
_ _ —

POGGIO DO OS ear

SA eNO OS Rs

rile k Mee YY YY YE YY OD

SY HSH VY YY Vv vy Vy VV YV VY VY

iMVeyuuyUuNUUUYUUUUEY

= a ages a ie iY

> Coa Tee, Milos akan Eee

“oa lat Ne i

6, aia LS a

= gs Sk a
2 es ko AD a
5 ka ica ca ka cn
fay a UTA Wace Fig
alk tea a a a
7 aes Yas, 7s fai 9
VN etre ea fF
BK Wh as KG ik, A
aaa ke aa ee
ie eee eyo AM
en Wis i, 3 43 cs Py ee
Ne ten os tk fica te Un oe ee

fa oka Sa ies hh a i)
ett < io int ica leo ka ian ae en
Bee. Ne Go a En io a, x, a a ee
Ga Wee, an hc. ch St taf 5d gt Ste i

a Pian ice cis tacit, Wats a i sa. wks, at ate, ae

Nias Vie ee OP a 7

ata Ua ee) ae ha, a, a, a ee

) POA aoe ee ea ay NT ; E Nee ww Y
Poe cae ae aan eS a ca a

a Pica, Weta US each ee Gast oe ig a ins ese, Sa ate 2 hc ain

AS SOR ee oe eee : Ned MX %

RRNA SOA Srna GUE oN

We Wa We oe ee es a A Las ae ee "
aay ih ae NY ian ia

eto Soe ha. 0 0 es he A a ka. a eee

OR SER Ane Oe On a ON ew ey NT TNO

SRN ON ESA ON EVAN re eS OT

A ee ee en an ee

ROARS AO ANON A ON AY RA a OO

Se co Wl cas ccs te ca acs Se ai a th te ie ei. ho ae, OL ee

OE re ae

5 : s a a a eet ey gia
2 Sietatatlalol ato: chase as cs aa ee ae a aes

| iad ad coal DA tall Bae oo aR Oa ae al eae ese
oe ee et ee on em oo Wo. a oe a

) MS eg RAUL R SL LOD 2200 Totes aiialate. ee Oe en ho an
CE OEE OES ENERO LSE LOLS EE

a ae nc On Ta ca ae an Ta at te

ay ae ea rg, rng el ee

a aN OA SEY poe EE aL

ee ea NN i noe in a i em

ae ay re a ie i en me ee im em a a oe FOOL LO QE EO LO OL

cy ,,
FOL TG I ELON EE eo LG

EN PL 2 aa gl any gS as ai a ae a

PUG oe eae CaaS

Py -
ea ee te er ee ok ie or

a ee ee se ee ek

Pa a nA AAR AAA eA owe
ean es

pk uN eR BUR ia ea Oa ee
ar? vont vo ae

ee ee ia ne ee ee
aa rf Co os

ae
S
e

a
 »
v
y

z

r

f

rir’ «
 5
0

e
e
e

8

e
e

eee , fe I)

VIDE
SYOTEMG

Maximum Vidi

f etn! et a bolt E
é . eas
“ {

-

en : - il

VIDE
oYotEMa

imum Video

PUBLISHED BY

Microsoft Press

A Division of Microsoft Corporation

16011 NE 36th Way, Box 97017, Redmond, Washington 98073-9717

Copyright© 1987 by Richard Wilton

Allrights reserved. No part of the contents of this book may

be reproduced or transmitted in any form or by any means without

the written permission of the publisher.

Library of Congress Cataloging in Publication Data

Wilton, Richard, 1953—

The programmer’s guide to PC and PS/2 video systems.

Includes index.

1. IBM Personal Computer—Programming. 2.Expansion boards (Microcomputers).

3. Computer graphics. I. Title.

QA76.8.12594W55 1987 005.265 87-20264

ISBN 1-55615-103-9

Printed and bound in the United States of America.

3456789 FGFG 89098

Distributed to the book trade in the

United States by Harper & Row.

Distributed to the book trade in
Canada by General Publishing Company, Ltd.

Distributed to the book trade outside the

United States and Canada by Penguin Books Ltd.

Penguin Books Ltd., Harmondsworth, Middlesex, England

Penguin Books Australia Ltd., Ringwood, Victoria, Australia

Penguin Books N.Z. Ltd., 182-190 Wairau Road, Auckland 10, New Zealand

British Cataloging in Publication Data available

Acquisitions Editor: Claudette Moore

Technical Editor: Jeff Hinsch

IBM® is a registered trademark and PC/AT™, PC-DOS™, PC/KT™, and PS/2™ are trademarks of

International Business Machines Corporation. Microsoft® and MS-DOS® are registered trademarks
of Microsoft Corporation.

Contents

Acknowledgments

Introduction

1 IBM Video Hardware and Firmware

2 Programming the Hardware

5 Alphanumeric Modes

4 Graphics Modes

5 Pixel Programming

6 Lines

7 Circles and Ellipses

8 Region Fill

9 Graphics Text

10 Alphanumeric Character Sets

11 Bit Blocks and Animation

12 Some Advanced Video Programming Techniques

13 Graphics Subroutines in High-Level Languages

Appendix A: Video BIOS Summary

Appendix B: Printing the Screen

Appendix C: Identifying Video Subsystems

Glossary

Index

Vii

15

45

85

111

161

221

243

267

297

343

ai

407

433

493

al

D2

527

alie6 full ie als Eas 4 e

4 Soe La mn 7 " vile @ ane eee a we abe Te eiigie | 35 Cea ’ ae

iu at phe write” . </ <4 oa ,
y 7: or

ak a oa a aa ee on
: a pinky ih = yh, J 24 0% las CR ay’ zs a : wa) ae ae -

gempe eS c= > ul pie is. tlle . bk tent 4
: 7 = age ‘ef Oe o> oe (acavae . ee 7” hi a no

in a eee te ak “oad at
i OF an

a Pe’ sg bbe aaah eRe. * swellgad =o y

3 oe a _ cect ; sapaalpy + J bs — t+

o2 vel. DAS
"9 a 4 oo 4s s

» | aa * ‘ ¥ : > pa

. ,
f . ’ a & iithucc aes a

ie v ae
ms) whe iim yee x . } Au

>i : 7 a

j A ed acm owes.

. a 1 rw tS qs8 4 Pog pee adr W tw: 7

ah teste tot, Bont emt, Ade > ote 2 Searle
2 %e * 4 se 7 s : ¥ anny «“ 7 ag 7

7 + 44 ‘7 > A ? ae e< ‘. vs iectver

¢ ‘ ,. “ =| a aA a whe o : —

tas aa
op e ’ evs tau

. ees gifs hy os ee gine sain 9 stares ft
; a da

B80 i rte Dice ** Pc iw onion toe ab
eonge. eal : on xe OAR Ross a
ENE oe 7 oo qari y whi tinny igonts abi fal

| rOb aeuesesia $ fous, ont ut nian

7 ne

fi : a aauetagedue, ‘ey st

Acknowledgments

The material in Chapters 6, 7, and 8 owes a great deal to the original efforts of

several respected workers in the field of computer graphics. In each of these

chapters I have included references to some of their best-known publications. If

you are intrigued by the algorithms described in these chapters, by all means

obtain the original publications and explore them yourself.

This book could not have been written without the encouragement of my family,

friends, and colleagues, who deserve great thanks for their patience and support.

My gratitude also to Andy Fischer and to Charles Petzold, both of whom gra-

ciously reviewed portions of this book and offered accurate criticism and

suggestions.

And, of course, my special thanks to the enthusiastic people at Microsoft Press—

Claudette Moore, Jeff Hinsch, and many others—who painstakingly transformed

the raw material of this book into the finished product.

Vii

wltS lity ° a1 a ino sry € ean © hes 5 tan

tert ia avat aunkqeny enone bo Bea cet ate
tS ayeia ete ae myerolteth helt to athe | deine

mee le ei Mey fa mens 4 o| Secs emai table

iia itu oenbeyis tata, vst

mS Vilipats au, gear 1% yd wit

eeqy bert. age That op wee
ute phate Yo 48 Dicer Si eof yy ie vet oN buh a

altar ena se EATS —- ae icemt wah ni fe

_" Hopes: Ss adhe at lee et) a8 eawarty |

: besen at ant ape Rens ofw — svi Rubee Aaa
am aeyert val? “an ow) sdah ssh

= , a

1 > es

te, ee ,, a 7)

1 ft

; .? ee 5

a

7 : ie :

- = 7 F

be 1
- ea) . £ 7 ‘ ’

=< — =
/ 7 ve

- ’ ~* «

- a . ».. i

é as , *
’ Ba,

= 7%

1

5 ¢
\@

J ° ; t
wo

. e-

, i
‘

re

*
i ‘ ye Py :

‘ ’ og 7%
1 Z,

r : a
Or a

Ss

cae

y :
‘ << 2 ‘ oe

0
, “ a 1 e # P =

oo
i Eye e sO Sy

2
= e Md

ee ;
i =

7 © ¢...¢
. / ‘Cn o ¢

i at

' a
« a i e

.
. *

r ‘=

Introduction

I clearly remember the day I first plugged a new IBM Enhanced Graphics Adapter
(EGA) into an IBM PC. It was good to have IBM’s new ‘‘enhanced”’ video hard-
ware, with its better resolution and control over colors, as well as features not
found in any of IBM’s earlier PC video hardware. Now I was ready to write some
really sharp graphics applications.

Or so I thought. The problem was, I couldn’t figure out how to program the con-
traption. I had no technical documentation at all. (It arrived in the mail six
months and $125 later.) I tried disassembling the EGA’s ROM BIOS, but studying
6000 uncommented machine instructions soon raised more questions than it
answered. I desperately tried the shotgun approach—changing the contents of
memory locations and machine registers just to see what would happen—but this
was like chopping out random pieces of an automobile just to see what would
stop working.

What I lacked was the details—conceptual descriptions of the hardware design,
tables describing the programming interface, and, above all, source code exam-
ples for some typical programming techniques. A few well-chosen source code
examples would have saved many hours of experimentation and frustration when
I was trying to understand how to program that video adapter.

This book was inspired by the painful memory of that experience. It is filled with
source code examples. Its text describes the source code, and vice versa. This

book also has many tables and summary descriptions of the hardware program-

ming interface. In short, this book is what I wish I’d had when I started to pro-

gram PC video hardware.

What This Book Is About

The first chapter of this book is a general overview of the video display environ-

ment. It describes the commonly used PC and PS/2 video hardware the rest of the

book deals with. It also introduces you (if you aren’t already on speaking terms)

to the well-known ROM BIOS video support routines.

The next 10 chapters contain the nuts and bolts of IBM video programming. The

earlier chapters cover the fundamentals, including hardware architecture, video

display modes, and the nature of the interface between your programs and the

hardware. The later chapters build upon the fundamentals to demonstrate a num-

ber of techniques for producing text and graphics output.

The last two chapters of this book take you to the low and high levels of video

graphics programming. Chapter 12 is the hardware tinkerer’s chapter—if you

want to work with vertical interrupts or play with bit planes, this one’s for you.

Finally, Chapter 13 tells how to link your video hardware drivers to high-level

programs and introduces you to several commercial video output packages.

Introduction ix

What You Need to Use This Book

This book is not really meant for beginners. That’s not to say that a program-

mer who is just learning how to write working code will not benefit from this

material. On the contrary, the many working examples of useful source code

should be valuable to anyone who plans to do serious programming for PCs or

PS/2s. Nevertheless, the broader your programming background, the more tools

you will have for solving the diverse and exacting problems involved in video

programming.

Languages

I use assembly language and C for most of the programming examples in this

book, although I intentionally avoid some of C’s more cryptic syntactic con-

structs. If you are comfortable with assembly language and with a high-level

language such as C, Pascal, FORTRAN, PL/1, or structured BASIC, you should

have no problem reading the source code examples.

Moreover, Chapter 13 discusses interfaces for several high-level languages using

different memory models and subroutine-calling protocols. You can follow the

guidelines there to convert any of the C-callable source code examples to the

subroutine-calling protocol used by your favorite language translator.

You might want to use some other programming tools if you plan to experiment

with the source code examples that follow. For example, a good assembly-

language debugger can be extremely helpful. You will probably need an object

linker if you plan to call the assembly-language routines in this book from high-

level-language programs. Also, as source files and object modules proliferate, you

might find a UNIX-like make utility quite useful in keeping things straight.

Operating System

Everything in this book is intended to run under MS-DOS, or PC-DOS, version 2.0

or later. However, there is nothing in any of the source code that verifies which
operating system is in use, so be careful if you transport the code to earlier ver-
sions of MS-DOS or to another operating system.

Hardware

Having a PC or PS/2 with a video display attached is essential. Video program-
ming is like swimming: It’s one thing to read about it, but it’s quite another
experience to try it yourself. In fact, if you plan to do a great deal of video pro-
gramming, you should consider installing two different video subsystems and dis-
plays in your PC. With two separate sets of video hardware in the same computer,
you can run a debugger on one screen while a test program produces output on the
other screen. This dual-display hardware configuration is a real timesaver, par-
ticularly when you’re developing video graphics routines such as those described
in Chapters 5 through 9.

x PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Here is a list of the various computers and video adapters I used to develop the
techniques discussed in this book:

Computers

IBM PC/XT

IBM PC/AT

IBM PS/2 Model 30

IBM PS/2 Model 60

Adapters

IBM Monochrome Display Adapter
IBM Color Graphics Adapter

IBM Enhanced Graphics Adapter

IBM PS/2 Display Adapter

Hercules Graphics Card

Hercules Graphics Card Plus
Hercules Color Card

Hercules InColor Card

If you are using one of these computers or adapters, or a hardware-compatible
clone, then you should be able to run the source code examples.

Manuals

To program IBM PC video hardware effectively, you need to know what the hard-

ware is designed to do and how software and the system BIOS are expected to

interact with it. This basic information is found in IBM’s Technical Reference

manuals for the PC, PC/XT, PC/AT, and PS/2s and in its Options and Adapters

Technical Reference manuals. Most second-source manufacturers of IBM PC

video equipment also provide detailed technical information on their hardware.

The material in this book is intended to complement the discussions in the manu-

facturers’ technical documentation. I tried to follow the manufacturers’ terminol-

ogy and hardware descriptions wherever possible. However, the manufacturers’

documentation goes somewhat awry at times. If you find a discrepancy between

the official documentation and this book, you can (I hope) rely on this book to

contain the right information.

Still, in a book this size, I have certainly made some mistakes. I welcome your

comments, criticisms, and suggestions.

I have found that writing good video software is challenging, but the rewards are

particularly satisfying. I hope to share some of the challenges—and some of the

satisfaction— with you in this book.

Introduction xi

Special Offer

Companion Disk to

Programmer’s Guide to PC & PS/2 Video Systems

Microsoft Press has created a valuable companion disk for PRO-

GRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS. The disk
contains all 69 assembly-language programs and 25 C programs from

the book — close to 6000 lines of code in all. The disk also contains a

helpful demonstration program that uses several routines from the

book. Save time, avoid those inevitable typing errors, and start using

the source code in your programs right away.

If you have any questions about the files on the disk, you can send your

written queries or comments to author Richard Wilton, c/o Microsoft

Press, 16011 NE 36th Way, Box 97017, Redmond, WA 98073-9717.

The Companion Disk to PROGRAMMER’S GUIDE TO PC & PS/2
VIDEO SYSTEMS is available only from Microsoft Press. To order,

use the special reply card bound in the back of the book. If the card has

already been used, send $21.95, plus sales tax if applicable (CA resi-

dents 5% plus local option tax, CT 7.5%, FL 6%, MA 5%, MN 6%, MO

4.225%, NY 4% plus local option tax, WA State 7.8%) and $2.50 per

disk for domestic postage and handling, $6.00 per disk for foreign

orders, to: Microsoft Press, Attn: Companion Disk Offer, 21919 20th

Ave S.E., Box 3011, Bothell, WA 98041-3011. Please specify 5.25-inch

or 3.5-inch format. Payment must be in U.S. funds. You may pay by

check or money order (payable to Microsoft Press) or by American

Express, VISA, or MasterCard; please include both your credit card

number and the expiration date. All orders are shipped 2nd day air
upon receipt of order by Microsoft.

If this disk proves defective, please send the defective disk along with
your packing slip to: Microsoft Press, Consumer Sales, 16011 NE 36th
Way, Box 97017, Redmond, WA 98073-9717.

xii PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

IBM Video Hardware :

and Firmware

IBM PC and PS/2 Video Hardware i
IBM Monochrome Display Adapter and Color Graphics Adapter

__» Hercules Graphics Card @ Hercules Graphics Card Plus

_ IBM Enhanced Graphics Adapter @ Hercules InColor Cat
— Multi-Color Graphics Array © Video Graphics Arra

© Introduction to the ROM BIOS Interface
Interrupt 10H @ Video Display Data Area

Accessing the Video BIOS from a High-Level Lat

Microcomputer video systems keep getting better. Since the introduction of the

IBM PC in 1981, engineering technology has improved, and the market for more

powerful video hardware has widened. Both IBM and its competitors have re-

sponded by developing increasingly sophisticated video adapters and displays, as

well as the software to accompany them.

This chapter provides an overview of the evolution of IBM PC and PS/2 video
hardware. This overview is by no means comprehensive, but it covers the most

widely used video equipment that IBM and Hercules offer. The chapter concludes

with an introduction to IBM’s video BIOS, a set of drivers built into ROM in all

IBM PCs and PS/2s, which provides a basic programming interface for video

applications.

IBM PC and PS/2 Video Hardware

A “‘plain vanilla’’ IBM PC/XT or PC/AT contains no built-in video hardware, so

you must select and install the video hardware yourself. In a typical configura-

tion, a video display (monitor) is attached with a 9-wire cable to a video adapter
installed inside the PC. A typical video adapter is a printed circuit board with a

9-pin connector that attaches to the monitor’s cable and a 2-by-31-connection

card-edge tab that inserts into one of the slots on the PC’s motherboard. Figure 1-1

shows these connectors, as well as some of the integrated circuits common to

many IBM video adapters. The circuitry in the video adapter generates the signals

that control what is displayed on the monitor’s screen.

When you purchase an IBM PC, you must decide which video adapter and monitor

to use. The most widely used video adapters with the most software written for

them are IBM’s Monochrome Display Adapter, Color Graphics Adapter, and En-

hanced Graphics Adapter, and the monochrome Graphics Card made by Hercules.

In contrast, all IBM PS/2 series computers are equipped with a built-in

video subsystem, so purchasing a separate video adapter is unnecessary. The

video subsystem in the PS/2 Models 25 and 30 is called the Multi-Color Graphics

Array. In Models 50, 60, and 80, the integrated video subsystem is commonly

known as the Video Graphics Array. The Video Graphics Array subsystem also is
available as an adapter for the PC/XT, PC/AT, and PS/2 Model 30. This adapter has
essentially the same hardware features as the integrated PS/2 subsystem.

IBM Monochrome Display Adapter and Color Graphics Adapter

When the PC was introduced in 1981, IBM offered two video adapters: the
Monochrome Display Adapter (MDA) and the Color Graphics Adapter (CGA).
The MDA is designed for use with a monochrome monitor (the IBM Monochrome
Display) that displays 80 columns and 25 rows of alphanumeric text. The CGA
supports either an RGB display (a monitor with separate input signals for red,
green, and blue) or a home television set (which uses a composite video signal).
The CGA, of course, can display graphics information on a dot-by-dot basis as
well as alphanumeric text.

2 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

CRT Controller

Card-edge

connector

J j J 0

i = (000 q
LF

MW

i I I

Connector

Figure 1-1. A typical IBM PC video adapter.

Chapter 1: IBM Video Hardware and Firmware 3

Even though both the MDA and the CGA can display 25 rows of 80-column text,

most people find the MDA’s green monochrome display easier on the eyes. This is

because the monochrome display used with an MDA has significantly higher

resolution than that of any monitor you can use with the CGA. Its resolution is 720

dots wide and 350 dots high; the maximum resolution of a CGA-driven display is

640 dots wide and 200 dots high.

Both adapters display characters in a rectangular matrix of dots. A simple calcu-

lation shows that each character is 9 dots wide and 14 dots high on a Monochrome

Display but only 8-by-8 dots on a CGA display. The MDA’s higher resolution pro-

duces more crisply defined characters that are easier to read. For this reason, most

PC users who need to read text prefer an MDA to a CGA.

On the other hand, many computer users need to display charts, diagrams, and

other graphics information in addition to alphanumeric text. Also, displaying

colors on the screen is essential to many computer applications. Because the MDA

can display only monochrome text, PC users who need graphics output can com-

promise by using the CGA, with its dot-by-dot color graphics capability but less-

readable text.

Why not just attach the higher-resolution monochrome display to a Color

Graphics Adapter and get the best of both worlds? Unfortunately, the video sig-

nals generated by an MDA are incompatible with those required to drive a CGA

monitor, and vice versa. Mismatching the monitor and the adapter leads to a mal-

functioning monitor instead of a higher-resolution display.

If you need sharp, readable text as well as color graphics, and you can afford the

extra equipment, you can install both an MDA and a CGA in the same PC. You can

then use the monochrome display (attached to the MDA) for text processing and an

RGB color display (driven by the CGA) for color graphics.

Hercules Graphics Card

Hercules’ solution to the problem of displaying readable text and dot-by-dot
graphics on the same monitor was to add graphics capability to a monochrome
display adapter. The monochrome Hercules Graphics Card (HGC), introduced in
1982, can display graphics and alphanumeric text on the same green monochrome
display that is used with an IBM MDA. (In addition to its graphics capabilities, the
HGC exactly duplicates the function of IBM’s original MDA.) The ability to dis-
play a combination of readable text and monochrome graphics is sufficient for
many applications, so many PC users find the HGC an economical option.
Because it has received support from major software vendors, the HGC has
become firmly established in the marketplace.

Hercules Graphics Card Plus

The HGC+ was released in June 1986. The big difference in this upgrade of the
original HGC is that it can display customized, RAM-based alphanumeric charac-
ter sets, whereas the MDA and HGC can display only one, predefined, ROM-based

4 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

alphanumeric character set. Because alphanumeric characters can be displayed
much more rapidly than dot-by-dot graphics characters, using the HGC+ can dou-
ble or triple the speed of some text-oriented applications.

IBM Enhanced Graphics Adapter

A different response to the demand for better text and graphics resolution is

IBM’s Enhanced Graphics Adapter (EGA), released in early 1985. The EGA can be

configured to emulate either an MDA or a CGA; what makes the EGA ‘“‘enhanced”’

is that it can also do things its predecessors cannot. Unlike the MDA, the EGA can

produce dot-by-dot graphics on a monochrome display. Furthermore, the EGA im-

proves on the CGA with the ability to generate 16-color alphanumeric or graphics

images with 640-by-350 resolution.

Although the resolution and color capabilities of the EGA are not that much

greater than those of the CGA, both text and graphics appear much sharper on the

EGA than on the CGA. The availability of low-priced EGA clones and of high-

quality software applications that exploit the adapter’s capabilities have made the

EGA a de facto hardware standard in the marketplace.

Hercules InColor Card

The Hercules InColor Card, introduced in April 1987, is essentially a 16-color ver-

sion of the HGC+. The InColor hardware fully emulates the HGC+, so programs

that run properly on the HGC+ can run without change on the InColor Card. The

InColor Card’s resolution is the same as that of the HGC and HGC+: 720 horizon-

tal by 348 vertical pixels. The adapter’s color capabilities equal those of the EGA.

It can display 16 colors at once from a palette of 64 colors. The adapter must be

used with an EGA-compatible color display that has 350-line vertical resolution.

Don’t confuse the InColor Card with the Hercules Color Card, an aug-

mented CGA clone designed for use in the same computer with an

Ay -HGC or HGC+.

Multi-Color Graphics Array

The Multi-Color Graphics Array (MCGA) is the video subsystem integrated into

the PS/2 Models 25 and 30. From a programmer’s perspective, the MCGA resem-

bles the CGA in many ways, yet the MCGA has much better resolution (a max-

imum of 640 horizontal by 480 vertical dots) and improved color-display

capabilities.

A significant difference between the MCGA and the above video adapters is that

the MCGA generates analog RGB video signals, whereas the others produce digital

RGB signals. The difference between digital and analog RGB is something like the

difference between an on-off wall switch and a dimmer switch. With digital RGB

signals, the video display must recognize only whether the signal for a particular

color (red, green, or blue) is on or off. On the other hand, a video display that

Chapter 1: IBM Video Hardware and Firmware 5

uses analog RGB signals translates the voltage of each signal into a wide range of

corresponding color intensities. Only an analog video display can be used with

the MCGA.

Some video monitors can be configured for either analog or digital

video signals. If you use the right cable, these monitors can be con-

nected to an MCGA if they are configured for analog video.
tol oe |

The justification for using analog video is that it can display a wider range of

colors. The MCGA has a video Digital to Analog Converter (DAC) that enables the

subsystem to display as many as 256 different colors at once from a palette of

262,144 (256 K or 2!8) colors. In addition to an analog color display, IBM supplies

an analog monochrome display for use with the MCGA. With a monochrome

monitor, the MCGA can display as many as 64 shades of gray.

Video Graphics Array

The term Video Graphics Array (VGA) refers specifically to part of the circuitry

of the video subsystem in PS/2 Models 50, 60, and 80. The VGA is actually a single

chip that integrates the same set of functions performed by several chips on the

EGA. Nevertheless, people generally use the abbreviation VGA to describe the en-

tire video subsystem.

The VGA’s programming interface is similar to the EGA’s, so many programs

written for the EGA will run unchanged on the VGA. The VGA is capable of

somewhat higher display resolution (as much as 720-by-400 in text modes, or 640-

by-480 in graphics modes). Like the MCGA, however, the VGA contains a video

DAC that can generate 256 colors at a time from a possible 262,144. Because the

VGA generates the same analog RGB signals as the MCGA, it must be used with
the same analog monochrome or color monitors.

Introduction to the ROM BIOS Interface

A set of BIOS (Basic Input/Output System) routines in ROM is built into every
IBM PC and PS/2. The ROM BIOS routines provide an interface to standard hard-
ware features, including the time-of-day clock, the keyboard, floppy and hard
disks, and of course the video subsystem. The video BIOS routines comprise a set
of simple tools for performing basic video programming tasks such as writing
strings of characters to the screen, erasing the screen, changing colors, and so on.

Although the ROM BIOS video routines are sometimes slow and relatively un-
sophisticated, programs that use them are portable among different video sub-
systems in IBM PCs and PS/2s. Furthermore, most manufacturers of IBM PC
clones have duplicated the functions of IBM’s BIOS in their machines. Thus, a
program that uses BIOS routines to access the video hardware is likely to be more
portable than one that does not.

6 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Interrupt 10H

The BIOS routines are written in assembly language, so accessing them is easiest

when you program in assembly language. All BIOS video routines are accessed by

executing 80x86 software interrupt 10H. (The term 80x86 refers to the micropro-

cessors in the Intel 8086 family: 8086, 8088, 80286, and 80386.) For this reason, the

ROM BIOS video interface is widely known as the INT 10H interface. The ROM

BIOS supports a number of video input/output functions, each accessed by execut-

ing interrupt 10H. The functions are numbered; before executing interrupt 10H,

you place the number of the desired function in 80x86 register AH.

At the time the interrupt is executed, the remaining 80x86 registers usually con-

tain parameters to be passed to the BIOS routines. If the INT 10H function returns

data to your program, it does so by leaving the data in one or more of the 80x86

registers. This register-based parameter-passing protocol is intended for use in

assembly-language programs.

To see how the INT 10H interface is typically used, examine the assembly-

language routine Set Vmode () in Listing 1-1. This routine can be linked with a

program written in Microsoft C. (The underscore preceding the procedure name,

the near keyword in the PROC declaration, and the use of the stack to pass param-

eters all follow Microsoft C conventions.) The heart of the routine is its call to the

ROM BIOS to configure the video hardware for a particular video mode. (The

details of this operation are discussed in Chapter 2 and in Appendix A.)

TITLE Misa) = 17) ©

NAME Set Vmode

PAGE 55 p sz

; Name: Set Vmode

; Function: Call IBM ROM BIOS to set a video display mode.

;

mecalleris Microsoft C:

void SetVmode (n) ;

Ne Ne Ne Ne Ne

int 1; /* video mode */

ARGn EQU byte ptr [bp+4] ; stack frame addressing

EQUIP_FLAG EQU byte ptr ds: [10h]

CGAbits EQU 00100000b * bits for EQUIP FLAG

MDAbits EQU 00110000b

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

PUBLIC _SetVmode

_SetVmode PROC near

Listing 1-1. SetVmode(). (continued)

Chapter 1: IBM Video Hardware and Firmware 7

Listing 1-1. Continued.

push bp ; preserve caller registers

mov bp, sp

push ds

mov ax, 40h

mov ds,ax ; DS -> Video Display Data Area

mov bl,CGAbits ; BL := bits indicating presence of CGA

mov al,ARGn ; AL := desired video mode number

mov ah,al ; test if desired mode is monochrome

and ah,7

cmp ah,7

jne L01 ; jump if desired mode not 7 or OFh

mov bl,MDAbits ; BL := bits indicating presence of MDA

LO1: and EQUIP_FLAG, 11001111b

or EQUIP _FLAG,bl ; set bits in EQUIP FLAG

xor ah,ah ; AH := 0 (INT 10h function number)

push bp

int 10h ; call ROM BIOS to set the video mode

pop bp

pop ds ; restore caller registers and return

mov sp,bp

pop bp
ret

_SetVmode ENDP

_TEXT ENDS

END

The actual call to the video BIOS is simple. First, the desired function number is

placed into register AH (XOR AH, AH). Then, after preserving the contents of
register BP on the stack (PUSH BP), the routine invokes the ROM BIOS function

by executing interrupt 1OH (INT 108).

In Listing 1-2, a complementary routine called Get Vmode () interrogates the
BIOS for the number of the current video mode. The routine obtains this number

by executing interrupt 10H function OFH. The ROM BIOS function leaves the
mode number in register AL. Get Vmode () then returns the number to the call-

ing program.

8 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

DETER Wiasting »1=20
NAME Get Vmode

PAGE DO oe

7 Name: GetVmode

Funetion; Call IBM ROM BIOS to set a video display mode.

+ Caller: Microsoft C:

; int Get Vmode () ;

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT

PUBLIC _GetVmode

_GetVmode PROC near

push bp ; preserve caller registers

mov bp, sp

mov ah, OFh ; AH := OFh (INT 10h function number)

push bp

int 10h ; call ROM BIOS to get video mode number

pop bp

xor ah,ah ; AX := video mode number

mov sp,bp

pop bp
ree

_ Get Vmode ENDP

_TEXT ENDS

END

Listing 1-2. GetVmode().

Video Display Data Area

The code that precedes the actual call to the ROM BIOS in Listing 1-1 modifies
one of several global variables that reflect the status of the PC’s video subsystem.

These variables are updated and referenced by all ROM BIOS video routines. They

are collected in a block of RAM called, in IBM’s technical documentation, the

Video Display Data Area (or Video Control Data Area). The Video Display Data

Area consists of two blocks of RAM. The first block is found between memory

locations 0040:0049 and 0040:0066, the second between 0040:0084 and 0040:008A.

Chapter 1: IBM Video Hardware and Firmware 9

Some video BIOS routines also reference a 2-bit field in a global variable at

0040:0010 (called EQUIP_FLAG in IBM’s technical documentation). Bits 4 and 5

of this variable indicate a default video mode to be used when the computer is

first booted. The code in Set Vmode () updates this bit field to conform with the

video mode being selected. For example, if a Monochrome Display Adapter

(MDA) is required for the desired video mode, the bit field in EQUIP_FLAG is up-

dated accordingly. (Again, details on ROM BIOS video modes are found in Chap-

ter 2 and in Appendix A.)

Throughout this book are references to the INT 10H interface, the

BIOS’s Video Display Data Area, and the symbolic names of specific

locations in the Video Display Data Area that are of particular in-

terest. If you aren’t already familiar with the available INT 10H func-

tions and the contents of the Video Display Data Area, a perusal of

Appendix A might be very helpful.

Accessing the Video BIOS from a High-Level Language

You can make ROM BIOS routines accessible in high-level language programs

with an assembly-language routine such as Set Vmode () or Get Vmode (). List-

ings 1-3 and 1-4 are short C programs that can be executed as MS-DOS commands.

The program in Listing 1-3 calls Set Vmode () to select a video mode. This pro-

gram may be executed interactively or from a batch file. The program in Listing

1-4 calls Get Vmode () and returns the video mode number in a way that can be

used in a batch file (that is, with IF ERRORLEVEL == commands).

/* Listing 1-3 */

main(argc, argv)

plans argc;

char **argv;

{

int ModeNumber;

void SetVmode () ;

Te (argc m= 2) /* verify command line syntax */
{

printf("\nSyntax: SETVMODE n\n");

exiit(Si die

}

sscanf(argv[1], "%x", &ModeNumber); /* get desired mode number */

SetVmode (ModeNumber); /* call ROM BIOS via INT 10h */
}

Listing 1-3. A C program based on SetVmode().

10 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

/* Listing 1-4 */

main ()

{

ae Get Vmode () ;

return(GetVmode());

}

Listing 1-4. A C program based on GetVmode().

The overall process of generating an executable file for one of these programs

consists of compiling the C code to produce an object module, assembling the

assembly-language code to produce another object module, and linking the object

modules to create the executable file. If the C source code in Listing 1-3 is con-

tained in a file named SM.C and the assembly code in Listing 1-1 is saved in

SETVMODE.ASM, you can build the executable file SM.EXE as follows:

msc sm; (compile the C code)

masm setvmode; (assemble the subroutine)

link sm+setvmode; (link the object modules)

Some high-level language compilers can generate appropriate object

code for loading the 80x86 registers, executing interrupt 10H, and

P copying the results from the registers to the calling program. If your

compiler has this capability, you might prefer to access the INT 10H

interface directly, instead of linking an assembly-language subroutine

to your high-level program. For example, Listing 1-5 uses Microsoft

C’s int 86() function to implement Get Vmode () .

/* Listing 1-5 */

#include "dos.n”™

main ()

struct BYTEREGS regs; /* BYTEREGS defined in dos.h */

regs.ah = Ox0F; /* AH=0x0F (ROM BIOS function number) */

int86(0x10, ®s, ®s); /* perform interrupt 10h */

return((int) regs.al);

}

Listing 1-5. Microsoft C’s int86() function.

Many other INT 10H functions are available in the ROM BIOS. Your application

program accesses them by loading the appropriate registers and executing inter-

rupt 10H. Although the INT 10H support for video input/output admittedly is less

than perfect, it is widely used in operating-system software (including MS-DOS)

as well as in countless applications. If you want to write effective video and

graphics programs, become familiar with the capabilities and the limitations of

the INT 10H interface.

