU byte ptr [bp+10] 

ARGbkgd EQU byte ptr [bpt+12] 

(continued) 

Listing 9-4. A software character generator for Hercules monochrome graphics mode. 
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Listing 9-4. Continued. 

VARmask 

VARtoggle 

VAR9bits 

_TEXT 

_DisplayCharHGC 

EQU 

EQU 

EQU 

[bp-8] 
[bp-10] 

byte ptr [bp-12] 

SEGMENT byte public 'CODE 

ASSU ME ¢si_TEXT 

EXTRN PixelAddrHGC:near 

PUBL 

PROC 

push 

mov 

sub 

push 

push 

push 

Ic _DisplayCharHGC 

near 

bp ; 

bp, sp 

sp, 6 7 

di 

si 

ds 

; calculate first pixel address 

mov 

mov 

call 

xor 

ax, ARGy Zi 

bx, ARGx ; 

PixelAddrHGC : 

Ca, ; 

; set up 8- or 9-bit mask 

L01: 

mov 

mov 

mov 

mov 

cmp 

je 

mov 

cmp 
jb 

cmp 

ja 

inc 

ror 

mov 

; set up foreground 

mov 

ror 

ax, 40h 

ds,ax ; 

ax, OFFOOh 3 

VAR9bits,0 ; 

byte ptr ds: [4Ah] 

L01 ; 

ah, 7Fh ; 

ARGc, 0COh 

L01 ° 

ARGc, ODFh 

L01 ; 

VAR9bits ; 

ax,cl ; 

VARmask, ax 

pixel toggle mask 

ah, ARGfgd : 
ah, 1 ; 

preserve caller registers 

stack space for local variables 

AX = y 

BX := x 

ES:BX -> buffer 

CL t=" bits) topshrle tert 

CL := # bits to rotate right 

DS := segment of BIOS Video 

Display Data area 

AX := 8-bit mask 

zero this flag 

790 ; does CRT_COLS = 90? 

jump if characters are 8 pixels wide 

AX := 9-bit mask 

jump if character code 

outside of range OC0Q-ODFh 

set flag to extend to 9 bits 

AX bit mask in proper position 

I AH := 0 or 1 (foreground pixel value) 

high-order bit of AH := 0 or 1 

(continued) 
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Listing 9-4. Continued. 

7 set up character definition 

L02: 

L03: 

; mask and set pixels in the video 

As 

bets 

R228 

cwd 

not 

mov 

not 

and 

mov 

push 

mov 

xor 

mov 

mov 

cmp 

jae 

mov 

jmp 

mov 

sub 

lds 

mul 

add 

pop 

mov 

and 

xor 

lodsb 

cmp 

je 

ror 

rel 

ror 

xor 

or 

add 

jns 

add 

dec 

jnz 

dx 

ax, VARmask 

ax 

ax, ax 

VARtoggle, dx 

bx 

ch, ds: [85h] 

ax,ax 

ds,ax 

ax, ARGc 

al,80h 

L02 

bx, 43h*4 

short LO3 

bx, 1Fh*4 

al, 80h 

si,ds: [bx] 

ch 

si,ax 

bx 

ax, VARmask 

es: [bx],ax 

ah,ah 

VAR9bits, 0 

L21 

ax, 1 

al, 1 

ax,cl 

ax, VARtoggle 

es: [bx],ax 

bx, 2000h 

L22 

bx, 90-8000h 

ch 

L20 

, 

, 

, 

, 

buffer 

propagate high-order bit through DX 

DX := 0 if foreground = 1 

or FFFFh if foreground = 0 

zero unused bits of toggle mask in DX 

table addressing 

preserve buffer address 

CH := POINTS (pixel rows in character) 

DS := absolute zero 

AL := character code 

DSiBke=ouant. 43h vector 2f char <—80h 

DS:BX -> int 1Fh vector if char >= 80h 

put character code in range of table 

DS:SI -> start of character table 

AX := offset into char def table 

(POINTS * char code) 

SI := addr of char def 

restore buffer address 

mask character pixels in buffer 

AX := bit pattern for next pixel row 

jump if character is 8 pixels wide 

copy lo-order bit of AX into 

hi-order bit 

rotate pixels into position 

toggle pixels if foreground = 0 

store pixels in buffer 

increment to next portion of interleave 

increment to first portion of interleave 

(continued) 
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Listing 9-4. Continued. 

Lexit: pop ds ; restore caller registers and return 

pop si 

pop di 

mov Sp, Dp 

pop bp 
igfshe 

_DisplayCharHGC ENDP 

LES 

MCGA 

In 640-by-480 2-color mode on the MCGA, pixels are stored eight to a byte, so you 

can adapt the 640-by-200 2-color character generator for use in this mode by modi- 

fying its video buffer addressing. A character generator for 320-by-200 256-color 

mode is a little different, because each bit in the character definition table ex- 

pands into a byte in the video buffer (see Listing 9-5). 

, 

Name: 

Function: 

Caller: 

ENDS 

END 

Note how the CGA and Hercules routines use interrupt vector 43H to 

point to the start of the current character definition table. This is the 

interrupt vector the EGA and VGA ROM BIOS uses for this purpose. 

Also, the routines determine the size of the displayed character matrix 

by inspecting the variables POINTS (0040:0085) and CRT_COLS 

(0040:004A) in the BIOS Video Display Data Area. If you are not using 

an EGA, MCGA, or VGA, the BIOS won’t keep the interrupt vector and 

POINTS up to date; in this case, your program should either update 

these values explicitly or maintain equivalent values elsewhere. 

TITLE Dies engi o ot 

NAME DisplayChar13 

PAGE 55, 132 

DisplayChar13 

Display a character in MCGA/VGA 320x200 256-color mode 

MrGrosort iG: 

void DisplayChar13(c,x,y, fgd,bkgd) ; 

Arte ees /* character code */ 

(continued) 

Listing 9-5. A character generator for MCGA and VGA 320-by-200 256-color mode. 
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Listing 9-5. Continued. 

3 SNE ee ee 

; int fgd,bkgd; 

ARGc EQU word ptr [bp+4]; 

ARGx EQU word ptr [bpt+6] 

ARGy EQU word ptr [bp+8] 

ARGfgd EQU byte ptr [bp+10] 

ARGbkgd EQU byte ptr [bpt+12] 

BytesPerLine EQU 320 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

EXTRN PixelAddr13:near 

PUBLIC DisplayChar13 

_DisplayChar13 PROC near 

push bp ; 

mov bp, sp 

push di 

push si 

push ds 

; calculate first pixel address 

mov ax, ARGy ; 

mov bx, ARGx 5 

call PixelAddr13 p 

mov di,bx ; 

, 

mov ax, 40h 

mov ds,ax 

mov cx, ds: [85h] ; 

xor ax,ax 

mov ds,ax i 

mov ax, ARGc ; 

mov bx, 43h*4 ; 

lds si,das? (bx ‘ 

mul el ; 

add si,ax fF 

store the character in the video buffer : 
, 

-bl,ARGfgd ; 

bh, ARGbkgd ; 

mov 

mov 

/* upper left pixel */ 

/* foreground and background 
pixel values */ 

stack frame addressing 

preserve caller registers 

AX 3= y 

BX := x 

ES:BX -> buffer 

ES!DE => buffer 

set up character definition table addressing 

DS := segment of BIOS Video 

Display Data area 

CX := POINTS (pixel rows in character) 

DS := absolute zero 

AL := character code 

DSIBX => int 43h vector 1f char < 80h 

DS:SI -> start of character table 

AX := offset into char def table 

(POINTS * char code) 

SI := addr of char def 

BL := foreground pixel value 

BH := background pixel value 

(continued) 
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Listing 9-5. Continued. 

L10: push cx ; preserve CX across loop 

mov Cx,.8 ; CX := character width in pixels 

lodsb 

mov ah,al ; AH := bit pattern for next pixel row 

Ellis mov aly, pi ; AL := foreground pixel value 

shl ah, 1 ; carry flag := high-order bit 

AG L12 ; jump if bit pattern specifies a 

3} foreground pixel (bit = 1) 

mov al,bh ; AL := background pixel value 

L12: stosb ; update one pixel in the buffer 

loop L11 

add di,BytesPerLine-8 ; increment buffer address to next 

 rew Of pixels 

pop ex 

loop L10 ; loop down character 

pop ds ; restore caller registers and return 

pop si 

pop di 

mov sp,bp 

pop bp 
ret 

_DisplayChar13 ENDP 

_TEXT ENDS 
END 

EGA and VGA 

The routine for the EGA and VGA in Listing 9-6 uses the Graphics Controller to 
update pixels in the video buffer. The routine is similar in some ways to the rou- 

tine for the CGA’s 640-by-200 2-color mode, because each byte of the video buffer 

represents eight pixels. Of course, the code is complicated by the need to program 

the Graphics Controller to handle the foreground and background pixel values. 

The routine writes each row of pixels in the character by latching the bit planes, 

updating the foreground pixels, updating the background pixels, and then writing 

the latches back to the bit planes. The Graphics Controller cannot conveniently 

update both foreground and background pixels at the same time, so the routine 
must perform these operations separately. 

TITLE "Listing 9-6" 

NAME DisplayChar10 

PAGE Sop rs2 

; Name: DisplayChar10 

(continued) 

Listing 9-6. A software character generator for native EGA and VGA graphics modes. 

288 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Listing 9-6. Continued. 

+ Function: 

7 Caller: 

ARGc 

ARGx 

ARGy 

ARGfgd 

ARGbkgd 

VARshift 

BytesPerLine 

RMWbits 

_TEXT 

_DisplayChar10 

Display a character in native EGA and VGA graphics modes 

Microsoft C: 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

PROC 

push 

mov 

sub 

push 

push 

push 

; calculate first pixel 

mov 

mov 

call 

inc 

and 

mov 

shl 

mov 

push 

mov 

void DisplayChar10(c,x,y,fgd,bkgd) ; 

Intc; /* character code */ 

ants ap vay /* upper left pixel */ 

int fgd,bkgd; /* foreground and background 

pixel values */ 

word ptr [bp+4] ; stack frame addressing 

word ptr [bpt+6] 

word ptr [bp+8] 

byte ptr [bp+10] 

byte ptr [bp+12] 

[bp-8] 

80 7 (or 40 in 320x200 16-color mode) 

18h ; Read-Modify-Write bits 

byte public 'CODE' 

cs: TEXT 

PixelAddr10:near 

_DisplayChar10 

near 

bp ; preserve caller registers 

bp, sp 
sp,2 ; stack space for local variable 

di 

si 

ds 

address 

ax, ARGy AX BS ny. 

bx, ARGx =). sg 

PixelAddr10 ; ES:BX -> buffer 

, Chi s="t bits to shift left) to mask 

; pixel 

cx 

el, 7 ; Ch t= * bits to shift to mask char 

ch, OFFh 

ch,eu * CH 3= bit maskefor right “side of char 

VARshift, cx 

es ; preserve video buffer segment 

si,bx ; SI := video buffer offset 

(continued) 
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Listing 9-6. Continued. 

, 

mov 

mov 

mov 

xor 

mov 

mov 

mov 

les 

mul 

add 

pop 

ax, 40h 

ds,ax 

cx, ds; [85h] 

ax,ax 

ds,ax 

ax, ARGc 

bx, 43h*4 

di,ds: [bx] 

el 

di,ax 

ds 

; set up Graphics Controller registers 

; select output 

mov 

mov 

out 

mov 

mov 

out 

mov 

out 

routine 

mov 

mov 

cmp 

jne 

dx, 3CEh 

ax, OAO5h 

dx, ax 

ah, RMWbits 

al,3 

dx,ax 

ax, 0007 

dx, ax 

set up character definition table addressing 

DS := segment of BIOS Video 

Display Data area 

CX := POINTS (pixel rows in character) 

DS := absolute zero 

AL := character code 

DS:BX -> int 43h vector 

ES:DI -> start of character table 

AX := offset into char def table 

(POINTS * char code) 

Di's="addr of char def 

DS:SI -> video buffer 

Graphics Controller address reg port 

AL Mode register number 

AH := Write Mode 2 (bits 0-1) 

Read Mode 1 (bit 4) 

AH := Read-Modify-Write bits 

AL := Data Rotate/Function Select reg 

AH := Color Don’t Care bits 

AL := Color Don’t Care reg number 

"don’t care" for all bit planes 

depending on whether character is byte-aligned 

bl, ARG£gd 
bh, ARGbkgd 

byte ptr VARshift,0 2 

L20 

; routine for byte-aligned characters 

L10: 

mov 

mov 

out 

and 

not 

out 

and 

al,8 

ah,es: [di] 

dx,ax 

bsaely ow 

ah 

dx, ax 

(Sa }ybh 

, 

. 
, 

, 

’ 

' 

BL 

BH 

= foreground pixel value 

background pixel value 

test # bits to shift 

jump if character is not byte-aligned 

AL := Bit Mask register number 

AH := pattern for next row of pixels 

update Bit Mask register 

update foreground pixels 

update background pixels 

(continued) 
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Listing 9-6. Continued. 

inc 

add 

loop 

jmp 

di , 

si,BytesPerLine ; 

L10 

short Lexit 

# routine for non-byte-aligned characters 

L20: push 

mov 

; left side of character 

mov 

xOor 

shl 

push 

mov 

out 

and 

not 

xor 

out 

and 

cx 

cx, VARshift 

apes [di] 

ah,ah 

ax,cl 

ax 

al,8 

dx,ax 

[si], bi 

ch 

ah,ch 

dx,ax 

{si],bh 

; right side of character 

pop 
mov 

mov 

out 

inc 

and 

not 

xor 

out 

and 

; increment to next 

inc 

dec 

add 

pop 
loop 

ax 

ah,al 

al,8 

dx, ax 

SA 

sal, bL 

ch 

ah,ch 

dx,ax 

[si],bh 

di 

si 

, 

si,BytesPerLine ; 

cx 

L20 

ES:DI -> next byte in char def table 

increment to next line in video buffer 

preserve loop counter 

CH := mask for left side of character 

Clnct= # biter to shitt left 

AL := bits for next row of pixels 

AH := bits for left side of char 

AL := bits for right side of char 

save bits for right side on stack 

AL := Bit Mask Register number 

set bit mask for foreground pixels 

update foreground pixels 

CH := mask for left side of char 

AH := bits for background pixels 

set bit mask 

update background pixels 

AH := bits for right side of char 

set bit mask 

DS:SI -> right side of char in buffer 

update foreground pixels 

CH := mask for right side of char 

AH := bits for background pixels 

set bit mask 

update background pixels 

row of pixels in character 

ES:DI -> next byte in char def table 

DS:SI -> next line in video buffer 

(continued) 
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Listing 9-6. Continued. 

restore default Graphics Controller registers 
, 

Lexit: mov ax, OFFO8h ; default Bit Mask 

out dx,ax 

mov ax, 0005 ; default Mode register 

out dax,ax 

mov ax,0003 ; default Data Rotate/Function Select 

out dx,ax 

mov ax, OFO7h ; default Color Don’t Care 

out dx, ax 

pop ds ; restore caller registers and return 

pop si 

pop di 

mov sp, bp 

pop bp 
ret 

_DisplayChar10 ENDP 

_TEXT ENDS 

END 

InColor Card 

The technique for storing characters in the video buffer on the Hercules InColor 
Card, shown in Listing 9-7, is different from that on the EGA or VGA because you 

can use the InColor Card’s Read/Write Color register (1AH) and write mode 0 to 

update both foreground and background pixel values in one operation. Thus, the 
actual process of updating the bit planes collapses into relatively few machine 

instructions. 

However, the InColor Card cannot perform pixel AND, OR, or XOR operations in 

hardware. To do this, you must write additional subroutines that use the Plane 

Mask register to map logical operations onto the bit planes (see Chapter 5). 

TITLE "Listing 9-7' 

NAME DisplayCharInC 

PAGE Dole 

; Name: DisplayCharIncC 

: Function: Display a character in InColor 720x348 16-color mode 

; Caller: Microsoft C: 

; void DisplayCharInC(c,x,y, fgd,bkgd) ; 

(continued) 

Listing 9-7. A software character generator for Hercules InColor graphics modes. 
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Listing 9-7. Continued. 

ARGc 

ARGx 

ARGy 

ARGfgd 

ARGbkgd 

VARmask 

VAR9bits 

_TEXT 

_DisplayCharInc 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 

SEGMENT 

ASSUME 

EXTRN 

PUBLIC 

PROC 

push 

mov 

sub 

push 

push 

push 

; calculate first pixel 

mov 

mov 

Call 

xOr 

push 

mov 

; set up flag for 8-bit 

mov 

mov 

mov 

mov 

cmp 

je 

antic: 

DEE Ve 

int fgd,bkgd; 

word ptr 

word ptr 

word ptr 

byte ptr 

byte ptr 

word ptr 

byte ptr 

byte public 

cs:_TEXT 

PixelAddrHGC:near 

[bp+4] ; 
[bp+6] 

[bp+8] 
[bp+10] 

[bp+12] 

(bp-8] 
[bp-10] 

_DisplayCharInc 

near 

bp 
bp, sp 
sp,4 

di 

si 

ds 

address 

ax, ARGy 

bx, ARGx 

PixelAddrHGC ; 

qb, 7 

es 

si,bx 

"CODE' 

/* character code */ 

/* upper left pixel */ 

/* foreground and background 
pixel values */ 

stack frame addressing 

preserve caller registers 

stack space for local variables 

AX := y 

BX 3= x 

ES:BX -> buffer 

CL := # bits to shift left to mask 

pixel 

CL := # bits to rotate right 

preserve video buffer segment 

DI := video buffer offset 

or 9-bit characters 

ax, 40h 

ds,ax ; DS := segment of BIOS Video 

; Display Data area 

ax, OFFOOh ; AX := 8-bit mask 

VAR9bits, 0 7 vero this fiag 

byte ptr ds: [4Ah],90 ; does CRT COLS = 90? 

L01 ; jump if characters are 8 pixels wide 

(continued) 
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Listing 9-7. Continued. 

mov 

cmp 

jb 

cmp 

ja 

inc 

LO1: IONS 

mov 

ah, 7Fh ; 

ARGc, 0COh 

L01 ; 

ARGc, ODFh 

L01 ; 

VAR9bits ; 

ax,cl ; 

VARmask, ax 

AX := 9-bit mask 

jump if character code 

outside of range OC0O-ODFh 

set flag to extend to 9 bits 

AX := bit mask in proper position 

; set up character definition table addressing 

mov 

mov 

mov 

xOr 

mov 

mov 

cmp 

jae 

mov 

jmp 

L002: mov 

sub 

L03: les 

mul 

add 

pop 

ax, 40h 

ds,ax 7 

ch, ds: [85h] ; 

ax, ax 

ds,ax ; 

ax, ARGC ; 

al, 80h 

L02 

bx, 43h*4 ; 

short L03 

bx, 1Fh*4 ; 

al, 80h iF 

di,ds: [bx] ; 

eh ; 

ai ,ax ; 

ds ; 

* set up control registers 

mov 

push 

mov 

Mov 

shl 

ox 

pop 

mov 

out 

dx, 3B4h ; 

cx ; 

ah, ARGbkgd ‘ 

cl,4 

ah pic ; 

ah, ARGfgd ; 

cx 2 

al,1Ah ; 

dx,ax ; 

7 mask and set pixels in the video buffer 

L20: xor 

mov 

bh,bh 

bl,es: [di] ; 

DS := segment of BIOS Video 

Display Data area 

CH := POINTS (pixel rows in character) 

DS := absolute zero 

AL := character code 

DS:BX -> int 43h vector if char < 80h 

DS:BX -> int 1Fh vector if char >= 80h 

put character code in range of table 

ES:DI -> start of character table 

AX := offset into char def table 

(POINTS * char code) 

DI := addr of char def 

DS:SI -> video buffer 

control register I/O port 

preserve CX 

AH := background pixel value 

Il AH bits 4-7 background pixel value 

AH bits 0-3 := foreground pixel value 

restore CX 

AL := Read/Write Color reg number 

set Read/Write Color value 

BX := bit pattern for next pixel row 

(continued) 
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Listing 9-7. Continued. 

L2t: 

B22: 

ine 

cmp 

je 

ror 

re: 

ror 

mov 

out 

or 

mov 

out 

or 

or 

or 

add 

jns 

add 

dec 

jnz 

di 

VAR9bits,0 

L21 ; 

bezel ; 

ax, 5F19h F. 

dx, ax ; 

[si],bl ; 
{sit+1],bh 

ah, 6Fh ; 

dx, ax 

bx, VARmask 2 

[si],bl ; 
[si+1],bh 

si,2000h . 

L22 

si,90-8000h ; 

ch 

L20 

; restore default InColor register values 

_DisplayCharInC 

SEX 

mov 

out 

mov 

out 

pop 
pop 
pop 
mov 

pop 
ret 

ENDP 

ENDS 

END 

ax,4019h ; 

dx, ax 

ax,071Ah 3 

dx,ax 

ds ; 

si 

di 

sp, bp 

bp 

increment pointer to char def table 

jump if character is 8 pixels wide 

copy lo-order bit of BX into 

hi-order bit 

rotate pixels into position 

AH bit 6 := 1 (mask polarity) 

AH Dilese 4 = 5 O1b (write mode 1) 

AH bits 0=3 1111b (don’t care bits) 

AL := 19h (Read/Write Control reg) 

set up Read/Write Control reg 

lI 

update foreground pixels 

set up write mode 2 

BX := background pixel bit pattern 

update background pixels 

increment to next portion of interleave 

increment to first portion of interleave 

default Read/Write Control reg 

default Read/Write Color reg 

restore caller registers and return 
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Alphanumeric 
Character Sets 

Character Definition Tables 
Alphanumeric Character Definitions in ROM 

Alphanumeric Character Definitions in RAM 

Updating Character Generator RAM ae 

EGA and VGA @ HGC+ @ InColor Card © MCGA | 

Using RAM-based Character Sets 

ASCII Character Sets 

Extended Character Sets 

Compatibility Problems with Extended Character Codes 

Changing the Displayed Character Matrix 
EGA @ VGA ® MCGA @ HGC+ and InColor Card 

Graphics Windows in Alphanumeric Modes 
HGC-+ and InColor Card @ EGA and VGA @® MCGA 



One of the easiest ways to speed up a program’s video interface is to use an 

alphanumeric video mode. To gain this speed advantage, however, you must ac- 

cept the limitations of the video subsystem’s alphanumeric character generator. 

On the original MDA and CGA, the only characters you could display in 

alphanumeric mode were those defined in a table located in ROM on the adapter. 

The hardware character generator on these adapters was not designed to use a 

character definition table located in RAM. However, the EGA, the MCGA, the 

VGA, the HGC+, and the InColor Card can all display alphanumeric characters 

defined in RAM. 

This chapter shows you how to exploit RAM-based alphanumeric character sets on 

these subsystems. It describes how to format character definition tables and where 

to place them in RAM to be used in alphanumeric modes. It discusses the pros and 

cons of using extended character sets that contain more than the usual 256 ASCII 

characters. The chapter concludes with techniques for displaying true graphics 

images in an alphanumeric video mode. 

Character Definition Tables 

Like the software graphics character generators described in Chapter 9, the hard- 

ware alphanumeric character generator in all IBM video subsystems references a 

memory-resident character definition table that contains bit-pattern representa- 

tions of the pixels in each displayable character. Unlike the graphics-mode tables, 

whose location in memory may vary, the alphanumeric tables must lie in a pre- 

designated portion of memory to allow the alphanumeric character generator to 
access them. 

Alphanumeric Character Definitions in ROM 

The MDA, the CGA, and the Hercules adapters have an alphanumeric character 

definition table located in ROM that is not within the CPU’s address space. Only 

the character generator hardware can access it. The character set that these adapt- 

ers display in alphanumeric modes is therefore not controlled by software. 

On the EGA, the MCGA, and the VGA, the alphanumeric character generator uses a 
table of bit patterns stored in RAM rather than in dedicated ROM. The video ROM 
BIOS contains tables with which it initializes character generator RAM whenever 
it establishes an alphanumeric video mode. Because these video subsystems can 
set up alphanumeric modes with different vertical resolutions, the sizes of the 
default alphanumeric characters vary (see Figure 10-1). 

200-Line Modes 
The CGA’s 200-line alphanumeric modes use an 8-by-8 character matrix. In 
80-by-25 alphanumeric mode, the screen is thus 640 pixels wide; in 40-by-25 al- 
phanumeric mode, the screen is 320 pixels wide. Although the CGA uses the same 
character set and font in its alphanumeric and graphics modes, the character 
definitions for alphanumeric modes reside in dedicated ROM, accessible only to 
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Character Matrix 
Adapter Video Mode (width by height in pixels) 

MDA, HGC Monochrome 9-by-14 
CGA 40-by-25 16-color 8-by-8 

80-by-25 16-color 8-by-8 
EGA 80-by-25 16-color 8-by-8 (200-line resolution) 

8-by-14 (350-line resolution) 
80-by-25 monochrome 9-by-14 

MCGA 40-by-25 16-color 8-by-16 
80-by-25 16-color 8-by-16 

VGA 40-by-25 16-color 8-by-8 (200-line resolution) 
8-by-14 (350-line resolution) 
9-by-16 (400-line resolution) 

80-by-25 16-color 8-by-8 (200-line resolution) 
8-by-14 (350-line resolution) 
9-by-16 (400-line resolution) 

80-by-25 monochrome 9-by-14 (350-line resolution) 
9-by-16 (400-line resolution) 

HGC+ 80-by-25 monochrome 9-by-14 
InColor Card 80-by-25 16-color 9-by-14 

Figure 10-1. The default alphanumeric character matrix in various video modes. 

the hardware character generator. (As described in Chapter 9, the graphics- 

mode definitions are found in the ROM BIOS and in a table in RAM addressed 

by the vector for interrupt 1FH.) 

The CGA comes with two tables of 8-by-8 characters in the alpha- 

numeric character generator’s ROM. A jumper on the adapter selects 

P which table the alphanumeric character generator uses. By default, 

jumper P3 on the CGA is not connected, and the usual ‘‘double-dot’’ 

8-by-8 characters are displayed. If you connect jumper P3, the CGA’s 

alphanumeric character generator uses a “‘single-dot’’ font (see Figure 

10-2). The ‘‘single-dot’’ characters appear sharper on some monitors 

because their vertical strokes are only one pixel wide. 

ABCDEFGHI JKLMNOPQRSTUVWXYZ <—— Jumper P3 removed (default) 

abcdef ghi jkl mnopqrs tuywxyz 

6123456789 

ABCDEFGHI JKLMNOPQRSTUVWXYZ +—— Jumper P3 connected 

abcdefghi jkl mnopgrstuvwxyz 

0123456789 

Figure 10-2. Double-dot and single-dot alphanumeric character sets on the CGA. 

350-Line Modes 
In 350-line alphanumeric modes on the MDA and the Hercules adapters, the char- 

acters are defined in an 8-by-14 matrix. Again, the character definition table 
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resides in ROM outside the CPU address space that is dedicated to the hardware 

character generator. Because the horizontal resolution is 720 pixels on these 

adapters, each 8-by-14 character actually is displayed in a matrix 9 pixels wide. 

Thus, each row on the screen contains 720+9, or 80, characters. 

If characters are defined in ROM in an 8-by-14 matrix but displayed in a 9-by-14 

matrix, where does the extra pixel come from? The hardware character generator 

in the MDA, the Hercules cards, the EGA, and the VGA (in monochrome mode) 

adds an extra pixel to the right of each row of eight pixels in each character. For 

the block graphics characters (ASCII OCOH through ODFH), the value of the right- 

most pixel is replicated in each row. For all remaining character codes, the extra 

pixel is displayed with the character’s background attribute. 

Since the ninth (rightmost) pixel in block graphics characters is a copy of the 

eighth, these characters abut and can be used to draw horizontal lines. All other 

displayable characters are separated from each other by that ninth pixel. The 

resulting display appears less crowded than it would be without the extra space. 

With the EGA and the VGA, you can control whether or not the alpha- 

numeric character generator replicates the eighth pixel of block 
graphics characters. When bit 2 of the Attribute Controller’s Mode 

Control register (10H) is set to 1, the ninth pixel is the same as the 

eighth. When bit 2 is set to 0, the ninth pixel is a background pixel. 

400-Line Modes 
The default alphanumeric modes of both the MCGA and the VGA have 400-line 

vertical resolution. The characters used in these modes are defined in an 8-by-16 

matrix. On the VGA, the 8-by-16 characters are displayed in a 9-by-16 matrix, just 

as on an MDA or an EGA with a monochrome display. 

Alphanumeric Character Definitions in RAM 

The EGA, the VGA, the MCGA, the HGC+, and the InColor Card all have alphanu- 

meric character generators that use character definition tables located in predesig- 
nated areas of RAM. In all these subsystems, this RAM lies within the address 

space of the video buffer. If you know how character generator RAM is mapped, 

you can write programs that read or update the alphanumeric character definition 
tables and thereby change the displayed alphanumeric character set. 

EGA and VGA 

In alphanumeric modes on the EGA and the VGA, the video buffer is organized as 
four parallel memory maps, just as in graphics modes. In alphanumeric modes, 

however, only maps 0 and 1 contain displayable data (see Figure 10-3). Even- 

numbered bytes (character codes) in the CPU’s address space are located in map 

0, and odd-numbered bytes (attribute bytes) are located in map 1. This mapping is 
invisible to the CPU; the CRTC internally translates odd addresses to offsets into 
map 1 and even addresses into references to map 0. 
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Character definitions 

Attribute bytes 

Character codes 

Map 3 

Map 2 

Map 1 

B800:0000 
or 

B000:0000 Map 0 

Figure 10-3. Video RAM layout in EGA and VGA alphanumeric modes. 

The alphanumeric character generator uses a set of 256-character tables stored in 

map 2. The EGA supports four such tables (see Figure 10-4); the VGA supports 

eight (see Figure 10-5). Each table consists of 256 32-byte bit patterns, so the max- 

imum height of the character matrix is 32 scan lines. When the displayed charac- 

ter matrix contains fewer than 32 lines, the character generator ignores the extra 

bytes in each character definition. 

On the EGA, each of the four alphanumeric character definition tables starts at a 

16 KB boundary. Since only 8 KB (256 characters x 32 bytes per character) are 

used, 8 KB of unused RAM follows each table. On the VGA, these unused areas in 

map 2 can contain additional character definitions. Of course, in writing an appli- 
cation that must run on both the EGA and the VGA, you should avoid using these 
extra tables because the EGA does not support them. 

On the IBM EGA, which may be equipped with less than 256 KB of 

video RAM, the number of character definition tables you can load 

into video RAM depends on the amount of RAM installed on the card. 

For example, without IBM’s Graphics Memory Expansion Card, an 

IBM EGA has only 64 KB of video RAM, so each video memory map 

in alphanumeric modes contains only 16 KB, and only one character 

definition table will fit in map 2. 
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Figure 10-4. Character generator RAM in EGA video memory map 2. 

Figure 10-5. Character generator RAM in VGA video memory map 2. 

CO00H 

Offset 8000H 

4000H 

0000H 

E000H 

C000H 

A000H 

Offset 8000H 

6000H 

4000H 

2000H 

0000H 

HGC+ 
Character generator RAM on the HGC+ starts at B000:4000 and extends to the end 

of available video RAM at BO00:FFFF (see Figure 10-6). You can fill this entire 48 

KB area with character definitions. Each character definition is 16 bytes long, so a 
table that defines 256 characters occupies 4 KB. Thus, this RAM can hold 3072 

character definitions. 
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B000:FFFF 

Character definitions 

B000:4000 

Character codes and attributes 

B000:0000 

Figure 10-6. Video RAM layout in alphanumeric modes on the HGC+. 

If the HGC+ is configured so that video RAM above BO000:8000 is 

masked out of the CPU address space (that is, bit 1 of the Configura- 

tion Switch at 3BFH is set to 0), then only the 16 KB of RAM between 

B000:4000 and B000:7FFF can be used for character definitions. 

InColor Card 

Character generator RAM occupies the same range of addresses on the InColor 

Card as on the HGC+, that is, B000:4000 through B000:FFFF. Also, each InColor 

character definition is 16 bytes long. Unlike the HGC+, however, the 16-color 

InColor Card uses all four bit planes in this range of addresses for character 

definitions (see Figure 10-7). 

Because of this, you can control the value of each pixel in each character you 

define. You can also program the InColor Card so that different bit planes define 

different characters; when the characters are displayed, their attribute bytes select 

which bit plane is used. By loading each of the four bit planes with different char- 

acter definitions, you can maintain as many as 12,288 (3072 x 4) character defini- 

tions in RAM. Or, to preserve compatibility with the HGC+, you can load all four 

bit planes with the same bit patterns. 

In using both the EGA and the Hercules cards, be careful in changing 

from an alphanumeric mode that uses a RAM-based character defini- 

tion table to a graphics mode. The same RAM that contains pixel data 

in graphics modes is used to store character definitions in alphanu- 
meric modes. You can corrupt or erase your character definition tables 

by updating the video buffer in a graphics mode and then returning to 

an alphanumeric mode. 

MCGA 
Unlike the EGA and VGA, the MCGA has no parallel memory maps in which to 

store character definitions. Instead, alphanumeric character definitions are main- 

tained in the 32 KB of video RAM between A000:0000 and A000:7FFF. You can 

store as many as four 8 KB character definition tables at A000:0000, A000:2000, 

A000:4000, and A000:6000 (see Figure 10-8). 
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Character definitions 

Character definitions 

Bit plane 3 

Character definitions 

Bit plane 2 

Character definitions 

Bit plane 1 

B000:4000 

Character codes and attributes 

B000:0000 Bit plane 0 

Figure 10-7. Video RAM layout in alphanumeric modes on the Hercules InColor Card. 
Character definitions start at BO00:4000 in all four bit planes. 

Character codes and attributes 

A000:8000 
(B800:0000) 

256 character definitions 30H 

A000:6000 

256 character definitions 20H 

A000:4000 

256 character definitions 10H 

A000:2000 

256 character definitions 00H 

A000:0000 
: aac 

Value in Character Font Pointer register 

Figure 10-8. Layout of video RAM in MCGA alphanumeric modes. 
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The format of the MCGA’s character definition tables is very different from that 
of any other tables discussed thus far. Each 8 KB table is divided into 16 512-byte 
lists of character codes and bit patterns (see Figure 10-9). Each list corresponds to 
one scan line of the characters being defined; the first list represents the bit pat- 
terns in the topmost scan line of each character, the second list corresponds to the 
second scan line, and so on (see Figure 10-10). Since there are 16 lists, the max- 
imum height of a character is 16 lines. 

Oo to 23 4 5 6 7 © 39 A B C DD E F 0123456789ABCDEF 
A000:0400 00 00 01 7E 02 7E 03 00 04 00 05 00 06 00 07 00 2... cece eens 
A000:0410 O08 FF 09 OO OA FF OB 1E 0C 3C OD 3F OE 7F OF 00 ......... <1 Peeee 
A000:0420 10 CO 11 06 12 18 13 66 14 7F 15 C6 16 001718 ....... Locccecse 
A0O0O310430 18°48; 19 385 7A 00 2B) 00 2C 00 1D 00 1E 00 YF 00) Sic sees ssc es 
A000:0440 20 00 21 18 22 66 23 00 24 7C 25 00 26 38 27 30 «1. "£H#.$|%.&8'0 
A000:0450 28 OC 29 30 2A 00 2B 00 2C 00 2D 00 2E 00 2F 00 (.)0*.+.,.-.../ 

- 687. A000:0460 30 7C 31 18 32 7C 33 7C 34 OC 35 FE 36 38 37 FE 0(/1.2/3|4.5 
A000:0470 38 7C 39 7C 3A 00 3B 00 3C 00 3D 00 3E 00 3F 7C 8|9|:.;.<.=.>.?| 
A000:0480 40 00 41:10 42 FC 43 3C 44 F8 45 FE 46 FE 47 3C @.A.B.C<D.E.F.G< 
A000:0490 48 C6 49 3C 4A 1E 4B E6 4C FO 4D C6 4E C6 4F 38 H.I<J.K.L.M.N.O8 
A000:04AO0 50 FC 51 7C 52 FC 53 7C 54 7E 55 C6 56 C6 57 C6 P.Q|R.S|T U.V.W. 
A000:04B0 58 C6 59 66 5A FE 5B 3C 5C 00 5D 3C 5E 6C 5F 00 X.YfZ.[<\.]<"l.. 
A000:04CO 60 18 61 00 62 EO 63 00 64 1C 65 00 66 38 67 00 ~.a.b.c.d.e.f8g. 
A000:04D0 68 EO 69 18 6A 06 6B EO 6C 38 6D 00 6E 00 6F 00 h.i.j.k.18m.n.0. 
A000:04EO 70 00 71 00 72 00 73 00 74 10 75 00 76 00 77 00 p.q.r.s.t.u.v.w. 
A000:04FO 78 00 79 00 7A 00 7B OE 7C 18 7D 70 7E 76 7F 00 x.y.z.{.|.}p v.. 
A000:0500 80 3C 81 CC 82 18 83 38 84 CC 85 30 86 6C 87 00 .<..... Sie Oe der 
A000:0510 88 38 89 CC 8A 30 8B 66 8C 3C 8D 30 8E C6 8F 38 .8...0.f.<.0...8 
A000:0520 90 60 91 00 92 3E 93 38 94 C6 95 30 96 78 97 30 .°...>.8...0.x.0 
A000:0530 98 C6 99 C6 9A C6 9B 18 9C 6C 9D 66 9E CC OF 1B... Det ieee 
A000:0540 AO 30 Al 18 A2 30 A3 30 A4 76 A5 00 A6 6C A7 6C_ .O...0.0.v...1.1 
A000:0550 A8 30 A9 00 AA OO AB CO AC CO AD 18 AE 00 AF 00 .0.......00 ee ee 

Figure 10-9. One of 16 lists of character codes and bit patterns in MCGA character genera- 
tor RAM. This table defines the bit patterns for the third scan line of each character. Charac- 
ter codes are in the even-numbered bytes. The odd-numbered bytes contain the corresponding 
bit patterns. 

0 22°34 55° 6° 7° 8.9 A BC DEF 0123456789ABCDEF 
A000:0000 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 .weeeeereeeeeees 
A000:0010 O08 FF 09 0O OA FF OB 00 OC 00 OD 00 OE 00 OF 00 ...eeueeeee eeeee 

A000:0200 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 .wweeeeeeeeeeees 
A000:0210 O08 FF 09 OO OA FF OB 00 OC 00 OD 00 OE 00 OF 00) .-eeeeeeeeseeeee 

A000:0400 00 00 01 7E 02 7E 03 00 04 00 05 00 06 00 07 00 ... 7s seeeeseees 
A000:0410 08 FF 09 OO OA FF OB 1E OC 3C OD 3F OE 7F OF 00 .....see- Sa Pecee 

A000:0600 00 00 01 81 02 FF 03 00 04 00 05 18 06 18 07 00 weeeeevereeeeees 
A000:0610 O08 FF 09 00 OA FF OB OE OC 66 OD 33 OE 63 OF 18 ...seeeee f.3.c.. 

A000:0800 00 OO 01 AS5 02 DB 03 6C 04 10 05 3C 06 3C 07 00 ..sueee Lis e<e<ee 
A000:0810 08 FF 09 OO OA FF OB 1A OC 66 OD 3F OE 7F OF 18 ...-seeee Lui2ecee 

A000:0A00 00 00 01 81 02 FF 03 FE 04 38 05 3C 06 7E 07 00 «eseeeeee Se <ariais 
A000:0A10 08 FF 09 3C OA C3 OB 32 OC 66 OD 30 OE 63 OF DB ...<...2.f.0.c.. 

A000:0C00 00 00 01 81 02 FF 03 FE 04 7C 05 E7 06 FF 07 18) .ssseeees I srsisiets 
A000:0C10 08 E7 09 66 OA 99 OB 78 OC 66 OD 30 OE 63 OF 3C ...f...xX.f,0.C.< 

A000:0E0O0 00 00 01 BD 02 C3 03 FE 04 FE 05 E7 06 FF 07 3C_ «eee beevcsvene < 

A000:0E10 08 C3 09 42 OA BD OB CC OC 3C OD 30 OE 63 OF E7_ ...B..... <.0.C.. 

A000:1000 00 00 01 99 02 E7 03 FE 04 7C 05 E7 06 7E 07 3C  seesseeee orate re 

A000:1010 08 C3 09 42 OA BD OB CC OC 18 OD 30 OE 63 OF 3C_ ...Beseueee 0.c.< 

A000:1200 00 00 01 81 O02 FF 03 7C 04 38 05 18 06 18 07 18 ««sseeee |B. eeeee 

A000:1210 08 E7 09 66 OA 99 OB CC OC 7E OD 70 OE 67 OF DB ...f..... -P-g.. 

A000:1400 00 00 01 81 02 FF 03 38 04 10 05 18 06 18 07 00 .«seees Bows sceee 

A000:1410 08 FF 09 3C OA C3 OB CC OC 18 OD FO OE E7 OF 18) sue<sseeeveevees 

A000:1600 00 00 O01 7E 02 7E 03 10 04 00 05 3C 06 3C 07 00 Siaid-ney. aCe iarad)s <.<. 

A000:1610 08 FF 09 00 OA FF OB 78 OC 18 OD EO OE E6 OF 18 ..«.«.-+. Keeesseee 

Figure 10-10. MCGA character definitions for the first 12 scan lines of the first 16 

characters. The top scan line for each character is defined starting at AO00:0000, the 

second scan line starting at A000:0200, and so on. (Only the first 32 bytes of each 51 2-byte 

list are shown.) 
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Updating Character Generator RAM 
After you create a table of character definitions (discussed in Chapter 9), you 
must make the table accessible to the hardware character generator by properly 

locating it in the video buffer. One way to do this is to create the table in RAM 

(outside the video buffer) and then copy it to character generator RAM. You can 

also read the table directly from a disk file into character generator RAM. Either 

technique works on any of the video subsystems discussed here. 

EGA and VGA 

To copy a character definition table into video memory map 2, you must program 

both the Sequencer’s Memory Mode register and its Map Mask register, as well as 

the Graphics Controller’s Mode and Miscellaneous registers, to make memory 

map 2 directly addressable. You can then copy character definitions to any of the 

available table locations in map 2. After you update map 2, restore the Sequencer 

and Graphics Controller registers to values appropriate for the alphanumeric 
video mode you are using. 

Listing 10-1a demonstrates how the Sequencer and Graphics Controller are 

programmed on both the EGA and the VGA to make character generator RAM in 

map 2 accessible. Listing 10-1b is the converse routine; it restores the Sequencer 

and Graphics Controller registers to their alphanumeric mode default values. You 

can use the routines in Listings 10-1a and 10-1b in a program that copies character 
definitions directly from a file into character generator RAM (as shown in List- 
ings 10-2a and 10-2b). 

TITLE "Listing 10-1a' 

NAME CGenModeSet 

PAGE Dp hoz 

; Name: CGenModeSet 

; Direct access to EGA and VGA alpha character generator RAM 

; Caller: Microsoft €: 

. void CGenModeSet (); 

DGROUP GROUP _DATA 

aaa SEGMENT byte public 'CODE' 
ASSUME cs: _TEXT,ds:DGROUP 

PUBLIC —CGenModeSet 

_CGenModeSet PROC near 

push bp * preserve caller registers 
mov bp, sp 

push Sai 

Listing 10-1a. Using character generator RAM on the EGA and VGA. (continued) 
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Listing 10-la. Continued. 

7 Program the Sequencer 

edi ; disable interrupts 
mov dx, 3C4h ; Sequencer port address 
mov si,offset DGROUP:SeqParms 
mov Cx 4 

LO1: lodsw * AH := value for Sequencer register 
7 AL := register number 

out ax, ax * program the register 
loop L01 

Sta ; enable interrupts 

7 Program the Graphics Controller 

mov dl, 0CEh 7 DX := 3CEH (Graphics Controller port 
; address) 

mov si,offset DGROUP:GCParms 

mov ex; 3 

L02: lodsw 7 program the Graphics Controller 
out dx, ax 

loop L02 

pop si 

pop bp 
feb 

_CGenModeSet ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 

7 Format of the parameters is: 

, 

SeqParms DW 0100h 

DW 0402h 

DW 0704h 

DW 0300h 

GCParms DW 0204h 

DW 0005h 

DW 0006h 

_DATA ENDS 

END 

Lo-order byte: 

Hi-order byte: 

"DATA' 

Register number 

Value for reg 

+ synchronous reset 

; CPU writes only to map 2 

; sequential addressing 

; Clear synchronous reset 

7 select map 2 for CPU reads 

; disable odd-even addressing 

7; map starts at A000:0000 
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TITLE Ristang 10=1b. 

NAME CGenModeClear 

PAGE Say haz 

; Name: CGenModeClear 

Restore EGA or VGA alphanumeric mode after accessing 

character generator RAM 

; Caller: Microsoft C: 

DGROUP GROUP 

DIE E SEGMENT 

ASSUME 

PUBLIC 

_CGenModeClear PROC 

push 

mov 

push 

; Program the Sequencer 

elke 

mov 

mov 

mov 

LO1: lodsw 

out 

loop 

sti 

void CGenModeClear(); 

_DATA 

byte public 'CODE' 

cs: TEXT, ds:DGROUP 

_CGenModeClear 

near 

bp ; preserve caller registers 

bp, sp 
si 

; disable interrupts 

dx, 3¢4h ; Sequencer port address 

si,offset DGROUP:SeqParms 

cx,4 

; AH := value for Sequencer register 

; AL := register number 

dx,ax ; program the register 

L01 

; enable interrupts 

; Program the Graphics Controller 

mov dl, OCEh ; DX := 3CEH (Graphics Controller port 

; address) 

mov si,offset DGROUP:GCParms 

mov eS) 

L02: lodsw * program the Graphics Controller 

out dx, ax 

loop L02 

mov ah, OFh 7 AH := INT 10H function number 

int 10h 7 get video mode 

cmp al,7 

jne L03 ; jump if not monochrome mode 

mov ax, 0806h 7 program Graphics Controller 

out dx, ax 7 to start map at B000:0000 

Listing 10-1b. Restoring character generator RAM on the EGA and VGA. (continued) 
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Listing 10-1b. Continued. 

L03: 

_CGenModeClear 

_TEXT 

_DATA 

7 Format of the 

, 

SeqParms 

GCParms 

_DATA 

; Name: 

i Caller: 

ARGf 

ARGp 

CGenRAMSeg 

CGenRAMOf fset 

CGenDefSize 

_TEXT 

Listing 10-2a. Loading character definitions on an EGA or VGA. 

pop 

pop 

ret 

ENDP 

ENDS 

SEGMENT word public 

parameters is: 

si 

bp 

Lo-order byte: 

Hi-order byte: 

"DATA' 

Register number 

Value for reg 

+ synchronous reset 

7 CPU writes to maps 0 and 1 

; odd-even addressing 

; clear synchronous reset 

7 select map 0 for CPU reads 

7 enable odd-even addressing 

7 Map starts at B800:0000 

DW 0100h 

DW 0302h 

DW 0304h 

DW 0300h 

DW 0004h 

DW 1005h 

DW OEO6h 

ENDS 

END 

TITLE "Lasting 10-22" 

NAME CGenRead1 

PAGE 55, 132 

CGenRead1 

Read 256 character definitions into EGA or VGA character RAM 

Microsoft C: 

EQU 

EQU 

EQU 

EQU 

EQU 

void CGenRead!1 (f,p); 

int fe 

int P; 

[bp+4] 
[bp+6] 

OA000h 

0 

32 

/* file handle */ 
/* bytes per character definition */ 

; start of character generator RAM 

; size in bytes of one character def 

SEGMENT byte public 'CODE' 

ASSUME 

PUBLIC 

ese TEXT 

_CGenRead1 

(continued) 
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Listing 10-2a. Continued. 

_CGenRead1 PROC 

push 

mov 

push 

push 

push 

near 

bp ; preserve registers 

bp, sp 

ds 

si 

di 

; zero character definition RAM 

mov 

mov 

mov 

mov 
xor 

rep 

di,CGenRAMSeg 

es, di ; 

di, CGenRAMOffset 

ES := char gen RAM segment 

cx, 256*CGenDefSize/2 ; CX := number of words to zero 

ax,ax 

stosw 

; load character definitions from file 

mov 

mov 

mov 

push 

pop 
mov 

L0O1: xchg 

mov 

int 

add 

xchg 

loop 

pop 

pop 

pop 

pop 

ret 

_CGenRead1 ENDP 

_ TEXT ENDS 

END 

eCxpZo6 ; assume 256 character defs in the file 

bx, ARGf ; BX := file handle 

si, ARGp ; CX := bytes per character definition 

es 

ds 

dx,CGenRAMOffset ; DS:DX -> start of character gen RAM 

Cx Se ; CX := number of bytes to read 

7S 3= Loop, counter 

ah, 3Fh ; AH := INT 21H function number 

21h 

dx,CGenDefSize ; DS:DX -> next character def in RAM 

Cx, Su ; CX s=] Loop) counter 

; SI := number of bytes to read 

L01 

di ; restore registers and exit 

si 

ds 

bp 
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/* Listing 10-2b */ 

#include 

#include 

main (argc,argv) 

int 

char 

{ 

} 

<font) h> 

<stdio.h> 

argc; 

**argv; 

int ou 

int FileHandle; 

int Points; /* bytes per character definition */ 
long lseek (); 

long FileSize; 

tf farge )="2) /* verify filename */ 
{ 

printf( "\nNo filename specified\n" ); 

exat( 1) 

} 

FileHandle = open( argv[1], O RDONLY ); /* open the file */ 

if ( FileHandle == -1 ) 

: PEIMeE( "\nCan’ = open "Ss" \n, argv); 

CxTEt 2e)> 

} 

CGenModeSet () ; /* make character generator RAM addressable */ 

FileSize = lseek( FileHandle, OL, SEEK END ); /* get file size */ 

Points = FileSize / 256; /* determine character size */ 

lseek( FileHandle, OL, SEEK SET ); 7/* start of fille */ 

CGenRead1( FileHandle, Points ); 

CGenModeClear(); /* restore previous alphanumeric mode */ 

Listing 10-2b. Calling CGenReadI from a C program. 

A faster and more portable way to load character definitions into RAM is to use 
INT 10H function 11H with AL = 0 (see Listings 10-3a and 10-3b). When you use 

the INT 10H function, you can selectively update any portion of a table in map 2 

by choosing appropriate values for DX (the character offset into the table) and CX 
(the number of character definitions to update). To use this video BIOS function, 

you must first store the character definition table in an intermediate buffer. This 
technique consumes more memory than reading character definitions directly 
from disk, but it results in faster code. 
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TITLE ViusteLimgy Osu. 

NAME CGenRead2 

PAGE S Sys 

7 

; Name: CGenRead2 

Use video BIOS to read 256 character definitions into EGA or VGA 

character RAM 

» Callers Microsoft C: 

ARGE£ EQU 

DGROUP GROUP 

_ TEXT SEGMENT 

ASSUME 

PUBLIC 

_CGenRead2 PROC 

push 

mov 

void CGenRead2 (f); 

int fe /* file handle */ 

[bp+4] 

_DATA 

byte public 'CODE' 

csi, TEXT 

_CGenRead2 

near 

bp ; preserve registers 

bp, sp 

; load character definitions from file 

mov 

mov 

mov 

mov 

int 

Ex Zoots2 ; assume 256 32-byte character defs 

70) an the ibe 

bx, ARGf£ ; BX := file handle 

dx,offset DGROUP:CharBuf ; DS:DX -> start of buffer 

ah, 3Fh ; AH := INT 21H function number 

Zhi ; read the file 

; AX := number of bytes read 

; call video BIOS to load character generator RAM 

push ds 

pop es 

mov bp,offset DGROUP:CharBuf ; ES:BP -> character defs 

mov b1,0 ; BL := block of char gen RAM to load 

mov bh, ah ; AH := bytes per character 

; (number of bytes read) / 256 

mov Cxploo ; number of character defs to store 

one dx, ax ; first character number 

mMOv ax,1100h ; AH := 11H (INT 10H function number) 

; AL := 0 (subfunction number) 

int 10h 

pop bp ; restore BP and exit 

ret 

_CGenRead2 ENDP 

Listing 10-3a. Using the BIOS to load character definitions. (continued) 
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Listing 10-3a. Continued. 

SIEXt ENDS 

_DATA SEGMENT word public 'DATA' 

CharBuf DB 256*32 dup(?) 

_DATA ENDS 

END 

7* Listing 10=3b */ 

#include <fentd .h> 

main (argc, argv) 

int argc; 

char **argv; 

{ 
int aS 

int FileHandle; 

if (argc != 2) /* verify filename */ 

{ 
printf( "\nNo filename specified\n" ); 

CELE IT Ope 

} 

FileHandle = open( argv[1], O RDONLY ); /* open the file */ 

if ( FileHandle == -1 ) 

{ 
printf( "\nCan’t open '%s'\n", argv[1] ); 

Cx EE CUZ ie 

CGenRead2( FileHandle ); /* call video BIOS to load file into */ 

/* character generator RAM */ 

} 

Listing 10-3b. Calling CGenRead2 from a C program. 

The INT 10H function 11H services can also update character generator RAM from 

the character tables in the ROM BIOS. To use one of the ROM BIOS character defi- 

nition tables, call INT 10H function 11H with AL = 1 (for 8-by-14 character defini- 

tions) or AL = 2 (for 8-by-8 definitions). (See Listing 10-4.) 

mov ax,1102h ; AH := INT 10H function number 

; AL := 02h (load ROM BIOS 8x8 characters) 

mov ii, 0 ; BL := character generator RAM bank 

int 10h ; load alphanumeric character set 

Listing 10-4. Using a ROM BIOS character definition table. 
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HGC+ 

Moving a character definition table into RAM is easier on the HGC+, because 

memory addressing is simpler. Character generator RAM is mapped linearly, 

starting at B000:4000. Since each 256-character table occupies 4 KB (256 x 16), 

subsequent 256-character tables start at BO00:5000, B000:6000, and so on. 

Because HGC+ memory has no bit planes, you can access character generator 

RAM as easily as any other system RAM. You can, for example, use a single 

REP MOVSB instruction to move bit patterns into character generator RAM 

from elsewhere in system RAM, or you can read a character definition table 

directly into RAM from a disk file. For example, you can modify Listing 10-2a 

to read a file directly into HGC+ character generator RAM by changing the 

values of CGenRAMSeg to BOOOH, CGenStartOffset to 4000H, and 

CGenDefSize to 16. 

InColor Card 

. Although the InColor Card uses all four bit planes to store character definitions, 

you can use virtually the same routine to copy bit patterns into its character 

generator RAM that you use on the HGC+. The only difference is that you can 

select which of the four bit planes to update. Do this by setting bits 4 through 7 

of the Plane Mask register (18H) to write-protect one or more of the bit planes. 

For compatibility with the HGC+, set these four bits to 0 so that all four bit planes 

contain the same bit patterns. 

MCGA 

As on the Hercules adapters, character generator RAM on the MCGA is mapped 

linearly in the video buffer. Thus, you can update MCGA character definitions 

simply by writing the bit patterns in the appropriate format in the character 

definition tables. 

If you update the MCGA character definition tables directly, however, your pro- 

gram must store bit patterns and character codes in the format expected by the 

MCGA character generator. It is usually better to use INT 10H function 11H to 

copy character definitions into MCGA character generator RAM. This video BIOS 

function translates character definition tables from the linear format used on the 
EGA and VGA into the formatted lists used on the MCGA. 