Chapter 1: IBM Video Hardware and Firmware 11

e
4

j

’ e

. on ee

= ‘TS

= ee

~e 7

a : eatecet es
h oe ~
> 7 a Be =

- —
- , - ~ "“Styeist i hee i

7 } Ae HM

' pan: ey ae: | =e a3 p

ee eo Hee otays ies ww ey y 6
7 a ; : wed Ya. 21D site, ies : "ail eeaa

an

a a: pel - _ -

a a ta PS ee ; ; eS sey Fae, 2
aS a 7 = te e%

i aaa a boa
ih 7

= hae Piast, ae oo ty
ee On om aay ,

- = PS nk ta 4 femlbie ici diy ss a

4) es] ; ‘ won ey on. Asis eet: Nets ae a,

<7 7 - - i ; a A e 2
ane 7! ae ma Ese me rN? “3 a a anf be z) oe ine ei a9 ae 3

- ae ee a 4 head oe G le a aa = “ aa ‘ea oe ay a, eo a ass pg edi

f ; ae ad :
Bs ry i as Yaga.’ 3 sales SETS AP a

7 ag
Reber. gos Pe Lh eel pd renee

;

a i. ee we = diese #8 78H Hain aoe | te
a tne wit 11 983 Ae.

a hp oe a Tenes ihags SS & Z
-_ ¥ -

2 = P E - a < — = »

= =
- “2 at va ~ a Sow — oA i a4 oe en Abou oS

be ra - 7
_ e ~ 7 - nie _ a 2 = 7 J ae -

<4 N v p 7 * : a ae es

rs ' c
7 7 . 7 =<?

i. — : 7 -

e u la / net é oe tr i —

o, 7 ae. is » 4

= + ? ‘ = = = . are. ie ‘ ah Dera a

; = a rr = Oe en > - 3 7 = =
* > — fe hs 7 Pas) 2

’ I ” oa Z = ——s : s ; a%e
wf wi pei > te

oe eg eta ht sae =
p i,

iy fi -

7 ns ae PY 7 ss an hs ,

ON RORTMER orbs oh cielate aye Eien fiat
‘ ia ae f ie ; A: wt , a ; jis] a “y a a wie ave

< : ” vil won we Te nat ey wag re

ek (af. itt Sen) ie oie. Maier “grits one

ee et nis Saba) VISAS Bare 2d iar wor TE ar
ter qiakianil eft haw 9ST ect tw a

= a * Lue,

= \
es

Programming the
Hardware

Functional Components of IBM PC and PS/2 Video
Subsystems

Monitor @ Video Buffer

Color and Character Display Hardware

CRT Controller

The Display Refresh Cycle
Horizontal Timing @ Vertical Timing

Programming the CRT Controller

MDA ® CGA ® Hercules Adapters @ EGA @ Mé

Basic CRTC Computation
Dot Clock @ Horizontal Timing @ Ve

The CRT Status Regi:

| Video Modes
Resolution @ Colors ® Video Buffer Organization

Hardware Video Mode Control
MDA @ CGA and MCGA @ HGC

HGC+ and InColor Card © EGA and VGA

Video BIOS Support

Combinations of Video Subsystems

MDA @ Hercules ®@ CGA @ EGA @® MCGA @ VGA

This chapter describes IBM PC and PS/2 video hardware from a programmer’s

point of view. It covers the basics: which parts of the computer’s video subsystem

can be programmed, how a program interacts with the hardware, and how cal-

culations for changing the video display format are performed. Many of the

programming techniques in later chapters are based on the fundamental informa-

tion discussed here.

The purpose of this chapter is to demystify the hardware programming interface.

Because most programmers rely on the video BIOS to perform most, if not all,

hardware-level programming in their applications, an aura of mystery surrounds

the way software interacts with video hardware. Of course, after you learn about

it, you may wish it had remained a mystery— but the more you know, the more

your programs will be able to do with the video hardware.

Functional Components of IBM PC and PS/2 Video
Subsystems

As you write programs that interact with IBM video hardware, it helps to visualize

the relationships among the programmable components of IBM video subsystems

(see Figure 2-1). You do not need a circuit designer’s understanding of the hard-

ware to write a good video interface. You do need to know where and how your

program can interact with the hardware to produce video output efficiently.

Attributes Attribute

‘ decoder
Video

buffer

Color, intensity, etc.

Character codes

Video ies
signal — Me signals

Alphanumeric generator (to video display)
character

generator

Internal timings,
buffer addressing, etc. Horizontal & vertical timing

Mode

control

CRT
Controller

Figure 2-1. Programmable components (video buffer, attribute controller, and so on) of the
IBM PC and PS/2 video subsystems. Some or all of these components are under software con-
trol in each of the video subsystems described in this book.

14. PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Monitor

The most tangible part of a computer’s video hardware is the monitor, or video

display. However, there’s nothing you can directly program in the monitor’s hard-
ware. It is the computer’s video subsystem that contains programmable hardware.

The signals generated by the video subsystem control what appears on the screen.

The monitor differs from a home television receiver in that a group of separate

timing and color signals drives it. In contrast, a home TV decodes a single ‘‘com-
posite’’ signal that contains timing, color, and audio information. Although some

IBM PC video adapters can generate such composite video output signals, as well

as the direct drive signals that computer monitors use, most people avoid using a

home television with their computers. Both text and colors appear sharper on a

computer monitor than they do on a composite television screen.

All the video monitors discussed in this book are raster-scan devices. The image

on the screen of a monitor is made up of a group of closely spaced horizontal lines

called the raster. An electron beam scans each successive line from left to right,

starting at the upper left corner of the display. As the beam sweeps each line, the

color and brightness of each of several hundred points (pixels) in the line are

varied, and the entire raster appears as a coherent image.

Conceptually, you can regard the electron beam as having “‘color’’ and ‘‘inten-

sity,’’ but in color video monitors the beam actually comprises three separate

electron beams. Each beam controls the display of one of the three primary video

colors (red, green, and blue) on the screen. Each pixel on a color display is

physically represented by a small, closely spaced triad of red, green, and blue

luminescent dots or stripes of phosphor. The three electron beams are masked in

such a way that each illuminates dots of only one primary color. Thus, the rela-

tive intensity of the beams as they sweep over each triad determines the color and

brightness of the pixels. Of course, unless you use a magnifying glass or look

closely at the display, you do not perceive the red, green, and blue dots individu-

ally, but rather as blended colors.

Video Buffer

The video buffer is a block of RAM in the video subsystem where displayable data

is stored. This RAM lies within the address space of the computer’s CPU, so a pro-

gram may read from and write to the video buffer in the same way it accesses any

other portion of RAM.

The video subsystem’s display circuitry updates, or refreshes, the screen by con-

tinually and repeatedly reading the data in the video buffer. Each bit or group of

bits in the video buffer specifies the color and brightness of a particular location

on the screen. The screen is refreshed between 50 and 70 times a second, depend-

ing on which video subsystem is in use. Obviously, when a program changes the

displayed contents of the video buffer, the screen changes almost immediately.

Chapter 2: Programming the Hardware 15

The actual amount of RAM available as a video buffer varies with the video sub-

system. Most IBM video subsystems incorporate video buffers large enough to

hold more than one screen of displayable data, so only part of the buffer is visible

on the screen at any time. (Chapter 3 discusses how to make full use of available

video RAM.)

Color and Character Display Hardware

All IBM video subsystems incorporate hardware that reads and decodes the data
in the video buffer. For example, an alphanumeric character generator translates

ASCII codes from the video buffer into the dot patterns that make up characters

on the screen. An attribute decoder translates other data in the video buffer into

the signals that produce colors, underlining, and so forth. Software can control

these and other specialized components of the video subsystem; later chapters

describe such programming in detail.

CRT Controller

The CRT Controller (or CRTC for short) generates horizontal and vertical timing

signals. It also increments a video buffer address counter at a rate that is syn-

chronized with the timing signals. The video display circuitry reads data from the

video buffer using the CRTC’s address value, decodes the data, and sends the

resulting color and brightness signals to the monitor along with the CRTC’s tim-

ing signals. In this way the CRTC synchronizes the display of data from the video

buffer with the timing signals that drive the video display.

The CRTC performs several other miscellaneous functions. Among them are

determining the size and displayed position of the hardware cursor, selecting the

portion of the video buffer to be displayed, locating the hardware underline, and

detecting light pen signals. (Chapter 3 contains examples of CRTC programming
for some of these functions.)

On the MDA, CGA, and Hercules cards, the CRTC is a single chip, the Motorola

6845. On the EGA, the CRTC is a custom LSI (large-scale integration) chip

designed by IBM. On the MCGA, the CRTC is part of its Memory Controller Gate

Array. The VGA’s CRTC is one component of the single-chip Video Graphics Ar-
ray. Regardless of the hardware implementation, the CRTC can be programmed to
generate a variety of timing parameters in all these subsystems. Before delving
into the techniques of CRTC programming, however, it is worthwhile to review
how the CRTC’s timing signals control the monitor’s display of a raster-scan
video image.

16 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The Display Refresh Cycle

The video image is refreshed in a cyclic manner between 50 and 70 times a sec-

ond, depending on the configuration of the video subsystem. During each refresh

cycle, the electron beam sweeps across the screen in a zigzag fashion, starting at

the left side of the topmost horizontal line in the raster (see Figure 2-2). After

scanning a line from left to right, the beam is deflected down to the start of the

next line until the entire raster is scanned. Then the beam returns to the upper left

corner of the display, and the cycle repeats.

>

ale la lt lt

I
SE ee es

ee eee eee

ee NSS

‘

Figure 2-2. The path followed by the electron beam in a raster scan.

Horizontal Timing

A number of carefully timed events occur as the beam moves across the display.

At the beginning of each line, the electron beam is turned on in response to a Dis-

play Enable signal that the CRTC generates. As the beam sweeps left to right

across the line, the video display circuitry uses the CRTC’s address counter to read

a sequence of bytes from the video buffer. The data is decoded and used to control

the color and brightness signals sent to the monitor. As the beam sweeps across

the screen, its color and brightness vary in response to these signals.

Near the screen’s right edge, the CRTC turns off the Display Enable signal and no

further data is displayed from the video buffer. The CRTC then generates a

horizontal sync signal, which causes the monitor to deflect the electron beam left-

ward and downward to the start of the next horizontal line in the raster. Then the

CRTC turns the Display Enable signal back on to display the next line of data.

The short period of time between the end of one line of video data and the begin-

ning of the next is called the horizontal blanking interval. Because the horizontal

retrace interval (the amount of time required to deflect the beam to the start of

the next line) is shorter than the horizontal blanking interval, a certain amount of

horizontal overscan is generated on both ends of each line (see Figure 2-3).

Chapter 2: Programming the Hardware 17

Vertical overscan

Horizontal izontal i Horizonta Displayed video buffer data overscan
overscan

Vertical overscan

Figure 2-3. Overscan.

During periods of horizontal overscan, the electron beam can be left on, display-

ing an overscan, or border, color. However, the primary reason horizontal over-

scan is designed into a video subsystem is to provide a margin of error in

centering the raster, so that no data is lost at the edges of the screen.

Vertical Timing

Once the electron beam has scanned all horizontal lines in the raster, the Display

Enable signal is turned off. The CRTC then generates a vertical sync signal, which

tells the monitor to deflect the electron beam from the bottom of the screen back

to the upper left corner. The vertical retrace interval (during which the beam

travels from the bottom to the top of the screen) is shorter than the vertical blank-

ing interval (during which no data from the video buffer is displayed), so there are

areas of vertical overscan at the top and bottom of the raster (see Figure 2-3). Like

horizontal overscan, vertical overscan provides a border as well as a safety

margin so that the raster can be centered on the screen.

Programming the CRT Controller

The CRTC programming interface is well defined and easy to use. The same gen-

eral programming approach applies to all IBM PC and PS/2 video subsystems.

MDA

The Monochrome Display Adapter’s CRTC, the Motorola 6845, has nineteen 8-bit
internal data registers. The contents of each register control various characteris-
tics of the timing signals generated by the 6845 (see Figure 2-4). One of these

18 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

registers is an address register; its contents indicate which of the other 18 can be

accessed. Most of the registers are write-only, but registers OEH and OFH, which

control the position of the hardware cursor, may be read as well as written. On the

MDA, the 6845’s Address register is mapped to an I/O port at 3B4H, and the re-

maining 18 registers are all mapped to the next I/O port at 3B5H.

To access the 6845’s data registers, you first write the register number to the

6845’s Address register (I/O port 3B4H). Then you access the specified data regis-

ter with an I/O write or read at port 3B5H. For example, Listing 2-1 shows how to

determine the current cursor location by reading the contents of registers OEH and

OFH on the 6845. These two registers (Cursor Location High and Cursor Location

Low) contain the high-order and low-order bytes of the cursor location relative to

the start of the video buffer.

Register Name Read/Write Access

OOH Horizontal Total Write only
01H Horizontal Displayed Write only
02H Horizontal Sync Position Write only
03H Horizontal Sync Pulse Width Write only
04H Vertical Total Write only
05H Vertical Total Adjust Write only
06H Vertical Displayed Write only
07H Vertical Sync Position Write only
08H Interlace Mode Write only
09H Maximum Scan Line Write only
OAH Cursor Start Write only
OBH Cursor End Write only
OCH Start Address High Write only
ODH Start Address Low Write only
OEH Cursor Location High Read/Write
OFH Cursor Location Low Read/Write
10H Light Pen High Read only
11H Light Pen Low Read only

Figure 2-4. Motorola 6845 CRTC data registers (for the MDA, CGA, and Hercules video

adapters).

mov ax, 40h

mov es,ax ; ES := video BIOS data segment

mov dx,es: [63h] ; DX := 3x4h (3B4h or 3D4h)

mov al, 0Eh

out dx,al ; select 6845 Cursor Location

* High seeqister

me dx

in al,dx ; read selected register at 3x5h

mov ah,al ; AH := high byte of cursor

; location

dec dx

mov al, 0OFh

out dx, al ; select Cursor Location Low register

Listing 2-1. Reading the 6845 Cursor Location registers. (continued)

Chapter 2: Programming the Hardware 19

Listing 2-1. Continued.

inc ax

in al,dx ' AX Y="“Offset Of cursor refative

to start of video buffer

; convert to character row and column

mov dx,es: [4Eh] ; DX = CRT START (buffer start offset

; in bytes)

shr ax, 1 ; convert to words

sub ax, dx ; subtract from cursor offset

div byte ptr es: [4Ah] ; divide by CRT_COLS

xchg ah,al ; AH := row, AL := column

With the MDA, there is rarely any reason to change the values in any of the 6845

registers except OAH and OBH (Cursor Start and Cursor End) and 0EH and 0FH

(Cursor Location High and Low). Registers 00H through 09H control the horizon-

tal and vertical timing signals, which should not be changed. Registers 0CH and

ODH (Start Address High and Start Address Low), which indicate what part of the

MDA’s video buffer is displayed, should always be set to 0.

CGA

The Color Graphics Adapter’s CRTC is a Motorola 6845, as is the MDA’s. The

same programming technique used to access the CRTC on the MDA also works on

the CGA. On the CGA, however, the CRTC Address register is mapped to I/O port

3D4H and the data registers are accessed at 3D5H. If you write a program that can

run on either an MDA or a CGA, you can take advantage of the fact that the video
BIOS routines in both the PC and PS/2 families maintain the value of the CRTC’s

Address register I/O port in a variable. Many of the programming examples in

this book reference this variable, ADDR_6845, which is located at 0040:0063 in the

BIOS Video Display Data Area.

Hercules Adapters

Like the MDA and CGA, the Hercules Graphics Card, Graphics Card Plus, and In-

Color Card all use a Motorola 6845 as a CRTC. The CRTC registers are mapped at

I/O ports 3B4H and 3B5H on all Hercules adapters. Although it is a color adapter,

the InColor Card uses the MDA’s I/O port and video buffer addresses in order to

preserve compatibility with the MDA and with Hercules monochrome adapters.

On all Hercules video adapters (as well as the EGA, MCGA, and VGA),

you can set both the address and data registers of the CRTC with one
16-bit port write (OUT DX, AX) instead of two 8-bit port writes
(OUT DX, AL). For example, the two sequences of code that follow do
the same thing to the CRTC.

20 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Mov

mov

out

EGA

The Enhanced Graphics Adapter’s CRTC is a proprietary LSI chip with a set of
registers different from those in the 6845 (see Figure 2-5). The programming in-
terface is similar to the 6845’s, but the register assignments and formats are differ-
ent enough that programs that write directly to CRTC registers on the MDA or

CGA will probably crash on an EGA.

dx, 3B4h

al,0OCh

dax,al

ax

al,8

ax,all

dx

dx, 3B4h

ax, 080Ch

dax,ax

; CRTC address register

; CRTC register number

; disable interrupts

7 select this register

7 DX 3=

7 data

* store data in register

* restore interrupts

+ CRTC address register

>= reg number, AH ;

; store data in register

; AL

3B5h (CRTC data register)

data

The EGA’s CRTC supports a wider set of control functions than does the 6845. For

example, the CRTC can cause a hardware interrupt at the start of a vertical blank-

ing interval. The CRTC also supports the simultaneous display of two noncontig-

uous portions of the video buffer. (Chapter 12 describes these CRTC capabilities.)

A curious feature of the EGA’s CRTC is its Overflow register (07H). Because the

EGA can display a raster of more than 256 lines, the CRTC registers that contain a

number of scan lines must be 9 bits wide instead of 8. The high-order bit in each

of these registers is stored in the Overflow register.

Register

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
0CH
ODH
OEH
OFH

Figure 2-5. EGA and VGA CRT Controller data registers.

Name

Horizontal Total
Horizontal Display Enable End
Start Horizontal Blanking
End Horizontal Blanking
Start Horizontal Retrace

End Horizontal Retrace

Vertical Total

Overflow

Preset Row Scan

Maximum Scan Line Address

Cursor Start

Cursor End

Start Address High
Start Address Low

Cursor Location High
Cursor Location Low

EGA Read/Write Access

Write only
Write only
Write only
Write only
Write only
Write only
Write only
Write only
Write only
Write only
Write only
Write only
Read/Write
Read/Write
Read/Write
Read/Write

(continued)

Chapter 2: Programming the Hardware 21

Figure 2-5. Continued.

Register Name EGA Read/Write Access

10H Vertical Retrace Start Write only

10H Light Pen High Read only

11H Vertical Retrace End Write only

11H Light Pen Low Read only

12H Vertical Display Enable End Write only

13H Offset (Logical Line Width) Write only

14H Underline Location Write only
15H Start Vertical Blanking Write only
16H End Vertical Blanking Write only
17H Mode Control Write only
18H Line Compare Write only

MCGA

In the MCGA, the functions of a CRTC are integrated into a circuit component

called the Memory Controller Gate Array. The first 16 Memory Controller regis-

ters are analogous to those in the 6845 (see Figure 2-6). As on the CGA, all MCGA

Memory Controller registers, including the CRTC registers, are indexed through

an address register at I/O port 3D4H. The data registers themselves may be ac-

cessed at port 3DSH.

Several features of the MCGA’s CRTC distinguish it from the CGA’s 6845. All of

the Memory Controller registers can be read as well as written. Moreover, regis-

ters OOH through 07H may be designated read-only so that horizontal and vertical

timing parameters are not inadvertently disrupted. Setting bit 7 of the Memory

Controller Mode Control register (10H) to 1 protects registers 00H through 07H.

Another feature of the MCGA CRTC is that the hardware can compute the horizon-

tal timing parameters for each of the available video modes. When bit 3 of the

Mode Control register is set to 1, and when the values in registers 00H through

03H represent appropriate horizontal timing values for 40-by-25 alphanumeric

mode (video BIOS mode 0), the Memory Controller generates proper horizontal

timing signals in all available video modes.

If you compare the MCGA CRTC and the Motorola 6845 register by register, you

will note several discrepancies in the interpretation of the values stored in some

CRTC registers. In particular, the values expected in registers 09H, OAH, and 0BH

are specified in units of two scan lines on the MCGA, instead of one scan line on

the 6845. Because the default alphanumeric character matrix on the MCGA is 16

scan lines high, this feature provides a certain amount of low-level compatibility,

letting you use the same values for these registers as you would on a CGA.

22 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Register Name Read/Write Access

00H Horizontal Total Read/Write
01H Horizontal Displayed Read/Write
02H Start Horizontal Sync Read/Write
03H Sync Pulse Width Read/Write
04H Vertical Total Read/Write
05H Vertical Total Adjust Read/Write
06H Vertical Displayed Read/Write
07H Start Vertical Sync Read/Write
08H (reserved)
09H Scan Lines per Character Read/Write
OAH Cursor Start Read/Write
OBH Cursor End Read/Write
OCH Start Address High Read/Write
ODH Start Address Low Read/Write
OEH Cursor Location High Read/Write
OFH Cursor Location Low Read/Write
10H Mode Control Read/Write
11H Interrupt Control Read/Write
12H Character Generator, Sync Polarity Read/Write
13H Character Generator Pointer Read/Write
14H Character Generator Count Read/Write
20—3FH (reserved)

Figure 2-6. MCGA Memory Controller data registers. Registers OOH through OFH are com-
parable to those in the CGA’s CRT Controller.

VGA

Functionally, the VGA’s CRTC registers (see Figure 2-5) comprise a superset of

those in the EGA’s CRTC. The VGA’s CRTC register set is addressable at the same

I/O ports as the EGA’s. A few more bit fields have been added to the register set,

primarily so that the CRTC can handle 400-line and 480-line rasters. However,

unlike the EGA’s CRTC, the VGA’s CRTC does not support the use of a light pen.

More important, however, all the EGA’s CRTC register specifications have been

carried over to the VGA. Thus, programs that write to the EGA’s CRTC registers

can be run unchanged on VGA-based hardware.

As on the MCGA, the VGA’s CRTC data registers can all be read as well as writ-

ten. Also, the VGA horizontal and vertical timing registers (CRTC registers 00H

through 07H) can be write-protected by setting bit 7 of the Vertical Retrace End

register (11H) to 1.

As on Hercules adapters, you can program the CRTC on the EGA,

MCGA, and VGA using a 16-bit port write (OUT DX, AX). Moreover,

you will find by experimenting that 16-bit port writes work on many
non-IBM video adapters. But stay away from this technique on MDAs,

CGAs, and clones if portability is important.

Chapter 2: Programming the Hardware 23

Basic CRTC Computations

To use the CRTC effectively, you must be able to perform the basic computations

necessary to specify the CRTC’s timings correctly. These computations are based

on three constraints: the bandwidth of the video signal sent to the monitor and the

monitor’s horizontal and vertical synchronization rates.

Dot Clock

IBM PC video subsystems display pixels at a rate determined by the hardware.

This rate is variously known as the video bandwidth, the dot rate, or the pixel rate;

the oscillator that generates this rate is called the dot clock. The MDA, CGA, and

Hercules adapter use only one dot clock; on the EGA and VGA, more than one dot

clock is available (see Figure 2-7). The higher the dot clock frequency, the better

the displayed pixel resolution.

Given the dot rate, the CRTC must be programmed so that the horizontal and ver-

tical scan frequencies sent to the video display are limited to frequencies the dis-

play can handle. Older displays, such as the IBM Monochrome Display, are

designed to handle only one horizontal and one vertical scan rate. Newer displays,

such as the NEC MultiSync, can synchronize with a range of horizontal and/or

vertical scan rates.

Video Bandwidth Horizontal Scan Vertical Scan
IBM Subsystem (Dot Rate) in MHz Rate in KHz Rate in Hz

MDA, HGC

720x350 mono 16.257 18.43 50

CGA

640x200 color 14.318 15.75 60

EGA

640x350 color 16.257 21.85 60

640x200 color 14.318 L575 60
720x350 mono 16.257 18.43 50

InColor

720x350 color 19.000 21.80 60

MCGA

640x400 mono/color 25.175 31.50 70

640x480 mono/color 25. AMIS 31.50 60

VGA

640x400 mono/color Dodd 31.50 70

720x400 mono/color 28.322 31.50 70
640x480 mono/color 25 Ni > 31.50 60
640x350 mono/color 25.175 31.50 70
a ee eee

Figure 2-7. Basic timings for IBM video subsystems.

24 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Horizontal Timing

Consider how you would calculate the typical CRTC register values shown in

Figure 2-8 for an MDA with an IBM Monochrome Display. The MDA’s video

bandwidth (dot rate) is 16.257 MHz; that is, 16,257,000 dots per second. The mono-

chrome display’s horizontal scan rate is 18.432 KHz (18,432 lines per second).

Dividing the dot rate by the horizontal scan rate gives 882 dots per line. Each

character displayed by the MDA is 9 dots wide, so the total number of characters

in each line is 882 + 9, or 98.

This value is used to program the CRTC’s Horizontal Total register. For the

MDA’s CRTC, a Motorola 6845, the value you store in the Horizontal Total register

must be 1 less than the computed total, or 97 (61H).

Register Name Parameter Description

00H Horizontal Total 97 (61H) (total characters per scan line) — 1

01H Horizontal Displayed 80 (SOH) Characters displayed in each
scan line

02H Horizontal Sync Position 82 (52H) Position in scan line where

horizontal retrace starts
03H Horizontal Sync Width 15 (OFH) Duration of horizontal retrace in-

terval (character clocks)

04H Vertical Total 25 (19H) Total character rows in one frame
05H Vertical Total Adjust 2 Remaining scan lines in one frame
06H Vertical Displayed 25 (19H) Character rows displayed in

each frame

07H Vertical Sync Position 25 (19H) Position in frame where vertical
retrace starts

08H Interlace Mode Z Always set to 2

09H Maximum Scan Line 13 (ODH) (height of one character in

scan lines) — 1

Figure 2-8. Typical CRTC parameters for the Monochrome Display Adapter.

In terms of CRTC timings, the Horizontal Total value describes the amount of

time, in ‘‘character clocks,’’ required to complete one horizontal scan. During

this period, 80 characters are actually displayed. (This is the value used for the

Horizontal Displayed register.) The other 18 character clocks are spent in horizon-

tal overscan and in horizontal retrace.

The duration of the horizontal retrace interval is about 10 to 15 percent of the

Horizontal Total value. The exact value depends on the video subsystem. On the

MDA, the horizontal retrace interval is set at 15 character clocks by storing this

value in the CRTC Horizontal Sync Width register. This leaves 3 character clocks

of horizontal overscan. The horizontal retrace signal is programmed to start 2

character clocks after the rightmost displayed character by storing the value 82

(52H) in the CRTC Horizontal Sync Position register. Thus, there are 2 character

clocks of right horizontal overscan and 1 character clock of left overscan.

Chapter 2: Programming the Hardware 25

Changing the value in the Horizontal Sync Position register changes

the size of the right and left overscan areas and thus the horizontal

position of the displayed raster. For example, to shift the displayed

raster to the left, increase the size of the right overscan interval by in-

creasing the value in the CRTC Horizontal Sync Position register.

Vertical Timing

Similar considerations apply in programming the CRTC to generate appropriate

vertical timings. The nominal horizontal scan rate in the MDA’s monochrome dis-

play is 18.432 KHz (18,432 lines per second) with a vertical scan rate of 50 Hz (50

frames per second), so the number of lines in one frame is 18,432 + SO, or 368.

Since each character displayed is 14 lines high, 25 rows of characters account for

350 lines. The MDA’s CRTC always uses 16 lines for vertical retrace; this leaves

368 — (350 + 16), or 2 lines of vertical overscan.

The CRTC programming follows these calculations. The height of each displayed

character is specified by the value in the CRTC Maximum Scan Line register.

Since characters are 14 scan lines high, the maximum scan line value is 13 (ODH).

Taken together, the values for Vertical Total (25 character rows) and Vertical To-

tal Adjust (2 scan lines) indicate the total number of scan lines in one frame. The

number of character rows displayed (25) is indicated in the Vertical Displayed

register. The position in the frame where vertical retrace starts (25) is specified

by the value in the Vertical Sync Position register.

The CRTCs on the MCGA, EGA, and VGA are more complex than the Motorola

6845 CRTC on the MDA and CGA. Nevertheless, the registers that control horizon-

tal and vertical timings in the newer video subsystems are similar in nomencla-

ture and functionality to the 6845’s registers. The computations for the MCGA,

EGA, and VGA CRTCs are derived from the dot rate, the character size, and the

horizontal and vertical capabilities of the video display, just as they are for the
MDA and CGA.

The CRT Status Register

All IBM video subsystems have a read-only CRT Status register. This register is
located at I/O port 3BAH on the MDA and Hercules adapters and at 3DAH on the
CGA and MCGA,; on the EGA and VGA, this register is at 3BAH in monochrome
configurations and at 3DAH in color configurations. Generally, two of the eight
bits in this register reflect the current status of the horizontal and vertical timing
signals generated by the CRTC. These status bits can be used to synchronize video
buffer updates with the screen refresh cycle to minimize interference with the dis-
played image. (Chapter 3 contains examples of this type of programming.)

Unfortunately, the exact interpretation of the status bits in the CRT Status register
varies among the different IBM video subsystems (see Figure 2-9). Therefore, pro-
grams should be designed to determine which hardware they are running on (Ap-
pendix C) before they attempt to use the status information in this register.

26 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 2-2 shows how the status bits in the CRTC Status register are used to syn-

chronize program operation with the video refresh cycle. This subroutine can be

used on the CGA to time the horizontal blanking interval. The subroutine uses bit

3 of the CRT Status register, which indicates when the CRTC’s vertical sync signal

is active, to synchronize with the start of a refresh cycle. The loops at LO1 and

L02 show how this is done.

The loops at LO3 and L04 then synchronize with the Display Enable signal, using

bit 0 of the CRT Status value. When the Display Enable signal goes off, the loop at

LO5 decrements the value in CX during the horizontal blanking interval, that is,

while the Display Enable signal is off. The number of iterations counted in CX

can then be used as a timeout value to determine when the last horizontal line in

the frame has been scanned. (See Chapter 3.)

TITLE MiMmSe Lng. 2-20

NAME HRTimeout

PAGE So hoe

; Name: HRTimeout

7 Function: Determine a timeout value for the horizontal blanking interval

7 Caller: Microsoft C:

i

; int HRTimeout ();

rex SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

PUBLIC HRTimeout

_HRTimeout PROC near

push bp ; usual C prologue to establish

mov bp, sp ; stack frame

mov ax, 40h

mov es, ax ; ES := video BIOS data segment

mov dx,es: [63h] 7 DX == pore Loy CRIC Address register

add dl,6 + DX := port for CRIC Status register

; synchronize with start of refresh cycle

LO1: in al,dx 7 AL t= CRIC status

test al,8 7 test bit 3

Jz L01 ; loop while NOT in vertical retrace

02: in al,dax

test al,8

jnz LO02 ; loop during vertical retrace

Listing 2-2. Timing the horizontal blanking interval on the CGA. (continued)

Chapter 2: Programming the Hardware 27

Listing 2-2. Continued.

synchronize with a horizontal scan and time the horizontal blanking interval
,

mov cx, OFFFFhA - CX s= Loop counter

aul lt ; disable interrupts

L03: in al,dx

test al,1

jnz L03 ; loop while Display Enable is inactive

L04: in al,dx

EeSt al, 1

az L04 ; loop while Display Enable is active

L0O5:; in al,dx

test al,1
loopnz L05 ; decrement CX and loop while Display

; Enable is inactive

Sita ; enable interrupts again

mov ax,Cx ; AX := loop counter

neg ax

shl ax, 1 ; AX := timeout value

mov sp,bp ; discard stack frame and return to C

pop bp
ret

_HRTimeout ENDP

_ TEXT ENDS

END

Video Modes

Despite the timing constraints imposed by the dot clock and the rated horizontal

and vertical scan rates of available monitors, all IBM video subsystems except the

MDA can be programmed with a variety of different CRTC parameters. This
makes a number of video modes available. Each video mode is characterized by

its resolution (the number of characters or pixels displayed horizontally and ver-

tically), by the number of different colors that can be displayed simultaneously,
and by the format of the displayable data in the video buffer.

Resolution

The horizontal and vertical resolution in a video mode is a function of the dot rate

as well as the monitor’s horizontal and vertical scan rates. The number of pixels
displayed in each frame corresponds to the dot rate divided by the vertical scan

rate. The actual horizontal and vertical resolution then depends on the horizontal

scan rate.

28 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

‘S
JU
IW
UU
SI
SS
D

11

42
]8

18
94

SN

ID
IS

D
L
N
D

*6
-Z

P
A
N
S
Y

P
O
W

JO
JO
I-
Z

OS
h-
Aq
-0
FO

UT

DU
AS

[E
OT
ID
A

=
0,

g]qeus
Aejdsip

=
9

O
U
A
S

[BOIJIOA

=
|

arqeuo
Aeydsip

=
¢

o
u
s

[BOIVIOA =)T

V
d
E

10 a

L
e
e
k

e
pasoyo

E
e

gjqeuo
Aevjdsip=(Q

Jos3i4
ued

YysIT=]
 yYoums

uod
yYsI] =

|
DUAS

[BOI}IOA
=

|
10

e
e

I
V
d
e
 1
0
 Vat

Voda

a
e

Kejdsip=Q

Jossi1.
ued

yysIT=]
yYormMs

uod
yysI] =

|
OUAS

[BOT}IOA
=

|
v
a
e

W
O
O

suds
[eyuOzIIoy

=]
198311)

ued
yYySI] =

|
OALIp OoptA

suds
=

I
I

:
I

[BOT] I9A =
;

;
oud

[eJUOZIIOY
=

|
SALIP

OOPIA
:

e
a
t

o
e
s

n
e
g

o
a
t

01
a

Tu
g

7
G

€
1a

Lu
a

Ja
js

id
ay

S
e

a

a

S
S
R
I
S

R
S
S

Chapter 2: Programming the Hardware 29

Colors

The number and variety of colors that can be displayed in a video mode depend

on the design of the video subsystem’s attribute decoding and video signal genera-

tor components. The attribute decoder uses data stored in the video buffer to con-

trol the color and brightness signals produced by the video signal generator.

Establishing a particular video mode always involves programming a video sub-

system’s attribute decoder in addition to updating its CRTC parameters.

Video Buffer Organization

The format of the data in video RAM also characterizes a video mode. In all PC

and PS/2 subsystems, video modes can be classified as alphanumeric or graphics

modes, depending on the video buffer data format. In alphanumeric modes, the

data in the video buffer is formatted as a sequence of ASCII code and attribute

byte pairs; the alphanumeric character generator translates the ASCII codes into

displayed characters while the attribute bytes specify the colors used to display

them (see Chapter 3). In graphics modes, the video buffer is organized as a se-

quence of bit fields; the bits in each field designate the color of a particular pixel

on the screen.

Hardware Video Mode Control

Establishing a video mode on an IBM PC or PS/2 video subsystem generally re-

quires specific mode control programming apart from specifying CRTC parame-

ters. For example, the alphanumeric character generator must be enabled in

alphanumeric modes and disabled in graphics modes. Also, the subsystem’s inter-

nal character clock, which determines the number of pixels generated for each al-

phanumeric character code read from the video buffer, may run at different rates
in different video modes. These and other internal functions are controlled by

loading one or more specialized mode control registers with values appropriate
for each video mode.

MDA

The MDA’s Mode Control register is a write-only register mapped to port 3B8H
(see Figure 2-10). Only three of the eight bits in this register have meaning. Bit 0
is set to 1 at powerup and must always remain set to 1. Bit 3, when set to 1, enables
video refresh; clearing this bit blanks the screen. Bit 5 is the Enable Blink bit; it
controls whether characters can blink. On the MDA, most programs leave bit 3 set
at all times. Chapter 3 explains how to use bit 5 (the Enable Blink bit).

30 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Bit Settings eee ee eee ee

1 = adapter enabled (should always = 1)
(unused, should always = 0)
(unused, should always = 0)
1 = video enabled

0 = video disabled (screen blank)

(unused, should always = 0)

1 = blinking attribute enabled
0 = blinking attribute disabled
(unused, should always = 0)

(unused, should always = 0)

nn WNre ©

SN

Figure 2-10. Bit settings for the MDA Mode Control register (3B8H).

CGA and MCGA

The Mode Control register on the CGA and MCGA is found at 3D8H (see Figure
2-11a). The five low-order bits control internal timings appropriate for the video
modes they select, while bit 5 is an Enable Blink bit just as it is on the MDA. The

useful bit patterns for the CGA’s Mode Control register are listed in Figure 2-11b.

These values correspond to the available BIOS video modes on the CGA.

The Mode Control registers on the CGA and the MCGA have two differences. One

is that the MCGA Mode Control register may be read as well as written; the CGA

register is write-only. The other difference relates to the function of bit 2. On the

CGA, setting bit 2 to 1 disables the color burst component of the composite video

output signal. This can improve the quality of the display if you are using a com-

posite green or amber monitor with a CGA. On the MCGA, which does not support

Bit Settings

0 1 = 80-character alphanumeric modes
0 = 40-character alphanumeric modes

1 1 = 320-wide graphics mode
0 = (all other modes)

2 1 = color burst disabled (CGA only)

1 = foreground color from video DAC register 7 (MCGA only)
0 = color burst enabled (CGA only)

0 = foreground color from the video DAC register specified in bits 0—3 of
the Palette register (3D9H) (MCGA only)

5 1 = video enabled
0 = video disabled (screen blank)

4 1 = 640-wide graphics modes
0 = (all other modes)

5 1 = blinking attribute enabled
0 = blinking attribute disabled

6 (unused, should always = 0)

7 (unused, should always = 0)

Figure 2-1la. Bit settings for the CGA and MCGA Mode Control register (3D8RH).

Chapter 2: Programming the Hardware 31

BIOS Mode Value for Mode

Number Description Control Register

0 40x25 alpha 00101100b (2CH)

(color burst disabled)

1 40x25 alpha 00101000b (28H)

80x25 alpha 00101101b (2DH)

(color burst disabled)

3 80x25 alpha 00101001b (29H)

4 320x200 graphics 00101010b (2AH)

5 320x200 graphics 00101110b (2EH)

(color burst disabled)

6 640x200 graphics 00011100b (1CH)

7 80x25 alpha 00101001b (29H)

(MDA only)
11H 640x480 graphics 00011000b (18H)

(MCGA only)

Figure 2-11b. MDA, CGA, and MCGA Mode Control register options.

a composite monitor, the function of bit 2 of the Mode Control register is to select

between two sources for the foreground color in 2-color graphics modes.

The MCGA has two additional mode control registers, which are not implemented

on the CGA. The MCGA Memory Controller Mode Control register (10H) at port

3D4H/3DS5H selects 640-by-480 2-color and 320-by-200 256-color graphics modes

(see Figure 2-12). An Extended Mode Control register is mapped to I/O port

3DDH. This register is used only during machine coldstart; it has no practical use

in applications programs.

Bit Settings

0 1 = select 320x200 256-color mode
0 = (all other modes)

1 1 = select 640x480 2-color mode
0 = (all other modes)

2 (reserved)

3 1 = horizontal timing parameters computed for video mode
0 = horizontal timing parameters as specified in registers 00O—03H
1 = enable dot clock (should always be 1)
(reserved)

Inverse of bit 8 of Vertical Displayed register (06H)
1 = write-protect registers 00O—07H
0 = allow updating of registers 00O-07H

NADU

Figure 2-12. Bit settings for the MCGA Memory Controller Mode Control register.

32 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

HGC

The Hercules Graphics Card has two control registers whose contents affect the
video mode configuration. The Mode Control register at 3B8H is functionally
compatible with the MDA’s Mode Control register, but it maps additional mode
configuration functions to bits 1 and 7 (see Figure 2-13). Bit 1, when set to 1,
establishes internal timings for a 720-by-348 graphics mode. Setting bit 7 to 1
while the adapter is in graphics mode displays the second half of the adapter’s 64
KB video buffer at B800:0000. These bits have no function, however, unless the
appropriate bits in the adapter’s Configuration Switch register are set properly.

The Configuration Switch register (3BFH) determines the function of the Mode
Control register at 3B8H (see Figure 2-14). When bit 0 of the Configuration Switch
register is 0, the HGC cannot be placed in its graphics mode, so bit 1 of the Mode
Control register must also be 0. Bit 1 of the Configuration Switch register controls
video buffer addressing when the adapter is used in combination with a CGA or
compatible (see below).

Bit Settings

(unused)

1 1 = 720x348 graphics mode
0 = 80x25 alphanumeric mode

2 (unused, should always = 0)

3 1 = video enabled
0 = video disabled (screen blank)

4 (unused, should always = 0)

= 1 = blinking attribute enabled
0 = blinking attribute disabled

6 (unused, should always = 0)

iy 1 = graphics mode buffer displayed from B800:0000 (video page 1)
0 = graphics mode buffer displayed from B000:0000 (video page 0)

Figure 2-13. Bit settings for the Hercules Mode Control register (3B8H). This register is the
same on the HGC, HGC+, and InColor Card.

Bit Settings

0 1 = allows graphics mode
0 = prevents graphics mode

1 1 = enables upper 32 KB of graphics mode video buffer at B800:0000
0 = disables upper 32 KB of graphics mode buffer

2-7 (unused)

Figure 2-14. Bit settings for the Hercules Configuration Switch register (3BFH). This register
is the same on the HGC, HGC+, and InColor Card.

Chapter 2: Programming the Hardware 33

HGC+ and InColor Card

The HGC+ and InColor Card implement an extended mode control register (called

the xMode register) in addition to the Mode Control and Configuration Switch

registers found on the HGC. The xMode register is a write-only register address-

able as register 14H at port 3B4H/3BS5H. (The register is addressed exactly as if it

were a CRTC register.) The xMode register controls the alphanumeric character

generator; Chapter 10 explains this in detail.

EGA and VGA

When you establish a video mode on the EGA and the VGA, you can control the

internal timing and addressing of several different components of the video sub-

system. These include the Sequencer, the Graphics Controller, and the Attribute

Controller, each of which has several control registers. There is also a Miscel-

laneous Output register, which controls I/O port and video buffer addressing and

selects the dot clock frequency.

All Sequencer, Graphics Controller, and Attribute Controller registers

on the EGA are write-only registers, but on the VGA they can be read

as well as written.
P

Sequencer
The Sequencer generates internal timings for video RAM addressing. It has five

programmable data registers (see Figure 2-15) mapped to ports 3C4H and 3CSH in

a manner analogous to CRTC register mapping. The Sequencer’s Address register

is located at 3C4H; its five data registers are selected by storing an index value be-

tween 0 and 4 in the Address register and then accessing the corresponding data

register at 3C5H.

Register Name

0 Reset
1 Clocking Mode
Z Map Mask
3 Character Map Select
4 Memory Mode

Figure 2-15. EGA and VGA Sequencer registers.

Graphics Controller

The Graphics Controller mediates data flow between the video buffer and the

CPU, as well as from the video buffer to the Attribute Controller. The Graphics

Controller has nine data registers, plus an Address register (see Figure 2-16). The
Address register maps to port 3CEH, and the data registers map to port 3CFH.

34 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Register Name

Set/Reset

Enable Set/Reset

Color Compare
Data Rotate/Function Select

Read Map Select ;
Graphics Mode A Ce FE be
Miscellaneous

Color Don’t Care

Bit Mask SAINDNMNAPWNK OS

Figure 2-16. EGA and VGA Graphics Controller registers.

Attribute Controller
The Attribute Controller supports a 16-color palette on the EGA and VGA. It also

controls the color displayed during overscan intervals. The Attribute Controller’s

Address register and 21 data registers all map to I/O port 3COH (see Figure 2-17).

A value written to port 3COH will be stored in either the Address register or a data

register, depending on the state of a flip-flop internal to the Attribute Controller.

Register(s) Function

0—OFH Palette

10H Attribute Mode Control
11H Overscan Color }

12H Color Plane Enable 3D LH
13H Horizontal Pixel Panning
14H Color Select (VGA only)

Figure 2-17. EGA and VGA Attribute Controller registers.

To set the flip-flop, perform an I/O read (IN AL, DX) of the CRT Status register

(port 3BAH in monochrome modes, 3DAH in color modes). Listing 2-3 illustrates

how this is done in updating an Attribute Controller register. On the VGA, At-

tribute Controller data registers may be read as well as written. Do this by writing

the register number to port 3COH and then reading the value from port 3C1H.

; program the Attribute Controller directly

mov ax, 40h

mov es,ax ; ES := video BIOS data segment

mov dx,es: [63h] ; DX := 3x4h (3B4h or 3D4h)

add Guill; ; DX := 3xAh (CRT Status Register)

ope ; clear the interrupts

in al, dx ; reset Attribute Controller flip-flop

push dx ; preserve Status Reg port

Listing 2-3. Updating the EGA or VGA Attribute Controller register. (continued)

Chapter 2: Programming the Hardware 35

Listing 2-3. Continued.

mov d1l,0COh 7 Dx) 3= 3COh

mov al,RegNumber

out dx,al ; write to Address Register

jmp 4 ; waste a few cycles so that Attribute

; Controller can respond

mov al,DataValue

out dx,al ; write to data register

pop dx ; DX := 3xAh

in al,dx ; reset that flip-flop

mov dl, 0COh 7 he 4

f> mov al,20h ; restore palette € praar,

j out dx,al 4 : bs

. sti ; enable interrupts bp PKA

; using the video BIOS

mov ax, 1000h ; AH := 10h (INT 10h function number)

; AL := 0 (Set individual Attribute

; Controller register)

mov bl, RegNumber

mov bh, DataValue

int 10h

You can use 16-bit port writes (OUT DX, AX) to store data in EGA and

VGA Sequencer and Graphics Controller registers. On the EGA, you

can use the same technique to program the Attribute Controller,

which recognizes I/O port writes at 3C1H as well as 3COH. However,

the VGA Attribute Controller does not emulate the EGA in this regard,

so this technique should be used carefully when VGA compatibility is

important.

Video BIOS Support

The video BIOS supports a number of different video modes on IBM PC and PS/2

video subsystems (see Figure 2-18). The video BIOS routines, which can be called

with INT 10H, let you establish a video mode simply by specifying its number.

Not all of the BIOS video modes are available on all IBM PC video subsystems.

Furthermore, the video BIOS does not support video mode configurations on

non-IBM hardware unless it exactly emulates the corresponding IBM hardware.

For example, all Hercules video adapters emulate IBM’s MDA exactly. Thus, the

video BIOS can be used to select the monochrome alphanumeric mode (BIOS

mode 7) on all Hercules products. However, the Hercules hardware also supports

a 720-by-348 graphics mode which is not recognized by IBM’s video BIOS. Conse-

quently, to set up the Hercules graphics mode, a program must configure the hard-
ware directly (see Listing 2-4).

36 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Ss

M ode
of Number Mode Buffer Sy or & Ry

(hex) Resolution Colors Type Segment ores

0 40x25 chars (320x200 pixels)*}+ 16 Alpha B800 eee Xx
0 40x25 chars (320x350 pixels)t 16 Alpha B800 x x
0 40x25 chars (320x400 pixels) 16 Alpha B800 xX
0 40x25 chars (360x400 pixels)+ 16 Alpha B800 X

1 40x25 chars (320x200 pixels)+ 16 Alpha B800 Xo on eX
1 40x25 chars (320x350 pixels)+ 16 Alpha B800 X X
1 40x25 chars (320x400 pixels) 16 Alpha B800 X
1 40x25 chars (360x400 pixels)+ 16 Alpha B800 X

2 80x25 chars (640x200 pixels)*+ 16 Alpha B800 Kame Kaur Xe neX
2 80x25 chars (640x350 pixels)+ 16 Alpha B800 iK x
2 80x25 chars (640x400 pixels) 16 Alpha B800 Xx
2 80x25 chars (720x400 pixels)+ 16 Alpha B800 x

3. 80x25 chars (640x200 pixels)+ 16 Alpha B800 eX sae EX
3 80x25 chars (640x350 pixels)+ 16 Alpha B800 x x
3 80x25 chars (640x400 pixels) 16 Alpha B800 x
3. 80x25 chars (720x400 pixels)t 16 Alpha B800 i

4 320x200 pixels 4 Graphics B800 Xue Xcuee Kom Xi
5 320x200 pixels 4 Graphics B800 Xo eX BOX

6 640x200 pixels 2 Graphics B800 Xo XC Xa

7 80x25 chars (720x350 pixels)+ 2 Alpha BOO0 x x x
7 80x25 chars (720x400 pixels)t+ 2 Alpha BO0O x

8 (PCjr only)
9 (PCjr only)

OA (PCjr only)

OB (used by EGA video BIOS)

OC (used by EGA video BIOS)

OD 320x200 pixels 16 Graphics A000 X 2

OE 640x200 pixels 16 Graphics A000 X X

OF 640x350 pixels 2 Graphics A000 Xx x

*On the CGA, the color burst component of the composite video signal is disabled. This improves
the appearance of a monochromatic green or amber display. On the EGA, MCGA, and VGA, mode 0

is the same as mode 1, and mode 2 is the same as mode 3.

tOn the VGA, the vertical pixel resolution in this mode is selected using INT 10H function 12H (see

Appendix A).

+On the CGA, color burst is disabled and the four-color palette contains black, cyan, red, and white
(for details, see Chapter 4). On the EGA, MCGA, and VGA, mode 5 is the same as mode 4.

§Only four colors can be displayed on an EGA with only 64 KB of video RAM.

Figure 2-18. ROM BIOS video modes. (continued)

Chapter 2: Programming the Hardware 37

Figure 2-18. Continued.

Mode Yow oY ey
Number Z Mode Buffer § & § SS
(hex) Resolution Colors Type Segment

10 640x350 pixels§ 4 Graphics A000 xX
10 640x350 pixels 16 Graphics A000 Xx x

11 640x480 pixels 2 Graphics A000 XX
12 640x480 pixels 16 Graphics A000 x

13. 320x200 pixels 256 Graphics A000 Xe

ETc ree es Piast ang 2—4

NAME HercGraphMode
PAGE oy SZ

; Name: HercGraphMode

7, BUNCeELon: Establish Hercules 720x348 graphics mode on HGC, HGC+, InColor

; Caller: Muerosoft. Cs

: void HercGraphMode () ;

DGROUP GROUP _DATA

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT, ds:DGROUP

PUBLIC _HercGraphMode
_HercGraphMode PROC near

push bp ; preserve caller registers
mov bp, sp

push Si

push di

7 Update Video BIOS Data Area with reasonable values

mov ax, 40h

mov es,ax

mov di,49h 7 ES:DI := 0040:0049 (BIOS data area)

mov si,offset DGROUP:BIOSData

mov cx, BIOSDataLen

rep movsb + update BIOS data area

; Set Configuration Switch

mov dx, 3BFh 7; DX := Configuration Switch port
mov al,1 7; Al bit 1 := 0 (exclude 2nd 32K of

7 video buffer)

Listing 2-4. Configuring a Hercules adapter for 720-by-348 graphics mode. (continued)

38 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

Listing 2-4. Continued.

out dx,al

* AL bit 0 := 1 (allow graphics mode
; setting via 3B8h)

7; Blank the screen to avoid interference during CRTC programming

mov

xor

out

7 Program the CRTC

LOWS

sub

mov

mov

lodsw

out

loop

+ Set graphics mode

_HercGraphMode

_TEXT

_DATA

CRTCParms

CRTCParmsLen

add

mov

out

pop

pop

mov

pop

ret

ENDP

ENDS

SEGMENT

DB

DB

DB

DB

DB

DB

DB

DB

DB

EQU

ax, 3B8h

al,al

dx,al

d1,4

si,offset

cx, CRTCPar

dx,ax

L01

dal,4

al,CRTMode

dx,al

di

si

sp, bp

bp

word publi

00h,35h ;

Olh,2Dh ;

02h, 2Eh ;

03h,07h ;

04h,5Bh ;

05h,02h ;

06h,57h ;

O7h,57h ;

09h,03h ;

($-CRTCPar

* DX := CRTC Mode Control register port

; AL bit 3 := 0 (disable video signal)

+ blank the screen

* DX := CRTC Address reg port 3B4h

DGROUP:CRTCParms

msLen

7 AL := CRTC register number

; AH := data for this register

; DX := 3B8h (CRTC Mode Control reg)

; AL bit 1 = 1 (enable graphics mode)

2 bit 3 = 1 (enable video)

7; restore registers and exit

c 'DATA'

These are the parameters recommended by Hercules.

They are based on 16 pixels/character and

4 scan lines per character.

Horizontal Total: 54 characters

Horizontal Displayed: 45 characters

Horizontal Sync Position: at 46th character

Horizontal Sync Width: 7 character clocks

Vertical Total: 92 characters (368 lines)

Vertical Adjust: 2 scan lines

Vertical Displayed: 87 character rows (348 lines)

Vertical Sync Position: after 87th char row

Max Scan Line: 4 scan lines per char

ms) /2

(continued)

Chapter 2: Programming the Hardware 39

Listing 2-4. Continued.

BIOSData DB a i CRT_MODE

DW 80 ; CRT_COLS
DW 8000h ; CRT_LEN
DW 0 ; CRT_START
DW 8 dup(0) ; CURSOR _POSN

DW 0 i CURSOR_MODE

DB 0 , ACTIVE PAGE

CRTCAddr DW 3B4h : ADDR_6845

CRTMode DB OAh ; CRT_MODE SET (value for port 3B8h)

DB 0 ; CRI PALETTE (unused)

BlIOSDataLen EQU S$-BIOSData

_DATA ENDS

END

Combinations of Video Subsystems

IBM designed the original MDA and CGA such that both adapters can be used in

the same PC. This is possible because the CRTC registers and other control and

status registers are assigned to a different range of I/O ports on the MDA than on

the CGA. The MDA’s port addresses range from 3B0H through 3BFH, while the

CGA’s range from 3D0H through 3DFH. Also, the video buffers on the MDA and

the CGA occupy different portions of the 80x86 address space: The MDA’s 4 KB

video buffer is at BO00:0000, while the CGA’s 16 KB buffer starts at B800:0000.

This separation was carried forward in the design of the EGA. The EGA’s I/O port

and video buffer addressing are programmable. When the EGA is attached to a

monochrome monitor, the MDA-compatible addresses are used. When the EGA is

used with a color monitor, the CGA-compatible addresses are used. Thus, an EGA

can coexist with either an MDA or a CGA.

Figure 2-19 shows which PC and PS/2 video subsystems can coexist in the same

computer. The table reflects the dichotomy between MDA-compatible and CGA-

compatible I/O port and video buffer addressing. As a rule of thumb, you can

usually combine one MDA-compatible adapter and one CGA-compatible adapter in
the same system.

NOTE: The Hercules InColor Card should be regarded as an MDA-compatible
adapter, even though it is ostensibly a color card. In fact, if you use the InColor
Card in a PS/2 Model 30 with a monochrome monitor attached to the Model 30’s
MCGA, you end up with the strange combination of an MDA-compatible color sub-
system and a CGA-compatible monochrome subsystem in the same computer.

The BIOS video mode routines generally support dual-display configurations. The
video BIOS routines use bits 4 and 5 of the variable EQUIP_FLAG at 0040:0010 in
the BIOS video data area to choose between two video subsystems. If there are ad-
dressing conflicts between two subsystems, the BIOS in the MCGA and VGA pro-
vides a ‘“‘display switch’’ interface that lets you independently disable and enable
each subsystem (see Appendix A).

40 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

MDA CGA EGA MCGA VGA Adapter HGC HGC+ InColor

MDA x x x x
CGA x xx Xx 1 X
EGA x X x x x x
MCGA x X x x x Xx
VGA Adapter X i X X X
HGC x X x x
HGC+ x x x i
InColor x x xX x

Figure 2-19. Allowable combinations of IBM PC and PS/2 video subsystems.

With some combinations of video adapters, the address space the two subsystems’
video buffers occupy may overlap even if their I/O port address assignments do
not. In this situation you must selectively exclude part or all of one subsystem’s
video buffer from the CPU memory map so that the CPU can access the other sub-
system’s buffer without addressing conflicts. The technique for doing this varies
with the hardware.

MDA

The MDA’s video buffer is mapped to the addresses between B000:0000 and

B000:FFFF. The same buffer is also mapped to the 4 KB blocks of RAM starting at

segments B100H, B200H, and so on through B700H, although there is no real

reason for software to use these alternate address maps. The MDA’s video buffer

address mapping cannot be disabled.

Hercules

On the HGC, the HGC+, and the InColor Card, the video buffer occupies the 64 KB

of RAM starting at B000:0000. The second 32 KB of the video buffer overlaps the

address space of a CGA’s video buffer (starting at B800:0000). For this reason

these Hercules adapters are designed so that the second 32 KB can be selectively

excluded from the CPU memory map. The extent of the video buffer address space

depends upon the value you store in the Configuration Switch register (3BFH).

When bit 1 of this register is 0 (the power-on default), video RAM occupies ad-

dresses from B000:0000 through B000:7FFF, which excludes the second 32 KB por-

tion from the CPU memory map and allows the card to be used with a CGA. To

make the second half of the video buffer addressable, set bit 1 to 1.

CGA

The CGA’s video buffer maps to the addresses between B800:0000 and B800:3FFF.

The same buffer is also mapped between BC00:0000 and BCO00:3FFF, although few

programs use this alternate address map. As with the MDA, the CGA’s video

buffer mapping cannot be altered.

Chapter 2: Programming the Hardware 41

This is not the case, however, for all CGA clones. The Hercules Color Card (not to

be confused with the InColor Card) is a CGA work-alike whose video buffer can

be excluded from the CPU’s address space. This is achieved by setting bit 1 of the

card’s Configuration Switch register (3BFH) to 1. This register maps to the same

/O port as the equivalent register on an HGC, HGC+, or InColor Card, but the

polarity of the control bit is opposite that on the other Hercules cards. Thus, by

toggling this bit, software can address the video buffers on both a Hercules Color

Card and another Hercules adapter without addressing conflicts.

EGA

The EGA’s video buffer can be mapped to any of four locations, depending on the

values of bits 2 and 3 in the Graphics Controller Miscellaneous register (see
Figure 2-20). The default values for these bits depend on the video mode. When

the video BIOS sets up a video mode, it sets these bits to appropriate values.

Bit 3 Bit 2 Video Buffer Address Range

b Nine (@) 0 0 A000:0000—B000:FFFF = pbanweaN
0 1 A000:0000—A000:FFFF BG
1 0 B000:0000—B000:7FFF ae
1 1 B800:0000-B800:7FFF ot

Figure 2-20. Control of EGA and VGA video buffer addressing with the Graphics Controller
Miscellaneous register.

The EGA also provides another level of control over the video buffer address map.

When set to 0, bit 1 of the EGA’s Miscellaneous Output register (3C2H) excludes

the entire video buffer from the CPU memory address space.

MCGA

The MCGA’s 64 KB video buffer occupies the addresses between A000:0000 and
A000:FFFF, but the second 32 KB of the buffer, starting at A000:8000 (A800:0000),
also maps to the CGA video buffer address range (B800:0000 through B800:7FFF).
CPU addressing of the MCGA’s video buffer and I/O ports can be disabled by set-
ting bit 2 of the system board control port at 65H to 0. Listing 2-5 shows how INT
10H function 12H can be called to set or reset this bit.

mov ah,12h >; AH 12h (INT 10h function number)
mov aia Ae 1 (disable addressing)

*# (use AL = 0 to enable addressing)
mov bi, o2h 7 INT 10H subfunction number
int 10h

cmp al,12h

jne ErrorExit 7; jump if BIOS does not support this
; f£unction

Listing 2-5. Enable or disable video I/O port and buffer addressing on an MCGA or VGA.

42 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

VGA

Control over the VGA’s video buffer address map is the same as on the EGA.

However, there are two different methods of disabling CPU addressing of the

video subsystem, depending on whether you are using an integrated VGA (ina

PS/2 Model 50, 60, or 80) or the VGA Adapter. In the integrated subsystem, the

Video Subsystem Enable Register (3C3H) controls both video buffer addressing

and I/O port addressing; setting bit 0 of this register to 0 disables addressing, and

setting bit 0 to 1 enables addressing.

On the VGA Adapter, the Video Subsystem Enable register does not exist. Instead,

bit 3 of the control register at I/O port 46E8H enables and disables addressing:

Writing a default value of 0EH to this port enables addressing; writing a value of

6 disables addressing.

In all VGA subsystems, however, INT 10H function 12H provides the same inter-

face as it does on the MCGA (see Listing 2-5). Because of the hardware differences

between the MCGA, the integrated VGA and the VGA Adapter, it is easier to use

INT 10H function 12H to enable or disable addressing in the PS/2 video subsystems

(see Listing 2-5).

Chapter 2: Programming the Hardware 43

ee ot robe
ce) RO Ry & her eet dt -8 ea £08 daar ie el

” 2 Abe Wier Lapeer signees ciara, es mee

f ; tot cE haldegeltyo
; : E e , be 7 ’ ; Cnr :

3s es mtity

gritty yeckieath ce setae i pt, so Oana
cabo “rg af it. he Aviat; ' See 4 ertinn - MH Yidentls

‘ J toe S ud - ; at ag

ied sink! Sy; Peed Faction in boi e Sadie e Garaite

aout ii solar) a Fe Fo 3 fa iit opted eoe eit aanaae teece oe * x ~

CWO AG Yoizee © Ie Perens, Pie's paneer tie 4 SHR som Me ASIA Bs S Sedat
mies % . Se i; xi etupeyriie oot’ Qi wh ti G2ueat oa Aas genes) meaty |

’ 7 -
’ i . siete. aBseer® eee : ‘Sadi :

Re A < ’-. eae xy evi RFS

¥ 4 teat x = a] a

oun
< te ex ae oe

- mn
a

Tense age tig aed be- Sve fits Ke ’ $ 7" ,
4 F er, c .

¥ ” . - : -

-
7 7

* = ie é ; = Pande iL
3 . = i a” 2 Ff = aj es 7 o

Png ay Bas 4 re “a ° . ion
my He oA +h a ee 4 sae i Sis end = SPs : 7 _

‘ w= Vids os ~ ° up + a a s Re -_
i J 7” . » , -« ¥ a -
e : =

nt -

st -
3 ot F -

* Fay ' y
» ; =

stu is 43 { 4?

< fe % ‘ ‘ "3
i af) 4

ooo :
;

- ‘ ede

-, L ’ j = ’ is

, , af 7 r*
5 = & « '

*

il al .. a

; ‘

s ,
-_ ra oe | 7

- si
’

7
i

x -

(

Alphanumeric Modes

Using Alphanumeric Modes

BIOS and Operating-System Support

Speed @ Compatibility

Representation of Alphanumeric Data

Attributes

MDA @ HGC @ CGA @ EGA

InColor Card @ MCGA @ VGA

Gray-Scale Summing

Border Color

CGA @ EGA and VGA

. Avoiding CGA Snow

_ Blanking the Display

Using the Vertical Blanking Interval

Using the Horizontal Blanking Interval

Using All the Video Buffer
CGA Video Pages

EGA, MCGA, and VGA Video Pages

Cursor Control

Cursor Size on the MDA and CGA

Cursor Location on the MDA and CGA

MCGA Cursor Control © EGA and VGA Cursor Control

ROM BIOS Cursor Emulation

An Invisible Cursor

All IBM PC and PS/2 video subsystems except the MDA can be programmed to

display characters in either alphanumeric or graphics modes. This chapter

discusses what you need to know to use alphanumeric modes— the advantages

and disadvantages of programming in alphanumeric modes; the basics of colors,

blinking, and other character display attributes; and special techniques that ex-

ploit the capabilities of the hardware to improve the on-screen appearance and

performance of your programs.

Using Alphanumeric Modes

The video BIOS on all IBM PCs and PS/2s always selects an alphanumeric video

display mode when you boot the computer. In the IBM PC family, switches on the

motherboard, the video adapter, or both determine whether a 40-column or 80-

column mode is selected and whether a color or monochrome display is used. In

the PS/2 series, the initial video mode is always an 80-column alphanumeric

mode. Furthermore, the video mode set by the ROM BIOS is the one the operating

system initially uses. Until you run a program that changes the video mode, all

video output appears in the default mode—which is alphanumeric.

For this reason, the simplest way to write a program is to assume that it runs in an

alphanumeric mode and to program the video interface accordingly. This assump-

tion minimizes the coding required to send output to the screen. Not only are al-

phanumeric video output routines simpler than equivalent routines for graphics

modes, but in most cases the ROM BIOS or the operating system provides charac-

ter output routines that can be used in any alphanumeric mode.

BIOS and Operating-System Support

In the IBM PC, operating-system output routines are usually based on the set of

primitive routines in the ROM BIOS that are called with software interrupt 10H.

You can send characters to the video display either by using operating-system

calls or by calling the INT 10H routines directly. In either case, use of these rou-

tines obviates the need for writing your own character output routines.

An additional advantage to using BIOS or operating-system character output func-

tions is that programs using only such functions are more likely to run on differ-

ent video hardware. For example, a program using only MS-DOS function calls

for video output will run in almost any MS-DOS environment, regardless of the

video hardware, including (but not limited to) the entire IBM PC and PS/2 family.

Of course, routing video output through an operating system is relatively slow

compared with writing directly to the hardware. The use of operating-system

character output routines introduces a certain amount of unavoidable overhead,

particularly when such features as input/output redirection and multiprocessing

are supported. Nevertheless, this overhead may be acceptable in many applica-
tions. You should always consider whether the extra programming and decreased
portability required to improve video output performance are worthwhile in your
application.

46 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Speed

This is not to say that alphanumeric video output is inherently slow. When com-

pared with character output in graphics modes, alphanumeric output is signifi-

cantly faster, simply because much less data must be stored in the video buffer to

display characters. In alphanumeric modes, each character is represented by a

single 16-bit word; the video hardware takes care of displaying the pixels that

make up the character. In graphics modes, every pixel in every character is repre-

sented explicitly in a bit field in the video buffer. For this reason, graphics-mode

output is much more costly than equivalent character output in alphanumeric

modes, both in terms of display memory used and processing required.

For example, in a 16-color graphics mode, each character drawn on the screen in

an 8-by-8 dot matrix is represented by 32 bytes of data in the video buffer (8 x 8 x

4 bits per pixel). The memory overhead increases rapidly, in direct relationship to

increasing resolution and the addition of more colors, as does the amount of time

the CPU spends in manipulating data in the video buffer. On newer video adapt-

ers, dedicated graphics coprocessors such as the Intel 82786 or the TI 34010 may

assume much of the computational burden of graphics-mode text display, thereby

improving the speed of graphics-mode text output. Without a coprocessor, how-

ever, output in graphics modes is much slower than in alphanumeric modes.

Compatibility

Writing a program that is compatible with different IBM video subsystems is

easier if you use only alphanumeric video display modes. The reason is simple:

All commonly used IBM video subsystems support an 80-column by 25-row al-

phanumeric mode with the same video buffer format. If you design your video in-

terface with an 80-by-25 alphanumeric display in mind, your program will run on

a majority of PCs and compatibles with little or no modification.

Unfortunately, high compatibility is generally achieved only by sacrificing speed.

Fast video output routines usually take advantage of hardware idiosyncrasies, so

they are less likely to be portable to different video hardware than routines that

rely on slower but more universal BIOS or operating-system calls. This trade-off

will be implicit in almost every video output routine you write.

Representation of Alphanumeric Data

All IBM PC and PS/2 video subsystems use the same format for storing alphanu-

meric data in the video buffer. Each character is represented by a simple 2-byte

data structure (see Figure 3-1). Characters are stored in the buffer in a linear se-

quence that maps across and down the screen (see Figure 3-2).

Chapter 3: Alphanumeric Modes 47

Low-order byte High-order byte

ASCII character Attribute
code

Figure 3-1. Alphanumeric character and attribute mapping in a 16-bit word.

Video buffer oe
ake Character row 0 (Sa
00A0 Character row 1 | Sa
0140H Character row 2 | Sa
01EOH

Figure 3-2. Video buffer map in 80-by-25 alphanumeric modes.

A hardware character generator converts each character code into the proper dot

pattern on the display. At the same time, attribute decoder circuitry generates the

appropriate attribute—color, intensity (brightness), blinking, and so on—for

each character. Since each character code in the video buffer is accompanied by

an attribute byte, you can independently control the displayed attributes of each

character on the screen.

The hardware character generator displays each alphanumeric character within a

rectangular matrix of pixels. Within this character matrix, the character itself is

composed of a set of foreground pixels. The colors of the character’s foreground

and background pixels are specified by the low and high nibbles of the corre-
sponding attribute byte.

To display a character, you store its ASCII code and attribute in the proper loca-

tion in the video buffer. Because of the linear mapping scheme, you can easily
calculate the buffer address of a particular screen location. The general formula is

offset = ((row X width) + column) x 2

In this formula, width is the number of characters in each row. The factor of 2 is
included because each character requires 2 bytes (one 16-bit word) of storage in
the video buffer. The values for row and column are zero-based, starting in the up-
per left corner of the screen. (The character in the upper left corner is located at
row 0, column 0.)

If you examine the contents of the video buffer, you can see how this data corre-
sponds to characters on the screen (see Figure 3-3). Note how each character code
is followed by its attribute byte. (All of the attribute bytes in the portion of the
video buffer shown in Figure 3-3 have the value 07H.)

48 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

BOOO:

BOOO

BO0O00

Figure 3-3. Hexadecimal dump of an alphanumeric video buffer.

Attributes

0000

:0010

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

BOOO:

0020

0030

0040

0050

0060

0070

0080

0090

OOAO

O0O0BO

00CcO

00DO

QOEO

OOFO

:0100

BOOO:

BOOO:

BOOO:

0110

0120

0130

0

43

72

00

00

00

00

00

00

00

00

43

WZ

00

00

00

00

00

00

00

00

1

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

2

68

20

00

00

00

00

00

00

00

00

68

20

00

00

00

00

00

00

00

00

3

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

4

61

he

00

00

00

00

00

00

00

00

61

72

00

00

00

00

00

00

00

00

5

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

6

eZ

6F

00

00

00

00

00

00

00

00

te

6F

00

00

00

00

00

00

00

00

7

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

8

61

77

00

00

00

00

00

00

00

00

61

Tee

00

00

00

00

00

00

00

00

9

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

a8

63

20

00

00

00

00

00

00

00

00

63

20

00

00

00

00

00

00

00

00

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

C

74

30

00

00

00

00

00

00

00

00

74

30

00

00

00

00

00

00

00

00

D

07

07

07

07

07

07

07

07

07

07

07

07

07

07

07

OF

07

07

07

07

E

65

30

00

00

00

00

00

00

00

00

65

Si

00

00

00

00

00

00

00

00

FE

07

07

012345678 9ABCDEF

Coe aietadeicwt «ec.

IgG) Bas OMnins Glico

Copan wae...

iar I OMWies te Ose. lire

Although all IBM PC and PS/2 video subsystems use the same pattern of alternat-

ing character codes and attribute bytes to represent alphanumeric data, the way

the attribute byte is interpreted varies. In general, the attribute byte is formatted

as two 4-bit nibbles. The low-order nibble (bits 0 through 3) determines the char-

acter’s foreground attribute; that is, the color and intensity of the character itself.

The high-order nibble (bits 4 through 7) indicates the character’s background at-

tribute, although bit 7 may also control blinking in some situations.

The 4-bit foreground and background attributes are ultimately decoded into a set

of signals that drive the video monitor. In the simplest case, on the CGA, the four

bits correspond directly to the three color signals and the intensity signal. The

decoding scheme on other video subsystems can be complex, as on the EGA,

MCGA, VGA, and InColor Card, or comparatively simple, as on the MDA.

MDA

Although you may specify any of 16 (24) attributes for both foreground and back-

ground attributes, the MDA only recognizes certain combinations (see Figure 3-4).

Nevertheless, you can generate a useful variety of character attributes by creative-

ly combining intensity, blinking, and underlining. You can also exchange the

usual foreground and background attributes to obtain ‘“‘reverse video’’ —black

characters on a normal-intensity background.