The MCGA is different from the other video subsystems discussed here in that its 

alphanumeric character generator does not fetch bit patterns from the tables at 

A000:0000 as it generates characters. Instead, the character generator uses two in- 

ternal character definition tables, called font pages. To display the characters 

from one of the four tables in video RAM, you must load the table into one of the 

character generator’s font pages. Listing 10-5 shows how this is done. 
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7 Name: 

y Caller: 

ARGn0O 

ARGn1 

aFEXT 

_SetFontPages 

_SetFontPages 

_TEXT 

TITLE "Listing 10-5' 

NAME SetFontPages 

PAGE So bse 

SetFontPages 

Update MCGA Font Pages 

Microsoft C: 

EQU 
EQU 

SEGMENT 

ASSUME 

PUBLIC 

PROC 

push 

mov 

mov 

mov 

shl 

shl 

int 

pop 
ret 

ENDP 

ENDS 

END 

void SetFontPages(n0,n1); 

int n0,n1; /* font page values */ 

[bp+4] 
[bp+6] 

byte public 'CODE' 

es_ TEXT 

_SetFontPages 

near 

bp ; preserve caller registers 

bp, sp 

ax,1103h ; AH := INT 10H function number 

7 AL z= 3 (Set Block Specifier) 

b1,ARGn1 ; BL s= value for bits 2=3 

bly i 

bial PE mote see — Ss as — ral 

bl, ARGn0O 9 Jails Voricey Oi) gas si) 

10h 7 load font pages 

bp 

Listing 10-5. Loading font pages on an MCGA. 

Thus, displaying a new alphanumeric character set on the MCGA is a two-step 

process. First, you store character definition tables in one or more of the four 8 KB 
blocks of video RAM reserved for this purpose. Then you update the character 

generator’s font pages to display the characters. 

Using RAM-based Character Sets 

When you use characters defined in a RAM-based table, you must choose how the 

alphanumeric character generator is to decode the character codes and attributes 
stored in the displayed portion of the video buffer. Using the usual 256-character 
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ASCII set, with 8-bit character codes and 8-bit attributes, is simplest. However, to 

display more than 256 different characters at once or to switch rapidly between 

character sets, you must use a wider range of ‘‘extended’’ character codes and a 

different set of attributes. 

ASCII Character Sets 

The simplest way to customize alphanumeric characters is to use 8-bit ASCII char- 

acter codes and attributes with a RAM-based character definition table. Because 

there are only 256 ASCII character codes, you can display only one 256-character 

set at a time. However, the character codes and attribute bytes stored in the dis- 

played portion of the video buffer retain their usual format, so software that 

knows nothing about the RAM-based character definitions can run unchanged 

while displaying the RAM-based character set. 

EGA, VGA, and MCGA 
Whenever you select an alphanumeric video mode using the video BIOS, the al- 

phanumeric character generator is configured to display the characters defined in 

the first table in character generator RAM. Thus, to display a different set of 

ASCII characters, all you need do is update the table. As described above, INT 

10H function 11H provides a convenient mechanism for doing this. This same 

BIOS function also lets you display the 256 characters defined in any of the other 

character definition tables as described later in this chapter. 

HGC+ and InColor Card 

When you power up an HGC+ or an InColor Card, the alphanumeric character 

generator uses the ROM-based character definition table by default. To display a 

different ASCII character set, configure the alphanumeric character generator to 

use the RAM-based table (see Listing 10-6) and then load a character definition 

table into video RAM at B000:4000. 

To do this, set bit 0 of the adapter’s xMode register (14H) to 1. This causes the 
adapter to display the characters defined in the table in RAM at B000:4000. Also, 
set bit 0 of the Configuration Switch register (3BFH) to 1 to make character 
generator RAM addressable at B000:4000. (This configuration is called ‘‘4K Ram- 
Font mode”’ in Hercules documentation.) After you update character generator 
RAM, you can protect it from subsequent modification by resetting bit 0 of the 
Configuration Switch register. 

mov dx, 3B4h 

mov ax,0114h ; AH bit 0 := 1 (enable RAM character 

. generator) 

; AL := 14h (xMode register number) 
out dx,ax 

(continued) 

Listing 10-6. Configuring an HGC+ or InColor Card for updating character 
generator RAM. 
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Listing 10-6. Continued. 

mov dl, OBFh + DX := 3BFh (Config Switch register) 

mov ale 7 AL bit 0 := 1 (make RAM at BO00:4000 

; addressable) 

out dx,al 

(update character generator RAM) 

mov dx, 3BFh ; DX := 3BFh (Config Switch register) 

mov ow 0) ; AL bit 0 := 0 (exclude RAM at 

; BO00:4000 from memory map) 

out dx,al 

Updating character generator RAM is more complicated on the InColor Card 

because all four bit planes are used for character definitions. The complexity lies 

in the way colors are displayed for characters defined in the bit planes. A charac- 

ter’s color is determined not only by its foreground and background attributes, but 

also by the bit planes used to define its pixel pattern. 

The InColor Card combines the pixel values in a character definition (in character 

generator RAM) with the character’s foreground and background attributes (in the 

displayed portion of the video buffer) to produce a 4-bit attribute for every pixel 

in the character. The logic used is: 

(pixel value AND foreground attribute) OR 

(NOT pixel value AND background attribute) 

In the example in Figure 10-11, one of the pixels in a character has a value of 2 

(0010B) in the character definition table. The character’s attribute byte in the 

video buffer specifies a foreground value of 0 and a background value of 7 

(0111B). The InColor Card thus displays this pixel with an attribute of (2 AND 0) 

OR (NOT 2 AND 7), or 5. 

AND 
0101 

Background attribute 6-bit 

OR 0101 —> Palette —» digital 

5 Character definition pixel 
Foreground attribute P 

0000 
AND 

Figure 10-11. InColor foreground color attribute decoding using RAM-based character 

definitions (8-bit character codes). The pixel value in the character definition and both at- 

tributes in the character’ s attribute byte all contribute to foreground attribute decoding. 

Using colors on the InColor Card is simpler if you load all four bit planes with 

identical bit patterns so that all pixels in the character definitions have the value 
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OFH (1111B). Then a character’s foreground and background attributes depend 

solely on the values in its attribute byte. Alternatively, you can specify a fore- 

ground attribute of OFH (1111B) and a background attribute of 0 for every charac- 

ter in the video buffer. In this case, the displayed colors depend solely on the pixel 

values in the character definitions. 

A more practical use of the InColor Card’s character definition RAM is to load 

each bit plane with a different character definition table. Then each bit in a char- 

acter’s foreground attribute acts as a mask to select a different character set. Of 

course, a 4-bit foreground attribute is still generated, as in Figure 10-11, so in 

effect each character set is associated with the color that corresponds to its bit 

plane. You can, of course, display the character sets in any colors you want by 

programming the palette registers. 

To load the bit planes separately, use the high-order nibble in the Plane Mask 

register (18H) to write-protect the bit planes each time you load a different charac- 

ter set. This permits you to use different foreground attributes to display the dif- 

ferent character sets. For example, if all four bit planes contain different character 

sets, you can select each of the four character sets by using the foreground attri- 

butes 1, 2, 4, and 8. 

Extended Character Sets 

All of the video subsystems discussed in this chapter have enough character 

generator RAM to store definitions for more than 256 characters, so they all pro- 

vide a way for the character generator to recognize extended character codes 

larger than the usual eight bits. 

EGA and VGA 
On the EGA and the VGA, the usual range of 256 ASCII codes is doubled by using 

bit 3 of a character’s attribute byte to designate one of the character definition 

tables in map 2 (see Figure 10-12). In this way, 512 different characters can be dis- 

played in an alphanumeric mode. 

Normally, the value of bit 3 of a character’s attribute byte does not affect the 
character set displayed. This is why: The value of this bit selects one of two bit 

fields in the Sequencer Character Map Select register. In turn, the value in each of 

these two bit fields designates one of the available character definition tables in 

RAM. When the video BIOS establishes a video mode, it loads a default set of 

character definitions into the first character definition table in map 2 and clears 

both bit fields in the Character Map Select register. Thus, default alphanumeric 

characters are defined by the bit patterns in the first table in map 2, regardless of 

the value of bit 3 of the attribute bytes of the characters displayed. 

Changing the value in the Character Map Select register, however, changes the 

character definition tables associated with bit 3 of each character’s attribute byte. 

If two different values appear in the bit fields in the Character Map Select regis- 

ter, the value of bit 3 designates one of two different character definition tables. 
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High-order byte Low-order byte 

LLL Lititizs 8-bit character code 

4-bit foreground attribute 

Z 4-bit background attribute 

OMDB Sy 2a Os aL On eA ap 920) 1,0 

High-order byte Low-order byte 

II 
|| Le He 9-bit extended character code 

-- 4-bit foreground attribute 

nO are sel AON On, aoe ead 1) 10 

4-bit background attribute 

High-order byte Low-order byte 

|| LEE 12-bit extended character code 

4-bit attribute 

Cc. 

Figure 10-12. Character codes and attributes. Figure 10-12a shows the usual 8-bit format. 
Figure 10-12b shows the extended 9-bit format used on the EGA, VGA, and MCGA. Figure 
10-12c shows the extended 12-bit format used on the HGC+ and InColor Card. 

For example, in Figure 10-13, bit 3 is set to 1, so bits 2, 3, and 5 of the Character 

Map Select register designate which character definition table to use. (This exam- 

ple pertains to the VGA; on the EGA, only bits 2 and 3 of the Character Map Select 

value would be meaningful.) 

Offset 
3-bit value in map 2 

Attribute byte oe E000H 
— = — al 011 CO00H 

uae A000H 

ae 8000H 

tO 6000H 

oe 4000H 

Ah 2000H 
000 A 

Figure 10-13. Function of the VGA Character Map Select register. 
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Listing 10-7 illustrates two methods of updating this register. Although the tech- 

nique of using an INT 10H function call generally requires less code and is more 

portable, you might prefer to program the Sequencer directly in applications that 

require rapid switching between character sets. 

; using the video BIOS 

mov ax,1103h ; AH := INT 10H function number 

7 Ae 2 3 

mov bl,CharMapValue ; BL := value for Character Map Select register 

abit 10h 

; programming the register directly 

mov dx, 3C4h ; DX := Sequencer I/O port 

mov ax,100h ; AH bit 1 := 0 (synchronous reset) 

; AL := 0 (Sequencer Reset register number) 

elle ; disable interrupts 

out dx, ax ; reset Sequencer 

mov ah,CharMapValue ; AH := value for Character Map Select register 

mov al,3 ; AL := 3 (Char Map Select register number) 

out acyiax ; update this register 

mov ax, 300h ; AH bit 1 := 1 (clear synchronous reset) 

; AL := 0 (Reset register number) 

out dx, ax ; clear the reset 

SiteL ; enable interrupts 

Listing 10-7. Programming the Sequencer Character Map Select register on the EGA 

and VGA. 

If both bit fields in the Character Map Select register contain the same value, the 

value of bit 3 of a character’s attribute byte does not affect which character set is 
used. If the bit fields designate different character definition tables, then the value 

of bit 3 of each character’s attribute byte selects between two different character 

sets. Keep in mind, however, that bit 3 is also part of each character’s 4-bit fore- 

ground attribute. When bit 3 of a character’s foreground attribute is set to 0, the 

character’s displayed color is taken from one of the first eight palette registers 

(0000B through 0111B). When bit 3 is set to 1, the color derives from one of the 

second eight palette registers (1000B through 1111B). 

Thus, the two 256-character sets selected by bit 3 are displayed with two different 

sets of eight palette register values. This is handy if you want to associate a par- 

ticular set of colors with a character set. Otherwise, you might prefer to load the 

second eight palette registers with the same set of values as the first eight so that 
the value of bit 3 of a character’s attribute byte has no effect on its displayed 

color. Another technique is to mask bit 3 of the foreground attribute by zeroing bit 

3 of the Attribute Controller’s Color Plane Enable register, as in Listing 10-8. 

Because the value in the Color Plane Enable register masks the 4-bit attribute 

value, zeroing bit 3 in this register allows only the first eight palette registers to 

be referenced, regardless of the value of bit 3 in a character’s attribute byte. 
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mov ax,1000h AH 10H (INT 10H function number) 

; AL := 0 (set specified register) 

mov bx,0712h + BH := 0111b (Color Plane Enable value) 

* BL := 12H (Color Plane Enable reg number) 

int 10h ; update Color Plane Enable register 

Listing 10-8. Zeroing bit 3 of the Color Plane Enable register. This causes bit 3 of a charac- 
ter’s attribute byte to have no effect on its displayed attribute. 

MCGA 

The MCGA supports 8-bit and 9-bit character codes with the same BIOS interface 

as the EGA and VGA, although the hardware implementation is different. On the 

MCGA, the two character definition tables selected by bit 3 of a character’s at- 

tribute byte are the ones in the MCGA’s two internal font pages. Although you can 

load the font pages by programming the MCGA’s Character Generator Interface 

register (12H), Character Font Pointer register (13H), and Number of Characters to 

Load register (14H), it is easier to use INT 10H function 11H with AL = 3. 

As on the EGA and VGA, bit 3 of a character’s attribute byte does double duty as 

part of the 9-bit character code as well as the high-order bit of the character’s 

foreground attribute. If you want to use the same colors for both 256-character 

sets, you can call INT 10H function 10H to store the same set of color values in the 

second eight video DAC color registers as you do in the first eight. You can also 

call INT 10H function 10H to mask bit 3 out of alphanumeric attribute decoding 

(see Listing 10-8). 

HGC+¢ and InColor Card 
On the HGC+ and the InColor Cards, you can configure the character generator to 

regard the four low-order bits of each character’s attribute byte as part of the 

character code. Do this by setting both bit 2 and bit 1 of the xMode register to 1. 

(Hercules calls this configuration ‘‘48K RamFont mode.’’) 

By using 12-bit character codes, you can display all characters defined anywhere 

in the Hercules adapter’s 48 KB of character generator RAM. In practice, you can 

regard all 48 KB of character generator RAM as one continuous character defini- 

tion table. However, in some applications, you might find it more convenient to 

think of character generator RAM as a set of twelve 256-character tables, where 

the four high-order bits of the character code designate one of the tables, and the 

eight low-order bits designate a character definition within a table. 

When 12 bits are used as an extended character code, only bits 4 through 7 of the 

high-order byte specify a character’s attribute (see Figure 10-12c). The attributes 

that Hercules assigned to these bits differ somewhat from the usual monochrome 

display attributes (see Figure 10-14). 
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Enable Blink Bit = 1 Enable Blink Bit = 0 

Attribute Bit (blink enabled) (blink disabled) 

vi High-intensity Boldface 

6 Blink Reverse 

5 Overstrike No overstrike 

4 Underline No underline 

Figure 10-14. Extended attribute set on the HGC+ and the InColor Card. 

When using 12-bit character codes on the HGC+ and the InColor Card, 

you can specify the scan line on which the overstrike and underscore 

" attributes appear. Bits 0 through 3 of the Underscore register (15H) 

control the position of the underscore. Bits 0 through 3 of the Over- 

strike register (16H) control the position of the overstrike. On the 

InColor Card, you can also control the displayed color of the under- 

score and overstrike by storing a value between 1 and OFH in bits 4 

through 7 of the corresponding control register. 

As on the HGC+, the 12-bit character codes on the InColor Card designate loca- 

tions in the character definition tables. Attribute decoding is more complicated on 

the InColor Card, however (see Figure 10-15). The 4-bit foreground attribute gen- 

erated for each pixel in a character is derived by combining the character’s 4-bit 

attribute with the pixel’s value in the character definition table. 

MDA-compatible Attributes (Exception register bit 5 = 1) 
Enable Blink On Enable Blink Off 

Foreground (pixel value) OR (background) (pixel value) XOR (background) 
Background 0 if bit 7 of attribute = 0 0 if bit 6 of attribute = 0 

8 if bit 7 of attribute = 1 OFH if bit 6 of attribute = 1 

Color Attributes (Exception register bit 5 = 0) 

Foreground (pixel value) AND (NOT attribute) 
Background 0 

Figure 10-15. /nColor Card color attribute decoding using 12-bit character codes. 

As was the case when using 8-bit character codes, the peculiar interaction of char- 
acter attributes with the pixel values in the character definition table makes con- 

trolling colors difficult. To simplify matters, you can store the same character 

definitions in all four bit planes when using color attribute decoding; this allows 
each character’s 4-bit attribute to specify all 16 colors. When using MDA- 

compatible attributes, you can store the same bit patterns in bit planes 0 through 2 

and zero bit plane 3. Again, this allows each character’s 4-bit attribute to com- 

pletely control the displayed attributes. 
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If you elect to store different character definition tables in each bit plane, each of 
a character’s attribute bits can select one of the bit planes. Again, you should pro- 
gram the palette registers carefully so that characters from different bit planes are 
displayed with appropriate colors. 

Compatibility Problems with Extended Character Codes 

Most PC and PS/2 programs, including the BIOS, MS-DOS, and most commercially 
available applications, expect you to use 8-bit ASCII character codes. This means 

you can update character generator RAM with an 8-bit ASCII character set in a 

different font, but you cannot take advantage of the extended 9-bit or 12-bit char- 
acter codes supported by IBM and Hercules. 

If you use the INT 10H interface to display characters with extended character 

codes, you must be careful when you use certain ROM BIOS functions. For exam- 

ple, INT 10H function 0AH, which stores an 8-bit character code in the video 

buffer, is not very useful for writing characters with a 9-bit or a 12-bit extended 

character code. On the other hand, you can use INT 10H function 9, which handles 

a 16-bit character code and attribute combination, to process extended character 

codes and attributes. 

When you run an application that uses extended character codes, you can encoun- 

ter problems when your application interacts inadvertently with software that 

doesn’t recognize the different character-attribute format. Consider what might 

happen if a RAM-resident utility program popped up in the middle of your appli- 

cation without being “‘aware’’ that you were using extended character codes. 

When the utility program placed 8-bit character codes and attributes in the buffer, 

the alphanumeric character generator would interpret them as extended character 

codes and attributes. The results would probably be unusable. 

Changing the Displayed Character Matrix 

There is another dimension to customizing a RAM-based character definition 

table: You can control the height of the character matrix in which characters are 

displayed. The height of the displayed character matrix determines how many 

rows of characters appear on the screen. For example, a 350-line display accom- 

modates 43 rows of 8-by-8 characters but only 25 rows of 8-by-14 characters. 

With all of the subsystems discussed in this chapter, you can vary the displayed 

height of alphanumeric characters by programming the CRT Controller to display 

characters the same size as the characters defined in character generator RAM. 

Thus, to display 8-by-8 characters on a 350-line display, you place 8-by-8 charac- 

ter definitions into character generator RAM and then program the CRTC to dis- 

play characters that are 8 pixels high. 

On the EGA and the VGA, you can perform both these tasks by calling INT 10H 

function 11H, although in some situations you may prefer to update the character 

definitions or program the CRTC explicitly. Hercules adapters, of course, have no 

ROM BIOS, so you must do the work yourself. 
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EGA 

Consider how you would display 43 rows of 8-by-8 characters in an EGA alphanu- 

meric mode with 350-line vertical resolution, as in Listing 10-9. In this example, 

the call to INT 10H function 11H with AL = 12H copies the ROM’s 8-by-8 character 

set (normally used in 200-line video modes) into the first of the four tables in map 

2 and then calculates the proper CRTC register values based on the values of 

POINTS and ROWS in the BIOS Video Display Data Area. 

establish 80x25 alphanumeric mode (350-line vertical resolution) 

mov ax,3 ; AH := 0 (INT 10H function number) 

int 10h * ALvs= 3 °(80x25 16-color mode) 

; load video BIOS 8x8 characters into alphanumeric character generator 

mov axel bly ; AH := INT 10H function number 

; AL := 8x8 character set load 

mov b1,0 > BL s= block te oad 

opts 10h ; load 8x8 characters into RAM 

; set cursor position in character matrix 

mov ax, 40h 

mov es,ax ; ES -> video BIOS data area 

mov dx,es: [63h] ; DX := CRTC address port from 0040:0063 

: (3B4H or 3D4H) 

mov ax, 060Ah ; AH := 6 (Cursor Start value) 

; AL := OAH (Cursor Start reg number) 

out dx, ax ; update CRTC Cursor Start register 

mov ax, OOOBh ; AH := 0 (Cursor End value) 

; AL := OBH (Cursor End reg number) 

out dx, ax ; update CRTC Cursor End register 

; use alternate video BIOS print screen routine 

mov ah,12h ; AH := INT 10H function number 

mov bi, 20h ; BL := subfunction number 

int 10h ; update INT 5 vector (print screen) 

Listing 10-9. Establishing an 80-by-43 alphanumeric mode on an EGA. 

INT 10H function 11H calls INT 10H function 1 to set the position of the alphanu- 
meric cursor in the displayed character matrix. As described in Chapter 3, the 

EGA BIOS version of INT 10H function 1 computes this cursor position incor- 
rectly, leading to an improperly displayed cursor. Therefore, the routine in List- 

ing 10-9 updates the CRTC Cursor Start and Cursor End registers directly. 

T If your program changes the number of displayed character rows, it 

, should also call INT 10H function 12H to select the EGA BIOS’s alter- 

" nate print screen routine. This routine functions identically to the one 

in the motherboard BIOS except that it uses the Video Display Data 

Area value ROWS to determine how many lines to print. (The mother- 

board BIOS routine disregards ROWS and always prints 25 lines.) 
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VGA 

You can also use INT 10H function 11H on the VGA to establish an alphanumeric 
mode with a nondefault character matrix (see Listing 10-10). On the VGA, you set 
the vertical resolution of the video mode using INT 10H function 12H (with BL = 
30H) before calling function 11H. Also, the cursor emulation computations are 
performed properly in the VGA BIOS, so no extra code is required to avoid cursor 
emulation on the VGA. 

* establish 80x25 alphanumeric mode with 400-line vertical resolution 

mov ax,1202h ; AH := 12h (INT 10H function number) 

7; AL := 2 (select 400 scan lines) 

mov bl, 30h ; subfunction number 

int 10h 

mov axes ; AH := 0 (INT 10H function number) 

lI int 10h ; Aly J= "3: (80x25 16-collor mode) 

; load video BIOS 8x8 characters into alphanumeric character generator 

mov ax,1112h ; AH := INT 10H function number 

; AL := 8x8 character set load 

mov DL, 0 7 BL := block to load 

int 10h ; load 8x8 characters into RAM 

Listing 10-10. Establishing an 80-by-50 alphanumeric mode on a VGA. 

MCGA 

The MCGA can only display characters with 2, 4, 6, 8, 10, 12, 14, or 16 scan lines. 

(This is a limitation of the MCGA’s Memory Controller.) To change the displayed 

character matrix, use INT 10H function 11H to load a new character set into the 

character generator. Then program the Scan Lines per Character register (09H) 

with a value from 0 through 7; if the value is n, the number of scan lines displayed 

in the character matrix is (n + 1) x 2. Listing 10-11 shows how to set up an 8-by-10 

character matrix using the MCGA’s 400-line vertical resolution to produce 40 rows 

of 80 characters. 

; establish 80x25 alphanumeric mode 

ll mov ax, 3 ; AH := 0 (INT 10H function number) 

; AL := 3 (80x25 16-color mode) 

int 10h 

; zero the bit patterns in character generator RAM 

mov di, 0A000h 

mov es,di 

xor di,di ; ES?DI -> character generator RAM 

xor ax,ax ; AH := 0 (bit pattern) 

AL c= © Ninteial Character code) 

mov cx, 256*16 ; CX := number of words 

Listing 10-11. Establishing an 80-by-40 alphanumeric mode on an MCGA. (continued) 
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Listing 10-11. Continued. 

L01: stosw ; store character code and zero 

Aline! al > AL := next character code 

loop L01 

load video BIOS 8x8 characters into alphanumeric character generator 
, 

mov ax,1102h ; AH := INT 10H function number 

; AL := 8x8 character set load 

mov bil, 0 > BL s= block to Load 

int 10h ; load 8x8 characters into RAM 

mov ax,1103h ; AH := INT 10H function number 

; AL := character generator load 

mov b1,0 3 BL := blocks to load 

sorte 10h ; load characters into character generator 

; program CRT Controller to display 8x10 characters 

mov dx, 3D4h ; DX := MCGA I/O port address 

mov ax, 409h ; AL := 9 (register number) 

; AH := 4 (value for register) 

out dx, ax ; update Scan Lines register 

mov al,OAh ; AL := OAH (register number) 

out dx, ax ; update Cursor Start register 

mov al,OBh ; AL := OBH (register number) 

out ax, ax ; update Cursor End register 

; update status variables in video BIOS data segment 

mov ax, 40h 

mov ds,ax 7 DS -> video BIOS data segment 

mov word ptr ds: [4Ch],80*40*2 ; update CRT_LEN in BIOS data area 

mov byte ptr ds:[84h],40-1 ; update ROWS 

mov word ptr ds:[85h],10 ; update POINTS 

For some values in the Scan Lines per Character register, the MCGA incorrectly 

displays the bottommost scan line of the screen. Specifically, when the value in 

the Scan Lines per Character register is 1, 3, 5, or 6, the MCGA replicates part of 

the topmost scan line on the screen at the bottom of the screen. Thus, you should 

generally avoid using these values for the Scan Lines per Character register. 

HGC+z+ and InColor Card 

You must program the HGC+ CRTC explicitly to change the number of displayed 

lines in alphanumeric characters. The subroutine Set HercCRTC in Listing 10-14 

illustrates a table-driven technique for setting up the CRTC’s vertical timing 

parameters for a variety of character sizes. Figure 10-16 summarizes the CRTC 

timing parameters recommended by Hercules for any character matrix between 4 

and 16 scan lines high as well as for characters that are either 8 or 9 pixels wide. 
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Width of Character Matrix 

CRTC register 8 Pixels 9 Pixels 

00H 6DH 61H 
01H 5AH 50H 
02H 5CH 52H 
03H OFH OFH 

CRTC Height of Character Matrix (in pixels) 
register 4 5 6 7 8 9 10m 31s, gh2eed3: 1149.15.40 16 

04H SCH 4Ah 3DH 34H 2DH 28H 24H 20H 1DH 1BH 19H 17H 16H 
OSH 02H OOH 04H 06H 02H OI1H OOH 07H OAH 06H 06H OAH 02H 
06H 58H 46H 3AH 32H 2BH 26H 23H 1FH 1DH 1AH 19H 17H 15H 
07H 59H 46H 3BH 33H 2CH 27H 23H 20H 1DH 1BH 19H 17H 16H 

Figure 10-16. CRTC timing parameters for height and width of the alphanumeric character 
matrix (HGC+ and InColor Cara). 

On the InColor Card, the techniques for changing the displayed character matrix 

parallel those used on the HGC+. The values you place in the CRTC registers for 

each possible character matrix are also the same. 

Programming Examples 

The routines on the following pages unify the programming techniques for 

changing the displayed character matrix on the EGA (see Listing 10-12), on the 

VGA (see Listing 10-13), and on the HGC+ and InColor Card (see Listing 10-14). 

In each case, the function AlphaModeSet () programs the alphanumeric char- 

acter generator and the CRTC to accommodate the dimensions of the specified 

character matrix and character code size. 

TITLE “isting, VO—1t2" 

NAME AlphaModeSet 

PAGE Dig oe 

Name: AlphaModeSet 

Program the CRTC in 80-column EGA alphanumeric modes 

Caller: Microsoft C: 

Me Ne Ne Ne Ne Ne Ne Ne 
void AlphaModeSet (w,h,c); 

: int WwW; /* width of character matrix */ 

; int Ey /* height of character matrix */ 

2 int ey /* character code size */ 

Listing 10-12. Programming the EGA alphanumeric character size. (continued) 

Chapter 10: Alphanumeric Character Sets 327 



Listing 10-12. Continued. 

byte ptr [bpt4] 7; must 
byte ptr [bp+6] ; must 

byte ptr [bp+8] 7 must 

49h ; addresses in 

4Ah 

63h 

_DATA 

byte public 'CODE' 

cs:_TEXT,ds:DGROUP 

_AlphaModeSet 

be 8 or 9 pixels wide 

be 2-32 pixels high 

be. 8 ox 9 bats 

video BIOS data area 

ARGw EQU 

ARGh EQU 

ARGc EQU 

CRT_MODE EQU 
CRT_COLS EQU 

ADDR_6845 EQU 

DGROUP GROUP 

_TEXT SEGMENT 

ASSUME 

PUBLIC 

_AlphaModeSet PROC 

push 

mov 

push 

; Program the CRTC 

mov 

mov 

mMOv 

mov 

call 

; Program the Sequencer 

OTs 

mov 

mov 

Gilet: 

out 

mov 

cmp 

je 

mov 

mov 

mov 

out 

mov 

out 

Sta 

mov 

mov 

aN 

near 

bp 
bp, sp 

si 

bx, 40h 

es,bx 

bl, ARGw 

bh, ARGh 

SetCRTC 

preserve caller registers 

ES video BIOS data segment 

character width 

character height 

BL 

BH 

and Attribute Controller for 8 or 9 dots per character 

dx, 3C4h 

ax,0100h 

ARGw, 8 

L01 

bx, 0800h 

ah,bl 

alaul 

dx, ax 

ax,0300h 

adxyax 

ipo: 

ax, 1000h 

10h 

AH bit 1 := 0 (synchronous reset) 

AL := 0 (Reset register number) 

disable interrupts 

Sequencer synchronous reset 

BH,BL := values for 8-wide chars: 

BH := 0 (value for Horiz Pel Pan) 

BL := 1 (value for Clocking Mode) 

jump if 8-wide characters 

BH,BL := values for 9-wide characters 

AH := value for Clocking Mode reg 

AL := Clocking Mode reg number 

program the Sequencer 

AH := 3 (disable reset) 

AL := 0 (Sequencer register number) 

disable Sequencer reset 

enable interrupts 

BL := Horizontal Pel Pan reg number 

AH := 10H (INT 10H function number) 

; AL := 0 (set specified register) 

program Attribute Controller 

(continued) 
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Listing 10-12. Continued. 

Program the Attribute Controller for 8- or 9-b , it character codes 

mov ax,1000h + AH := 10H (INT 10H function number) 

; AL := 0 (set specified register) 
mov bx, OF12h + BH := OFH (Color Plane Enable value) 

; BL := 12H (Color Plane Enable reg #) 
cmp ARGc, 8 

je L02 ; jump if 8-bit character codes 

mov bh, 7 7p Bebe 3 =O) “ignore bik Sitot call 

; attributes) 
L02: int 10h 7 update Color Plane Enable register 

is data area update video BIOS 

cmp byte ptr es: [CRT _MODE],7 

jne L03 ; jump if not monochrome mode 

mov ax, 720 ; AX := displayed pixels per row 

div ARGw ; AL := displayed character columns 

mov es: [CRT _COLS],al 

LO3: pop si 

pop bp 
ret 

_AlphaModeSet ENDP 

SetCRTC PROC near 7; Callers BH = character height 

, BL = character width 

push dx 

mov dx,es:[ADDR_ 6845] ; CRTC I/O port 

establish CRTC vertical timing and cursor posi , 

push bx ; preser 

mov ax,1110h ; AH := 

pA e210) 

xor CX, CX 2Cxk = 

Laie 10h 7 cali s 

; heigh 

pop ax ; AH 3= 

push ax ; preser 

sub ale * AH “= 

mov al, OAh ; AL := 

out dx, ax 7 update 

mov ax, 000Bh ; AH := 

, AL? 

out dx, ax ; update 

; establish CRTC horizontal timing 

pop bx ; BX := 

cmp byte ptr es: [CRT_MODE],7 

tion in character matrix 

ve height and width 

11H (INT 10H function number) 

(user alpha load) 

(store no characters) 

IOS to program CRTC for 

t of characters 

0 

character height 

ve height and width 

starting scan line for cursor 

OAH (Cursor Start reg number) 

CRIC Cursor Start register 

0 (Cursor End value) 

= OBH (Cursor End reg number) 

CRTC Cursor End register 

character height and width 

(continued) 
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Listing 10-12. Continued. 

jne L10 exit if not monochrome mode 

xor bh, bh BX := character width 

sub b1,8 BX z= Oone4 

neg bx BX s= 0 or OFFFER 

and bx, 14 BX := 0 or 14 (offset into table) 

mov si,bx SI := offset into table 

add si,offset DGROUP:HorizParms ; DS:SI -> parameters 

call UpdateCRTC 

I OB pop dx 

ret 

SetCRTC ENDP 

UpdateCRTC PROC near Caller: DX = CRTC address port 

DSsSE —> parameters 

Destroys: AX, CX 

mov Cx CX := number of registers to update 

L20: lodsw AH := data for CRTC register in AL 

out dx,ax update the register 

loop L20 

ret 

UpdateCRTC ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

HorizParms DW 6C00h, 5901h, 6002h, 2403h,5B04h,6A05h,2D13h ; 8-wide 

DW 6000h, 4F01h, 5602h, 3A03h,5104h,6005h,2813h ; 9-wide 

_DATA ENDS 
END 

TREHE "Listing 10-13! 
NAME AlphaModeSet 

PAGE So ntS2 

; Name: AlphaModeSet 

; Program the CRTC in 80-column VGA alphanumeric modes 

, Caller: Microsoft C: 

Listing 10-13. Programming the VGA alphanumeric character size. (continued) 
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Listing 10-13. Continued. 

ARGw 

ARGh 

ARGc 

CRT_COLS 
ADDR_6845 

DGROUP 

_TEXT 

_AlphaModeSet 

EQU 

EQU 
EQU 

EQU 

EQU 

GROUP 

SEGMENT 

ASSUME 

PUBLIC 

PROC 

push 

mov 

push 

; Program the CRTC 

mov 

mov 

mov 

mov 

call 

; Program the Sequencer 

ONG 

mov 

mov 

ela 

out 

mov 

cmp 

je 

mov 

mov 

mov 

out 

void AlphaModeSet (w,h,c) ; 

int Ww; /* width of character matrix */ 
int he. /* height of character matrix */ 
int ey /* character code size */ 

byte ptr [bp+4] * must be 8 or 9 pixels wide 
byte ptr [bpt+6] 7 must be 2-32 pixels high 
byte ptr [bp+8] 7 must be 8 or 9 bits 

4Ah ; addresses in video BIOS data area 
63h 

_DATA 

byte public 'CODE' 

cs: _TEXT,ds:DGROUP 

_AlphaModeSet 

near 

bp ; preserve caller registers 

bp, sp 
si 

bx, 40h 

es, bx ; ES := video BIOS data segment 

character width 

character height 

ll bl, ARGw 7; BL 

bh, ARGh 7; BH 

SetCRTC 

and Attribute Controller for 8 or 9 dots per character 

dx, 3C4h 

ax,0100h ; AH bit 1 := 0 (synchronous reset) 

; AL := 0 (Reset register number) 

; disable interrupts 

dx,ax ; Sequencer synchronous reset 

i, 4 ; BH,BL := values for 8-wide chars: 

; BH := 0 (value for Horiz Pel Pan) 

* BL := 1 (value for Clocking Mode) 

ARGw, 8 

L01 + jump if 8-wide characters 

bx,0800h ; BH,BL := values for 9-wide characters 

ah,bl ; AH := value for Clocking Mode reg 

al,1 ; AL := Clocking Mode reg number 

dx, ax ; program the Sequencer 

(continued) 
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Listing 10-13. Continued. 

mov 

out 

sti 

mov 

mov 

int 

; Program the Attribute 

mov 

mov 

cmp 

je 

mov 

L02: int 

7 update video BIOS 

mov 

div 

mov 

pop 

pop 

ret 

_AlphaModeSet ENDP 

SetCRTC PROC 

push 

mov 

ax, 0300h ; 

dx,ax ; 

bly shy ; 

ax,1000h ; 

10h ; 

Controller, for 38= 

ax, 1000h P 

bx, 0F12h . 

ARGc, 8 

LO2 ; 

bh, 7 ; 

10h ; 

data area 

ax, 720 ; 

ARGw 7 

es: [CRT_COLS],al 

si 

bp 

near ; 

dx 

dx,es: [ADDR _ 6845] 

AH := 3 (disable reset) 

AL := 0 (Sequencer register number) 

disable Sequencer reset 

enable interrupts 

BL := Horizontal Pel Pan reg number 

AH := 10H (INT 10H function number) 

AL := 0 (set specified register) 

program Attribute Controller 

or 9-bit character codes 

AH := 10H (INT 10H function number) 

AL := 0 (set specified register) 

BH OFH (Color Plane Enable value) 

BL 12H (Color Plane Enable reg #) 

jump if 8-bit character codes 

BH bit 3 := 0 

attributes) 

update Color Plane Enable register 

(ignore bit 3 of all 

AX := displayed pixels per row 

AL := displayed character columns 

Caller: BH = character height 

BL = character width 

7 CRTC L/O.port 

7 establish CRTC vertical timing and cursor position in character matrix 

push 

mov 

xor 

int 

pop 

; enable I/O writes 

mov 

out 

inc 

in 

dec 

bx ; 

ax,1110h 6 

Cx, Cx ; 
10h ; 

bx 

to CRTC registers 

aly tinh ; 

dx,al 

dx 

al,dx 7 

dx 

preserve char height and width 
AH := 11H (INT 10H function number) 

AL := 0 (user alpha load) 

CX := 0 (store no characters) 

call BIOS to program CRTC 

AL Vertical Retrace End reg number 

AL current value of this register 

(continued) 
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Listing 10-13. Continued. 

mov ah,al 

mov al,1jih 

push ax 

and ab, oir itt 

out dx,ax 

; establish CRTC horizontal timing 

xor bh, bh 

sub b1,8 

neg bx 

and bx, 14 

mov Say, 

add 

call UpdateCRTC 

# write-protect CRTC registers 

si,offset DGROUP:HorizParms r 

7 AH := current value 

; AL register number 

# Save on stack 

? Zero! bute 7 

; update this register 

+ BX := character width 

7, BX := 0 or 1 

+ BX := 0 or OFFFFH 

7 BX s= 0 or 14 (offset into table) 

+ SI := offset into table 

DS:SI -> parameters 

pop ax ; AX := previous VR End register data 
out dx, ax ; restore this register 

pop dx 

Fret 

SetCRTC ENDP 

UpdateCRTC PROC near , Caller: DX = CRTC address port 

; DS:SI -> parameters 

7 Destroys: AX, CX 

mov cx,7 7 CX := number of registers to update 

L10: lodsw ; AH := data for CRTC register in AL 

out dx,ax ; update the register 

loop L10 

ret 

UpdateCRTC ENDP 

SED ENDS 

_DATA SEGMENT word public 'DATA' 

HorizParms DW 6A00h, 5901h, 5A02h, 8D03h, 6304h,8805h,2D13h ; 8-wide 

DW 5F00h, 4F01h, 5002h, 8203h, 5504h, 8105h,2813h ; 9-wide 

_DATA ENDS 

END 
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; Name: 

; Function: 

5; Caller: 

ARGw 

ARGh 

ARGc 

CRT_COLS 
CRT_LEN 
CRT_MODE_SET 
ROWS 

DGROUP 

_TEXT 

_AlphaModeSet 

; Set Configuration Switch to bring RAM 

TITLE 'histing 10=14" 

NAME AlphaModeSet 

PAGE DS leo 

AlphaModeSet 

Program the CRTC in alphanumeric modes on HGC+ or InColor Card 

Microsoft C: 

EQU 

EQU 

EQU 

EQU 

EQU 

EQU 
EQU 

GROUP 

SEGMENT 

ASSUME 

PUBLIC 

PROC 

push 

mov 

push 

push 

mov 

mov 

out 

void AlphaModeSet (w,h,c) ; 

int Ww; 

int h; 

int C; 

byte ptr [bp+4] 

byte ptr [bpt6] 

byte ptr [bp+8] 

4Ah 

4Ch 

65h 

84h 

_DATA 

byte public 

_AlphaModeSet 
near 

bp 
bp, sp 
ds 

si 

dx, 3BFh 

al,1 

ax,ax 

/* width of character matrix */ 

/* height of character matrix */ 

/* character code size */ 

"CODE" 

cs: _TEXT,ds:DGROUP 

, 

; must be 8 or 9 pixels wide 

; must be 4-16 pixels high 

; must be 8 or 12 bits 

preserve caller registers 

starting at B000:4000 into memory map 

, 

, 

DX := Configuration Switch port 

AL bit 1 := 0 (exclude 2nd 32K of 

video buffer) 

AL bit 0 := 1 (make RAM at BO000:4000 

addressable) 

; Blank the screen to avoid interference during CRTC programming 

mov 

xor 

out 

7 Program the CRTC 

mov 

mov 

call 

dx, 3B8h 

al,al 

dx,al 

bh, ARGw 

b1,ARGh 

SetHercCRTC 

DX := CRTC Mode Control Register port 

AL bit 3 := 0 (disable video signal) 

blank the screen 

I BH character width 

BL := character height 

(continued) 

Listing 10-14. Programming the alphanumeric character size on the HGC+ and InColor Card. 
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Listing 10-14. Continued. 

; Set the xModeReg 

mov ax, 3B4h 

mov ax,114h 

cmp ARGw, 9 

je L01 

or ah,2 

LO1: cmp ARGc, 8 

je L02 

Or ah,4 

L02: out dx,ax 

; update video BIOS data area 

fx CRTC address port 

; AH bit 0 := 1 (enable RAM-based 

* character generator) 

; AL 14h (xModeReg number) 

+ jump if 9-wide characters 

; AH bit 1 := 1 (8-wide characters) 

7 jump if 8-bit character codes 

; AH bit 2 := 1 (12-bit character codes) 

* update the register 

mov ax, 40h 

mov ds,ax 7 DS := video BIOS data segment 

mov ax, 720 ; AX := displayed pixels per row 

div ARGw ; AL := displayed character columns 

mov ds: [CRT_COLS],al 

mov ax,o50 7; AX := number of displayed scan lines 

div ARGh ; AL := displayed character rows 

dec al ; AL := (character rows) - 1 

mov ds: [ROWS],al 

inc al 

mul byte ptr ds: [CRT_COLS] 
shl ax, 1 ; AX := rows * columns *# 2 

mov ds: [CRT_LEN],ax 

; re-enable display and exit 

mov dx, 3B8h ; DX := CRT Mode Control port 

mov al,ds: [CRT_MODE SET] ; restore previous value 

out ax, al 

pop si 

pop ds 

pop bp 
ret 

_AlphaModeSet ENDP 

SetHercCRTC PROC near * Callers BH = character width 

; BL = character height 

push dx 

mov dx, 3B4h ; DX := CRTC Address Reg port 3B4h 

(continued) 
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Listing 10-14. Continued. 

establish cursor position in character matrix 
, 

mov ah,bl 

dec ah ; AH := value for Max Scan Line reg 

mov aly, 9 ; AL := Max Scan Line register number 

out dx,ax 

mov al,0OBh ; AL := Cursor End reg number 

out dx, ax ; set cursor to end on last line of 

, character matrix 

sub ax,101h ; AH := second-to-last line 

> AL := OAH (Cursor Start reg number) 

out ax,ax ; set cursor to start on second-to- 

; last line 

; compute offsets into parameter tables 

sub bx, 0804h > BE s= 90 oF 1 

; BL := 0 through 12 

add bx, bx 

add bx, bx ; BH := 0 or 4 

; BL := 0 through 48 

; establish CRTC horizontal timing 

push bx 7; preserve Bx 

mov bl,bh 

xOr bh,bh 7 BX := 0 or 4 

add bx,offset DGROUP:HorizParms ; DS:BX -> parameters 

mov al,0 ; AL := first CRTC reg to update 

call UpdateCRTC 

; establish vertical timing 

pop bx 

xor bh, bh 7 BX := 0 through 48 

add bx,offset DGROUP:VertParms ; DS:BX -> parameters 

mov al,4 ; AL := first CRTC reg to update 

call UpdateCRTC 

pop dx ; restore DX 

eis 

SetHercCRTC ENDP 

UpdateCRTC PROC near ; Caller: AL = first reg number 

; DX = CRTC address port 

; DS:BX -> parameters 

7 Destroys: AX, CX 

mov cx, 4 ; CX := number of registers to update 

L10: mov ah, [bx] ; AH := data for CRTC register in AL 
out dx, ax + update the register 

inc ax ; AL := next register number 

(continued) 
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Listing 10-14. Continued. 

inc bx 7 DS:BX -> next value in table 
loop L10 

ret 

UpdateCRTC ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

HorizParms DB 6Dh, 5Ah, 5Ch, 0Fh ; 8 pixels wide 
DB 61h, 50h, 52h, 0Fh ; 9 pixels wide 

VertParms DB 5Ch,02h,58h,59h 7 4 scan lines high 
DB 4Ah, 00h, 46h, 46h HS 
DB 3Dh, 04h, 3Ah, 3Bh * 6 
DB 34h, 06h, 32h, 33h ey 

DB 2Dh, 02h, 2Bh, 2Ch 7 8 

DB 28h,01h,26h,27h 79 

DB 24h, 00h, 23h, 23h a to 

DB 20h, 07h, 1Fh,20h a 44 

DB 1Dh, OAh, 1Dh, 1Dh me 

DB 1Bh, 06h, 1Ah,1Bh celts 

DB 19h, 06h, 19h,19h rama 

DB 17h, OAh,17h,17h le ales) 

DB lob, 02h, 15h, 16h main 

_DATA ENDS 

END 

Graphics Windows in Alphanumeric Modes 
When you update a RAM-resident character definition table, you alter the ap- 

pearance of any characters displayed using those definitions. The contents of the 

displayed portion of the video buffer need not be updated. You can exploit this 

characteristic of RAM-based character definitions to display pixel-addressable 

graphics images in an alphanumeric mode, thereby displaying text with max- 

imum speed while including pixel-by-pixel graphics images on the same screen. 

The technique is similar on both IBM and Hercules subsystems. Tile an area of 

the screen with a sequence of characters whose attribute selects a character defini- 

tion table that contains the graphics image (see Figure 10-17). The graphics image 

is created and modified by updating the appropriate character definitions in the 

table. You can regard the character definition table as a sort of virtual graphics 
buffer and access individual pixels within it just as you do in the usual graphics 

modes. 

On the InColor Card, you can specify the value of each individual pixel you store 

in the character definition table as though you were using 720-by-348 16-color 

graphics mode. On other subsystems, however, only one memory map is used for 
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These characters are from one character set 

These characters are from 

a special character set. 
Each character is one "tile"; 

taken together, the tiled 
characters form a 

complete graphics image. 

Figure 10-17. A tiled graphics window in an alphanumeric mode. 

character definitions, so you do not have pixel-by-pixel attribute control. Instead, 

pixels in the character definition table have a value of 0 or 1; the attributes with 

which the character codes are stored in the video buffer determine the appearance 

of the pixels. 

Listing 10-15 illustrates the technique for producing a tiled graphics window in 

80-column alphanumeric mode on the EGA and VGA. The first part of the pro- 

gram creates the tiled window by storing the second 128 ASCII characters in four 

rows of 32 at the start of the video buffer (that is, in the upper left corner of the 

screen). Then the program clears the window by setting the second 128 character 

definitions to 0. 

To update a pixel in the window, the subroutine Set Pixel () computes a byte 

offset in the character definition table that corresponds to the pixel’s location in 

the tiled window. As in graphics modes, the routine accesses each individual pixel 
with a bit mask. 

/* Listing 10-15.-*7 

#define Points 14 /* displayed scan lines per character */ 

#define StartCharCode 0x80 /* first character code in "window" */ 

#define CGenDefSize 32 /* (use 16 for Hercules) */ 

char far *CRT_MODE = 0x00400049; /* BIOS video mode number */ 
int far *CRT COLS = 0x0040004A; /* characters per row */ 

char far *VideoBuffer; /* pointer to video buffer */ 
char far *CharDefTable = 0xA0000000; /* pointer to char def RAM */ 

/* (use 0xB0004000 for Hercules) */ 
main () 

{ 
int Les 

int CharCode; 

int CharOffset; 

Listing 10-15. Creating a tiled graphics window on the EGA or VGA. (continued) 
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Listing 10-15. Continued. 

int CharScanLine; 

ome CharDefOffset; 

inte Row, Column; 

/* establish alphanumeric mode */ 

if (*CRT_ MODE == 7) /* set video buffer pointer */ 
VideoBuffer = 0xB0000000; 

else 

VideoBuffer = 0xB8000000; 

AlphaModeSet( 8, Points, 8 ); 

/* establish a tiled graphics window in the upper left corner */ 

CharCode = StartCharCode; 

for ( Row = 0; Row < 4; Rowt++ ) 

for ( Column = 0; Column < 32; Columnt++ ) 

CharOffset = (Row*(*CRI COLS) + Column) * 2; 

VideoBuffer[CharOffset] = CharCode++; 

} 

/* clear the window */ 

CGenModeSet (); /* make character generator RAM addressable */ 

for (CharCode = StartCharCode; CharCode < 256; CharCode++ ) 

for ( CharScanLine = 0; CharScanLine < Points; CharScanLine++ ) 

{ 
CharDefOffset = CharCode * CGenDefSize + CharScanLine; 

CharDefTable[CharDefOffset] = 0; 

} 

/* draw a few lines */ 

HOt a= Or des 2 or att) /* horizontal lines */ 

{ 
SeEPixel (ai, Ole) 

SetPixel( i, 4*Points-1 ); 

for ( i= 0; i < 4*Points-1; i++ ) /* vertical lines */ 

{ 
SeePixel (0, i )7 

SetPixel( 255, i )% 

fou ( i,=] O;01 < Points*4; i++.) /* diagonal lines */ 

{ 
Sererxzer( iL, 2) 

Setpixel(i 2551, 2.) 

CGenModeClear(); /* restore alphanumeric mode */ 

(continued) 
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Listing 10-15. Continued. 

SetPaxel ( x, vy) 

int oir /* pixel coordinates */ 

{ 
int CharCode; 

sige CharScanLine; 

int BitMask; 

int CharDefOffset; 

CharCode = StartCharCode + (y/Points) *32 + x/8; 

CharScanLine = y % Points; /* y MOD Points */ 

BitMask = 0x80 >> (x % 8); /* 10000000b SHR (x MOD 8) #*/ 

CharDefOffset = CharCode*CGenDefSize + CharScanLine; 

CharDefTable[CharDefOffset ] |= BitMask; /* OR the pixel */ 

} 

HGC+ and InColor Card 

Clearly, the size of a tiled graphics window is restricted if you use 8-bit character 

codes because the 8-bit ASCII character set contains only 256 characters. If you 

configure a Hercules adapter for 12-bit character codes, however, you can create 

much larger tiled windows without running out of character codes. Also, you can 

create larger windows by displaying taller characters (that is, by increasing the 

height of the displayed character matrix). Of course, if you use taller characters 

you decrease the number of rows of text that you can display at the same time; 

this can be a drawback in some applications. 

You can use similar programming techniques for alphanumeric graphics on 

Hercules adapters and on IBM subsystems. For example, Listing 10-15 can be 

modified for use with the HGC+ and InColor Card by changing the values of 

CGenDefSize and CharDefTable and removing the calls to the functions 

CGenModeSet () and CGenModeClear(). 

In establishing a graphics window on a Hercules card, avoid using a 

character matrix that is 9 pixels wide. Because the ninth (rightmost) 
pixel in each character is actually a hardware-generated copy of the 

eighth dot, you cannot control it independently by updating the char- 

acter definition table. 

EGA and VGA 

On the EGA and VGA, you can create larger tiled graphics windows if you use 
9-bit extended character codes. For instance, you could dedicate one 256-character 

definition table to text characters and a second character definition table to 
graphics tiling characters. Nevertheless, the EGA and VGA are still limited to dis- 
playing no more than 512 different characters at a time, so the largest tiled 
graphics window is much smaller than it can be on a Hercules adapter. 
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MCGA 

When you update pixels in the tiled window, you should minimize 
the number of times your program resets the Sequencer (for example, 
in the routines CGenModeSet () and CGenModeClear ()). If you 
reset the Sequencer each time you update a pixel, you might create 

screen interference. (Synchronizing Sequencer resets with the vertical 

retrace interval can eliminate this interference but can also greatly 
decrease the speed of a program.) If you draw a complicated graphics 
figure containing many pixels, draw the entire figure at one time as in 
Listing 10-15. 

Character definition tables in MCGA character generator RAM are formatted dif- 

ferently than those on the EGA and VGA, so a routine that manipulates pixels in 

character generator RAM must address the tables differently (see Listing 10-16). 

Also, remember that the screen does not reflect changes to the MCGA’s char- 

acter definition tables until you load the character generator’s font pages (see 

Listing 10-5). 

SetPixel( x, y ) 

int 

{ 

} 

=, Vr /* pixel coordinates */ 

int CharCode; 

int CharScanLine; 

int BitMask; 

int CharDefOffset; 

/* the window is 32 characters across */ 

CharCode = StartCharCode + (y/Points) *32 + x/8; 

CharScanLine = y % Points; /* y MOD Points */ 
BitMask = 0x80 >> (x % 8); /* 10000000b SHR (x MOD 8) */ 

CharDefOffset = CharCode*2 + CharScanLine*512 + 1; 

CharDefTable[CharDefOffset] |= BitMask; /* OR the pixel */ 

Listing 10-16. A routine to set pixels in a tiled graphics window on the MCGA. 
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This chapter is about moving things around in the video buffer and on the screen. 

Some of the most useful and entertaining graphics-mode programs create the ap- 

pearance of on-screen motion. Objects as mundane as a cursor or as unusual as an 

alien spaceship can appear to move across the screen if you erase them and then 

immediately redraw them in successive locations. PC and PS/2 video subsystems 
are not particularly well equipped to support this kind of real-time animation, but 

the techniques in this chapter should help you fully exploit their capabilities. 

You might think of video animation in the same context as video games, but 
animation has other uses in computer graphics. For instance, all interactive 

graphics programs require a moving cursor that allows the user to point to screen 

locations. Many drawing or design programs let the user move shapes and images 

around the screen. Robotic control programs indicate the status of a robot arm 

with an animated representation of its position. You can create such animation 

effects using the techniques in this chapter. 

Bit Block Move 

The basic software tool for many animation techniques is the bit block move—a 
routine that copies a rectangular block of pixels into, out of, or within the video 
buffer. The name ‘‘bit block move”’ describes this routine well. After all, a rect- 
angle of pixels is in essence nothing more than a block of bits. Still, a bit block 
move routine can do more than simply copy pixel values. As can other video 
graphics drawing routines, a bit block move routine can update pixel values using 
the bitwise logical operations AND, OR, and XOR. These operations can create at- 
tractive effects when used as part of bit block moves. 

To copy a bit block from one location to another within the video buffer in PC and 
PS/2 video subsystems, it is usually more efficient to use an intermediate buffer in 
system RAM. You first copy pixel values from the video buffer into the intermedi- 
ate buffer, then copy the values from this buffer to the desired position in the 
video buffer. 

Creating an intermediate copy of the pixels in a bit block might seem superfluous, 
but in most situations it is preferable to trying to move the bit block entirely 
within the video buffer. For example, neither the EGA nor the InColor Card sup- 
ports direct logical operations (AND, OR, and XOR) between pixels in the bit 
planes. Also, CPU accesses to video RAM are slower than equivalent accesses to 
system RAM. Thus, when multiple copies of the same bit block are to be stored in 
the video buffer, making a single copy in system RAM and then making multiple 
copies from system RAM to video RAM is more efficient. 