Chapter 3: Alphanumeric Modes 49

Not Underlined
a cee

Foreground ;
Black Dim* Normal Intensity High Intensity

Background
Black 00 a 07 OF
Dim* <* 88 87 8F
Normal 70 78 ros ae
High FO F8 sts ee

* = not displayed by all monitors
** = not available

Underlined

Foreground
Normal Intensity High Intensity

Background
Black 01 09
Dim* 81 89

* = not displayed by all monitors

Figure 3-4. MDA foreground-background attribute combinations (values in hex). Attribute
values not in this table always map to one of the combinations shown.

On the MDA, as well as on all other IBM video hardware, bit 7 of each character’s

attribute byte can serve two purposes. By default, this bit controls whether a char-

acter blinks when displayed; setting the bit to 1 causes the associated character to

blink. Bit 7 controls blinking because bit 5 (the Enable Blink bit) of the MDA’s

CRT Mode Control register (3B8H) is set to 1 by the video BIOS when the com-
puter is powered up.

If the Enable Blink bit is 0, however, bit 7 of the attribute byte no longer controls
blinking (see Listing 3-1). Instead, bit 7 is interpreted as an intensity bit for the
background attribute. When bit 7 is set in a character’s attribute byte, the charac-
ter’s background attribute is intensified; that is, normal green becomes intense
green and black becomes dim green. Thus, to obtain all possible combinations of
monochrome attributes listed in Figure 3-4, you must zero the Enable Blink bit.

mov ax, 40h

mov es,ax * ES := video BIOS data segment
mov dx,es: [63h] + DX := 3B4h (MDA) or

; 3D4h (CGA) from ADDR_6845
add d1,4 * DX := 3x8h (CRT Mode Control reg)
mov al,es: [65h] 7 AL := current value of reg (CRT_MODE_ SET)
and al,11011111b ;, Zero (bake. 5
out dx,al ; update the register
mov es: foohi jal 7 update the BIOS data area

Listing 3-1. Resetting the Enable Blink bit on the MDA or CGA.

50 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The value of the Mode Control register’s Enable Blink bit affects the interpreta-

tion of bit 7 of all attribute bytes, so you can’t display both blinking characters

and characters with intensified background at the same time. You must decide

which attribute is more useful in your program and set the Enable Blink bit

accordingly.

All IBM PC and PS/2 video subsystems, including the MDA, blink alphanumeric

characters by substituting the background attribute for the foreground attribute

about twice a second. The effect is that each blinking character alternates with a

blank character.

If you fill the display with blinking characters, the overall effect can be discon-

certing, because the screen is blanked and restored twice each second. But if your

purpose is to attract attention to the display, using the blink attribute can be very

effective.

If you use the underline attribute (foreground attribute 1 or 9) on

a Compaq portable, you won’t see underlined characters. This is

because the Compaq portable decodes attribute values into 16 pro-

gressively brighter shades of green; the underline attribute values

of 1 and 9 therefore appear as shades of green.

|
|
P

Surprisingly, a few IBM MDAs generate color as well as monochrome

output. Of course, the MDA’s green monochrome display uses only

two signals to control attributes (video on/off and intensity on/off); it

ignores any color video signals. However, a color display that can use

the MDA’s 16.257 MHz horizontal sync and 50 Hz vertical sync signals

will display eight colors (with and without intensity) when attached to

some (but not all) MDAs. Unfortunately, you can never be certain

which MDA will turn out to be a color adapter in disguise.

HGC

The HGC and HGC+ exactly emulate the MDA’s monochrome alphanumeric

mode. Programs written for the MDA run unchanged on either of these adapters.

CGA

The CGA uses the same foreground-background attribute scheme as does the

MDA. However, the CGA’s attribute decoder circuitry recognizes all 16 possible

combinations of the four bits in each nibble of the attribute byte. For each charac-

ter on the screen, you can independently specify any of 16 colors for foreground

and background.

The available colors are simple combinations of the primary colors red, green,

and blue. Each bit in each nibble of the attribute byte corresponds to a signal that

the CGA supplies to the video monitor (see Figure 3-5). The low-order three bits

Chapter 3: Alphanumeric Modes 51

Bit 5 2 1 0

a boxe aaah

Pin 5

Pin 4

Pin 3

Pin 6

Figure 3-5. CGA attributes and monitor color drive signals. Pin numbers refer to the CGA’s

9-pin connector.

of each nibble correspond to the red (R), green (G), and blue (B) signals. The eight

possible combinations produce a gamut of red, green, blue, and their intermediate

colors (see Figure 3-6).

Color Binary (IRGB) Hexadecimal

Black 0000 00
Blue 0001 01

Green 0010 02

Cyan 0011 03
Red 0100 04
Violet 0101 05
Yellow (brown) 0110 06

White 0111 07
Black (gray) 1000 08
Intense blue 1001 09
Intense green 1010 OA
Intense cyan 1011 OB
Intense red 1100 OC

Intense violet 1101 OD

Intense yellow 1110 OE
Intense white 1111 OF

Figure 3-6. CGA display attributes.

Setting bit 3 of the attribute byte (the intensity bit in the foreground nibble) dis-
plays the color designated in the R, G, and B bits (bits 0 through 2) with higher in-
tensity. However, as on the MDA, the high-order bit (bit 7) of each attribute byte
controls either background intensity or blinking. Again, the attribute displayed
depends upon the state of a bit in a control register.

Bit 5 of the CGA’s Mode Control register (I/O port 3D8H) is an Enable Blink bit
analogous to bit 5 of the MDA’s CRT Control register. When you set the Enable
Blink bit to 0, bit 7 of a character’s attribute byte signifies that the background

52 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

color specified in bits 4 through 6 should be intensified. When you set the Enable
Blink bit to 1, only nonintensified background colors are displayed, but characters
whose attribute bytes have bit 7 set to 1 will blink.

The Enable Blink bit is set to 1 whenever you call the ROM BIOS to select an al-
phanumeric video mode. By default, therefore, bit 7 of each character’s attribute
byte controls blinking rather than background intensity. You must reset the Enable
Blink bit to display characters with intensified background colors.

Many CGA-compatible displays squeeze a bit more out of the 16 available colors
(8 nonintensified, 8 intensified) by displaying low-intensity yellow as brown and
high-intensity black as gray. Unfortunately, a program cannot determine whether -
a particular display can do this. Be careful about displaying, for example, gray
characters on a black background with a CGA, because such color combinations
are invisible on some color displays.

EGA

In 16-color alphanumeric modes, the EGA uses the same attribute byte format as
the CGA. However, the 4-bit foreground and background values do not correspond
directly to the colors displayed. Instead, each 4-bit value is masked with the four
low-order bits of the Attribute Controller’s Color Plane Enable register (12H); the
resulting 4-bit value designates one of the EGA’s 16 palette registers (see Figure
3-7). Each bit of the 6-bit color value contained in the designated palette register
corresponds to one of the six RGB signals that drive the monitor (see Figure 3-8).

An EGA-compatible color monitor is driven by six color signals—three primary

(higher intensity) and three secondary (lower intensity). All 64 combinations of

these six signals appear as different colors and/or intensities. With a 200-line

color monitor—or in 200-line modes on an EGA-compatible monitor —bits 0, 1,

and 2 control the color signals, while bit 4 controls the intensity signal.

Logical AND Color Plane

Enable register
4-bit attribute

Palette register 0-OFH

6-bit digital output to video display
(2 bits each for red, green, blue)

Figure 3-7. Attributes and colors on the EGA.

Chapter 3: Alphanumeric Modes 53

ZCH|

200-line monitors (CGA-compatible):

Bit

350-line color monitors (EGA-compatible):

Bit

350-line monochrome monitors (MDA-compatible):

Bitte) Ore o> 64a wee Peau

Palette register

Pin 7

Pin 6

R,G,B = primary red, green, blue (higher intensity)
r,g,b = secondary red, green, blue (lower intensity)
I = intensity
V = monochrome video

Figure 3-8. EGA palette register values and corresponding monitor color drive signals. Pin
numbers refer to the EGA’s 9-pin connector.

The EGA’s method of generating colors indirectly through palette registers is

more complex than the CGA’s direct scheme, but the EGA is more flexible. You
can select the foreground and background colors for each character individually,
yet you can produce global color changes by updating the value in a particular
palette register.

The high-order bit of each character’s attribute byte can control either blinking or
background intensity, just as on the MDA and the CGA. Bit 3 of the EGA’s At-
tribute Controller Mode Control register (register 10H at I/O port 3COH) is the
Enable Blink bit. Setting it to 1 enables blinking, so only the low-order 3 bits of

54 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

the background nibble (bits 4 through 6 of the attribute byte) designate palette

registers. Thus, when blinking is enabled, you can reference only the first eight

palette registers to select the background color for a character. Setting the Enable

Blink bit to 0 disables blinking, making all 16 palette registers available for back-
ground colors (see Listing 3-2).

mov b1,0 ; BL := value for Enable Blink bit

mov ax, 1003h aan INT 10H function number

subfunction number we Et lI

int 10h

Listing 3-2. Setting and resetting the Enable Blink bit on the MCGA, EGA, or VGA.

When you select an alphanumeric video mode using the EGA BIOS, the palette

registers are loaded with default values that correspond to the colors available on

the CGA. The color values in the second eight palette registers are intensified ver-

sions of those in the first eight. Thus, if you simply treat bit 7 of the attribute byte

as a ‘‘background intensity or blink’’ bit, your program will run on both an EGA

and a CGA.

You can update the contents of any palette register either directly or with INT 10H

function 10H (see Listing 3-3). Using the BIOS routine is more convenient and

avoids the need to write hardware-dependent code. Moreover, the BIOS routine

; updating a palette register directly:

mov ax, 40h

mov es,ax ; ES := video BIOS data segment

mov dx,es: [63h] ; DX := CRTC address reg (3x4h)

add al,6 ; DX := Status reg (3xAh)

push dx ; preserve this value

ers

in al, dx ; reset Attribute Controller address

eee OD

mov dl, 0COh 2 DK F="3COh

mov al, PaletteRegNumber

out dx,al ; update one palette register

mov al, PaletteRegValue

out dx,al

pop dx ; DX := Status register port

in al,dx ; reset the flip-flop

mov d1,0COh

mov al,20h 4

out dx,al Sec DLtVor of

; Attribute Controller address reg

SEL

; updating a palette register using the video BIOS

mOv bl, PaletteRegNumber

mov bh, PaletteRegValue

mov ax,1000h ; AH := INT 10H function number

, AL s= subfunction number

init 10h

Listing 3-3. Palette register programming on the EGA or VGA.

Chapter 3: Alphanumeric Modes 55

can also load all 16 palette registers at once, given a table of color values (see

Appendix A). Nevertheless, you may still need to program the palette registers

directly to produce very rapid color changes such as might be required in some

types of animation.

In monochrome alphanumeric mode, the EGA emulates the MDA monochrome

display attributes. The video BIOS initializes the palette registers with values that

correspond to MDA attributes (see Figure 3-9). Bit 3 determines whether pixels are

on or off, and bit 4 (if set in addition to bit 3) causes a higher-intensity display.

The underline attribute is generated whenever a character’s foreground attribute

is 1 or 9, regardless of the value in the corresponding palette register.

Value Attribute

0 Black
8 Normal intensity
10H Dim
18H High intensity

Figure 3-9. Monochrome alphanumeric attribute values for the EGA palette registers.

The EGA also generates an underline attribute in 16-color alphanu-

meric modes when the foreground attribute is 1 or 9 and the back-

ground attribute is 0 or 8. However, you do not normally see an

underline in 16-color modes because the video BIOS default value for
the CRTC Underline Location register (14H) is 1FH. This value is
greater than the number of scan lines normally displayed for alphanu-
meric characters, so the underline does not appear.

You can generate underlined characters in 16-color modes by storing a
displayable value in the Underline Location register. Of course, only
characters with attributes of 1, 9, 81H, or 89H will appear underlined,
but you can change the values in the corresponding palette registers to
produce underlined characters of any desired color.

InColor Card

The InColor Card can decode alphanumeric attributes in several different ways.
The card has a set of 16 palette registers whose function is analogous to the EGA’s
Attribute Controller palette registers, but the InColor Card can be configured by
your program to bypass the palette registers and decode each character’s 4-bit
foreground and background attributes in an MDA- or CGA-compatible manner.
Bits 4 and 5 of the Exception register (17H) control how the InColor Card inter-
prets alphanumeric attributes (see Figure 3-10). Bit 5 determines whether the
InColor Card displays monochrome attributes (as on the MDA) or color attributes
(as on the CGA or EGA). Bit 4 enables attribute mapping through the palette
registers.

56 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

When the InColor Card is powered up, Exception register bit 5 has the value 1 and
bit 4 has the value 0. Thus, by default, the card interprets attributes as an MDA
would. However, if you set both bits 5 and 4 to 0 (see Listing 3-4), alphanumeric
attributes specify the same set of 16 colors as on a CGA (refer to Figure 3-6).

mov ax,0017h ; AH bit 5 := 0 (disable

* monochrome attributes)

7 AH bit 4 := 0 (disable palette)

7 AH bits 0-3 := 0 (default cursor color)

* AL := 17h (Exception Register number)

mov ax, 3B4h pax =" 1/0 perme

out ax,ax

Listing 3-4. /nColor Exception register programming.

Bit 5 Bit 4 Attribute Emulation

0 0 CGA
0 1 EGA
1 0 MDA
1 1 MDA mapped through palette registers.

Figure 3-10. Exception register control of attributes on the Hercules InColor Card.

Setting bit 4 to 1 causes attributes to map to the card’s palette registers, regardless

of the value of bit 5. Thus, if bit 4 is 1 and bit 5 is 0, the InColor Card interprets

attributes as does the EGA. If bit 4 is 1 and bit 5 is 1, however, the card maps each

character’s foreground and background attributes only to the palette registers that

correspond to valid monochrome attribute values. In this case, the ‘‘black,”’

‘*dim,’’ ‘‘normal intensity,’’ and ‘‘high intensity’ attributes select palette regis-

ters OOH, 08H, 07H, and OFH respectively.

Bit 5 of the CRT Mode Control register at 3B8H is the Enable Blink bit. This bit

controls background intensity regardless of the values of Exception register bits 4

and 5. However, characters are blinked only when Exception register bit 5 is 1

(MDA-compatible attributes); characters do not blink when bit 5 of the Exception

register is 0 (CGA-compatible attributes), regardless of the Enable Blink bit’s

setting.

No video BIOS support is provided for the InColor Card’s palette registers. Your

program must therefore update the palette by directly storing values in the palette

registers. Listing 3-5 is an example of how you might do this. The initial I/O read

(IN AL, DX) of the Palette register (1CH) resets an internal index which points to

the first of the 16 internal palette registers. Each subsequent I/O write

(OUT DX, AL) updates one internal palette register and increments the internal

index to point to the next palette register, so all 16 registers can be loaded by ex-

ecuting a simple loop.

Chapter 3: Alphanumeric Modes 57

Because monochrome attributes can be mapped through palette regis-

ters, you can assign as many as four different colors to monochrome

programs that run on the InColor Card. Do this by setting Exception

register bits 4 and 5 to 1 and updating palette registers 00H, 08H, 07H,

and OFH with the desired colors.

mov dx, 3B4h ; DX := CRTC address register

mov al,1Ch ; AL := 1Ch (Palette Register number)

out dx,al

inc dx 3; DX := SB5Sh

in al,dx ; reset palette register index

mov si,offset PaletteTable ; DS:SI -> PaletteTable

mMOv cx,16 ; CX := number of palette registers

L01: lodsb ; AL := next byte from table

out dx,al ; update next palette reg

loop L01

PaletteTable db 00h, 01h, 02h, 03h,04h,05h,06h,07h ; palette regs 0-7

db 38h, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh ; palette regs 8-OFh

Listing 3-5. [nColor palette register programming.

On the InColor Card, the colors of both the cursor and the underscore are inde-

pendent of the foreground colors of the characters in the video buffer. The cursor
color is specified in bits 0 through 3 of the Exception register, and the underscore

color value is specified in bits 4 through 7 of the Underscore register (CRTC regis-

ter 15H). When the InColor Card is displaying MDA attributes (that is, when bit 5

of the Exception register is set to 1), you can specify only the three low-order bits

of the cursor and underscore colors; the high-order bit of these color values is

derived from the foreground attribute of the character where the cursor or un-

derscore is displayed.

When palette mapping is enabled (Exception register bit 4 is set to 1), both the

cursor and underscore color values select palette registers. When palette mapping

is disabled, the cursor and underscore color values are displayed using the usual

CGA colors. Also, if you specify a value of 0 for either the underscore color or the

cursor color, the InColor Card uses the value 7 instead.

MCGA

The components of the PS/2 Model 30’s video subsystem that transform attribute

data into color video signals are the Video Formatter and the video Digital-to-
Analog Converter (DAC). The Video Formatter gate array decodes attributes and
generates an 8-bit digital output which is passed to the video DAC; from this, the
DAC generates analog red, green, and blue signals for the video display. The DAC
converts the 8-bit output from the Video Formatter to the three analog color sig-
nals by using the 8 bits to select one of the DAC’s 256 color registers. Each DAC

58 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

color register is 18 bits wide, comprising three 6-bit values for red, green, and blue
(see Figure 3-12). The DAC converts each 6-bit value into an analog signal with
the highest value (3FH) corresponding to the highest-intensity signal.

In alphanumeric modes, the four low-order bits of the Video Formatter’s 8-bit
digital output are derived from attribute bytes, while the four high-order bits are
always 0 (see Figure 3-11). Thus, only the first 16 of the video DAC’s color regis-
ters are used in MCGA alphanumeric modes. The remaining 240 registers can be
accessed only in 320-by-200 256-color graphics mode (see Chapter 4). When an
MCGA is attached to a color display, the video BIOS initializes the first 16 video
DAC color registers with the same colors found on the CGA.

a The value in the video DAC Mask register (I/O port 3C6H) masks the
, 8-bit value passed to the video DAC. The Mask register value is set to

OFFH by the video BIOS initialization routines so that all 256 video
DAC color registers can be accessed. IBM technical documentation
recommends that this value not be modified.

Logical AND
4-bit attribute Video DAC Mask register

Video DAC
color register 0-OFH

18-bit analog output to video display
(6 bits each for red, green, blue)

Figure 3-11. Attributes and colors on the MCGA. (The value in the video DAC Mask register
should normally be OFFH.)

6 bits 6 bits 6 bits

Green Blue

Pin 3

Pin 2

Pin 1

Figure 3-12. Video DAC color register values and monitor color drive signals. Pin numbers
refer to the MCGA’s 15-pin connector.

Chapter 3: Alphanumeric Modes 59

Unlike the EGA, an MCGA with a monochrome display does not emulate the

MDA’s attributes. Instead, the 16 default video DAC color register values consist of

four groups of four shades of gray. Each group is displayed with higher intensity

than the preceding group. Within each group, the intensity increases from lower

to higher attribute values. Thus, attribute values 0 through 3 make up a range of

four shades of gray, values 4 through 7 a second range of somewhat higher inten-

sity, and values 8 through OBH and OCH through OFH a third and fourth range of

still higher intensity.

Instead of this default MCGA monochrome gray-scale configuration,

you might prefer to use gray-scale values that increase uniformly with

increasing attribute values. The code in Listing 3-6 loads the video

DAC registers with appropriate values for this gray-scale gamut.

mov bx, OFh + BX := first video DAC

; Color register number

mov di,offset VDACTable ; DS:DI ->table

LO1: mov dh, [bx+di] ; DH := red value

mov ch, dh

mov el, ah ; green and blue values are the same

mov ax,1010h ; AH := INT 10h function number

; AL := subfunction number

int 10h

dec bx

jns L01 ; loop from register OFH through register 0

VDACTable db 00h, 05h, 08h, OBh, OEh, 11h, 14h, 18h

db 1Ch, 20h, 24h, 28h, 2Dh, 32h, 38h, 3Fh

Listing 3-6. Loading an alternative MCGA monochrome gray-scale palette.

VGA

In general, the VGA exactly emulates EGA alphanumeric attribute decoding. How-

ever, the VGA has both a video DAC and a set of 16 Attribute Controller palette

registers. Each palette register value selects one of 256 video DAC color registers.
The value in the selected video DAC color register determines the color displayed.

> Depending on the value of bit 7 in the Attribute Controller’s Mode Control regis-
ST ter you can use the palette register value to select a video DAC color register in

one of two ways. When bit 7 is set to 0, the Attribute Controller combines the 6-bit
palette-register value with bits 2 and 3 of its Color Select register (14H) to produce
an 8-bit value that selects a video DAC color register (see Figure 3-13). Alter-

natively, when bit 7 is set to 1, only the four low-order bits of each palette register
are meaningful. The Attribute Controller derives the other four bits of the 8-bit

value from bits 0 through 3 of the Color Select register (see Figure 3-14).

60 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

In the first case (when bit 7 of the Mode Control register is set to 0), the 6-bit
palette registers are used to select one of four groups of 64 video DAC color regis-
ters, and bits 2 and 3 of the Color Select register determine which group of color
registers is used. In the second case (when bit 7 of the Mode Control register is set
to 1), each palette register value selects one of 16 groups of 16 video DAC color
registers, and bits 0 through 3 of the Color Select register specify one of the 16
groups of DAC color registers.

ace? g
on Logical AND Color Plane

Enable register
4-bit attribute

Color Select register
(bits 2-3)

Palette register 0-OFH cP
aN

Bits 0-5 of
color register
number

Bits 6-7 of
color register
number

Video DAC Mask —
register

in.
\ pra

Te wa
Logical AND

Video DAC
3 arAuren 2

color register 0-OFFH WA areas &

18-bit analog output to video display
(6 bits each for red, green, blue)

Figure 3-13. Attributes and colors on the VGA (when bit 7 of the Attribute Controller’ s Mode
Control register is set to 0).

This added level of indirection, afforded by the combined use of palette registers

and video DAC color registers, makes switching between palettes easy, since you

can select any of 16 different 16-color palettes just by changing the value in the

Attribute Controller’s Color Select register. If you store 16 palettes of gradually

increasing intensity in the DAC color registers, you can accentuate characters on

the screen by cyclically increasing and decreasing their intensity. This effect is
more subtle than simply blinking the characters on and off, particularly when ap-
plied to a large area of the display.

Chapter 3: Alphanumeric Modes 61

Color Plane
Enable register

Logical AND
4-bit attribute

Color Select register
(bits 0-3) Palette register 0-OFH

Bits 0-3 of Bits 4-7 of
color register color register
number number

Video DAC Mask
register

Logical AND

Video DAC
color register 0-OFFH

18-bit analog output to video display
(6 bits each for red, green, blue)

Figure 3-14. Attributes and colors on the VGA (when bit 7 of the Attribute Controller’ s Mode
Control register is set to 1).

T When the VGA emulates 80-by-25 16-color alphanumeric mode on a

, monochrome display, the palette consists of the same four groups of

" four gray-scaled values as does the corresponding palette on the

MCGA. As on the MCGA, you can create a gray-scale palette with

gradually increasing intensities. Listing 3-7 illustrates how you might

do this. Note how the appropriate video DAC registers are selected by

examining the values in the Attribute Controller’s palette registers.

mov bx, OFh ; BX := first Palette register number

mov di,offset VDACTable ; DS IDE —-—S"tabile

L071 : mov dh, [bx+di] ; DH := red value

mov ch,dh

mov ei, an + green and blue values are the same

Listing 3-7. Loading an alternative VGA monochrome gray-scale palette. (continued)

62 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 3-7. Continued.

push bx * preserve Palette register number
mov ax,1007h * AH := INT 10h function number

7 AL := subfunction number

9 (read Palette register)
int 10h ; BH := Palette register value
mov bly on

xor bh, bh ; BX := desired video DAC

~ Color register number

mov ax,1010h 7 AH := INT 10h function number

, AL := subfunction number
int 10h

pop bx

dec bx ; BX := next Palette register number
jns L01 ; loop from Palette registers

; OFH through 0

VDACTable db 00h, 05h, 08h, OBh, OEh, 11h, 14h, 18h

db 1Ch, 20h, 24h, 28h, 2Dh, 32h, 38h, 3Fh

The VGA emulates the MDA’s monochrome alphanumeric mode (video BIOS
mode 7) on either a color or a monochrome display. The Attribute Controller
palette register values and the control of blinking and underlining are the same as
on the EGA. In this mode, the video DAC registers corresponding to the palette

values 00H, 07H, 08H, and 18H are initialized with the appropriate gray-scale
values. The palette and video DAC register values are the same in this mode

regardless of whether a color or monochrome display is attached.

Gray-Scale Summing

Both the MCGA and the VGA BIOS contain logic which can transform the red-

green-blue values in the video DAC registers into corresponding gray-scale

values. This transformation is performed by taking a weighted average of the red,

green, and blue components. To compute the gray-scaled equivalent value, the

BIOS sums 30 percent of the red value, 59 percent of the green, and 11 percent of

the blue. (These percentages approximate the displayed intensities of pure red,

green, and blue.) For example, the default color for video DAC Color Register 02H

(cyan) is made up of three 6-bit components. The value of the red component is 0,

the green component 2AH, and the blue component 2AH. The gray-scale value is

therefore 1DH, the sum of

(S30 Xa lO ite (5 9 xX 2A) et le xX) 2A)

INT 10H function 10H includes a subfunction (AL = 1BH) that reads a set of video

DAC color registers and updates them with equivalent gray-scale values. Appen-
dix A contains an example of the use of this video BIOS function.

Chapter 3: Alphanumeric Modes 63

On both the MCGA and the VGA, INT 10H function 0 uses gray-scale summing by

default when a monochrome display is attached. With a color display, gray-scale

summing is disabled by default. You can selectively enable or disable default

gray-scale summing by executing INT 10H function 12H with BL = 33H.

Border Color

On the CGA, EGA, MCGA, and VGA, you can specify a color to be displayed

during the vertical and horizontal overscan intervals. This overscan or border

color is not represented by any data in the video buffer. Instead, a special control

register contains the value of the color displayed.

CGA

On the CGA, you select the border color with the four low-order bits of the Color

Select register at I/O port 3D9H (see Listing 3-8). The color values parallel those

available for character attributes: bits 0, 1, and 2 select the blue, green, and red

primaries, and bit 3 is interpreted as an intensity bit.

; updating the CRT Color Register directly (CGA only)

mov ax, 40h

mov es,ax 7 ES := video BIOS data segment

mov dx,es: [63h] 7 DX := 3D4H (ADDR_6845)

add Cleo: ;, DXys= 3D9H (CRT Color Select reg)

mov al,es: [66h] , AL := current value of reg (CRT_PALETTE)
and al,11110000b 7; zero bits 0-3

or al,BorderValue ; update bits 0-3

out dx, ad ; update the register

mov es: [66h],al ; update the BIOS data area

7 using the video BIOS interface (CGA, EGA, VGA)

mMOv bl, BorderValue

mov bh, 0 ; BH := subfunction number

mov ah, OBh ; AH := INT 10h function number

int 10h

Listing 3-8. Setting a border color.

Using INT 10H function OBH to update the border color is probably more conve-
nient than programming the Color Select register directly. The code is more por-
table, and the BIOS routine saves the most recently written value of the Color
Select register in its Video Display Data Area in the byte at 0040:0066
(CRT_PALETTE). If you do write directly to the Color Select register, you should
update CRT_PALETTE as in the example in Listing 3-8.

64 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The MCGA does not generate a colored border, regardless of the value
in its Color Select register.

|e

EGA and VGA

On the EGA and VGA, the overscan color is specified by the contents of register
11H of the Saag oe Pore Con) You could write directly to the I h
1/O port, but doing the job with an INT 10H call is usually easier. You can use the 30a iF
EGA BIOS to update the overscan color in two ways. You can use function 0BH of L
INT 10H or you can include the border color as the 17th and last entry in the table
of palette register colors you pass to INT 10H function 10H (see Appendix A).

On the VGA with a monochrome display, the only useful border at-

tributes are 0 (black), 8 (normal), and 18H (intense).

The 350-line video modes on the EGA have relatively short vertical and horizontal

overscan intervals. The displayed border may be only 1 or 2 mm wide, or it may

bleed across the screen during the horizontal retrace interval. For this reason you

should avoid setting the border color in any 350-line mode on the EGA.

You can increase the EGA’s horizontal and vertical overscan intervals

in 350-line modes by modifying the CRTC horizontal and vertical tim-

ing parameters. A reasonable border, about as wide as that displayed

with the VGA, can be achieved by adding one or two characters to the

Horizontal Total value and eight or ten scan lines to the Vertical Total

value. The corresponding timing values for the Horizontal and Verti-

cal Retrace and Blanking registers must be adjusted accordingly (see

Figure 3-15).

The problem with reprogramming the CRTC in this way is that the

horizontal and vertical frequencies that drive the video display are

somewhat lower than nominal. For example, with the CRTC values

shown in Figure 3-15, the horizontal scan rate becomes 16.257 MHz +

(94 chars/line x 8/char), or 21.62 KHz, which is about 1 percent lower

than the nominal horizontal scan frequency of 21.85 KHz. Similarly,

the vertical scan rate becomes 21.62 KHz + 374 lines, or 58 Hz, almost

4 percent lower than the usual 60 Hz frame rate. Still, these scan rates
are usually within the tolerances of an EGA-compatible video display.

Chapter 3: Alphanumeric Modes 65

80-by-25 16-Color Alphanumeric Mode:

CRTC register Function Setting (default)

0 Horizontal Total 5CH (5BH)
2 Horizontal Blanking Start 54H (53H)

3 Horizontal Blanking End 3CH (37H)
4 Horizontal Retrace Start 52H (51H)
5 Horizontal Retrace End SCH (S5BH)

6 Vertical Total 76H (6CH)

10H Vertical Retrace Start 64H (SEH)
11H Vertical Retrace End 25H (2BH)

15H Vertical Blank Start 64H (5EH)
16H Vertical Blank End 11H (OAH)

640-by-350 16-Color Graphics Mode:

CRTC register Function Setting (default)

0 Horizontal Total SCH (5BH)
DZ Horizontal Blanking Start 53H (53H)

3 Horizontal Blanking End 3CH (37H)
4 Horizontal Retrace Start 53H (52H)

5 Horizontal Retrace End OOH (00H)
6 Vertical Total 76H (6CH)

10H Vertical Retrace Start 64H (5EH)
11H Vertical Retrace End 25H (2BH)
15H Vertical Blank Start 64H (SEH)
16H Vertical Blank End 11H (OAH)

Figure 3-15. CRTC parameters for increased border width in 350-line EGA video modes.
(Default register values are listed in parentheses.)

Avoiding CGA Snow
On the CGA, alphanumeric video display modes present a particular programming
challenge whenever you are concerned about the speed of video display output.
You must program carefully in alphanumeric modes to prevent interference with
the display when you read or write data in the CGA’s video buffer.

Directly accessing the contents of the CGA’s video buffer from your program has
its pros and cons. On the positive side, it enables your program to completely con-
trol the buffer’s contents, and thus what is displayed. The negative side is that
when both the CPU and the display-refresh circuitry access the buffer at the same
time, interference, or ‘‘snow,’’ can appear on the display. The snow can be barely
noticeable or greatly distracting, depending on the amount of data transferred to
or from the video buffer.

In general, to avoid snow you must limit CPU accesses to the video buffer to inter-
vals when data is not being fetched from the buffer to refresh the screen. In prac-
tice, this means that your program must transfer data to and from the video buffer

66 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

only when the electron beam in the video display is moving through an overscan
or retrace interval.

This synchronization can be achieved in several ways, but, unfortunately, all of

them introduce a certain amount of hardware dependency into your program. As a

general rule, the more hardware-dependent tricks you play, the faster your pro-

gram runs on a CGA but the less likely it is to run on another video adapter.

Blanking the Display

One technique for preventing display interference on the CGA is to turn off the

electron beam whenever you access the display buffer. You then leave the beam

off while data is transferred to or from the video buffer. This method is used in
the ROM BIOS routines which scroll the display.

The best time to blank the display is when it’s blank anyway, at the start of a ver-

tical blanking interval. If you do not take care to turn the electron beam off dur-

ing the vertical blanking interval, you will instead blank the screen while it is

being refreshed. This can produce an annoying flicker or interference stripes.

The technique is straightforward (see Listing 3-9). The trick is to synchronize

buffer access with the start of a vertical blanking interval. Do this by detecting an

interval when vertical blanking is not occurring. Then wait for the next subse-

quent vertical blanking interval to begin.

TITLE Whistang, 3-9!

NAME DisplayText

PAGE BO, 132

; Name: DisplayText

; Function: Display an alphanumeric string without interference on the CGA

,uGalter: Microsoft C:

int DisplayText1 (buf,n,offset) ;

char *buf; /* buffer containing text in

CGA alphanumeric format

(alternating character codes

and attribute bytes) */

? une ni /* buffer length in bytes */

; unsigned int offset; /* offset into video buffer */

Set 80X25 EQU (1 SHL 0) ; bit masks for Mode Control Register

Set 320X200 EQU Ci Shy 1)

BlackAndWhite EQU (1 SHL 2)

EnableVideo EQU (| ‘SHie 3)

Set 640X200 EQU (1 SHL 4)

EnableBlink EQU (i SH ie)

Listing 3-9. Display alphanumeric text on the CGA by blanking the display. (continued)

Chapter 3: Alphanumeric Modes 67

Listing 3-9. Continued.

ARGbuf

ARGn

ARGoffset

TIMEOUT

TERE

_DisplayText

; Wait for stare on

LO1:

L02:

L03:

EQU

EQU

EQU

EQU

SEGMENT

ASSUME

PUBLIC

PROC

push

mov

push

push

mov

mov

mov

mov

mov

shr

mov

mov

in

test

jnz

EeSE

ae

cli

in

test

loopnz

‘Steal

az

; blank the display

; copy the data

mov

mov

out

word ptr [bp+4] ; stack frame addressing

word ptr [bpt6]

word ptr [bp+8]

6 ; Horizontal timeout loop limit

byte public 'CODE'

cs; TEXT

_DisplayText

near

bp ; usual C prologue to establish

bp, sp ; stack frame and preserve registers

di

Sal

ax, OB800h

es,ax

di, ARGoffset 7 ES:DI -> destination in video buffer

si, ARGbuf ; DS:SI -> source buffer

bx, ARGn

bx, 1 ; BX := buffer length in words

dx, 3DAh 7 DX := CGA Status Port

vertical blanking interval

cx, TIMEOUT 7 CX := loop counter (timeout value)

al,dx ; AL := video status

al,8

L02 ; loop if vertical sync active

eu

L02 ; loop if Display Enable active

; disable interrupts

alcx

al,1

L03 ; loop until end of horizontal

* blanking or timeout

; reenable interrupts

L01 7 loop if no timeout

dl, 0D8h 7 DX := 3D8h (Mode Control register)
al, (Set80X25 OR EnableBlink)

ax jaw ; turn video off

to the video buffer

mov
rep

cx, bx * CX := buffer length in words
MOVSw

(continued)

68 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 3-9. Continued.

*# reenable the display

or al, EnableVideo

out Cx ed

pop a 7 usual C epilogue to restore registers
pop di 7 and discard stack frame
mov sp,bp

pop bp
ret

_DisplayText ENDP

_TEXT ENDS

END

The procedure for detecting the start of a vertical blanking interval requires you
to first determine a timeout value for the horizontal retrace interval (see Listing
2-2). This value is then used to wait for the last horizontal scan in the current
frame. When the last horizontal blanking interval times out, the vertical blanking
interval has begun.

At this point, your program should explicitly disable the electron beam by reset-
ting bit 3 of the CGA’s Mode Control register (port 3D8H). When this bit is
zeroed, the electron beam is disabled and the display remains dark. While the dis-
play is dark, you can move data to or from the video buffer without causing snow.
When the data transfer is complete, restore the display by setting bit 3 of the
Mode Control register to 1.