CGA and MCGA 

Listing 11-1 is a bit block move routine for the CGA. The routine 
GetBitBlock () copies a block of pixels from the video buffer to a buffer in 
system RAM. The complementary routine StoreBitBlock (),in Listing 11-2, 
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copies pixels from system RAM to the video buffer. StoreBitBlock () con- 
tains subroutines to perform AND, OR, or XOR operations on the pixels in system 
RAM using the previous contents of the video buffer. 

TITLE "Listing 11-1" 

NAME GetBitBlock06 

PAGE Shoe 

7 Name: GetBitBlock06 

+ Function: Copy bit block from video buffer to system RAM 

- in 640x200 2-color mode 

; Caller: Microsoft C: 

; int GetBitBlock06(x0,y0,x1,y1,buf) ; 

; int x0,y0; /* upper left corner of bit block */ 

Ns Benen (iW lly /* lower right corner */ 

; Char far *but; /* buffer */ 

; Notes: Returns size of bit block in system RAM. 

ARGx0 EQU word ptr [bp+4] 

ARGy0 EQU word ptr [bp+6] 

ARGx1 EQU word ptr [bp+8] 

ARGy1 EQU word ptr [bp+10] 

ADDRbuf EQU [bp+12] 

VARPixelRows EQU word ptr [bp-2] 

VARPixelRowLen EQU word ptr [bp-4] 

VARincr EQU word ptr [bp-6] 

ByteOffsetShift EQU 3 ; reflects number of pixels per byte 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs:_TEXT 

EXTRN PixelAddr06:near 

PUBLIC _GetBitBlock06 

_GetBitBlock06 PROC near 

push bp ; preserve caller registers 

mov bp, sp 

sub sp, 6 ; establish stack frame 

push ds 

push si 

push di 

; compute dimensions of bit block 

mov ax, ARGx1 

sub ax, ARGx0 

(continued) 

Listing 11-1. A routine to copy a block of pixels from the CGA video buffer to system RAM. 
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Listing 11-1. Continued. 

mov 

and 

xor 

shl 

mov 

push 

mov 

shr 

ine 

push 

mov 

sub 

inc 

push 

; establish addressing 

mov 

mov 

call 

xor 

push 

pop 
mov 

mov 

test 

jz 

mov 

L01: mov 

les 

cx, OFFO7h 

cl,al 

Cray 

ehycu: 

el, en 

cx 

cl, ByteOffsetShift 

ax) Gu 

ax 

ax 

ax, ARGy1 

ax, ARGyO 

ax 

ax, ARGyO 

bx, ARGx0 

PixelAddr06 

Gey 

es 

ds 

si,bx 

bx, 2000h 

si,2000h 

L01 

bx, 80-2000h 

VARincr,bx 

di, ADDRbuf 

; build 5-byte bit block header 

pop 

mov 

stosw 

pop 

mov 

stosw 

pop 

mov 

stosb 

; copy from video buffer to system RAM 

LO2: mov 

push 

ax 

VARPixelRows,ax 

ax 

, 

VARPixelRowLen, ax 

ax 

eh oud: 

, 

bx, VARPixelRowLen 

si , 

CH := unshifted bit mask 

CL := AND mask for AL 

CL := number of pixels in last 

byte of row 

CL := number of bits to shift 

CH := bit mask for last byte of row 

save on stack 

AX == number of bytes per row 

save on stack 

AX := number of pixel rows 

save on stack 

ES:BX -> x0,y0 in video buffer 

Cl 2=!numbes of ‘buts te, shite Letu 

DS:SI -> video buffer 

BX := increment from 1st to 2nd 

interleave in CGA video buffer 

jump if x0,y0 is in 1st interleave 

increment from 2nd to 1st interleave 

initialize this variable 

ES:DI -> buffer in system RAM 

byte 0-1 := number of pixel rows 

byte 2-3 := bytes per pixel row 

CH := bit mask for last byte 

byte 4 := bit mask for last byte 

preserve SI at start of pixel row 

(continued) 
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Listing 11-1. Continued. 

LO3: 

_GetBitBlock06 

_TEXT 

, 

, 

, 

, 

Name: 

Function: 

Caller: 

lodsw 7 AL := next byte in video buffer 

; AH := (next byte) + 1 
dec si * DS:SI -> (next byte) + 1 
Erol ax, cl 7 AL := next 4 pixels in row 
stosb ; copy to system RAM 

dec bx + loop across row 

jnz L03 

and es: [di-1],ch 7 mask last byte of row 

pop si peDSwsl —> eStart, OF erow 

add si, VARincr 7, DS?SI => start of next row 

Siete VARincr,2000h XOR (80-2000H) ; update increment 

dec VARPixelRows 

jnz L02 ; loop down rows 

mov ax, di 

sub ax, ADDRbuf , AX := return value (size of bit block 

; in system RAM) 

pop di ; restore registers and exit 

pop si 

pop ds 

mov sp,bp 

pop bp 
ret 

ENDP 

ENDS 

END 

TITLE iuestang) 12) 

NAME StoreBitBlock06 

PAGE BOypo2 

StoreBitBlock06 

Copy bit block from video buffer to system RAM 

in 640x200 2-color mode 

Microsoft C: 

void StoreBitBlock06 (buf,x,y); 

char far *buf; /* buffer */ 

ante es, ¥ /* upper left corner of bit block */ 

(continued) 

Listing 11-2. A routine to copy a block of pixels from system RAM to the CGA video buffer. 
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Listing 11-2. Continued. 

ADDRbuf EQU dword ptr [bp+4] 

ARGx EQU word ptr [bp+8] 

ARGy EQU word ptr [bp+10] 

VARPixelRows EQU word ptr [bp-2] 

VARPixelRowLen EQU word ptr [bp-4] 

VARincr EQU word ptr [bp-6] 

DGROUP GROUP _DATA 

STEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP 

EXTRN PixelAddr06:near 

PUBLIC _StoreBitBlock06 

_StoreBitBlock06 PROC near 

push bp ; preserve caller registers 

mov bp, sp 
sub sp,6 ; establish stack frame 

push ds 

push si 

push di 

; establish addressing 

mov ax, ARGy 

mov bx, ARGx 

call PixelAddr06 ; ES:BX -> byte offset of x,y 

xor el; 7 7; CL := number of bits to shift right 

mov iy 7 ES! DL =>)x,Votnevadec. butte: 

mov bx,2000h ; BX := increment from 1st to 2nd 

; interleave in CGA video buffer 

test di,2000h 

Vz L01 ? jump if x,y is in 1st interleave 

mov bx, 80-2000h ; increment from 2nd to 1st interleave 

L011: mov VARincr, bx ; initialize this variable 

mov bx,StoreBitBlockOp ; BX := subroutine address 

lds si, ADDRbuf + ES:DI -> buffer in system RAM 

; obtain dimensions of bit block from header 

lodsw + AX := number of pixel rows 

mov VARPixelRows,ax ‘ 

lodsw ; AX := bytes per pixel row 

mov VARPixelRowLen, ax 

lodsb ; AL := bit mask for last byte in row 
mov ch,al 

jmp bx ; jump to subroutine 

(continued) 
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Listing 11-2. Continued. 

ReplaceBitBlock: 

cmp 

jnz 

cx, OFFO0Oh 

L15 

7 routine for byte-aligned bit blocks 

mov cx, VARPixelRowLen 

L10: push di ; 
push cx 

rep movsb ; 

pop ex ; 

pop di 

add di, VARincr ; 

xor VARincr,2000h XOR 

dec VARPixelRows 

jnz L10 ; 

jmp Lexit 

7 routine for all other bit blocks 

Ll Se not ch r 

mov dx, OFFOOh 

ror ax, cn fi 

mov bx, VARPixelRowLen 

dec bx ; 

L16: push di 

test bx, bx 

jz L18 ; 

push bx 

Eivis and es: [di],dx Z 

lodsb 7 

xor ah,ah 

ror axed 7 

or es: [di],ax . 

inc di ; 

dec bx 

jnz L17 

pop bx 

L18: mov al,ch 

mov ah, OFFh 6 

ror ax,cl a 

and es: [di],ax . 

lodsb ; 

xor ah,ah 

Oe axel ‘ 

or es: [di],ax ; 

if mask = OFFH and bits to shift = 0 

jump if not byte-aligned 

preserve DI and CX 

copy one pixel row into video buffer 

restore DI and CX 

ES:DI -> next pixel row in buffer 

(80-2000h) ; update increment 

loop down pixel rows 

CH := mask for end of row 

DX := rotated mask for each byte 

BX := bytes per row - 1 

jump if only one byte per row 

mask next 8 pixels in video buffer 

AL := pixels in bit block 

AX := pixels rotated into position 

set pixels in video buffer 

ES:DI -> next byte in bit block 

AX := mask for last pixels in row 

AX := mask rotated into position 

mask last pixels in video buffer 

AL := last byte in row 

AX := pixels rotated into position 

set pixels in video buffer 

(continued) 
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Listing 11-2. Continued. 

pop 
add 

xor 

dec 

jnz 

jmp 

XORBitBlock: 

mov 

L20: push 

push 

lodsb 

xOr 

ror 

xor 

ee: 

dec 

WZ 

Tezalee 

pop 

pop 
add 

xor 

dec 

jnz 

jmp 

ANDBitBlock: 

not 

mov 

dec 

30% push 

test 

az 

push 

esas lodsb 

mov 

ror 

and 

inc 

dec 

jnz 

‘pop 

sizes lodsb 

or 

mov 

ror 

and 

di 

di, VARincr F 

VARincr,2000h XOR 

VARPixelRows 

L16 ? 

Lexit 

bx, VARPixelRowLen 

di 

bx 

ah,ah 

ax,cl ; 

es: [di],ax ; 

di ; 

bx 

L21 

bx 

di 

di, VARincr , 

VARincr, 2000h XOR 

VARPixelRows 

L20 7 

Lexit 

ch ; 

bx, VARPixelRowLen 

bx ; 

di 

bx, bx 

L32 : 

bx 

ah, OFFh 

axe : 

es: [di],ax . 

di ; 

bx 

L31 

bx 

al,ch ; 

ah, OFFh 

ax,cl : 

es; [di],ax ; 

ES:DI -> next pixel row in buffer 

(80-2000h) 

loop down pixel rows 

AL := pixels in bit block 

AX := pixels rotated into position 

XOR pixels into video buffer 

ES:DI -> next byte in bit block 

ES:DI -> next pixel row in buffer 

(80-2000h) 

loop down pixel rows 

CH mask for end of row 

bytes per row - 1 

jump if only one byte per row 

AL := pixels in bit block 

AX := pixels rotated into position 

AND pixels into video buffer 

ES:DI -> next byte in bit block 

AL := last byte in row 

mask last pixels in row 

AX := pixels rotated into position 
AND pixels into video buffer 

(continued) 
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Listing 11-2. Continued. 

pop 
add 

xor 

dec 

jnz 

jmp 

ORBitBlock: 

mov 

L40: push 

push 

L41: lodsb 

xor 

ror 

or 

inc 

dec 

jnz 

pop 

pop 
add 

xor 

dec 

jnz 

Lexit: pop 

pop 

pop 
mov 

pop 
ret 

_StoreBitBlock06 ENDP 

_ TEXT ENDS 

DATA SEGMENT 

StoreBitBlockOp DW 

_DATA ENDS 

END 

di 

di, VARincr ; 

VARincr,2000h XOR 

VARPixelRows 

L30 9 

Lexit 

bx, VARPixelRowLen 

di 

bx 

ah,ah 

AX CL ; 

es: [di],ax ; 

bx 

L41 

bx 

di 

di, VARincr ; 

VARincr,2000h XOR 

VARPixelRows 

L40 ; 

di ; 

Sal: 

ds 

sp, bp 

bp 

word public 'DATA' 

ReplaceBitBlock ; 

, 

ES:DI -> next pixel row in buffer 
(80-2000h) 

loop down pixel rows 

AL := pixels in bit block 

AX := pixels rotated into position 

OR pixels into video buffer 

ES:DI -> next byte in bit block 

ES:DI -> next pixel row in buffer 

(80-2000h) 

loop down pixel rows 

restore registers and exit 

address of selected subroutine 

(replace, XOR, AND, OR) 

In the MCGA’s 640-by-480 2-color and 320-by-200 256-color modes, pixel address- 

ing is different than in the two CGA-compatible modes. Otherwise, versions of 
GetBitBlock() and StoreBitBlock () are similar in all MCGA modes. 
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EGA and VGA 

In native EGA and VGA graphics modes, the bit block move routine must move 

the contents of all four bit planes to system RAM. The Get BitBlock () routine 

in Listing 11-3 extracts bytes from each bit plane using read mode 0 and selecting 

each bit plane in turn with the Graphics Controller’s Read Map Mask register. 

StoreBitBlock (), in Listing 11-4, then uses write mode 0 to copy data into 

the bit planes. The bit planes are isolated in write mode 0 by programming the 

Sequencer’s Map Mask register. 

Do not use the routines in Listings 11-3 and 11-4 on an EGA with only 64 KB of 

video RAM. Because the memory maps are chained together to form the two bit 

planes used in 640-by-350 graphics modes, these routines will not work properly 

in this situation. (Chapter 4 discusses this in greater detail.) 

TITLE "Listing 11-3! 
NAME GetBitBlock10 

PAGE Soi loz 

Name: GetBitBlock10 

Beant nes stat Nie Function: Copy bit block from video buffer to system RAM 

in native EGA and VGA graphics modes 

Caller: Mierosote Cr 

int GetBitBlock10(x0,y0,x1,y1,buf) ; 

Ne Ne Ne Ne Ne Ne Se Se Ne Ne Ne Ne 

sloohe. S40) AwA0)e /* upper left corner of bit block */ 
Semmes Valin /* lower right corner */ 
char far *buf; /* buffer */ 

Notes: Returns size of bit block in system RAM. 

ARGx0 EQU word ptr [bp+4] 
ARGy0 EQU word ptr [bp+6] 
ARGx1 EQU word ptr [bp+8] 
ARGy1 EQU word ptr [bp+10] 
ADDRbuf EQU [bp+12] 

VARPixelRows EQU word ptr [bp-2] 
VARPixelRowLen EQU word ptr [bp-4] 

BytesPerRow EQU 80 
ByteOffsetShift EQU 3 *; reflects number of pixels per byte 

_TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

EXTRN PixelAddr10:near 

(continued) 

Listing 11-3. A routine to copy a block of pixels from the EGA or VGA vi 
RAM in native graphics modes. : Ten 
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Listing 11-3. Continued. 

PUBLIC 
_GetBitBlock10 PROC 

push 

Mov 

sub 

push 

push 

push 

7 compute dimensions of 

mov 

sub 

mov 

and 

xor 

shl 

mov 

push 

mov 

shr 

ine 

push 

mov 

sub 

Inc 

push 

; establish addressing 

mov 

mov 

call 

xor 

push 

pop 
mov 

les 

_GetBitBlock10 
near 

; build 5-byte bit block header 

pop 

mov 

stosw 

pop 

mov 

stosw 

pop 

mov 

stosb 

bp 7 preserve caller registers 

bp, sp 

sp,4 7 establish stack frame 

ds 

si 

di 

bit block 

ax, ARGx1 

ax, ARGx0 

cx, OFFO7h ; CH := unshifted bit mask 

7 CL := AND mask for AL 

cl,al ; CL 3= number) of pixells in last 

7 byte of row 

CL 7 CL, c= number sot bits to shitt 

ch, cl 7 CH := bit mask for last byte of row 

clyen 

cx 7 Save on stack 

cl, ByteOffsetShift 

Ax yc 

ax 7 AX := number of bytes per row 

ax 7 Save on stack 

ax, ARGy1 

ax, ARGyO 

ax ; AX := number of pixel rows 

ax *; Save’ on stack 

ax, ARGyO 

bx, ARGx0 

PixelAddr10 + ES:BX -> x0,y0 in video buffer 

Cla ; CL := number of bits to shift left 

es 

ds 

Si, DX 7 DS?SI -—> video buffer 

di, ADDRbuf ; ES:DI -> buffer in system RAM 

ax 

VARPixelRows, ax 

; byte 0-1 := number of pixel rows 

ax 

VARPixelRowLen, ax 

; byte 2-3 := bytes per pixel row 

ax 

ch,al ; CH := bit mask for last byte in row 

; byte 4 := bit mask for last byte 

(continued) 
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Listing 11-3. Continued. 

; set up Graphics Controller 

mov dx, 3CEh 

mov ax,0005 

out dx, ax 

mov ax, 0304h 

; copy from video buffer to system RAM 

LO1: out dx,ax ; 

push ax ; 

push VARPixelRows £ 

push Si ; 

L02: mov bx, VARPixelRowLen 

push si ; 

L0O3: lodsw ; 

dec si ; 

rol ax,cl - 

stosb ; 

dec bx - 

jnz L03 

and es: [di-1],ch ; 

pop si - 

add si,BytesPerRow ; 

dec VARPixelRows 

jnz L02 ; 

pop si ; 
pop VARPixelRows i 

pop ax ; 

dec ah 

jns L01 ; 

mov ax, di 

sub ax, ADDRbuf i 

pop di ; 
pop si 

pop ds 

mov sp, bp 

pop bp 
j ret 

_GetBitBlock10 ENDP 

_ TEXT ENDS 

END 

DX := Graphics Controller address port 

AH := 0 (read mode 0, write mode 0) 

AL := 5 (Mode register number) 

set up read mode 0 

AH := 3 (first bit plane to read) 

AL := 4 (Read Map Select reg number) 

select next memory map to read 

preserve memory map number 

preserve number of pixel rows 

preserve offset of x0,y0 

preserve SI at start of pixel row 

AL := next byte in video buffer 

AH := (next byte) + 1 

DS:Si -> (next byte) + 1 

AL := next 4 pixels in row 

copy to system RAM 

loop across row 

in row 

of row 

of next row 

mask last byte 

DS:SI => start 

DS:SI -> start 

loop down rows 

DS:SI => start 

restore number 

AH := last map 

AL := Read Map 

of bit block 

of pixel rows 

read 

Select reg number 

loop across bit planes 

AX := return value (size of bit block 
in system RAM) 

restore registers and exit 
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7 Name: 

7 Functions 

; Callens 

ADDRbuf 

ARGx 

ARGy 

VARPixelRows 

VARPixelRowLen 

VARRowCounter 

VARStartMask 

VAREndMaskL 

VAREndMaskR 

BytesPerRow 

ByteOffsetShift 

RMWbits 

_TEXT 

TITLE "Listing 11-4' 

NAME StoreBitBlock10 

PAGE SOyioe 

StoreBitBlock10 

Copy bit block from video buffer to system RAM 

in native EGA and VGA graphics modes 

Microsoft C: 

void StoreBitBlock10 (buf,x,y); 

_StoreBitBlock10 PROC near 

; establish addressing 

char far *buf; /* buffer */ 

int x,y? /* upper left corner of bit block */ 

EQU dword ptr [bp+4] 

EQU word ptr [bp+8] 

EQU word ptr [bp+10] 

EQU word ptr [bp-2] 

EQU word ptr [bp-4] 

EQU word ptr [bp-6] 

EQU word ptr [bp-8] 

EQU word ptr [bp-10] 

EQU word ptr [bp-12] 

EQU 80 ; logical width of video buffer 

EQU 5) ; reflects number of pixels per byte 

EQU 18h ; selects replace, XOR, AND, or OR 

SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT 

EXTRN PixelAddr10:near 

PUBLIC _StoreBitBlock10 

push bp ; preserve caller registers 

mov bp, sp 

sub Sppiia ; establish stack frame 

push ds 

push si 

push di 

mov ax, ARGy 

mov bx, ARGx 

ead PixelAddr10 ; ES:BX -> byte offset of x,y 

inc onl 

and ely ; CL t= number of bits to shift left 

(continued) 

Listing 11-4. A routine to copy a block of pixels from system RAM to the EGA or VGA video 

buffer in native graphics mode. 
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Listing 11-4. Continued. 

mov 

lds 

lodsw 

mov 

lodsw 

mov 

lodsb 

mov 

di,bx ; 

si, ADDRbuf , 

VARPixelRows, ax 

VARPixelRowLen, ax 

; 

ehiyal 

; set up Graphics Controller 

mov 

mov 

mov 

out 

mov 

out 

mov 

out 

mov 

out 

mov 

mov 

cmp 

jne 

dx, 3CEh ; 

ah, RMWbits : 

alba S) ; 

ax, ax ; 

ax,0805h ; 

dx, ax ; 

ax, 0007 ; 

dx, ax ; 

ax, OFFO8h ; 

dx, ax ’ 

d1,0C4h ; 

ax,0802h : 

cx, OFFOOh . 

LAS ; 

; routine for byte-aligned bit blocks 

mov 

L10: out 

push 

push 

mov 

Tats push 

push 

LZ lodsb 

and 

inc 

loop 

cx, VARPixelRowLen 

dx,ax ; 

ax 

di 

bx, VARPixelRows 

di 

cx 

es: [dij,al 2 

di 

L12 

ES:DI -> x,y in video buffer 

ES:DI -> buffer in system RAM 

obtain dimensions of bit block from header 

AX := number of pixel rows 

AX := bytes per pixel row 

AL := bit mask for last byte in row 

DX := Graphics Controller I/O port 

AH := value for Data Rotate/Function 

Select register 

update this register 

AH := 8 (read mode 1, write mode 0) 

AL := 5 (Mode register number) 

set up read mode 0 

AH := 0 (don’t care for all maps; 

CPU reads always return OFFH) 

AL := 7 (Color Don’t Care reg number) 

set up Color Don’t Care reg 

AH := OFFH (value for Bit Mask reg) 

set up Bit Mask reg 

DX := 3C4H (Sequencer I/O port) 

AH := 1000B (value for Map Mask reg) 

AL := 2 (Map Mask register number) 

DEoMask <> 0FFH or bits torshite <> 0 

jump if not byte-aligned 

enable one bit plane for writes 

preserve Map Mask value 

preserve video buffer offset of x,y 

preserve DI and CX 

AL := next byte of pixels 

update bit plane 

(continued) 
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Listing 11-4. Continued. 

pop cx * restore DI and CX 

pop di 

add di,BytesPerRow ; ES:DI -> next pixel row in buffer 
dec bx 

jnz L11 ; loop down pixel rows 

pop di ; ES:DI -> video buffer offset of x,y 

pop ax ; AH := current Map Mask reg value 

shr ah, 1 ; AH := new Map Mask value 

jnz L10 ; loop across all bit planes 

jmp Lexit 

* routine for non-aligned bit blocks 

EAS push ax ; preserve Map Mask reg values 

mov bx, OFFh + BH := 0 (mask for first byte in row) 

7 BL) = "OEE 

mov al,ch ; AL := mask for last byte in pixel row 

cbw ; AH := OFFh (mask for last-1 byte) 

cmp VARPixelRowLen, 1 

jne L16 ; jump if more than one byte per row 

mov bi 7ch 

mov ah,ch ; AH := mask for last-1 byte 

xor al,al ; AL := 0 (mask for last byte) 

L16: shl axyicL ; shift masks into position 

shl Dxper 

mov bl,al ; save masks along with 

mov al,8 ; Bit Mask register number 

mov VAREndMaskL, ax 

mov ah,bl 

mov VAREndMaskR, ax 

mov ah,bh 

mov VARStartMask, ax 

mov bx, VARPixelRowLen 

pop ax ; restore Map Mask reg values 

; set pixels row by row in the bit planes 

LV he out dx,ax ; enable one bit plane for writes 

push ax ; preserve Map Mask value 

push di ; preserve video buffer offset of x,y 

mov dl, 0CEh ; DX := 3CEH (Graphics Controller port) 

mov ax, VARPixelRows 

mov VARRowCounter,ax ; initialize loop counter 

(continued) 
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Listing 11-4. Continued. 

, set pixels at start of row in currently 

sis push di ; 

push si ; 

push bx ; 

mov ax, VARStartMask 

out ax, ax p 

lodsw ; 

dec si ; 

test Gicu 

jnz TEN ; 

dec bx ; 

jnz L20 = 

jmp short L22 ; 

L19: rol ax,el 2 

and es: [di],ah B 

inc di 

dec bx ; 

L20: push ax ; 

mov ax, OFFO8h 

out dx, ax : 

pop ax 

dec bx 

jng L22 ; 

, 

a2 des 

, 

22): 

set pixels in middle of row 

and es: [di],al ; 

ae di ; 

lodsw ; 

dec si 7 

rol ax,cl 5 

dec bx 

jnz L21 ; 

set pixels at end of row 

mov bx, ax 5 

mov ax,VAREndMaskL ; 

enabled bit plane 

preserve offset of start of pixel row 

preserve offset of row in bit block 

preserve bytes per pixel row 

set Bit Mask reg for first byte of row 

AH := 2nd byte of pixels 

AL ¢= listebyte of prxels 

DS:SI -> 2nd byte of pixels 

jump if not left-aligned 

BX := bytes per row - 1 

jump if at least 2 bytes per row 

jump if only one byte per row 

AH := left part of 1st byte, 

right part of 2nd byte 

AL := right part of Ist byte, 

left part of 2nd byte 

set pixels for left part of first byte 

BX := bytes per row - 2 

preserve pixels 

set Bit Mask reg for succeeding bytes 

jump if only 1 or 2 bytes in pixel row 

set pixels in right part of current 

byte and left part of next byte 

AH := next+1 byte of pixels 

AL := next byte of pixels 

AH := left part of next byte, right 

part of next+1 byte 

Ali 3= right part of next byte, left 

part of next+1 byte 

loop across pixel row 

BH i= right part of last byte, left 

part of last-1 byte 

BL := left part of last byte, right 

part of last-1 byte 

AH := mask for last-1 byte 

AL := Bit Mask reg number 

(continued) 
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Listing 11-4. Continued. 

out dax,ax 

and es: [di],bl 

mov ax, VAREndMaskR 

out dx,ax 

and es: [di+1],bh 

pop bx 

pop si 

add Sa) bx 

pop di 

add di, BytesPerRow 

dec VARRowCounter 

jnz L18 

pop di 

pop ax 

mov dl,0C4h 

shr ah, 1 

jnz L17 

set Bit Mask register 

set pixels for last-1 byte 

mask for last byte in pixel row 

last byte in pixel row 

set pixels for last byte 

BX := bytes per pixel row 

DS:SI -> next row in bit block 

ES:DI -> next pixel row in buffer 

loop down pixel rows 

ES:DI -> video buffer offset of x,y 

AX := current Map Mask value 

DX := 3C4H 

AH := next Map Mask value 

loop across bit planes 

; restore Graphics Controller and Sequencer to their default states 

Lexit: mov ax, OFO2h 

out dx,ax 

MOV dl, OCEh 

mov ax,0003 

out dax,ax 

mov ax,0005 

out dx,ax 

mov ax,O0FO7h 

out dx, ax 

mov ax, OFFO8h 

out dx,ax 

pop di 

pop si 

pop ds 

mov sp,bp 

pop bp 
ret 

_StoreBitBlock10 ENDP 

TEXT ENDS 

END 

HGC 

, default Map Mask value 

DX := 3CEh 

default Data Rotate/Function Select 

default Mode value 

default Color Compare value 

default Bit Mask value 

restore registers and exit 

Bit block move routines for HGC and HGC+ 720-by-348 monochrome graphics 

mode are similar to routines for CGA 640-by-200 2-color mode. The differences 

are in how they calculate pixel addresses and in the way the video buffer is 

interleaved. 
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InColor Card 

The routines for the InColor Card’s 720-by-348 16-color mode resemble the EGA 

routines in Listings 11-3 and 11-4, because both adapters’ video buffers are 

mapped in parallel bit planes. Differences between the routines lie in the way 

pixel addresses are computed, in how the video buffer is interleaved, and in how 

individual bit planes are accessed. On the InColor Card, you can use the same 

technique as ReadPixelInc () (discussed in Chapter 5) to program the 

Read/Write Control and Color registers and isolate the contents of each bit 

plane. Similarly, a bit block store routine for the InColor Card follows 

StorePixelInC () inits use of the Plane Mask register and the Read/Write 

Control and Color registers. 

Bitwise Pixel Operations 
If you experimented with the pixel-programming and line-drawing examples in 

previous chapters, you probably know why the bitwise logical operations—XOR, 

AND, and OR—are useful in video graphics programming. In this case, you can 

skip the next few paragraphs. Otherwise, read on to see how video graphics pro- 

grams can exploit the ability to perform XOR, AND, and OR on pixel values. 

XOR 

The XOR operation is useful because it is reversible. When you change a pixel’s 

value in the video buffer using the XOR function, you can restore its original 

value by repeating the operation. For example, if a pixel in the video buffer has 

the value 9, setting its value by XORing it with a value of 5 results in a pixel value 

of OCH. XORing the resulting pixel value (OCH) with a value of 5 restores the 

original pixel value of 9. 

This implies that you can XOR objects into the video buffer and onto the screen, 

and then erase them, without worrying about saving and restoring the contents of 

the video buffer. The use of XOR has limitations, however. One is that an image 

containing zero-value pixels cannot be XORed into the video buffer. Because 
XORing a pixel with 0 leaves the pixel’s value unchanged, only nonzero pixels in 
the image affect the video buffer. 

Another more serious limitation is that a patterned background can obscure the 
image you are trying to XOR into the video buffer. Consider Figure 11-1, in which 
a text string is XORed against progressively distracting backgrounds. The text is 
perfectly readable against a solid background, but a striped background signifi- 
cantly obscures the letters. In the worst case, XORing a single-color image into a 
pattern of random pixels results only in another pattern of random pixels. 
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Hello, World Hello, World 

Figure 11-1. Effects of XORing a text string against various backgrounds. 

NOT 

A bitwise NOT operation on a pixel value toggles all 1 bits to 0 and all 0 bits to 1. 

Obviously, two sequential NOT operations will leave the pixel value unchanged. 

A common programming practice in monochrome graphics modes is to use NOT 

to toggle a reverse video state. For instance, a black-on-white character can be 

reversed to white-on-black by performing NOT operations on its pixels. 

The effect of NOT on multibit pixel values is less clear. In this situation, the NOT 

operation converts one pixel value into some other pixel value, but the colors cor- 

responding to these two values may be unrelated. Thus, in a color graphics mode, 

performing a NOT operation on all pixels in a character matrix changes both the 

foreground and background values, but the resulting color combination may not 

be particularly attractive or even readable. In manipulating pixels in color 

graphics, use NOT with caution. 

A bitwise NOT is equivalent to performing a bitwise XOR using a bi- 

nary value of all 1 bits. This means you can use any of the pixel XOR 

routines developed in this book to perform NOT operations as well. 

Thus, little can be gained by writing special-purpose NOT routines for 

pixel manipulation. 

AND 

The bitwise logical operation AND is also useful in manipulating graphics im- 

ages. Consider, for instance, how you might go about drawing the striped circle in 

Figure 11-2b. You could do it the hard way, by intersecting a set of parallel lines 

with the circle. This procedure would be laborious, however, because of the extra 

programming and increased computational overhead involved in determining the 

intersection points. 
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Figure 11-2. Using AND to draw a striped circle. The circle in Figure 11-2a consists of pix- 
els of the maximum possible value. The lines are drawn across the circle using a pixel AND 
operation to produce the striped circle in Figure 11-2b. 

a. 

It is much easier to draw a filled circle (see Figure 11-2a) with pixels of the max- 

imum possible value (that is, all bits set to 1) against a background of zero-value 

pixels. This circle is used as a mask against which you AND the pixels in the par- 

allel lines. When pixels in each line are ANDed with pixels inside the circle, their 

original values are stored intact in the video buffer. Outside the circle, the result 

of ANDing the line pixels with the zero background always results in zero-value 

pixels being stored in the buffer. The result: a striped circle. 

You-can apply this technique to any graphics form, but it is particularly attractive 

in conjunction with a bit block move routine. You can superimpose patterned im- 

ages with a short sequence of bit block moves using pixel AND and OR opera- 

tions. In Figure 11-3, a circular chunk of pattern B is superimposed on pattern A 

by using a mask to isolate a ‘“‘hole’’ in pattern A. The inverse of the same mask 

Mask Pattern A Pattern B 

cp 
A AND mask B AND (NOT mask) (A AND mask) 

OR (B AND (NOT mask)) 

Figure 11-3. Masking patterned images with pixel AND operations. 
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extracts the congruent piece of pattern B. The two masked patterns are then 

superimposed by a third bit block move that uses OR (or XOR) to update pixels. 

OR 

The bitwise OR operator is less frequently used than XOR for manipulating pixel 

values. The OR operation, unlike XOR or NOT, is not reversible. The result of 

ORing pixels always depends on their previous values in the video buffer. 

One typical use of the pixel OR operation is to accentuate intersections of forms 

in the video buffer. Consider what happens when you OR two different-colored 

areas into a 16-color video buffer (see Figure 11-4). If one rectangle is filled with 

pixels of value 3 and the other rectangle with pixels of value 5, the pixels at the 

intersection points have the value 7 (3 OR 5). With the usual default color palette, 

the upper rectangle appears cyan, the lower rectangle is violet, and the intersec- 

tion is white. 

Figure 11-4. ORing two colored areas into a 16-bit video buffer. 

Bit Block Tiling 

You can use bit block move routines to fill an area of the video buffer with any ar- 

bitrary pattern. Do this by tiling the buffer through bit block moves to adjoining 

rectangular areas of the buffer (see Figure 11-5). Using the AND mask technique, 

you can tile any arbitrary form, such as the circle in Figure 11-6, with a pattern 

contained in a bit block. 

‘o— @ ooo 
onele 
'O_0_¢. 

Figure 11-5. Bit block tiling. 
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Figure 11-6. Tiling with AND mask. 

You can use a variation of bit block tiling as a sort of software char- 

acter generator. If you define a group of bit blocks, each of which rep- 

resents a character in a character set, you can tile the screen with 

characters. This is one technique for displaying proportionally 

spaced characters. 

Animation 

PC and PS/2 video subsystems have no built-in hardware to support animation. 

Consequently, moving images across the screen is a task relegated to software. 

(This is a good reason to make your video graphics routines as efficient as possi- 

ble.) Several software techniques can produce real-time video animation. Each 

technique is best suited to a particular type of animation. 

XOR Animation 

You can take advantage of the reversibility of the logical XOR operation to make 

any pixel or set of pixels appear to move across the display. To make an object 

appear to move, XOR it into the video buffer twice. The object flickers onto the 

screen the first time it is drawn. It immediately disappears the second time it is 

drawn. If you repeatedly redraw the object in a slightly different position, it ap- 
pears to move across the screen. 

Outlining 

Consider the C fragment in Listing 11-5. This bit of code makes a circle appear to 
grow outward from its center by repeatedly XORing it into the video buffer with a 
gradually increasing radius. 

/* Listing 11-5 */ 

main () 

{ 
arate XC = 400; /* center of circle */ 
int yc Sm ZiaK 

int anole /* semimajor and semiminor axes */ 
int n= 12; /* pixel value */ 
me a0 

float ScaleFactor = 1.37; /* for 640x350 16-color mode */ 

Listing 11-5. XORing a circle into the video buffer. (continued) 
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Listing 11-5. Continued. 

for( i=0O; i<10; i++ ) 

for( a=0; a<100; at++ ) 

{ 
b = (float) a / ScaleFactor; /* scale semiminor axis */ 

HPLLPSE( XC, VCx ia, Ds om jie /* draw a circle */ 

Bilapse( xc; yO, a, Dy 2) 7 /* draw it again */ 

} 
} 

This technique is frequently used interactively to outline a rectangular area of the 

display. The outline is rapidly XORed into and out of the video buffer as the user 

moves a pointing device such as a mouse. Just as the circle created by the routine 

in Listing 11-5 appears to grow, a rectangular outline can appear to move, grow, 

or shrink in response to the user’s actions. 

The routine in Listing 11-6 slides a rectangle across the screen. At each iteration, 

the rectangle is drawn and then erased using lines that are XORed into the video 

buffer. In this example, the rectangle’s onscreen location is changed within an 
iterative loop. In practice, however, the rectangle’s size and location could be 

changed in response to input from the keyboard or from a pointing device. In this 

case, the rectangle would be erased and redrawn whenever the input indicated a 

change in position. 

/* Listing 11-6 */ 

#define Xmax 640 

main () 

{ 
int x0 = 0; /* corners of box at 0,0 and 150,100 */ 

int yO = 0; 

int x1 = 150; 

int yl = 100; 
int nH ="12; /* pixel value */ 

while( x1 < Xmax ) /* slide box right */ 

XORBox( x0++, yO, x1++, yl, nm ); 

while( x0 > 0 ) /* slide box left */ 

XORBox( --x0, yO, --x1, yl, n ) 

XORBox (x0, yO); xl, yi, n) 

int x0,y0,x1,yle /* pixel coordinates of opposite corners */ 

int n; /* pixel value */ 

{ 
Rectangle( x0, yO, x1, yl, n )¢ /* draw the box */ 

Rectangle( x0, yO, x1, yl, n )# /* erase the box */ 

} 

Listing 11-6. XORing a rectangle into the video buffer. (continued) 
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Listing 11-6. Continued. 

Rectangle( x0, y0, x1, yl, n ) 
int x0,y0,x1,yl; 
asaite n; 

{ 
Line(ex0, yO; £0, yi, mi de 

ihaiMe (x0. yOpex<in VO, Mm dir 

Dane lary I XOy Vl ee Nee 
Tees ENS) (eal Te Vale ellli7 eV, Olga 

Rubberbanding 
A related technique based on the XOR operation is rubberbanding, in which a 
moving object remains attached to a stationary object by a straight line. The tech- 

nique is called rubberbanding because the line that connects the two objects ap- 

pears to stretch as it moves. Listing 11-7 is similar to Listing 11-6, but moves a 

rubberbanded line around the point at (150,100). 

/* Listing 11-7 */ 

#define Xmax 640 /* screen dimensions in 640x350 mode * 

#define Ymax 350 

main () 

{ 

int x0 = 150; /* fixed endpoint at 150,100 */ 

int yO = 100; 

Bore x = 0; /* moving endpoint at 0,0 */ 
int y = 0; 

int n = 27 /* pixel value */ 

for( ; x<Xmax; x++ ) /* move right */ 

NORTIne( xO, yO, xp ym ee 

for( --x; y<Ymax; yt+ ) /* move down */ 
XORLine( x0, yO, x, y, n ); 

LOR (g—— Veex> (ie ——sc0) /* move left */ 
XORDLIne (x0, v0, oe, avin me es 

for( x++; y>=0; --y ) /* move up */ 
AORLine( x0, yO, x, y, nm )> 

XORLine (7x0; yO, xi, yi, nm) 
int X OGY Oia vals /* endpoints */ 
int Hp /* pixel value */ 

Line ( OY On eX Vilna lus /* the line is onscreen */ 
Hane (CeO eeyOl ex, yl, m bp /* the line is erased */ 

} 

Listing 11-7. XORing a line into the video buffer. 
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Bit Block Moves 
You can use XOR with a bit block move to animate any arbitrary group of pixels. 
But use this technique only with a relatively small bit block, since generally a bit 
block contains many more pixels to be drawn and redrawn than does a line or a 
rectangle. The longer it takes to maneuver the bit block around the screen, the 
slower your video routine performs. 

Problems with XOR Animation 
Objects that are animated by XOR operations always flicker. The reason is ob- 
vious: An object is visible only after you first XOR it into the buffer. The second 
XOR makes it disappear. The resulting flicker draws attention to the animated 
object, and may be desirable, particularly if the object is repeatedly XORed even 
when you aren’t moving it. On the other hand, the flickering can be distracting, 
particularly on color displays where the XORed object alternates between two 
garish colors. 

You can sometimes alleviate flickering during XOR animation by inserting a soft- 

ware ‘‘pause’’ between the first and second XOR operations. This pause can be an 

empty loop, a call to some short subroutine, or perhaps a wait for the next vertical 

blanking interval. In any case, because the XORed object remains on the screen 

slightly longer, it may flicker less. 

The animated image can disappear if the loop that performs the XOR operations 

inadvertently becomes synchronized with the display refresh cycle. In this situa- 

tion, the animated object is never visible if both XOR operations occur outside the 

relatively brief time interval when the raster is displaying the relevant portion of 

the video buffer. Solving this sort of problem is tricky because it involves both the 

speed of your program and the size of the animated image. 

Overlapping Bit Block Moves 

In some applications, you can avoid XOR animation problems by rapidly redraw- 

ing a block of pixels in overlapping locations in the video buffer (see Figure 11-7 

and Listing 11-8). The bit block in Figure 11-7 has a margin of background pixels 

along its left edge. Each time you store the bit block in the video buffer, this 

margin overlaps the foreground pixels in the previously drawn block. Without 

this margin, unexpected streaks of foreground pixels trail the bit block as it 

moves to the right across the screen. 

Although they are fast enough for most purposes, the bit block move routines in 

this chapter are too slow for such performance-intensive applications as arcade- 

style video games. You can tailor the code in several ways to increase the anima- 

tion speed if you’re willing to sacrifice their general-purpose approach. 
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a. b. 

Figure 11-7. Overlapping bit block moves. The bit block is drawn (Figure 11-7a), then drawn 

again slightly to the right (Figure 11-7b). The margin of background pixels restores the back- 

ground as the bit block is ‘‘moved’’ to the right. 

char far buf[ (32/4) *21+5]; /* bit block buffer large enough */ 

/* to contain a 32- by 21-pixel block */ 

ear eu tae ily, ul Osean pmsl Op ECL Jia. /* a right-pointing arrowhead */ 

ace 2 ilee Oran sen Op mmEC Clon pry /* in a 32- by 21-pixel bit block */ 

Teer’ (eel eee Ome Silnp eee i Ole Billa, 

inemer (eeu Opell OG Clary 

GetBuebliock( OF) 05 si, 20, but )% /* copy the bit block to */ 

/* system RAM */ 

moe (Cs SaOe Shks SOO aks 8) 

StoreBlteBlock( buf, 2, 0) /* slide rightward */ 

Listing 11-8. A program to move a block of pixels using the overlapping technique. 

One technique is to limit the bit block routines to byte-aligned (or, on the CGA 

and the HGC, word-aligned) blocks of pixels. This eliminates much of the bit- 

mask logic and lets you make full use of the 80x86 MOVS instruction. Another ap- 

proach is to write routines that handle bit blocks of a fixed, predetermined size. 

This lets you replace some iterative loops in the routines with repetitive sequences 

of in-line code. Unfortunately, even highly optimized CGA and EGA animation 

routines rarely come close to the speed you can expect from arcade-style video 
display hardware. 

A Graphics-Mode Cursor 

In alphanumeric modes, the on-screen cursor indicates the location where your 

program expects the user’s next input. Most alphanumeric-mode programs rely on 

the hardware-generated blinking cursor to indicate the current input location. In 

graphics modes, on the other hand, hardware does not support a cursor; your soft- 
ware must generate one. 
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Implementing a cursor in a graphics mode is somewhat complicated, because you 
must draw the form that represents the cursor directly into the video buffer, while 
preserving the pixels that the operation overwrites. You can do this in two ways: 
by using XOR to display the cursor, or by saving and restoring the bit block that is 
overlaid by the cursor. 

XOR 

The simplest way to display a graphics cursor is to XOR it into and then out of the 
video buffer. This technique is the same one used to animate graphics images, 
and the same pros and cons apply. 

Probably the worst side effect of XORing a graphics cursor into the video buffer is 

that the color displayed for the XORed cursor can change with the background. 

The cursor can all but disappear on a patterned background or on a background 

with a displayed color near that of the XORed cursor. 

Palette programming can prevent this problem. For example, the EGA palette in 

Figure 11-8 is set up assuming that all pixels in the cursor shape have the value 8 

(1000B) and that all preexisting pixels in the video buffer have a value from 0 

through 7. With this arrangement, XORing the cursor into the video buffer causes 

it always to be displayed with color value 3FH (high-intensity white). The obvious 

drawback is that this technique halves the number of colors you can display. 

Palette Register Color Value 

00H 
01H 1 
02H 2 
03H 3 
04H 4 
OSH 5 
06H 6 
07H 7 
08H 3FH 
09H 3FH 
OAH 3FH 
OBH 3FH 
OCH 3FH 
ODH 3FH 
0OEH 3FH 
OFH 3FH 

ne UEEEEEEEEEEDEEEEE! 

Figure 11-8. EGA palette values for a high-intensity white XOR graphics cursor. 
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Bit Block Move 

Another approach is to make a copy of the bit block of pixels that the cursor 

replaces. You can then erase the cursor by restoring the pixels in the video buffer 

from the copy. This technique is attractive because it lets you use any means you 

choose to draw the cursor. 

A good way to draw the cursor, once you have made a copy of the underlying pix- 

els in the video buffer, is to copy the cursor shape into the buffer with a bit block 

move. Obviously, this technique works best with a rectangular cursor. To draw a 

cursor of any arbitrary shape, use a two-step process (see Figure 11-9). First, zero 

a group of pixels in the shape of the cursor in the video buffer with a bit block 
AND operation. Then draw the cursor with a bit block OR or XOR operation. 

Whenever you use a graphics-mode cursor, you must ensure that the 

cursor is erased before updating the video buffer. If you do not, your 

program may inadvertently update the portion of the video buffer that 

contains the cursor image. The next cursor move will restore the con- 

tents of the buffer to what they were before the cursor was drawn, 

leaving a ‘‘hole’’ where the cursor was (see Figure 11-10). 

a. b. Cc: 

Figure 11-9. Drawing a graphics cursor with a 2-step mask-and-replace technique: First, a 
mask (Figure 11-9a) is ANDed into the video buffer. Then the cursor shape (Figure 11-9b) is 
ORed into the buffer to give the result in Figure 11-9c. ; : 
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Figure 11-10. Jf a graphics cursor is accidentally overwritten (Figure 11-10a), a ‘‘hole’’ 
appears when the cursor is erased (Figure 11-10b). 
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This chapter deals with some of the less frequently exploited capabilities of PC 

and PS/2 video subsystems. Most programmers do not concern themselves with 

these hardware features, because they are infrequently used in most video soft- 

ware. Still, each of these hardware features lends itself to programming tech- 

niques that can be used in certain applications where nothing else is as effective. 

Nothing in this chapter requires ‘‘gonzo programming’’ or any magical 

knowledge of the hardware. You should nevertheless be comfortable with 80x86 

assembly-language programming before tackling the details of this material. 

Most of the chapter describes programming techniques for the EGA and the VGA, 

but the discussions of the light pen interface and bit-plane layering are pertinent 

to Hercules adapters as well. 

A Vertical Interrupt Handler 
It’s neither the interrupt nor the handler that’s vertical— it’s the fact that the 

CRTC on the EGA, the VGA, and the MCGA can generate a hardware interrupt at 

the start of the vertical blanking interval, that is, at the start of the scan line after 

the bottom line of displayed video buffer data. An interrupt handler for this Verti- 

cal Interrupt can thus update the video buffer or program the video hardware 

without interfering with the display. 

The interrupt is generated on interrupt request line 2 (IRQ2). The computer’s 

programmable interrupt controller (PIC) is set up during the ROM BIOS coldstart 

to map IRQ? to interrupt vector OAH, so a Vertical Interrupt handler should be 

designed to handle interrupt OAH. 

n The programmable interrupt controller used in the IBM PC, PC/AT, 

, and PS/2 Models 50, 60, and 80 is the Intel 8259A; in the PS/2 Model 30, 

" the same functions are supported in a proprietary VLSI chip, the I/O 
Support Gate Array. In all cases, however, the programming interface 
to the PIC for managing Vertical Interrupts is the same. 

EGA and VGA 

The scan line number at which the interrupt is issued is 1 greater than the value in 
the CRTC’s Vertical Display Enable End register (12H). The value in this register 
specifies the number of scan lines of video buffer data that are displayed, so the 
CRTC generates Vertical Interrupts at the start of the vertical blanking interval. 

Bits 4 and 5 of CRTC’s Vertical Retrace End register (11H) control whether and 
when the CRTC signals a Vertical Interrupt. You set bit 5 to 1 to enable the CRTC 
to generate the interrupt. Bit 4 controls a 1-bit latch whose status appears in bit 7 
of Input Status Register Zero (3C2H). You must zero bit 4 to clear the status latch. 
When you set bit 4 to 1, the latch status bit changes from 0 to 1 when the next ver- 
tical interrupt occurs, and remains set to 1 until you again clear the latch. 

374 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



To use the Vertical Interrupt feature, you must perform the following actions: 

@ Point the interrupt OAH vector to a Vertical Interrupt handler. 

@ Enable IRQ2. 

@ Enable the Vertical Interrupt. 

The routine in Listing 12-1 shows how to do this. Note how this routine is coordi- 

nated with the interrupt handler itself. The routine preserves the interrupt OAH 

vector so the interrupt handler can chain to the previous handler if necessary, and 

so the routine can eventually restore the previous interrupt vector when the inter- 

rupt handler is no longer needed. 

TITLE VELSting lie— le 

NAME VREGA 

PAGE 55, 132 

; Name: VREGA 

; Function: Vertical Interrupt Service routine for EGA and VGA 

7 Caller: Microsoft C: 

3 int EnableISROA(); /* returns 0 if installed ok */ 

; void DisableISROA(); 

CRT_MODE EQU 49h ; addresses in video BIOS data area 

ADDR_6845 EQU 63h 

DGROUP GROUP _DATA 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP 

ISROA PROC far ; Interrupt handler for INT OAh 

push ax ; preserve registers 

push dx 

push ds 

mov ax,seg DGROUP 

mov ds,ax * DS => DGROUP 

; determine whether a Vertical Interrupt has occurred 

mov dx, 3CZ2h a De 4= ol /O BOrt elon 

; Input Status Register zero 

in a loci 

test al, 80h ; test bit 7 of the Status Reg value 

jnz L10 ; jump if vertical interrupt 

Listing 12-1. Handling Vertical Interrupts on the EGA and VGA. (continued) 
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Listing 12-1. Continued. 

pushf 

call 

jmp 

ds:PrevISROA 

short Lexit 

; handle a Vertical Interrupt 

L10: mov 

in 

push 

mov 

and 

out 

jmp 

dx, Port3x4 

al,dx 

ax 

ax, DefaultVREnd 

ah,11101111b 

dx, ax 

$+2 

, 

, 

not a Vertical Interrupt so chain to previous interrupt handler 

simulate an INT 

to the previous INT OAh handler 

DX 3B4h or 3D4h 

AL := value of CRTC address reg 

preserve this value 

AH := default value for VR End reg 

AL := 11h (register number) 

AH bit 4 := 0 (clear interrupt latch) 

update VR End register 

wait for CRTC to respond 

; send End of Interrupt to Intel 8259A Programmable Interrupt Controller 

; to allow subsequent IRQ2 interrupts to occur 

mov 

out 

jmp 
Sta 

; do something useful 

inc 

al,20h 

20h,al 

$+2 

word ptr _VRcount 

8259A I/O port 

send nonspecific EOI to 8259A 

wait for PIC to respond 

enable interrupts 

7 increment a counter 

; enable CRTC to generate another interrupt 

ewe 

mov 

and 

or 

out 

jmp 

pop 
out 

Lexit: pop 

pop 

pop 
iret 

ISROA ENDP 

, 

ax, DefaultVREnd 

ah,11011111b 

ah, 00010000b 

dx, ax 

$+2 

ax 

Cbacul 

ds 

dx 

ax 

, 

, 

disable interrupts 

AH := default value for VR End reg 

AL := 11h (register number) 

AH bit 5 := 0 (enable vertical int) 

AH bit 4 := 1 (enable int latch) 

restore previous Address reg value 

restore registers and exit 

; EnableISROA — enable Vertical Interrupt Handler 
, 

PUBLIC 

_EnableISROA PROC 

_EnableISROA 

near 

(continued) 

376 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 
. 



Listing 12-1. Continued. 

’ 

Fy 

push 

mov 

push 

push 

mov 

mov 

bp * preserve caller registers 

bp, sp 

Su 

di 

ax, 40h 

es,ax ES -> video BIOS data area ™ 

save default CRTC register values 

mov 

mov 

mov 

int 

cmp 

jne 

cmp 

je 

cmp 

je 

mov 

jmp 

get default value for 

L20: mov 

, 

mov 

xlat 

jmp 

get default value for 

TZ ie mov 

out 

AINCS 

in 

L225 mov 

, 

dx,es: [ADDR_6845] ; DX := CRTC Address port 

Port3x4,dx 7; Save port address 

ax, 1A00h , AH := 1AH (INT 10H function number) 

7; AL := 0 (read Display Combination) 

10h ; AL := 1AH if function 1AH supported 

7 BL := active video subsystem 

al,1Ah 

L20 ; jump if not a VGA 

rou ay 

L21 ; jump if VGA 

b1,8 

L21 7 jump) 2 VGA 

ax, OFFFFh ; return OFFFFh if neither EGA nor VGA 

short 123 

EGA Vertical Retrace End register 

al,es: [CRT MODE] ; AL := video BIOS mode number 

bx,offset DGROUP:EGADefaultVals 

; AL := default value for VR End reg 

short L22 

VGA Vertical Retrace End register 

al, VREndReg ; AL := VR End register number 

dx,al 

dx 7; DX s= 3B5H or 3D5H 

al,dx ; AL := current value for register 

VREndValue, al ; save this value 

save old interrupt OAh vector 

mov 

int 

mov 

mov 

ax, 350Ah ; AH := 35H (INT 21h function number) 

; AL := OAH (interrupt number) 

21h ; ES:BX := previous INT OAH vector 

word ptr PrevISROA,bx 

word ptr PrevISROA+2,es ; save previous vector 

(continued) 
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Listing 12-1. Continued. 

; update interrupt OAH vector with address of this handler 

push ds 

mov dx,offset ISROA 

push cs 

pop ds 

mov ax, 250Ah 

int 21h 

pop ds 

’ 

eat 

mov dx,21h 

ain) al,dx 

and aati!) 10s ho 

out dx,al 

+ enable vertical interrupts 

mov dx, Port3x4 

mov ax, DefaultVREnd 

and ah,11001111b 

out dx, ax 

jmp $+2 

or ah, 00010000b 

out dx,ax 

jmp $+2 

Sins 

xor ax,ax 

L23: pop di 

pop si 

mov sp,bp 

pop bp 
ret 

_EnableISROA ENDP 

' 

, 

preserve DS 

DS:DX -> ISROA 

AH := 25H (INT 21H function number) 

AL := OAH (interrupt number) 

update INT OAH vector 

restore DS 

enable IRQ2 by zeroing bit 2 of the 8259A’s mask register 

clear interrupts 

DX := 8259A mask register 

AL := mask register value 

reset bit 2 

3B4H or 3D4H 

clear bits 4 and 5 of VR End reg 

wait for CRTC to respond 

set bit 4 

enable interrupts 

AX := 0 (return value) 

restore registers and exit 

; DisableISROA — disable Vertical Interrupt Handler 

PUBLIC DisableISROA 

_DisableISROA PROC near 

push bp 

mov bp, sp 

push si 

push di 

push ds 

(continued) 
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Listing 12-1. Continued. 