It is not necessarily desirable to wait for another vertical blanking interval before

reenabling the electron beam. If the period during which you transferred data left

the screen dark long enough to cause noticeable flicker, waiting until the next ver-

tical retrace will only prolong the duration of the flicker. If you reenable the dis-

play somewhere in the middle of a refresh cycle, the flicker will be worse in the

top part of the screen but better in the bottom part. Neither situation is ideal; it’s
up to you to decide which alternative is preferable.

The amount of time it takes to access the video buffer determines how long your
program must keep the screen dark. Obviously, the longer the screen is dark, the

more flicker you perceive. If your program is executed on one of the slower mem-

bers of the IBM PC family (PC or PC/XT), the flicker effect can become annoying.

Consider what might happen whenever you scroll an entire 80-by-25 screen up one

line. Within the video buffer, 4000 bytes of data must be moved. On a vintage

IBM PC, with its 4.77 MHz 8088, this data transfer takes about 21 milliseconds.

Since each video frame lasts about 16.7 milliseconds ('40 second), the screen re-

mains dark for about 1'4 frames. The resulting flicker is very noticeable, par-

ticularly if the background color is not black. On the other hand, on a PC with a
faster CPU, the data transfer takes less time, so the flicker is less apparent.

Chapter 3: Alphanumeric Modes 69

Using the Vertical Blanking Interval

A technique that avoids the flicker problem is to access the video buffer only for

the duration of the vertical blanking interval. However, this slows data transfer,

because you can move only a limited number of bytes of data during a single ver-

tical blanking interval.

The limitations here are the duration of the vertical blanking interval (about 4

milliseconds) and the rate at which the CPU can move data in the video buffer. A

4.77 MHz 8088 in a PC or PC/XT can move about 450 words (900 bytes) of data

before the vertical blanking interval ends and snow becomes visible. Obviously, a

PC with a higher clock speed or with an 80286 or 80386 can move more data dur-

ing a single vertical blanking interval.

Using the Horizontal Blanking Interval

70

If your video output routine synchronizes with the start of horizontal blanking in-

tervals, you have about 7 microseconds in which to access the video buffer at the
end of each raster scan line without causing snow (see Listing 3-10). Although 7

microseconds may not seem like much time, it is long enough to move 2 bytes into

or out of the video buffer without causing display interference. Since each frame

contains 200 horizontal blanking intervals, you can significantly increase perfor-

mance by taking advantage of them.

TITLE Minis Eng: Ss — 110"

NAME DisplayText

PAGE Sor SZ

; Name: DisplayText

7p RUNG eTen: Display an alphanumeric string without interference on the CGA

Caller: Miczoso fis ‘Cs

int DisplayText (buf,n, offset) ;

char *buf; /* buffer containing text in

CGA alphanumeric format

(alternating character codes

and attribute bytes) ¥*/

Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne

cinieeelne /* buffer length in bytes */

unsigned int offset; /* offset into video buffer */

ARGbuf EQU word ptr [bp+4]

ARGn EQU word ptr [bp+6]

(continued)

oe 3-10. Display alphanumeric text on the CGA during horizontal and vertical blanking
intervals.

PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 3-10. Continued.

ARGoffset

TIMEOUT

VBcount

_TEXT

_DisplayText

EQU

EQU
EQU

SEGMENT

ASSUME

PUBLIC

PROC

push

mov

push

push

mov

mov

mov

mov

mov

shr

mov

word ptr [bp+8]

6

250

byte public

cs;_TEXT

_DisplayText

near

bp
bp, sp
di
si

ax, OB800h

es,ax

di,ARGoffset

si,ARGbuf

cx, ARGn

expat

dx, 3DAh

,

,

,

"CODE'

‘

,

,

horizontal timeout loop limit

number of words to write during

vertical blanking interval

usual C prologue to establish

stack frame and preserve registers

ES:DI -> destination in video buffer

DS:SI -> source buffer

CX := buffer length in words

DX t= CGA Status, Pore

; write during remaining vertical blanking interval

Os

L02:

,

Oss

L04:

mov

mov

ere

in

test

loopnz

az

movsw

Stl

mov

loop

jmp

sti

mov

lodsw

mov

push

mov

ella!

DI Ox

cx, TIMEOUT

al,dx

ada

L02

L03

Cry DX

L01

short L10

ex, Dx

bx,ax

cx

cx, TIMEOUT

,

,

‘

preserve buffer length in BX

CX := horizontal timeout

disable interrupts during loop

AL := video status

loop while Display Enable inactive

jump if loop did not time out

copy one word

CX := buffer length

exit (entire string copied)

; write during horizontal blanking intervals

restore CX

AL := character code

AH := attribute

BX := character and attribute

preserve word loop counter

CX := timeout loop limit

clear interrupts during one scan line

(continued)

Chapter 3: Alphanumeric Modes 71

Listing 3-10. Continued.

L0O5: in

test

loopnz

jnz

L06: in

test

a

xchg

stosw

sti

pop
loop

jmp

; write during entire vertical blanking

LO: pop

dec

dec

mov

cmp

jnb

mov

xOor

jmp

LO8: sub

L09; rep

mov

test

jnz

L10: pop

pop
mov

pop
ret

_DisplayText ENDP

_TEXT ENDS

END

al,dx

al,1

LO5

LO7

al,dx

aya

LO06

ax, bx

cx

L04

short

bx

Si

si

cx, VBcount

bx, Cx

L08

cx, bx

bx, bx

short

bay cx

movsw

Cx, bx

Cx, Cx

L01

Su

di

sp,bp

bp

L10

LO09

’

loop during horizontal blanking

until timeout occurs

jump if timed out (vertical

blanking has started)

loop while Display Enable is active

AX := character & attribute

copy 2 bytes to display buffer

restore interrupts

CX := word loop counter

exit (entire string copied)

interval

,

BX := word loop counter

DS:SI -> word to copy from buffer

CX .2= # of words, teycopy

jump if more than VBcount words remain

in buffer

CX := # of remaining words in buffer

BX := 0

BX := (# of remaining words) - VBcount

copy to video buffer

CX := # of remaining words

loop until buffer is displayed

usual C epilogue to restore registers

and discard stack frame

Because the horizontal blanking interval is so short, synchronization is critical.

The technique is parallel to that used for synchronizing with the vertical retrace

interval. In this case, you determine the status of the Display Enable signal by

testing bit 0 of the CRT Status register (3DAH). When this bit has a value of 1, the

Display Enable signal is off and a horizontal blanking interval is in progress.

72 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Keep in mind two considerations if you take the trouble to use the horizontal
blanking intervals. First, you might as well use the vertical blanking intervals as
well, since they’re there. Second, you should use MOVS or STOS instructions to
do the actual data transfers. The slower MOV mem/reg instruction can take longer
than the horizontal blanking interval lasts, so snow isn’t eliminated.

The IBM ROM BIOS routines that write to the video buffer during horizontal
retrace use the sequence

mov ax,bx

stosw

to move a character and attribute into the buffer without snow. Nevertheless, if
you use the same two instructions in a RAM-based program, you see snow ona
CGA running on a 4.77 MHz PC. The reason is that, at the point where these in-

structions are executed, the 4-byte instruction prefetch queue in the 8088 has

room for only two more bytes. This means that the STOSW opcode cannot be

prefetched. Instead, the 8088 must fetch the opcode from memory before it can
be executed.

That last memory access to fetch the STOSW instruction makes the difference.

Because accesses to ROM are faster than accesses to RAM, the instruction fetch is

slightly faster out of ROM, so no snow is visible because the STOSW can run

before the horizontal blanking interval ends. The routine in Listing 3-10 sidesteps

the problem by using XCHG AX, BX (a 1-byte opcode) instead of MOV AX, BX (a

2-byte opcode). This avoids the extra instruction fetch, so the code executes fast

enough to prevent display interference.

Note how the interrupts are disabled in the loop that waits for the start of the

horizontal blanking interval. Had an interrupt occurred between the JNZ L06

and the following XCHG AX, BX instructions, the horizontal blanking interval

would have ended long before control returned from the interrupt handler. Dis-

abling interrupts while each word is transferred into the video buffer avoids this

possible loss of synchronization.

The routine in Listing 3-10 never explicitly detects the end of the ver-

tical blanking interval, nor does it count the 200 horizontal scans in

each display refresh cycle. Instead, the number of bytes that can be

transferred during each vertical blanking interval (VBcount) is de-
termined empirically for a ‘‘worst case’’ situation (for example, for a

4.77 MHz IBM PC).

The most important reason for this imprecision about the number of

bytes to transfer during vertical blanking intervals is that interrupts

can occur anywhere in a video output routine except where they are

explicitly disabled. For example, clock-tick interrupts and keyboard

interrupts can occur at any time. Because you can’t simply disable all

interrupts for the duration, you must design video output routines to

accommodate the unpredictable time spent in interrupt handlers.

Chapter 3: Alphanumeric Modes 73

The problem of snow is avoided in the hardware design of every other IBM PC

and PS/2 video subsystem, including the MDA, EGA, MCGA, and VGA (and even

the PCjr). Also, many second-source manufacturers of CGA-compatible adapters

design their hardware to eliminate the problem. This means that retrace synchro-

nization loops may not be needed in many applications.

If you run a program either on a CGA (with snow) or on a CGA-compatible

(without snow), the program should try to determine what type of hardware it is

running on (see Appendix C). If the program is running on a machine without

snow, it can skip over any vertical and horizontal synchronization loops. The

slight extra overhead of detecting the presence of a CGA is repaid in greatly im-

proved performance on video subsystems that have no snow problem.

Using All the Video Buffer

In alphanumeric video modes, the CGA, EGA, MCGA, and VGA have much more

RAM available in their video buffers than is required to display one screen of text.

In other words, you can display only a portion of the data in the video buffer at a

time. In effect, what you see on the screen is a ‘‘window’”’ on the video buffer.

For example, in 80-by-25-character alphanumeric modes, only 4000 bytes (80 x 25

x 2 bytes per character) are displayed at any one time. However, the CGA has 16

KB of video RAM, so you can actually store four 80-by-25 screens of data in the

buffer. You can then program the CGA’s CRT Controller to display any 2000 con-
secutive characters (4000 bytes) in the buffer.

CGA Video Pages

To program the CGA to display different portions of the buffer, you update two
CRT Controller registers. When you call the ROM BIOS to select a video display
mode, the BIOS initializes the CRTC to display the first 4000 bytes of the video
buffer. It does this by storing 0, the offset of the first character to be displayed, in
the CRTC Start Address registers (OCH and 0DH).

You can display any arbitrary portion of the CGA’s video buffer by storing a
video buffer offset in words (not bytes) in the CRTC Start Address registers. The
high-order byte of the offset belongs in register OCH, the low-order byte in regis-
ter ODH. For example, loading the Start Address registers with the word offset of
the second row (50H) causes the display to begin there (see Listing 3-11).

Loading the Start Address registers is a much faster operation than transferring
characters into the video buffer. Thus, you might regard the 16 KB video buffer as
a 102-line ‘‘virtual’’ screen of which only 25 lines can be displayed at a time.
When the video buffer is filled with text, you can rapidly display any 25 consecu-
tive lines simply by changing the value in the CRTC Start Address registers.

74 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

mov ax,40h

mov es,ax ; ES := video BIOS data segment
mov dx,es: [63h] ; DX := ADDR _6845

mov al,0Ch ; AL := reg number (Start Address High)
out ax, av

NG dx ¢ DX. := 3x5h

mov al,HiByte ; AL := high-order byte of start offset
out axa

dec dx , DK =) sx4h

mov al,ODh ; AL := reg number (Start Address Low)
out dx,al

inc dx PED = 93x 5h

mov al, LoByte 7 AL := low-order byte of start offset

out ax, a

mov ah, HiByte ; AX += start offset in words

shl ax, 1 ; AX := offset in bytes

mov es: [4Eh],ax ; update CRT START

Listing 3-11. Setting the CRTC Start Address registers.

Whenever you update the Start Address registers, also update the BIOS Video Dis-

play Data Area word at 0040:004E (CRT_START). This helps to maintain func-

tionality across video BIOS calls and with MS-DOS.

Instead of deciding for yourself which portions of the video buffer to display, you

might find it more convenient to adopt the conceptual model of the ROM BIOS,

which supports four 80-by-25 (or eight 40-by-25) virtual ‘‘pages’’ in the CGA’s

video buffer. To simplify addressing, each page starts on a 1 KB (1024-byte)

boundary. The four 80-by-25 pages thus start at B800:0000, B800:1000, B800:2000,
and B800:3000. You can selectively display any video page by calling INT 10H

function 05H (see Listing 3-12).

mov al, Vpage ; AL := video page number

mov ah,5 ; AH := INT 10h function number

int 10h

Listing 3-12. Video page selection using the ROM BIOS.

A technique that can improve CGA performance is to display one

video page while you fill another (nondisplayed) video page with data.

Then you display the newly filled video page and make the previous

page available for more data transfers. Design your user interface so

that while the user reads the display, a nondisplayed video page is

filled with the next screen of information. Careful use of the video

pages can make screen updates appear “‘instantaneous.”’

You must still avoid display interference by using one of the tech-

niques for synchronizing the update with vertical or horizontal blank-

ing intervals, even if you write to a nondisplayed portion of the buffer.

Chapter 3: Alphanumeric Modes 75

EGA, MCGA, and VGA Video Pages

With the EGA, MCGA, and VGA, the techniques for using video RAM are similar

to those used on the CGA. The Start Address registers in the CRT Controller are

mapped to the same I/O port addresses as they are on the CGA’s CRTC. Further-

more, the video BIOS supports video pages with the same interface used for the

CGA. This simplifies writing a program to run on all of these video subsystems.

One handy feature of the CRTC on the EGA, the MCGA, the VGA, and

some but not all CGA look-alikes is that the Start Address registers

Pp can be read as well as written. This feature can be useful in program-

ming these registers directly, because you can determine their con-

tents at any time simply by inspecting them.

Cursor Control

The CRT Controller also controls the size and screen location of the hardware cur-

sor in alphanumeric modes. You specify the cursor’s size by loading a CRTC

register with values that indicate its top and bottom lines. The top line is 0; the

value for the bottom line depends on the size of the displayed character matrix —

7 for an 8-by-8 matrix and ODH for a 9-by-14 matrix. The cursor’s location is

specified with a word offset into the video buffer, exactly as you specify the CRT

Controller’s start address.

Cursor Size on the MDA and CGA

CRTC registers OAH and OBH control the cursor size on all IBM PC and PS/2 video
subsystems. On the MDA and the CGA, the low-order five bits of register OAH

(Cursor Start) indicate the top line of the displayed cursor. The low-order five bits

of register OBH (Cursor End) specify the bottom line.

Changing the size of the hardware cursor is a matter of programming these two

registers. For example, to display a “‘block’’ cursor, which is a rectangle filling

an entire character space, set the Cursor Start register to 0 and the Cursor End

register to one less than the height of the character matrix. To display the ROM

BIOS’s default cursor, set the Cursor Start and Cursor End registers to the values

for the last two lines of the character matrix, as is done in Listing 3-13.

In most applications, however, you can use INT 10H function 1 (Set Cursor Type)
to change the cursor’s size. Using this function ensures compatibility with the

video BIOS on all IBM PC and PS/2 video subsystems. Although performing the

software interrupt and executing the BIOS routine is slower than programming

the CRTC directly, in general you modify the cursor size so infrequently that
you’ll never notice the slight slowing of your program.

76 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Also, the BIOS routine maintains the current cursor size in two bytes in the Video
Display Data Area at 0040:0060 (CURSOR_MODE). On the MDA and CGA, the
CRTC’s Cursor Start and Cursor End registers are read-only registers, so you
might as well use the BIOS to keep track of the current state of the cursor. The
byte at 0040:0060 represents the value in 6845 register OAH (Cursor Start), and the
following byte, at 0040:0061, represents register OBH (Cursor End). If you do
bypass the BIOS routine and program the 6845 directly, keep the values in
CURSOR_MODE up to date.

updating the CRTC registers directly

mov ax, 40h

mov es,ax 7 ES := video BIOS data segment
mov dx,es: [63h] 7 DX := ADDR 6845

mov al, 0Ah , AL := reg number (Cursor Start)
out dx,al

inc dx 7 DX s= 38x5h

mov al, TopLine 7; AL 3— top vscan Line for cursor
out dx,al

dec dx 7 DX := 3x4h

mov al,OBh 7; AL := reg number (Cursor End)
out dx,al

ine dx 7 Dx t= ssxoh

mov al, BottomLine 7 AL := bottom scan line for cursor
out dx,al

mov ah, TopLine , AX := top and bottom lines

mov es: [60h],ax ; update CURSOR MODE

; using the video BIOS interface

mov ch, TopLine

mov cl,BottomLine

mov ah, 1 + AH := INT 10h function number

int 10h

Listing 3-13. Setting the cursor size.

Cursor Location on the MDA and CGA

To control the cursor’s location, load a buffer offset into the CRTC’s Cursor Loca-

tion High (OEH) and Cursor Location Low (0FH) registers (see Listing 3-14). The

Cursor Location offset is relative to the start of the video buffer. If you have

changed the CRTC Start Address registers, you must adjust for the new Start Ad-

dress offset in calculating the Cursor Location offset.

Chapter 3: Alphanumeric Modes 77

; updating the CRTC registers directly

mov ax, 40h

mov es,ax ; ES := video BIOS data segment

mov dx,es: [63h] ; DX := ADDR_6845

mov al, OEh ; AL := reg number (Cursor Location High)

out dx,al

inc dx 2 DX. t=, 3xon

mov al,HiByte ; AL := high-order byte of cursor offset

out dx,al

dec dx ; Dx c= Seen

mov al,OFh ; AL := reg number (Cursor Location Low)

out dx,al

Ine dx - DX = SKU

mov al, LoByte ; AL := low-order byte of cursor offset

out dx,al

; using the video BIOS interface

mov dh, CursorRow

mov dl, CursorColumn

mov bh, VideoPage

mov ah,2 ; AH := INT 10h function number

int 10h

Listing 3-14. Setting the cursor location.

MCGA Cursor Control

The MCGA’s CRTC doubles the values you store in the Cursor Start and Cursor

End registers and doubles the number of scan lines in the displayed cursor. Thus,

the size of the MCGA’s alphanumeric cursor is a multiple of two scan lines.

This doubling of the Cursor Start and Cursor End values allows you to specify

default alphanumeric cursor sizes with the same values you would use on a CGA.

For example, in the MCGA’s default alphanumeric modes, the character matrix is

16 lines high. If you set Cursor Start to 6 and Cursor End to 7, as you would in a

CGA alphanumeric mode, you see the MCGA’s cursor at the bottom of the charac-

ter matrix in lines OCH through OFH. In this way the MCGA’s Cursor Start and

End registers emulate the CGA’s despite the MCGA’s taller character matrix.

However, there are several differences in the way the MCGA interprets the Cursor

Start and Cursor End values (see Figure 3-16). On the MCGA, only the four low-

order bits of the Cursor Start and Cursor End values are significant. Furthermore,

since the character matrix can be at most 16 scan lines high, Cursor Start and

Cursor End values are usually limited to the range 0 through 7. Values greater

than 7 can produce a cursor that wraps around to the top of the character matrix

(see Figure 3-16e).

78 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

EGA and VGA Cursor Control

On the EGA and the VGA, the Cursor Start, Cursor End, Cursor Location High,

and Cursor Location Low registers are mapped to the same CRTC register num-

bers as on the MDA and CGA. This can lead to trouble if you’re concerned about

portability and need to write to the CRTC registers directly. This is because the

EGA and VGA Cursor Start and Cursor End registers do not function exactly as do

those on the MDA, CGA, or MCGA.

On the EGA, the value you specify for the Cursor End register must be 1 greater

than the bottom line of the cursor (see Figure 3-17). The EGA’s CRT Controller

displays the alphanumeric cursor from the character scan line specified in the

Cursor Start register to the line specified by the Cursor End register minus 1.

If the Cursor End value is less than the Cursor Start value, the cursor wraps

around the character matrix. If the low-order four bits of the Cursor Start and

Cursor End values are equal, the cursor appears only on the single line specified

in the Cursor Start register. Finally, the Cursor End value must be less than the
number of scan lines in the character matrix. Otherwise, the CRT Controller dis-

plays a full-height cursor regardless of the Cursor Start register’s value.

Cursor Start = 2 Cursor Start = 2
Cursor End = 2 Cursor End = 4

Scanlineo-1 [LLU Scan line 0-1 (ULL
Scan line 2-3 COOL Hl Scan line 2-3 LLL []

Scan line 4-5 REGRG ER Scan line 4-5

Scan line 6-7 [I] Scan line 6-7 [TRG
Scan line 8-9 [LULL Scan line 8-9 EASHESER

il Scan line 10-11 CO

LJ Scan line 12-13 [] J JU)
Scan line 14-15 COLL

Scan line 10-11 [| [
Scan line 12-13 WOU

Scan line 14-15 i] LU

4. b.

[(=) Pl

CLJLJLoIL_JL_l_t_) C=] is
al =e)

Cursor Start = 4

Cursor End = 2

Scan line 0-1

Scan line 2-3) LLL

Cursor Start = 3

Cursor End = 7

Scan line 0-1 COOOL

scan line2-3 LLL
Scan line 4-5

Scan line 6-7

Scan line 8-9

nant
CT

Scan line 4-5

Scan line 6-7

Scan line 8-9

Ez =
]

oe

Scan line 10-11 HHRGHH
Scan line 12-13 Negaaats

Scan line 14-15 FUG

Scan line 10-11 [J

Scan line 12-13 ||

Scan line 14-15

(continued)

Figure 3-16. Sample MCGA alphanumeric cursor settings for an 8-by-16 character matrix.

Chapter 3: Alphanumeric Modes 19

Figure 3-16. Continued.

Cursor Start = 3

Cursor End = 8

Scan line 0-1 BESRBASy

Scan line 2-3 u Oo [|

Scan line 4-5 Paaaae []

scan line 6-7 WRRRHGGE
scaniine 8-9 [ERUGGHH
Scan line 10-11 FEGHHGG
Scan line 12-13 FERRHGH
scan line 14-15 FUTGGG

e€.

The VGA’s Cursor Start and Cursor End values (see Figure 3-18) work slightly

differently than do the EGA’s. The VGA’s Cursor End value indicates the last line

of the displayed cursor (not the last line plus 1), and the displayed cursor does not

wrap around to the top of the character matrix if the Cursor End value is less than

the Cursor Start value. (Compare Figures 3-17 and 3-18.)

Cursor Start = 4 Cursor Start = 4
Cursor End = 4 Cursor End = 8

Scan line 0 | | [| a Lh Scan line 0 TEIEGIee

Sean line 1 | J JJ Scan line 1 MMOH
Scan line 2 COO Scan line 2 MEREGZES
Scan line 3 COL Scan line 3 NOGRURBE
Scan line 4 Se Abele Scan line 4 faa
Scan line 5 CO Scan line 5 RE CaGE
Scan line 6 HOLL Scan line 6 TTT TTT
Scan line 7 COLL Scan line 7 Hee FIR gE

a. b.

Cursor Start = 4 Cursor Start = 4
Cursor End = 7 Cursor End = 2

Scan line 0 | | | |] Scan line 0 FRRRRGG
Scan line 1

Scan line 2 Scan line 2 COO
Scan line 3 (LL Scan line 3 COL
Scan line 4 BERESIga Scan line 4 GoSSSRRE
Scan line 5 BRRRaEEe Scan line 5 HEESRaSE
Scan line 6 i EERE RS Scan line 6 TESesaee
Scan line 7 | | [ELLE LT Scan line 7 HRGGGG

(continued)

Figure 3-17. Sample EGA alphanumeric cursor settings for an 8-by-8 character matrix.

80 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Figure 3-17. Continued.

Cursor Start = 4

Cursor End = 0

Scan line 0 HH

Scan line 1 [7
Scan line 2 aa UL
Scan line 3 1 i

Scan line 4 TEUNESaS
Scan line 5 OeeaEaae
Scan line 6 HUUHHHG0
Scan line 7 CRRTRRRH

1

= 5

Bits 5 and 6 of the Cursor End register (OBH) on the EGA and VGA

control the rightward skew of the cursor. If bits 5 and 6 are not 0, the

cursor appears one, two, or three characters to the right of the location

that the Cursor Location registers specify. For most applications, the

cursor skew should be 0.

Cursor Start = 4 Cursor Start = 4
Cursor End = 4 Cursor End = 8

Scan line 0 COE Scan line 0 COLA

Scan line 1 EOL Scan line 1 LL LL

Scan line 2 CLE Scan line 2{{ [| [TL]
Scan line 3 TOOL) Scan line 3 | | | EL

Scan line 4 BRRELaaE Scan line 4 ORE RAG

Scan line 5 (LU iL Scan line 5 gi aoy

Scan line 6[[1] i | | Scan line 6 EARS eRe

Scan line 7 [| iL Ul Scan line 7 HUERRRE

a. b.

Cursor Start = 4 Cursor Start = 4
Cursor End = 7 Cursor End = 2 Gin 1

Scan line 0 LOL Scan line 0 (ti

Scan line 1 H+ | Scan line 1[] | [LI
Scan line 2[| | |] Scan line 2 LULL

Scan line 3| | | [LLL Scan line 3[| | [LLL

Scan line 4 ARasERTa Scan line 4 CU

Scan line 5 Beaeewes Scan line 5| | | | LLU
Scan line TTT TTL Scan line 6 TLL a
Scan line 7 BRGCSRGE Scan line 7[| | | | (LL

Cc. d.

Figure 3-18. Sample VGA alphanumeric cursor settings for an 8-by-8 character matrix.

Chapter 3: Alphanumeric Modes 81

ROM BIOS Cursor Emulation

The ROM BIOS routine for INT 10H function 01H uses the values in 80x86 registers

CH and CL to program the CRTC Cursor Start and Cursor End registers (see List-

ing 3-13). On an MDA or CGA, these values are simply copied into the CRTC regis-

ters. On an EGA or VGA, however, the BIOS can scale these values relative to an

8-line character matrix and program the CRTC with the scaled results. This scal-

ing is called ‘‘cursor emulation’’ in IBM’s technical manuals.

When ROM BIOS cursor emulation is in effect, the values you specify to INT 10H

function 01H represent the position of the start and end of the displayed cursor

relative to an 8-line character matrix. When the actual character matrix is larger

than 8 lines, the BIOS routine adjusts the Cursor Start and Cursor End values to

maintain the cursor’s relative location in the matrix.

Consider what happens, for example, when you call INT 10H function 01H with

CH = 6 and CL = 7. If the character matrix is 8 lines high, the cursor appears on

the bottom two lines. (This is the usual cursor in 200-line video modes.) If the

character matrix is 14 lines high, however, the BIOS routine adjusts the Cursor

Start and Cursor End values so that the cursor appears near the bottom of the

matrix; that is, on lines OBH and OCH. Thus, cursor emulation allows programs

that change the cursor size with INT 10H function 01H to run unchanged regard-

less of the size of the character matrix.

The BIOS carries out cursor emulation in INT 10H functions whenever bit 0 of the

Video Display Data Area INFO byte (0040:0087) is set to 0. (This is the power-on

default for both the EGA and the VGA.) You can disable cursor emulation by set-

ting this bit to 1 before calling INT 10H function 01H. On the EGA, you must set

and reset the bit directly, but on the VGA, you should use INT 10H function 12H to
set the bit’s value.

On the EGA, cursor emulation is implemented by adding 5 to any Cur-

sor Start or Cursor End value greater than 4. This works well when

the character matrix is the default 14 lines high. For character

matrices of other heights, however, this simple algorithm breaks down

and computes the Cursor Start and Cursor End values incorrectly.

You should therefore disable cursor emulation when you program the

EGA’s character generator to change the size of its character matrix
(see Chapter 10).

On the VGA, the cursor-emulation computation takes into account the
height of the character matrix, so the emulated cursor is displayed cor-
rectly regardless of character matrix dimensions.

82 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

An Invisible Cursor

You can make the cursor “‘invisible’’ by programming the CRT Controller to dis-
play it at an offscreen location. Do this by setting the Cursor High and Cursor

Low registers to a non-displayed buffer offset. Another way to make the cursor

vanish is to load the Cursor Start and Cursor End registers with values below the
displayed character matrix. On the MDA, CGA, and VGA, load the Cursor Start

register with the value 20H to make the cursor disappear. On the EGA, set Cursor

Start to a value greater than or equal to the number of lines in the character

matrix and set Cursor End to 0 (see Listing 3-15).

mov cx,2000h ; CH := top scan line for cursor

»> CL := bottom scan line for cursor

mov ah, 1 ; AH := INT 10h function number

int 10h

Listing 3-15. An invisible alphanumeric cursor for IBM video subsystems.

Chapter 3: Alphanumeric Modes 83

=e je ae ely hte, wees, ie aie ar yh
. 2 <4 .* wl} yee wie ty > bad sahos ree

: “. i t s

Z an, Tez.
i as

lier ede be + =
.. ¥ . . 4 7 Oo ae

er | “Apert 2a Mennes

- £ xte 381 sh : 4 ehh aie bey _

‘ ¥ ’

yep atl AND a8 th OPE a
sii hoee hea Cam eure ph ORY PIR

yengs bat a8 ciettan var byady a ft ulin

erage: Wir’ wrmeueir nee ee Pv ° » ‘ © « €» *

aby (Ay wAien aoaih as i un ne fl of ha
Re ein a ecipval by ‘a haat put

*,L2 + a5 eo i aa vi

’ ‘ ; , af \e , f
~ ; Os 4 ot -h —"

% eae a eee
Ps « aA) 4 4 nM m te past x,

‘Yeti cca punch Nib, Sled doe yer en
3 2 J : ne ie wt Hk os i ah) +

tgs Bust , D halame tile Gah terkas Ip So Ting

reine vie i; od Noes MEN be ES cv" oevas ed vary hw Lite

ab cbgngs we corms ae wile TMT POR Tiel al eb a it chafgedy
ies - a" . +4 17ac. rif iy. wae a :

“kr ae

il sek snc hoc oh cea
7 iO ais p ifs, OSPiv iru ie | Maca) mo monet ia fe Wee

7 e Py 7
ae aa 7 0 vfteel Bas VaiAd Puy Sa ke cli Pry

we te, F-gapiinget sig INT “0 rurced on ote Tat mG "

. . . oa yes Swit ae ny . ot ty
‘ ‘ = 7 ' =

<a ' Vere - fy a 7
’ =

oe

Seay thw
LE TIA, chee entero Me dinented Typ sieciy °

7? Cares + Moe wiles promt hae a tis woul
a ey € Uteuly (een age. Boe ie he

. na o iptee-. Gt (ier oh Geeetee, eye
' * ‘ ai = a Vie aa is i

; »

5 . ;

E Os $e, PNA ee Ses ant t rvs ir = us
talk el Ser toe Sod ian, WO thee a Javed eo

Lee We a: pe og

£ 7s s
ane ee LeRy ae 2h

ai ‘ a} ews aw, =a

Graphics Modes

Using Graphics Modes

Mapping Pixels to the Screen

CGA @ HGC @ EGA

Hercules InColor Card ® MCGA and VGA

Pixel Coordinates
Pixel Coordinate Scaling

Aspect Ratio

Pixel Display Attributes

CGA @ HGC @ EGA
Hercules InColor Card @ MCGA @ VG

This chapter covers the basics of graphics-mode programming on the CGA, EGA,

MCGA, VGA, and Hercules cards. First the chapter describes how pixels are repre-

sented in the video buffer and how they are mapped to the screen. Then it focuses

on pixel display attributes; that is, on how to determine a pixel’s color, intensity,

and blinking.

Using Graphics Modes
In graphics modes, your program can manipulate the color of every pixel on

the display. For this reason, graphics modes are sometimes called All Points

Addressable (APA) modes. Because you have control over each pixel in the dis-

played image, you can construct complex geometric images, fill arbitrary areas of

the screen with solid colors or blends of colors, and display animated images that

move smoothly across the screen.

Most programmers, however, use graphics modes only when pixel-by-pixel

control over the screen is essential to an application. The reason: The price you

pay for total control over the screen is increased source code complexity and

decreased performance. A simple comparison of the amount of data required

to display a full screen of information in alphanumeric and in graphics modes

shows why.

For example, to display 25 rows of 16-color, 80-column text in alphanumeric mode

on an EGA, you need to store 4000 bytes (80 x 25 x 2) in the video buffer. With a

350-line monitor, the text is displayed with 640-by-350-pixel resolution. Obtaining

the same resolution in a 16-color graphics mode requires 112,000 bytes (640 x 350

x 4 bits per pixel + 8 bits per byte). Obviously, a program that must manipulate

112,000 bytes of data is more complex and slower than a program that manipulates

only 4000 bytes.

Of course, the performance penalty for using graphics-mode video output is less

apparent when you use a faster computer, such as an 80286-based or 80386-based

machine whose CPU runs at a high clock speed. Still, before you leap into

graphics-mode programming, you should carefully consider the alternatives.

Alphanumeric modes are sufficient for displaying text and simple block graphics

and, hence, for the majority of real-world applications.

T An alternative in some applications is to use a video subsystem that
, has an alphanumeric character generator capable of displaying RAM-
" based character sets. (The EGA, MCGA, VGA, HGC+, and InColor

Card all have this capability.) With these subsystems, you can design
‘‘characters”’ that are actually subunits of a larger graphics image and
then assemble the subunits into a complete image in an alphanumeric
mode. (Chapter 10 explains the technique in detail.)

86 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Mapping Pixels to the Screen

PC and PS/2 video subsystems store pixel data as groups of bits that represent

pixel values. The color of each pixel on the display is determined, directly or in-

directly, by its pixel value. Furthermore, no pixel value is ever represented by

more than eight bits, so one or more pixels are mapped into every byte in the

video buffer.

The format of the pixel map or bit map in the video buffer depends on the number

of bits required to represent each pixel, as well as on the architecture of the video

RAM. Obviously, the number of colors that a given graphics mode can display at

one time is determined by the number of bits used to represent each pixel.

When pixel values are smaller than eight bits, pixels are mapped in bit fields

from left to right across each byte. The leftmost pixel represented in a given byte

is always found in that byte’s high-order bit(s). This is true on all PC and PS/2

video subsystems.

Color Graphics Adapter

On the CGA, each pixel is represented either by two bits, as in 320-by-200 4-color

mode (see Figure 4-1a) or by one bit, as in 640-by-200 2-color mode (see Figure

4-1b). Because two bits are used to represent pixels in 320-by-200 mode, a pixel

Bit fields in one byte

Pixels on screen

Figure 4-1. Pixel mapping in CGA graphics modes.

Chapter 4: Graphics Modes 87

can have any of four different pixel values, so this mode can display four different
colors at a time. Only one bit is used to represent pixel values in 640-by-200 mode,

so that mode can display only two colors at a time.

The pixel data is mapped in two interleaved halves of the CGA’s 16 KB video

buffer. Data for the 100 even-numbered scan lines starts at B800:0000, and data for

the odd-numbered scan lines starts at B800:2000 (see Figure 4-2). If the scan lines
are numbered consecutively from 0, the half of the video buffer in which the nth

scan line is represented can be determined by calculating n MOD 2.

This two-way buffer interleave lets the CGA’s CRT Controller display

200 lines of graphics data without overflowing the 7-bit CRTC vertical

timing registers. In CGA graphics modes, the CRTC is set up to display

100 rows of ‘‘characters,’’ each two scan lines high. The top (even)

line of each character is derived from the first half of the video buffer,

and the bottom (odd) line is read from the second half of the buffer.

Video Buffer Display

eee Scan line 0
0050 ;
OOAO Scan line 1

OOFO Scan line 2

Scan line 3

Scan line 4

B800:2000 | Scan line 5
2050
20A0
20F0

Figure 4-2. Video buffer interleave in CGA graphics modes.