+ disable vertical interrupts 

ela. ; disable interrupts 
mov dx, Port3x4 

mov ax, DefaultVREnd 

out dx,ax *# restore Vertical Retrace End reg 
jmp $+2 

sti ; enable interrupts 

* restore previous interrupt OAh handler 

lds dx, PrevISROA 7 DS:DX := previous INT OAH vector 
mov ax, 250Ah + AH := 25H (INT 21H function number) 

7 AL := OAH (interrupt number) 

int 21h 

pop ds 7 restore registers and exit 
pop di 

pop Sa 

MOv sp,bp 

pop bp 
ret 

_DisableISROA ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

EXTRN _VRcount : word ; declared in C caller 

PrevISROA DD ? 7 Save area for old int OAh vector 

Port3x4 DW ? ; 3B4h or 3D4h 

DefaultVREnd LABEL word 

VREndReg DB ik ; Vertical Retrace End register number 

VREndValue DB g ; default value for VR End register 

EGADefaultVals DB 2Bh, 2Bh, 2Bh, 2Bh, 24h, 24h, 23h, 2Eh ; default values for 

DB 00h, 00h,00h, 00h, 00h, 24h,23h,2Eh ; EGA VR End reg 

DB 2Bh 

_DATA ENDS 

END 

The handler itself, in procedure ISROA, gains control whenever interrupt OAH 

occurs. To distinguish between the hardware Vertical Interrupt on IRQ2 and a 
possible software interrupt OAH, the handler examines bit 7 of Input Status Regis- 

ter Zero. If this bit is 1, a Vertical Interrupt has occurred, and the handler con- 

tinues about its business. If the bit is 0, no Vertical Interrupt has occurred, so the 

handler chains to the previous interrupt OAH handler. 
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A drawback to using the Vertical Interrupt is that any hardware inter- 

rupt on IRQ2 causes the status bit in Input Status Register Zero to be 

set. Thus, although the status bit can be used to detect software inter- 

rupt OAH, an interrupt handler cannot distinguish between EGA Verti- 

cal Interrupts and IRQ2 interrupts generated by other hardware unless 

the other hardware can be reliably interrogated. Since some other IBM 

PC adapters can use IRQ2 (for example, the bus version of the 

Microsoft Mouse), you can reliably use the Vertical Interrupt only 

when certain about the exact hardware configuration of the PC on 

which your program is running. 

Once the handler detects a Vertical Interrupt (that is, bit 7 of Input Status Register 

Zero is 1), it issues a nonspecific end-of-interrupt (EOI) instruction to the inter- 

rupt controller so that subsequent IRQ2 interrupts can be processed. Reentrance is 

not a problem, because additional Vertical Interrupts will not be signalled until 

the handler itself clears and reenables the status latch. Once the EOI has been 

issued, the handler is free to perform some useful action. In this example, it sim- 

ply increments a counter. Just before exiting, the handler reprograms the Vertical 

Retrace End register to enable the next Vertical Interrupt. 

The example in Listing 12-2 shows how you can integrate a Vertical Interrupt 

handler into a high-level program. The example is intentionally simple. It does 

nothing but count a designated number of Vertical Interrupts and display a mes- 

sage. Of course, your own Vertical Interrupt handler might perform more compli- 

cated actions than simply updating a variable. For instance, you could perform 
animation by updating the video buffer each time the interrupt occurs. You might 
also update the CRT and Attribute controllers to produce a panning effect using 
techniques described later in this chapter. 

/* Listing 12-2 */ 

alias VRcount = 0; /* vertical interrupt counter */ 

main () 

{ 

if ( EnableISROA() ) 

{ 
printf( "\nCan’t enable vertical interrupt handler\n" ); 
eric (alias 

} 

while (VRcount < 600) 

printf£( "\015Number of vertical interrupts: $%d", VRcount ); 

DisableISROA(); 

} 

Listing 12-2. Using a Vertical Interrupt handler in a C program. 
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T Hardware support for the Vertical Interrupt feature can vary. IBM’s 

, VGA adapter, for example, does not support Vertical Interrupts at all. 

p On some EGA clones, the polarity of bit 7 in Input Status Register 

Zero is Opposite to that of the equivalent EGA bit; that is, a Vertical In- 

terrupt has occurred when bit 7 is 0. (Second-source manufacturers of 

EGA-compatible adapters do not always emulate every detail of the 

EGA’s occasionally inscrutable hardware design.) To ensure that your 

Vertical Interrupt handler works correctly on EGA clones, determine 

the status bit’s polarity when the bit is in a known state and devise 

your test for the Vertical Interrupt accordingly. 

MCGA 

A Vertical Interrupt handler for the MCGA, such as the one in Listing 12-3, is 

similar to the handler for the EGA and the VGA. On the MCGA, the Interrupt Con- 

trol register (11H) contains the control and status bits used to set up and detect a 

Vertical Interrupt. Zeroing bit 5 of the Interrupt Control register enables the 

MCGA to generate a Vertical Interrupt. Zeroing bit 4 clears the interrupt status 

latch. Setting bit 4 to 1 allows the MCGA to detect subsequent interrupts. Bit 6 is 

the interrupt status bit. The MCGA sets this bit to 1 to indicate that a Vertical In- 

terrupt has occurred. 

void DisableISROA(); 

TITLE Mista 2— 5)" 

NAME VRMCGA 

PAGE 557 32 

7 Name: VRMCGA 

; Function: Vertical Interrupt Service routine for MCGA 

; Caller: Miereso£tt ‘Cs 

; int EnableISROA(); /* returns 0 if installed ok */ 

ADDR_6845 EQU 63h 

DGROUP GROUP DATA 

TEXT “ SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP 

ISROA PROC far ; Interrupt handler for INT OAh 

push ax ; preserve registers 

push dx 

push ds 

mov ax,seg DGROUP 

mov ds,ax - DS => DGROUP 

Listing 12-3. Handling Vertical Interrupts on the MCGA. (continued) 
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Listing 12-3. Continued. 

mov 

in 

push 

, 

mov 

out 

jmp 
nae 

in 

dec 

test 

qn 

dx, Port3x4 

alyiGx 

ax 

al, IContReg 

dx, al 

$+2 

dx 

al,dx 

(abe 

al,40h 

L10 

Fi 

, 

DX := CRTC Address reg number 

preserve CRTC Address reg value 

determine whether a Vertical Interrupt has occurred 

AL := register number 

wait for MCGA to respond 

DX := 3D5H 

AL := current Interrupt Control 

register value 

test bit 6 

jump if Vertical Interrupt 

; not a Vertical Interrupt so chain to previous interrupt handler 

pushft 

Cal 

jmp 

ds:PrevISROA 

short Lexie 

+ handle a Vertical Interrupt 

Silo. mov 

and 

out 

jmp 

ax, DefaultiICont 

aby tion nis 

dx, ax 

$+2 

; send End of Interrupt to Programmable 

7 to allow subsequent IRQ2 interrupts to occur 

mov 

out 

jmp 
sti 

7 do something useful 

Ene 

al,20h 

20h,al 

$+2 

, 

’ 

5) Sn) oe 

simulate an INT to the 

previous INT OAh handler 

AH := default value for 

Interrupt Control register 

AL := 11h (register number) 

AH bit 4 := 0 (clear interrupt latch) 

update Interrupt Control reg 

wait for MCGA to respond 

Interrupt Controller 

Neo‘ 

word ptr VRcount 

PIC I/O port 

send nonspecific EOI to PIC 

wait for PIC to respond 

enable interrupts 

; increment a counter 

7; enable CRTC to generate another interrupt 

edi 

mov 

and 

or 

out 

jmp 

exalts pop 

out 

ax, DefaultICont 

ah,11011111b 

ah,00010000b 

dx, ax 

$+2 

ax 

dx,al 

, 

, 

disable interrupts 

AH := default value for 

Interrupt Control register 
AL := 11h (register number) 
AH bit 5 := 0 (enable Vert Int) 
AH bit 4 := 1 (enable int latch) 

restore previous 3D4H value 

(continued) 
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Listing 12-3. Continued. 

ISROA 

+ EnableISROA — 

, 

_EnableISROA 

pop 

pop 

pop 
iret 

ENDP 

enable Vertical Interrupt 

PUBL 

PROC 

push 

mov 

push 

push 

mov 

mov 

7 save default CRTC 

L20: 

mov 

mov 

mov 

int 

cmp 

jne 

cmp 

je 

cmp 

je 

mov 

jmp 

; get default value 

R243 mov 

eli 

out 

jmp 
inc 

in 

St 

mov 

ds ; 

dx 

ax 

IC _EnableISROA 

near 

bp ; 

bp, sp 

si 

di 

ax, 40h 

es,ax ; 

register values 

dx,es: [ADDR_6845] 

Port3x4,dx 3 

ax, 1A00h ? 

10h ; 

al,1Ah 

L20 ; 

b1,0OBh 

L21 ; 

b1,0Ch 

L21 ; 

ax, OFFFFh 

short L23 

restore registers and exit 

Handler 

preserve caller registers 

ES -> video BIOS data area 

, DX := CRTC Address port 

Save port address 

AH 

AL 

AL 

BL 

= 1AH (INT 10H function number) 

0 (read Display Combination) 

1AH if function 1AH supported 

active video subsystem 

jump if not an MCGA 

jump if MCGA 

jump if MCGA 

return OFFFFh if not an MCGA 

for MCGA Interrupt Control register 

al,  IContReg ; 

dx,al 

$+2 

dx ; 

al,dx ; 

IContValue, al P 

AL 

DX 

AL 

Interrupt Control reg number 

3D5H 

current value for register 

save this value 

(continued) 
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Listing 12-3. Continued. 

; save old interrupt 

mov 

int 

mov 

mov 

, 

push 

mov 

push 

pop 
mov 

erate 

pop 

7 enable IRO2 by zeroing bit 2 of the PIC’ 

ale 

mov 

in 

and 

out 

OAh vector 

ax, 350Ah 

21h 

, 

, 

r 

AH := 35H (INT 21h function number) 

AL := OAH (interrupt number) 

ES:BX := previous INT OAH vector 

word ptr PrevISROA,bx 

word ptr PrevISROA+2,es ; save previous vector 

ds 

dx,offset ISROA 

ES 

ds 

ax, 250Ah 

21h 

ds 

dx,21h 

al,dx 

aly Wit 101 No 

dx,al 

; enable Vertical Interrupts 

mov 

mov 

and 

out 

jmp 
(one 

out 

jmp 
SHES. 

xOr 

2h pop 

pop 
mov 

pop 
ret 

_EnableISROA ENDP 

, 

dx, Port3x4 

ax,DefaultICont 

ah, 11001111b 

ax, ax 

$+2 

ah, 00010000b 

ax, ax 

$+2 

ax,ax 

di 
si 

sp,bp 
bp 

a 
, 

update interrupt OAH vector with address of this handler 

preserve DS 

DS:DX -> ISROA 

AH := 25H (INT 21H function number) 

AL := OAH (interrupt number) 

update INT OAH vector 

BESEOre DS 

s mask register 

clear interrupts 

DX := PIC mask register 

AL := mask register value 

SRSEKSIE LOG 

DX := CRIC Address port 

clear bits 4 and 5 of Int Control reg 

wait for MCGA to respond 

set bit 4 

enable interrupts 

AX := 0 (return value) 

restore registers and exit 

; DisableISROA — disable Vertical Interrupt handler 
, 

PUBLIC _DisableISROA 
_DisableISROA PROC near 

(continued) 
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Listing 12-3. Continued. 

push 

mov 

push 

push 

push 

bp 
bp, sp 

si 

di 

ds 

; disable Vertical Interrupts 

ela. 

mov 

mov 

out 

jmp 
Syed: 

; disable interrupts 
dx, Port3x4 

ax, DefaultICont 

dx, ax 7 restore Interrupt Control register 
$+2 

7 enable interrupts 

; restore previous interrupt OAh handler 

_DisableISROA 

EEXE 

_DATA 

PrevISROA 

Port3x4 

DefaultICont 

IContReg 

IContValue 

_DATA 

lds 

mov 

int 

pop 

pop 

pop 
mov 

pop 
ret 

ENDP 

ENDS 

SEGMENT 

EXTRN 

DD 

DW 

LABEL 

DB 

DB 

ENDS 

END 

dx, PrevISROA + DS:DX := previous INT OAH vector 

ax, 250Ah 7 AH 3= 25H (INT 21H function number) 

7 AL := OAH (interrupt number) 

21h 

ds + restore registers and exit 

di 

si 

sp,bp 

bp 

word public 'DATA' 

_VRcount: word ; Geclared in C caller 

2 7; save area for old int OAh vector 

? ; 3B4h or 3D4h 

word 

1th 7 Interrupt Control register number 

a ; default value for Int Control reg 

On the EGA and MCGA, if a Vertical Interrupt handler gains control 
while a video BIOS (INT 10H) function is executing, the interrupt 

handler may inadvertently disrupt BIOS CRTC programming. The 

reason can be traced to a subroutine buried in the IBM BIOS in these 

video subsystems. This subroutine is called by several video BIOS rou- 

tines to perform I/O port output to video hardware registers, including 

CRT Controller, Sequencer, Graphics Controller, and Attribute Con- 

troller registers. 
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Unfortunately, this subroutine is not impervious to interrupts. It con- 

tains a sequence of two 8-bit port writes (OUT DX, AL). The first OUT 

loads the designated address register. The second OUT writes a data 

byte to the corresponding data register. If an interrupt occurs between 

the two port writes, and if the interrupt handler itself writes to the 

same port, the BIOS subroutine’s second port write may be invalid. 

To avoid this situation on the EGA and MCGA, the Vertical Interrupt 

handlers in Listings 12-1 and 12-3 read the value of the CRTC Address 

register at port 3D4H (3B4H on an EGA with a monochrome display). 

On the EGA, this value is only readable for about 15 milliseconds after 

the port has been written, but this is enough time for the Vertical In- 

terrupt handler to read and preserve the value of the CRTC Address 

register. The handler can thus restore the value before it returns from 

the interrupt. 

Panning on the EGA and VGA 
The 256 KB video buffer of the EGA and the VGA can store several screens of 

data. Thus, in a sense, what is displayed represents a ‘‘screen window,”’ a sort of 

hardware window into the contents of the video buffer. 

Positioning the Screen Window 

On an adapter such as the MDA or the CGA, the CRT Controller’s Start Address 

registers control which portion of the video buffer is displayed. Because these 

registers contain a byte offset into the video buffer, you can control the position of 
the screen window only to the nearest byte. On the other hand, the CRT Controller 

on the EGA and the VGA can position the start of the screen window at any given 

pixel position. 

In graphics modes, the contents of the CRTC’s Start Address High and Start Ad- 
dress Low registers (OCH and ODH) locate the screen window to the nearest byte 

offset in the video buffer. The contents of the CRTC’s Preset Row Scan register 
(08H) and the Attribute Controller’s Horizontal Pel Pan register (13H) ‘‘fine- 

tune’’ the screen window’s position pixel by pixel (see Figure 12-1). 

When you change the screen window’s position smoothly, pixel by pixel, the dis- 
played image appears to pan across the screen. A convenient way to do this is to 
write a routine that locates the screen window at a specified pixel position and 
then call the routine iteratively from within a loop. This routine, as demonstrated 
in Listing 12-4, must distinguish between alphanumeric and graphics modes. It 
must also handle a 9-pixel-wide character matrix in VGA and EGA monochrome 
alphanumeric modes. 
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Start Address registers specify this character 

0a 
LIL) 

Origin of 
screen window 

en Value for 

Horizontal 
Pel Pan register 

Displayed portion of buffer 

Value for Preset 
Row Scan register 

Video buffer 

Figure 12-1. Control of the displayed portion of the video buffer in alphanumeric modes. 

TITLE "Listing 12-4! 
NAME ScreenOrigin 

PAGE 557 lez 

; Name: ScreenOrigin 

; Function: Set screen origin on EGA and VGA 

nm Caller: Microsoiin Cx 

void ScreenOrigin(x,y); 

; int X7Vip /* pixel x,y coordinates */ 

ARGx EQU [bp+4] 

ARGy EQU [bpt+6] 

CRT MODE EQU 49h ; addresses in video BIOS data area 

ADDR_6845 EQU 63h 

POINTS EQU 85h 

BIOS FLAGS EQU 89h 

DGROUP GROUP _DATA 

TEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP 

PUBLIC _ScreenOrigin 

Listing 12-4. Setting the screen origin on the EGA and VGA. (continued) 
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Listing 12-4. Continued. 

_ScreenOrigin PROC near 

push bp ; preserve caller registers 

mov bp, sp 

push si 

push di 

mov ax, 40h 

mov es,ax ; ES -> video BIOS data area 

mov cl,es: [CRT_MODE] 

mov ax, ARGx ; AX := pixel x-coordinate 

mov bx, ARGy ; BX := pixel y-coordinate 

cmp eur 

ja L01 ; jump if graphics mode 

je L02 ; jump if monochrome alpha 

test byte ptr es:[BIOS FLAGS],1 
jnz L02 7 jump Le VGA 

jmp short L03 

; setup for graphics modes (8 pixels per byte) 

L011: mov cx, 8 ; CL := 8 (displayed pixels per byte) 

FC Head) 

div en ; AH := bit offset in byte 

; AL := byte offset in pixel row 

mov Cl ah 7 CL s= bit offset (for Horiz Pel Pan) 

ZOE ah,ah 

xchg ax, bx 7; AREY 

; BX := byte offset in pixel row 

mul word ptr BytesPerRow 

; AX := byte offset of start of row 

jmp short LO5 

; setup for VGA alphanumeric modes and EGA monochrome alphanumeric mode 

; (9 pixels per byte) 

L02: ; routine for alpha modes 

mov Carne ; CL := 9 (displayed pixels per byte) 

PCH s=0 

div el ; AH := bit offset in byte 

; AL := byte offset in pixel row 

dec ah DR — Oe 

jns L04 ; jump if bit offset 0-7 

mov ah, 8 ; AH := 8 

jmp short L04 

; setup for EGA color alphanumeric modes (8 pixels per byte) 

L03: mov CSc ; CL := 8 (displayed pixels per byte) 

; CH := 0 

div ous ; AH := bit offset in byte 

7 AL byte offset in pixel row 

(continued) 
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Listing 12-4. Continued. 

L04: 

TOS‘: 

_ScreenOrigin 

SetOrigin 

mov 

xor 

xchg 

div 

xchg 

mul 

shr 

call 

pop 

pop 

mov 

pop 

ret 

ENDP 

PROC 

add 

mov 

add 

Cal ; CL := value 

ah,ah 

ax, bx fp ROG ime ay 
; BX = 

byte ptr es:[POINTS] ; AL := 

; AH := 

ah,ch ; AX t= 

CH= 

, 

word ptr BytesPerRow ; AX 

ax, 1 ; AX 3:= 

SetOrigin 

di ; 

si 

sp, bp 

bp 

near ge Callers Ax 

; BX 

i CH 

; cL 

bx, ax Bees = 

dx,es: [ADDR_6845] CRE Cw1/O 

dl1,6 ; 

; update Start Address High and Low registers 

L20: 

E212 

in 

test 

jz 

in 

test 

jnz 

Cla 

sub 

mov 

mov 

out 

mov 

inc 

out 

sti 

add 

video status port 

for Horiz Pel Pan reg 

byte offset in row 

character row 

scan line in char matrix 

character row 

scan line (value for Preset 

Row Scan register) 

:= byte offset of char row 

word offset of character row 

restore registers and exit 

offset of character row 

byte offset within row 

Preset Row Scan value 

= Horizontal Pel Pan value 

ll 

buffer offset 

(3B4H or 3D4H) 

(3BAH or 3DAH) 

port 

wait for start of vertical retrace 

wait for end of vertical retrace 

for Start Address High 

Address High reg number 

for Start Address Low 

Address Low reg number 

status port 

al,dx ; 

al,8 

L20 

al,dx ; 

al,8 

L21 

; disable interrupts 

a6 ; DX := 3B4H or 3D4H 

ah,bh ; AH := value 

al,0Ch , AL s= "Start 

dx, ax ; update this register 

ah,bl ; AH := value 

al ; AL := Start 

dx,ax ; update this register 

; enable interrupts 

Ge ; DX := video 

(continued) 
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Listing 12-4. Continued. 

h22e in al, dx 

test al,8 

jz L22 

ge 

sub d1,6 

mov ah,ch 

mov al,8 

out dx,ax 

mov dl,0COh 

mov Ale sheOR ZO 

out dx,al 

mov al,cl 

out dx,al 

sti 

ret 

SetOrigin ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

EXTRN _BytesPerRow:word 

_DATA ENDS 

END 

; AH 

: AL := Preset Row Scan reg number 

» wait for start of vertical retrace 

disable interrupts 

DX := 3B4H or 3D4H 
value for Preset Row Scan reg ll 

update this register 

DX := 3COh (Attribute Controller port) 

> AL bit 0-4 := Horiz Pel Pan reg number 

> AL bit 5 := 1 

+ write Attribute Controller Address reg 

(The Attribute Controller address 

flip-flop has been reset by the 

EN at b22-..) 

> AL := value for Horiz Pel Pan reg 

update this register 

reenable interrupts 

7 bytes per pixel row 

ScreenOrigin() accepts as input the x- and y-coordinates of the pixel that 

identifies the origin (the upper left corner) of the screen. The routine first updates 

the CRTC’s Start Address registers. In effect, this positions the screen at the upper 

left pixel of the character that contains the origin in alphanumeric modes, or at 

the leftmost pixel in the byte that contains the origin in graphics modes. Then 

ScreenOrigin() positions the screen exactly by updating the Horizontal Pel 

Panning and Preset Row Scan registers. 

The content of the Attribute Controller Horizontal Pel Panning register corre- 

sponds to the bit offset of the pixel in the screen’s upper left corner. The value to 
store in this register is thus 

x MOD 8 

In the case of 9-pixel characters in VGA alphanumeric modes and in 80-by-25 
monochrome mode on the EGA, the value is 

(Coes) MODES 
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The Horizontal Pel Panning register is programmed the same way in both alpha- 
numeric and graphics modes. This is not the case, however, for the CRTC’s Preset 
Row Scan register, which controls the vertical position of the start of the screen. 

In alphanumeric modes, the number of rows of pixels displayed for each row of 

characters in the video buffer depends on the height of the displayed character 

matrix. This is the value stored as POINTS in the ROM BIOS Video Display Data 

Area. The Start Address registers position the screen to a particular character in 

the video buffer, and the Preset Row Scan register indicates which line in the 

character matrix contains the origin of the screen. The Preset Row Scan register 

thus contains a value between 0 (the top line of the character) and POINTS-1 

(the bottom line). In graphics modes, the pixels in each byte in the video buffer 

correspond one-to-one with pixels on the screen, so the Preset Row Scan register 

always contains 0. 

To avoid interference with the display, updates to the Horizontal Pel Panning, 

Preset Row Scan, and Start Address registers should be synchronized with the 

display refresh cycle. The Horizontal Pel Panning register must be updated during 

the vertical blanking interval. On the other hand, the CRTC samples the values in 

the Start Address and Preset Row Scan registers at the beginning of vertical 

retrace, so these registers should be updated when vertical retrace is not active. 

Panning 

The routine in Listing 12-5 shows how you can call ScreenOrigin() to pan 

the screen up and down or across the video buffer. Because the position of the vir- 

tual screen always changes during a vertical blanking interval, the panning effect 

is smooth, with no interference on the screen. 

Pan x0, eve ON yt) 
int x0,y0; /* starting pixel coordinates */ 

int Bcily Valle /* ending pixel coordinates */ 

{ 
Ie i = x0; 

int j = yO; 

int Xinc, Yinc; /* horizontal and vertical increments */ 

LAS ROR SN ) /* compute signs of increments */ 

Xinc = 1; 

else 

Xinc = -1;7 

pie yo vie} 

Yiney= 07 

else 

Yino = 2—17 

(continued) 

Listing 12-5. A routine to perform smooth pixel-by-pixel panning on an EGA or VGA. 
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Listing 12-5. Continued. 

while ( (i != x1) Il (4 != y1) ) 
{ 

tof (a | Wes set) /* compute next screen origin */ 

== Aaney 

aA Set VA) 
7} += Viney 

ScreenOrigin( i, j ); /* move screen origin */ 

} 

} 

Resizing the Video Buffer 

Horizontal panning introduces a problem. The way the video buffer is normally 

mapped, the first byte of each line of data in the buffer immediately follows the 

last byte of the previous line. If you try to pan horizontally with this map, each 

line appears to wrap around the screen as the screen window moves across the 

video buffer. To perform horizontal panning usefully, you should resize the video 

buffer so each line of data in it is wider than the screen window. 

The value in the CRT Controller’s Offset register (13H) controls the way the CRTC 

maps lines in the video buffer. As it scans the raster, the CRTC uses the value in 

this register to locate the start of each line in the video buffer map. Normally, 

lines in the video buffer are the same width as displayed lines. Increasing the 

value in the Offset register widens the lines in the video buffer map so only part 

of each line can be displayed at one time. This lets you pan horizontally without 
wraparound. 

For example, consider how you could double the logical width of the video buffer 
in 80-by-25 alphanumeric mode. By default, the video BIOS stores the value 28H 
in the CRTC’s Offset register, so the CRTC regards each line in the buffer as being 
40 words (80 bytes) wide. Although each logical line in the buffer contains 160 
bytes of data (80 character codes and 80 attribute bytes), character codes and at- 
tributes are stored in different video memory maps (see Figure 10-3 in Chapter 
10). Thus, to double the logical line width, store 50H (80 decimal) in the CRTC’s 
Offset register. The CRTC will still display 80 characters in each row on the 
screen, but it skips 160 characters of data between rows of characters in the 
video buffer. 

When you resize the video buffer by programming the CRTC’s Offset register, be 
careful not to exceed the bounds of the 256 KB video buffer. For example, in 640- 
by-350 16-color graphics mode, one screen’s worth of pixels occupies 28,000 bytes 
(80 bytes per line x 350 lines) in each of the 64 KB video memory maps. If you 
resize the video buffer by increasing the value stored in the CRTC Offset register, 
you cannot go beyond 187 bytes per line in this video mode without exceeding the 
64 KB limit. 

The routine Buf ferDims () in Listing 12-6a can be called to redimension the 
video buffer in either graphics or alphanumeric modes. It accepts as parameters 
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the desired horizontal and vertical dimensions of the buffer in pixels. The routine 
updates the relevant variables in the video BIOS data area and then programs the 

CRTC Offset register with the appropriate value. The example in Listing 12-6b 
shows how Buf ferDims () could be called to transform a default 80-by-25 al- 

phanumeric mode into a 160-by-102 mode in which the Pan () routine in Listing 

12-5 can be used. 

TITLE "Listing 12-6a" 

NAME BufferDims 

PAGE 55, 132 

7 Name: BufferDims 

; Function: Set video buffer dimensions on EGA 

7 Callers Microsoft C: 

i void BufferDims (x,y); 

5 int Boy Vie /* horizontal and vertical */ 

5 /* dimensions in pixels */ 

ARGx EQU word ptr [bp+4] 

ARGy EQU word ptr [bpt+6] 

CRT_ MODE EQU 49h ; addresses in video BIOS data area 

CRT_COLS EQU 4Ah 

CRT_LEN EQU 4Ch 

ADDR 6845 EQU 63h 
ROWS EQU 84h 

POINTS EQU 85h 

_TEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT 

PUBLIC _BufferDims 

_BufferDims PROC near 

push bp ; preserve BP 

mov bp, sp 

mov ax, 40h 

mov es,ax ; ES -> video BIOS data area 

determine width of displayed character matrix (8 or 9 pixels) 
, 

mov bx, 8 ; BX := 8 pixels wide 

cmp byte ptr es:[CRT_MODE],7 ; check BIOS mode number 

jne L01 ; jump if not monochrome 

inc bx ; BX := 9 pixels wide 

; update video BIOS data area 

Listing 12-6a. Redimensioning the video buffer. (continued) 
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Listing 12-6a. Continued. 

L01: mov ax, ARGx ; AX := number of pixels per row 

div De ; AL := number of character columns 

mov es: [CRT_COLS],al 

mov bh,al ; BH := number of character columns 

mov ax, ARGy ; DX:AX := number of pixel rows 

div byte ptr es: [POINTS] ; AL := number of character rows 

dec al 

mov es: [ROWS],al 

inc al 

mul bh ; AX := character rows * character cols 

mov es:[CRT_LEN],ax ; update video BIOS data area 

; update CRTC Offset register 

mov ah,bh 

shr ah, 1 ; AH := number of words per row 

mov al,13h ; AL := CRTC Offset register number 

mov dx,es:[ADDR_6845] ; DX := 3B4H or 3D4H 

out ax, ax 

pop bp ; restore BP and exit 

iaeete 

_BufferDims ENDP 

Sin ENDS 

END 

/* Listing 12-6b */ 

#define CharColumns 160 /* desired character dimensions */ 

#define CharRows 102 

#define CharacterWidth 8 /* 8 for EGA color modes */ 

stan 

main () 

} 

/* 9 for EGA monochrome or VGA */ 

BytesPerRow = CharColumns * 2; /* for 80-column alphanumeric modes */ 

int i; 

int far *POINTS = 0x00400085; /* (in video display data area) */ 

BufferDims( CharColumns * CharacterWidth, CharRows * (*POINTS) ); 

for( i = 0; i < CharColumns / 10; i++ ) /* display a long line */ 
printf ("0123456789") ; 

Pan( 0, 0, 80 * CharacterWidth, 0 ); /* pan right */ 
Pan( 80 * CharacterWidth, 0, 0, 0 ); /* pan left */ 
Pan( 0, 0, 0, 50 * (*POINTS) ); /* pan down */ 
Pant 0, 50) * (POINTS), 90, (0); /* pan up */ 

Listing 12-6b. Creating a 160-by-102 alphanumeric mode. 
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Bit-Plane Layering 
In EGA and VGA 16-color graphics modes and in the InColor Card’s 720-by-348 
16-color mode, you can display any combination of the four bit planes. On the 
EGA and VGA, the four low-order bits of the Attribute Controller’s Color Plane 
Enable register (12H) control which bit planes are displayed. Similarly, on the In- 
Color Card, the four low-order bits of the Plane Mask register (18H) determine 
which bit planes are displayed. In all three subsystems, all four bits are set to 1 to 
enable the display of all four bit planes. You can zero any combination of these 
bits to prevent display of the corresponding bit planes. 

When you disable a bit plane in this way, pixel values are interpreted as though 
the corresponding bit in each pixel were set to 0. The contents of a disabled bit 
plane are unaffected. This means you can draw different images into different bit 
planes and display them selectively. When bit planes containing different images 

are displayed together, the images appear to overlap, as if the bit planes were 
transparent and layered one above the other. 

Consider the example in Figure 12-2. The grid is drawn in bit plane 3 and the 

cylinder in bit planes 0 through 2. (A quick way to draw both figures into the bit 

planes is to OR the appropriate pixel values into the video buffer.) If you use a 

default 16-color palette, the grid appears gray, and the cylinder can have any of 

the usual eight unintensified colors. 

cas 

Figure 12-2. Bit-plane layering. The cylinder’s pixels have values between 0 and 7 (bit 
planes 0 through 2); the grid’s pixels have the value 8 (bit plane 3 only). Selectively enabling 
or disabling bit planes 0 through 2 and bit plane 3 displays the cylinder, the grid, or both. 

Chapter 12: Some Advanced Video Programming Techniques 395 



If all four bit planes are displayed, both grid and cylinder appear on the screen. If 

you disable bit plane 3, the grid disappears. If you disable bit planes 0 through 2, 

displaying only bit plane 3, the cylinder disappears and only the grid is visible. In 

all three cases, the contents of the bit planes remain intact. 

In using the default palette register values with the grid and cylinder, you’ll find 

the pixels at which the grid and cylinder intersect are displayed with intensified 

colors. You can avoid this by updating the palette so that the colors displayed for 

the intersection points (pixel values 9 through OFH) are the same as the corre- 

sponding unintensified colors (1 through 7). Then, when both grid and cylinder 

are displayed, the cylinder appears in front of the grid. 

EGA and VGA Split Screen 

You can configure the CRT Controller on the EGA and the VGA to display two dif- 

ferent portions of the video buffer on the same screen (see Figure 12-3). To do 

this, program the CRTC’s Line Compare register (18H) with the raster line at 

which you want to split the screen, as shown in Listing 12-7a and Listing 12-7b. 

CRTC 

Start Address registers ——> 

Start of video buffer ——» 

Figure 12-3. Appearance of an EGA or VGA split screen. The top part of the screen displays 
data from the location in the video buffer specified by the CRTC Start Address registers. The 
bottom part of the screen displays data from the start of the video buffer. 

The contents of the CRTC Start Address registers determine which portion of the 
video buffer is displayed in the top part of the screen. As the raster is drawn dur- 
ing each display refresh cycle, the CRTC compares the current scan line with the 
value in the Line Compare register. When the values are equal, the CRTC resets 
its internal address counter so that the remaining scan lines in the raster are 
drawn using data from the start of the video buffer. Thus, the top of the video 
buffer is always displayed in the bottom part of the split screen. 

Both the EGA and the VGA accommodate Line Compare values larger than eight 
bits (OFFH or 255 scan lines) by using other CRTC registers to contain additional 
high-order bits. Thus, bit 8 of the Line Compare value is represented in bit 4 of 
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the CRTC Overflow register (07H). On the VGA, a ninth bit must also be specified 
for the Line Compare value; this bit is represented in bit 6 of the the Maximum 
Scan Line register (09H). Programming the CRTC with a Line Compare value thus 
requires you to update two different registers on the EGA and three different 
registers on the VGA. 

; Name: 

7; Function: 

7; Caller: 

ARGn 

ADDR_6845 

_TEXT 

_SplitScreen 

TITLE "Listing 12-7a' 

NAME SplitScreen 

PAGE Solos 

SplitScreen 

Horizontal split screen on EGA 

Microsoft C: 

void SplitScreen(n) ; 

int n; /* scan line at which */ 

/* to split screen */ 

EQU word ptr [bp+4] 

EQU 63h 

SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

PUBLIC _SplitScreen 

PROC near 

push bp 7; preserve BP 

mov bp, sp 

mov ax, 40h 

mov es,ax ; ES -> video BIOS data area 

mov dx,es: [ADDR_6845] ; DX = CRIC address port 

; wait for vertical retrace 

LO1: 

L002: 

, 

add dl1,6 ; DX := 3BAH or 3DAH (CRT status port) 

in al,dx 7; wait for end of vertical retrace 

test alte 

jnz L01 

in al,dx ; wait for start of vertical retrace 

tesi= al,8 

za LO2 

sub dl1,6 ; DX 3:= CRIC’ address port 

isolate bits 0-7 and bit 8 of the Line Compare value 

Listing 12-7a. Splitting the screen on the EGA. (continued) 

Chapter 12: Some Advanced Video Programming Techniques 397 



Listing 12-7a. Continued. 

mov ax, ARGn ; AX := scan line value 

mov bh, ah 

and bh, 1 >; BH bit 0 := Line Compare bit 8 

mov cl,4 

shl bhyicz ; BH bit 4 := Line Compare bit 8 

; program the CRTC registers 

mov ah,al ; AH := low-order 8 bits of value 

mov apneic ; AL := Line Compare register number 

out CLmas ; update Line Compare register 

mov ah, 1Fh ; default value for EGA 350-line modes 

, (use 11h in EGA 200-line modes) 

and ahy dot i tb 3 AH bite 4 os a0) 

or ah,bh ; AH bit 4 := Line Compare bit 8 

mov al yd ; AL := Overflow register number 

out dx, ax ; update Overflow register 

pop bp ; restore BP and exit 

IgG 

_SplitScreen ENDP 

CEE ENDS 

END 

TITLE ‘Listing 12-7b' 
NAME SplitScreen 

PAGE DO oe 

; Name: SplitScreen 

pj) LUNCELon: Horizontal split screen on VGA 

i Gadtkers Muerosoftac: 

; void SplitScreen(n) ; 

; int n; /7* scan line at which */ 
; /* to split screen */ 

ARGn EQU word ptr [bp+4] 

ADDR_6845 EQU 63h 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT 

PUBLIC —_SplitScreen 

Listing 12-7b. Splitting the screen on the VGA. (continued) 
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Listing 12-7b. Continued. 

_SplitScreen PROC 

push 

mov 

mov 

mov 

mov 

* wait for vertical 

LO1: 

LO02: 

add 

in 

test 

jnz 

in 

test 

4zZ 

sub 

; isolate bits 0-7, 

mov 

mov 

mov 

and 

mov 

shl 

shl 

near 

bp 
bp, sp 

ax, 40h 

es,ax , 

dx,es: [ADDR _ 6845] 

retrace 

bit 

dl,6 

al,dx 

al,8 

L01 

al,dx 

al,8 

L02 

dl,6 

Sande bat £-o mot 

ax, ARGn 

bh, ah 

bl,bh 

bx,0201h 

eure 4 

bx, cl 

bh, 1 

; update the CRTC registers 

mov 

mov 

out 

mov 

out 

inc 

in 

dec 

mov 

and 

or 

mov 

out 

mov 

out 

inc 

in 

dec 

ah,al 

al,18h 

dx,ax 

al,7 

dx,al 

dx 

al, dx 

dx 

ah,al 

ah, 111011115 

ah,bl 

ally. 7 

dx, ax 

al,9 

dx,al 

ax 

al,dx 

dx 

, 

preserve BP 

ES -> video BIOS data area 

7 DX s= CRIC address) port 

DX := 3BAH or 3DAH (CRT status port) 

wait for end of vertical retrace 

wait for start of vertical retrace 

DX := CRTC address port 

the Line Compare value 

Ne Ne Ne 

, 

~ 

AX := scan line value 

BH bats 0=1 3= bres 8-9 of 

Line Compare value 

BH bit 1 := Line Compare bit 9 

BL bit 0 := Line Compare bit 0 

BH bit 5 := Line Compare bit 9 

BL bit 4 := Line Compare bit 8 

BH bit 6 := Line Compare bit 9 

AH := low-order 8 bits of value 

AL := Line Compare register number 

update Line Compare register 

AL := Overflow register number 

AL := current Overflow reg value 

AH bit 4 := 0 

AH bit 4 := Line Compare bit 8 

AL := Overflow register number 

update Overflow register 

AL := Max Scan Line register number 

AL current Max Scan Line reg value lI 

(continued) 
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Listing 12-7b. Continued. 

mov ah,al 

and ah,10111111b Fag tslidoylnss Moye Re (0, 

or ah, bh ; AH bit 6 := Line Compare bit 9 

mov al, 9 ; AL := Max Scan Line reg number 

out dx, ax ; update Max Scan Line register 

pop bp ; restore BP and exit 

mec 

USspMeEscreen ENDP 

_ TEXT ENDS 

END 

Because the CRTC uses the Line Compare value while it is actively 

updating the raster, the best time to change this value is during a ver- 

tical retrace interval as in Listings 12-7a and 12-7b. 

The video BIOS default Line Compare value is the maximum possible 
value (1FFH on the EGA, 3FFH on the VGA). Use this default value to 

‘‘unsplit’’ the screen. There are also certain values that the CRTC 

does not handle in a useful manner. On both the EGA and VGA, do not 

specify a Line Compare value that is between the Vertical Retrace 

Start and Vertical Total values. Also, in 200-line modes on the VGA, 
the Line Compare register value should be an even number. 

In native graphics modes in the IBM EGA, the CRTC duplicates the 

scan line at which the screen is split. This anomaly is also found in 

some EGA clones. 

You might find it convenient to regard the bottom portion of the split screen as a 

sort of window superimposed on the top portion. Use the first portion of the video 

buffer for the window foreground (the lower part of the split screen) and some 

other portion of the buffer for the background. 

One attractive way to use the split-screen feature is to scroll the split smoothly up 

or down the screen. Do this by incrementing or decrementing the value in the 

Line Compare register within a loop, as is done by the routine in Listing 12-8. 

#define MaxScanLine 349 /* (depends on video mode) */ 

for ( i = MaxScanLine; i >= 0; --i ) /* scroll up */ 

SplitScreen( i ); 

for (i= 0; i < MaxScanLine; i++ ) /* scroll down */ 
SplitScreen( i ); 

SplitScreen( 0x3FF ); /* restore default value */ 

Listing 12-8. Smooth vertical scrolling of a split screen on the EGA or VGA. 

400 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



The Light Pen Interface 
On most video subsystems covered in this book, the CRT Controller can return the 
position of a light pen. When you trigger a light pen, it sends a signal to the CRTC 
at the moment the video display’s electron beam sweeps past the pen’s light sen- 
sor. The CRTC responds by storing the current value of its internal address coun- 
ter into its Light Pen High and Light Pen Low registers. This value corresponds to 
the offset in the video buffer of the data displayed in the raster at the point where 
the light pen was triggered. Thus, the value in the Light Pen High and Low regis- 
ters can be translated into row and column coordinates for screen locations. 

You can’t attach a light pen to IBM’s MDA, but Hercules monochrome 

adapters can support one. However, a light pen used with a mono- 

chrome display must be capable of operating with the high-persistence 

P39 phosphor used in green monochrome displays. 

Light Pen Position 

The light pen position that the CRTC returns is not an exact pixel location. One 

reason is simply that the value returned in the CRTC’s Light Pen registers is a byte 

offset into the video buffer, so the light pen’s horizontal position can be deter- 

mined only to the nearest byte of pixels. Another source of inaccuracy is that the 

CRTC chip itself introduces a small amount of delay between the time it receives 

a signal from the light pen and the time it stores a value in its Light Pen registers. 

The value returned in the Light Pen registers thus can be as much as 5 bytes too 

large; the actual amount of error must be determined empirically. 

The light pen programming interface, shown in Figure 12-4, is similar on all IBM 

and Hercules adapters. To determine a light pen’s position, your program must 

first reset the CRTC’s light pen latch by writing a 0 to I/O port 3DBH (3BBH on an 

MDA, a Hercules adapter, or an EGA with a monochrome display). Then it must 

poll the Status Port at 3DAH (3BAH in monochrome modes). When bit 1 of the ,, 

Status Port value changes from 0 to 1, the light pen has been triggered and the 

routine can obtain its location from the CRTC (see Listing 12-9a). 

After reading the light pen location from the Light Pen registers, you must apply 

an empirical correction for the intrinsic delay in the CRTC. The routine in Listing 
12-9b, for the EGA’s 80-by-25 alphanumeric mode, subtracts 7 from the value that 

the CRTC returns. To convert the result into a pixel location, subtract the value in 

the Start Address High and Start Address Low registers from the corrected CRTC 

value. (You can get the Start Address value by dividing the value in CRT_ START 

in the Video Display Data Area by 2. You can also read it from the Start Address 

High and Start Address Low registers on the EGA, the HGC+, and the InColor 

Card.) Then divide the difference by the number of characters in each row of the 

video buffer. (This value is represented in the CRTC’s Horizontal Displayed regis- 
ter, or in CRT COLS on the EGA.) The quotient is the y-coordinate of the light 

pen location. The remainder is the character column corresponding to the position 

of the light pen. 
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MDA, HGC, HGC+, and InColor Card 
V/O Port Function 

3B9H Set light pen latch 
3BAH bit 1 Light pen trigger 
3BAH bit 2 Light pen switch (IBM adapters only) 
3BBH Reset light pen latch 

CGA, EGA 
V/O Port Function 

3DAH bit 1 Light pen trigger 
3DAH bit 2 Light pen switch (IBM adapters only) 
3DBH Reset light pen latch 
3DCH Set light pen latch 

Figure 12-4. Light pen programming interface. Note: In EGA monochrome modes, read 
light pen trigger and switch status from 3BAH instead of 3DAH. 

TITLE "Listing 12-9a' 
NAME, GetLightPen 

PAGE Soaks 

7 Name: GetLightPen 

7 BuNnction.: Get light pen position 

3; Caltex: Microsoft C: 

; int GetLightPen() ; /* returns buffer offset */ 

ADDR_6845 EQU 63h 

_ TEXT SEGMENT byte public 'CODE' 

ASSUME cs: TEXT 

PUBLIC _GetLightPen 

_GetLightPen PROC near 

push bp 

mov bp, sp 

mov ax, 40h 

Mov es, ax 7 ES -> video BIOS data area 

mov dx,es: [ADDR 6845] * DX := 3B4H or 3D4H 

add Clare a, * DX := 3BBH or 3DBH 
xor alyal , ALT=" 0 
out dx,al * reset CRTC light pen latch 
jmp $+2 7 ensure that CRTC has time to respond 

dec dx * DX := 3BAH or 3DAH 

Listing 12-9a. Getting the light pen’s location from the CRTC. (continued) 
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Listing 12-9a. Continued. 

L01: in al, dx 
test aly.2 

jz L01 

ela 

sub dl,6 

mov al,10h 

out dx,al 

inc dx 

in al,dx 

mov ah,al 

dec ax 

mov adja th 

out Ox, all 

inc dx 

en al,dax 

sti 

pop bp 
ret 

_GetLightPen ENDP 

_ TEXT ENDS 

END 

/* Listing 12-9b */ 

main () 

{ 
int BufferOffset, Row, Column; 

int far *CRT_START = 0x0040004E; 

wait for light pen to be triggered 

disable interrupts 

DX := 3B4H or 3D4H 

AL := Light Pen High register number 

AH := Light Pen High value 

AL := Light Pen Low register number 

AX := offset at which light pen 

was triggered 

reenable interrupts 

char far *CRT_COLS = 0x0040004A; 

print£( "\nCRT_COLS = %d", (int) (#CRTLCOLS) ); 

LOEW a) 

{ 
BufferOffset = GetLightPen(); 

printf( "\nLight pen offset: %4xh", BufferOffset ); 

BufferOffset = BufferOffset - 7; /* empirical correction */ 

BufferOffset = BufferOffset - (*CRT_START)/2; /* offset relative to */ 
/* start of screen */ 

Row = BufferOffset / (int) (*CRT_COLS) ; /* character row */ 
Column = BufferOffset % (int) (*CRT_COLS); /* character column */ 

printf( " Column = %d_ Row = %d", Column, Row ); 

} 

Listing 12-9b. Using GetLightPen in a C program. 
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If this seems like more trouble than it’s worth, you’re probably right. On IBM 

video adapters, you can call INT 10H function 4 to return the light pen location. If 

you plan to use a light pen with a Hercules adapter, however, you’re on your own. 

Light Pen Switch 

On IBM adapters, you can determine whether the light pen switch is depressed by 

examining bit 2 of the Status Port value returned from port 3DAH (3BAH in 

monochrome modes). This bit is set to 1 while the switch is closed. It returns to 0 

when the switch is opened. You should usually test the status of the light pen 

switch before attempting to read the CRTC’s Light Pen registers. 

Determining Hercules Video Modes 

The Light Pen registers can also be used to determine video modes on Hercules 

adapters. In most applications, determining the current video mode is not a 

problem, because the application itself establishes the mode. Sometimes, however, 

a program may not know the video mode a priori. For example, a screen dump 

program (see Appendix B) may need to determine the video mode to correctly in- 

terpret the contents of the video buffer. Similarly, a RAM-resident “‘pop up’’ pro- 

gram should save and then restore the video mode into which it ‘‘pops.”’ 

You can easily determine the current ROM BIOS video mode by calling INT 10H 

function OFH. The task is more difficult for the Hercules adapters, because the 

BIOS does not keep track of the video mode. You can sometimes infer the video 

mode from the Video Display Data Area variables CRT_COLS, CRT_LEN, and 

POINTS, but not everybody who writes programs for Hercules adapters keeps 

these variables updated. 

Moreover, there is no direct way to interrogate the hardware to determine the 

video mode. For example, the Mode Control register (3B8H), used to select the 

video mode, is unfortunately a write-only register. Nevertheless, you can infer a 

Hercules adapter’s video mode by latching the 6845’s Light Pen High and Low 

registers (10H and 11H) at the start of vertical retrace, as shown in Listing 12-10. 

TITLE TLESEENge t2— Ol 

NAME GetHercMode 

PAGE Doe NSS 

; Name: GetHercMode 

7 Hunctwon: Determine video mode on Hercules adapters by estimating the size 
F of the displayed portion of the video buffer. 

Caller: Microsoft «Cs 

ri int GetHercMode(n) ; /* returns approximate size */ 
A /* of displayed portion of ¥*/ 
; /* video buffer in words */ 

Listing 12-10. Identifying the current video mode on a Hercules adapter. (continued) 
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Listing 12-10. Continued. 

_ TEXT 

_GetHercMode 

7 reset CRTC 

SEGMENT byte public 

ASSUME 

PUBLIC 

PROC 

push 

Mov 

cs;_ TEXT 

_GetHercMode 

near 

bp 
bp, sp 

light pen latch 

mov 

out 

dx, 3BBh 

dax,al 

"CODE' 

* wait for start of next vertical retrace 

L01: 

L002: 

L032 

dec 

in 

test 

jnz 

in 

test 

jz 

eu 

in 

test 

jnz 

ax 

al,dx 

al, 80h 

L01 

al,dx 

al, 80h 

L02 

al,dx 

al,80h 

L03 

seoN 

preserve BP 

DX := light 

OUT to this 

(the value 

pen reset port 

port clears the latch 

in AL doesn’t matter) 

DX := 3BAH (CRT status port) 

wait for start of vertical retrace 

wait for end of vertical retrace 

disable interrupts 

wait for start of vertical retrace 

; latch the current CRTC address counter in the Light Pen registers 

, 

dec 

out 

sti 

mov 

mov 

out 

inc 

in 

dec 

mov 

mov 

out 

inc 

in 

pop 

ret 

dx 

dx,al 

dl, 0B4h 

al,10h 

dx,al 

dx 

al,ax 

dx 

ah,al 

alee 1h 

dx,al 

dx 

al,dax 

bp 

, 

, 

, 

, 

, 

DX =" 3B9H 

OUT to this port loads the latch 

reenable interrupts 

; return the value in the Light Pen registers 

DX := 

AL := 

3B4H (CRTC address port) 

Light Pen High register number 

read this register 

AH := current Light Pen High value 

AL := Light Pen Low register number 

AX := current light pen latch value 

(i1.e., value of CRTC address counter 

at start of vertical retrace) 

(continued) 
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Listing 12-10. Continued. 

_GetHercMode ENDP 

_ TEXT ENDS 

END 

The routine in Listing 12-10 waits for the start of vertical retrace and triggers the 

light pen at this point with an OUT instruction to port 3B9H. The Light Pen regis- 

ters reflect the value of the CRTC’s internal address counter at the point where 

vertical retrace begins. (This value is the product of the values in the CRTC 

Horizontal Displayed and Vertical Sync registers.) You can expect the Light Pen 

registers to contain at least 7DOH (80 words per character row X 25 rows) in 80- 

by-25 alphanumeric mode and OF4BH (45 words per character row X 87 rows) in 

720-by-348 graphics mode. Inspecting the Light Pen value thus reveals whether 

the HGC is in alphanumeric or graphics mode. 

In practice, the Light Pen value returned is somewhat larger than these 

expected values because of the delay in the CRTC timing. This im- 

precision makes the technique somewhat less useful on the HGC+ and 

InColor cards, where you must distinguish among all the different 

character sizes that can be displayed by the CRTC in alphanumeric 

mode. For example, the value returned by Get HercMode () when 
9-by-8 characters are displayed is near ODCOH (80 x 44) and near 
ODB6H (90 x 39) when 8-by-9 characters are displayed. Because the 
‘Light Pen value is inexact, you may not be able to distinguish these 
two different CRTC configurations. 
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13 

Graphics Subroutines in -_ 
High-Level Languages A 

Linking Graphics Subroutines 
Subroutine Calls 

Interrupts to a Memory-Resident Driver 

Inline Code 

Global Data Areas 

Layered Graphics Interfaces 

Direct Hardware Programming 

Extended BIOS Interface 

High-Level Interface 



Most programming examples in this book are written in assembly language, the 

language of choice for programs that need to control hardware precisely and to 

run as fast as possible. Nevertheless, most IBM PC programmers prefer not to 

write large applications entirely in assembly language because they can write, 

debug, and maintain a program in a high-level language much more effectively. 

As you write the code for a program that produces video output, you must balance 

the convenience and conceptual clarity a high-level language provides against the 

speed and exact control provided by assembly language. A good rule of thumb is 

to use assembly language whenever you directly access the video buffer or the 

video subsystem’s control registers. The rest of the time, you can generally obtain 

satisfactory performance using any compiled high-level language. 

This chapter focuses on the interface between programs written in high-level lan- 

guages and the low-level, assembly-language drivers that actually access the video 

hardware. You can implement the interface in several ways. The method you 

select should depend on the language you are using, your familiarity with the 

memory models and parameter-passing techniques that your compiler uses, and 

(as always) your own good judgment in evaluating the alternatives. 

The last part of the chapter introduces several different high-level video program- 

ming interfaces. The focus is on the reasons why high-level programming inter- 

faces are used and the programming approach involved in using them. 

Linking Graphics Subroutines 

You can tie low-level graphics subroutines to high-level applications in several 

ways. The three techniques discussed here—subroutine calls, calling a set of 

memory-resident routines, and using inline code in a high-level-language pro- 

gram—have all been proved in various graphics applications. As usual, the 

““best’’ method to use in any given application is a matter of judgment. 

Subroutine Calls 

This book contains numerous subroutines that are designed to be called from 
within a high-level-language program. Most are to be linked to programs com- 
piled with the Microsoft C compiler. However, you can link these subroutines to 
any high-level-language program if you know the proper protocol for structuring 
executable code, and for passing parameters to a subroutine and returning values 
from it. The routines in Listings 13-1 through 13-4 show how to call the same 
assembly-language subroutine from Microsoft C, Microsoft FORTRAN, Turbo 
Pascal, and interpreted BASIC. 

ATER, "histang 13=ta" 

NAME SetPixel 

PAGE Spe 

(continued) 

Listing 13-la. The SetPixel subroutine (Microsoft C small-model calling conventions). 
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Listing 13-1a. Continued. 

’ 

; Name: SetPixel 

* Function: Set the value of a pixel in native EGA graphics modes. 

+ Caller: Microsoft C (small memory model): 
; 

void SetPixel (x,y,n); 

; DPA iF /* pixel coordinates */ 
; Sniey Nip /* pixel value ¥*/ 

7 Notes: This is the same routine as in Chapter 5. 
, 

ARGx EQU word ptr [bpt+4] ; stack frame addressing 
ARGy EQU word ptr [bp+6] 

ARGn EQU byte ptr [bp+8] 

RMWbits EQU 0 + xread-modify-write bits 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT 

EXTRN PixelAddr:near 

PUBLIC _SetPixel 

_SetPixel PROC near 

push bp ; preserve caller registers 

mov bp, sp 

mov ax, ARGy 7, AX = oy 

mov bx, ARGx }. BX Wa x 

call PixelAddr ; AH := bit mask 

; ES?BX => buffer 

7a Cy # bits to shift left 

; set Graphics Controller Bit Mask register 

shl ah,cl ; AH := bit mask in proper position 

mov dx, 3CEh 7 GC address register port 

mov al,8 ; AL := Bit Mask register number 

out dax,ax 

set Graphics Controller Mode register 

mov ax,0005h ; AL := Mode register number 

; AH := Write Mode 0 (bits 0,1) 

;; Read Mode 0 (bit 3) 

out dx, ax 

; set Data Rotate/Function Select register 

mov ah, RMWbits ; AH := Read-Modify-Write bits 

mov aS ; AL := Data Rotate/Function Select reg 

out dx, ax 

(continued) 
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Listing 13-1a. Continued. 

set Set/Reset and Enable Set/Reset registers 
, 

mov ah, ARGn ; AH := pixel value 

mov ale, 0 ; AL := Set/Reset reg number 

out dx, ax 

mov ax, OFO1h ; AH := value for Enable Set/Reset (all 

; bit planes enabled) 

; AL := Enable Set/Reset reg number 

out dx,ax 

; set the pixel value 

or es: [bx],al ; load latches during CPU read 

; update latches and bit planes during 

e) {CPUl write 

restore default Graphics Controller registers 
, 

mov ax, OFFO8h ; default Bit Mask 

out ax, ax 

mov ax,0005 ; default Mode register 

out dx, ax 

mov ax, 0003 ; default Function Select 

out dx,ax 

mov ax,0001 ; default Enable Set/Reset 

out dx, ax 

mov sp,bp ; restore caller registers and return 

pop bp 
ret 

psetPixel ENDP 

_ TEXT ENDS 

END 

/* Listing 13-1b ¥*/ 

/* draws an n-leaved rose of the form rho = a * cos(n * theta) */ 

#define Leaves (double) 11 /* n must be an odd number */ 

#define Xmax 640 

#define Ymax 350 

#define PixelValue 14 

#define ScaleFactor (double) 1.37 

main () 

{ 
int xpi /* pixel coordinates */ 

double a; /* length of the semi-axis */ 

Listing 13-1b. Calling SetPixel() from a C program. (continued) 
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Listing 13-1b. Continued. 

double rho,theta; /* polar coordinates */ 
double pi = 3.14159265358979; 

double sin(),cos(); 

void SetPixel(); 

a = (Ymax/2) - 1; /* a reasonable choice for a */ 

for (theta=0.0; theta < pi; theta+=0.001) 

{ 
rho = a * cos( Leaves * theta ); /* apply the formula */ 

x = rho * cos( theta ); /* convert to rectangular coords */ 

y.= rho * sin( theta ) / ScaleFactor; 

/* plot the point */ 
SetPixel( x + Xmax/2, y + Ymax/2, PixelValue ); 

TITLE "Lasting 13=2Za" 

NAME SETPEL 

PAGE D5, 132 

; Name: SETPEL 

; Function: Set the value of a pixel in native EGA graphics modes. 

7. Caters Microsoft Fortran 

; integer*2 x, Vr 

? call SETPEL(x,y,n) 

ADDRx EQU dword ptr [bp+14] ; X, Y, and n are referenced 

ADDRy EQU dword ptr [bpt+10] ; by 32-bit addresses 

ADDRn EQU dword ptr [bpté6] 

RMWbits EQU 0 

SETPEL TEXT SEGMENT byte public 'CODE' 
ASSUME cs:SETPEL TEXT 

EXTRN PixelAddr: far 

PUBLIC SETPEL 

SETPEL PROC far 

push bp 

mov bp, sp 

(continued) 

Listing 13-2a. The SETPEL subroutine ( Microsoft FORTRAN calling conventions). 
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Listing 13-2a. Continued. 

’ 

les bx, ADDRn 

push es: [bx] 

les bx, ADDRy 

mov ax,es: [bx] 

les bx, ADDRx 

mov bx,es: [bx] 

call PixelAddr 

shl ah,cl 

; program the Graphics Controller 

mov dx, 3CEh 

mov al,8 

out dx, ax 

mov ax,0005h. 

out ax, ax 

mov ah, RMWbits 

mov al,3 

out dx, ax 

pop ax 

mov ah,al 

mov al,0 

out dx,ax 

mov ax, OFO1h 

out dx, ax 

7 update the pixel, restore the default 

or es: [bx],al 

mov ax, OFFO8h 

out dx, ax 

mov ax,0005 

out dx, ax 

Mov ax,0003 

out dx,ax 

mov ax,0001 

out dx, ax 

MOv sp, bp 

pop bp 
ret ae 

SETPEL ENDP 

SETPEL TEXT ENDS 

END 

get parameters via 32-bit addresses on stack 

3s ES:BX =>on 

; preserve n on stack 

elt BRS gs=0ok 

; compute pixel address 

Graphics Controller state, and return 

; update the pixel 

; restore default Graphics 

7 Controller values 

; restore registers and exit 

; discard caller’s parms 

412 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



c Listing 13-2b 
c 

c draws an n-leaved rose of the form rho =a * cos (n*theta) 

real*8 Leaves /11/ 

real*8 ScaleFactor /1.37/ 

integer*2 Xmax /640/, Ymax /350/, PixelValue /14/ 

integer*2 X,Y 

real*8 a 

real*8 rho,theta 

real*8 pi /3.14159265358979/ 

real*8 sin,cos 

a = (Ymax/2) - 1 

do 100 theta = 0.0, pi, 0.001 

rho = a * cos( Leaves * theta ) 

x = rho * cos( theta ) 

y = rho * sin( theta ) / ScaleFactor 

100 call SETPEL( x + Xmax/2, y + Ymax/2, PixelValue ) 

stop 

end 

Listing 13-2b. Calling SETPEL() from a FORTRAN program. 

; Name: 

7 Functions 

, Callers 

3; Notes 

ADDRx 

ADDRy 

ARGn 

_TEXT 

TITLE ‘Tasting 13—3a! 

NAME SETPEL 

PAGE 55 Se 

SETPEL 

Set the value of a pixel in 320x200 4-color mode 

Turbo Pascal 

PROCEDURE SETPEL(VAR x,y: INTEGER; PixelValue: INTEGER) ; 

EXTERNAL 'setpel.bin'; 

The code segment is named TEXT so that PixelAddr may be linked 

in the same segment. 

EQU dword ptr [bp+10] ; x and y are VAR so their 

EQU dword ptr [bpté6] ; addresses are passed 

EQU byte ptr [bpt4] ; n’s value is passed on 

; the stack 

SEGMENT byte public 'CODE' 

ASSUME cs: _ TEXT 

(continued) 

Listing 13-3a. The SETPEL subroutine (Turbo Pascal calling conventions). 
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Listing 13-3a. Continued. 

EXTRN PixelAddr:near 

SETPEL PROC near 

push bp ; preserve caller registers 

mov bp, sp 

push ds 

; make this routine addressable through SI 

call L01 ; push offset of L01 

LO1: pop si 7 CSco = On 

sub si,offset L01 

; get parameters via 32-bit addresses on stack 

lds di, ADDRy ; DStDiv => ¥ 

mov ax, [di] a sa, 

lds di, ADDRx 

mov bx, [di] ; BX := x 

call PixelAddr ; AH := bit mask 

; ES:BX -> buffer 

; Ch =F bits to shake Lette 

mov al,ARGn ; AL := pixel value 

shl ax,cl ; AH := bit mask in proper position 

; AL := pixel value in proper position 

; jump through the variable SetPixelOp to the appropriate routine 

mov di,cs:SetPixelOp[si] ; DI := address 

add aims 7 DI := relocated address 

jmp di 

; routine to replace pixel value 

ReplacePixel: not ah 7 AH := inverse bit mask 

and es: [bx],ah + zero the pixel value 

or es: [bx],al 7; set the pixel value 

jmp short L02 

; routine to AND pixel value 

ANDPixel: not ah + AH := inverse bit mask 

or al,ah ; AL := all 1's except pixel value 
and es: [bx],al 

jmp short L02 

ORPixel: or es: [bx],al 7 routine to OR pixel value 
jmp short L02 

XORPixel: xor es: [bx],al # routine to XOR pixel value 

(continued) 
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Listing 13-3a. Continued. 

L02: pop ds ; restore regs and exit 

mov sp,bp 

pop bp 
ret 10 ; discard parameters and return 

SETPEL ENDP 

SetPixelOp DW ReplacePixel ; contains addr of pixel operation 

_TEXT ENDS 

END 

{ Lasting 13=3b } 

PROGRAM rose; { draws an n-leaved rose of the form rho = a * cos(n*theta) 

CONST 

Leaves = 11.0; { must be an odd number 

Xmax = 320; 

Ymax = 200; 

PixelValue =a 

ScaleFactor = 2204 

Pi = 3.14159265358979; 

VAR 

pays INTEGER; { pixel coordinates 

a: REAL; { length of the semi-axis 

rho,theta: REAL; { polar coordinates 

PROCEDURE SETPEL(VAR x,y:INTEGER; PixelValue: INTEGER); EXTERNAL 'setpel.bin'; 

BEGIN 

END. 

GraphColorMode; { set 320x200 4-color mode 

aa ymax/ 2) — vie { a reasonable choice for a 

theta := 0.0; 

WHILE theta < Pi DO 

BEGIN 

rho := a * Cos(Leaves * theta); { apply the formula 

x s= Truno(rhoe* Cos (theta) ); { convert to rectangular coords 

y := Trunc(rho * Sin(theta) / ScaleFactor); 

x := x + Trunc(Xmax/2); { center on screen 

y := y + Trunc(Ymax/2); 

SETPEL (x,y, PixelValue) ; { plot the point 

theta := theta + 0.001; 

END 

Listing 13-3b. Calling SETPEL() from a Turbo Pascal program. 
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TITLE ‘Listing 13-4a" 

NAME SETPEL 

PAGE SS yao e 

; 

, Name: SETPEL 

7 Function: 

; Caller: IBM BASICA or Microsoft GWBASIC 

; Notes: The code segment is named TEXT 
p in the same segment. 

, 

ADDRx EQU word ptr [bp+10] 

ADDRy EQU word ptr [bp+8] 

ADDRn EQU word ptr [bp+6] 

CGROUP GROUP _TEXT,END_ TEXT 

TEXT SEGMENT byte public 'CODE' 

ASSUME cs:CGROUP,ds:CGROUP 

EXTRN PixelAddr:near 

; header for BASIC BLOAD 

DB OFDh 

DW 2 dup (0) 

DW (offset CGROUP:BLEnd) -7 

7 Start of subroutine 

SETPEL PROC far 

push bp 

mov bp, sp 

push es 

7 make this routine addressable through SI 

eens L01 ; 
HOW: pop Sal nCSTS& 

sub si,offset L0O1 

7 get parameters via 16-bit addresses on stack 
mov di,ADDRy * DS:DI 
mov ax, [di] 7; AX := 
mov di, ADDRx 

mov bx, [di] 7 BX gs 
call PixelAddr ; AH := 

7 SOVBxX 

7 (Che s= 

mov di, ADDRn 

mov anual ; AL v= 
shl ax,cl Coan = 

; AL 3:= 
7 jump through the variable SetPixelOp to 

Set the value of a pixel in 320x200 4-color mode 

so that PixelAddr may be linked 

7 Size of subroutine 

; preserve caller registers 

push offset of L0O1 

= Ol 

=> y 

yi 

x 

bit mask 

-> buffer 

# bits to shift left 

pixel value 

bit mask in proper position 
pixel value in proper position 

the appropriate routine 

7 DI := address 

relocated address 

7 routine to replace pixel value 

mov di,SetPixelOp[si] 
add ai ,isa 7 Dias 
jmp di 

ReplacePixel: not ah 7 AH. r= 
and es: [bx],ah M 

or es: [bx],al ; 
jmp short L02 

Listing 13-4a. The SETPEL subroutine (BASICA calling convention). 

inverse bit mask 

zero the pixel value 

set the pixel value 

(continued) 
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Listing 13-4a. Continued. 

; routine to AND pixel value 
ANDPixel: not ah ; AH := inverse bit mask 

or al,ah ; AL := all 1s except pixel value 
and es: [bx],al 

jmp short L02 

ORPixel: or es: [bx],al ; routine to OR pixel value 
jmp short L02 

XORPixel: xor es: [bx],al ; routine to XOR pixel value 
LO2: pop es ; restore registers 

mov sp,bp 

pop bp 
ret 6 ; discard parameters and return 

SETPEL ENDP 

SetPixelOp DW ReplacePixel 7 contains addr of pixel operation 
_ TEXT ENDS 

END_TEXT SEGMENT byte public 'CODE' 

BLEnd LABEL BYTE ; this segment is linked after _ TEXT, 

7 so this label can be used to compute 

; the size of the TEXT segment 

END_TEXT ENDS a 
END 

100 * Listing 13-4b 

110 ' Draws an n-leaved rose of the form rho = a * cos(n#¥theta) 

120 DEFINT A-Z 

130 LEAVES = 11 

140 XMAX = 320 YMAX = 200 

150 PIXELVALUE = 2 

160 SCALEFACTOR# = 1.2 

170 PI# = 3.14159265358979# 
LEO =- 0 Y= "C6 ' pixel coordinates 

190 A# = 0 ' length of the semi-axis 

200 RHO# = 0 : THETA# = 0 ' polar coordinates 

Zip" 

220 SETPEL = 0 

230 DIM SPAREA (256) ' reserve RAM for the subroutine 

240 SETPEL = VARPTR(SPAREA (1) ) ' address of subroutine 

250 BLOAD "setpel.bin", SETPEL ' load subroutine into RAM 

260)" 
270 SCREEN 1 COLOR 0,0 CLS " set 320x200 4-color mode 

280 A# =, (YMAX / 2) — J "a reasonable choice for A 

290 THETA# = 0 

300 WHILE (THETA# < PI#) 

310 RHO# = A# * COS(LEAVES * THETA#) ' apply the formula 

320 X = RHO# * COS (THETA#) " convert to rectangular coords 

330 Y = RHO# * SIN(THETA#) / SCALEFACTOR# 
340 "xX = xX + XMAX/2 " center on screen 

350° Y = ¥ + YMAX/2 

360 CALL SETPEL(X, Y, PIXELVALUE) " plot the point 

370 THETA# = THETA# + .001 

380 WEND 

390 END 

Listing 13-4b. Calling SETPEL from a BASICA program. 
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One of the ways these assembly-language subroutines differ is that they use differ- 

ent memory models. A memory model describes the segment organization of a 

program— whether executable code is separated from program data, and whether 

segments are accessed with 16-bit (near) or 32-bit (far) addresses. For example, a 

small-model program has one near code and one near data segment; a large-model 

program can have multiple far code and far data segments. The subroutines in 
Listings 13-1 through 13-4 conform to the default memory models used by the dif- 

ferent language translators. 

The protocol for passing parameters also varies among compilers and program- 

ming languages. In Pascal, for example, parameters are pushed on the stack in the 

order they appear in the PROCEDURE statement, while in C, parameters are 

pushed in reverse order. Also, either the actual value of a parameter or its address 

may be passed; this depends on the programming language you use as well as on 

the type of data involved. Each compiler’s reference manual contains details on 
its parameter-passing protocol. 

Microsoft C 

Source code examples in previous chapters that can be called from a C program 

are all designed to be linked with small- or compact-model programs. To call 

them from a medium- or large-model program, you must make three modifica- 

tions to the source code to make it conform to these memory models’ subroutine- 
calling conventions. 

@ Change the name of the executable code segment. 

@ Use the far keyword in assembler PROC directives. 

@ Modify the stack frame addressing to accommodate the calling routine’s 32-bit 
return address. 

For example, to call SetPixel10() within a medium-model C program, 
change the name of the TEXT segment in SetPixel10 ()’s source code toa 
name of the form module_TEXT and use the far keyword in the routine’s 
PROC directive. Also, adjust the stack frame addresses by two bytes to account 
for the 32-bit return address. 

Microsoft FORTRAN 
Microsoft’s FORTRAN compiler does not generate small- or compact-model pro- 
grams, so the far addressing conventions applicable to medium- and large-model 
programs apply to FORTRAN-callable assembly-language graphics subroutines. 
The C-callable version in Listing 13-1a and the FORTRAN equivalent in Listing 
13-2a differ in several ways. These differences relate to the way parameters are 
passed on the stack to the subroutine. 

The C compiler passes the current values of each subroutine argument in reverse 
order, so the first argument is on top of the stack. The FORTRAN compiler passes 
the 32-bit address of each argument’s value in the order in which the arguments 
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appear in the subroutine’s argument list. The C subroutine obtains the argument 
values directly from the stack; the FORTRAN routine must obtain the arguments’ 
addresses from the stack, then use the addresses to obtain the values. Also, in C, 
the routine that called the subroutine discards the arguments on the stack. In con- 
trast, in FORTRAN the called subroutine cleans up the stack when it exits. 

The Microsoft C, FORTRAN, and Pascal compilers let you specify the 

parameter-passing protocol used to call a particular subroutine. For 

example, you can write a C-callable subroutine and then access it 

using the appropriate compiler directive in your FORTRAN or Pascal 

program. This interlanguage linking capability became available 

in MS C version 3.00, MS Pascal version 3.3, and MS FORTRAN 

version 3.3. 

Including a compiler directive in your high-level source code can be 

more convenient than modifying an assembly-language subroutine. 

For example, a C subroutine can be called from a FORTRAN program 

by declaring the subroutine ina FORTRAN INTERFACE unit: 

interface to subroutine SP10[C] (x,y,n) 

integer*2 x,y,n 

end 

This INTERFACE unit instructs the FORTRAN compiler to generate 

code that calls the subroutine sp10() using C’s parameter-passing 

protocol. However, this technique does not affect the memory model 

used; the C-callable routine is called with a far call, because it lies in 

a different segment from the FORTRAN caller. Thus, sp10() must 
still be declared with the far keyword, and the stack frame must be 

addressed with the assumption that a 32-bit far return address lies on 

top of the stack when the procedure is called. 

If you intend to write graphics routines that can be called from either 

Microsoft C, Pascal, or FORTRAN, you should use a medium or large 

memory model, so the routine can be called as a far procedure. You 

can use any parameter-passing protocol; the Microsoft language 

translators can generate code for all of them. 

Turbo Pascal 

Turbo Pascal links EXTERNAL assembly-language subroutines dynamically. 

However, Turbo Pascal’s dynamic linker does not perform address relocation or 

resolve symbolic references between the main program and the subroutine. Thus, 

the assembly-language subroutine has a very simple structure. Listing 13-3a is an 

example of this type of subroutine. Note how the subroutine performs “‘self- 

relocation’’ by initializing a register with the starting offset of the subroutine 

(using a CALL LO1 followed by a POP), then adding this value to all references 

to labels within the subroutine. 
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BASIC 
IBM BASICA and Microsoft GWBASIC have their own intrinsic video output rou- 

tines. However, you can use assembly-language subroutines to customize your 

BASIC programs for video modes or hardware not supported by these BASIC inter- 

preters. Listings 13-4a and 13-4b show how to do this. 

Like Turbo Pascal, BASICA requires you to link your subroutine dynamically. In 

Listing 13-4a, the subroutine is assembled in the form of a binary file that can be 

loaded with the BASIC BLOAD command, as in lines 220—250 of Listing 13-4b. In 

BASICA, as in Pascal, parameters are passed to the subroutine in the order they 

are specified in the high-level source code. Unlike the Turbo Pascal subroutine, 

however, the BASIC subroutine is a far procedure. Also, in BASIC the addresses of 

parameters are passed instead of the values of the parameters themselves. 

Interrupts toa Memory-Resident Driver 

Another way to implement the interface between high-level-language programs 

and machine-language graphics routines is to make the graphics routines resident 

in memory. When they are, programs can access the graphics routines by execut- 

ing a software interrupt. This is the design of the interface used by all video BIOS 
routines in the PC and PS/2 families. The routines reside at a fixed address in 

ROM. Interrupt vector 10H is initialized at bootup to point to a service routine that 

calls the BIOS routines. 

Your own video output routines can be accessed in a similar manner if you make 

them resident in RAM and set an interrupt vector to point to them. (On the PC and 
PS/2s, interrupt numbers 60H through 67H are reserved for such user-defined in- 

terrupts.) Listing 13-5 is an example of a simple RAM-resident routine that stores 

pixels in the EGA’s 640-by-350 16-color mode. The source for this routine assem- 

bles to a EXE file that installs the routine in RAM and sets interrupt vector 60H to 

point to the code that sets the pixel value. After the interrupt vector is initialized, 

any program can access the routine by loading the CPU registers with the pixel 
location and value and then executing interrupt 60H. 

TITLE ‘Listing 13-5' 

NAME SetPixel 

PAGE Oise 

7 Name: SetPixel 

7; Function: Set the value of a pixel in native EGA graphics modes. 

; Caller: Memory-resident routine invoked via interrupt 60H: 

7 mov ax,PixelX ; pixel x-coordinate 

mov bx,PixelY ; Pixel y-coordinate 

mov cx,PixelValue ; pixel value 

(continued) 

Listing 13-5. A RAM-resident routine to write pixels in 640-by-350 graphics mode. 
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Listing 13-5. Continued. 

Ne Ne Ne Ne Oe 

RMWbits EQU 0 

_TEXT SEGMENT byte public 

ASSUME cs:_TEXT 

EXTRN PixelAddr:near 

PUBLIC SetPixel 

SetPixel PROC near 

Sty 

push ax 

push bx 

push Cx 

push dx 

push Cx 

call PixelAddr 

shl ah,cl 

mov dx, 3CEh 

mov al,8 

out dax,ax 

mov ax,0005h 

OUE ax, ax 

mov ah, RMWbits 

mov al,3 

out Gia, ak 

pop ax 

mov ah,al 

mov al,0 

out dx, ax 

mov ax,O0FO1h 

out dx,ax 

or es: [bx],al 

mov ax, OFFO8h 

out Ck; ax 

mov ax,0005 

out ax, ax 

mov ax,0003 

out dx,ax 

mov ax,0001 

out dx, ax 

"CODE" 

, 

Notes: - Assemble and link to create SETPIXEL.EXE. 

- Execute once to make SetPixel resident in memory and to point 

the INT 60H vector to the RAM-resident code. 

- Requires MS-DOS version 2.0 or later. 

RAM-resident interrupt 60H handler 

enable interrupts 

preserve caller registers on 

caller’s stack 

preserve pixel value on stack 

compute pixel address 

program the Graphics Controller 

AL := Bit Mask register number 

AH := Read-Modify-Write bits 

AL := Data Rotate/Function Select reg 

AH pixel value 

set the pixel value 

restore default Graphics Controller 

values 

(continued) 
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Listing 13-5. Continued. 

pop 
pop 
pop 
pop 
iret 

SetPixel ENDP 

_TEXT ENDS 

SEGMENT 

ASSUME 

TRANSIENT TEXT 

Install PROC 

mov 

mov 

mov 

mov 

int 

mov 

mov 

sub 

mov 

aes 

Install ENDP 

TRANSIENT TEXT ENDS 

STACK SEGMENT 

DB 

STACK ENDS 

END 

Inline Code 

ax 

Cx 

ax 

para 

restore caller registers and return 
, 

cs:TRANSIENT TEXT,ss:STACK 

near 

ax,2560h 

dx,seg _TEXT 

ds, dx 

dx,offset TEXT: 

21h 

dx,cs 

ax,es 

dx, ax 

ax, 3100h 

Zh 

para stack 

80h dup (?) 

Install 

25H 

= 60H 

(INT 21H function number) 

(interrupt number) 
; AH 

SetPixel ; DS:DX -> interrupt handler 

; point INT 60H vector to 

; SetPixel routine 

7; DX segment of start of transient 

i (discardable) portion of program 

; ES := Program Segment Prefix 

; DX := size of RAM-resident portion 

; AH := 31H (INT 21H function number) 

; AL := 0 (return code) 

; Terminate but Stay Resident 

"STACK' 

; stack space for transient portion 

7 of program 

A technique familiar to many C, Modula-2, and Turbo Pascal programmers is to 

implement low-level subroutines as inline machine instructions in high-level 
source code. Doing so can simplify the problem of using consistent memory- 

model and parameter-passing protocols, because the high-level-language compiler 

handles these implicitly. However, inline code is rarely portable and can be dif- 
ficult to adapt for use with other languages. 
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Global Data Areas 

When you link video output subroutines to a high-level program, you face the 
problem of transferring information about the current state of the video hardware 
between the high-level program and the subroutines. Although you can pass such 
information to subroutines using argument lists, a better approach is to use a 
global data structure that both the high-level program and the low-level sub- 
routines can access. Information contained in a global data area can include: 

@ Hardware identification (‘‘EGA with 350-line color display’’) 

@ Hardware coordinate system (orientation of x- and y-axes, maximum x- and 
y-coordinates) 

e@ Video buffer status, including video mode, buffer dimensions (maximum x- 

and y-coordinates), and currently displayed portion of the buffer 

Foreground and background pixel values for text and graphics output 

Color values for palette registers 

Current pixel operation (replace, XOR, AND, OR, or NOT) 

Current region fill pattern 

Current line-drawing style (thick or thin line, dashed or broken line) 

In many applications it is better to maintain several global areas instead of just 

one. Because almost all PC and PS/2 video hardware supports more than one dis- 

play mode, you can create a separate global data block for each mode and make 

an entire block ‘‘current’’ when you select a video mode. In a windowing envi- 

ronment, a block of global data can apply to each displayable window. In addition 

to the above information, such a block can also describe the way graphics images 

and text are mapped into a window. This can include clipping boundaries, verti- 

cal and horizontal scaling, or window visibility (whether a window is on or off 

the screen, overlapping another window, and so on). 

Using a global data area has several advantages. Because both high-level and low- 

level routines can determine output hardware status, you can write hardware- 

independent programs that examine the descriptive information in the global data 

area to determine how to format their output. This information is relatively static, 

sO maintaining it in a global area helps minimize redundant parameter passing 

between graphics routines. Moreover, global data areas can be used contextually: 

the contents of a global data area can be saved, modified transiently, and restored. 

Of course, the information in a global data area can pertain to output 

devices other than video adapters and displays. A graphics interface 

that accommodates printers or plotters can also incorporate informa- 

tion about their status in a global data area. 
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Layered Graphics Interfaces 

After implementing an interface between your low-level video output routines 

and your high-level program, you may still find that a certain amount of high- 

level source code is concerned with low-level hardware-dependent manipulations 

such as pixel coordinate scaling and clipping. You can insulate high-level appli- 

cation code from considerations about hardware capabilities by creating one or 

more intermediate layers of functionality between the high-level application and 

the hardware drivers. 

A simple layered graphics interface is depicted schematically in Figure 13-1. The 

bottom layer comprises a set of hardware driver routines like the ones in this 

book. The top layer provides a set of subroutines that can be called by a high-level 

application.The routines in the top layer may call the hardware drivers in the bot- 

tom layer directly, or there may be one or more intermediate binding layers inter- 

posed between the high-level routines and the hardware drivers. In any case, the 

top-level subroutines present a consistent, hardware-independent software inter- 

face to the programmer who uses a high-level language, and thereby insulate 

high-level programs from the vagaries of video hardware programming. 

The ROM video BIOS provides an example of this sort of layering. The set of rou- 

tines that you invoke by issuing INT 10H serves as an intermediate layer between 

assembly-language applications and the low-level routines that actually program 

the hardware. From the application’s point of view, the INT 10H interface is rela- 

tively hardware-independent; the video BIOS programs the graphics controller, 

updates the video buffer, and performs many other hardware-dependent program- 

ming tasks. Because the video BIOS routines contain the hardware-dependent 

code, a program that uses the BIOS is to some extent portable to different types of 
video hardware. 

You can, of course, build many more functions into a layered interface than the 

video BIOS provides. For example, commercially available video graphics inter- 

faces can produce sophisticated graphics and perform video control functions, 

including geometric transformations (scaling, translation, rotation of graphics 
images), three-dimensional graphics (hidden-line removal, three-dimensional 
surface representation), or sophisticated color mixing and shading. Such graphics 

High-level-language interface "Top laver" 
(independent of hardware) oy 

Language binding 

Device driver "Boteienen 

(hardware-dependent) ottom layer 

Figure 13-1. A simple layered graphics interface. 
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packages can support output to printers or plotters, as well as to video displays. 
In this case, the layered interface provides a set of routines and data structures 
that allow a high-level program to determine the status of an output device and 
to select appropriate output attributes (line style, drawing color, and so on) on 
each device. 

In an operating environment that relies heavily on a graphics-oriented video in- 
terface, access to operating system functions can be combined with video output 

routines in a high-level application program interface (API). This is the approach 
taken in Apple’s Macintosh and in Microsoft Windows. In both these environ- 

ments, support for system functions like windows, pull-down menus, and icons is 
integrated into a unified, graphics-oriented API. 

Most layered graphics interfaces comprise more than one intermediate layer. Fur- 

thermore, each layer can be broken into several independent modules. The desire 
to preserve software portability, particularly as existing software is adapted to 

new video hardware, is the main reason for this. Many PC graphics programs are 

designed so that the end-user can customize the hardware-dependent layer(s) to a 

particular hardware configuration. This is a great convenience for the user, since 

adapting a program with a layered video interface to a newly acquired piece of 

hardware is no more difficult than installing a new device driver or relinking the 

program with a new subroutine library. 

The price you pay for this flexibility is a certain amount of extra code needed to 

support the layered interface, so programs run somewhat slower. You must con- 

sider this trade-off whenever you write an application that relies on video display 

output. Although the benefits of using a layered graphics interface are great, 

many applications are simpler to develop and run faster when you dispense with 
the formal graphics interface and use only the necessary low-level drivers. 

To get an idea of the type of programming required when you use a layered 

graphics interface, consider how you might draw a filled rectangle in a video 

graphics mode. The following examples show how you could do this using one 

of the routines developed earlier in this book and using two different layered 

graphics interfaces. As you compare the source code and the programming tech- 

nique in each of the following examples, you will see where the advantages and 

disadvantages of each graphics interface might lie. 

Direct Hardware Programming 

The routine in Listing 13-6 draws a filled rectangle directly, by computing the 

endpoints of the set of adjacent line segments that make up the rectangle and 

using a horizontal line-drawing routine to update the video buffer. Strictly speak- 

ing, this routine could be written entirely in assembly language by adapting one 

of the line-drawing routines from Chapter 6. The high-level routine in Listing 

13-6 runs nearly as fast, however, since most of the time is spent drawing the 

lines, not computing their endpoints. 
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fF MAsiting S=6 257 

FilledRectangle( x1, yl, x2, V2 

int ey gs /* upper left corner */ 

int XZ VCE /* lower right corner */ 

int ry /* pixel value */ 

{ 
int yi 

forul(y = ylr y <= "v27 Yt) /* draw rectangle as a set of */ 

Terie (cll) AV’ pee /* adjacent horizontal lines * / 

} 

Listing 13-6. Using C to draw a filled rectangle. 

If raw speed is the major constraint on your program, this is the best way to draw 

a rectangle. The code, however, is relatively nonportable, because it makes im- 

plicit assumptions about such hardware-dependent constraints as the (x,y) coordi- 

nate system and color capabilities of the video subsystem. You could not use a 

routine such as the one in Listing 13-6 in a multitasking or windowing operating 

environment, because it programs the video hardware directly and could therefore 

inadvertently corrupt video output from a concurrently executing program. 

Extended BIOS Interface 

As mentioned previously, the video ROM BIOS provides a certain amount of hard- 

ware independence and portability through the interrupt 10H interface. The trade- 

off, of course, is speed and a certain amount of flexibility. Apart from inefficient 

implementations, the INT 10H routines are relatively unstructured and limited in 

their capabilities. As IBM video subsystems have become more complex, addi- 

tional functionality has been grafted onto the INT 10H interface, making it more 

powerful but increasingly difficult to master. 

Direct Graphics Interface Standard (DGIS) is a firmware interface developed by 

Graphics Software Systems that extends the capabilities of the INT 10H interface 

in a structured manner. DGIS was designed to provide a uniform low-level inter- 

face to video hardware based on graphics coprocessors such as the Intel 82786 or 

the Texas Instruments TMS34010. Programming with DGIS is reminiscent of 

programming with IBM’s video BIOS, but many elements of a high-level graphics 

interface have also been incorporated into DGIS. 

DGIS implements a hardware-independent interface by describing actual video 

subsystems, or devices, in terms of their possible display modes, or configurations. 

An application can interrogate DGIS to determine what devices are supported in 

the computer. It then selects a subsequent video output configuration, based on the 
configuration’s resolution, number of colors, graphics and/or alphanumeric text 
support, and so on. 

For example, Listing 13-7 calls DGIS to draw the same filled rectangle as before. 

This time, however, instead of programming the hardware, the source code is 

concerned primarily with programming the interface. The routine first establishes 
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the presence of a suitable graphics output device in the computer by calling the 
DGIS Inquire Available Devices function. This function returns a list of available 
DGIS devices; in a system with an EGA, for example, the configurations associ- 
ated with the ‘‘EGA”’ device correspond to the EGA’s video modes. 

; Name: 

; Function: 

7 Notes: 

CR 

LF 

_TEXT 

EntryPoint 

7 Look for 

TITLE *Lusting 13=%' 

NAME dgisrect 

dgisrect 

draw a filled rectangle using DGIS 

assemble and link to create DGISRECT.EXE 

EQU 

EQU 

ODh 

OAh 

SEGMENT byte public 'CODE' 

ASSUME 

PROC 

mov 

mov 

push 

pop 

©s;_TEXT,ds:_ DATA,ss;STACK 

far 

ax,seg DATA 

ds,ax 

ss 

es 

installed DGIS devices 

xOr 

xOr 

xOr 

mov 

aont 

or 

jnz 

mov 

jmp 

ax, dx 

Cx, Cx 

sc, Ox 

ax, 6A00h 

10h 

xe, ex 

L01 

dx,offset DATA:Msg0 

ErrorExit 

DS -> DATA 

ES -> stack segment 

DX = 0 (buffer length) 

CX = 0 

BX = 0 

AX = DGIS opcode (Inquire 

Available Devices) 

jump if device(s) installed 

; find a graphics output device in the list of installed DGIS devices 

L0O1: 

L02: 

LHC 

and 

mov 

sub 

mov 

push 

mov 

xor 

xOr 

mov 

int 

pop 

cmp 

je 

sub 

jnz 

mov 

jmp 

(re 

cx, OFFFEh 

bp, sp 

sp,cx 

di,sp 

di 

axe 

CK, Cx 

bx, bx 

ax, 6A00h 

10h 

di 

word ptr es: [dit2],0 

L04 

bx,es: [di] 

L03 

dx,offset _DATA:Msg1 

ErrorExit 

Listing 13-7. Using DGIS to draw a filled rectangle. 

, 

, 

Cx = (f of bytes ain Tist) + 1 

CX = even number of bytes 

establish stack frame 

(SS:BP -> end of frame) 

ES:DI -> start of stack frame 

save for later 

DX = size of buffer 

AX = DGIS opcode (Inquire 

Available Devices) 

get device list at ES:DI 

ES:DI -> device list 

is this a graphics device? 

jump if so 

BX = bytes remaining in list 

jump if more devices in list 

(continued) 
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Listing 13-7. Continued. 

L03: add di,es: [di] ; ES:DI -> next device in list 

jmp L02 

; establish a logical connection to the graphics device 

; using the first available configuration on the device 

L04: les di,es: [dit+6] ; ES:DI -> device entry point 

mov word ptr GrDevEntry,di 

mov word ptr GrDevEntry+2,es ; save entry point 

mov ex, 0 ; CX = first configuration index 

mov ax,0027h ; AX = DGIS opcode (Connect) 

call dword ptr GrDevEntry ; connect to graphics device 

cmp bx, -1 ; test returned handle 

jne LO5 ; jump if connected 

mov dx,offset DATA:Msg2 

jmp ErrorExit 

LO5: mov ChannelHandle, bx ; save the handle for later 

mov ax, 001Bh AX = DGIS opcode (Init DGT) 

initialize the device with 

7 default attributes 

; draw a filled rectangle using default attributes 

call dword ptr GrDevEntry 
eo Ne Ne 

mov di,100 7 DI = lower right corner y 

mov si,100 7 SI = lower right corner x 

mov dx, 0 ; DX = upper left corner y 

mov cx, 0 7; CX = upper left corner x 

mov bx, ChannelHandle ; BX = handle 

mov ax, 003Fh ; AX = DGIS opcode (Output 

call dword ptr GrDevEntry 5 Filled Rectangle) 

; disconnect and exit 

mov bx, ChannelHandle ; BX = handle 

mov ax, 002Bh ; AX = DGIS opcode (Disconnect) 

call dword ptr GrDevEntry 

Lexie. mov ax, 4C00h 

int 24 ta 7 Heturn to DOS 

ErrorExit: mov ah, 9 

int 21h 7 display error message 
mov ax, 4C0O1h 

emit 21h ; Heturn to DOS 

EntryPoint ENDP 

_TEXT ENDS 

_DATA SEGMENT para public 'DATA' 

GrDevEntry DD ? 7 graphics device entry point 
ChannelHandle DW 2 7 handle to connected device 

* configuration 

Msg0 DB CR, LF,'No DGIS devices installed',CR,LF,'$! 
Msg1 DB CR,LF,'No graphics devices installed',CR,LF,'$' 
Msg2 DB CR,LF,'Can't connect to graphics device',CR,LF,'S' 
_DATA ENDS 

STACK SEGMENT stack 'STACK! 

DB 400h dup (?) 
STACK ENDS 

END EntryPoint. 
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The application program ‘‘connects’’ to an appropriate configuration, which 
DGIS identifies with a handle. The application can then associate an attribute 
context with the handle; the attribute context is a data structure that defines draw- 
ing colors, line styles, clipping boundaries, and so on. Subsequent calls to DGIS 
graphics output functions like Output FilledRectangle refer to the attribute 
context associated with a specified handle. 

This general sequence of operations is inherently flexible. One reason is that it 
lets an application program access hardware features without actually program- 
ming the hardware. For example, an application can use DGIS functions to change 
a color palette or update pixels without writing directly to hardware control regis- 
ters or to the video buffer. 

However, an application that performs video output through a DGIS interface runs 
slower than an equivalent application that programs the video hardware directly. 

As always, when you interpose a layer of functionality between your application 

and the hardware, you gain increased functionality and portability at the price of 

a decrease in speed. You must decide whether this trade-off is worthwhile in your 
own applications. 

High-Level Interface 

There are several high-level graphics interface implementations available for IBM 

video subsystems. These high-level interfaces differ from DGIS and the IBM video 

BIOS in that they are implemented as software libraries or RAM-loadable device 

drivers instead of firmware routines. All of them relieve you of the need to pro- 

gram the hardware directly, and all provide a structured programming interface 

that can be used in a program written in a high-level language. 

The differences between the high-level graphics interfaces lie in the amount and 

type of functionality built into them. For example, the Virtual Device Interface 

(VDI) is a proposed ANSI standard designed to promote hardware independence in 

programs written in high-level languages. VDI presents a consistent programming 

interface to all graphics output hardware, including video subsystems, printers, 

and plotters. (The Graphics Development Toolkit sold by Graphics Software Sys- 

tems and IBM support VDI.) 

Another well-known interface is the Graphical Kernel System (GKS), an inter- 

nationally recognized ANSI standard. GKS offers a highly structured interface 

with powerful graphics data manipulation features. GKS deals not with individual 

hardware devices but with workstations that can include several related input and 

output devices (such as a display, a keyboard, and a mouse). A GKS implementa- 

tion can be layered above a lower-level interface like VDI, an application can then 

use either interface without sacrificing functionality or portability. 

Still another type of high-level interface integrates graphics output with the com- 

puter’s operating environment, as does the Graphics Device Interface (GDI) in 

Microsoft Windows. In contrast to DGIS, which is designed to be a low-level in- 

terface to display hardware, GDI serves as a high-level interface to Windows’ 
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graphics-oriented operating environment. In a layered graphics interface, GDI 

would be closer to the topmost layer while an interface like DGIS would be near 

the bottom. In fact, you can install Windows to run on top of DGIS; a Windows 

application can then use GDI functions which in turn call DGIS functions to ac- 

cess the hardware (Figure 13-2). 

The C source code fragment in Listing 13-8 merely scratches the surface of GDI 

programming in Windows, but it should give you an idea of how the video inter- 

face is structured. Most of the code in the example establishes a device context for 

the Rectangle () function to use. In GDI, a device context is a global data 

structure that contains information on the colors with which text and graphics are 

drawn, as well as scaling factors for pixel (x,y) coordinates, clipping boundaries, 

and other information. Windows maintains a device context for each window on 

the screen. Each device context is identified by a 16-bit handle. When an applica- 

tion calls a GDI output function like Rectangle () or Ellipse (), it passes 

the handle of a device context to the function; the function then refers to the infor- 

mation in the device context to produce output in a window. 

To produce graphics output in a window, a Windows application starts by calling 

the Windows function Creat eWindow (), which returns a handle (hWnd) that 

identifies the window. The application then monitors Windows’ applicaiton mes- 

sage queue to determine when to update the window. 

To generate output to the window, the application can use another Windows func- 

tion, BeginPaint (), to associate a device context (identified with the handle 

hDC) with the window. The application then uses GDI functions to establish draw- 

ing attributes and pixel coordinate mapping in the device context. In the example 

in Listing 13-8, the attributes of the rectangle’s border (line style and color) are 

specified by creating a data structure that becomes part of the device context. 

Application 

Figure 13-2. Microsoft Windows GDI installed on DGIS. 
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HDC hDC; /* device context handle */ 
HPEN hpen; 

HBRUSH hbrush; 

PAINTSTRUCT ps; 

/* initialize device context for window */ 

hDC = BeginPaint( hWnd, &ps ); 

/* associate attributes with device context */ 

hpen = CreatePen ( PS SOLID, 0, GetSysColor (COLOR _WINDOWTEXT) ); 
SelectObject( hDC, (HANDLE) hpen ); 

hbr = CreateSolidBrush ( GetNearestColor(hDC,RectFillColor) ); 

SelectObject( hDC, (HANDLE)hbr ); 

/* draw a filled rectangle */ 

Rectangle( RDC, 0, 0, 100, 100: )- 

EndPaint( hWnd, &ps ); 

Listing 13-8. Using Microsoft Windows GDI (version 1.03) to draw a filled rectangle. 

The function CreatePen () creates the data structure and returns an identifying 
handle that is assigned to the variable hpen. The function Select Object () 

then updates the device context with this information. Similarly, calls to 

CreateSolidBrush() and SelectObject () establish the color and pat- 
tern used to fill the rectangle. 

When Rectangle () executes, it uses the “‘pen’’ and “‘brush’’ attributes in the 

device context to draw the rectangle’s border and interior. The (x,y) coordinates 

specified in the call to Rectangle () indicate the rectangle’s upper left and 
lower right corners. The coordinates do not indicate absolute pixel locations in the 

video buffer; they specify points in the coordinate system that relates to the win- 

dow in which the rectangle is displayed. 

GDI’s general design is similar to that of other high-level graphics interfaces — 

the hardware-dependent, machine-language routines are isolated in the lowest 

layer of the interface, and portable, hardware-independent functions are imple- 
mented in the interface’s upper layers. The differences among GDI, VDI, and other 

high-level graphics interfaces lie not so much in implementation details as in the 

types and complexity of the graphics functions they can perform. 

Chapter 13: Graphics Subroutines in High-Level Languages 431 



eT ee frees 
: —o s: 2 = 

: - ae 

i fia 

ae = tees ia pe ea oe 
a 3 . a 

~~ 7 ad 

hay 
“Ty = 

te : 
ese * 

Fes , - 
Le 
_ = " >» 

7 rf Pe Sayre 7 ae 
io - Po) 1 a oP ae 7 

. 3 “ 

a 

ha So Suet we 22508, ae 

, eu pie S yoREy ee eed a  bethite® 

Ss elas SA eS OP nen 

at 8 ra) * 
— 

= . en ae - 
Y > 

es a 

ey OP ae 

ss Rin na es ewe Pe 9 

" OT sia ee ee Aa ae JR an 
; : a 1s 1) see wat Po ae ot ee 

; “aes 

ie’ - rir » hairs & oop lL ae Saree 
ow) Dr 7 7 : = = ee Pe i. Fer wow i 4 Sanere i 7 

_ i A a>, cS i» toe * | ASO wr a 

a os = SS, 1A 
. , oes eae: hin “Gt cae = Bonin BA 

oo i nies CaN 
cz a * LG X » eT 
Pes cess, gi as ww “gape —— ib 

AAG 7 & Lhe? ac 
2 : ; : : 7 4 

7 = ie ee es : these es 16 He me oa 

439 aie Well Arb St 5 Neral: hago te RAG nih nial = 
F hye ated all: as: WEO4 Peat Moree ore ey Ui —— —e 

w= neh be Arete ote Wicd oP clasts () cate year 9. ; ees ‘hes onc aR pip cat amT csig4 sia alos bngins am wee _ | SAMS oocacirw att et itite Lemos vain Bile 
oy ; ie bas eles the seaien Vp soar thdoal+< bay 1) Aare lL eee 

| . | | , Rynnsosa sete as a 

; efi) enna.” Aagg het: qo" mls soag ti petiseces ‘ aeaaiel rah 

- ; ; eta re pes SPSST weir) hous wilvowd & ‘stensroot oad wiewiad e ae 

a . 7G Rak egg Veins sa? ater (to pene goer we Da voit ¢ 
= ty i Meal tet af hain Piydorda syaleu toy ab pias wt Tr 

 ) REP WH OI aval WY Geatege sipa irtcare wilt mi Zhao Daag wet oye 
i 

2 
7 

a : ; Sonelpaiaa ot stgestiet # 
i 5 7. * or ea te ~ satin sein trad (Pa) ae 

: eet ah ab irsectos Tit 2e3ttRA uu gna!-sait>arn tp 

Pog, bm 1 hs Se ool armatied ; sia la. 
= wales beg fH I erwey, teppei esa T ata ys 

rut ie at theta RoLlatrereeiqhal &- Pang oe pent a 
ty Gas y Nis Sy fade 

= _; 

a ; PW canta “ 



Appendix A 

Video BIOS Summar 



All computers in the IBM PC and PS/2 family have a BIOS (Basic Input/Output 

System) in ROM. The ROM BIOS contains a set of assembly-language routines that 

provide a low-level programming interface for accessing various hardware fea- 

tures, including disk drives, the system timer, serial I/O ports, a parallel printer, 

and, of course, the video hardware. By building a video BIOS in ROM into every 

machine, IBM has attempted to provide a common software interface for the 

various machines, despite substantial hardware differences among the IBM PC, 

the PC/XT, the PC/AT, and the PS/2s. 

To a large extent, this endeavor succeeded. Transporting programs between IBM 

PCs with different hardware tends to be easier when the programs access the hard- 

ware only by calling ROM BIOS routines. This is particularly true of programs 

that manipulate the video display. When you consider the many video display 

configurations available, you might regard the BIOS as a sort of “‘lowest common 

denominator’ for the software developer. 

Still, you might not always choose to use ROM BIOS routines for video output for 

several reasons. For one, ROM BIOS video support routines are not very fast. 

When performance is critical, you probably will not use them. The speed of the 

routines is rarely important for tasks performed infrequently, such as loading a 

character set into RAM or changing a video display mode. On the other hand, in 

displaying graphics images or producing animation effects, using the BIOS can 

substantially decrease performance. 

Many other tasks are better performed by your operating system rather than the 

BIOS. For example, when you call the BIOS to write characters to the screen, you 

bypass any operating system processing of those characters. The BIOS routines 

know nothing about input/output redirection, windowing, or other functions the 
operating system provides. 

Clearly, the video ROM BIOS is essential to IBM PC video programming, but the 
extent to which your programs use it is a matter for your judgment. 

Hardware Supported by ROM Video BIOS 

MDA and CGA 

The ROM BIOS on the motherboard of every IBM/PC, PC/XT, and PC/AT supports 
both the MDA and the CGA. Also, the PS/2 Model 30’s video BIOS supports an 
MDA, in addition to its integrated MCGA. When you power a PC on, the vector for 
interrupt 10H is initialized to point to the video service routine in ROM. 

IBM’s technical documentation frequently refers to the motherboard ROM BIOS 
in the PCs and PS/2s as the ‘‘planar’’ BIOS. The planar BIOS routines start at 
F000:E000 in the CPU’s address space. 
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EGA 

IBM’s EGA contains its own set of video drivers in ROM, located at C000:0000. 
The EGA’s cold boot routines initialize interrupt 10H to point to its service rou- 
tine in the EGA ROM BIOS. The EGA BIOS uses the interrupt 42H vector to point 
to the motherboard video service routine. Because the EGA’s interrupt 10H rou- 

tines access the motherboard BIOS routines whenever necessary through INT 42H, 

you rarely need to execute this interrupt explicitly. 

MCGA 

The video ROM BIOS in the PS/2 Models 25 and 30 supports the integrated MCGA 

subsystem in these computers. The Model 30’s ROM BIOS supports the concurrent 

use of an MDA, but a CGA cannot be used in the same machine because its I/O 

port assignments and video memory usage conflict with those of the MCGA. 

VGA 

Video ROM routines in the PS/2 Models 50, 60, and 80, starting at E000:0000, sup- 

port the VGA exclusively. The other video adapters described in this book cannot 

be installed in these computers because they are incompatible with the PS/2 

MicroChannel bus. 

VGA Adapter 

The VGA Adapter’s video ROM BIOS routines start at C000:0000. The BIOS rou- 

tines on the VGA Adapter are the same as those in the PS/2 Model 50, 60, and 80 

video BIOS, except for minor differences related to the different hardware imple- 

mentations of the adapter and the integrated VGA subsystem. 

Interrupt 10H 

The BIOS video routines are written in assembly language and accessed by per- 

forming 80x86 interrupt 10H. The INT 10H interface is designed for assembly- 

language programs, but you can call the BIOS routines directly from programs 

written in languages such as C or Pascal if your language compiler provides a way 

to execute the interrupt. 

You select a BIOS video support routine by loading a function number into regis- 

ter AH. To pass parameters to the BIOS routine, place their values in the 80x86 

registers before executing INT 10H. Values that the BIOS routines return to your 

program are left in registers as well. 

The IBM PC motherboard BIOS routines explicitly preserve the contents of regis- 

ters DS, ES, BX, CX, DX, SI, and DI (unless they are used for parameter passing). 

The EGA, MCGA, and VGA BIOS routines also preserve register BP. 
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If you are using the IBM PC or PC/XT planar BIOS, preserve register 

BP across INT 10H calls to the BIOS. For example: 

push bp ; preserve BP 

Ine Oh ; call the BIOS 

pop bp ; restore BP 

As arule, BIOS video input/output routines do not validate data, nor do they 

return status codes or error flags. Thus, your programs should never attempt to 

access an invalid video buffer address, select a video page in a video mode that 

does not support them, or access hardware not installed in your system. The BIOS 

routines do not reliably detect any of these errors. 

Video BIOS Data Areas 

Video Display Data Area 

The BIOS routines maintain several dynamic variables in an area of memory 

called the Video Display Data Area. Figure A-1 contains a summary of these vari- 

ables’ addresses, their symbolic names, and their contents. 

Address 

0040:0049 
_0040:004A 
F 0040:004C 
.0040:004E 
0040:0050 

0040:0060 

0040:0062 
0040:0063 

0040:0065 

0040:0066 

0040:0084 

Figure A-1. 

Name Type Description 

CRT_MODE Byte Current BIOS video mode number 
CRT_COLS Word Number of displayed character columns 
CRT_LEN Word __ Size of video buffer in bytes 
CRT_START Word Offset of start of video buffer 
CURSOR_POSN Word Array of eight words containing the cursor 

position for each of eight possible video 
pages. The high-order byte of each word 
contains the character row, the low-order 
byte the character column. 

CURSOR_MODE Word _ Starting and ending lines for alphanumeric 
cursor. The high-order byte contains the 
starting (top) line; the low-order byte con- 
tains the ending (bottom) line. 

ACTIVE_PAGE Byte Currently displayed video page number 
ADDR_6845 Word I/O port address of CRT Controller’s Address 

register (3B4H for monochrome, 3D4H 
for color). 

CRT_MODE_SET Byte Current value for Mode Control register 
(3B8H on MDA, 3D8H on CGA). On the 
EGA and VGA, the value emulates those 

used on the MDA and CGA. 
CRT_PALETTE Byte Current value for the CGA Color Select 

register (3D9H). On the EGA and VGA, 
the value emulates those used on the 
MDA and CGA. 

ROWS Byte Number of displayed character rows — 1 

BIOS Video Display Data Area. (continued) 
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va" 

Figure A-1. Continued. 

SS a ES SI SES OTSEGO 

Address Name Type Description 

0040:0085 POINTS Word _— Height of character matrix 
0040:0087 INFO Byte (See Figure A-1a) 
0040:0088 INFO_3 Byte (See Figure A-1b) 
0040:0089 Flags Byte Miscellaneous flags (see Figure A-1c) 
0040:008A DCC Byte Display Combination Code table index 
0040:00A8 SAVE_PTR Dword Pointer to BIOS Save Area (see Figure A-3) 

Bit Description 

in Reflects bit 7 of video mode number passed to INT 10H function 0 
6-5 Amount of video RAM: 

00b - 64K 
01b - 128K 
10b - 192K 
11b - 256K 

4 (reserved) 
5 1 - video subsystem is inactive 
2: (reserved) " 
1 1 - video subsystem is attached to monochrome display 
0) 1 - alphanumeric cursor emulation is enabled 

Figure A-la. Mapping of INFO byte at 0040:0087 in the EGA and VGA Video Display Data 

Area. 

1S a 
SSS SS 

Bit Description 

7 Input from feature connector on FEAT] (bit 6 of Input Status register 0) in 

response to output on FC1 (bit 1 of Feature Control register) 

6 Input from feature connector on FEATO (bit 5 of Input Status register 0) in 

response to output on FC1 (bit 1 of Feature Control register) 

5 Input from feature connector on FEAT! (bit 6 of Input Status register 0) in 

response to output on FCO (bit 0 of Feature Control register) 

4 Input from feature connector on FEATO (bit 5 of Input Status register 0) in 

response to output on FCO (bit 0 of Feature Control register) 

3 Configuration switch 4 (1 - off, 0 - on) 

2 Configuration switch 3 (1 - off, 0 - on) 

1 Configuration switch 2 (1 - off, 0 - on) 

0 Configuration switch 1 (1 - off, 0 - on) 
a 

Figure A-1b. Mapping of INFO_3 byte at 0040:0088 in the EGA and VGA Video Display 

Data Area. Bits 4 through 7 reflect the power-on status of the EGA feature connector. Bits 0 

through 3 reflect the settings of the four EGA configuration switches. (The switch values are 

emulated by the VGA BIOS, depending on the type of display attached.) 
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SS  __. 

Bit Description 

a Alphanumeric scan lines (with bit 4): 

bit 7 bit 4 
0 0 350-line mode 
0 1 400-line mode 
1 0 200-line mode 
1 1 (reserved) 

6 1 - display switching is enabled 
0 - display switching is disabled 
(reserved) 
(see bit 7) 
1 - default palette loading is disabled 
0 - default palette loading is enabled 

2 1 - using monochrome monitor 
0 - using color monitor 

1 1 - gray scale summing is enabled 
0 - gray scale summing is disabled 

0 1 - VGA active 
0 - VGA not active 

whN 

Figure A-1c. Mapping of Flags byte at 0040:0089 in MCGA and VGA Video Display Data 
Area. 

Video BIOS routines update the values in the Video Display Data Area to reflect 

the status of the video subsystem. If you alter the video environment without in- 

voking an INT 10H routine, be sure you update the relevant variables in the Video 

Display Data Area. Failing to do so can cause the BIOS video routines to 
malfunction. 

Save Areas 

The ROM BIOS routines on the EGA, the MCGA, and the VGA support a set of save 
areas, which are dynamic tables of video hardware and BIOS information. The 
video BIOS can use these save areas to supplement the Video Display Data Area. 
You can also use them to override the usual video BIOS defaults for character sets, 
palette programming, and other configuration functions. 

The video BIOS save areas are linked by a set of doubleword (segment:offset) 
pointers (see Figure A-2). Use the variable SAVE_PTR (at 0040:00A8 in the Video 
Display Data Area) to locate the save areas. SAVE_PTR contains the address of 
the SAVE POINTER table (see Figure A-3). This table contains addresses of as 
many as seven data structures, each with a different format and a different set of 
data pertaining to operation of the video hardware or of the video BIOS routines. 

The fifth address in the SAVE POINTER table is that of the SECONDARY SAVE 
POINTER table (see Figure A-4), which only the VGA’s BIOS uses. This table also 
contains the addresses of several data structures with contents relating to the 
functioning of the video hardware and the BIOS. 
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SAVE_PTR 

SAVE POINTER Table 

Video Parameter Table 

Parameter Save Area 

Alphanumeric Character Set Override 

Graphics Character Set Override 

SECONDARY SAVE 

POINTER Table 

(VGA only) 

Display Combination Code Table 

2nd Alphanumeric Character Set Override 

User Palette Profile Table 

Figure A-2. Video BIOS Save Areas. 