Hercules Graphics Card

In 720-by-348 graphics mode on the HGC and HGC+, pixel representation is simi-
lar to that in the CGA’s 640-by-200 2-color graphics mode. One bit represents each
pixel, so only two ‘‘colors’’ (pixel on or pixel off) are available.

However, the HGC’s 348 90-byte lines of pixel data are interleaved using four
separate areas of the video buffer (see Figure 4-3), each containing 87 (348 + 4)
lines of data. With this buffer organization, the area in the buffer in which the nth
scan line is represented can be determined by n MOD 4.

On Hercules video adapters, the four-way interleave allows the CRTC to be pro-
grammed to display 87 rows of characters which are four scan lines high. (See
Listing 2-4 in Chapter 2.) Each of the four scan lines in a ‘‘character”’ is read
from the corresponding location in one of the four interleaved portions of the
video buffer.

88 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Video Buffer
Display

Scan line 0

Scan line 1

Scan line 2 | |

Scan line 3 | _ :

Scan line 4 |
Scan line 5

Scan line 6

Scan line 7

Figure 4-3. Video buffer interleave in Hercules graphics mode.

Enhanced Graphics Adapter

When the EGA is configured to emulate a CGA graphics mode, pixels are mapped

in the video buffer just as they would be on the CGA. However, in the EGA’s na-

tive graphics modes (200-line 16-color modes and all 350-line modes), pixels are

always mapped eight to a byte.

This mapping is dictated by the architecture of the EGA’s video buffer. The 256

KB video buffer consists of four 64 KB maps, or parallel banks of RAM. The maps

are parallel in the sense that they occupy the same range of addresses in the CPU’s

address space; the EGA’s Sequencer and Graphics Controller allow the maps to be

accessed either individually or in parallel (more about this in Chapter 5).

A pixel’s value is determined by the values of the corresponding bits at the same

byte offset and bit offset in each map (see Figure 4-4). For this reason, in graphics

modes, the four maps are called bit planes. You might imagine each pixel’s value
as the result of concatenating one bit from the same location in each bit plane.

The relationship of memory maps to bit planes is altered in 350-line

graphics modes on an IBM EGA equipped with only 64 KB of video

RAM. (To bring IBM’s original EGA up to 256 KB, you must install a

piggyback board, called the Graphics Memory Expansion Card.)

When you use INT 10H function 00H to select 640-by-350 graphics

modes (mode OFH or 10H) on an EGA with a 64 KB video buffer, video

buffer address decoding is altered so that even-numbered addresses in

Chapter 4: Graphics Modes 89

the buffer reference the even-numbered maps and odd-numbered ad-

dresses refer to odd-numbered maps (see Figure 4-5).

In this way the four video buffer maps are chained together, with

maps 0 and 1 forming bit plane 0 and maps 2 and 3 forming bit plane

2. Routines that access pixels in the video buffer must accommodate

this relationship between the bit planes and buffer addresses.

Map 3 fifi fofojofo}i{i|
CVE oe pies

Bit uelds in Map 2 fo}1}o{i{ofo]1]o|
corresponding byte io Gee

in each map Map [1]0[1Jo]iJ0[O]1] — Color Plane
PCE AAG le ae Enable register

ee tee ae eee
Pixel values 1011 1100 0011 0101 0010 0001 1101 1010

5 Ge EE a Ol eee
AND with Color 0011 0100 0011 0101 0010 0001 0101 0010
Plane Enable tn ie hain

map o [1[o]1 [a Jo[i [1 [o]

Pixels on screen

Figure 4-4, Pixel mapping in native EGA graphics modes.

Bit fields in Map2 [o0]i[o][ifoJo]1]ol Color Plane correspondin
P 8 CPV LIS le Lb El Enable register byte in each ma

ae * Map o [1 foli [1 Jol Jol
eee eee

Pixel values 01 1001 ‘ os Pe 11 00
; 2 vey AND with bits 2 and 0 01 1001 110001 1100 Note: Bits 2 and 0

of Color Plane Enable HSU Ph. Wie AR Pet mask pixel values
Pixels on screen BO Bits 3 and 1

should be 0.
a.

Bit fields in Map3 [1]1]o[ofolol1]1] Color Plane aes = oh Bey aes gon os Ee Enable register
Map 1|1]o[1[o]i]ifo]i| 0101

OE: LP NY eras
Pixel values i ie e 1 G ol y 10 11

Soe eee AND with bits 2 and0 111901000101 1011 Note: Bits 2 and 0 of Color Plane Enable ia line list gil asl mask pixel values
Pixels on screen BEREUROSS Bits 3 and 1

should be 0.
b.

Figure 4-5. Video buffer maps in 350-line graphics modes (EGA with 64 KB video RAM). Pixel values at even addresses are stored in maps 0 and 2 (Figure 4-5Sa); pixels at odd
addresses are stored in maps I and 3 (Figure 4-5b).

90 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

In native EGA graphics modes, there is no line-by-line interleaving of the pixel
data in the video buffer, as in CGA and HGC graphics modes. Instead, rows of pix-
els are mapped linearly, just as rows of characters are mapped linearly in alpha-
numeric video modes.

Hercules InColor Card

In its 720-by-348 graphics mode, the InColor Card’s video buffer has four parallel
maps organized as four parallel bit planes. As on the EGA, a pixel’s value is deter-
mined by concatenating the corresponding bits in each of the bit planes. However,
video buffer addressing is not linear, as it is on the EGA.

Pixels are stored in the InColor Card’s video buffer using the same four-way

interleave that the HGC and HGC+ use. In the buffer, 348 lines of 90 bytes (720

pixels) are mapped in a four-way interleave starting at B000:0000. The buffer

also contains two video pages (as on the monochrome HGC), at B000:0000 and

B000:8000. This aspect of the InColor Card’s design preserves its symmetry with
Hercules monochrome graphics cards but differentiates it from the EGA.

MCGA and VGA

The PS/2 video subsystems support three graphics modes not found on earlier PC

video adapters. The 640-by-480 2-color mode (MCGA and VGA) and 640-by-480

16-color mode (VGA only) resemble the native EGA graphics modes: Both use a

linear bit map starting at A000:0000. A similar linear pixel map also is used in

320-by-200 (MCGA and VGA) 256-color mode, with one important difference:

Each byte in the video buffer represents one pixel (see Figure 4-6). Since there are

eight bits to a byte, each pixel can have any of 256 (28) different colors.

Logical AND
Video DAC mask 8-bit pixel value

Video DAC
color register 0-OFFH

18-bit analog output to video display
(6 bits each for red, green, blue)

Figure 4-6. Color selection in MCGA and VGA 320-by-200 256-color mode.

Chapter 4: Graphics Modes 91

On the VGA, 640-by-480 2-color mode is nearly identical to 640-by-480

, 16-color mode. All four bit planes remain active in the 2-color mode
" even though one bit plane is sufficient to store a full screen of pixels.

The only difference between the two modes is that the video BIOS

makes only two palette colors available in the 2-color mode, whereas

it sets up 16 palette colors in the 16-color mode.

Pixel Coordinates

In graphics modes, the video buffer can be thought of as a flat, two-dimensional

array of pixels with its origin at the upper left corner. What is visible on the

screen is a subset of the pixels represented in the buffer. On the CGA, the video

buffer can contain only one screenful of pixels, so the first byte in the buffer

represents the pixels in the screen’s upper left corner. On the EGA, MCGA, and

VGA, however, the video buffer can store several screenfuls of pixels. You can

thus select which portion of the video buffer appears on the screen.

Every pixel on the screen can be identified by a unique pair of (x,y) coordinates

relative to the screen’s upper left corner. Each (x,y) pair also corresponds to a par-

ticular byte offset in the video buffer and a bit offset in that byte. Thus, given a

pixel’s (x,y) coordinates on the screen, you can compute where in the video buffer

the pixel is represented.

Converting from pixel coordinates to the corresponding byte and bit offsets is one

of the most frequent operations in IBM video graphics programming. The pro-

gram examples in Listings 4-1 through 4-5 demonstrate how to do this efficiently
and in a uniform manner.

TITLE ‘Listing 4-1!
NAME PixelAddr04

PAGE Doin 132

; Name: PixelAddr04

Fenn Cieet ons Determine buffer address of pixel in 320x200 4-color mode

; Caller: AX y-coordinate (0-199)

: BX x-coordinate (0-319)

; Returns: AH = bit mask

; BX = byte offset in buffer

; CL’ = number of bits to shift left
F ES = video buffer segment

OriginOffset EQU 0 7 byte offset of (0,0)
VideoBufferSeg EQU OB800h

Listing 4-1. Computing a pixel’s address in 320-by-200 4-color mode. (continued)

92 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 4-1. Continued.

SRERT SEGMENT byte public 'CODE'
ASSUME cs: TEXT
PUBLIC PixelAddr04

PixelAddr04 PROC near

mov Cuba! 2 Ch s= jow-order byte of x

xchg ah,al 7 Ax y= 00h ‘vy

shr ax, 1 * AL := 80h * (y&1)

add bh,al ; BX := x + 8000h*(y&1)

xor al,al 7; AX := 100h*(y/2)

add bx, ax ; BX := x + 8000h*(y&1) + 100h*(y/2)
shr ax,

shr ax,1 7; AX := 40h*(y/2)

add bx, ax ; BX := x + 8000h*(y&1) + 140h*(y/2)
shr bx, 1

shr ssc nl ; BX := x/4 + 2000h*(y&1) + 50h*(y/2)

add bx, OriginOffset ; BX := byte offset in video buffer

mov ax, VideoBufferSeg

mov es,ax ; ES:BX := byte address of pixel

mov ah,3 ; AH := unshifted bit mask

and cl,ah eC C= Lees

xor cl,ah peeG ene eae ee eS)

shl cays ; CL := # bits to shift left

ret

PixelAddr04 ENDP

_TEXT ENDS

END

TITLE Tiaisting.=4=2"

NAME PixelAddr06

PAGE 55, "SZ

; Name: PixelAddr06

; Function: Determine buffer address of pixel in 640x200 2-color mode

7 Cadtdexs AX = y-coordinate (0-199)

s BX = x-coordinate (0-639)

; Returns: AH = bit mask

BX = byte offset in buffer

Fe CL = number of bits to shift left

; ES = video buffer segment

OriginOffset EQU 0 ; byte offset of (0,0)

VideoBufferSeg EQU OB800h

Listing 4-2. Computing a pixel’s address in 640-by-200 2-color mode. (continued)

Chapter 4: Graphics Modes 93

Listing 4-2. Continued.

TEXT SEGMENT byte public 'CODE'

= ASSUME cs: TEXT

PUBLIC PixelAddr06

PixelAddr06 PROC near

mov °* ed, bl ; CL := low-order byte of x

xchg ah,al ; AX := 100h * y

shr bx, 1 7 BX 2= x/2

shr ax, 1 ; AL := 80h* (yé1)

add bh,al ; BX := x/2 + 8000h*(y&1)

xor al,al ; AX := 100h*(y/2)

add bx,ax ; BX := x/2 + 8000h¥*(y&1) + 100h*(y/2)

shr ax, 1

shr ax, 1 ; AX := 40h*(y/2)

add bx, ax > BX := x/2 + 8000h*(y&1) + 140h* (y/2)

shr bs pat

shr bx, 1 ; BX := x/8 + 2000h*(y&1) + 50h*(y/2)

add bx, OriginOffset ; BX := byte offset in video buffer

mov ax, VideoBufferSeg

mov es,ax ; ES:BX := byte address of pixel

and Cura - Che xe

xor Cala, + (CL k= number of bits Eo shiit left

mov ah, 1 ; AH := unshifted bit mask

ret

PixelAddr06 ENDP

TERT ENDS

END

Transforming pixel coordinates to a buffer offset involves simple logic. Begin by

calculating the offset of the start of pixel row y. (For CGA and Hercules graphics

modes, this calculation accounts for the interleaving of the video buffer.) To this

value, add the byte offset of the xth pixel in the row. Finally, add the byte offset of

the start of the displayed portion of the video buffer to obtain the final byte offset

of the pixel.

PixelByteOffset = RowOffset(y) + ByteOffset(x) + OriginOffset

The bit offset of the pixel within the byte that contains its value depends only on
the number of pixels represented in each byte of the video buffer. You could ex-

press the relationship this way:

PixelBitOffset = PixelsPerByte - (x MOD PixelsPerByte) - 1

However, it is more practical to represent a pixel’s bit offset as a bit mask rather

than as an ordinal bit number. This can be done easily with a table lookup (for ex-
ample, an assembler XLAT instruction) or with a logical shift instruction. (This is

why Listings 4-1 through 4-4 return the bit offset as a number of bits to shift.)

94 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

TITLE "Listing 4-3'

NAME PixelAddrHGC

PAGE SO pnloe

+ Name: PixelAddrHGC

7 Function: Determine buffer address of pixel in 720x348 Hercules graphics

* Caller: AX = y-coordinate (0-347)

; BX = x-coordinate (0-719)

; Returns: AH = bit mask

Fe BX = byte offset in buffer

iF CL = number of bits to shift left

s ES = video buffer segment

BytesPerLine EQU 90

OriginOffset EQU 0 7 byte offset of (0,0)

VideoBufferSeg EQU 0B000h

BEExT SEGMENT byte public 'CODE!
ASSUME cs:_ TEXT

PUBLIC PixelAddrHGC

PixelAddrHGC PROC near

mov ed bi 7 CL := low-order byte of x

shr ax, ; AX := y/2

rer bx, 1 7 BX := 8000h*(y&1) + x/2

shr ax, 1 7; AX := y/4

rer bx, 1 ; BX := 4000h*(y&3) + x/4

shr bx, 1 ; BX := 2000h*(y&3) + x/8

mov ah, BytesPerLine

mul ah ; AX := BytesPerLine* (y/4)

add bx,ax ; BX := 2000h*(y&3) + x/8 +

; BytesPerLine* (y/4)

add bx, OriginOffset ; BX := byte offset in video buffer,

mov ax, VideoBufferSeg

mov es,ax ; ES:BX := byte address of pixel

and cl 7 ; Clise x & 7

xor el, © ; CL := number of bits to shift left

mov ah, 1 ; AH := unshifted bit mask

ret

PixelAddrHGC ENDP

_ Saar ENDS

END

Listing 4-3. Computing a pixel’s address in Hercules graphics mode.

Chapter 4: Graphics Modes 95

TITLE

NAME

PAGE

; Name:

. Funceron:

7 Caller: AX =

F BX =

; Returns: AH =

; BX =

; CL =

H ES =

EQU

EQU

EQU

BytesPerLine

OriginOffset

VideoBufferSeg

DLExT SEGMENT

ASSUME

PUBLIC

PixelAddr10 PROC

mov

push

mov

mul

pop
shr

shr

shr

add

add

mov

mov

and

xor

mov

ret

PixelAddr10 ENDP

STExT ENDS
END

"Listing 4-4'

PixelAddr10

5S plis2

PixelAddr10

Determine buffer address of pixel in native EGA and VGA modes:

16-color

16-color

16-color

monochrome

Z=é€olor

16-color

320x200

640x200

640x350

640x350

640x480

640x480

(4-color)

y-coordinate

x-coordinate

bit mask

byte offset in buffer

number of bits to shift left

video buffer segment

80 ; bytes in one horizontal line

0 7 byte offset of (0,0)

OA000h

byte public 'CODE'

cs:_TEXT

PixelAddr10

near

el, bl 7 CL := low-order byte of x

dx 7 preserve DX

dx,BytesPerLine ; AX := y * BytesPerLine

dx

dx

bx, |

ae,

bx, 1 7B = lS

bx, ax ; BX := y*BytesPerLine + x/8
bx, OriginOffset ; BX := byte offset in video buffer

ax, VideoBufferSeg

es, ax ; ES:BX := byte address of pixel

eueat 7, CL t= Slee

Ga ; CL := number of bits to shift left
ah,1 * AH := unshifted bit mask

Listing 4-4. Computing a pixel’s address in CGA and VGA graphics modes.

96 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Here is a high-level example of a pixel coordinate transformation for the CGA’s
320-by-200 4-color graphics mode. As Figure 4-1a shows, each byte in the video
buffer contains four pixels. At four pixels per byte, 80 bytes of data represent one
row of 320 pixels. The origin of the screen—that is, the byte offset of the dis-
played portion of the buffer—is 0, since the CGA video buffer contains only one
screenful of pixels.

int PixelsPerByte = 4;

int BytesPerRow = 80;

IMmiNOri ginOfriser = 0%

static int Masks[] = { O0xC0, 0x30, OxOG RRO 08m ty

unsigned int x,y;

unsigned int ByteOffset,BitMask;

/* buffer interleave (0 or 0x2000) */

ByteOffset = (y & 1) << 13;

/* offset of start of row */

ByteOffset += BytesPerRow * (y/2);

/* byte offset in screen */

ByteOffset += (x / PixelsPerByte) % BytesPerRow;

/* byte offset in video buffer */

ByteOffset += OriginOffset;

BitMask = Masks[x % PixelsPerByte];

The same routine in assembly language is much more efficient, because all arith-

metic can be done in registers and register halves (refer to Listing 4-1). Also, if

you know that the number of bytes per row of pixels is a constant, you can further

increase performance by performing multiplication and division as a sequence of

bit shifts.

For example, in Listing 4-5, the y-coordinate is multiplied by 320 through a series

of logical shift operations instead of a single MUL instruction. The resulting rou-

tine runs about 40 percent faster on the 8086-based PS/2 Model 30 and about 10
percent faster on the 80286-based PS/2 Model 60. This optimization complicates

the assembly code somewhat, but the speed gained is worth the effort—low-level

routines such as those in Listings 4-1 through 4-5 may execute many thousands of

times in a graphics-oriented application.

Chapter 4: Graphics Modes 97

; Name:

; Function:

> Caller

; Returns:

OriginOffset

VideoBufferSeg

Text

PixelAddr13

PixelAddr13

_TEXT

TITLE VLEsting (4ao.

NAME PixelAddr13

PAGE Sloe

PixelAddr13

Determine buffer address of pixel in 320x200 256-color mode

AX = y-coordinate (0-199)

BX = x-coordinate (0-319)

BX = byte offset in buffer

ES = video buffer segment

EQU 0 ; byte offset of (0,0)

EQU OA000h

SEGMENT byte public 'CODE'

ASSUME cs: TEXT

PUBLIC PixelAddr13

PROC near

xchg ah,al ; AX := 256*y

add Ibscpax 2 BX 2=—TZ50ty + ax

shr ax, 1

shr ax, 1 ; AX := 64*y

add bx, ax > BX == 320*y + xX

add bx,OriginOffset ; BX := byte offset in video buffer

mov ax, VideoBufferSeg

mov es,ax ; ES:BX := byte address of pixel

ret

ENDP

ENDS

END

Listing 4-5. Computing a pixel’s address in 320-by-200 256-coior mode.

Pixel Coordinate Scaling

One characteristic of most IBM graphics modes is that horizontal pixel resolution

differs from vertical pixel resolution. For example, in a 640-by-200 mode, a typi-

cal 200-line color monitor displays about 70 pixels per horizontal inch, but only

about 30 pixels per vertical inch.

This discrepancy complicates the mapping of pixels in the display buffer to

screen locations, as is shown in Figure 4-7. For example, in a 640-by-200 mode,

a line drawn between the pixel at (0,0) in the screen’s upper left corner and the

pixel at (100,100) has a mathematical slope of 1, so you would expect it to be dis-
played at a 45-degree angle from the display’s top and left edges. However, the

displayed line (line a, Figure 4-7) is ‘“compressed’”’ in the horizontal direction.

98 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Displaying a line at a 45-degree angle requires scaling the pixel coordinates to
account for the discrepancy in vertical and horizontal resolution. In a 640-by-200
mode, the horizontal scaling factor is about 2.4 (horizontal resolution + vertical
resolution). In the example, you would scale the x-coordinates of the endpoints to
0 (0 x 2.4) and 240 (100 x 2.4). The scaled line (line b, Figure 4-7), with end-
points at (0,0) and (240,100), appears at a 45-degree angle on the screen.

You must scale the (x,y) coordinates of all pixels in all geometric figures in all
graphics modes—unless, of course, the scaling factor happens to be 1. Otherwise,
Squares appear as rectangles and circles as ellipses. Furthermore, you must adjust
the scaling factor for the horizontal and vertical resolutions of each graphics
mode. Figure 4-8 is a table of the horizontal-to-vertical scaling ratios for graphics
modes on IBM video subsystems with typical monitors.

(240,100)
(100,100)

Figure 4-7. Pixel coordinate scaling in 640-by-200 graphics.

BIOS Mode Mode Scaling Factor
Number Description (horizontal/vertical)

4,5 320-by-200 4-color 1.20
6 640-by-200 2-color 2.40
ODH 320-by-200 16-color 1.20
OEH 640-by-200 16-color 2.40
OFH 640-by-350 monochrome 1.26 (monochrome monitor)

10H 640-by-350 16-color 137,
11H 640-by-480 2-color 1.00
12H 640-by-480 16-color 1.00
13H 320-by-200 256-color 2.40

720-by-348 (Hercules) 1.43 (monochrome monitor)

Figure 4-8. Pixel scaling values for PC and PS/2 graphics modes. An aspect ratio of 1.33
(4:3) for color monitors, 1.45 for monochrome monitors, is assumed.

Chapter 4: Graphics Modes 99

Aspect Ratio

A related programming concern is the screen’s aspect ratio—the ratio of a

screen’s width to its height. The color monitors commonly used with IBM video

subsystems have aspect ratios of about 1.33 (4:3); for the typical green mono-

chrome monitor, the aspect ratio is about 1.45. Because the screen is rectangular

instead of square, the maximum potential width of a screen image exceeds its

maximum potential height. This limitation must always be considered in scaling

pixel coordinates.

One attractive feature of the MCGA, the VGA, and other video sub-

systems that offer 640-by-480 resolution is that horizontal resolution

and vertical resolution are the same on a display with an aspect ratio

of 4:3. You can think of the pixels in this situation as being “‘square.”’

With ‘‘square’’ pixels, mapping the video buffer to the screen is

simpler because the pixel coordinate scaling factor is 1.

Pixel Display Attributes
In general, pixel values determine video attributes—in other words, the bits that

represent a pixel in the video buffer determine how the pixel looks on the screen.

The way that pixel values are decoded in graphics modes is similar to the way

that alphanumeric attributes are decoded. But in graphics modes, pixel values

may range from one through eight bits, while alphanumeric attributes are four

bits wide.

Color Graphics Adapter

In 640-by-200 2-color mode, one bit represents each pixel. If the bit is 0, the pixel

is displayed as black. If the bit is 1, the pixel is displayed with the color specified

in bits 0 through 3 of the CGA’s Color Select register (port 3D9H). This is the

same register that specifies the overscan color in alphanumeric modes. If you

change video modes by directly programming the CGA’s CRTC and Mode Control

registers, you should avoid spurious border colors or pixel colors by programming
the Color Select register as well.

You can use INT 10H function OBH to select the displayed color of nonzero pixels

in 640-by-200 2-color mode (see Listing 4-6). This BIOS function stores a color

value in the Color Select register and updates the variable CRT_PALETTE in the

Video Display Data Area at 0040:0066. If you bypass the video BIOS and program

the Color Select register directly, you should also update CRT_PALETTE.

mov ah, OBh ; AH := OBH (INT 10H function number)

mov bh, 0 + BH := subfunction number

mov bl,ColorValue 7 BL := desired color (0-OFH)

aerate 10h

Listing 4-6. Foreground color in CGA 640-by-200 2-color graphics.

100 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

In 320-by-200 4-color modes, two bits represent each pixel, so pixel values can
range from 0 through 3. Pixels with the value 0 are displayed with the color value
stored in the Color Select register at port 3D9H. A quirk of the CGA is that the
Color Select register value determines both the overscan (border) color and the
color for pixel value 0. This means you cannot specify a border color indepen-
dently of the background color on the CGA in this video mode.

The colors displayed for pixels with nonzero values are taken from one of three
hardware palettes (see Figure 4-9). The palette is selected by the values of bit 5 of
the Color Select register (port 3D9H) and of bit 2 of the Mode Control register at
port 3D8H (Listing 4-7). If bit 2 of the Mode Control register is 1, the palette com-
prises cyan, red, and white. If this bit is 0, bit 5 of the Color Select register selects
either green, red, and yellow (if bit 2 in the Color Select register is 0), or cyan,
violet, and white (if bit 2 in the Color Select register is 1). In effect, setting bit 2 in
the Color Select register adds blue to the palette; that is, green plus blue produces
cyan, red plus blue produces violet, and yellow plus blue produces white.

Setting bit 2 of the CGA’s Mode Control register to 1 disables the color
burst component of the adapter’s composite video output signal. If you

use a black-and-white display, appropriate shades of gray are gener-

ated for the four possible pixel values when bit 2 is set to 1.

Bit 2 of Mode Control register = 0
Bit 5 of Color Select register = 0
Pixel Value Color Displayed

1 Green
2, Red
3 Yellow

Bit 5 of Color Select register = 1
Pixel Value Color Displayed

1 Cyan
2 Violet
3 White

Bit 2 of Mode Control register = 1
Pixel Value Color Displayed

1 Cyan
2, Red
3 White

Figure 4-9. Palettes available in CGA 320-by-200 4-color mode.

Chapter 4: Graphics Modes 101

; cyan-red-white

mov

mov

mov

Ox

mov

out

mov

ax, 40h

es,ax

al,es: [65h]

al,00000100b

dx, 3D8h

dx,al

es: [65h],al ,

ES := Video BIOS data segment

AL := CRT_MODE_ SET

AL bit'2 2= 71

DX := Mode Control I/O port

update Mode Control register

update CRT MODE SET

; green-red-yellow or cyan-violet-white

mov

mov

mov

and

mov

out

mov

mov

and

or

slg gyes

out

mov

ax, 40h

es,ax

al,es: [65h]

al U1 Ot te

dx, 3D8h

dx,al

es: [65h],al

al,es: [66h]

aa Oe: tibhe

al,PaletteSelect;

ax

ax, al

es: [66h],al

,

,

ES := Video BIOS data segment

; AL := CRT_MODE SET

AL bit 2 := 0

DX := Mode Control I/O port

update Mode Control register

update CRT MODE SET

AL” := CRE PALETTE

AL bie 5 4=)0

00000000b for green-red-yellow

00100000b for cyan-violet-white

DX := Color Select I/O port

update Color Select register

update CRT_PALETTE

Listing 4-7. Four-color palettes in CGA 320-by-200 4-color mode.

You can use INT 10H functions to select among the three 4-color palettes. The

video BIOS assigns two video mode numbers to 320-by-200 4-color graphics

mode: In BIOS mode 4, bit 2 of the Mode Control register is 0, and in mode 5, bit 2

is set to 1. Thus, to select the cyan-red-white palette, use INT 10H function 0 to set

mode 5. To select the other two palettes, use INT 10H function 0 to set mode 4, and

then call INT 10H function OBH to choose either green-red-yellow or cyan-violet-

white, as shown in Listing 4-8.

; Cyan-red-white

mov ax,0005 , AH := 0 (INT 10H function number)

7 AL := 5 (320x200 4-color mode,

; disabled)

ont 10h

* green-red-yellow or cyan-violet-white

color burst

mov ax,0004 + AH := 0 (INT 10H function number)

7; AL := 4 (320x200 4-color mode, color burst

; enabled)

int 10h

mov ah, OBh + AH := INT 10H function number

mov bh, 1

mov bl,PaletteID + 0 for green-red-yellow

+ 1 for cyan-violet-white
int 10h

Listing 4-8. Four-color palettes in CGA 320-by-200 4-color mode using video BIOS.

102 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

You can select high-intensity colors in the 320-by-200 4-color palette by setting bit
4 of the Color Select register to 1. When this bit is 0, the same four colors are dis-
played with normal intensity.

Hercules Graphics Card

Life is easy with an HGC as far as graphics attributes are concerned. In the
720-by-348 monochrome graphics mode on the HGC and HGC+, one bit represents
each pixel. If the bit is set to 1, the pixel is displayed. If the bit is set to 0, the pixel
is not displayed.

Enhanced Graphics Adapter

Although the EGA supports a number of graphics modes with pixel values rang-

ing from 1 to 4 bits, it decodes pixel values in a straightforward manner. As in

alphanumeric modes, each pixel’s value is masked by the value in the Attribute

Controller’s Color Plane Enable register; the resulting 4-bit value selects one of

the Attribute Controller’s 16 palette registers. Thus, a pixel’s displayed attribute

is derived from the palette register that corresponds to the pixel value.

When you use INT 10H function 0 to select an EGA video mode, the BIOS routine

loads a default set of color values into the palette registers (see Figure 4-10). The

actual values depend on the video mode, but each set maps the palette registers so

that the color displayed for a given pixel value is the same as a CGA would dis-

play. Using this function improves the portability of programs between the CGA

and the EGA, since a program that never touches the palette registers can run with

the same set of colors on both adapters.

The BIOS default palette register values for 320-by-200 and 640-by-200

16-color modes are correct for 200-line monitors but incorrect for

some EGA-compatible monitors. IBM’s Enhanced Color Display con-

verts the 4-bit default color values in 200-line graphics modes (see

Figure 4-10) to 6-bit color values that emulate the 16 CGA colors. Un-

fortunately, not all EGA-compatible monitors do this. Thus, if you use

INT 10H function 0 to invoke these modes (mode numbers ODH and’

OEH), you generally should program the palette registers with an ap-

propriate set of values, such as the default set used in 640-by-350

16-color mode.

CGA Emulation Modes

In 640-by-200 2-color mode, when bit 3 of the Attribute Controller Mode Control

register (10H) is 0, a pixel value of 0 designates palette register 0, and a pixel value

of 1 designates palette register 1. When Mode Control bit 3 is 1, palette registers 8

and 9 are used. With a CGA-compatible display, these four palette registers can

contain any of the 16 displayable color values. With an EGA-compatible 350-line

monitor, these registers can contain any four of the 64 displayable color values.

Chapter 4: Graphics Modes 103

350-Line 16-Color Modes
Palette Register

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
0CH
ODH
OEH
OFH

Color Value

00H
01H
02H
03H
04H
05H
14H
07H
38H
39H
3AH
3BH
3CH
3DH
3EH
3FH

200-Line 16-Color Modes
Palette Register

00H
01H
02H
03H
04H
05H
06H
07H
08H
09H
OAH
OBH
0CH
0DH
OEH
OFH

Color Value

00H
01H
02H
03H
04H
05H
06H
07H
10H
11H
12H
13H
14H
15H
16H
17H

Attribute

Black
Mid-intensity blue
Mid-intensity green
Mid-intensity cyan
Mid-intensity red
Mid-intensity violet
Brown
Mid-intensity white
Low-intensity white (gray)
High-intensity blue
High-intensity green
High-intensity cyan
High-intensity red
High-intensity violet
High-intensity yellow
High-intensity white

Attribute

Black
Blue
Green
Cyan
Red
Violet
Yellow (brown)

White
Black (gray)

High-intensity blue
High-intensity green
High-intensity cyan
High-intensity red
High-intensity violet
High-intensity yellow
High-intensity white

640-by-350 Monochrome Graphics
Palette Register Color Value Attribute

00H 00H Not displayed
01H 08H Normal intensity
04H 18H High intensity
05H 18H High intensity
08H 00H Not displayed
09H 08H Normal
0CH 00H Not displayed
ODH 18H High intensity

ee SSSSSSSSSSsSsSSsSsSsSsSs—

Figure 4-10. Default EGA and VGA palette register values.

104 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

In 320-by-200 4-color mode, each of the four possible pixel values (0 through 3)
designates a corresponding palette register. When bit 3 in the Attribute Controller
Mode Control register is 0, palette registers 0-3 are used; when bit 3 is 1, palette
registers 8—OBH are used. With a CGA-compatible monitor, you can store any
eight of the 16 displayable color values in these palette registers. With an EGA-
compatible monitor, you can use any eight of the 64 displayable color values in
these registers.

In both CGA emulation modes, the video BIOS initializes the palette registers with
default color values that match the colors in the CGA hardware palettes. In 640-
by-200 2-color mode, the default colors are black, white, and intense white. In
320-by-200 4-color modes, the BIOS supports the green-red-yellow and cyan-
violet-white palettes in normal and high intensities.

16-Color Modes
In 320-by-200, 640-by-200, and 640-by-350 16-color modes, each 4-bit pixel value
designates one of the 16 palette registers. For a CGA-compatible monitor, the

palette registers can contain the usual 16 colors, but with an EGA-compatible

monitor, you can specify any of the 64 displayable colors in each palette register.

Monochrome Graphics

There are two bits per pixel in the EGA’s 640-by-350 monochrome graphics mode,

so pixel values can range from 0 through 3. However, this graphics mode uses

only even-numbered bit planes, so the EGA’s Attribute Controller interprets only

the even-numbered bits of the usual 4-bit pixel value. Thus, bits 0 and 1 of a 2-bit

monochrome pixel value designate bits 0 and 2 of the corresponding 4-bit palette

register number. (Bits 1 and 3 of the palette register number are always 0.) Thus,

the four possible pixel values—0, 1, 2, and 3—actually reference palette registers

0, 1, 4, and 5 respectively (see Figure 4-11).

Pixel Value Corresponding Palette Register

0 (OOB) 0 (OO00B)
1 (01B) 1 (0001B)
2 (10B) 4 (0100B)
3 (11B) 5 (0101B)

Figure 4-11. Pixel values and palette registers in 640-by-350 monochrome graphics.

On EGAs with only 64 KB of video RAM, the odd bit planes represent

pixels at odd buffer addresses, and the even bit planes represent pixels

at even buffer addresses (see Figure 4-5). In this situation, pixel values

in 640-by-350 monochrome and 640-by-350 4-color graphics modes are

two bits in size, but bits 0 and 2 are used for pixels at even byte ad-

dresses, while bits 1 and 3 are used for pixels at odd byte addresses.

Chapter 4: Graphics Modes 105

Monochrome pixels can be undisplayed (palette register value 0), can be dis-

played with normal intensity (08H), or can be displayed with high intensity (18H).

INT 10H function 00H loads the palette registers with a default set of monochrome

values whenever you select video mode OFH (see Figure 4-11).

Blinking

In native graphics modes on the EGA (as well as on the VGA), pixels can have a

blinking attribute. As in alphanumeric modes, you select blinking by setting the

Enable Blink bit of the Attribute Controller’s Mode Control register (bit 3 of

register 10H at port 3COH) to 1. In 16-color modes, this causes the adapter to inter-

pret the high-order bit (bit 3) of each 4-bit pixel value as a blink attribute, in the

same way the high-order bit of a character’s attribute byte is used in alphanumeric

modes. Thus, when the Enable Blink bit is set, pixels with values 8 through OFH

blink, and pixels with values 0 through 7 do not. In monochrome graphics mode,

all pixels blink regardless of their value.

However, the EGA blinks pixels differently in graphics modes than it blinks char-

acters in alphanumeric modes. In graphics modes, pixels are blinked by alter-

nately selecting two different palette registers for each pixel’s value. The two

registers are designated by turning bit 3 of the pixel value on and off at the blink

rate (about twice per second). Thus, pixels are blinked by alternating the values in

the first eight palette registers (registers 00H through 07H) with the values in the

second eight (08H through OFH).

For example, a pixel with a value of 0AH is blinked by repeatedly changing the

value of bit 3 whenever the Enable Blink bit is set. Thus, the pixel’s color alter-

nates between that designated by palette register OAH (1010B) and that in palette

register 02H (0010B). If you use the set of BIOS default palette registers, this pixel

blinks between green and high-intensity green.