SSS ET EE ILI OC LE EE LOO I APTA LIAL AE EELS 

Offset Type Description 

0 Dword Address of Video Parameter table 
4 Dword Address of Parameter Save Area (EGA, VGA only) 

8 Dword Address of Alphanumeric Character Set Override 
OCH Dword Address of Graphics Character Set Override 
10H Dword Address of SECONDARY SAVE POINTER table 

(VGA only) 
14H Dword (reserved) 

18H Dword (reserved) 

Figure A-3. SAVE POINTER table (EGA, MCGA, VGA). 

Offset Type Description 

0 Word Length of SECONDARY SAVE POINTER table in bytes 
2 Dword Address of Display Combination Code table 
6 Dword Address of second Alphanumeric Character Set Override 
OAH Dword Address of User Palette Profile table 
OEH Dword (reserved) 

12H Dword (reserved) 

16H Dword (reserved) 

Figure A-4. SECONDARY SAVE POINTER table (VGA only). 
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Apart from the SAVE POINTER and SECONDARY SAVE POINTER tables, the only 

data structures provided in the ROM BIOS are the Video Parameter table and, on 

the VGA, the Display Combination Code table. Thus, the only initialized ad- 

dresses in the SAVE POINTER table are those of the Video Parameter table and of 

the SECONDARY SAVE POINTER table. The only initialized address in the 

SECONDARY SAVE POINTER table belongs to the Display Combination Code 

table. Remaining addresses are initialized to 0. 

Video Parameter Table 

This data structure contains configuration parameters used by the BIOS video 

mode set routines. The table contains entries for each available video mode. Its 

structure and format differ on the EGA, the MCGA, and the VGA. Figure A-5 is a 

typical entry in the VGA Video Parameter table. Formats for table entries in the 

EGA and MCGA BIOS are similar. 

EE
 

Offset Type Description 

0 Byte Value for CRT_COLS 

1 Byte Value for ROWS 

2D Byte Value for POINTS 

3 Word Value for CRT_LEN 

5 4-byte array Values for Sequencer registers 1-4 

9 Byte Value for Miscellaneous Output register 

OAH 25-byte array Values for CRTC registers 0-18H 

23H 20-byte array Values for Attribute Controller registers 0-13H 

37H 9-byte array Values for Graphics Controller registers 0-8 

Figure A-5. Format of a VGA Video Parameter table entry. The VGA Video Parameter table 

comprises 29 such entries. 

Parameter Save Area 

When present, this table contains the values of the EGA or the VGA Graphics Con- 

troller palette registers (00H through OFH) and the Overscan register (11H), as 

shown in Figure A-6. The video BIOS updates the Parameter Save Area whenever 

it updates the corresponding Attribute Controller registers. 

Offset Type Description 

0 16-byte array Current contents of Graphics Controller Palette registers 
10H Byte Current contents of Graphics Controller Overscan register 
11H—OFFH (reserved) 

Figure A-6. Parameter Save Area. This area is 256 bytes in size. 

When a User Palette Profile (see Figure A-10 later in this discussion) 

overrides the default palette register values, the Parameter Save Area 

is updated with default values, not those in the User Palette Profile. 
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Alphanumeric Character Set Override 

This data structure (see Figure A-7) indicates an alphanumeric character set to be 
used instead of the BIOS default character set. The character set is loaded when- 
ever the video BIOS is called to select one of the video modes that the data struc- 
ture specifies. 

SSS SSS SSS SS 

Offset Type Description 

0 Byte Length in bytes of each character definition 
1 Byte Character generator RAM bank 
a Word Number of characters defined 
= Word First character code in table 
6 Dword Address of character definition table 
OAH Byte Number of displayed character rows 
OBH Byte array Applicable video modes 

Byte OFFH (end of list of video modes) 

Figure A-7. Alphanumeric Character Set Override. 

On the VGA, you can specify a second 256-character set by creating a second 

Alphanumeric Character Set Override data structure and storing its address in the 

SECONDARY SAVE POINTER table. 

Graphics Character Set Override 

This data structure (see Figure A-8) overrides the default BIOS character set selec- 

tion whenever the video BIOS sets up one of the specified video modes. 

Offset Type Description 

0 Byte Number of displayed character rows 
1 Word Length in bytes of each character definition 
3 Dword Address of character definition table 
D Byte array Applicable video modes 

Byte OFFH (end of list of video modes) 

Figure A-8. Graphics Character Set Override. 

Display Combination Code Table 

Figure A-9 lists all combinations of video subsystems that the video BIOS sup- 
ports. The description of INT 10H function 1AH in this appendix explains how 

this table is used. 

The MCGA video BIOS contains a Display Combination Code table in 

ROM to support INT 10H function 1AH. However, the MCGA BIOS 

does not support a SECONDARY SAVE POINTER table, so you can’t 

modify its DCC table. 
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a 

Offset Type - Description 

0 Byte Number of entries in table 
1 Byte DCC table version number 
2 Byte Maximum display type code 
3 Byte (reserved) ; ots 

4 Word array Each pair of bytes in the array describes a valid display 

combination (see INT 10H function 1AH) 

Figure A-9. Display Combination Code table. 

User Palette Profile Table 

This data structure contains user-specified overrides for the default Attribute 

Controller Palette and Overscan register values, for the default values in the 256 

video DAC color registers, and for the default value in the CRTC Underline Loca- 

tion register (see Figure A-10). Only the VGA video BIOS supports this table. 

Offset Type Description 

0 Byte Underlining: 1 - Enable in all alphanumeric modes 
0 - Enable in monochrome alphanumeric mode 

—1 - Disable in all alphanumeric modes 
1 Byte (reserved) 
2) Word (reserved) 

4 Word Number of Attribute Controller registers in table 
6 Word First Attribute Controller register number 
8 Dword Address of Attribute Controller register table 
OCH Word Number of video DAC Color registers in table 
OEH Word First video DAC Color register number 
10H Dword Address of video DAC Color register table 
14H Byte array Applicable video modes 

Byte OFFH (end of list of video modes) 

Figure A-10. User Palette Profile table. 

Video BIOS Save Area Programming 

To use a data structure supported in the SAVE POINTER and SECONDARY SAVE 
POINTER tables, place the data structure in RAM and update the appropriate 
SAVE POINTER or SECONDARY SAVE POINTER addresses to point to it. Because 
the default SAVE POINTER and SECONDARY SAVE POINTER tables are located 
in ROM, you must copy these tables to RAM and update SAVE_PTR (0040:00A8) 
appropriately before you can modify them. 

Listings A-1 and A-2 demonstrate two uses of the video BIOS save areas. The rou- 
tine in Listing A-1 provides a parameter save area for the EGA or VGA BIOS. Once 
the parameter save area is established, its first 17 bytes are updated with the con- 
tents of the Attribute Controller’s 16 palette registers and its Overscan register 
each time the video BIOS writes to them. 
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TITLE ‘Listing A-1' 
NAME EstablishPSA 
PAGE 55,132 

Name: EstablishPSA 

Me Ne Ne 

fh Functions Establish a Parameter Save Area for the EGA or VGA video BIOS. 

; This save area will reflect the current values of the Attribute 

; Controller’s Palette and Overscan registers. 

A Cakler: Microsoft C: 

void EstablishPSA() ; 

Me Ne Ne 

SAVE_PTR EQU OA8h 

DGROUP GROUP DATA 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs:_TEXT,ds:DGROUP,es:DGROUP 

PUBLIC _EstablishPSA 

_EstablishPSA PROC near 

push bp 

mov bp, sp 

push si 

push di 

; preserve previous SAVE PTR 

push ds 

pop es eS) DCROUP 

mov di,offset DGROUP:Old_ SAVE_PTR 

mov ax, 40h 

mov ds,ax ; DS -> video BIOS data area 

mov si,SAVE_PTR 7 DS'Si => SAVERPTR 

mov cx,4 

rep movsb 

copy SAVE POINTER table to RAM , 

lds si,es:Old SAVE PTR ; DS:SI -> SAVE POINTER table 

mov di,offset DGROUP:SP_TABLE1 

mov cx, 1*4 ; number of bytes to move 

rep movsb 

update SAVE PTR with the address of the new SAVE POINTER table 
, 

mov ds,ax ; DS -> video BIOS data area 

mov si,SAVE_PTR 

mov word ptr [si],offset DGROUP:SP_TABLE1 

mov [sit2],es 

(continued) 

Listing A-1. Using a Parameter Save Area to keep track of EGA or VGA palette registers. 
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Listing A-1. Continued. 

update SAVE POINTER table with address of Parameter Save Area 
, 

push es 

pop ds ; DS -> DGROUP 

mov word ptr SP_TABLE1[4],offset DGROUP: PSA 

mov word ptr SP_TABLE1[6],ds 

; restore registers and exit 

pop di 

pop si 

mov sp,bp 

pop bp 
ret 

_EstablishPSA , ENDP 

_TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

Old_ SAVE PTR DD G ; previous value of SAVE PTR 
SP_TABLE1 DD 7 dup (?) ; RAM copy of SAVE POINTER table 

PSA DB 256 dup (0) ; Parameter Save Area 

_DATA ENDS 

END 

Listing A-2 shows how to specify the palette values to be used when the video 

BIOS routines are invoked to establish a new video mode. First, place the values 

in a table whose address is stored in a User Palette Profile data structure. Then 

place the address of this data structure in the SECONDARY SAVE POINTER table. 

(Since this example uses the SECONDARY SAVE POINTER table, you can run it 

only on the VGA.) 

TITLE "Listing A-2' 

NAME EstablishUPP 

PAGE Sop lsZ 

; Name: EstablishUPP 

; Function. Establish a User Palette Profile Save Area for the VGA 

; video BIOS. This save area overrides the usual default 
F palette values for a specified list of video modes. 

; Caller: Microsoft C: 

; void EstablishUPP (); 

(continued) 

Listing A-2. Using a User Palette Profile to override the default VGA palette. 
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Listing A-2. Continued. 

SAVE_PTR EQU 

DGROUP GROUP 

_ TEXT SEGMENT 

ASSUME 

PUBLIC 

_EstablishUPP PROC 

push 

mov 

push 

push 

OA8h 

_DATA 

byte public 'CODE' 

cs: _TEXT,ds:DGROUP,es:DGROUP 

_EstablishUPP 

near 

bp 
bp, sp 

si 

di 

7 preserve previous SAVE PTR 

™ 

push 

pop 
mov 

mov 

mov 

mov 

mov 

rep 

ds 

es ; ES -> DGROUP 

di,offset DGROUP:Old_ SAVE PTR 

ax, 40h 

ds,ax ; DS -> video BIOS data area 

si,SAVE_PTR ; DS:SI -> SAVE PTR 

eCx,4 

movsb 

copy SAVE POINTER table to RAM 

lds 

mov 

mov 

rep 

si,es:Old_ SAVE PTR ; DS:SI -> SAVE POINTER table 

di,offset DGROUP:SP_TABLE1 

cx, 7*4 7 number of bytes to move 

movsb 

update SAVE PTR with the address of the new SAVE POINTER table 

mov 

mov 

mov 

mov 

ds,ax ; DS -> video BIOS data area 

si,SAVE_PTR 
word ptr [si],offset DGROUP:SP_TABLE1 

[si+2],es 

copy SECONDARY SAVE POINTER table to RAM 

lds 

mov 

mov 

rep 

si,es:SP_TABLE1 [16] ; DS:SI -> SEC SAVE POINTER table 

di,offset DGROUP:SP_TABLE2 

ex, [Si] 

movsb 

update new SAVE POINTER table with address of new SECONDARY SAVE POINTER table 

push 

pop 

es 

ds , Ds? =>) DGROUP. 

(continued) 
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Listing A-2. Continued. 

, 

mov 

mov 

update SECONDARY SAVE 

mov 

mov 

; restore registers and 

pop 

pop 
mov 

pop 
ret 

_EstablishUPP ENDP 

Stexe 

_DATA 

ENDS 

SEGMENT 

Old_SAVE_PTR DD 

SP_TABLE1 

SP_TABLE2 

UPP 

PalTable 

_DATA 

DD 

DW 

DD 

DB 

DB 

DW 

DW 

DW 

DW 

DW 

DW 

DW 

DD 

DB 

DB 

DB 

DB 

ENDS 

END 

word ptr SP TABLE1([16],offset DGROUP: SP_TABLE2 

word ptr SP_TABLE1[18],ds 

POINTER with address of User Palette Profile 

word ptr SP_TABLE2[10],offset DGROUP : UPP 

word ptr SP_TABLE2[12],ds 

exit 

di 

si 

sp,bp 

bp 

word public 'DATA' 

eg 

7 dup (?) 

on dup (?) 

So =o © & 

DGROUP:PalTable 

seg DGROUP 

0 

0 

0) 

3, OFFh 

, 

, 

, 

previous value of SAVE PTR 

copy of SAVE POINTER table 

copy of SECONDARY SAVE POINTER table 

underlining flag 

(reserved) 

(reserved) 

# of palette & overscan registers 

first register specified in table 

pointer to palette table 

number of video DAC color regs 

first video DAC register 

pointer to video DAC color table 

list of applicable video modes 

30h, 31h, 32h, 33h, 34h, 35h, 36h, 37h ; a custom palette 

00h, 01h, 02h,03h,04h,05h,14h, 07h 

Oth 7 overscan reg 

Generally, your application should restore SAVE_PTR to its original 

value when the SAVE POINTER tables and save areas are no longer 

needed. If you want to preserve these tables in RAM for use by subse- 

quent applications, use the MS-DOS ‘‘Terminate-but-Stay-Resident’’ 
function (INT 21H function 31H) so that the RAM containing the 
tables is not freed when the program that creates them terminates. 
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Interrupt 1DH Vector 

This interrupt vector contains the address of a table of video initialization values 

(see Figure A-11). These values are useful only for the MDA and the CGA; 

however, the table is maintained for compatibility among all PCs and PS/2s. 

Offset Type Description 

0 16-byte array CRTC registers for 40-by-25 alphanumeric mode (CGA) 
10H 16-byte array CRTC registers for 80-by-25 alphanumeric mode (CGA) 
20H 16-byte array CRTC registers for 320-by-200 4-color or 640-by-200 

2-color graphics modes (CGA) 
30H 16-byte array CRTC registers for 80-by-25 monochrome (MDA) 
40H Word Video buffer length (40-by-25 alphanumeric mode) 
42H Word Video buffer length (80-by-25 alphanumeric mode) 
44H Word Video buffer length (CGA graphics modes) 
46H Word Video buffer length (CGA graphics modes) 
48H 8-byte array Number of displayed character columns for video BIOS 

modes 0 through 7 
50H 8-byte array Values for CRT Mode Control register 3x8H for video 

BIOS modes 0 through 7 

Figure A-11. MDA and CGA Video Initialization table. This table’s address is stored in the 

vector for INT IDH. 

IBM PC and PS/2 Video BIOS Functions 
(INT 10H Interface) 

The following pages provide detailed descriptions of each BIOS function available 

through software interrupt 10H. The descriptions are intended to complement the 

function summaries and assembly-language source code listings in IBM’s techni- 

cal literature. The accompanying source code fragments represent typical 

programming examples that you can modify for your own purposes. 

This summary includes information on the ROM BIOS routines found on the 

motherboard, the EGA, the MCGA, and the VGA. However, not all the routines are 

available or function identically on all computers in the IBM PC and PS/2 family. 

All information in this chapter is based on IBM technical specifications and on 

the following dated versions of the video ROM: 

IBM PC motherboard ROM: 10/27/82 

IBM PC/AT motherboard ROM: 6/10/85 

IBM PS/2 Model 30 (MCGA) ROM: 9/2/86 

IBM PS/2 Model 60 (VGA) ROM: 2/13/87 

® 

@ 

@ IBMEGA ROM: 9/13/84 

e 

@ 

e IBM PS/2 (VGA) Display Adapter ROM: 10/27/86 
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Function 0: Select Video Mode 

Caller registers: 

AH = 0 

AL = video mode number: 

OAH 

OBH 

0CH 

0DH 

OEH 

OFH 

10H 

11H 
12H 
13H 

(none) 

0040:0049 
0040:004A 

0040:004C 
0040:004E 

0040:0050 
0040:0060 
0040:0062 

0040:0063 
0040:0065 

0040:0066 

0040:0084 

40-by-25 16-color alphanumeric, color burst disabled 

40-by-25 16-color alphanumeric, color burst enabled 

80-by-25 16-color alphanumeric, color burst disabled 

80-by-25 16-color alphanumeric, color burst enabled 

320-by-200 4-color graphics, color burst enabled 

320-by-200 4-color graphics, color burst disabled 

640-by-200 2-color graphics, color burst enabled 

80-by-25 monochrome alphanumeric (MDA, Hercules, EGA, 

and VGA only) 

8 160-by-200 16-color graphics (PCjr only) 

9 320-by-200 16-color graphics (PCjr only) 

640-by-200 4-color graphics (PCjr only) 

Reserved (used by EGA BIOS function 11H) 

Reserved (used by EGA BIOS function 11H) 

320-by-200 16-color graphics (EGA and VGA only) 

640-by-200 16-color graphics (EGA and VGA only) 

640-by-350 monochrome graphics (EGA and VGA only) 
640-by-350 16-color graphics (VGA, EGA with at least 128 KB) 
640-by-350 4-color graphics (64 KB EGA) 
640-by-480 2-color graphics (MCGA, VGA only) 
640-by-480 16-color graphics (VGA only) 
320-by-200 256-color graphics (MCGA and VGA only) 

ANDNHPWNK OC 

Returned values: 

Video Display Data Area updates: 

CRT_MODE 
CRT_COLS 

CRT_LEN 
CRT_START 

CURSOR_POSN 
CURSOR_MODE 
ACTIVE_PAGE 
ADDR_6845 

CRT_MODE_SET 
CRT_PALETTE 
ROWS 
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0040:0085 POINTS 
0040:0087 INFO 
0040:0088 INFO_3 

INT 10H function 0 puts the video subsystem in the video mode you specify with 

the value in register AL. Function 0 programs the CRT Controller, selects a default 

color palette, and optionally clears the video buffer. You can modify several 

default tasks that function 0 performs by setting flags in the Video Display Data 

Area (see INT 10H function 12H) or by providing character set or palette attribute 
overrides in BIOS save areas. 

Video mode numbers 0BH and OCH are reserved for the EGA BIOS support routine 

for RAM-loadable character sets, in which video memory map 2 is selectively 

enabled so a table of character definitions can be loaded. 

On the EGA, the MCGA, and the VGA, composite video displays are not supported, 

and there is no color burst signal to control. Thus, mode 0 is the same as mode 1, 

mode 2 = mode 3, and mode 4 = mode 5. 

If you use this BIOS routine to request a video mode your system hardware does 

not support, the results are unreliable. In particular, if you select mode 7 (mono- 

chrome alphanumeric) with a CGA, the motherboard BIOS programs the CGA’s 

CRT Controller with parameters appropriate for an MDA, which results in in- 

comprehensible noise on the CGA screen. The third example below shows how to 

solve this problem by setting bits 4 and 5 of EQUIP_FLAG (0040:0010) to indicate 

which subsystem the BIOS is to use. 

On the EGA, the MCGA, and the VGA, if bit 7 of the requested video mode number 

in AL is set to 1, the video buffer is not cleared when the new video mode is 

selected. Thus, a program can alternate between two video subsystems without 

losing the contents of their video buffers. 

The following example selects 320-by-200 4-color graphics mode. 

mov ax,0004 ; AH := 0 (INT 10H function number) 

; AL := 4 (video mode number) 

int 10h 

This routine shows how to change modes on the EGA without clearing the video 

buffer. 

mov ax,QQ0EH ; select a video mode (in this case, 

; 640x200 16-color mode) 

or al,10000000b Set. bit. 7 

int 10h 

To select video modes in a system containing both a CGA and an MDA, use a 

routine such as the following. 
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mov ax,40h 

mov esS,ax 

and byte ptr es:[10h],11001111b 

or byte ptr es:[10h],00110000b 

zero bits 4 and 5 of HQUIP FLAG 

set bits 4 and 5: 

11b - monochrome 

10b. = color (80x25) 

01b - color (40x25) 

00b —- (unused) Se Ne Ne Ne Ne Oe 

mov ax,0007 

apoye — {'i(0)Is) ; select monochrome mode 7 

and byte ptr es:[10],11001111b 7 zero those bres 

or byte ptr es:[10],00100000b + batts) fom 80x25) 1Go—colvor 

mov ax,0003 

ime 41) 0h ; select 80x25 16-color mode 3 

Function 1: Set Alphanumeric Cursor Size 

Caller registers: 

AH = 1 

CH top line of cursor 

CL bottom line of cursor 

Returned values: 

(none) 

Video Display Data Area update: 

0040:0060 CURSOR_MODE 

INT 10H function 1 programs the CRT Controller to display the specified alphanu- 
meric cursor. It programs the CRT Controller’s Cursor Start and Cursor End 
registers so that the alphanumeric cursor appears between the specified lines in 
the character matrix. The contents of register CX are copied into 
CURSOR_MODE. 

If the value in CH is 20H the alphanumeric cursor is disabled. 

On the EGA and the VGA, if bit 0 of the INFO byte (0040:0087) is set to 0, the BIOS 
processes the top and bottom line values passed in CH and CL relative to an eight- 
line character matrix. Chapter 3 discusses this ‘‘cursor emulation’’ in detail. 

Use INT 10H function 1 only in alphanumeric video modes. 

To select a full-height cursor in video mode 3 (80-by-25 16-color alphanumeric 
mode) ona CGA: 

mov cx,0007h 7 CH= 0) (Geopmduime) 
* CL := 7 (bottom line of the 8x8 character matrix) 

mov ah,1 ; AH := 1 (INT 10H function number) 
Ine 0h 
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On an EGA with a 350-line monitor, video mode 3 is a 350-line alphanumeric 
mode with an 8-by-14 character matrix. Nevertheless, the above code normally 
runs unchanged in this situation, because the BIOS ‘‘emulates”’ the corresponding 
200-line CGA mode and programs the Cursor Start and End registers accordingly. 

SSS a a 

Function 2: Set Cursor Location 

Caller registers: 

AH = 2 

BH = video page 

DH = character row 

DL = character column 

Returned values: 

(none) 

Video Display Data Area update: 

0040:0050 CURSOR_POSN 

INT 10H function 2 updates the BIOS Video Display Data Area with a new cursor 

position. If the value in BH references the currently displayed video page, this 

routine also programs the CRT Controller to update the displayed cursor position. 

To set the cursor position to column 10, row 5, in 80-by-25 16-color mode: 

mov ah,2 * AH := 2 (INT 10H function number) 

mov bh,1 ; BH := video page 

mov dh,5 » DH = icow 

mov dl1,10 ; DL := column 

pe, 91 Oh 

eer rere ee 

Function 3: Return Cursor Status 

Caller registers: 

AH = 3 
BH = video page number 

Returned values: 

CH = top line of cursor 

CL = bottom line of cursor 

DH = character row 

DL = character column 
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Video Display Data Area updates: 

(none) 

INT 10H function 3 returns the character cursor location for the specified video 

page. The character row and column values are copied from CURSOR_POSN in 

the Video Display Data Area. 

The values returned in CH and CL are copied from CURSOR_MODE, also in the 

Video Display Data Area. They are meaningful only in alphanumeric modes. 

To determine the current cursor location (and size in an alphanumeric mode) in 

video page 0: 

mov ah,3 ; AH := 3 (INT 10H function number) 

mov bh,0 ; BH := 0 (video page) 

cenit ee Ot 

Function 4: Return Light Pen Position 

Caller registers: 

AH = 4 

Returned values: 

AH = 1if valid light pen position returned 

0 if no light pen position returned 

BX = pixel x-coordinate 

CH = pixel y-coordinate (CGA and EGA video modes 4, 5, and 6) 

CX = pixel y-coordinate (EGA except modes 4, 5, and 6) 
DH = character row 

DL = character column 

Video Display Data Area updates: 

(none) 

INT 10H function 4 gets the current position of the light pen from the CRT Con- 
troller’s Light Pen High and Light Pen Low registers. 

If the light pen switch is not set, or if the light pen latch has not been triggered 
(that is, if the CRTC’s Light Pen High and Light Pen Low registers do not contain 
a valid light pen address), function 4 returns 0 in register AH. Otherwise, function 
4 sets AH to 1, leaves the light pen position in registers BX, CX, and DX, and 
resets the light pen trigger. 

When function 4 returns, BX contains the calculated pixel x-coordinate at which 
the light pen was triggered. Since the CRTC returns the light pen position as a 
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byte address, the value in BX is only as accurate as the number of pixels in each 

byte of the video buffer. (In 640-by-200 2-color mode, for example, each byte of 

the video buffer represents eight pixels; function 4 therefore returns the pixel 

x-coordinates of every eighth pixel.) The light pen position is calculated relative 

to the start of the displayed portion of the video buffer (CRT_START). 

INT 10H function 4 returns the pixel y-coordinate in either CH (in the mother- 
board BIOS) or CX (in all video modes in the EGA BIOS except modes 4, 5, and 6). 

For example, in 320-by-200 4-color graphics mode, the pixel y-coordinate is al- 

ways returned in CH, but in 80-by-25 16-color alphanumeric mode, the value is 

returned in CH on a CGA but in CX on an EGA. 

The values that function 4 returns in DH and DL represent the character row and 

column at which the light pen was triggered. 

INT 10H function 4 always returns AH = 0 on the MCGA and the VGA, which do 

not support light pens. 

To determine the light pen status in any video mode, call INT 10H function 4: 

mov ah,4 ; AH := 4 (INT 10H function number) 

the 9 Oh 

For example, if you trigger the light pen near the center of the display in 640- 

by-350 16-color mode, the values returned by this function might be: 

AH = | 1 (valid light pen results were returned) 

BX = 320 (x-coordinate of first pixel at the byte address where the pen was 

triggered) 

CX = 175 (pixel y-coordinate) 

DH = 12 (character row) 

DL = 40 (character column) . 

ee ——_—_—_—_—_—_—_=ioE 

Function 5: Select Video Page 

Caller registers: 

AH = 5 
AL = video page number 

Returned values: 

(none) 

Video Display Data Area updates: 

0040:004E CRT_START 

0040:0062 ACTIVE_PAGE 
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INT 10H function 5 selects which portion of the video buffer is displayed on the 

CGA, the EGA, the MCGA, and the VGA. It works by programming the CRTC Start 

Address registers. You can use the function in 40-by-25 or 80-by-25 alphanumeric 

video modes (BIOS modes 0, 1, 2, and 3) in any of these subsystems. 

On the CGA, the entire 16 KB video buffer is used in both 320-by-200 and 640- 

by-200 graphics modes, so no video paging is possible. Calls to function 5 are ig- 

nored in these modes. 

On the MCGA, the EGA, and the VGA, video pages are available in both alphanu- 
meric and graphics modes up to the limits of video RAM. However, the BIOS rou- 

tine does not check whether video RAM is sufficient to support a requested video 

page; if the requested video page lies outside the video buffer, the resulting dis- 

play is unusable. 

The BIOS maintains a current cursor location for as many as eight video pages in 
CURSOR_POSN. When you invoke Function 5, the BIOS moves the cursor to 

where it was located the last time the requested video page was displayed. 

The following routine sets the displayed portion of the CGA’s video buffer to start 
at B800:1000 (video page 1) in 80-by-25 alphanumeric mode: 

mov ax,0501h ; AH 

o: . Puliees 

5 (INT 10H function number) 

1 (video page number) iol 

int 10h 

Function 6: Scroll Up 

Caller registers: 

AH = 6 
AL = number of lines to scroll 

BH = attribute 

CH = upper left corner row 

CL = upper left corner column 

DH = lower right corner row 

DL = lower right corner column 

Returned values: 

(none) 

Video Display Data Area updates: 

(none) 

INT 10H function 6 performs a row-by-row upward scroll of characters in a desig- 
nated area of the active video page. You specify the number of rows of characters 
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to scroll in AL. The rectangular area in which the scroll is to be performed is 

defined by its upper left corner, specified in CH and CL, and its lower right cor- 

ner, specified in DH and DL. 

The attribute you specify in BH is used for all blank lines inserted in the bottom 

of the scrolled area. In alphanumeric modes, this attribute is formatted in the 

usual manner, with the background attribute in the high nibble and the foreground 

attribute in the low nibble. In graphics modes, the format of the attribute in BH 

depends on the mode. 

In 640-by-200 2-color and 320-by-200 4-color modes, and in 640-by-480 2-color 

mode on the MCGA, the value in BH represents a 1-byte pixel pattern. The byte 

represents eight 1-bit pixels in 2-color modes or four 2-bit pixels in 320-by-200 

4-color mode. The pixel pattern is replicated throughout all lines that function 6 

blanks in the scroll area. In all other EGA, MCGA, and VGA graphics modes, the 

value in BH determines the value of all pixels in the blanked lines. 

In 320-by-200 4-color mode on the EGA, the MCGA, and the VGA, function 6 al- 

ways scrolls video page 0, regardless of which video page is currently displayed. 

Specifying 0 as the number of rows to scroll in AL causes the entire scroll area to 

be blanked. 

In 80-by-25 16-color alphanumeric mode, you can scroll the entire screen up one 

line with the following sequence: 

mov ax,601h ; AH := 6 (INT 10H function number) 

; AL := 1 (number of lines to scroll up) 

mov bh,7 ; BH := 7 (attribute) 

mov cx,0 ; CH := upper left corner: row 0 

; CL := upper left corner: column 0 

mov dx,184Fh ; DH := lower right corner: row 24 (18H) 

+ DL := lower right corner: column 79 (4FH) 

ave mee OL! 

In the same video mode, you could clear only the top three lines of the display 

with a background attribute of 1 (blue on a CGA) and a foreground attribute of 7 

(white) using this routine: 

mov ax,600h ; AH s= INT 10H function number 

* AL $= © (clear the scroll area) 

mov bh,17h ; BH := attribute (background 1, foreground 7) 

mov cx,0 ; CH,CL := upper left corner at (0,0) 

mov dx,024Fh ; DH,DL := lower right corner at (79,2) 

int 10h 

To get the same result in 640-by-350 16-color graphics mode on the EGA, you set 

the value in BH to indicate a pixel value instead of an alphanumeric attribute: 

mov ax,600h 

mov bh,1 ; BH := pixel value 

mov cx,0 

mov dx,024Fh 

amit Ola 
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In 640-by-200 2-color mode, the following call to INT 10H function 6 fills the dis- 

play with vertical stripes of alternating pixel values: 

mov ax,600h 

mov bh,10101010b ; BH := pixel pattern 

mov cx,0 

mov dx,184Fh 

shigie illo 

Function 7: Scroll Down 

Caller registers: 

AH = 7 

AL = number of lines to scroll 
BH = attribute 

CH = upper left corner row 

CL = upper left corner column 

DH = lower right corner row 

DL = lower right corner column 

Returned values: 

(none) 

Video Display Data Area updates: 

(none) 

INT 10H function 7 performs a row-by-row downward scroll of characters in a 
designated area of the active video page. Except for the direction of the scroll, 
this BIOS function is identical to function 6. 

Ss 

Function 8: Return Character Code and Attribute at Cursor 

Caller registers: 

AH@=s8 

BH = video page 

Returned values: 

AH 
AL 

ll attribute (alphanumeric modes only) 
ASCII code 

Video Display Data Area updates: 

(none) 
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INT 10H function 8 returns the ASCII code of the character at the current cursor 

position in the video page that BH specifies. In alphanumeric modes, this is done 

by reading a single word from the video buffer. In graphics modes, the routine 

compares the character matrix at the cursor position to the bit patterns in the cur- 

rent graphics character definition table. 

In graphics modes, the PC/XT and PC/AT BIOS uses the ROM character definitions 

at FO00:FA6E; the EGA, MCGA, and VGA BIOS uses the definitions designated by 

the interrupt 43H vector. For ASCII codes 80-OFFH in CGA-compatible graphics 

modes 4, 5, and 6, the BIOS uses the characters defined in the table indicated by 

the interrupt 1FH vector. 

To determine the character code for a character in a graphics mode, the BIOS rou- 

tine regards nonzero pixels as foreground pixels. It is the pattern of foreground 

(nonzero) and background (zero) pixels that is compared to the bit patterns in the 

table. If the pixel pattern in the video buffer matches a bit pattern in the character 

definition table, the BIOS determines the character’s ASCII code from the bit pat- 

tern’s location in the table. If the pixel pattern in the video buffer does not match 

any bit pattern in the table, the BIOS routine returns 0 in AL. 

In 320-by-200 4-color mode on the EGA, the MCGA, and the VGA, this function 

works properly only in video page 0. 

The following code fragment reads the character in the screen’s upper left corner: 

mov ah,OFh ; AH := OFH (INT 10H function number) 

ant Oh ; leaves BH = active video page 

mov ah,2 > AH := 2 (INT 10H function number) 

mov dx,0 ; DH,DL v= row 0, column 0 

Tite 1 Ob * sets cursor position to (07,0) 

mov ah,8 ; AH := 8 (INT 10H function number) 

imc 10h ; leaves AL = ASCII code 

Function 9: Write Character and Attribute at Cursor 

Caller registers: 

AH = 9 
AL = ASCII code 

BH = background pixel value (320-by-200 256-color mode) or video page (all 

other modes) 

BL = foreground pixel value (graphics modes) or attribute value (alphanu- 

meric modes) 

CX = repetition factor 

Returned values: 

(none) 
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Video Display Data Area updates: 

(none) 

INT 10H function 9 writes a character one or more times into the video buffer 
without moving the cursor. You must specify a repetition factor of 1 or greater in 

CX. The BIOS writes a string composed of the character in AL into the buffer. The 

length of the string is determined by the repetition factor in CX. 

In alphanumeric modes, both the ASCII code and the corresponding attribute byte 

are updated for each character written into the video buffer. In graphics modes, 
each character is written into the buffer in a rectangular area the size of the char- 

acter matrix. The value in BL is used for the character’s foreground pixels. In 320- 

by-200 256-color graphics mode, the value in BH specifies the character’s back- 

ground pixel value; in all other graphics modes, BH designates a video page, so 

the character’s background pixels are 0. In all graphics modes except 320-by-200 

256-color mode, the character is XORed into the buffer if bit 7 of BL is set to 1. 

INT 10H function 9 does not compare the repetition factor with the number of dis- 

played character columns. In alphanumeric modes, this may not matter; the video 

buffer map is such that a string too long to be displayed in one row of characters 

wraps to the next row. In graphics modes, however, a string should be no longer 

than the remainder of the current character row. 

You must specify a video page in register BH in alphanumeric modes as well as in 
native EGA graphics modes, but the value in BH is ignored by the EGA, the 
MCGA, and the VGA BIOS in 320-by-200 4-color graphics mode. 

The following routine writes a string of 20 asterisks to the upper left corner of the 
display in 80-by-25 16-color mode. The foreground value in each character’s attri- 
bute byte is set to 7, and the background value is set to 1. The cursor is positioned 
with a call to INT 10H function 2 before the string is written with function 9. 

mov ah,2 ; AH := 2 (INT 10H function number) 
mov bh,0O ; BH := video page 
mov dx,0 * DH := cursor row 

7 DL := cursor column 
int) 0h 7 set cursor position to (0,0) 
mov ah,9 7 AH := 9 (INT 10H function number) 
mov al,'*' 7 AL := ASCII code 
mov bl,17h ; BL := attribute byte 
mov cx, 20 ; CX := repetition factor 
aioe {Ola 

ee 

Function 0AH: Write Character(s) at Cursor Position 

Caller registers: 

AH = OAH 

AL = ASCII code 
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BH 

other modes) 

BL 

Returned values: 

(none) 

Video Display Data Area updates: 

(none) 

background pixel value (320-by-200 256-color mode) or video page (all 

foreground pixel value (graphics modes only) 
CX = repetition factor 

INT 10H function OAH is the same as INT 10H function 9, with this exception: In 

alphanumeric video modes, only the character code is written into the video 

buffer. The character’s attribute remains unchanged in the buffer. 

This example clears one character row from the cursor position to its end. Before 

calling function OAH, the example determines the active video page and the num- 

ber of displayed character columns with a call to INT 10H function OFH, and the 

cursor position using INT 10H function 3. 

mov 

int 

mov 

xor 

push 

mov 

int 

pop 

sub 

xor 

mov 

int 

ah, OFh 

10h 

al,ah 

ah,ah 

ax 

ah, 3 

10h 

Cx 

erat 

blip pl 

ax, OA20h 

10h 

, 

, 

, 

Re Ne Ne Ne Ne Ne Ne 

AH := OFH (INT 10H function number) 

leaves AH number of columns, 

BH active video page 

AX := number of columns 

AH := 3 (INT 10H function number) 

leaves DH,DL = cursor position 

CX := displayed character columns 

CX := number of remaining chars in line 

BL := foreground pixel value 

AH := OAH (INT 10H function number) 

AL := 20H (ASCII blank character) 

eee aaa eee eee eee a eee eee cena nese nn ee I AED 

Function 0BH: Set Overscan Color, Select 4-Color Palette 

Caller registers: 

AH = OBH 
0 to set border or background color 

1 to select 4-color palette 

color value (if BH = 0) 

palette value (if BH = 1) 

BH 

BL 

Returned values: 

(none) 
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Video Display Data Area update: 

0040:0066 CRT_PALETTE 

INT 10H function 0BH comprises two subfunctions selected according to the value 

in BH. Function OBH is intended for use only in 320-by-200 4-color mode and in 

CGA alphanumeric modes, but you can use it with caution in other video modes. 

BH=0 
When BH = 0 on the CGA and the MCGA, the BIOS loads the low-order five bits of 

the value in BL into the Color Select register (3D9H). In 320-by-200 4-color 

graphics mode, bits 0-3 determine the background color (the color displayed for 

pixels of value 0) as well as the border color. In 640-by-200 and 640-by-480 2-color 

modes, bits 0—3 specify the color of foreground (nonzero) pixels. On the CGA, 

these same four bits also determine the border color in alphanumeric modes. 

Bit 4 of the Color Select register selects between normal and high-intensity colors 

in CGA and MCGA graphics modes (see Chapter 4). For compatibility, the BIOS 

for the EGA and the VGA emulates this effect by using a palette of high-intensity 

colors when bit 4 of BL is set. 

In 200-line modes on the EGA and VGA, the value in BL is placed in the Attribute 

Controller’s Overscan Color register (11H). This sets the border color. If either 

subsystem is in a graphics mode, the same value is also stored in palette register 

0. This establishes the same color for all pixels of value 0. 

Don’t use function 0BH with BL = 0 in other EGA and VGA video modes. In some 

modes, the BIOS routine stores incorrect color values in the Palette and Overscan 

registers, while in others it does nothing at all. You should use INT 10H function 

10H to program the Attribute Controller on the EGA and VGA. 

Once the color register or Attribute Controller has been programmed, the BIOS 

routine copies bit 5 of CRT_PALETTE in the Video Display Area to bit 0 of regis- 

ter BL, and transfers control to the routine for BH = 1. 

BH=1 

When BH = 1, the low-order bit of the value in BL determines which of two 
4-color palettes is used for 320-by-200 4-color mode (see Figure A-12). On the 
CGA and the MCGA, this bit is copied into bit 5 of the Color Select register 
(3D9H). On the EGA and the VGA, the bit determines which set of color values is 
loaded into the Attribute Controller’s Palette registers. The colors correspond to 
the CGA’s 320-by-200 4-color palettes. (See Chapter 4 for more details.) 
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Pixel Value 

(bit 0 of BL = 0) Color Displayed 

1 Green 

2 Red 

3 Yellow 

Pixel Value 

(bit 0 of BL = 1) Color Displayed 

1 Cyan 
2 Violet 
3 White 

Figure A-12. Function OBH 4-color palettes. 

Function 0BH with BH = 1 has no effect in alphanumeric modes. In graphics 

modes other than 320-by-200 4-color mode, however, the Color Select register (on 

the CGA and the MCGA) is loaded or the palette registers (on the EGA and the 

VGA) are updated as if 320-by-200 4-color mode were in effect. For this reason, 

you should use this subfunction cautiously in graphics modes other than 320- 

by-200 4-color mode. 

The following example has three different effects, depending on the current video 

mode. In 200-line alphanumeric modes, it sets the border color; in 320-by-200 

4-color mode it sets both border and background colors; and in CGA or MCGA 

2-color graphics modes, it sets the foreground color. 

mov ah,0OBH ; AH := OBH (INT 10H function number) 

mov bh,0 ; BH := subfunction number 

mov bl,BorderColor ; BL := color value 

ane 90h 

To select a 4-color palette in 320-by-200 4-color mode, call function OBH with 

BH = 1: 

mov ah,OBh 

mov bh,1 ; BH := subfunction number 

mov bl,0 ; bit 0 of BL := 0 (red-green-yellow palette) 

int 10h 

In 320-by-200 4-color mode, select a high-intensity set of colors by calling func- 

tion OBH with BH = 0 and with bit 4 of BL set to 1: 

mov ah,OBh 

mov bh,0 

mov bl1,10h ; bit 4 selects high-intensity palette 

; bits 3-0 select border/background color 

int 10h 
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Function 0CH: Store Pixel Value 

Caller registers: 

AH = OCH 
AL = pixel value 

BH = video page 

CX = x-coordinate 

DX = y-coordinate 

Returned values: 

(none) 

Video Display Data Area updates: 

(none) 

INT 10H function 0CH updates the value of a pixel at a specified location in the 

video buffer. In all graphics modes except 320-by-200 256-color mode, if the high- 

order bit of the value in AL is set to 1, the value in AL is XORed into the video 

buffer. Otherwise, the value in AL becomes the pixel’s new value. 

On the EGA, the MCGA, and the VGA, the value in BH is used to select among 

available video pages in the current video mode. However, the value in BH is ig- 

nored in 320-by-200 4-color mode. 

To set the value of a pixel in a 350-line graphics mode on an EGA with only 64 KB 

of video RAM, you must account for the chaining of memory maps to bit planes 

(as discussed in Chapter 4). In this situation, the BIOS routine expects you to spec- 

ify the pixel value in AL using only its odd-numbered bits. Thus, the four possible 

pixel values should be specified as 0 (0000B), 1 (0001B), 4 (0100B), and 5 (0101B) 

instead of 0, 1, 2, and 3. 

The following routine shows how you would set the value of the pixel at (200,100) 
to 1 in any graphics mode: 

mov ah,OCh ; AH := OCH (INT 10H function number) 

mov al,1 ; AL := pixel value 

mov cx,200 ; CX += x-coordinate 

mov dx,100 ; DX := y-coordinate 

Bot) SaeeathO hn 

To XOR a pixel value into the video buffer, set bit 7 of AL to 1 before executing 
interrupt 10H, as in the following procedure: 

mov ah,0OCh 

mov al,1 

mov cx,200 

mov dx,100 

or al,10000000b ; set bit 7 to indicate xXoOR 
Sore IeOsIa 
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This code fragment illustrates the special situation that arises in a 350-line video 
mode on an IBM EGA with only 64 KB of video RAM. The code sets the value of 

the pixel at (75,50) to 3. 

mov ah,O0OCh 

mov al,0101b ; AL := pixel value of 3 (11B) 

7 represented in odd bits only 

mov —Gx, 75 

mov dx,50 

ine, Oh 

Function 0DH: Return Pixel Value 

Caller registers: 

AH = ODH 

BH = video page 

CX = x-coordinate 

Dx y-coordinate 

Returned values: 

AL = pixel value 

Video Display Data Area updates: 

(none) 

INT 10H function ODH returns the value of a pixel at a specified location in the 

video buffer. 

On an EGA in 320-by-200 4-color mode, the function ignores the video page value 

specified in BH. 

IBM’s EGA BIOS (9/13/84 version) contains a bug in INT 10H function ODH. In 

350-line graphics modes on an IBM EGA with only 64 KB of video RAM, the value 

returned in AL is incorrect. Apparently, the BIOS routine calculates the pixel’s 

byte offset in the video buffer without properly accounting for the mapping of 

even addresses to even bit planes and odd addresses to odd bit planes. 

To determine the value of the pixel at (100,100), you could execute the following 

sequence of instructions: 

mov ah,ODh ; AH := ODH (INT 10H function number) 

mov bh,0O ; BH := video page (0 in this example) 

mov cx,100 * CX 3= xX-coordinate 

mov dx,100 ; DX := y-coordinate 

int 10h ; leaves AL = pixel value 
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Function 0EH: Display Character in Teletype Mode 

Caller registers: 

AH = OEH 
AL = ASCII code 

BH video page (PC BIOS versions dated 10/19/81 and earlier) 

BL foreground pixel value (graphics modes only) 

Returned values: 

(none) 

Video Display Data Area update: 

0040:0050 CURSOR_POSN 

INT 10H function OEH calls INT 10H function OAH to display the character you 

pass in register AL. Unlike function OAH, however, function 0EH moves the cur- 

sor, and ASCII codes 7 (bell), 8 (backspace), ODH (carriage return), and OAH 

(linefeed) are treated as cursor control commands instead of displayable charac- 

ters. Function OEH always updates the active (currently displayed) video page 

except as noted above. 

If the character is displayed in the rightmost character column, function 0EH ad- 

vances the cursor to the start of the next character row. If necessary, function 0EH 

calls INT 10H function 06H to scroll the screen. In alphanumeric modes, the at- 

tribute of the displayed character is used for the scroll. In graphics modes, the 
scroll attribute is always 0. 

In alphanumeric modes, the attribute byte at the position where the character is 

written determines the character’s foreground and background attributes. For this 

reason, you should probably fill the video buffer with the desired alphanumeric 

attributes before using function 0EH. 

In graphics modes, the character is written into the video buffer in a rectangular 

area the size of the character matrix. The character’s pixels have the value BL 

specifies, and the remaining background pixels have a value of 0. Because the 
value in BL is passed through to INT 10H function OAH, you can set bit 7 so that 
the character is XORed into the video buffer. 

NOTE: Unfortunately, function 0EH does not expand tab characters (ASCII code 
9) into blanks. 
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The following routine shows how you might use function 0EH to display a string 
of characters. 

mov cx,StringLength ; CX := number of bytes in string 
Jiexz 02 # do nothing if null string 
mov si,StringAddr 7 DSsSil s= address! of string 
mov bl,GraphicsAttribute ; BL := attribute (graphics modes only) 

L01: lodsb ; AL := next character in string 
mov ah,0OEh ; AH := OEH (INT 10H function number) 
int 10h 

loop L01 

L02: P 

a ne er ne al ee | 

Function 0FH: Return Current Video Status 

Caller register: 

AH = OFH 

Returned values: 

AH = number of displayed character columns 

AL = video mode number 

BH = active video page 

Video Display Data Area updates: 

(none) 

INT 10H function OFH returns information about the current video mode and the 

width of the displayed portion of the video buffer. The number of character col- 

umns (returned in AH) and the number of the current video page (returned in BH) 

are copied from CRT_COLS and ACTIVE_PAGE in the Video Display Data Area. 

The value returned in AL is copied from CRT_MODE in the Video Display Data 

Area. It corresponds to the video display modes tabulated for function 0. On the 

EGA and the VGA, bit 7 of the value in AL is derived from bit 7 of the INFO byte. 
(INT 10H function 0 sets bit 7 of the INFO byte whenever you use function 0 to 

select a video mode without clearing the video buffer.) 

This example shows how to determine the current position of the displayed cur- 

sor. Before calling INT 10H function 3 to find out the cursor position, the example 

uses function OFH to determine the currently displayed video page. 

mov ah,OFh ; AH := OFH (INT 10H function number) 

int 10h ; leaves BH = active video page 

mov ah,3 ; AH := 3 (INT 10H function number) 

int 1,0h ; leaves DH,DL = cursor position 
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Function 10H: Set Palette Registers, Set Intensity/Blink Attribute 

Caller registers: 

AH = 10H 

Update a specified palette register: 

AL = 0 
BH color value 
BL palette register number 

Specify the overscan (border) color: 

AL = 

BH = color value 

Update all 16 palette registers plus the Overscan register: 

AL ae 
ES:DX address of 17-byte table 

Select Background Intensity or Blink attribute: 

AL = 3 

BL = 0 for background intensity (blink disabled) 

= 1 for blink 

Read a specified palette register: 

AL mal 

BL = palette register number 

Returned value: 

BH = contents of specified palette register 

Read the contents of the Overscan register: 

AL as 

Returned value: 

BH = contents of Overscan register 

Read all 16 palette registers plus the Overscan register: 

AL = 9 

ES:DX address of 17-byte table 

Returned values: 

Bytes 00H through OFH of table contain palette register values. 
Byte 10H of table contains Overscan register value. 
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Update the specified video DAC Color register: 

AL = 10H 

BX = color register number 

CH = green value 

CE = blue value 

DH = red value 

Update a block of video DAC color registers: 

AL = 12H 
BX = first register to update 

CX = number of registers to update 

ES:DX = address of table of red-green-blue values 

Set Attribute Controller Color Select State: 

AL = 13H 

BL 0 to set Mode Control register bit 7, 1 to set Color Select register 

BH value for bit 7 (if BL = 0) or value for Color Select register 

Gf BL=1) 

Read specified video DAC Color register: 

AL = 15H 
BX = color register number 

Returned values: 

CH = green 

CL = blue 

DH = red 

Read a block of video DAC color registers: 

AL =i itt 
BX = first register to read 

CX = number of registers to read 

ES:DX = address of table of red-green-blue values 

Returned values: 

Bytes 0 through 3n — 1 (where n is the number of registers passed in CX) contain 

the red-green-blue values read from the specified block of color registers. 

Update video DAC Mask register: 

AL seer 

BL new mask value iH] 
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Read video DAC Mask register: 

AL elon 

Returned value: 

BL = value read from video DAC Mask register 

Read Attribute Controller Color Select register: 

AL PWN S| 

Returned values: 

BL = bit 7 of Mode Control register 

BH bits 2 through 3 of Color Select register (if BL = 0) 

bits 0 through 3 of Color Select register (if BL = 1) 

Perform gray-scaling on a block of video DAC color registers: 

AL = 1BH 
BX first color register in block 

CX number of color registers 

Video Display Data Area updates: 

0040:0065 CRT_MODE_SET 

0040:0066 CRT_PALETTE 

INT 10H function 10H exists only in the EGA, MCGA, and VGA BIOS. The function 

comprises 16 subfunctions that are selected according to the value in AL. Figure 

A-13 shows the support that the various subsystems provide for these subfunc- 

tions. All subfunctions work in both alphanumeric and graphics modes. 

Subfunctions 0 through 9 support attribute and palette programming. Subfunc- 

tions 10H through 1BH support the video DAC on the MCGA and the VGA. 

AL=0 
When AL = 0 on the EGA and the VGA, function 10H updates the value in one of 
the palette registers in the Attribute Controller. The routine loads the value in BH 

into the register that BL specifies. 

Although this subfunction’s intended purpose is to load a color value into a 

palette register, the BIOS routine does not validate the register number in BL. 

Thus, you can also use it to update the Attribute Controller’s Mode Control, Over- 

scan, Color Plane Enable, and Horizontal Pel Panning registers. 

On the MCGA, when BH = 7 and BL = 12H, the BIOS routine sets bit 3 of the Video 

DAC Mask register (3C6H) to 0. This causes the BIOS to regard bit 3 of all 4-bit 

pixel values or alphanumeric attributes as a ‘‘don’t care’’ bit in reference to the 

Video DAC color registers, so only the first eight registers can be referenced. This 

is useful in displaying two 256-character sets in an alphanumeric mode (see Chap- 

ter 10). The MCGA BIOS ignores all other values in BH or BL. 
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Subfunction EGA MCGA VGA ee a ew se 
0 X X : 
1 x 7 
2, X x 

3 xX X x 

4 (reserved) 

5 (reserved) 

6 (reserved) 

7 X 
8 X 
9 x 

10H x x 

11H (reserved) 
12H x x 
13H x 

14H (reserved) 
15H x x 

16H (reserved) 

17H x % 

18H x x 

19H x x 

1AH ys 
1BH Xs x 

Figure A-13. NT JOH Function 10H support in EGA, MCGA, and VGA BIOS. 

AL=1 

When AL = 1 on the EGA and the VGA, the BIOS copies the value in BH into the 

Attribute Controller’s Overscan register (11H). 

AL=2 

When AL = 2 on the EGA and the VGA, the BIOS expects ES:DX to contain the ad- 

dress of a 17-byte table of values for the 16 Palette registers (bytes 0 through 15) 

and for the Overscan register (byte 16). The routine copies these values into the 

corresponding registers in the Attribute Controller. 

AL=3 

When AL = 3 on the EGA and the VGA, the value in BL determines the value of bit 

3 of the Attribute Controller’s Mode Control register (10H). If BL = 0, bit 3 of the 

Mode Control register value is set to 0, disabling the blinking attribute. If BL is 1, 

bit 3 is set to 1 to enable blinking. 

When AL = 3 on the MCGA, bit 5 of the Color Control register (3D8H) is set to 

reflect the value in BL. If BL = 0, bit 5 is set to 0 to disable blinking. If BL is 1, 

bit 5 is set to 1. 
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AL=7 
? 

When AL =7 on the VGA, the value in the Attribute Controller Palette register 

that BL specified is returned in BH. Because the BIOS does not check the specified 

register number, this subfunction may be used to return the contents of any VGA 

Attribute Controller register. 

AL=8 

When AL = 8 on the VGA, the contents of the Attribute Controller’s Overscan 

register are returned in BH. 

AL=9 
When AL = 9 on the VGA, the contents of all 16 palette registers and the Overscan 

register are returned to a 17-byte table whose address was passed to the BIOS in 

the register pair ES:DX. 

AL=10H 
When AL = 10H on the MCGA and the VGA, the video DAC color register that BX 

specifies is updated with the red, green, and blue values specified in DH, CH, and 

CL. Only the low-order six bits of each of the three color values are significant. 

If gray-scale summing is enabled, the value stored in the color register is the 

gray-scale value that corresponds to the specified color values (see INT 10H func- 

tion 12H with BL = 33H). 

AL =12H 
When AL = 12H on the MCGA and the VGA, a block of consecutive video DAC 

color registers is updated from the table whose address is passed in ES:DX. The 

value in BX (00H through OFFH) indicates the first color register to update, and 

CX contains the number of registers affected. The BIOS routine performs no error 

checking; if the sum of the values in BX and CX is greater than 256 (100H), the 

routine wraps around and updates the first color register(s) in the video DAC. 

If gray-scale summing is enabled, the values stored in the color registers are the 

gray-scale values that correspond to the color values in the table (see INT 10H 

function 12H with BL = 33H). 

You must format the table in three-byte groups. Each group must contain a red 

color value in the first byte, a green value in the second byte, and a blue value in 

the third byte. Only the low-order six bits of each color value are significant. 

AL=13H 

On the VGA, when AL = 13H, the ROM BIOS updates the Attribute Controller’s 

Mode Control register (10H) and the Color Select register (14H) to enable group- 
ing of the 256 video DAC color registers into blocks of 16 or 64 registers each, as 
discussed in Chapter 3. 

When BL = 0, the BIOS uses the value passed in BH to update bit 7 of the Mode 
Control register. When BH = 1, bit 7 is set to 1. This causes the BIOS to use bits 0 
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and 1 of the Color Select register in place of bits 4 and 5 of the palette register 

values. When BH = 0, bit 7 is set to 0, and all six low-order bits of the values in 

the palette registers are significant. 

When BL = 1, the value in BH is stored in the appropriate bit field in the Color 
Select register. If bit 7 of the Mode Control register is 1, bits 0 through 3 of the 

value in BH are copied into bits 0 through 3 of the Color Select register. If bit 7 of 

the Mode Control register is 0, bits 0 through 1 of BH are copied into bits 2 

through 3 of the Color Select register. 

AL = 15H 
When AL = 15H on the MCGA and the VGA, the contents of the video DAC color 

register specified in BX are returned in registers DH (red), CH (green), and CL 

(blue). Only the low-order six bits of each of the color values are significant. 

AL=17H 
When AL = 17H on the MCGA and the VGA, the values from a block of adjacent 

video DAC color registers are copied to the table whose address is passed in 

ES:DX. The value in BX (00H through OFFH) indicates the first color register to be 

read, and CX contains the number of registers affected. The BIOS routine per- 

forms no error checking; the sum of the values in BX and CX should not exceed 

256 (100H). 

The table must contain three bytes for every color register read. Color values for 

each register are stored sequentially in the table in three-byte groups. The first 

byte of each group contains the color register’s red value, the second its green 

value, and the third its blue value. 

AL=18H 

On the MCGA and the VGA, when AL = 18H, the value in BL is copied into the 

video DAC Mask register (3C6H). 

AL=19H 

On the MCGA and the VGA, when AL = 19H, the value in the video DAC Mask 

register (3C6H) is returned in BL. 

NOTE: The BIOS on the VGA Adapter does not support subfunctions 18H and 19H. 

Also, IBM’s BIOS Interface Technical Reference does not document these sub- 

functions, so they might not be supported in future BIOS releases. 

AL=1AH 

On the VGA, when AL = 1AH, the current values of bit 7 of the Attribute Con- 

troller’s Mode Control register (10H) and bits 0 through 3 of the Color Select 

register (14H) are returned in BL and BH respectively. If bit 7 of the Mode Control 

register is 1, the value in BH represents bits 0 through 3 of the Color Select regis- 

ter. If bit 7 of the Mode Control register is 0, only bits 2 through 3 are returned as 

bits 0 through 1 of BH. 
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AL =1BH 
On the MCGA and the VGA, when AL = 1BH, gray-scale summing is performed on 

a block of consecutive video DAC color registers. BX indicates the first color 

register affected. CX specifies the number of registers to update. 

The following example uses INT 10H function 10H to update the color value ina 

single palette register: 

mov ax,1000h ; AH := 10H (INT 10H function number) 

; AL := 0 

mov bh,6 ; BH := new color value (yellow) 

mov bl,7 ; BL := palette register number 

stave, {NO)at 

To update the Overscan register and change the displayed border color, call func- 

tion 10H with AL = 1: 

mov ax,1001h ; AH := 10H 

MmALSS=F 1 

mov bh,1 ; BH := color value for overscan 

stage ist 

To load all 16 palette registers and the Overscan register from a table, call func- 
tion 10H with AL = 2: 

mov ax,1002h ; AH := 10H 

mov dx,seg PaletteTable 

mov es,dx 

mov dx,offset PaletteTable ; ES:DX -> table of palette register values 
aoe UDI 

PaletteTable db 00h, 01h, 02h, 03h, 04h,05h,06h,07h ; palette registers 0-7 
db 38h, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh ; palette regs 8-OFH 
db 00h ; Overscan reg 

To disable the blinking attribute, call function 10H with AL = 3 and BL= 0: 

mov ax,1003h ; AH := 10H 

; AL := 3 
mov bil, 0 ; BL := 0 (disable blinking) 
Ine Oh 

The following fragment performs gray-scale summing on the first 16 video DAC 
color registers. The remaining 240 registers are unaffected. 

mov ax,101Bh ; AH := 10H 

7 AL := 1BH 

mov bx,0 ; BX := first color register affected 
mov — ex, 1'6 

int 10h 
7, Chay number of color registers 
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Function 11H: Character Generator Interface 

Caller registers: 

AH = 11H 

Load alphanumeric character definitions. 

User-specified character definition table: 
AL = 0 
BH = points (bytes per character definition) 
BL = table in character generator RAM 
CX = number of characters defined in table 
DX = ASCII code of first character defined 
ES:BP = address of user-specified table 

ROM BIOS 8-by-14 character definitions: 
AL = 1 

BL = table in character generator RAM 

ROM BIOS 8-by-8 character definitions: 

AL = 52 

BL = table in character generator RAM 

ROM BIOS 8-by-16 character definitions: 

AL a 

BL = table in character generator RAM 

Select displayed character definition tables. 

AL = 3 

BL value for Character Map Select register (EGA, VGA) 

character generator RAM table numbers (MCGA) 

Load alphanumeric character definitions and program the CRT Controller. 

User-specified character definition table: 

AL = 10H 

BH = points 
BL = table in character generator RAM 

CX = number of characters defined in table 

DX = ASCII code of first character defined 

ES:BP = address of user-specified table 

ROM BIOS 8-by-14 character definitions: 

AL = 11H 
BL = table in character generator RAM 
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ROM BIOS 8-by-8 character definitions: 

AL = 124 
BL = table in character generator RAM 

ROM BIOS 8-by-16 character definitions: 

AL = 14H 
BL = table in character generator RAM 

Load graphics character definitions. 

User-specified 8-by-8 character definition table for interrupt 1FH vector: 

AL = 20H 
ES:BP = address of user-specified character definition table 

User-specified character definition table: 

AL = 21H 

BL = 0 (character rows per screen specified in DL) 

1 14 character rows per screen 

2 25 character rows per screen 

3 43 character rows per screen 

CX = points (bytes per character definition) 

DL = character rows per screen (when BL = 0) 

ES:BP = address of user-specified character definition table 

ROM BIOS 8-by-14 character definitions: 

AL =22H 

BL = character rows per:screen (as above) 

DL = (as above) 

ROM BIOS 8-by-8 character definitions: 

AL =. 23H 

BL = character rows per screen (as above) 

DL = (as above) 

ROM BIOS 8-by-16 character definitions: 
AL = 24H 
BL = character rows per screen (as above) 
DL = (as above) 

Get current character generator information. 

AL = 30H 
BH 0 Contents of interrupt 1FH vector 

Contents of interrupt 43H vector 
Address of ROM 8-by-14 character table 
Address of ROM 8-by-8 character table 
Address of second half of ROM 8-by-8 character table 
Address of ROM 9-by-14 alternate character table 
Address of ROM 8-by-16 character table 
Address of ROM 9-by-16 alternate character table 

I 

NADU WN = 
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Returned values: 

CX = POINTS (height of character matrix) 

DL ROWS (displayed character rows — 1) 

ES:BP address of character definition table 

Video Display Data Area updates: 

0040:004C CRT_LEN 
0040:0060 CURSOR_MODE 
0040:0084 ROWS 
0040:0085 POINTS 

INT 10H function 11H comprises a gamut of subfunctions that support both the 

alphanumeric and the graphics character generators on the EGA, the MCGA, and 

the VGA. You choose a subfunction with the value you specify in AL. The con- 

tents of the other registers depend on the subfunction. 

AL=0,1,2,or4 

You can use subfunctions 0, 1, 2, and 4 to load a table of character definitions into 

video RAM for use by the character generator. (Chapter 10 describes this in 

detail.) All four subfunctions are available on the VGA. On the EGA, the BIOS 

ignores subfunction 4. The MCGA BIOS does not contain an 8-by-14 character 

definition table, so calls with AL = 1 are treated as calls with AL = 4. 

On the MCGA, character definitions in character generator RAM are not displayed 

until they are loaded into the character generator’s internal font pages (see Chap- 

ter 10). To accomplish this through the video BIOS, follow each call to function 

11H performed with AL = 0, 1, 2, or 4 with a call to function 11H with AL = 3. 

The MCGA’s CRTC can only display characters that are 2, 4, 6, 8, 10, 12, 14, or 16 

lines high. Thus, BH should specify one of these values. Also, for compatibility 

with the VGA BIOS, the MCGA BIOS routine extends character definitions for 14- 

line characters into definitions for 16-line characters by duplicating the 14th line 

of each character definition. 

AL=3 
On the EGA and the VGA, when AL = 3, function 11H loads the value passed in BL 

into the Sequencer’s Character Map Select register. On the EGA and the MCGA, 

bits 0 and 1 of BL indicate which of four 256-character tables is used when bit 3 of 

a character’s attribute byte is 0. Bits 2 and 3 of BL indicate which table is used 

when bit 3 of a character’s attribute is 1. On the VGA, bits 0, 1, and 4 specify one 

of eight tables to be used when a character’s attribute bit 3 is 0, and bits 2, 3, and 5 

specify the table used when attribute bit 3 is 1. 

If both bit fields in BL specify the same character definition table, only that table 

is loaded and displayed. 
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AL = 10H, 11H, 12H, or 14H 
Subfunctions 10H, 11H, 12H, and 14H are analogous to subfunctions 0, 1, 2, and 4 

in that they load an alphanumeric character definition table into video RAM. The 

difference is that, for these subfunctions on the EGA and the VGA, the BIOS repro- 

grams the CRT Controller to accommodate the height of the character matrix. On 

the MCGA, calls to function 11H with AL = 10H, 11H, 12H, and 14H are treated as 

calls to functions 0, 1, 2, and 4 respectively. 

NOTE: Disable alphanumeric cursor emulation before using these subfunctions on 

the EGA. The EGA BIOS cursor emulation routine does not always produce a 

satisfactory alphanumeric cursor. (Chapter 3 discusses this in detail.) 

AL =20H 

If AL = 20H, the address in ES:BP is copied into the interrupt 1FH vector at 

0000:007C. This vector points to a table of 8-by-8 character definitions for ASCII 

codes 80H through FFH. This character definition table is used by the BIOS in 

CGA-compatible 320-by-200 4-color and 640-by-200 2-color graphics modes. 

AL = 21H, 22H, 23H, or 24H 
Subfunctions 21H, 22H, 23H, and 24H make a character definition table accessible 
to the BIOS graphics-mode character generator. They are analogous to subfunc- 
tions 0, 1, 2, and 4 respectively. The BIOS updates the interrupt 43H vector and the 
Video Display Data Area variables POINTS and ROWS with values that describe 
the specified graphics character definitions. 

The BIOS does not reprogram the CRT Controller when it loads graphics-mode 
character definition tables. 

AL =30H 
If AL = 30H, INT 10H function 11H returns information about the BIOS character 
generator’s current status. The value in POINTS in the Video Display Data Area is 
copied into register CX, the value of ROWS is returned in DL, and the address of 
one of eight character definition tables is returned in ES:BP. The value in BH indi- 
cates which table’s address is returned. 

NOTE: If you call this subfunction on the EGA with BH equal to 6 or 7, or on the 
MCGA with BH equal to 5 or 7, the address returned in ES:BP is undefined. 

To select an 80-by-43 alphanumeric mode on a 350-line display, invoke INT 10H 
function 11H to load the ROM 8-by-8 character set and reprogram the CRTC to 
display 43 character rows. (Dividing 350 lines by 8 lines per character gives 43 
character rows.) The following example assumes that the EGA is already in an 
80-by-25 alphanumeric mode (BIOS mode number 3 or By. 

mov ax,40h 

mov eS,ax 
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push es: [87h] 

or byte ptr es:[87h],1 

mov ax,1112h 

mov bl,0 

ante. 10h 

pop es: [87h] 

7; preserve INFO 

; disable cursor emulation 

; AH := 11H (INT 10H function number) 

; AL := 12H (subfunction: load 8x8 

alphanumeric characters, reprogram CRTC) 

; BL := table 0 in character generator RAM 

; restore INFO 

Function 12H: Video Subsystem Configuration (Alternate Select) 

Caller registers: 

AH = 12H 

Return video configuration information: 

BL = 10H 

Returned values: 

BH = default BIOS video mode 

0 Color 

1 Monochrome 

BL = amount of EGA video RAM 

0 64KB 

1 128KB 

2 192 KB 

3 256 KB 

CH = feature bits 

CL = configuration switch setting 

Select alternate Print Screen routine: 

BL = 20H 

Select scan lines for alphanumeric modes: 

BL = 30H 

AL = Q 200 scan lines 

1 350 scan lines 

2 400 scan lines 

Returned value: 

AL mei 

Select default palette loading: 

BL = sont 

AL 0 Enable default palette loading 

1 Disable default palette loading 
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Returned value: 

AL = 12H 

CPU access to video RAM: 

BL = 32H 

0 Enable CPU access to video RAM and J/O ports 

1 Disable CPU access to video RAM and I/O ports 
AL 

Returned value: 

Ale een 

Gray-scale summing: 

BL 33H 

AL 0 Enable gray-scale summing 

1 Disable gray-scale summing 

Returned value: 

AL eee 

Cursor emulation: 

BL = 34H 

AL OQ Enable cursor emulation 

1 Disable cursor emulation 

Returned value: 

AL = 12H 

PS/2 video display switching: 

BL 35H 

AL 0 Initial adapter video off 

1 Initial planar video on 

2 Switch active video off 

3 Switch inactive video on 
ES:DX = address of 128-byte save area (for AL = 0, 2, or 3) 

Returned value: 

AL =e LOE 

Video refresh control: 

BL = 36H 

AL = 0 Enable refresh 

1 Disable refresh 

Returned value: 

AL =) 12H 
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Video Display Data Area updates: 

(see below) 

INT 10H function 12H comprises nine subfunctions selected using the value in BL. 

BL=10H 

When BL = 10H on the EGA and the VGA, this BIOS routine returns information 

about the configuration of the video subsystem. This information is copied from 

INFO and INFO_3 in the Video Display Data Area. These variables are initialized 
in the BIOS power-on startup code. 

The value returned in BH reflects whether the video subsystem is configured for a 

color (BH = 0) or monochrome (BH = 1) video mode. Bits 0 and 1 in BL indicate 

how much video RAM is present. The values returned in CH and CL are derived 

from the INFO_3 byte. Bits 4 through 7 of INFO_3 (input from the EGA feature 

connector) are copied to bits 0 through 3 of CH. Bits 0 through 3 of INFO_3 (con- 

figuration switch settings) are copied to bits 0 through 3 of CL. 

BL =20H 

When BL = 20H on the MCGA, the EGA, and the VGA, the BIOS points the inter- 

rupt 5 vector at 0000:0014 to an alternate Print Screen routine contained in the 

video ROM BIOS. The difference between this routine and the default planar BIOS 

routine is that the video ROM version uses the Video Display Data Area variable 

ROWS to determine the number of character rows to print. The PC/XT and PC/AT 

planar BIOS versions always print 25 rows. 

BL = 30H 
When BL = 30 on the VGA, the BIOS routine updates bits 0—3 of the INFO_3 byte 

(0040:0088) and bits 7 and 4 of the Flags byte at 0040:0089. INT 10H function 0 

refers to INFO_3 and the Flags byte to determine whether to configure the video 

subsystem for a 200-line, 350-line, or 400-line mode when it establishes an alpha- 
numeric video mode. You can thus select among 200-line, 350-line, and 400-line 

alphanumeric modes by first executing INT 10H function 12H with BL = 30H and 

AL = 0, 1, or 2, and then calling INT 10H function 0 to set the video mode. 

This function normally returns the value 12H in AL. If the VGA is inactive (bit 3 

of INFO is set to 1), the function returns with AL = 0. 

BL = 31H 
When BL = 31H on the MCGA or VGA, the BIOS routine updates bit 3 of the Flags 

byte at 0040:0089 to indicate whether ROM BIOS default palette values should be 

loaded when a video mode is selected using INT 10H function 0. If the value 0 is 

passed in AL, bit 3 of the Flags byte is set to 0 to enable default palette setting. If 

AL = 1, bit 3 is set to 1 to disable default palette setting. 

When a valid value is passed in AL, the function returns with AL = 12H. 
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BL =32H 

When BL = 32H on the MCGA or the VGA, the value in AL specifies whether CPU 

access to the video buffer and I/O ports is enabled (AL = 0) or disabled (AL = 1). 

Although the hardware interface for control of video addressing differs on the 

MCGA, the VGA, and the VGA Adapter, this BIOS function is the same in all three 

subsystems (see Chapter 2). 

When a valid value is passed in AL, the function returns with AL = 12H. 

NOTE: Although the EGA video BIOS does not support this function, you can con- 

trol CPU addressing of video RAM on the EGA by updating bit 1 of the Miscella- 

neous Output register (3C2H). 

BL = 33H 
When BL = 33H on the MCGA or the VGA, the BIOS routine updates bit 1 of the 

Flags byte at 0040:0089 to indicate whether red-green-blue color values should be 

averaged to gray-scale values when INT 10H functions 0 and 10H update the video 

DAC color registers. If the value 0 is passed in AL, bit 1 of the Flags byte is set to 

1 to enable gray-scale summing. If AL = 1, bit 1 is set to 0 to disable gray-scale 

summing. 

When a valid value is passed in AL, the function returns with AL = 12H. 

BL = 34H 

When BL = 34H on the VGA, the BIOS routine updates bit 0 of INFO (0040:0087) to 

indicate whether BIOS cursor emulation is in effect. If the value 0 is passed in AL, 

bit 0 of INFO is set to 0 to enable cursor emulation. If AL = 1, bit 0 is set to 1 to 

disable cursor emulation. 

When a valid value is passed in AL, the function returns with AL = 12H. 

BL = 35H 
INT 10H function 1AH with BL = 35H provides a set of routines that support 
switching between two PS/2 video subsystems in the same computer. In a com- 
puter that contains two different PS/2-compatible video subsystems, calls to this 
function let a program separately access the video BIOS on a video adapter and 
the video BIOS on a PS/2 motherboard. 

When you boot a PS/2 that contains a PS/2-compatible video adapter, the adapter 
subsystem is always the active subsystem by default. To use the PS/2’s planar 
(motherboard) subsystem, you must use the display switch interface to disable the 
adapter subsystem and enable the planar subsystem. 

You can specify four related subfunctions for function 12H with BL = 35H, using 
the value passed in register AL. The four subfunctions are designed to be called in 
pairs. Subfunctions 0 and 1 should be called once each to initialize the BIOS dis- 
play switch interface and to establish a default video mode for the planar video 
subsystem. Subsequent calls to subfunctions 2 and 3 then let you switch between 
the two video subsystems. 
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When AL = 0, the adapter BIOS initializes the display switch interface. First, the 
adapter BIOS calls the motherboard BIOS to set bit 6 of the Flags byte at 0040:0089 
to 1 to indicate that the interface is supported. Next, the current Video Display 
Data Area and video interrupt vectors are preserved in the 128-byte buffer whose 
address is passed in ES:DX, and the video interrupt vectors are redirected to the 
motherboard BIOS. Finally, the adapter’s video buffer and control port addressing 
are disabled (see INT 10H function 12H, BL = 32H). 

When AL = 1, the motherboard BIOS establishes a default 80-by-25 alphanumeric 
mode on the planar video subsystem. 

When AL = 2 and bit 6 of the Flags byte is 1, the contents of the Video Display 
Data Area and video interrupt vectors are copied to the 128-byte buffer whose ad- 
dress is passed in ES:DX, and the video interrupt vectors are redirected to the cur- 

rently inactive BIOS. Then video buffer and control port addressing are disabled 

for the currently active subsystem. A call to this subfunction should normally be 

followed by a call with AL = 3. 

When AL = 3 and bit 6 of the Flags byte is 1, the contents of the Video Display 

Data Area and interrupt vectors are restored from the buffer whose address is in 

ES:DX. (This buffer should contain information previously saved by a call with 

AL =0 or AL=2.) Then video buffer and control port addressing are enabled, 

using the restored video information. 

When a valid value is passed in AL, and when both the adapter BIOS and the 

planar BIOS support the display switch interface, each of the four subfunctions 

returns with AL = 12H. 

NOTE: The PS/2 Model 30 BIOS (dated 12/12/86 and earlier) and the PS/2 Model 25 

BIOS (dated 6/26/87) contain a bug that makes the display switch interface un- 

usable. The problem should be corrected in later BIOS versions. 

BL = 36H 
When BL = 36H on the VGA, the value in AL specifies whether the BIOS routine 

enables (AL = 0) or disables (AL = 1) video refresh. (Temporarily disabling video 

refresh can speed software that performs repeated video memory accesses.) Bit 5 

of the VGA’s Sequencer Clocking Mode register (01H) controls whether video 

refresh is enabled or disabled. When the value 0 is passed in AL, bit 5 is set to 0 to 

enable video refresh; when AL is 1, bit 5 is set to 1 to disable video refresh. 

The function always returns with AL = 12H. 

To obtain EGA configuration information, call INT 10H function 12H with 

BL = 10H: 

mov ah, 12h 

mov bl,10h 

ante, 1 Ol 
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To vector the EGA BIOS alternate Print Screen routine, call INT 10H function 12H 

with BL = 20H: 

mov ah,12h 

mov bl,20h 

slgguic,  e InO)gt 

To implement display switching between a VGA Adapter and the MCGA in a PS/2 

Model 30: 

save areas for video BIOS display switch interface , 

VGAsave db 128 dup(?) ; save area for VGA 

MCGAsave db 128 dup(?) ; Save area for MCGA 

initialize display switching (execute this code only once) ’ 

mov ax,1200h ; AH := 12H (INT 10H function number) 

 ALLeH=s0 

mov bl,35h ; BL := 35H (display switch interface) 

mov dx,seg VGAsave 

mov es,dx 

mov dx,offset VGAsave ; ES:DX -> save area for VGA BIOS info 

int 10h 

cmp Walnai2h 

jne Error ; exit if display switching not supported 

mov ax,1201h 

mov. bi,35h 

ert et Oy ; disable adapter, enable planar video 

7 switch from planar (MCGA) to adapter (VGA) subsystem 

mov ax,1202h , AL := 2 (switch active 

; video off) 

mov bil,/35h 

mov dx,seg VGAsave 

mov es,dx 

mov dx,offset VGAsave 7 ES:DX -> save area for 

* Currently active subsystem 
int 10h 

mov ax,1203h 7 AL := 3 (switch inactive 

+ video on) 

mov bl,35h 

mov dx,offset MCGAsave ; ES:DX -> save area for 

* subsystem to be made active 
int lOh 

; (to switch from adapter to planar, interchange VGAsave and 
; MCGAsave in the calls with AL = 2 and AL = 3) 
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Function 13H: Display Character String 

Caller registers: 

AH = 13H 
AL = 0 BL contains attribute for string. Cursor position not updated. 

= 1 BL contains attribute for string. Cursor position updated. 
= 2 String contains embedded attribute bytes. Cursor position not 

updated. 
= 3 String contains embedded attribute bytes. Cursor position 

updated. 
BH = video page 

BL = attribute 

CX = string length 

DH = character row 

DL = character column 

ES:BP = address of start of string 

Returned values: 

(none) 

Video Display Data Area updates: 

0040:0050 CURSOR_POSN 

INT 10H function 13H writes a character string into the video buffer. Bell, 

backspace, linefeed, and carriage-return characters embedded in the string are 

treated as commands rather than displayable characters. If the string cannot be 

displayed in one row of characters, function 13H wraps the string around to the 

start of the next line. Function 13H also scrolls the screen upward as necessary. 

The string is copied from the address you specify in ES:BP to the location in the 

video buffer indicated by registers DH and DL (character row and column) and 

register BH (video page). You must also specify the number of characters in the 

string in register CX. 

Function 13H comprises four subfunctions that are selected according to the value 

in AL. These four subfunctions allow you to select the method of specifying dis- 

play attributes for characters in the string and to control the cursor’s final position 

after the string is displayed. 

You can specify the attribute used for each character either in BL (AL = 0 or 1) or 
by pairing each character code with its attribute in the string itself (AL = 2 or 3). 
Also, you can indicate whether the cursor will stay in place after the string is 

written (AL = 0 or 2) or will move to the character position just past the end of the 

string (AL = 1 or 3). 
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In all graphics modes except 320-by-200 256-color mode, setting bit 7 of the at- 

tribute value in BL to 1 causes the BIOS to XOR the string into the video buffer. 

The video page specified in BH must be 0 in 320-by-200 4-color mode. 

NOTE: On the PC/AT, the EGA, and the MCGA, linefeed and carriage-return char- 

acters are always written to the currently displayed video page, regardless of the 

value you specify in BH. If you write a string containing any of these control 

characters to a video page not currently displayed, function 13H writes them to the 

wrong video page. 

The following routine writes the string ‘‘Hello, World’’ into the video buffer in 

video page 0 at row 12, column 34. An attribute value of 7 is used for all charac- 

ters in the string. 

mov ax,1300h ; AH := 13H (INT 10H function number) 

; AL := 0 (attribute specified in BL, 

7 don’t move the cursor) 

mov bh,0O ; BH := video page 

ony isl, 7 , BL := attribute 

mov cx,12 7 CX := number of characters to display 
mov, dh, 12 - DH := row 12 

mov dl,34 7 DL := column 34 

mov bp,seg HelloString 

mov es,bp 

mov bp,offset HelloString ; ES:BP := string address 
int 10h 

Hellostring db "Hello, World' 

This example displays the digits 1 through 7 in the upper left corner of video page 
0. The attribute used for each digit corresponds to the digit: 

mov ax,1303h 7 AH := 13H (INT 10H function number) 
7 AL := 3 (string contains embedded 
7 attribute bytes, move cursor to end 
7 “OE Vsitrang) 

mov bh,0 7 BH := video page 
MOV 1exX,. 7. 7 CX := number of characters to display 
mov dax,0 7 DH := row 0 

+ DL := column 0 
mov bp,seg StringData 

mov es,bp 

mov bp,offset StringData 7 ES:BP := address of string 
ane 10h 

StringData db PAN N72, AND by BA id NEUEN CUE eam 
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Function 14H: (PC Convertible only) 

Function 15H: (PC Convertible only) 

Function 16H: (reserved) 

Function 17H: (reserved) 

Function 18H: (reserved) 

Function 19H: (reserved) 

Function 1AH: Video Display Combination 

Caller registers: 

AH = 1AH 

Return video display combination: 

AL = 0 

Returned values: 

AL = 1AH 
BL = active display 

BH = inactive display 

Set video display combination: 

AL =k 
BL active display 

BH = inactive display 

Returned value: 

AL = [AH 

Video Display Data Area update: 

0040:008A DCC byte 

INT 10H function 1AH returns or updates the video BIOS video display combina- 

tion status. This status is represented in the DCC byte at 0040:008A in the Video 

Display Data Area. This byte contains an index into the ROM BIOS Display Com- 

bination Code table, which contains a list of byte pairs that specify valid com- 

binations of one or two video subsystems. Video subsystems are designated by the 

following values. 
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FFH Unrecognized video subsystem 

0 No display 

1 MDA with monochrome display 

2 CGA with color display 

3. (reserved) 

4 EGA with color display 

5 EGA with monochrome display 

6 Professional Graphics Controller 

7 VGA with analog monochrome display 

8 VGA with analog color display 

9 (reserved) 

OAH MCGA with digital color display 
OBH MCGA with analog monochrome display 

OCH MCGA with analog color display 

AL=0 
When AL = 0 on the MCGA or the VGA, the video BIOS routine uses the value in 

the DCC byte as an index into its Display Combination Code table and copies the 

2-byte table entry into BH and BL. If two video subsystems are present, one sub- 

system must be monochrome and the other color; the BIOS routine determines 

which is active by examining bits 4 through 5 of EQUIP_FLAG (0040:0010). 

AL=1 
When AL = 1 on the MCGA or the VGA, the BIOS routine scans the Display Com- 

bination Code table for the combination specified in BH and BL. If the specified 

combination is found in the table, the DCC byte is updated with the appropriate 

index into the table. If the specified combination is not found, OFFH is stored in 

the DCC byte. 

When a valid value (0 or 1) is passed in AL, INT 10H function 1AH returns with 

AL = 1AH. 

The following sequence returns the display combination in registers BH and BL. 

mov ax,1A00h ; AH := 1AH (INT 10H function number) 

; AL := 0 

int, 10h 

cmp al,1AH 

jne ErrorExit + jump if function not supported 

; at this point BL = active display 

; BH = inactive display 

If this sequence is executed on a PS/2 Model 30 with an analog monochrome dis- 
play attached to the MCGA and a monochrome display attached to an MDA, the 
values returned are: 

Ala = JAH 
BL = OBH (active display = MCGA with analog monochrome) 
BH = 1 (inactive display = MDA with digital monochrome) 
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See eetereeeetreenee tea eeeee n weie s 
Function 1BH: Video BIOS Functionality/State Information 

Caller registers: 

AH = 1BH 
BX implementation type (must be 0) 
ES:DI address of 64-byte buffer 

II 

Returned values: 

ES:DI buffer updated with function and state information 
AL = 1BH 

Video Display Data Area updates: 

(none) 

INT 10H function 1BH returns a table of video BIOS state information on the 

MCGA and the VGA. The table contains dynamic information (shown in Figure 

A-14) that is determined when function 1BH is invoked, as well as static informa- 

tion (shown in Figure A-15) describing the capabilities of the video BIOS itself. 

The dynamic information is copied into the 64-byte buffer whose address is 

passed to the BIOS routine in ES:DI. The 32-bit address of the static information 

table is returned as bytes 0 through 3 of the dynamic information table. 

When called with BX = 0, INT 10H function 1BH always returns with AL = 1BH. 

Offset Data Type Description 

0 Dword Address of static functionality table 
4 Byte Video mode 
3 Word Number of displayed character columns 
U Word Length of displayed portion of video buffer in bytes 
9 Word Start address of upper left corner of video buffer 

OBH 16-byte array Table of cursor locations (column, row) for eight 
video pages 

1BH Byte Cursor end line 
1CH Byte Cursor start line 
1DH Byte Active video page 
1EH Word I/O port for CRTC Address register 
20H Byte CRT_MODE_SET (current value of 3x8H register) 
21H Byte CRT_PALETTE (current value of 3x9H register) 
22H Byte Number of displayed character rows 

23H Word POINTS (height of displayed character matrix) 

25H Byte Active display combination code 
26H Byte Inactive display combination code 

(continued) 

Figure A-14. Dynamic video state table returned by INT 10H function 1BH. 
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Figure A-14. Continued. 

Offset Data Type Description 

27H Word Number of displayed colors (0 for monochrome) 
29H Byte Number of video pages supported 
2AH Byte Raster scan lines: 

0: 200 lines 
1: 350 lines 
2: 400 lines 
3: 480 lines 

2BH Byte Alphanumeric character table used when attribute bit 3 
is 0 (VGA only) 

2CH Byte Alphanumeric character table used when attribute bit 3 
is 1 (VGA only) 

2DH Byte Miscellaneous state information (bits are set to 1 if state 
is true) 

Bit 0: all modes active on all video subsystems (always 0 
on MCGA) 

Bit 1: gray-scale summing enabled 
Bit 2: monochrome display attached 
Bit 3: default palette loading disabled 
Bit 4: cursor emulation enabled 
Bit 5: blinking attribute enabled 
(bits 6-7 reserved) 

2EH Byte (reserved) 

2FH Byte (reserved) 

30H Byte (reserved) 
31H Byte Video RAM available 

0: 64K 

1: 128K 
2: 192K 
3: 256K 

32H Byte Save area status (bits are set to 1 if state is true) 
Bit 0: two alphanumeric character sets are active 

(VGA only) 

Bit 1: dynamic save area is active 
Bit 2: alphanumeric character set override is active 
Bit 3: graphics character set override is active 
Bit 4: palette override is active 
Bit 5: display combination code extension is active 
(bits 6-7 reserved) 

33H through 3FH (reserved) 
EEE See 
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Offset Data Type 

0 Byte 

1 Byte 

Z Byte 

3 Byte 
“ Byte 
5 Byte 
6 Byte 
7 Byte 

8 Byte 

9 Byte 

OAH Byte 

Description 

Video modes supported (bits = 1 if a mode is supported) 
Bit 0: mode 0 
Bit 1: mode 1 
Bit 2: mode 2 
Bit 3: mode 3 
Bit 4: mode 4 
Bit 5: mode 5 
Bit 6: mode 6 
Bit 7: mode 7 

Video modes supported (bits = 1 if a mode is supported) 
Bit 0: mode 8 
Bit 1: mode 9 
Bit 2: mode 0AH 
Bit 3: mode OBH 
Bit 4: mode OCH 
Bit 5: mode ODH 
Bit 6: mode OEH 
Bit 7: mode OFH 

Video modes supported (bits = 1 if a mode is supported) 
Bit 0: mode 10H 
Bit 1: mode 11H 
Bit 2: mode 12H 
Bit 3: mode 13H 
Bit 4: (reserved) 
Bit 5: (reserved) 
Bit 6: (reserved) 
Bit 7: (reserved) 

(reserved) 
(reserved) 
(reserved) 
(reserved) 

Scan lines available in alphanumeric modes (bits = 1 if 
supported) 
Bit 0: 200 lines 
Bit 1: 350 lines 
Bit 2: 400 lines 

Maximum number of displayable alphanumeric character 
sets 

Number of available alphanumeric character definition 
tables in character generator RAM 

Miscellaneous video BIOS capabilities (bits = 1 if 
available) 

Bit 0: all modes on all monitors (INT 10H function 0) 

(Note: This bit is always 0 on MCGA) 
Bit 1: gray-scale summing (INT 10H function 10H 

and 12H) 
Bit 2: character set loading (INT 10H function 11H) 
Bit 3: default palette loading (INT 10H function 0) 

(continued) 

Figure A-15. Static functionality table. This table’s address is returned by INT 10H function 
1BH. The table describes the capabilities of the ROM BIOS in the video subsystem. 
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Figure A-15. Continued. 

Offset Data Type Description 

Bit 4: cursor emulation (INT 10H function 1) 

Bit 5: 64-color palette (INT 10H function 10H) 
Bit 6: video DAC loading (INT 10H function 10H) 
Bit 7: control of video DAC via Attribute Controller 

Color Select (INT 10H function 10H) 
OBH Byte Miscellaneous video BIOS capabilities (bits = 1 if 

available) 

Bit 0: light pen support (INT 10H function 4) 
Bit 1: save/restore video state (INT 10H function 1CH) 
Bit 2: blinking/background intensity (INT 10H func- 

tion 10H) 
Bit 3: Display Combination Code (INT 10H function 

1AH) 
(bits 4-7 reserved) 

OCH Byte (reserved) 
ODH Byte (reserved) 
OEH Byte Save area capabilities 

Bit 0: multiple alphanumeric character sets 
Bit 1: dynamic save area 
Bit 2: alphanumeric character set override 
Bit 3: graphics character set override 
Bit 4: palette override 
Bit 5: Display Combination Code extension 
(bits 6-7 reserved) 

OFH Byte (reserved) 
a eee eg 

The following sequence returns video BIOS state information in the buffer whose 
address is passed in ES:DI. 

mov ax, 1B00h 7 AH := 1BH (INT 10H function number) 
A AL == 0 

mov Ord ; BX := 0 (Implementation type) 
mov di,seg StateTable 
mov es,di 

mov di,offset StateTable ; ES:DI -> buffer 
int 10h 

cmp al, 1BH 

jne ErrorExit *; jump if function not supported 

7 at this point StateTable contains < 7 the dynamic information table StateTable db 64 dup (?) 
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Function 1CH: Save or Restore Video State 

Caller registers: 

AH = 1CH 

Return save/restore buffer size: 

AL =10 

Cx = requested states 

Bit 0: video hardware state 

Bit 1: video BIOS data areas 

Bit 2: video DAC state 

Bits 3—OFH: reserved 

Returned values: 

AL = 1CH 

BX buffer size in 64-byte blocks 

Save requested state(s): 

AL | 

CX requested states (as above) 

ES:BX = buffer address 

Restore requested state(s): 

AL me 

CX requested states (as above) 

ES:BX buffer address 

Video Display Data Area updates: 

(see below) 

INT 10H function 1CH, supported only on the VGA, lets you save and restore the 

state of the video hardware and video ROM BIOS. INT 10H function 1CH com- 
prises three subfunctions selected by the value passed in AL. For each subfunc- 

tion, you must set the low-order three bits in CX to indicate the combination of 
video subsystem states you wish to save or restore. You must also pass the address 

of a save/restore buffer in ES:BX whenever you use function 1CH to save or 

restore the video state. 

AL=0 
When AL = 0, function 1CH returns the size of the buffer required to store the 

state information for states requested in CX. The value returned in BX is in 64- 

byte blocks. 
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Function 1CH returns AL = 1CH when called with AL = 0 and at least one of the 

low-order three bits in CX set to 1. 

AL=1 
When AL = 1, function 1CH copies the state information requested in CX into the 

buffer whose address is passed in ES:BX. 

AL=2 
When AL = 2, function 1CH restores the video hardware state, the BIOS state, or 

both using information saved in the buffer whose address is passed in ES:BX. 

NOTE: The BIOS routine may modify the current video state as it executes func- 

tion 1CH. If you plan not to change the video state after saving it with function 

1CH, restore the video state immediately afterward (using function 1CH with 

AL = 2) to ensure that it isn’t inadvertently modified. 

The following sequence runs under MS-DOS version 2.0 or later. It calls MS-DOS 

INT 21H function 48H to allocate RAM for a save/restore buffer. It then calls INT 

10H function 1CH to save the current video state. 

mov ax,1C00h ; AH := 1CH (INT 10H function number) 

Feta 

mow ex, 11 1b 7 CX := 111b (all three video states) 

ier LO tal 

cmp al,1Ch 

jne ErrorExit jump if function not supported 

Sil osc ad 7 convert number of 64-byte blocks 

shill bs, 1 7 to number of 16-byte blocks 
mov ah,48h 7 AH := 48H (MS-DOS INT 21H function number) 
alms 2 ie 7 AX := segment of allocated buffer 
He ErrorExit 

mov eS,ax 

xor | bx, bx 

jump if error 

ES:BX -> buffer 

mov cx,111b CX := 111b (all three video states) 
mov ax,1COth AH := INT 10H function number 

AL := 1 

ase ey el 6) int 10h ; Save video state in buffer 
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Appendix B 

Printing the Screen 



Many computer users find it convenient to ‘‘snapshot’’ the current contents of the 

video display. Although all members of the IBM PC and PS/2 series come with a 

short ROM BIOS routine that dumps the contents of the video buffer to a printer, 

you may need to write your own video snapshot program to supplement the ROM 

routine. This appendix discusses how to use the BIOS screen dump utility, as well 

as why and how to write your own. 

Alphanumeric Modes 

You invoke the motherboard ROM’s alphanumeric screen dump routine by execut- 

ing software interrupt 5. (The ROM BIOS keyboard handler issues this interrupt 

when you press Shift-PrtSc.) This routine copies the contents of the currently dis- 

played video page to the printer in 80-by-25 or 40-by-25 alphanumeric mode. The 

routine prints only the ASCII character codes, ignoring the attribute bytes in the 

video buffer. 

EGA, MCGA, VGA 

The EGA, the MCGA, and the VGA ROM BIOS contain a more flexible version of 

the INT 5 screen dump routine. That version uses the Video Display Data Area 

value ROWS (0040:0084) to determine how many rows of characters to print. (The 
motherboard ROM version always prints 25 rows.) An IBM PC/XT or PC/AT uses 
the motherboard version by default. To make the EGA or VGA ROM BIOS routine 
accessible through interrupt 5, call INT 10H function 12H with BL = 20H. This 
points the interrupt 5 vector to the more flexible routine. 

Block Graphics Characters 

Because most printers are designed to work with many different computers, not 
just IBM PCs, manufacturers do not always design their printers to print the same 
256 ASCII characters that the video hardware displays in alphanumeric modes. In 
particular, the characters used for block graphics are not always available on PC- 
compatible printers. These characters may print differently than they are dis- 
played or they may not print at all. 

Graphics Modes 
The ROM BIOS does not support screen dumps in graphics modes, so in these 
modes you must use some other program to print the video buffer’s contents. 

GRAPHICS 

GRAPHICS is a RAM-resident graphics-mode screen dump program that 
Microsoft supplies as part of MS-DOS under the name GRAPHICS.COM or 
GRAPHICS.EXE. This program establishes a memory-resident screen dump pro- 
gram for CGA graphics modes (320-by-200 4-color and 640-by-200 2-color) when 
executed. The program uses an IBM- or Epson-compatible dot-matrix printer 
for output. 
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The RAM-resident portion of GRAPHICS traps interrupt 5 and tests the current 

video mode. If a graphics mode is active, it performs the screen dump. Otherwise, 

the BIOS interrupt 5 routine gets control and performs the alphanumeric-mode 

screen dump. Thus, once GRAPHICS.COM or GRAPHICS.EXE has been executed, 

you can obtain a graphics-mode screen dump by pressing Shift-PrtSc, just as you 

would in alphanumeric video modes. 

Writing a Screen Dump Routine 

If you want screen snapshots in native EGA, VGA, or MCGA graphics modes or 

on a Hercules adapter, or if GRAPHICS produces unsatisfactory output on your 

printer, you can write your own screen dump routine. Listing B-1 is an example of 

a simple routine for CGA graphics modes. ScreenDumpCGA can be incorporated 

into an assembly-language program or a high-level-language program by calling 

it with the appropriate register values and memory model. (See Chapter 13 for 

more on this topic.) You might also build ScreenDumpCGA into a Terminate- 

but-Stay-Resident program that, like GRAPHICS, chains into the interrupt 5 vector 

and executes whenever Shift-PrtSc is pressed. 

TITLE ‘hasting B=" 

NAME ScreenDumpCGA 

PAGE 55) 132 

; Name: ScreenDumpCGA 

2 Functions Screen Dump for CGA 640x200 2-color and 320x200 4-color modes 

' Caller: (undefined) 

; Notes: The main procedure of this program, ScreenDumpCGA, may be 

5 called from an application program or as part of a TSR 

r (Terminate-but-Stay-Resident) handler for interrupt 5. 

STDPRN = 4 ; MS-DOS standard printer handle 

DGROUP GROUP _DATA 

TEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP 

; PrintLine 

i. Writes one line of characters to the standard printer device. Ignores 

5 errors. 

PrintLine PROC near 7; Caller: DS:DX -> data 

; CX = # of bytes 

Listing B-1. A simple screen dump routine for the CGA. (continued) 
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Listing B-1. Continued. 

mov bx, STDPRN 

mov ah, 40h 

alhoke 21h 

ret 

PrintLine ENDP 

; PrinterGraphics 

‘ Puts the printer in its "graphics mode." 

customized for different printers. 

’ INT 21h function 40h: write 

This routine must be 

PrinterGraphics PROC near ; Configures Epson MX-80 printer 

7 for 480 dots/line 

mov dx,offset DGROUP:EpsonGraphics 

mov xe 

call PrintLine 

sete 

PrinterGraphics ENDP 

, 

, 

, 

, 

, 

’ 

PrinterDefault 

Puts the printer in its default (non-graphics) mode. Again, this 
routine must be customized for different printers. 

PrinterDefault PROC near ; Configures Epson MX-80 for default 

7 alphanumeric output 

mov dx,offset DGROUP:EpsonReset 

mov expe 

call PrintLine 

Bee 

PrinterDefault ENDP 

; ChopZeros 

ChopZeros 

Chops trailing zeros from the printer output buffer. 

PROC near 

JCxXzZ L01 

add aarex 

dec di 

xor al,al 

~ 

Caller: ES; Dis-=> butter 

CX = buffer length 
Returns: CX = adjusted length 

exit if buffer is empty 

ES:DI -> last byte in buffer 

AL := 0 (byte to scan for) 

(continued) 
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Listing B-1. Continued. 

std * scan backwards 
repe scasb 

cld * restore direction flag 

7¢ L01 ; jump if buffer filled with zeros 

Ine cx # adjust length past last nonzero byte 

LO1: ret 

ChopZeros ENDP 

# PrintPixels 

; Prints one row of pixels on an Epson MX-80. 

7 

PrintPixels PROC near ; (Calsler: DI = offset of buffer 

; CX = buffer length 

push ds 

pop es 7 ES) 3= DS 

push di ; preserve buffer offset 

call ChopZeros 

push cx 7 preserve length 

mov word ptr DataHeader+2,cx ; store buffer length 

7 in output data header 
mov dx,offset DGROUP:DataHeader 

mov cx, 4 

call PrintLine ; print data header 

pop Cx 7 CX := buffer length 

pop dx 7 DX := buffer offset 

call PrintLine ; print the pixels 

mov dx,offset DGROUP:CRLF 

mov ex, 2 

call PrintLine 

ret 

PrintPixels ENDP 

; TranslatePixels 

~ 

Ne Se Ne 

™ 

‘ee 

Copies one printable row of pixels from the video buffer to the 

print buffer. This routine can be modified at will to change the 

scaling or orientation of the printed image, to interpolate gray- 

scale values for color pixels, etc. 

This routine formats the printer buffer for output to an Epson 

MX-80. The page is printed sideways, with two horizontal printed pixels 

for each vertical pixel in the video buffer. Since the CGA screen 

is 200 pixels high, the printed output is 400 pixels wide. 

(continued) 
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Listing B-1. Continued. 

TranslatePixels PROC 

push 

mov 

add 

mov 

mov 

mov 

std 

ive lodsb 

mov 

stosw 

add 

xchg 

loop 

eid 

pop 

ret 

TranslatePixels ENDP 

7 ScreenDumpCGA 

ScreenDumpCGA PROC 

call 

push 

pop 
xOr 

adie push 

mov 

call 

mov 

mov 

call 

pop 
inc 

cmp 

jb 

call 

ret 

near 

ds 

ds, VideoBufSeg 

dines 

cx, 200 

bx, 2000h+1 

dx, 81-2000h 

ah,al 

Sau x 

bse, asc 

L11 

ds 

near 

PrinterGraphics 

ds 

es 

Sasi 

Sau 

, 

Caller: SI = video buffer offset 

ES 3Di —> print buffer 

preserve DS 

DS:SI -> video buffer 

ES:DI -> 2 bytes before end of buffer 

CX := # of vertical pixels 

BX := 1st video buffer increment 

DX := 2nd video buffer increment 

fill the print buffer backwards 

AL := 8 pixels from video buffer 

AX 8 doubled pixels 

write them to print buffer 

increment to next interleave of 

video buffer 

clear direction flag 

restore DS 

Caller: DS = DGROUP 

configure the printer for graphics 

DS,ES := DGROUP 

SI := offset of start of video buffer 

di,offset DGROUP:PrintBuf 

TranslatePixels ; copy one printable row of pixels 

ex, 400 

di,offset DGROUP:PrintBuf 

PrintPixels 

si 

si 

si,80 

L21 

PrinterDefault 

, 

, 

’ 

, 

print them 

loop across all 80 columns in 
the video buffer 

restore the printer to its default 
state 

(continued) 
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Listing B-1. Continued. 

ScreenDumpCGA ENDP 

_TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

PrintBuf DB 400 dup(?) * print output buffer 

VideoBufSeg DW OB800h 

EpsonGraphics DB 1Bh,33h,18h 

EpsonReset DB 1Bh, 40h 

DataHeader DB 1Bh, 4Bh, 00h, 00h 

CRLF DB ODh, OAh 

_DATA ENDS 
END 

ScreenDumpCGaA copies pixels from the video buffer into an intermediate print 

buffer. It formats the print buffer so that its contents can be sent directly to the 

printer (an Epson MX-80 in this example). Since the video buffer can be accessed 

randomly, ScreenDumpCGaA reads pixels from it in an order that is conveniently 

transmitted to the printer. 

The heart of ScreenDumpCGaA is the subroutine TranslatePixels. This 

routine maps pixels from the video buffer into the print buffer. In this example, 

the routine is short and fast, because it uses a simple transformation to convert 

video buffer pixels to printer pixels. Because the Epson MX-80 prints vertically 

oriented groups of pixels (see Figure B-1), the easiest way to print an image from 

the horizontally mapped video buffer is to rotate it by 90 degrees. 

To customize ScreenDumpCGA, concentrate on how best to map pixels from the 

video buffer to your printer. Change the TranslatePixels routine to scale or 

rotate the pixels differently, or modify ScreenDumpCGA to change the order in 

which the contents of the video buffer are copied to the printer. 

Printed 

pixels 

0.12 3 4 5 6 74——Bit number 

Figure B-1. Pixel mapping for a typical dot-matrix graphics printer. As the print head moves 

across the page, it prints eight rows of pixels at a time. Each byte of data transmitted to the 

printer controls 8 vertical pixels as shown. 
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For example, you could modify ScreenDumpCGA and TranslatePixels 

to dump the contents of the EGA or VGA video buffer in 640-by-350 16-color mode 

as in Listing B-2. The modified routine prints all nonzero pixels in the video 
buffer as black dots. Note how the Graphics Controller’s read mode 1 simplifies 

this task in TranslatePixels. 

TITLE "Lasting B=2! 

NAME ScreenDumpEGA 

PAGE 5S, N32 

; Name: ScreenDumpEGA 

; Function: Screen Dump for EGA 640x350 16-color mode 

A Celulares (undefined) 

; Notes: The main procedure of this program, ScreenDumpEGA, may be 

8 called from an application program or as part of a TSR 

i. (Terminate-but-Stay-Resident) handler for interrupt 5. 

STDPRN = 4 * MS-DOS standard printer handle 

DGROUP GROUP _DATA 

_TEXT SEGMENT byte public 'CODE' 
ASSUME cs: TEXT,ds:DGROUP 

- Printhane 

9 Writes one line of characters to the standard printer device. Ignores 
p errors. 

PrintLine PROC near ; Caller: DS:DX -> data 

; CX = # of bytes 
mov bx, STDPRN 

mov ah, 40h 7 INT 21h function 40h: Write 
int 21h 

ret 

PrintLine ENDP 

; PrinterGraphics 

i: Puts the printer in its "graphics mode." This routine must be 
it customized for different printers. 

PrinterGraphics PROC near ; Configures Epson MX-80 printer 

+ for 480 dots/line 

mov dx, offset DGROUP :EpsonGraphics 
mov ex, 3 

caulk PrintLine 

Geis 

PrinterGraphics ENDP 

Listing B-2. An EGA screen printing routine. (continued) 
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Listing B-2. Continued. 

; PrinterDefault 

; Puts the printer in its default (non-graphics) mode. Again, this 

; routine must be customized for different printers. 

; 

PrinterDefault PROC near ; Configures Epson MX-80 for default 

+ alphanumeric output 

mov dx,offset DGROUP:EpsonReset 

mov Cxy2 

call PrintLine 

ret 

PrinterDefault ENDP 

; ChopZeros 

; Chops trailing zeros from the printer output buffer. 

ChopZeros PROC near ; Caller: HSiDil=>s but fer 

; CX = buffer length 

; Returns: CX = adjusted length 

WeCXZ L01 ; exit if buffer is empty 

add di, cx 

dec di 7; ESSDE => llast byte wn butter 

xor al,al ; AL := 0 (byte to scan for) 

std ; scan backwards 

repe scasb 

cld ; restore direction flag 

je L01 ; jump if buffer filled with zeros 

inc cx ; adjust length past last nonzero byte 

LO1: EGE 

ChopZeros ENDP 

; PrintPixels 

Prints one row of pixels on an Epson MX-80. 

Me Ne Ne 

PrintPixels PROC near 7; Cabler: DI = offset of buffer 

CX = buffer length 

push ds 

pop es ; ES 3= DS 

(continued) 
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Listing B-2. Continued. 

push di ; preserve buffer offset 

call ChopZeros 

push cx ; preserve length 

mov word ptr DataHeader+2,cx ; store buffer length 

; in output data header 

mov dx,offset DGROUP:DataHeader 

mov exy4 

call PrintLine ; print data header 

pop ex ; CX := buffer length 

pop dx >; DX s= buffermmoftiset 

Cail PrintLine ; pLint the pixels 

mov dx,offset DGROUP:CRLF 

mov exe 

call PrintLine 

ret 

PrintPixels ENDP 

; TranslatePixels 

; Copies one printable row of pixels from the video buffer to the 

9 print buffer. This routine can be modified at will to change the 

f scaling or orientation of the printed image, to interpolate gray- 

a scale values for color pixels, etc. 

i, This routine formats the printer buffer for output to an Epson 

F MxX-80. The page is printed sideways, so the printed output is 

& 350 pixels wide. 

TranslatePixels PROC near ? Galler: SI = video buffer offset 

: ES:DI => print buffer 

push ds ; preserve DS 

mov ds,VideoBufSeg ; DS:SI -> video buffer 

add di, 349 7 ES:DI -> last byte in print buffer 

mov Cx, s50 ; CX := # of vertical pixels 

* set up the Graphics Controller for read mode 1 

mov dx, 3CEh ; Graphics Controller I/O port 

mov ax, 805h * AH := 00001000b (read mode 1) 

+ AL := Mode register number 
out dax,ax 

mov ax, 002 ; AH := 0 (color compare value) 
out dx,ax ; AL := Color Compare register number 

mov ax, 0FO7h 7 AH := 00001111b (color don’t care mask) 
out dx,ax ; AL := Color Don’t Care register number 

(continued) 
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Listing B-2. Continued. 

Bids 

std 

lodsb 

not 

stosb 

add 

loop 

cld 

al 

si, 81 

L11 

, 

; fi11 the print buffer; all nonzero pixels in the video buffer are printed 

fill the print buffer backwards 

AL := 8-pixel color compare value 

(bits) = "0 "at pixel <0) 

AL := 8 printable pixels 

store in print buffer 

increment to next row in video buffer 

clear direction flag 

7 restore Graphics Controller default state 

TranslatePixels 

; 

7 ScreenDumpEGA 

, 

ScreenDumpEGA 

L21: 

ScreenDumpEGA 

mov 

out 

mov 

out 

pop 
ret 

ENDP 

PROC 

call 

push 

pop 

xor 

push 

mov 

call 

mov 

mov 

call 

pop 
ine 

cmp 

jb 

call 

ret 

ENDP 

ax, 5. 

ax, ax 

ax, 7 

dax,ax 

ds 

near 

PrinterGraphics 

ds 

es 

Saya 

si 

, 

, 

, 

, 

AH := read mode 0, write mode 0 

AL := Mode register number 

AH := 0 (color don’t care mask) 

AL := Color Don’t Care register number 

restore DS 

Caller: DS = DGROUP 

configure the printer for graphics 

DS,ES := DGROUP 

SI := offset of start of video buffer 

di,offset DGROUP:PrintBuf 

TranslatePixels 

Cx, 500 

, copy one printable row of pixels 

di,offset DGROUP:PrintBuf 

PrintPixels 

oa 

Si 

si, 80 

L21 

PrinterDefault 

, 

, 

, 

, 

print them 

loop across all 80 columns in 

the video buffer 

restore the printer to its default 

state 

(continued) 
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Listing B-2. Continued. 

_TEXT ENDS 

DATA SEGMENT word public 'DATA' 

PrintBuf DB 350 dup(?) ; print output buffer 

VideoBufSeg DW OA000h 

EpsonGraphics DB 1Bh,33h,18h 

EpsonReset DB 1Bh, 40h 

DataHeader DB 1Bh, 4Bh, 00h, 00h 

CRLF DB ODh, OAh 

_DATA ENDS 

END 

RAM-Based Alphanumeric Character Definitions 

You can also modify the graphics-mode screen dump routine to print RAM-based 
characters used in alphanumeric modes on the EGA, MCGA, VGA, HGC+, and 

InColor Card. The technique is to use the character codes stored in the displayed 

portion of the video buffer to index the bit patterns in character definition RAM. 

The bit pattern that defines each character can then be used as a dot pattern for 

the printer. 

As an example, Listing B-3 shows how this can be done for the characters defined 

in the default character definition table in memory map 2 on the EGA or VGA. 