A peculiarity of the EGA’s blinking attribute in color graphics modes is what

happens to pixels with values from 0 through 7; that is, where bit 3 of the pixel

value is 0. These pixels do not blink, but they are displayed as if bit 3 were 1. For

example, if you use the BIOS default palette values, pixels displayed at lower in-

tensity (pixel values 0 through 7) become nonblinking pixels displayed at high

intensity using palette registers 08H through OFH.

Thus, in using the blinking attribute in graphics modes, you should reprogram the

palette registers each time you change the Enable Blink bit, to maintain a consis-

tent set of colors. For example, the palette register values shown in Figure 4-12

might be useful in this context. This palette is designed for use as an alternative
to the default BIOS palette (see Figure 4-10) when blinking is enabled. If this
palette is used with the Enable Blink bit set to 1, all high-intensity pixels (pixel
values 08H through OFH) blink, but all normal-intensity pixels do not.

Border Color

As in alphanumeric modes, you can set the overscan (border) color by storing a
color value in the Attribute Controller’s Overscan Color register (register 11H,
port 3COH). Techniques for setting the border color are covered in Chapter 3.

106 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Palette Register Color Value Attribute

00H 00H Black (background)
01H 39H
02H 3AH
03H 3BH
04H 3CH (high-intensity colors)
OSH 3DH
06H 3EH
07H 3FH
08H 00H Black (background)
09H 01H
OAH 02H
OBH 03H
OCH 04H (mid-intensity colors)
0DH OSH
OEH 14H
OFH 07H

Figure 4-12. Palette register values for blinking in 640-by-350 16-color mode.

Hercules InColor Card

On the InColor Card, the value of bit 4 of the Exception register (17H) determines

whether the palette registers are used to decode pixel values, just as it does in al-

phanumeric modes. When this bit is set to 1, each 4-bit pixel value specifies a

palette register, and the 6-bit color value in the palette register determines the dis-

played color of the pixel.

Setting Exception register bit 4 to 0 bypasses the palette registers. Each 4-bit pixel

value is extended to 6 bits by replicating the high-order bit, and the new value de-

termines the color. This procedure, called sign extension, in effect causes the

high-order bit of a pixel value to act as an “‘intensity’’ bit, similar to the way

alphanumeric attributes are decoded.

MCGA

The MCGA emulates both of the CGA’s graphics modes and adds two of its own, a

640-by-480 2-color mode and a 320-by-200 256-color mode. The 256-color mode is

the only MCGA video mode that uses the video Digital to Analog Converter (DAC)

to full advantage.

2-Color Graphics Modes

Pixel attributes in 640-by-200 and 640-by-480 2-color modes are directed through

the video DAC registers. Pixels with the value 0 are always mapped through video

DAC color register 0. Nonzero pixels also select a predesignated video DAC color

register, but this is done in one of two ways, depending on the value of bit 2 of the

Mode Control register at 3D8H. If bit 2 is 1, video DAC color register 7 is selected.

If bit 2 is 0, bits 0 through 3 of the Color Select register (port 3D9H) designate a

video DAC register.

Chapter 4: Graphics Modes 107

On the MCGA, the background color in 2-color graphics modes is not necessarily

black as it is on the CGA. Instead, both background and foreground can be any of

the 256 K colors or the 64 gray-scale values that the MCGA can display. Use INT

10H function 10H to set the appropriate video DAC color registers.

When the video BIOS sets up 2-color graphics modes, it sets bit 2 of

the Mode Control register to 0 and bits 0 through 3 of the Color Select

register to 1111B (OFH). Since the first 16 video DAC color registers

contain the 16 colors available on a CGA, this configuration emulates

the default color configuration on a CGA in 640-by-200 2-color mode:

Background pixels are displayed as black (the value in video DAC

color register 0) and foreground pixels appear intense white (the value

in video DAC color register OFH).

4-Color Graphics Mode
The MCGA faithfully emulates this CGA graphics mode. The major difference is

that the MCGA maps the four available colors through the video DAC color regis-

ters just as it does in 2-color graphics modes. Thus, all four colors can be selected

from the 256 K possibilities that the video DAC offers.

The MCGA combines bits 4 and 5 of the Color Select register (port 3D9H) with

each pixel’s 2-bit value to create a 4-bit value that designates one of the first 16

video DAC color registers (see Figure 4-13). The video BIOS initializes the video

DAC color registers with CGA-compatible palettes. The colors are chosen so that

3D9H Pixel Value 3D9H Video DAC
Bit 4 Bit 5 Color Register
(intensity) Bit 1 Bit 0 (palette) Number Default Color

X 0 0 Xx 00H Black

0 1 0 02H Green
0 1 0 0 04H Red
0 1 1 0 06H Brown

1 0 1 0 OAH High-intensity green
1 1 0 OCH High-intensity red
1 1 1 0 OEH High-intensity yellow

0 0 1 1 03H Cyan
0 1 0 1 OSH Violet
0 1 1 1 07H White

1 0 1 1 OBH High-intensity cyan
1 1 0 1 ODH High-intensity violet
1 1 1 1 OFH High-intensity white
Sipe Seep eters ae ate a gee ae tl gl 8 oe Se
x = don’t care

Figure 4-13. Pixel values and palettes in MCGA 320-by-200 4-color mode.

108 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

bit 5 of the Color Select register selects the green-red-yellow and cyan-violet-

white palettes, and bit 4 toggles between normal- and high-intensity palettes, as

they do on the CGA. Of course, you can establish completely arbitrary 4-color

palettes by loading different color values into the video DAC color registers.

256-Color Graphics Mode
In 256-color mode, each pixel’s value designates one of the 256 video DAC color

registers. To select a video DAC color register, a pixel’s value is combined (using

CGA-compatible
0-OFH default colors

10-1FH gray scale

High saturation

20-67H Moderate saturation High intensity

Low saturation

High saturation

68-AFH Moderate saturation Moderate intensity

Low saturation

High saturation

Moderate saturation Low intensity BO-F7H

Low saturation

F8-FFH

Figure 4-14. Default video DAC colors in 320-by-200 256-color mode (MCGA and VGA).

Chapter 4: Graphics Modes 109

a logical AND) with the value in the video DAC Mask register (3C6H). The result-

ing value selects a DAC color register (see Figure 4-6). Since you can store any of

256 K color values in each video DAC color register, you can display a wide range

of tones and intensities and create quite realistic video images.

Normally, the video BIOS programs the video DAC registers with a default
spectrum of color values (see Figure 4-14) when 320-by-200 256-color mode is

selected. Registers 0 through OFH contain the default gamut of CGA-compatible

colors. Registers 10H through 1FH contain a gray scale of gradually increasing

intensity. The next 216 registers (20H through F7H) contain three groups of 72

colors, with the first group (registers 20H through 67H) at high intensity, the sec-

ond (registers 68H through AFH) at an intermediate intensity, and the third (regis-

ters BOH through F7H) at low intensity. Each 72-color group is made up of three

ranges of colors of decreasing saturation (increasing whiteness); each range varies

smoothly in hue from blue to red to green.

To disable or enable default video BIOS programming of the video

DAC color registers, use INT 10H function 12H (see Appendix A).

VGA

As on the EGA, VGA pixel values are decoded by the Attribute Controller, using
the palette registers, and then passed to the video DAC, following the same logic
as in alphanumeric modes (see Chapter 3). Thus, a pixel value selects the corre-
sponding palette register; the value in the palette register, along with the bit fields
in the Attribute Controller’s Color Select register, selects one of the 256 video
DAC color registers. The video DAC converts the 18-bit RGB value in its color
registers to the corresponding analog RGB signals, which drive the monitor.

The only exception to this scheme of attribute decoding occurs in 320-by-200
256-color mode. In this mode, as on the MCGA, each 8-bit pixel value specifies
one of the video DAC’s 256 color registers directly, without the Attribute Con-
troller’s mediation.

110 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Pixel Programming

Bit-Plane Programming

EGA and VGA @ InColor Card

Reading a Pixel’s Value

CGA @ HGC and HGC+ @ EGA
InColor Card © MCGA @ VGA

Setting a Pixel’s Value
CGA @ HGC and HGC+ @ EGA
InColor Card @ MCGA @ VGA

& Filling the Video Buffer
CGA @ HGC and HGC+ @ EGA and V

InColor Card @ MCGA

Many graphics programming techniques are based on routines that manipulate

individual pixels in the video buffer. This chapter presents the fundamentals of

pixel programming: reading a pixel’s value, setting the value of a pixel in the

video buffer, and initializing an area of the video buffer with a pattern of pixels.

Bit-Plane Programming

There is a fundamental difference between graphics-mode programming using

video subsystems whose video RAM is organized as parallel bit planes (the EGA,

the VGA, and the InColor Card) and graphics-mode programming for the other

IBM video subsystems. On the CGA, the MCGA, or the Hercules monochrome

adapter, your program accesses pixels by directly reading and writing bytes in

video RAM. In contrast, in native graphics modes on the EGA, VGA, or InColor

Card, your program cannot access video RAM directly. Instead, special hardware

logic in the video subsystem mediates accesses to pixels in the bit planes.

The graphics-mode bit planes on the EGA, VGA, and InColor Cards are addressed

in parallel; that is, when you execute a CPU read or write at a particular address in

the video buffer, the address refers not to one byte, but to four bytes, one in each

of the bit planes.

When you execute an 80x86 instruction that attempts to read data from an address

in the video buffer, four bytes of data are actually moved out of the buffer. The

data does not go directly to the CPU, however. Instead, it is copied into a set of

four 8-bit latches. Each latch is assigned to one of the four bit planes. Executing

an 8-bit CPU read from an address in the video buffer thus has the effect of trans-

ferring four bytes (32 bits) of data from the video buffer into the latches (see

Figure 5-1a). Instructions such as MOV reg,mem, LODS, and CMP reg,mem

require a CPU read, and thus cause the latches to be updated.

Similarly, instructions such as MOV mem, reg, STOS, and XOR mem, reg cause

a CPU write; in this case, all four bit planes can be updated in parallel using a

combination of the data in the latches, the data byte that the CPU writes, and a

predefined pixel value stored in a graphics control register (see Figure 5-1b).

Some CPU instructions require both a CPU read and a CPU write. (The CPU reads

a value from memory, performs an operation on it, and then writes the result back

to memory.) MOVS is an obvious example, but OR mem, reg, AND mem, reg,

and XOR mem, reg also generate a CPU read and write. When such an instruc-

tion refers to an address in video RAM, the latches are updated during the CPU

read, and then the bit planes are updated during the CPU write.

The use of latches to process bit-plane data in parallel lets you write deceptively

simple code. For example, consider the following fragment, which copies the

second byte of pixels in the video buffer to the first byte.

112 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

KR ee a ae Ok

8-bit CPU register

4-bit pixel data
(EGA, VGA: Set/Reset register)

(InColor: Read/Write Color register)

b.

Figure 5-1. Graphics mode data flow on the EGA, the VGA, and the InColor Card during

CPU (a.) read and (b.) write.

Chapter 5: Pixel Programming 113

mov ax, VideoBufferSegment

mov ds,ax

mov es,ax

mov Sa, | ; DS:SI -> second byte

mov (o bre 10) 2 BSD — >) fest byte

movsb

This code looks straightforward. The MOVSB instruction apparently copies one

byte from the memory location at DS:SI to the location at ES:DI— but this is not

really what takes place in graphics modes that use bit planes in the EGA, VGA, or

InColor video buffer.

What actually happens is this: The MOVSB instruction causes a CPU read, fol-

lowed by a CPU write. Because the CPU read references an address in the video

buffer, a byte from each bit plane at that address is loaded into the latches. Then,

because the CPU write references an address in the video buffer, the contents of

the latches are copied into the bit planes at the specified address. Thus, the

MOVSB actually causes four bytes of data to be moved instead of one.

There is more to this example than meets the eye. Consider what

would happen if you substituted a MOVSW instruction for the MOVSB.

Without bit planes and latches, this would result in two bytes of data

being copied instead of one byte. However, half of the pixel data

would be lost on the EGA, the VGA, or the InColor Card. The reason is

that the MOVSW executes as a sequence of two 8-bit CPU reads, fol-

lowed by two 8-bit CPU writes, so the second CPU read updates the

latches before the bytes latched by the first CPU read can be written.

For this reason, you should use 16-bit 80x86 instructions cautiously

when accessing the video buffer on the EGA, the VGA, and the InColor

Card. Instructions such as OR mem, reg, AND mem, reg, and

XOR mem, reg do not work properly with 16-bit data.

The latches clearly improve efficiency in moving data to and from the video

buffer, but the real fun begins in transferring data between the latches and the

CPU. Since the latches contain 32 bits of data and a CPU byte register contains

only eight bits, some sort of data compression must take place during CPU reads.

Conversely, in transferring data from the CPU to the bit planes, you can combine

the 8-bit CPU data byte with the contents of all four latches in a number of ways.

The key to graphics-mode programming on the EGA, the VGA, and the InColor

Card is to exploit the data transformations involving the CPU and the latches.

EGA and VGA

On the EGA and VGA, the Graphics Controller manages all transfers of data

among the CPU, the latches, and the video buffer. The EGA’s Graphics Controller

consists of two LSI chips; the VGA’s is part of the Video Graphics Array chip.

The Graphics Controller has nine registers addressable at port 3CFH via an

114 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

address register at port 3CEH. The values you store in the registers control the
way the Graphics Controller processes latched data during CPU reads and writes.

In a sense, the Graphics Controller lets you manipulate the latched pixel data two-
dimensionally. Some of the operations you can perform on the latched data are

byte-oriented; they affect each latch separately. Other operations are pixel-
oriented in that they regard the latched data as a set of eight pixel values; these
operations affect each pixel value separately.

The Graphics Controller can perform three different byte-oriented operations on

latched data. It can copy the contents of the latches to and from the video buffer;

this action occurs implicitly when a CPU write or read is executed. It can return

the contents of one of the latches to a CPU register during a CPU read. It can also

combine a data byte from a CPU register with the bytes in any or all of the latches

during a single CPU write.

The Graphics Controller also processes latched data pixel by pixel. During a CPU

read, the Graphics Controller can compare each latched pixel value with a pre-

defined value and return the result of the comparison to the CPU. During CPU

writes, it can combine a 4-bit CPU value with any or all pixel values in the

latches; it can use an 8-bit CPU value as a mask that indicates which of the eight

latched pixels are copied back to the bit planes; and it can combine the latched

pixel values with a predefined 4-bit value.

Both byte-oriented and pixel-oriented operations are programmed by selecting a

write mode and a read mode. Each write mode sets up a predefined sequence of

byte-oriented and pixel-oriented operations which occur when a CPU write is exe-

cuted. Similarly, each read mode defines a set of actions performed during CPU

reads. The EGA has three write modes and two read modes; the VGA has these

five modes and one additional write mode.

Until you become familiar with each of the Graphics Controller’s read and write

modes, their raison d’ etre may seem a bit obscure. However, each mode has practi-

cal advantages in certain programming situations, as the examples in this and

subsequent chapters demonstrate.

The Graphics Controller’s Mode register (05H) contains two bit fields whose

values specify the graphics read and write mode. For example, to establish read

mode 1 you would set bit 3 of the Mode register to 1; to set up write mode 2, you

would store the value 2 (10B) in bits 0 and 1 of the Mode register (Listing 5-1).

mov ax,0105h ; AH := 1 (reg 5 value)

; bit 3 := 0 (read mode 0)

; bits 0-1 := 1 (write mode 1)

; AL := register number

mov ax, 3CEh ; DX := Graphics Controller port

out Gx, ax

Listing 5-1. How to set Graphics Controller read and write modes. This example sets read

mode 0 and write mode 1 in in 640-by-350 16-color mode.

Chapter 5: Pixel Programming 115

The video BIOS default values for the Graphics Controller’s Mode

register and its other registers are listed in Figure 5-2. It is good prac-
tice to restore the Graphics Controller registers to their default values

after you modify them in your program.

Register Function Value

0 Set/Reset 0
1 Enable Set/Reset 0
2 Color Compare 0
3 Data Rotate 0
4 Read Map Select 0
5 Mode Bits O—3 always 0
6 Miscellaneous (depends on video mode)

7 Color Don’t Care OFH (16-color modes)
01H (640-by-480 2-color mode)

8 Bit Mask FFH

Figure 5-2. Default ROM BIOS values for EGA and VGA Graphics Controller registers.

Read mode 0

In graphics read mode 0, the Graphics Controller returns the contents of one of

the four latches to the CPU each time a CPU read loads the latches (see Figure 5-3).

The value in the Read Map Select register (04H) indicates which latch to read.

Read mode 0 thus lets you read bytes from each individual bit plane; this is useful

in transferring data between the bit planes and system RAM or a disk file.

Read Map Select register

ex Oxtix xx 7020

ee = = = = =- = = = =
==

CPU data

Ls OSL Oriy 120

Figure 5-3. EGA and VGA graphics read mode 0.

Read Mode 1
In graphics read mode 1, each of the eight pixel values latched during a CPU read
is compared with the value in the Color Compare register (02H). The result of the
comparison is returned to the CPU as a single byte (see Figure 5-4). Where a pixel
value matches the Color Compare value, a bit in the CPU data byte is set to 1;
where the values are different, the corresponding bit in the data byte is 0.

116 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Note how the value in the Color Don’t Care register (07H) interacts with the pixel
value and Color Compare value. In effect, setting a bit to 0 in the Color Don’t
Care value excludes a latch from the comparison. For example, a Color Don’t
Care value of 0111B causes only the three low-order bits of each pixel value to
participate in the comparison. Another example: If you store a 0 in the Color
Don’t Care register, all four bits in the comparison become ‘‘don’t care’’ bits, so
all pixel values match the Color Compare value, and the CPU always reads the
value 11111111B in read mode 1.

latches

bit planes
P Color Don't Care register

UL)

pixel values 1011 1100 0011 0101 0010 0011 1101 1010

AND with

Color Don't Care

101 1100 0011 0101 0010 0011 1101 1010
COMPARE with
(Color Compare AND
Color Don't Care)

00100100
CPU data byte Color Compare register

Figure 5-4. EGA and VGA graphics read mode 1.

Write mode 0

Graphics write mode 0 sets up a combination of byte-oriented and pixel-oriented

operations that occur when a CPU write is executed. The data byte written by the

CPU can be used to update any or all of the bit planes; at the same time, a pre-

defined pixel value can be used to update any or all of the eight pixels involved.

This two-dimensional update of the latches is controlled in several different ways

using the values in the Enable Set/Reset, Data Rotate/Function Select, and Bit

Mask registers (see Figure 5-5).

The Bit Mask register (08H) specifies how the new value of each of the eight pix-

els in the video buffer is derived. Where a bit in the Bit Mask register equals 0, the

corresponding pixel value is copied directly from the latches into the video

buffer. For each 1 bit in the Bit Mask value, the corresponding pixel is updated

with the latched pixel value combined with either the CPU data or the pixel value

in the Set/Reset register. Thus, if a CPU write immediately follows a CPU read at
the same address, the only pixels updated are those for which the corresponding

bit in the Bit Mask register is set to 1.

Chapter 5: Pixel Programming 117

Data Rotate/Function Select register

xe ORO SRK eX

replace, AND, OR, XOR |

latches

bit
planes

(—— pee er eee lak

Set/Reset register|_ x_x_x x 0 1 1 COC Crit
Ne hae ie ae eat aa Bit Mask register
Lpeedmalerilmnt som . veg (Pixels 0-3 are derived
x xxxi1i1i1d1 from Set/Reset;

‘ pixels 4-7 are copied Enable Set/Reset register fran Watches}

a.

latches

bit
planes

! 00010111 Bit Mask register
(Pixels 0-3 are derived

Rotate from CPU data;
ihe the Aaa govt pixels 4-7 are copied

aoa from latches.)

x x x 00000

Data Rotate/Function CPU data byte
Select register

b.

Figure 5-5. EGA and VGA graphics write mode 0: (a.) Enable Set/Reset Value = 111 IB,
(b.) Enable Set/Reset value = OOOOB.

118 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The Data Rotate/Function Select register (03H) contains two bit fields whose con-

tents affect the way the latched pixels are updated. Bits 3 through 4 are important
because their value specifies which bitwise logical operation (AND, OR, XOR, or
replace) is used to update the pixels (see Figure 5-6). Bits 0 through 2 specify the

number of bits by which to right-rotate the CPU data byte before combining it
with latched data.

Bit Value Function
Bit 4 Bit 3

0 0 Replace
0 1 AND
1 0 OR
1 1 XOR

Figure 5-6. Functions available for updating pixels in EGA and VGA write modes 0, 2, and
3. Bits 3 and 4 of the Data Rotate/Function Select register specify which is used.

This data-rotate capability is not particularly useful. In practice, it is

generally easier to let the CPU rotate and shift data before writing it to

the bit planes than it is to program the Graphics Controller to do this.

The value in the Enable Set/Reset register (register 01H) determines whether the

bit planes are updated byte by byte or pixel by pixel. When the Enable Set/Reset

value is OFH (1111B), each pixel is updated by combining the latched pixel value

with the value in the Set/Reset register (register 00H) using the logical operation

that the Data Rotate/Function Select register specifies (refer to Figure 5-Sa).

When the Enable Set/Reset value is 0, the rotated CPU data byte is combined with

the bytes in each of the latches, again using the function that the Data Rotate/

Function Select register specifies (see Figure 5-5b). In either case, only the pixels

masked by the Bit Mask register are updated.

Of course, you can set the Enable Set/Reset register to any value from

0 through OFH. Each bit in each pixel is then updated by combining it

either with the corresponding bit in the Set/Reset register or with the

corresponding bit in the CPU data byte—depending on the value of

the corresponding bit in the Enable Set/Reset register. Needless to say,

this kind of programming is tricky and infrequently used.

Write mode 1

In write mode 1, the latches are copied directly to the bit planes when a CPU write

occurs (see Figure 5-7). Neither the value of the CPU data byte nor those of the

Data Rotate/Function Select, the Bit Mask, the Set/Reset, and the Enable Set/Reset

registers affect this process. Clearly, for a write mode 1 operation to make sense,

you must first perform a CPU read to initialize the latches.

Chapter 5: Pixel Programming 119

latches

Figure 5-7. EGA and VGA graphics write mode 1.

bit planes

Write mode 2

In write mode 2, the low-order bits of the byte written by the CPU play the same

role as the Set/Reset register value in write mode 0. That is, the bit planes are up-

dated by combining the pixel values in the latches with the CPU data, using the

logical operation specified in the Data Rotate/Function Select register (see

Figure 5-8). As in write mode 0, the Bit Mask register specifies which pixels are

updated using the combined pixel values and which pixels are updated directly

from the latches.

Data Rotate/Function Select register

replace, AND, OR, XOR

latches

110000990

|

ONO OC Tek oe af

B

|

0

it Mask register CPU data

Figure 5-8. EGA and VGA graphics write mode 2.

Write mode 3
In write mode 3 (supported on the VGA only), the pixels are updated by combin-

ing the pixel values in the latches with the value in the Set/Reset register. Again,

the Data Rotate/Function Select register specifies the logical operation used to

combine the values. The CPU data byte is rotated by the number of bits indicated

in the Data Rotate/Function Select register and combined with the value in the Bit
Mask register using a logical AND. The resulting bit mask then plays the same

role as the Bit Mask register value in write modes 0 and 2; that is, it determines

which pixels in the bit planes are updated by combining the latched pixel values

with the Set/Reset value, and which are updated directly from the latches (see
Figure 5-9).

120 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Enable Set/
Reset register LX_X_X xX 1 1 1 1

Set/Reset
register

110000

bit
planes

replace, AND,

OR, XOR

—
LE LRNH LO ONILO fi[O40 eI T1000

Data Rotate/Function Select CPU data

register

Figure 5-9. VGA graphics write mode 3.

Sequencer Map Mask
One additional level of control is available in all of the EGA’s and the VGA’s

Graphics Controller write modes. You can use the Sequencer Map Mask register

(Sequencer register 02H) to selectively enable or disable data transfers to the bit

planes. In 16-color graphics modes, bits 0 through 3 of this register are normally

set to 1 to allow graphics writes to access all four maps. However, by zeroing one

or more of these bits, you can write-protect the corresponding memory maps.

The Sequencer Map Mask register is not often used, because the Graphics

Controller provides better control for pixel-oriented operations. Use of this regis-

ter is better suited to techniques such as bit-plane layering (see Chapter 12).

InColor Card

The InColor Card has two gate arrays, the Encoder and the Decoder, which medi-

ate CPU accesses to video RAM. The Encoder gate array participates in CPU

writes to video RAM. The Decoder gate array manages the transfer of data from

video RAM to the CPU, as well as to the card’s attribute-decoding circuitry.

Chapter 5: Pixel Programming 121

The programming interface to the InColor Card’s graphics-mode hardware, in-

cluding the Encoder and Decoder chips, is unified through the card’s control

register set at I/O ports 3B4H and 3BS5H (see Figure 5-10). There is no distinction

between the Encoder, the Decoder, and their associated circuitry from a software

point of view. The InColor Card’s graphics-mode control registers are similar to

control registers on the EGA and the VGA (see Figure 5-11).

a

Register Number Register Function Read/Write Status

18H Plane Mask register Write only
19H Read/Write Control register Write only
1AH Read/Write Color register Write only
1BH Latch Protect register Write only

Figure 5-10. Graphics control registers on the Hercules InColor Card.

InColor EGA and VGA

Plane Mask register Sequencer Map Mask register
Attribute Controller Color Plane

Enable register
Read/Write Control register Graphics Controller Mode register

Graphics Controller Color Don’t Care
register

Read/Write Color register Graphics Controller Set/Reset register
Palette register Attribute Controller Palette registers

Figure 5-11. Functionally similar control registers on the EGA, VGA, and InColor Card.

As on the EGA and VGA, video RAM accesses in graphics mode are performed
using a set of four 8-bit latches. CPU reads and writes cause bytes to be trans-
ferred in parallel between the latches and the corresponding bit planes. When a
CPU read is executed, the Decoder latches a byte from each bit plane and returns a
single byte of data to the CPU. When a CPU write is executed, the Encoder com-
bines the latched data with the pixel values stored in the Read/Write Color regis-
ter and updates the bit planes with the result.

Like the EGA and VGA, the InColor Card can process CPU data and latched data
in several ways. The card supports four graphics write modes (see Figure 5-12),

Write Mode CPU Data Bit = 0 CPU Data Bit = 1

0 Background value Foreground value
1 Latch Foreground value
2 Background value Latch
3 NOT latch Latch

eee

Figure 5-12. Source of pixel data in InColor graphics write modes.

122 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

selected by bits 4 and 5 of the Read/Write Control register (19H). There is only

one graphics read mode, which is similar to read mode 1 on the EGA and VGA.

Write modes 0-3

In all four InColor graphics write modes, the CPU data functions as an 8-bit mask.

The Encoder uses the value of each bit in the mask to determine how to update the

corresponding pixel value in the latches. That is, the source of the pixel value at a

particular bit position is determined by the value of the corresponding bit in the

CPU data byte.

For example, in graphics write mode 1, when a bit in the CPU data byte is 1, the

corresponding pixel in the video buffer is replaced with the foreground value in
the Read/Write Control register; when a bit in the CPU data byte is 0, the corre-

sponding pixel value is copied from the latches. For example, in Figure 5-13, the

pixels corresponding to bits 0 through 3 are replaced with the Read/Write Control

register foreground value, while the remaining pixels are updated from the pixel

values in the latches.

Similarly, in the other three graphics write modes, the value of each bit in the

CPU data byte controls how the corresponding pixel is updated. The write modes

differ only in how the pixel values are derived (see Figure 5-12). In write mode 0,

either the foreground or the background value in the Read/Write Control register

replaces the pixels in the bit planes. In write mode 2, for each 0 bit in the CPU

data byte, the Read/Write Control register background value is used to update the

corresponding pixel in the bit planes. In write mode 3, each 0 bit in the CPU data
byte causes the corresponding pixel in the video buffer to be replaced with the bit-

wise NOT of the pixel value in the latches.

Plane Mask register

Oc OP OPOPKTXE xX? x

latches

Read/Write Color CPU data

register (Pixels 0-3 copied from foreground value
in R/W Color register;

pixels 4-7 copied from latches.)

Figure 5-13. InColor graphics write mode 1.

Chapter 5: Pixel Programming 123

CPU writes affect only those bit planes specified in the Plane Mask register (18H).

This register’s function is thus analogous to that of the EGA’s Sequencer Map

Mask register. Bits 4 through 7 of this register control which of the four bit planes

are writable; setting any of these bits to 1 prevents updating of the corresponding

bit planes during CPU writes.

Read mode
The InColor Card has only one graphics read mode (see Figure 5-14). It resembles

read mode 1 on the EGA and the VGA. When a CPU read is executed, the latches

are loaded with data from the bit planes. Unlike the EGA and the VGA, however,

the InColor Card lets you control which individual pixel values are latched during

a CPU read. The bit mask value in the Latch Protect register (1BH) indicates

which pixel values are latched. Where a bit in the Latch Protect register is 0, the

corresponding pixel value is latched; where a bit is 1, the corresponding pixel

value in the latch remains unchanged.

000 0 0 0 0 O | Latch Protect register

——>1 15700511

bit ——>| 0 1:50 10910
Planes ____»/7 91501401

10110710 Read/Write

Control register

xe 1) SixeOsT0 TOKO

Read/Write
Color register

rr
Ne-----.-------

pixel values 1011 1100 0011 0101 0010 0011 1101 1010

OR with
Don't Care value

1011 1100 0011 0101 0010 0011 1101 1010
COMPARE with
(background value PQ scerss eee certeenee!
OR Don't Care value)

0-0=1--0-0-1 0.0

XOR with
Mask Polarity bit

CPU data
11611611

Figure 5-14. InColor graphics read.

After the specified pixel values in the latches have been updated from the bit
planes, the Decoder compares each pixel value in the latches with the background
value in the Read/Write Color register. The 8-bit result of the comparison is
returned to the CPU. This is similar to read mode 1 on the EGA and the VGA.

124 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Bits 0 through 3 of the Read/Write Control register are ‘‘don’t care’’ bits

analogous to the Color Don’t Care value on the EGA and the VGA. Setting a Read/

Write Control ‘‘don’t care’’ bit to 1 has the effect of excluding a latch from the

background value compare operation. If you set all four ‘‘don’t care’’ bits to 1, all

pixel values match the background value no matter what it is.

The polarity of the bits in the result returned to the CPU depends upon the value

of the Mask Polarity bit (bit 6 of the Read/Write Control register). When this bit

is 0, bits in the result are 1 where a pixel value in the latches matches the back-

ground value. Setting the Mask Polarity bit to 1 inverts the result; that is, bits are

1 where a pixel value in the latches does not match the background value.

Reading a Pixel’s Value
Now it is time to turn to some specific programming techniques for manipulating
pixels on the various PC and PS/2 video subsystems. Once you calculate the byte

and bit offsets of a particular pixel in the video buffer, determining the pixel’s
value is a matter of isolating the bits that represent it in the buffer. This is as true

on the CGA and HGC, with their simpler video RAM architecture, as it is on more

complicated video subsystems that use bit planes.

CGA

In 640-by-200 2-color mode, the value of a pixel is determined simply by reading

the byte that contains the pixel from the video buffer and testing the value of the

bit that represents the pixel (see Listing 5-2).

TITLE ‘TListang o-2.

NAME ReadPixel06

PAGE 55,132

Name: ReadPixel06

Function: Read the value of a pixel in 640x200 2-color mode

Caller: Microsoft C:

int ReadPixel06(x,y);

Ne Ne Ne Ne Ne Se Ne Ne Ne Se Ne

int 7 V5 /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpt6é]

TEXT SEGMENT byte public 'CODE'
ASSUME cs: _TEXT

EXTRN PixelAddr06:near

Listing 5-2. Determining a pixel value in CGA 640-by-200 2-color mode. (continued)

Chapter 5: Pixel Programming 125

Listing 5-2. Continued.

PUBLIC

_ReadPixel106 PROC

push

mov

mov

mov

call

mov

shr

and

xor

mov

pop
ret

_ReadPixel06 ENDP

_TEXT ENDS

END

_ReadPixel06

near

bp ; preserve caller registers

bp, sp

ax, ARGy pes yy
bx, ARGx 3 BX s=)x

PixelAddr06 ; AH := bit mask

; ES:BX -> buffer

7 CL “2=cF bits, to shure

al,es: [bx] ; AL := byte containing pixel

al,cl ; shift pixel value to low-order bits

al,ah ; AL := pixel value

ah,ah ; AX := pixel value

sp,bp ; restore caller registers and return

bp

The technique for determining the value of a pixel in 320-by-200 4-color graphics

mode, as shown in Listing 5-3, is similar. After isolating the bits that represent the

pixel, however, your program must shift them rightward so that the value
returned represents the actual pixel value.

TITLE "Listing 5-3!
NAME ReadPixel04

PAGE S52

; Name: ReadPixel04

7; Function: Read the value of a pixel in 320x200 4-color mode

; Caller: Mrerosore Gr

: int ReadPixel04 (x,y);

; divi: soe Vi /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing
ARGy EQU word ptr [bp+6]

_ TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT

EXTRN PixelAddr04:near

Listing 5-3. Determining a pixel value in CGA 320-by-200 4-color mode. (continued)

126 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-3. Continued.

PUBLIC _ReadPixel04

_ReadPixel04 PROC near

push bp ; preserve caller registers
MOv bp, sp

Mov ax, ARGy 7; AX := y

mov bx, ARGx PBS se se

call PixelAddr04 > AH := bit mask

; ES:BX -> buffer

7 Cli = # bits to shirt

mov al,es: [bx] ; AL := byte containing pixel

shr al,cl ; shift pixel value to low-order bits

and al,ah ; AL := pixel value

xor ah,ah ; AX := pixel value

Mov sp, bp # restore caller registers and return

pop bp
Fret

_ReadPixel04 ENDP

_ TEXT ENDS

END

HGC and HGC+

The only difference between the pixel-read routines for the Hercules mono-

chrome adapters and the ones used in the CGA’s 640-by-200 2-color mode lies in

how the pixel’s address is computed. For example, you can adapt the CGA routine

shown in Listing 5-2 for the HGC simply by substituting PixelAddrHGC for

PixelAddr06.

EGA

In CGA-emulation modes, the routines used for the CGA work unchanged.

However, in 16-color 200-line modes and in 350-line modes, you must program

the Graphics Controller to isolate the bits that represent a pixel in the video

buffer’s bit planes, as the routine in Listing 5-4 does.

TITLE Wisting.5=4"

NAME ReadPixel10

PAGE So, se

7

; Name: ReadPixel10

; Function: Read the value of a pixel in native EGA graphics modes

7 Callens Mirerosoft C:

,

int ReadPixel10(x,y); ,

Listing 5-4. Determining a pixel value in native EGA graphics modes. (continued)

Chapter 5: Pixel Programming 127

Listing 5-4. Continued.

; mts eso V 5 /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpt+6]

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: _TEXT

EXTRN PixelAddr10:near

PUBLIC _ReadPixel10

_ReadPixel10 PROC near

push bp ; preserve caller registers

mov bp, sp
push si

mov ax, ARGy 7; AX 3= y

mov bx, ARGx ; BX 3= =x

call PixelAddr10 ; AH := bit mask

7 BS: BX => busier

7 CL ¢= # bits; to shite

mov ch,ah

shl olny tent ; CH := bit mask in proper position

mov si,bx ; ES:SI -> regen buffer byte

xor bl,bl ; BL is used to accumulate the pixel value

mov dx, 3CEh ; DX := Graphics Controller port

mov ax, 304h ; AH := initial bit plane number

; AL := Read Map Select register number

L0O1: out dx, ax ; select bit plane

mov bh,es: [si] ; BH := byte from current bit plane

and bh, ch 7 mask one bit

neg bh +; bit 7 of BH := 1 (if masked bit = 1)

; bit 7 of BH := 0 (if masked bit = 0)

rol bx, 1 ; bit 0 of BL := next bit from pixel value

dec ah ; AH := next bit plane number

jge L01

mov al,bl ; AL := pixel value

xor ah,ah ; AX := pixel value

pop si 7 restore caller registers and return

mov sp,bp

pop bp
ret

_ReadPixel10 ENDP

_ TEXT ENDS

END

128 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

This routine uses the Graphics Controller’s read mode 0 to read a single byte from

each of the EGA’s planes. As the bytes are read, the desired pixel’s bits are

masked and concatenated to form the pixel’s value.