The routine prints each column of characters in the video buffer by filling the 

buffer (PrintBuf) with the bit patterns that define each of the characters. Mem- 

ory map 0 (containing the character codes) and map 2 (containing the character 
definitions) are addressed separately in the subroutine TranslatePixels by 

programming the Sequencer and Graphics Controller as discussed in Chapter 10. 

called from an application program or as part of a TSR 

(Terminate-but-Stay-Resident) handler for interrupt 5. 

TITLE rhaSstang B—3. 

NAME ScreenDumpAlpha 

PAGE Sol s2 

; Name: ScreenDumpAlpha 

7 Eunceton: Screen Dump for EGA alphanumeric modes with 350-line resolution 

; Caller: (undefined) 

+ Notes: The main procedure of this program, ScreenDumpAlpha, may be 

; 

STDPRN = 4 7 MS-DOS standard printer handle 

DGROUP GROUP _DATA 

(continued) 

Listing B-3. Using RAM-based character definition tables to print the character set. 
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Listing B-3. Continued. 

ETEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP,es:DGROUP 

+ PrintLine 

; Writes one line of characters to the standard printer device. Ignores 
c errors. 

; 

PrintLine PROC near 2 Calle: DS:DX -> data 

; CX = # of bytes 
mov bx, STDPRN 

Mov ah, 40h 7 INT 21h function 40h: Write 

int 21h 

Fret 

PrintLine ENDP 

; PrinterGraphics 

% Puts the printer in its "graphics mode." This routine must be 

; customized for different printers. 

PrinterGraphics PROC near ; Configures Epson MX-80 printer 

mov 

mov 

call 

ret 

PrinterGraphics ENDP 

; PrinterDefault 

; routine must be 

, 

PrinterDefault PROC 

mov 

mov 

call 

ret 

PrinterDefault ENDP 

ChopZeros 

Se Ne Ne 

Chops trailing ‘ 

; for 480 dots/line 

dx,offset DGROUP:EpsonGraphics 

CxS 

PrintLine 

Puts the printer in its default (non-graphics) mode. Again, this 

customized for different printers. 

near ; Configures Epson MX-80 for default 

; alphanumeric output 

dx,offset DGROUP:EpsonReset 

Cee 

PrintLine 

zeros from the printer output buffer. 

(continued) 
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Listing B-3. Continued. 

ChopZeros 

LO1: 

ChopZeros 

; PrintPixels 

PROC 

J1CXZ 

add 

dec 

xor 

std 

repe 

end 

je 

inc 

ret 

ENDP 

near ; 

L01 ; 

dat ,ex 

di ; 

al,al ; 

scasb 

L01 ; 

Cx ; 

Caller: ES3DE => butter 

CX = buffer length 

Returns: CX = adjusted length 

exit if buffer is empty 

ES:DI -> last byte in buffer 

AL := 0 (byte to scan for) 

scan backwards 

restore direction flag 

jump if buffer filled with zeros 

adjust length past last nonzero byte 

; Prints one row of pixels on an Epson MX-80. 

PrintPixels 

PrintPixels 

PROC 

push 

pop 

push 

call 

push 

mov 

mov 

mov 

call 

pop 

pop 
call 

mov 

mov 

call 

ret 

ENDP 

near 7 

ds 

es ; 

di ; 

ChopZeros 

cx : 

Caller: DI = offset of buffer 

Cx buffer length I 

ES := DS 

preserve buffer offset 

preserve length 

word ptr DataHeadert+t2,cx ; store buffer length 

; in output data header 

dx,offset DGROUP:DataHeader 

cx, 4 

PrintLine ; 

cx ; 

dx ; 

PrintLine ; 

print data header 

CX := buffer length 

DX := buffer offset 

print the pixels 

dx,offset DGROUP:CRLF 

Cx pe 

PrintLine 

(continued) 
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Listing B-3. Continued. 

™ 

, TranslatePixels 

Copies one printable row of pixels from the first character definition 

table in map 2 to the print buffer. 

This routine formats the printer buffer for output to an Epson 

MX-80. The page is printed sideways, so the printed output is 

350 pixels wide. ~ 

TranslatePixels PROC near ; Caller: SI = video buffer offset 

; EStDi—> print burner 

push ds ; preserve DS 

mov ds,VideoBufSeg ; DS:SI -> video buffer 

add di,es:PrintBufSize 

dec di 7 ES tDin=> laste bytemineprinkg butter 

mov dx, 3CEh ; Graphics Controller I/O port 

7 fal) Che prank” busses 

sy 

L12: 

mov cx,es:Rows ; CX := number of character rows 

push ex ; preserve CX and SI 

push Sa 

mov ax,0004h ; AH := value for Read Map Select reg 

; AL := Read Map Select reg number 

out dx, ax ; select map 0 (character codes) 

lodsb ; AX := next char code in video buffer 

mov CLD 

shl ax, cll ; AX := AX * 32 

mov si,ax ; SI s= offset of character definition 

; \anemap 2 

mov ax,0204h 

out dx, ax ; select map 2 (bit patterns) 

mov cex,es:Points ; CX := size of character definition 

cld 

lodsb ; AL := 8-bit pattern from character 

; definition table 

2 Sl = oleae 

std 

stosb s store bit pattern in print buffer 

7 Diag Di Ty 

loop L12 ; loop down character definition 

pop si ; restore SI and CX 

pop cx 

add si,es:Columns ; DS:SI -> next row of characters 

loop L11 ; loop down character rows 

(continued) 
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Listing B-3. Continued. 

eld 

pop 
ret 

TranslatePixels ENDP 

; 

; ScreenDumpAlpha 

’ 

ScreenDumpAlpha PROC 

call 

call 

clear direction flag 

restore DS 
, 

, ds 

near 7 Callers DS = DGROUP 

PrinterGraphics ; configure the printer for graphics 

address EGA memory maps in parallel: ; 
; map 0 contains character codes 

; map 2 contains character definitions 

CGenModeSet 

; copy screen dimensions from Video Display Data Area 

mov 

mov 

mov 

Aine 

mov 

mov 

add 

mov 

mov 

mov 

mul 

mov 

7 prank the screen 

push 

pop 
xor 

L215 push 

mov 

call 

mov 

mov 

call 

pop 
add 

cmp 

jb 

call 

call 

Get 

ScreenDumpAlpha ENDP 

ax, 40h 

es,ax ; ES -> video BIOS data area 

al,es: [84h] ; AX := ROWS 

ax 

ROWS, ax 

ax,es: [4Ah] ; AX := CRT_COLS 

ax,ax ; * 2 for proper buffer addressing 

Columns, ax 

ax,es: [85h] ; AX := POINTS 

Points, ax 

Rows ; AX := ROWS * POINTS 

PrintBufSize,ax 

ds 

es ; DS,ES := DGROUP 

si,si ; SI := offset of start of video buffer 

Sa 

di,offset DGROUP:PrintBuf 

TranslatePixels ; copy one printable row of pixels 

cx,PrintBufSize 

di,offset DGROUP:PrintBuf 

PrintPixels ; print them 

si 

Sipe ; increment to next character column 

si,Columns ; loop across all character columns 

L21 

CGenModeClear ; restore previous alphanumeric mode 

PrinterDefault ; restore the printer to its default 

, state 

(continued) 
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Listing B-3. Continued. 

7 CGenModeSet (from Chapter 10) 

CGenModeSet PROC near 

push si 

push cx 

eli 

mov ax, 3C4h 

mov 

mov cx, 4 

Sits lodsw 

out dx, ax 

loop L31 

Sted 

mov dl, OCEh 

mov 

mov CxS 

L32's lodsw 

out dx, ax 

loop L32 

pop cx 

pop si 

ret 

CGenModeSet ENDP 

; CGenModeClear (from Chapter 10) 

CGenModeClear PROC near 

push si 

push CX 

ene 

mov dx, 3C4h 

mov 

mov cx,4 

L41: lodsw 

out dx,ax 

loop L41 

sti 

mov al, 0CEh 

; preserve these registers 

; disable interrupts 

; Sequencer port address 

si,offset DGROUP:SetSeqParms 

AH := value for Sequencer register 

; AL := register number 

; program the register 

“ 

enable interrupts ‘ 

; DX := 3CEH (Graphics Controller port 

; address) 

si,offset DGROUP:SetGCParms 

; program the Graphics Controller 

; restore registers and return 

; preserve these registers 

; disable interrupts 

; Sequencer port address 

si,offset DGROUP:ClearSeqParms 

; AH := value for Sequencer register 

AL := register number 

; program the register 

~ 

; enable interrupts 

7 DX S= 3CEH (Graphics Controller port 

2 address) 

(continued) 
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Listing B-3. Continued. 

mov si,offset DGROUP:ClearGCParms 

mov Cxre 

L42: lodsw ; program the Graphics Controller 

out dx,ax 

loop L42 

mov ah, OFh ; AH := INT 10H function number 

int 10h + get video mode 

cmp al,7 

jne L43 ; jump if not monochrome mode 

mov ax, 0806h ; program Graphics Controller 

out dx,ax ; to start map at B000:0000 

L43: pop cx ; restore registers and return 

pop si 

ECE 

CGenModeClear ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

PrintBuf DB 400 dup(?) j print output buffer 

VideoBufSeg DW OAO00h 

EpsonGraphics DB 1Bh, 33h, 18h 

EpsonReset DB 1Bh, 40h 

DataHeader DB 1Bh, 4Bh, 00h, 00h 

CRLF DB ODh, OAh 

Columns DW 2 7 number of displayed character columns 

Rows DW 2 7 number of displayed character rows 

Points DW ? ; vertical size of character matrix 

PrintBufSize DW 2 7 Rows * Points 

SetSeqParms DW 0100h ; parameters for CGenModeSet 

DW 0402h 

DW 0704h 

DW 0300h 

SetGCParms DW 0204h 

DW 0005h 

DW 0006h 

ClearSeqParms DW 0100h ; parameters for CGenModeClear 

DW 0302h 

DW 0304h 

DW 0300h 

ClearGCParms DW 0004h 

DW 1005h 

DW OEO6h 

_DATA ENDS 
END 

510 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS 



Appendix C 

Identifying Video 
Subsystems 



Programs need to determine the configuration of the video hardware on which 

they are run for two reasons. One is to maintain portability. A program that 

recognizes the video subsystems in the computer in which it runs can adapt itself 

to specific hardware configurations. Imagine, for example, a program that dis- 

plays both text and graphics images. This program could display text and 

graphics on a single screen in a computer with only one video subsystem, but it 

could also take full advantage of a dual-display configuration by placing text on 

one screen and graphics on the other. 

Another reason to enable a program to examine its video hardware environment is 

to allow use of the fastest possible video output routines. For example, if your pro- 

gram runs in an alphanumeric mode on a CGA, you may need to avoid snow by 

synchronizing with the CRT Controller’s timing signals. However, this overhead 

can be avoided if the program is running on some other video subsystem. If your 

program ‘‘knows’’ that it’s not running on a CGA, it can use faster video output 

routines that omit the overhead of avoiding snow. 

CGA and Clones 

Unfortunately, for Color Graphics Adapters and clones, no reliable way exists to 

determine whether the hardware manages conflicts over video buffer memory 
access without display interference (see Chapter 3). If your program must run on 
a CGA, you might wish to ask the user to configure your alphanumeric output rou- 
tines by testing whether or not they produce snow. 

You can also detect whether your program is running on a CGA work-alike that 
does not have the alphanumeric snow problem. If you know that your program 
may run on a CGA work-alike such as the video hardware built into a COMPAQ or 
an AT&T 6300, you can search the ROM BIOS for a string indicating the name of 
the computer, for example, ‘“COMPAQ’’. You might also inspect the ROM BIOS ID 
byte at FO00:FFFE to determine whether your program is running on a member of 
the IBM PC family that does not have the snow problem (such as the PCjr). 

Other Video Adapters 
Although determining whether a particular CGA or clone has a problem with al- 
phanumeric snow can be hard, distinguishing among the various common IBM 
video adapters is relatively easy. Some of the techniques described in this appen- 
dix rely on serendipitous peculiarities of different adapters’ firmware or hard- 
ware, but all are based on IBM and Hercules recommendations. 

PS/2s 

On the PS/2s, INT 10H function 1AH lets you determine which video subsystems 
are present and active in the computer (see Appendix A). Of course, the PS/2 
video BIOS does not recognize non-IBM video adapters. For example, if you use a 

512 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS 



Hercules adapter in a PS/2 Model 30, a call to INT 10H function 1AH returns only 

the information that an MDA-compatible adapter is present in the system. Identi- 

fying the adapter is then up to you. 

VideoID, the routine in Listing C-1, detects the presence of either one or two 

adapters. If two adapters are present, VideoID indicates which is active (that is, 

which one the BIOS is currently using for output). The techniques used to identify 

each adapter are described in the listing. 

TITLE Lhestang) C= = VideorbD:! 

NAME VideoID 

PAGE 55; is2 

; Name: VideoID 

; Function: Detects the presence of various video subsystems and associated 

; monitors. 

wie auhery: Microsoft C: 

; void VideoID(VIDstruct) ; 

; struct 

Fi { 
7 char VideoSubsystem; 

2 char Display; 

; } 
; *VIDstruct [2]; 

: Subsystem ID values: 

; Q = (none) 

; il = MDA 

; 2 = CGA 

7 3 = EGA 

; 4 = MCGA 

; 5 = VGA 

; 80h = HGC 

; 81h = HGC+ 

82h = Hercules InColor 

= (none) 

= MDA-compatible monochrome 

= CGA-compatible color 

EGA-compatible color 

= PS/2-compatible monochrome 

= PS/2-compatible color 

Pe Display types: 

Oe wn -— Oo 

i] 

The values returned in VIDstruct[0].VideoSubsystem and 

VIDstruct[0].Display indicate the currently active subsystem. 

ARGpVID EQU word ptr [bpt4] ; stack frame addressing 

viDstruct STRUC ; corresponds to C data structure 

Listing C-1. A routine to identify PC and PS/2 video subsystems. (continued) 
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Listing C-1. Continued. 

i 
preted tem type 

VideoOType DB ? ; first subsys 

Riscrsoueyee DB Bs ; display attached to first subsystem 

VideolType DB 2 ; second subsystem type 

Display1Type DB 2 ; display attached to second subsystem 

VIDstruct ENDS 

DeviceO EQU word ptr VideoOType[di] 

Devicel EQU word ptr VideotType[di] 

MDA EQU 1 ; subsystem types 

CGA EQU 2 

EGA EQU 3 

MCGA EQU 4 

VGA EQU 5 

HGC EQU 80h 

HGCPlus EQU 81h 

InColor EQU 82h 

MDADisplay EQU 1 ; display types 

CGADisplay EQU 2 

EGAColorDisplay EQU 3 

PS2MonoDisplay EQU 4 

PS2ColorDisplay EQU a 

TRUE EQU 1 

FALSE EQU 0 

DGROUP GROUP _DATA 

STEXT SEGMENT byte public 'CODE' 

ASSUME cs: _TEXT,ds:DGROUP 

PUBLIC —_VideoID 

_VideoID PROC near 

push bp ; preserve caller registers 

mov bp, sp 

push Sa 

push di 

; initialize the data structure that will contain the results 

mov di, ARGpVID ; DS$DI, => start of, datasstructure 

mov Device0,0 ; zero these variables 

mov Devicel,0 

; look for the various subsystems using the subroutines whose addresses are 

; tabulated in TestSequence; each subroutine sets flags in TestSequence 

; to indicate whether subsequent subroutines need to be called 

mov byte ptr CGAflag, TRUE 

mov byte ptr EGAflag, TRUE 

mov byte ptr Monoflag, TRUE 

(continued) 
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Listing C-1. Continued. 

mov cx,NumberOfTests 

mov si,offset DGROUP : Test Sequence 

LO1: lodsb ? AL := flag 
test al,al 

lodsw + AX := subroutine address 

Az L02 ; skip subroutine if flag is false 

push Soe 

push Cx 

call ax 7 call subroutine to detect subsystem 

pop cx 

pop si 

L02: loop L01 

; determine which subsystem is active 

call FindActive 

pop di + restore caller registers and return 

pop si 

mov sp,bp 

pop bp 
ret 

_VideoID ENDP 

; FindPS2 

; This subroutine uses INT 10H function 1Ah to determine the video BIOS 

= Display Combination Code (DCC) for each video subsystem present. 

FindPS2 PROC near 

mov ax, 1A00h 

int 10h ; call video BIOS for info 

cmp al,1Ah 

jne L13 ; exit if function not supported (i.e., 

; no MCGA or VGA in system) 

; convert BIOS DCCs into specific subsystems & displays 

mov Gx, bx 

xor bh, bh ; BX := DCC for active subsystem 

or ch, ch 

Pz L11 ; jump if only one subsystem present 

mov bl,ch ; BX := inactive DCC 

add bx Dx 

mov ax, [bxtoffset DGROUP:DCCtable] 

mov Devicel,ax 

mov bay ce 

xO bh, bh ; BX := active DCC 

(continued) 
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Listing C-1. Continued. 

Teiles add 

mov 

mov 

Jopienlop.< 

ax, [bxtoffset DGROUP:DCCtable] 

Device0,ax 

; reset flags for subsystems that have been ruled out 

Teele 

Li3': 

FindPS2 

; FindEGA 

mov 

mov 

mov 

lea 

cmp 

je 

lea 

cmp 

jne 

mov 

mov 

ret 

ENDP 

; Look for an EGA. 

; which doesn’t exist in the default (MDA, CGA) BIOS. 

FindEGA PROC 

mov 

mov 

int 

cmp 

je 

mov 

shr 

mov 

xlat 

mov 

mov 

Cada 

cmp 

je 

byte ptr CGAflag, FALSE 

byte ptr EGAflag, FALSE 

byte ptr Monoflag, FALSE 

bx,VideoOType[di] ; if the BIOS reported an MDA 

byte ptr [bx],MDA 

L12 

bx, Videol1Type [di] 

byte ptr [bx],MDA 

L13 

word ptr [bx],0 ; ... Hercules can’t be ruled out 

byte ptr Monoflag, TRUE 

This is done by making a call to an EGA BIOS function 

near a Callies AH = flags 

; Returns: AH = flags 

. Video0Type and 

; Display0OType updated 

bi, 10h ; BL := 10h (return EGA info) 

ah, 12h ; AH := INT 10H function number 

10h ; call EGA BIOS for info 

; i£ EGA BIOS is present, 

: BL 108 

; CL = switch setting 
b1,10h 

L22 ; jump if EGA BIOS not present 

aly el 

aly ; AL := switches/2 

bx,offset DGROUP:EGADisplays 

; determine display type from switches 
ah,al 7 AH := display type 

al,EGA 7 AL := subystem type 

FoundDevice 

ah,MDADisplay 

L21 7; jump if EGA has a monochrome display 

(continued) 
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Listing C-1. Continued. 

mov CGAflag, FALSE * no CGA if EGA has color display 
jmp short L22 

G24 mov Monoflag,FALSE ; EGA has a mono display, so MDA and 

; Hercules are ruled out 
L22: ret 

FindEGA ENDP 

; FindCGA 

; This is done by looking for the CGA’s 6845 CRTC at I/O port 3D4H. 

FindCGA PROC near ; Returns: VIDstruct updated 

mov dx, 3D4h 7 DX := CRTC address port 

call Find6845 

ake L31 ; jump if not present 

mov al,CGA 

mov ah, CGADisplay 

call FoundDevice 

B31 3 ret 

FindCGA ENDP 

; FindMono 

This is done by looking for the MDA’s 6845 CRTC at I/O port 3B4H. If 

: a 6845 is found, the subroutine distinguishes between an MDA 

a and a Hercules adapter by monitoring bit 7 of the CRT Status byte. 

This bit changes on Hercules adapters but does not change on an MDA. 

The various Hercules adapters are identified by bits 4 through 6 of 

F the CRT Status value: 

001b = HGC+ 
: 101b = InColor card 

FindMono PROC near ; Returns: VIDstruct updated 

mov dx, 3B4h ; DX := CRIC address port 

call Find6845 

ae L44 A jlnpreit net present 

mov dl, OBAh ; DX := 3BAh (status port) 

in al,dx 

and al,80h 

mov ah,al ; AH s= bit 7 (vertical sync on HGC) 

(continued) 
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Listing C 

L41: 

L42: 

L43: 

L44: 

FindMono 

; Find68 

Find6845 

-1. Continued. 

mov 

in 

and 

cmp 

loope 

jne 

mov 

mov 

call 

jmp 

in 

mov 

and 

mov 

mov 

cmp 

je 

mov 

cmp 

jne 

mov 

mov 

call 

ret 

ENDP 

45 

This routine detects the presence of the CRTC on an MDA, 

The technique is to write and read register OFh of the chip 

Location Low). If the same value is read as written, 

cx, 8000h 

al,dx 

al, 80h 

ah,al 

L41 

L42 

al,MDA 

ah,MDADisplay 

FoundDevice 

short L44 

al,dax 

dl,al 

d1,01110000b 

ah,MDADisplay 

al,HGCPlus 

d1,00010000b 

L43 

al,HGC 

d1,01010000b 

L43 

al, InColor 

do this 32768 times 

isolate bit 7 

wait for bit 7 to change 

it’s a Hercules if bit 7 changed, 

if bit 7 didn’t change, it’s an MDA 

DL := value from status port 

> mask off bits 4 thru 6 

assume it’s a monochrome display 

look for an HGC+t 

jump if it’s an HGC+ 

look for an HGC 

it’s an InColor card 

ah, EGAColorDisplay 

FoundDevice 

CGA, or HGC. 

(Cursor 

assume the chip 

is present at the specified port address. 

PROC 

mov 

out 

inc 

in 

mov 

MOV 

out 

mov 

near 

al,0OFh 

dx,al 

dx 

al,dx 

ah,al 

al, 66h 

dx,al 

cx, 100h 

Caller: 

Returns: 

DX = port addr 

cf set if not present 

select 6845 reg OFh (Cursor Low) 

AL := current Cursor Low value 

preserve in AH 

AL := arbitrary value 

try to write to 6845 

(continued) 
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Listing C-1. Continued. 

Si loop L51 wait for 6845 to respond 

in al,dx 

xchg ah,al AH := returned value 

AL := original value 

out dx, al restore original value 

cmp ah, 66h test whether 6845 responded 

je L52 jump if it did (cf is reset) 

stc set carry flag if no 6845 present 

hS2 ret 

Find6845 ENDP 

; FindActive 

A This subroutine stores the currently active device as Device0. The 

a current video mode determines which subsystem is active. 

FindActive 

L61: 

L62% 

L63: 

FindActive 

PROC 

cmp 

je 

cmp 

jge 
cmp 

jge 

mov 

int 

and 

cmp 

je 

cmp 

jne 

jmp 

cmp 

je 

mov 

xchg 

mov 

ret 

ENDP 

near 

word ptr Devicel, 

L63 

VideoOType[di],4 

L63 

VideolType[di],4 

L63 

ah, OFh 

10h 

aly 

al,7 

L61 

Display0OType[di], 

L63 

short L62 

DisplayOTypel[di], 

L63 

ax, DeviceO 

ax,Devicel 

DeviceO,ax 

0 

7; exit if only one subsystem 

; exit if MCGA or VGA present 

y (INT 10H function 1AH 

; already did the work) 

; AL := current BIOS video mode 

; jump if monochrome 

; (mode 7 or OFh) 

MDADisplay 

; exit if DisplayO is color 

MDADisplay 

; exit if DisplayO is monochrome 

; make DeviceO currently active 

(continued) 
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Listing C-1. Continued. 

; FoundDevice 

This routine updates the list of subsystems. 

FoundDevice PROC near 7 Caller: AH = display # 

; AL = subsystem # 

; Destroys: BX 

lea bx, Video0OType [di] 

cmp byte ptr [bx],0 

je L71 ; jump if 1st subsystem 

lea bx, VideoiType [di] ; must be 2nd subsystem 

L713 mov [bx] ,ax ; update list entry 

ret 

FoundDevice ENDP 

_ TEXT ENDS 

_DATA SEGMENT word public 'DATA' 

EGADisplays DB CGADisplay ; 0000b, 0001b (EGA switch values) 

DB EGAColorDisplay ; 0010b, 0011b 

DB MDADisplay 7 0100b, 0101b 

DB CGADisplay POT VOD, SON iM 

DB EGAColorDisplay ; 1000b, 1001b 

DB MDADisplay 2 TONOb,. WO tts 

DCCtable DB 0,0 ; translate table for INT 10h func 1Ah 

DB MDA, MDADisplay 

DB CGA, CGADisplay 

DB 0,0 

DB EGA, EGAColorDisplay 

DB EGA, MDADisplay 
DB 0,0 

DB VGA, PS2MonoDisplay 

DB VGA, PS2ColorDisplay 

DB 0,0 

DB MCGA, EGAColorDisplay 

DB MCGA, PS2MonoDisplay 

DB MCGA, PS2ColorDisplay 

TestSequence DB 2 ; this list of flags and addresses 

DW FindPS2 ; determines the order in which this 

# program looks for the various 

EGAflag DB ie 7 subsystems 

DW FindEGA 

CGAflag DB 2 
DW FindCGA 

Monoflag DB o 

DW FindMono 

(continued) 
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Listing C-1. Continued. 

NumberOfTests EQU ($-TestSequence) /3 

_DATA ENDS 

END 

The VideoID routine checks for adapters by a process of elimination. For exam- 
ple, if the routine is run on a PS/2, the INT 10H call returns the desired informa- 

tion. On PC/XTs and PC/ATs, if an EGA with a monochrome display is detected, 

there is no reason to look for an MDA or a Hercules card in the same system. If a 
monochrome adapter is present, the routine differentiates between the MDA and 

the various Hercules adapters. 

INT 10H function 1AH on the VGA adapter fails to report the presence 

of the MCGA when the adapter is installed in a PS/2 Model 30. Also, 

function 1AH in the MCGA ignores the presence of an EGA if one is 

installed in a Model 30. If you are concerned about these combina- 

tions, you must test for them explicitly after you call INT 10H function 

1AH. (In the first situation, inspect the motherboard BIOS identfica- 

tion byte at F000:FFFE to detect the presence of a Model 30. In the 

second situation, execute INT 10H function 12H with BL = 10H to 

detect the presence of an EGA.) 

The C program in Listing C-2 demonstrates how you might use VideoID. 

/* Listing C-2 */ 

main () 

{ 
char *SubsystemName () ; 

char *DisplayName() ; 

static struct 

{ 
char Subsystem; 

char Display; 

} 
viIDstruct [2]; 

/* detect video subsystems */ 

VideoID( VIDstruct ); 

/* show results */ 

printf( "Video subsystems in this computer:" ); 

Listing C-2. Calling VideolD from a C program. (continued) 
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Listing C-2. Continued. 

print £(UNn tsetse, SubsystemName (VIDstruct [0] .Subsystem), 

DisplayName (VIDstruct [0] .Display) My 

if ( VIDstruct(1].Subsystem ) 

Denes (eeNn ws Sees). i, SubsystemName (VIDstruct [1] .Subsystem), 

DisplayName (VIDstruct [1] .Display) yz 

char *SubsystemName( a ) 

char a; 

{ 
static char *IBMname[] = 

{ 
W (none) " ; 

"MDA" ; 

NEGA” : 

WGA 7 

"MCGA", 
WTGAN 

he 

static char *Hercname[] = 

{ 
"HGC™, 
"HGC+", 
"TnColor™ 

}; 

Lf Ca &0x80'=) 

return ( Hercname[a & Ox7F] ); 

else 

return( IBMname[a] ); 

char *DisplayName(d ) 

char as 

{ 
static char *name[] = 

{ 
"(none)", 

"MDA-compatible monochrome display", 

"CGA-compatible color display", 

"EGA-compatible color display", 

"PS/2-compatible monochrome display", 

"PS/2-compatible color display" 

i 

return( name[d] ); 
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Glossary 
This glossary includes some of the acronyms, abbreviations, buzzwords, engineering 
terms, and programming jargon that appear frequently throughout this book. 

80x86: Refers to all the processors in the Intel 8086 family. The IBM PCs and PS/2s 
all use one of these processors: 8086, 8088, 80286, or 80386. 

active display: In a computer that contains two video subsystems and displays, the 
display to which a program sends its output. 

adapter: A modular, plug-in circuit that performs a specialized task such as 

generating video output. Well-known IBM PC video adapters include the MDA, 

CGA, HGC, EGA, and VGA Adapter. 

ANSI: American National Standards Institute. One of ANSI’s many activities is to 

certify the standardization of programming tools, including languages (such as C 

and FORTRAN) and software interfaces (such as GKS). 

APA: All Points Addressable; describes graphics modes on the CGA, EGA, and 

Hercules graphics cards. 

API: Application Program Interface; a set of system-level routines that can be 

used in an application program for basic input and output, file management, and 

so on. In a graphics-oriented operating environment like Microsoft Windows, 

high-level support for video graphics output is part of the API. 

ASCII: American Standard Code for Information Interchange. The ASCII stan- 

dard specifies the basic character set used in IBM PCs and PS/2s. 

aspect ratio: The ratio of a video screen’s width to its height. A typical IBM PC 

display has an aspect ratio of about 4:3. This term is also frequently used to 

describe pixels: If you think of a pixel as being rectangular, its aspect ratio would 

be the ratio of its width to height. 

attributes: Color, intensity, blinking, and other displayed characteristics of char- 

acters or pixels. 

BIOS: Basic Input/Output System; a low-level programming interface to the sys- 

tem’s major I/O devices. 

bit plane: Video RAM containing formatted graphics data. In IBM video sub- 

systems up to four bit planes can be addressed in parallel, with pixel values repre- 

sented by the bits at corresponding locations in the bit planes. 

CGA: IBM’s Color Graphics Adapter. 

character code: A numeric code associated with a character. The default ASCII 

character set used in all PCs and PS/2s comprises 256 8-bit character codes. 

character matrix: The rectangular array of pixels in which characters are dis- 

played on the screen. On IBM’s Monochrome Display Adapter, each character is 

displayed in a character matrix that is 9 dots wide and 14 dots high. On the Color 

Graphics Adapter, the character matrix is 8 by 8. 
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character set: A set of alphabetic and numeric characters and symbols. 

clipping: The process of determining which portions of a graphics image lie 

within a specified boundary. 

code page: A character set designed for use with computers. Each character in a 

code page is associated with a numeric code (such as an ASCII or EBCDIC code). 

CPU: Central Processing Unit, or the main processor in a computer. For example, 

the CPU is an Intel 8088 in PCs and an 80286 in PC/ATs. 

CRT: Cathode Ray Tube, or the picture tube you see when you look at your com- 

puter monitor. Some people refer to the entire monitor (the tube and its associated 

circuitry) as a CRT. 

CRTC: CRT Controller; a chip that controls a video display’s timing signals. 

DGIS: Direct Graphics Interface Specification; a firmware graphics interface 

designed for video subsystems based on hardware graphics coprocessors. 

display: A video monitor. 

driver: Software or firmware that directly programs a specific hardware unit 

such as a video adapter or a printer. 

EBCDIC: Extended Binary Coded Decimal Interchange Code; the character-set 

implementation used on IBM mainframe computers. 

EGA: Enhanced Graphics Adapter. 

font: A description of the style and shapes of the characters in a character set. 

gate array: An integrated circuit that is partly prefabricated in its manufacture. 

An application-specific integrated circuit based on gate array technology can be 

less expensive and manufactured more rapidly than a custom integrated circuit. 

GKS: Graphical Kernel System; a standard high-level graphics interface. 

HGC: Hercules monochrome Graphics Card. 

HGC+ (HGC Plus): Hercules Graphics Card Plus; a monochrome video adapter 

like the HGC, but with a hardware character generator that can use RAM-based 
character sets. 

InColor: Hercules InColor Card; a 16-color version of the HGC+. 

latch: A hardware register external to the CPU and used for transient storage of 
data. For example, the EGA Graphics Controller uses four internal 8-bit latches to 
mediate data transfers between the bit planes and the CPU. 

LSI: Large Scale Integration. 

MCGA: Multi-Color Graphics Array; the video subsystem integrated into the PS/2 
Model 30. Also, Memory Controller Gate Array, one of the components of the 
Model 30’s video subsystem. 
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MDA: IBM’s Monochrome Display Adapter. 

MDPA: Monochrome Display and Printer Adapter; same as an MDA. 

monitor: The hardware that displays your computer’s video output; comprises a 
CRT (cathode ray tube) and associated circuitry. 

MPA: Monochrome/Printer Adapter; same as an MDA. 

palette: A range of colors that can be displayed by a video subsystem. 

pel: A pixel. 

PGA: Professional Graphics Adapter; another name for IBM’s PGC. 

PGC: IBM’s Professional Graphics Controller. 

pixel: One dot or point in an image that is composed of a matrix of dots or points. 

The image on the video screen or on a page printed by a dot-matrix printer is 
composed of a large number of pixels. (The word ‘‘pixel’’ is a rough acronym for 

““picture element.’’) 

planar BIOS: BIOS routines found in ROM on the IBM PC or PS/2 motherboard. 

PS/2: Personal System/2. 

PS/2 Display Adapter: A VGA-compatible IBM video adapter that may be used in 

a PC/XT, PC/AT, or PS/2 Model 30; commonly called ‘‘VGA Adapter.”’ 

raster: The group of closely spaced horizontal scan lines that makes up a dis- 

played video image. 

RGB: Red, Green, Blue; the three primary colors displayed by the monitors used 

in PC and PS/2 video subsystems. All other colors are blends of these three pri- 

maries. Video displays that are driven by separate red, green, and blue signals are 

often called RGB displays. 

scan line: One horizontal line traced across the screen by a CRT’s electron beam. 

VDI: Computer Graphics Virtual Device Interface; a proposed ANSI standard 

high-level graphics interface. The Graphics Development Toolkit (GDT) sold by 

IBM and Graphics Software Systems is a commercial implementation of VDI. 

VGA: Video Graphics Array. People refer to the video subsystem integrated into 

the PS/2 Models 50, 60, and 80, as well as the IBM PS/2 Display Adapter, as the 

‘““VGA.”’ Strictly speaking, however, the VGA is the circuitry in the video sub- 

system that performs the tasks of the CRT Controller, the Sequencer, the Graphics 

Controller, and the Attribute Controller. Most of this circuitry is contained in a 

single VLSI chip. 

VGA Adapter: The IBM PS/2 Display Adapter. 

video buffer: A buffer that contains the data that appears on the video display; 

variously known as a ‘‘display buffer,” ‘‘frame buffer,”’ ‘‘refresh buffer,” or 

‘*regenerative buffer.”’ 
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Video Control Data Area: Part of the Video Display Data Area. The block of 
RAM from 0040:0049 through 0040:0066 is Video Control Data Area 1; the block 

between 0040:0084 and 0040:008A is Video Control Data Area 2. 

Video Display Data Area: A global data area maintained by the ROM BIOS for 

storage of parameters related to its INT 10H video I/O routines. 

VLSI: Very Large Scale Integration. 
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Index 

References to source code listings 
and illustrative figures are in 
italics. 

A 
Adapter. See Video adapter 
Algorithm. See Circle; Ellipse; 

Line; Region fill 
All Points Addressable (APA) 

modes 86 
Alphanumeric mode. See Video 

modes, alphanumeric 
Alternate select. See Interrupt 10H, 

function 12H 
Analog video signals 5—6. See also 

Video DAC 
Animation 364—68 
Application Program Interface 

(API) 425 
Aspect ratio 100 
Assembly language 7-9, 168, 408 
Attribute Controller (EGA and 

VGA) 
programming 35-36, 53-56, 

60-62, 466-72 
registers 35—36 

Attributes 
alphanumeric mode 

CGA 51-53 
EGA 53-56, 320-21 
HGC 51 
HGC+ 51, 321-22 
InColor Card 56-58, 321—23 
MCGA 58-60, 63-64, 321 
MDA 49-51 
VGA 60-64, 320-21 

graphics mode 
CGA 100-103 
EGA 103-7 
HGC 103 
InColor Card 107 
MCGA 107-10 
VGA 110 

B 
BASIC 416-17, 420 
BIOS (Basic Input/Output System). 

See also Interrupt 10H 
about 6-11, 420, 424 
anomalies 82, 385—86, 481, 

484, 521 
data area 

about 438-39, 442—46 
Alphanumeric Character Set 
Override 441 

Display Combination Code 
table 441-42, 485-86 

Graphics Character Set 
Override 441 

BIOS (continued) 

Parameter Save Area 440 
SAVE POINTER table 
438-40 

SECONDARY SAVE 
POINTER table 
438-40 

User Palette Profile table 442 
Video Parameter table 440 

hardware supported by 434-35 
planar 434 
programming interface 7-11, 

435-36 
status 8—11, 437-38, 465, 

485-86, 487-90 
video modes 

determining 465, 487-88 
establishing 448-50 

Bit block. See also CGA; EGA; 
HGC; MCGA; VGA 

about 344 
animation 367-68 
tiling 363-64 

Bit planes 
about 112-14 
layering 395—96 
programming 

EGA 114-21 
InColor Card 121—25 
VGA 114-21 

write-protecting 
EGA 121 
InColor Card 124 

Blanking 
horizontal 17, 27-28 

vertical 18 
Blinking. See also Interrupt 10H, 

function 10H 
alphanumeric mode 

CGA 52-53 
EGA 54-55 
InColor 57 
MDA 50 

graphics mode 106—7 
Border (region fill). See Region fill 

Border (video display). See 
Overscan 

Bresenham, J.E. 164 

C 
C language 10-11, 408-9, 418-19 
Cathode ray tube. See CRT 

Controller 
CGA (Color Graphics Adapter) 

about 2—4 

CGA (continued) 
alphanumeric mode 

attributes 51-53 
character generator 47—49, 
298-99 

data representation 47—49 
snow 66-74 

BIOS 434 
graphics I/O 

bit block 344-51 
circle 242 
ellipse 230-33 
line 170-84 

pixel 125—27, 137-40, 
462-63 

text 26°, 276-83, 458-59, 
464-65, 483-84 

graphics mode 
attributes 100-103 
character generator 276-83 
data representation 87—88 

Character definition tables 
alphanumeric mode 

address map 300-305 
BIOS 298, 313, 324—26, 441, 
473-77 

dedicated ROM 298-99 
format 300-305 

graphics mode 
BIOS 269-70, 441, 457, 
473-77 

format 268-71 
Character generator. See also 

Character definition tables 
alphanumeric mode 48, 

298-305, 473-77 
graphics mode 271-75, 364, 

458-59, 464-65, 
473-17, 483-84 

Character string. See Text 
Circle. See also Ellipse 

algorithm 222—23, 242 
clipping 241 

Code page 270 
Cohen, D. 217 
Color Select register (VGA) 

60-62, 467, 468, 470-71 
Compagq 51, 512 
Composite video 2, 15 
Configuration Switch (Hercules) 

33, 42, 303, 316 
CRT Controller (CRTC) 

about 16 
programming 18—26 

Index 527 



CRT Controller (continued) 
registers 

CGA 19, 20 
EGA 21-22 
Hercules 20—21 
MCGA 22-23 
MDA 18-20 
VGA 23 

status (see CRT Status register) 

timing 
computations 24—26 
horizontal 17-18, 25, 27—28 

vertical 18, 26 

write-protecting 31-32 
CRT Status register 26—29, 67-72 
Cursor 

alphanumeric 
emulation by BIOS 82, 

450-51, 478, 480 
invisible 83, 450 
location 76—78, 451-52 

size 76—83, 450-51, 451-52 
graphics 368-71 

D 
DAC. See Video DAC 
Decoder gate array (InColor Card) 

121-22 
DGIS (Direct Graphics Interface 

Standard) 426-29, 430 
Digital video signals 5-6 
Display 

active 
interference (see Snow) 

refresh 15-18, 478, 481 
switching 

BIOS support for 40, 450, 
478, 480-82 

configurations (see 

Dual-display 
configurations) 

video 2-6, 15 
Display Combination Code 

441-42, 485-86 
Display Enable 18-19, 27-28, 

67-72 
DOS. See MS-DOS 
Dot clock 24 
Dual-display configurations 40—43 

E 
EGA (Enhanced Graphics 

Adapter) 
about 5 
alphanumeric mode 

attributes 53-56, 320-21 
character generator 47—49, 
298-302, 306-13, 441, 
473-77, 504-10 
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EGA, alphanumeric mode 

(continued) 
data representation 47—49, 

316, 318—20 
BIOS 435 
graphics I/O 

bit block 352-59 
circle 242 
ellipse 230-41 
line 191-98 
pixel 127-31, 141-50, 
409-17, 462-63 

region fill 260—63 
text 270, 288-92, 458-59, 
464-65, 483-84 

graphics mode 
attributes 103-7 
character generator 288-92, 

441, 473-77 
data representation 89-91 

Ellipse 
algorithm 

derivation 224-33 
optimization 233-41 
scan-conversion 223-24, 232 

clipping 241 
implementation 230—41 

Enable Blink bit 57 
Encoder gate array (InColor Card) 

121-22 
EQUIP_FLAG 7-8, 9-10, 40, 449, 

486 
Exception register (InColor Card) 

56-57, 107 

F 
Fill. See Region fill; Video buffer, 

fill 
Font pages (MCGA) 314-15, 

341, 475 
FORTRAN 411-13, 418-19 

G 
GDI (Graphics Device Interface) 

429-31 
GKS (Graphical Kernel 

System) 429 

Global data area 423 

GRAFTABL 269 
GRAPHICS 494-95 
Graphics Controller (EGA 

and VGA) 

about 114-15 

programming 115—21 
read/write modes 

read mode 0 116, /42, 352 

read mode 1 1/5, 116-17, 262, 
290, 502 

write mode 0 117-19, 
141-45, 352 

Graphics Controller, read/write 
modes (continued) 

write mode 1 119—20 
write mode 2 120, 145-47, 
290 

write mode 3 120, /2/ 
registers 34—35, 116 

Graphics Memory Expansion Card 
(EGA) 89 

Graphics mode. See Video mode, 

graphics 
Graphics window (alphanumeric 

mode) 337-41 

Gray-scale 
palette 60, 62—63 
summing 63—64, 468, 470, 472, 

478, 480 
GWBASIC. See BASIC 

H 
Hercules Color Card 5 
Hercules InColor Card. See 

InColor Card 
HGC (Hercules Graphics Card) 

about 4 
alphanumeric mode 

attributes 51 
character generator 47—49 
data representation 47—49 
determining 404-6 

graphics I/O 
bit block 359 
circle 242 
ellipse 230—33 
line 184-91 
pixel 127, 140 
text 283-86 

graphics mode 
attributes 103 
character generator 283-86 
data representation 88—89 
determining 404-6 
establishing 36, 38—40 

HGC+ (Hercules Graphics 

Card Plus) 
about 4—5 
alphanumeric mode 

attributes 51, 321-22 

character generator 47—49, 
298, 302-3 

data representation 47—49, 
321-22 

determining 404-6 
establishing 326-27, 334-37 

graphics I/O (see also HGC) 
pixel 127, 140 

graphics mode (see HGC) 
Horizontal sync. See Retrace, 

horizontal 



I 
IBM PS/2. See PS/2 
InColor Card 

about 5 

alphanumeric mode 

attributes 56—58, 321-23 
character generator 47—49, 

298, 303 
data representation 47—49, 

321-23 
determining 404-6 
establishing 326-27, 334-37 

compared with EGA 122 
graphics I/O 

bit block 360 
circle 242 
ellipse 230—33 
line 209-14 
pixel 132—34, 147-51 
text 292-95 

graphics mode 
attributes 107 
character generator 292—95 
data representation 91 
determining 404-6 
establishing 36, 38—40 

Inline code 422 
Intel 8259A 374 
Intel 82786 426 
Intensity 15. See also Attributes 
Interface. See Layered interface; 

Subroutines 
Interrupt 5. See Print screen 
Interrupt OAH. See Vertical 

interrupt 
Interrupt 10H 

about 7-11, 434, 435-36, 447 
functions 

OOH (Select Video Mode) 
7-8, 64, 102, 103, 106, 270, 
448-50, 479 

01H (Set Alphanumeric 
Cursor Size) 76-77, 82-83, 

450-51 
02H (Set Cursor Location) 

78,451 
03H (Return Cursor Status) 

451-52 
04H (Return Light Pen 
Position) 452—53 

05H (Select Video Page) 75, 

453-54 
06H (Scroll Up) 454-56 

07H (Scroll Down) 456 

08H (Return Character Code 
and Attribute at Cursor) 

456-57 
09H (Write Character and 
Attribute at Cursor) 271, 

323, 457-58 

Interrupt 10H, functions 

(continued) 

OAH (Write Character(s) at 

Cursor Position) 271, 323, 
458-59 

OBH (Set Overscan Color, 

Select 4-Color Palette) 64, 

100, 459-61 
OCH (Store Pixel Value) 143, 
462-63 

ODH (Return Pixel 
Value) 463 

OEH (Display Character in 
Teletype Mode) 271, 
464-65 

OFH (Return Current Video 
Status) 9, 1/7, 465 

10H (Set Palette Registers, 
Set Intensity/Blink 
Attribute) 36, 55, 60, 
62-63, 321, 466-72 

11H (Character Generator 

Interface) 270, 271, 311-13, 

320, 321, 324—26, 473-77 
12H (Video Subsystem 
Configuration) 42—43, 

324-25, 477-82 
13H (Display Character 
String) 271, 483-84 

Layered interface 
about 424-25 
BIOS 424, 426 
DGIS 426-28 
GDI 429-31 
GKS 429 
VDI 429 

Light pen 
about 401 
programming 401-6, 452-53 

Line 
algorithm 

derivation 163—66 
optimization 166—69 
scan-conversion 162—63 

clipping 215—20 
implementation 

CGA 170-84 
EGA 191-98 
HGC 184-91 
InColor Card 209-14 
MCGA 198-208 
VGA 208 

Line-adjacency graph (LAG) 251 
Linking 11, 408, 418—20 

M 
Macintosh 425 

MCGA (Multi-Color 
1AH (Video Display 
Combination) 
485-86, 512-13, 515 

1BH (Video BIOS 
Functionality/State 
Information) 487—90 

1CH (Save or Restore Video 

State) 490-92 

Interrupt 1DH 447 
Interrupt 1FH 269-71, 275, 277, 

457, 474, 476 
Interrupt 43H 270-71, 277, 

286, 474 
I/O Support Gate Array 

(MCGA) 374 

K 
Kappel, MLR. 225, 232 

L 
Language. See Assembly language; 

BASIC; C language; 

FORTRAN; Pascal 

Latch 
graphics mode 

EGA and VGA 112—20 
InColor Card 122—25 

vertical interrupt 374 
Latch Protect register (InColor 

Card) 122, 124 

Graphics Array) 
about 5—6 
alphanumeric mode 

attributes 58—60, 63-64, 321 
character generator 47—49, 

300, 303-5, 473-77 
data representation 47—49, 

321 
BIOS 435 
graphics I/O 

bit block 344-51 
circle 242 
ellipse 230-33 
line 198-208 
pixel 134—36, 151-54, 
462-63 

text 270, 286-88, 458-59, 
464-65, 483-84 

graphics mode 
attributes 107-10 
character generator 286-88, 

473-77 
data representation 91 

MDA (Monochrome Display 
Adapter) 

about 2—4 
attributes 49-51 
BIOS 434 
character generator 47—49, 298 
data representation 47—49 
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Memory Controller Gate Array 
(MCGA) 22-23 

Memory-resident program 420—22 
Microsoft Windows 425, 430-31 
Miscellaneous Output register 

(EGA) 42, 480 
Mode Control register 

CGA 31-32 
Hercules 33, 38—40 
MCGA 31-32 
MDA 30 

Monitor. See Display, video 

Motorola 6845 16 
MS-DOS 46, 270, 323, 494 

N 
Novak, M. 232 

O 
Optimization 

alphanumeric mode 46—47, 512 
graphics mode 

ellipse 233—41 
line 166—69, 170, 184, 

198, 216 
region fill 260, 263—65 
text 271, 273 

techniques 20—21, 23, 46—47, 

97, 167-68 
Overscan 

color 64—66, 442—46, 459-61, 
466, 469-70 

EGA 65-66 
horizontal 17-18, 26 

vertical 18 

P 
Palette. See also Attributes 

colors 54, 101, 104, 107-9, 461 
programming 

BIOS 440, 442—46, 459-61, 
466-72, 477, 479 

CGA 101-3 

EGA and VGA 53-56, 103-7, 
440, 442-46 

InColor Card 56-58, 107 

MCGA 58-60, 107-8 

Panning (EGA and VGA) 386-92 
Pascal 413-15, 419 

Pavlidis, T. 252, 259 

Personal System/2. See PS/2 
Pixel 

attributes 

CGA 100-103 
EGA 103-7 

HGC 103 

InColor Card 107 

MCGA 107-10 
VGA 110 

connectivity 245 

Pixel (continued) 
coordinates 

computation of 92—98 
scaling 98-100, 222—23, 242 

logical operations 
about 136-37 
AND 361-62 
NOT 361 
OR 363 
XOR 360, 462 

representation 
in video buffer 87-92 
on screen 15 

value (see also individual names 

of adapters) 
reading 125—36, 463 
setting 136-54, 338-41, 
462-63 

Plane Mask register (InColor Card) 

122, 124, 314, 318, 395 
Print screen 

alphanumeric mode 494, 504-10 
BIOS 324, 494-95, 477, 479 
graphics mode 494-504 

Programmable interrupt controller 
(PIC) 374 

Programming language. See 
Assembly language; 
BASIC; C language; 
FORTRAN; Pascal 

PS/2 
Display Adapter. See VGA; 

VGA Adapter 
Model 25 2, 5-6, 435, 481. See 

also MCGA 
Model 30 2, 5—6, 435, 481, 482. 

See also MCGA 
Models 50, 60, and 80 2, 5—6, 

435. See also VGA 

R 
Raster 15-18 

Read mode. See Pixel, value, 
reading 

Read/Write Color register 

(InColor Card) 122, 124, 
292, 360 

Read/Write Control register 
(InColor Card) 122-25, 
360 

Refresh. See Display, refresh 
Regeneration buffer. See Video 

buffer 
Region fill 

about 244-45 
algorithms 

border trace 252—63 
line adjacency 248—52 
recursive 247—48 

using horizontal lines 246 
optimization 251-52, 260-63 
scan-conversion 246 
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Retrace 

horizontal 17, 25—26, 29 

vertical 18, 26, 29 

Reverse video 49. See also 

Attributes 

RGB (Red, Green, Blue) 2 

ROM BIOS. See BIOS 
Rubberbanding 366 

S 
Save area 

BIOS (see BIOS, data area) 
display switch 478, 480-81 
video state 490-92 

SAVE POINTER table. See BIOS, 
data area = 

Scaling factors 99 
Scan-conversion 

about 162—63 
ellipse 223—24, 232 
line 162-64 
region 246 

Screen dump. See Print screen 
Scrolling 454-56 
SECONDARY SAVE POINTER 

table. See BIOS, data area 
Sequencer (EGA and VGA) 

programming 34, 306-9, 
318-20, 341 

Tegisters 34 
Shani, U. 251 

Shift-PrtSc 494-95 
Snapshot. See Print screen 
Snow 66-74 

Split screen (EGA and VGA) 

396-400 
Sproull, R.F. 217 
Status 

BIOS (see BIOS, status) 

CRT Controller 26—29, 404-6 
register (see CRT Status 

register) 
video subsystem 477, 479, 

485—86, 487-88 
Subroutines 

linking 11, 408, 418-20 
memory models 418-19 
parameter passing 418—20 
structure 

BASIC 416-17, 420 
C 408-9, 418-19 
FORTRAN 411-13, 418-19 
Pascal 413-15, 419 

Sutherland, I.E. 217 

T 
Text. See also Attributes 

alphanumeric mode 66-74, 

456-59, 464-65, 
483-84 



Text (continued) 

graphics mode (see names of 
individual adapters) 

Tiling. See Bit block, tiling 
TMS34010 426 

U 
Underline attribute 49-5 1, 56, 442. 

See also Attributes, 
alphanumeric mode 

Vv 
Van Aken, J.R. 225, 232 
Van Dam, A. 246 

VDI (Virtual Device Interface) 
429 

Vertical interrupt 
EGA 374-81, 385-86 
MCGA 374, 381-86 
VGA 374-81, 385-86 

Vertical sync. See Retrace, vertical 
VGA (Video Graphics Array) 

about 6 

alphanumeric mode 
attributes 60—64, 320-21 

character generator 47—49, 

306-13, 441, 473-77, 
504-10 

data representation 47—49, 
316, 318-20 

BIOS 435 
graphics I/O 

bit block 352-59 
circle 242 
ellipse 230—41 
line 208 
pixel 136, 154, 462-63 
text 270, 288-92, 458-59, 
464-65, 483-84 

graphics mode 
attributes 110 
character generator 288—92, 

441,473-77 
data representation 91-92 

VGA Adapter 43, 381, 435. See 
also VGA 

Video adapter 2, 3. See also names 
of individual adapters 

Video bandwidth. See Dot clock 
Video BIOS. See BIOS 
Video buffer 

about 15-16 
address map 41—43 
CPU access 41—43, 478, 480 
data representation 

alphanumeric mode 47—49, 
300-305 

graphics mode 87—92 

Video buffer (continued) 
fill 

about 154 
CGA 155-56 
EGA 157-59 
HGC 156 

InColor Card 159-60 
MCGA 160 
VGA 157-59 

paging 74-76, 453-54 
panning 386—92 
resizing 392—94 
scrolling 454—56 
split screen 396—400 

Video Control Data Area. See 

Video Display Data Area 
Video DAC (Digital-to-Analog 

Converter) 

about 6, 58—59 

programming 59-63, 442, 
467-68, 470-72 

Video display 
about 2—6, 15 

resolution 4—6 

Video Display Data Area (VDDA) 
about 9-10 

format 436-38 

variables 

ACTIVE_PAGE 40, 448, 
453, 465 

ADDR_6845 20, 40, 50, 75, 
329, 377, 389, 394, 397, 448 

CRT_COLS 20, 40, 284, 286, 
329, 339, 401, 404, 448, 465 

CRT_LEN 40, 326, 394, 404, 
448,475 

CRT_MODE 40, 329, 339, 
377, 388, 394, 448, 465 

CRT_MODE_ SET 40, 50, 
102, 335, 448, 468 

CRT_PALETTE 40, 64, 100, 
102, 448, 460, 468 

CRT_START 20, 40, 75, 401, 
448, 453 

CURSOR_ MODE 40,77, 
448, 450-51, 452, 475 

CURSOR_POSN 40, 448, 
451-52, 454, 464, 483 

INFO 437, 449, 450, 465, 
479-80 

INFO_3 437, 449, 479 
POINTS 271, 277-78, 286, 

324, 326, 389, 391, 394, 404, 
449, 475-76 

ROWS 324, 326, 394, 448, 
475-76, 494 

SAVE_ PTR 438-40, 
443-46 

Video Formatter (MCGA) 58-59 
Video modes 

about 28—29 
alphanumeric 

about 46—47 
attributes 49-63 
data representation 47—49 

BIOS interface 7-9, 36—38 
determining 

BIOS 9, 465 
Hercules 404-6 

establishing 7—8, 38—40, 
323-27, 448-50 

graphics 
about 86 
attributes 100-110 
data representation 87-92 

hardware control 30—40 
Video monitor. See Video display 
Video page. See Video buffer, 

paging 

W 
Window 

alphanumeric mode 337—41 
Microsoft Windows 429-31 

Write mode. See Pixel, value, 
setting 

xX 
xMode register 34, 316, 321 
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