In 640-by-350 monochrome graphics mode, only bit planes 0 and 2 are

used to represent pixel values. In these modes, only bits from these

two planes are concatenated to form a pixel value (see Listing 5-5).

As described in Chapter 4, 640-by-350 graphics modes are mapped

differently on an EGA with only 64 KB of video RAM than on an EGA

with more memory. Memory maps 0 through 1 and 2 through 3 are

chained to form two bit planes. Pixels at even byte addresses are
represented in maps 0 and 2, while pixels at odd byte addresses are
represented in maps 1 and 3. A routine to read pixel values in these

modes must use the pixel’s byte address to determine which maps to

read (see Listing 5-6).

TITLE ihastang /5—9""

NAME ReadPixel0F

PAGE 5S petaz

; Name: ReadPixel0F

; Function: Read the value of a pixel in 640x350 monochrome mode

; Caller: Microsoft C:

; int ReadPixel0F (x,y);

; int Vy? /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bp+6]

TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

EXTRN PixelAddr10:near

PUBLIC _ReadPixel0F

_ReadPixel0F PROC near

push bp j; preserve caller registers

mov bp, sp

push si

mov ax, ARGy Fie es ny:

mov bx, ARGx 7 EBk oe

call PixelAddr10 ; AH := bit mask

; ES:BX -> buffer

CL 2= * bits to shrtt

Listing 5-5. Determining a pixel value in EGA monochrome graphics mode. (continued)

Chapter 5: Pixel Programming 129

Listing 5-5. Continued.

’ concatenate bits from bit planes 2 and 0

mov ch,ah

shl chyel ; CH := bit mask in proper position

mov si,bx ; ES:SI -> regen buffer byte

mov dx, 3CEh ; DX := Graphics Controller port

mov ax,204h ; AH := initial bit plane number

; AL := Read Map Select register number

xor bi bil ; BL is used to accumulate the pixel value

LO1: out dx,ax ; (same as before)

mov bh,es: [si]

and bh, ch

neg bh

rol bx, 1

sub ah, 2 ; decrement map number by 2

jge L01

mov al,bl

xor ah,ah

pop Si

mov sp,bp

pop bp
ret

_ReadPixel0F ENDP

_TEXT ENDS

END

TITLE ‘Listing 5-6'
NAME ReadPixel10

PAGE S57 132

; Name: ReadPixel10

7 Function: Read the value of a pixel in 640x350 modes on 64K EGA

7 Caller: Microsoft C:

; aint ReadPixel10 (x,y);

; anes, Vr /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bp+6]

(continued)

Listing 5-6. Determining a pixel value in 640-by-350 modes on an EGA with 64 KB.

130 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-6. Continued.

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT

EXTRN PixelAddr10:near

PUBLIC _ReadPixel10
_ReadPixel10 PROC near

push bp ; preserve caller registers

mov bp, sp

push si

mov ax, ARGy 7; AX 3=y

mov bx, ARGx 7 BX 2= x

call PixelAddr10 ; AH := bit mask

7 BSSBX => butter

7 CL V="*F bits to shite

+ concatenate bits from bit planes 2 and 0 (even byte address)

7 or 3 and 1 (odd byte address)

mov ch,ah

shl ch,cl ; CH := bit mask in proper position

mov S270 ; ES:SI -> regen buffer byte

Mov ah,bl ; AH := low-order byte of address

and ax,100h ; AH := low-order bit of address

; AL := 0

add ax,204h ; AH := initial bit plane number (2 or 3)

; AL := Read Map Select register number

mov dx, 3CEh ; DX := Graphics Controller port

xor bl,bl ; BL is used to accumulate the pixel value

LO1: out dx,ax ; (same as before)

mov bh,es: [si]

and baycm

neg bh

rol bx, |

sub ah, 2

jge L01

mov al,bl

xor ah,ah

pop si

mov sp, bp

pop bp
ret

_ReadPixel10 ENDP

_ TEXT ENDS

END

Chapter 5: Pixel Programming 131

InColor Card

As with the EGA, to read a pixel’s value on the InColor Card requires reading

each bit plane separately. To do this, you must use the “‘don’t care’’ bits in the

Read/Write Control register along with the background value in the Read/Write

Color register to isolate the contents of each latch.

The routine in Listing 5-7 accumulates a pixel’s 4-bit value by concatenating one
bit from each of the InColor card’s four bit planes. The routine determines the

contents of each of the bit planes by setting the background value in the Read/
Write Color register to OFH (1111B) and by individually zeroing each Read/Write

Control register “‘don’t care’’ bit. When each CPU read is executed (with the AND

CH, ES: [SI] instruction), the value returned to the CPU is thus the 8-bit value in

one of the four latches. This value is ANDed with the bit mask in CH, and the iso-
lated bits are accumulated in BL.

TITLE "Listing 5-7'

NAME ReadPixelInc

PAGE 557 ls2

’

; Name: ReadPixelInc

; Function: Read the value of a pixel in InColor 720x348 16-color mode

+ Caller: Microsoft C:

2 int ReadPixelInC (x,y) ;

z int x,V;

ARGx EQU word ptr [bp+4] ; stack frame addressing
ARGy EQU word ptr [bp+6]

DefaultRWColor EQU OFh ; default value for R/W Color Register

BIE SEGMENT byte public 'CODE'
ASSUME cs: TEXT

EXTRN PixelAddrHGC:near

PUBLIC —_ReadPixelInc

_ReadPixelInc PROC near

push bp * preserve caller registers
mov bp, sp

push si

mMOv ax, ARGy ; AX := y
mov bx, ARGx 7; BX 3= x
call PixelAddrHGC + AH := bit mask

+ ES:BX -> buffer

: CL 3=> # bits to shaft

Listing 5-7. Determining a pixel value in InColor graphics mode. (continued)

132 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-7. Continued.

; set up to examine

mov

shl

mov

Mov

mov

out

mov

dec

each bit plane separately

si,bx 5

ah,cl

el ali ;

dx, 3B4h ;

ax, OFO1Ah fj

ax, ax :

bx, 800h iO

ax ;

; loop across bit planes by updating "don

LO1: mov

xor

out

mov

and

neg

rel

shr

jnz

ah,bh ;

ah,1111b ;

dx, ax 7

eh,.cl ;

ch,es: [sil] :

ch ;

bl,1 ;

bh, 1 ;

L01 ;

; restore default state

_ReadPixelInc

“rex

mov

out

inc

mov

out

mov

pop
mov

pop
ret

ENDP

ENDS

END

ah, 40h ;

dx,ax

ax ;

ah, DefaultRWColor

dx, ax

ax, bx ;

si ;

sp,bp
bp

,

ES:SI -> buffer

CL := bit mask in proper position

DX := graphics control port

AH bits 4-7 := 1111b (background value)

AL := 1Ah (R/W Color Register)

set background value

BH = 10005 “Guitial “don"t eare” bits)

BL := 0 (initial value for result)

AL := 19h (R/W Control Register number)

t care" bits

AH bits 0-3 := next "don’t care" bits

AH bit 6 := 0 (Mask Polarity bit)

invert "don’t care" bits

set R/W Control Register

CH := bit mask

latch bit planes

CH <> Osa f batt in latches set

GE set Af sCHe<> 10

accumulate result in BL

BH := shifted "don’t care" bits

loop until shifted out of BH,

at which point BX = pixel value

AH := default R/W Control Register value

AL := 1Ah (R/W Color Register number)

AX := pixel value

restore caller registers and return

Chapter 5: Pixel Programming 133

As usual in bit-plane programming, the tricky part of this process is

in setting up the control register values to produce the desired result.

For example, here is what happens when the AND CH, ES: [ST] in-

struction executes:

1. One byte from each bit plane is copied into the latches.

2. Each of the eight pixels in the latches is compared with the back-

ground value (1111B), and the eight bits that reflect the result of

the eight comparisons are returned to the CPU. Because only one

of the four ‘‘don’t care’’ bits in the Read/Write Control register is

0, only one of the four bits in each pixel value participates in each

comparison. If this bit is 1, the comparison is true, and the Decoder

returns a 1 in the bit position corresponding to this pixel value.

3. The eight bits returned to the CPU are ANDed with the bit mask in

CH to give the desired result.

That’s a lot of action for a single AND instruction.

MCGA

In 640-by-200 2-color and 320-by-200 4-color modes, the routines written for the

CGA (shown in Listings 5-2 and 5-3) also work on the MCGA. The two other

MCGA graphics modes pose no additional problems (see Listings 5-8 and 5-9),

because they use no buffer interleave as do CGA-compatible modes, and because
there are no bit planes to worry about.

TITLE TLastang o=6'"

NAME ReadPixeli1

PAGE SS taZ

; Name: ReadPixel11

? Function: Read the value of a pixel in 640x480 2-color mode (MCGA or VGA)

; Caller: Microsoft C:

; int ReadPixel11 (x,y);

; ani Ky /* pixel coordinates */

ARGx EQU word ptr [bp+4] ; stack frame addressing
ARGy EQU word ptr [bp+6]

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT

EXTRN PixelAddr10:near

(continued)

Listing 5-8. Determining a pixel value in MCGA and VGA 640-by-480 2-color mode.

134 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-8. Continued.

_ReadPixel11

_ReadPixel11

_TEXT

; Name:

; Function:

* Caller:

ARGx
ARGy

_TEXT

PUBLIC

PROC

push

Mov

mov

mov

call

mov

shr

and

xor

mov

pop
ret

ENDP

ENDS

END

TITLE

NAME

PAGE

_ReadPixel11

near

bp ;
bp, sp

ax, ARGy 2

bx, ARGx ;

PixelAddr10 ;

al,es: [bx] 3

al,cl ;

al,ah ;

ah,ah ;

sp, bp ;

bp

"Listing 5-9!

ReadPixel13

55; 1132

ReadPixel13

preserve caller registers

AX := y

BX := x

AH := bit mask

ES:BX -> buffer

CL := # bits to shift

AL := byte containing pixel

shift pixel value to low-order bits

AL := pixel value

AX := pixel value

restore caller registers and return

Read the value of a pixel in 320x200 256-color mode

(MCGA and VGA)

Microsoft C:

EQU

EQU

SEGMENT

ASSUME

EXTRN

int ReadPixel13(x,

int x,y;

word ptr [bpt+4] ;

word ptr [bpt6]

byte public 'CODE'

cs;_TEXT

PixelAddr13:near

yy)?

/* pixel coordinates */

stack frame addressing

(continued)

Listing 5-9. Determining a pixel value in MCGA and VGA 320-by-200 256-color mode.

Chapter 5: Pixel Programming 135

Listing 5-9. Continued.

PUBLIC _ReadPixel13

_ReadPixel13 PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy PP = VY

mov bx, ARGx peBX ss=0x

call PixelAddr13 ,AESEBS => buffer

mov al,es: [bx] ; AL := pixel value

xOr ah, ah ; AX := pixel value

mov sp,bp

pop bp
ret

_ReadPixel13 ENDP

_ TEXT ENDS

END

Once you write pixel-read routines for the CGA, the EGA, and the MCGA, you

have covered all the bases as far as the VGA is concerned. The only VGA graphics

mode not available on the other subsystems is 640-by-480 16-color mode. How-

ever, pixel representation and addressing are the same in this mode as in the

EGA’s 640-by-350 16-color mode, so you can use the routine in Listing 5-4

for both.

Setting a Pixel’s Value
In some ways, setting a pixel’s value is the converse of determining its value.

Once the byte and bit offsets of a particular pixel have been calculated, setting

its value is a simple matter of putting the right bits in the right places in the

video buffer.

What complicates pixel-setting routines is that you may not always wish simply to

replace a pixel’s old value with a new value. It is sometimes desirable to derive a
pixel’s new value by performing a bitwise logical operation on its old value. This

is why the EGA and the VGA Graphics Controllers directly support logical AND,
OR, and XOR operations on pixel values, as well as direct replacement of old

values with new ones.

Since the bulk of the overhead in a pixel-setting routine is in calculat-

ing the pixel’s location in the video buffer, you can keep your code

small and modular by integrating different pixel-value manipulations

into a single routine rather than writing separate routines to replace

136 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

CGA

pixels and to perform bitwise logical operations on them. The exam-

ples in this chapter combine these different pixel-value operations into

unified routines.

Where each bitwise operation requires a different subroutine, the sub-

routine’s address is stored in a variable (Set PixelOp). This tech-

nique is more flexible than coding a jump to the desired pixel

operation (replace, AND, OR, or XOR), because you can change the

address in the variable with another independent subroutine.

The examples in this chapter do not include code for updating a

pixel’s value by performing a bitwise NOT operation. You can use the

XOR operation to obtain the same result as NOT without decreasing

performance and without writing additional code.

To set a pixel in 640-by-200 2-color mode, mask the appropriate bit in a byte in the

video buffer and then set the bit’s value. The routine in Listing 5-10 implements

four different ways of setting the value—by replacing the old pixel value with a

new value and by using the logical operations OR, AND, and XOR.

TITLE "Listing 5-10'
NAME SetPixel06

PAGE 555132

; Name: SetPixel06

; Function: Set the value of a pixel in 640x200 2-color mode

+ Caller: Microsoft C:

3 void SetPixel(x,y,n);

: int. x,y; /* pixel coordinates */

- int. mn; /* pixel value */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpt6]

ARGn EQU byte ptr [bpt+8]

DGROUP GROUP _DATA

TEXT SEGMENT byte public 'CODE'

a ASSUME cs:_TEXT,ds:DGROUP

EXTRN PixelAddr06:near

PUBLIC _SetPixel06

Listing 5-10. Setting a pixel value in CGA 640-by-200 2-color mode. (continued)

Chapter 5: Pixel Programming 137

Listing 5-10. Continued.

_SetPixel06 PROC

push

mov

mov

mov

call

mov

shl

jmp

ReplacePixel06: not

and

or

jmp

ANDPixel06: test

jnz

L0O1: not

and

jmp

ORPixel06: test

72

OF,

jmp

XORPixel06: test

jz

xor

LO2: mov

pop
ret

_SetPixel06 ENDP

near

bp
bp, sp

ax, ARGy

bx, ARGx

PixelAddr06

al,ARGn

ax,cl

preserve caller registers

AX := y

BX := x

AH := bit mask

ES:BX -> buffer

CL := # bits to shift left

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

word ptr SetPixelOp06 7 jump to Replace, AND,

ah

es: [bx],ah

es: [bx],al

short L02

al,al

L02

ah

es: [bx],ah

short L02

al,al

LO2

es: [bx],al

short L02

al,al

L02

es: [bx],al

sp, bp
bp

;

; OR or XOR routine

routine to Replace pixel value

AH := inverse bit mask

zero the pixel value

set the pixel value

routine to AND pixel value

do nothing if pixel value = 1

AH := inverse of bit mask

set bit in video buffer to 0

routine to OR pixel value

do nothing if pixel value = 0

set bit in video buffer

routine to XOR pixel value

do nothing if pixel value = 0

XOR bit in video buffer

restore caller registers and return

(continued)

138 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-10. Continued.

STEXT ENDS

_DATA SEGMENT word public 'DATA'

SetPixelOp06 DW ReplacePixel06 j; contains addr of pixel operation

_ DATA ENDS

END

The routine for 320-by-200 4-color mode is similar. This routine, shown in

Listing 5-11, differs from the routine for 640-by-200 2-color mode (see Listing

5-10) only in its technique for computing pixel addresses and in its representation

of pixels in bit fields that are two bits wide.

TITLE “hasting o-

NAME SetPixel04

PAGE 5S poe

; Name: SetPixel04

; Function: Set the value of a pixel in 320x200 4-color mode

a Caters Microsoft Cs

; void SetPixel(x,y,n);

- int x;y? /* pixel coordinates */

; int, a /* pixel value */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpté6]

ARGn EQU byte ptr [bpt+8]

DGROUP GROUP _DATA

TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT,ds:DGROUP

EXTRN PixelAddr04:near

PUBLIC SetPixel04

_SetPixel04 PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy SAX Sy

mov bx, ARGx ; BX := x

Listing 5-11. Setting a pixel value in CGA 320-by-200 2-color mode. (continued)

Chapter 5: Pixel Programming 139

Listing 5-11. Continued.

ReplacePixel04:

ANDPixel04:

ORPixel04:

XORPixel04:

L02:

_SetPixel04

TEXT

_DATA

SetPixeloOp04

_DATA

HGC and HGC+

call

mov

shl

jmp

not

and

jmp

not

or

and

jmp

OL:

jmp

xOr

mov

Pop

ret

ENDP

ENDS

SEGMENT

DW

ENDS

END

PixelAddr04 AH := bit mask

ES:BX -> buffer

CL := # bits to shift left

al,ARGn

ax,cl ; AH := bit mask in proper position

; AL := pixel value in proper position

word ptr SetPixelOp04 ; jump to Replace, AND,

; OR or XOR routine

routine to Replace pixel value

ah ; AH := inverse bit mask

es: [bx],ah

es: [bx],al

short L02

ah

al,ah

es: [bx],al

short L02

es: [bx],al

short L02

es: [bx],al

sp,bp

bp

word public

ReplacePixel04

zero the pixel value

set the pixel value

routine to AND pixel value

; AH := inverse bit mask

; AL all 1’s except pixel value

routine to OR pixel value

routine to XOR pixel value

restore caller registers and return

7 contains addr of pixel operation

As you might expect, a routine for writing a pixel in the HGC’s 720-by-348 mono-
chrome graphics mode can be derived from the equivalent routine for the CGA’s
640-by-200 2-color mode in Listing 5-10 by substituting the HGC’s pixel-address
computation routine (Pixe1lAddrHGC) for the CGA’s.

140 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

EGA

You don’t need to worry about CGA-emulation modes (640-by-200 2-color and
320-by-200 4-color), because the routines that work on the CGA work equally well
on the EGA. However, things become considerably more complicated in the EGA’s
native graphics modes. In these modes, there are several different ways you can
program the Graphics Controller to set the value of an individual pixel. Also, the

pixel-setting routine must properly handle the video memory maps in mono-

chrome and 640-by-350 4-color graphics modes (on an EGA with 64 KB).

Write mode 0
The method for setting a pixel’s value in write mode 0 is shown in Listing 5-12.
First, as usual, you calculate the byte offset and bit mask, which identify the

pixel’s location in the video buffer. Then you program the Graphics Controller:

Set up write mode 0, store the bit mask value in the Bit Mask register, and con-

figure the Set/Reset and Enable Set/Reset registers for the pixel value. Then you

can perform a CPU read to latch the bit planes, followed by a CPU write to copy

the contents of the latches and the new pixel value into the bit planes.

TITLE "Listing 5-12'
NAME SetPixel10

PAGE 55; 132

Name: SetPixel10

Function: Set the value of a pixel in native EGA graphics modes.

*** Write Mode 0, Set/Reset ***

Caller: Microsoft C:

void SetPixel(x,y,n);

Re Ne Ne Se Ne Se Se Ne Se Ne Be Na Ne Ne Ne

int XV; /* pixel coordinates */

ine 117 /* pixel value */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpt6]

ARGn EQU byte ptr [bp+8]

RMWbits EQU 18h ; vead-modify-write bits

TEXT SEGMENT byte public 'CODE'
ASSUME cs: _ TEXT

EXTRN PixelAddr10:near

PUBLIC _SetPixel10

(continued)

Listing 5-12. Setting a pixel value in native EGA graphics modes using write mode 0.

Chapter 5: Pixel Programming 141

Listing 5-12. Continued.

_SetPixel10 PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy ; AX := y

mov bx, ARGx ie BK Ss

call PixelAddr10 ; AH := bit mask

; ES:BX -> buffer

; CL t= # Drts to shite Lett

; set Graphics Controller Bit Mask register

shl ah,cl ; AH := bit mask in proper position

mov dx, 3CEh ; GC address register port

mov al,8 ; AL := Bit Mask register number

out dx,ax

; set Graphics Controller Mode register

mov ax,0005h ; AL := Mode register number

; AH := Write Mode 0 (bits 0,1)

; Read Mode 0 (bit 3)

out dx, ax

; set Data Rotate/Function Select register

mov ah, RMWbits ; AH := Read-Modify-Write bits

mov ali S ; AL Data Rotate/Function Select reg

out dx, ax

; set Set/Reset and Enable Set/Reset registers

mov ah, ARGn ; AH := pixel value

mov al,0 ; AL := Set/Reset reg number

out dx, ax

mov ax,O0FOih ; AH := value for Enable Set/Reset (all

+ bit planes enabled)

7 AL := Enable Set/Reset reg number
out dx,ax

; set the pixel value

or es: [bx]),al + load latches during CPU read

; update latches and bit planes during

; CPU write

7 restore default Graphics Controller registers

mov . ax, 0OFFO8h ; default Bit Mask

out ax, ax

Mov ax, 0005 7 default Mode register

out dx, ax

mov ax,0003 ; Gefault Function Select
out ax, ax

(continued)

142 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-12. Continued.

mov ax, 0001 ; default Enable Set/Reset

out dx, ax

mov sp, bp * restore caller registers and return

pop bp
Bet

_SetPixel10 ENDP

_TEXT ENDS
END

Note how the contents of the Graphics Controller registers determine how the bit

planes are updated during the CPU write in the OR instruction. The value in the
Bit Mask register has only one nonzero bit, so only one pixel is updated. This

pixel takes its value from the Set/Reset register. (The other seven pixels are up-

dated from the latches; since the CPU read loaded the latches with these same pix-

els, the CPU write doesn’t change them.) The Enable Set/Reset value is 1111B, so

the CPU data byte in AL plays no part in the operation.

IBM’s EGA BIOS uses write mode 0 to set the values of individual pix-

els in INT 10H function OCH, but the BIOS routine does not use the

Set/Reset register to specify the pixel value. Instead, it first zeroes the
pixel by using the Bit Mask register to isolate it and by writing a CPU

data byte of 0. Then the BIOS programs the Sequencer Map Mask

register to select only those bit planes in which the desired pixel value

contains a nonzero bit. The routine then performs a second CPU write

to set the nonzero bits, as shown in Listing 5-13.

This technique has two weaknesses: There are easier ways to do the

same job, and the routine requires extra coding if you want to AND,

OR, or XOR the pixel value in the video buffer. For both reasons,

video BIOS INT 10H function OCH is limited in both speed and

flexibility.

TITLE "Listing 5-13'
NAME SetPixel10

PAGE Sai?

; Name: SetPixel10

; Function: Set the value of a pixel in native EGA graphics modes.

*kk Write Mode 0, Sequencer Map Mask ***

(continued)

Listing 5-13. Setting a pixel value in native EGA graphics modes using the Sequencer Map

Mask.

Chapter 5: Pixel Programming 143

Listing 5-13. Continued.

>; Galler: Microsoft €;

void SetPixel(x,y,n);

; int x,y; /* pixel coordinates */

z Lee ms /* pixel value */

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bp+é6]

ARGn EQU byte ptr [bp+8]

TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT

EXTRN PixelAddr10:near

PUBLIC _SetPixel10

_SetPixel10 PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy 7; AX 3= y

mov bx, ARGx ¢; BKos= x

call PixelAddr10 ; AH := bit mask

, ES BX => buffer

7; (CL $= # bits bovysha ft Tere

; set Graphics Controller Bit Mask register

shl ah,cl ; AH := bit mask in

7 proper position

mov dx, 3CEh ; Graphics Controller address

7 reg poxrt

mov al,8 7; AL := Bit Mask register number

out dx, ax

; zero the pixel value

mov al,es: [bx] ; latch one byte from each

; bit plane

mov byte ptr es:[bx],0 ; zero masked bits in

; all planes

; set Sequencer Map Mask register

mov dl1,0C4h ; DX := 3C4h (Sequencer addr

; reg port)

mov ah, ARGn 7 AH := value for Map Mask

; register

* (nonzero bits in pixel

+ value select

enabled bit planes for

; Sequencer)

(continued)

144 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-13. Continued.

_SetPixel10

mov are ; AL := Map Mask register number
out dx,ax

set the nonzero bits in the pixel value

mov byte ptr es: [bx],0FFh ; set bits in enabled

bit planes -.

restore default Sequencer registers

mov ah, 0OFh ; AH := value for Map Mask reg

P (all bit

7 planes enabled)

out Ox,.ax

restore default Graphics Controller registers

JREXT

Write mode 2

mov dl, OCEh +; DX := 3CEh (Graphics

, Controller port)

mov ax, OFFO8h ; Gefault Bit Mask

out dx, ax

mov sp,bp ; restore caller registers

* and return

pop bp
ret

ENDP

ENDS

END

A somewhat simpler way to set the value of an individual pixel is to use write

mode 2. The routine in Listing 5-14 demonstrates this technique. As in write mode

0, the Bit Mask register determines how each of the eight pixels is updated. In

write mode 2, however, new pixel values are derived by combining the CPU data

byte with the latched pixel values; this avoids the need to program the Set/Reset

and Enable Set/Reset registers and leads to shorter, faster code.

,

,

,

,

.
,

,

Name:

Function:

TITLE ‘Listing 5-14!
NAME SetPixel10

PAGE 55, 122

SetPixel10

Set the value of a pixel in native EGA graphics modes.

Write Mode 2 ***

(continued)

Listing 5-14. Setting a pixel value in native EGA graphics modes using write mode 2.

Chapter 5: Pixel Programming 145

Listing 5-14. Continued.

; Caller:

ARGx

ARGy

ARGn

RMWbits

_TEXT

_SetPixel10

; set Graphics

; set the pixel

Microsoft C:

void SetPixel (x,y,n);

int x,y; /* pixel coordinates */

int Dy /* pixel value */

EQU word ptr [bpt+4] ; stack frame addressing

EQU word ptr [bp+6]

EQU byte ptr [bp+8]

EQU 18h ; xvead-modify-write bits

SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

EXTRN PixelAddr10:near

PUBLIC _SetPixel10

PROC near

push bp ; preserve stack frame

mov bp, sp

mov ax, ARGy 7; AX 3] ¥

mov bx, ARGx ; BX 3:= x

call PixelAddr10 ; AH := bit mask

3; ES?BX +> buffer

; CL := # bits to shift left

Controller Bit Mask register

shl ah,cl ; AH := bit mask in proper position

mov dx, 3CEh 7 GC address register port

mov al,8 ; AL := Bit Mask register number

out dx, ax

7 set Graphics Controller Mode register

mov ax,205h ; AL := Mode register number

; AH := Write Mode 2 (bits 0,1)

: Read Mode 0 (bit 3)

out dx, ax

; set Data Rotate/Function Select register

mov ah, RMWbits ; AH := Read-Modify-Write bits

MOv al,3 ; AL := Data Rotate/Function Select reg
out ax,ax

value

mov al,es: [bx] ; latch one byte from each bit plane

mov al, ARGn + AL := pixel value

mov es: [bx],al + update all bit planes

(continued)

146 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-14. Continued.

*# restore default Graphics Controller registers

Mov ax, OFFO8h ; Gefault Bit Mask

out dx, ax

mov ax,0005 ; default Mode register

out dx,ax

mov ax,0003 ; default Function Select

out dx, ax

mov sp,bp 7 restore stack frame and return

pop bp
ret

_SetPixel10 ENDP

STEXT ENDS

END

The routines in Listings 5-12 armd 5-14 are designed to work correctly when the

Function Select register specifies the AND, OR, or XOR function. Thus, you need

write no extra code to perform these alternative pixel manipulations in the EGA’s

native graphics modes.

Furthermore, if you are careful to use the proper pixel values, the routines in List-

ings 5-12 and 5-14 can be used in any native EGA graphics mode. To ensure that

the appropriate bits in the memory maps are updated in 640-by-350 monochrome

mode, use pixel values of 0, 1, 4, and 5 only. On an EGA with 64 KB of RAM, use

pixel values 0, 3, OCH, and OFH.

InColor Card

The routine in Listing 5-15 updates a single pixel in the InColor Card’s 720-by-348

16-color mode. The InColor Card lacks a functional equivalent of the EGA’s Func-

tion Select register, so this routine contains four separate subroutines which per-

form AND, OR, or XOR operations on pixel values.

void SetPixel (x,y,n);

TITLE histaing 3-15"

NAME SetPixelInc

PAGE 55,132

; Name: SetPixelInC

; Function: Set the value of a pixel in 720x348 16-color mode

7; Caller: Microsoft C:

7

;

Listing 5-15. Setting a pixel value in InColor graphics mode. (continued)

Chapter 5: Pixel Programming 147

Listing 5-15. Continued.

ARGx

ARGy

ARGn

DefaultRWColor

DGROUP

TEXT

_SetPixeliInc

ReplacePixeliInc:

EQU

EQU

EQU

EQU

GROUP

SEGMENT

ASSUME

EXTRN

PUBLIC

PROC

push

mov

mov

mov

call

shl

mov

jmp

mov

mov

out

anc

mov

out

and

jmp

EEmiteme p over /* pixel coordinates */

int n; /* pixel value */

word ptr [bpt+4] ; stack frame addressing

word ptr [bp+6]

byte ptr [bp+8]

OFh ; default value for R/W Color Register

_DATA

byte: public CODE

cs:_TEXT, ds :DGROUP

PixelAddrHGC:near

_SetPixeliInc

near

bp ; preserve caller registers

bp, sp

ax, ARGy ,; AX :=y

bx, ARGx 7; BX := x

PixelAddrHGC ; AH := bit mask

; -—ES:BX => buffer

PruCh t=Ltsbieseco Shite Lett

ah,cl ; AH := bit mask in proper position

dx, 3B4h peDX =—CRIC port

word ptr SetPixelOpInC ; jump to Replace, AND,

; OR or XOR routine

; routine to Replace pixel value

ch, ah ; CH := bit mask for pixel

ax, 1F19h ; AH bit 6 := 0 (Mask Polarity)

; AH bits 5-4 := 1 (Write Mode)

; AH bits 3-0 := "don’t care" bits

; AL := R/W Control Register number

dx, ax ; set R/W Control Register

ax ; AL := 1Ah (R/W Color Reg number)

ah, ARGn 7; AH := foreground value

dx,ax 7; set R/W color register

es: [bx],ch ; update bit planes

short L01

(continued)

148 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-15. Continued.

ANDPixelInc:

ORPixelInc:

XORPixellInc:

mov

mov

out

dec

mov

mov

shl

or

out

mov

out

and

jmp

mov

mov

out

dec

mov

not

mov

shl

or

out

mov

out

and

jmp

mov

mov

out

ch,ah

ax, 1F19h

dx, ax

ax

ah, ARGn

el,.4

ah,cl

ah, OFh

ax, ax

ax,001Ah

ax, ax

es: [bx],ch

short LO1

ch,ah

ax, 1F19h

dx,ax

ax

ah, ARGn

ah

cl1,4

ah,cl

ah, OFh

dx,ax

ax, OF1Ah

dx,ax

2s. (bx) ,cn

short LO1

ch,ah

ax, 3F19h

dx,ax

se oNe

Saleen we eels!

“

Re Ne Ne

routine to AND pixel value

CH = bit mask for pixel

AH bit 6 := 0 (Mask Polarity)

AH bits 5-4 := 1 (Write Mode)

AnPDits S=0e3= “dont care” bits

AL := R/W Control Register number

set R/W Control Register

AL := 18h (Plane Mask Register number)

AH := pixel value

AH bits 7-4 := writeable plane mask

AH bits 3-0 := visible plane mask

set Plane Mask Register

AH := 0 (foreground value)

AL := 1Ah (R/W Color reg)

set R/W Color Register

update bit planes

routine to OR pixel value

CH := bit mask for pixel

AH bit 6 := 0 (Mask Polarity)

AH bits 5-4 := 1 (Write Mode)

AH bits 3-0 := "don’t care" bits

AL := R/W Control Register number

set R/W Control Register

AL := 18h (Plane Mask Register number)

AH := pixel value

AH := complement of pixel value

AH bits 7-4 writeable plane mask

AH bits 3-0 := visible plane mask

set Plane Mask Register

AH := 0 (foreground value)

AL := 1Ah (R/W Color reg)

set R/W Color Register

update bit planes

routine to XOR pixel value

CH := bit mask for pixel

AH bit 6 := 0 (Mask Polarity)

AH bits 5-4 := 3 (Write Mode)

AH bits 3-0 := "don’t care" bits

AL := R/W Control Register number

set R/W Control Register

(continued)

Chapter 5: Pixel Programming 149

Listing 5-15. Continued.

dec ax ; AL := 18h (Plane Mask Register number)

mov ah, ARGn ; AH := pixel value

not ah ; AH := complement of pixel value

mov cl1,4

shl ah,cl ; AH bits 7-4 := writeable plane mask

or ah, OFh ; AH bits 3-0 := visible plane mask

out dx, ax ; set Plane Mask Register

xor es: [bx],ch ; update bit planes

jmp short L0O1

TOs mov ax, OF18h

out dx,ax ; restore default Plane Mask value

mov ax, 4019h ; restore default R/W Control value

out Gs,

inc ax ; restore default R/W Color value

mov ah, DefaultRWColor

out dx, ax

mov sp,bp ; restore caller registers and return

pop bp
ret

_SetPixeliInc ENDP

_TEXT ENDS

_DATA SEGMENT word public 'DATA'

SetPixelOpInc DW ReplacePixelInc ; contains addr of pixel operation

_DATA ENDS

END

Each one of these subroutines begins by programming the Read/Write Control,

Read/Write Color, and Plane Mask registers. Then a CPU read loads the latches,

and a subsequent CPU write updates the bit planes.

Each subroutine starts by programming the Read/Write Control register for one of

the four graphics write modes. At the same time, the ‘don’t care”’ bits are all set

to 1 and the Mask Polarity bit is zeroed so that the Decoder always returns

11111111B as the result of a CPU read. Then the Plane Mask and Read/Write Color

foreground values are set up; these values depend upon whether the pixel value is

to be replaced or manipulated by an AND, OR, or XOR operation.

The instruction AND ES: [BX] , CH (or XOR ES: [BX], CH for the pixel XOR

operation) causes the CPU read and write. During the CPU read, the latches are

loaded and the value 11111111B is returned to the CPU; the CPU ANDs (or XORs)

this value with the bit mask in CH and writes the result back to the same address

in the video buffer. In this way, the bit mask in CH selects which pixel value is

updated during the CPU write.

150 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Except for the pixel that the bit mask specifies, the contents of the latches are

copied back into the bit planes from which they were just read; the value of the

pixel being updated derives from the foreground value in the Read/Write Color

register. Only the bit planes that the Plane Mask register specifies are modified,

so the only bits in the bit planes that are updated are those that the replace, AND,
OR, or XOR operation modifies.

T It is instructive to compare the interaction of the write mode, fore-

, ground color, and Plane Mask values within each of the subroutines.

The logical operation that takes place (replace, AND, OR, or XOR) is

not programmed explicitly with an 80x86 instruction. It is implicit in

the contents of the graphics control registers, which are programmed

to emulate the logical operation by modifying the individual bits in

the updated pixel.

MCGA

In CGA-compatible graphics modes, the same routines for setting pixel values run

unchanged on both the CGA and the MCGA. The two non-CGA modes (640-by-480

2-color and 320-by-200 256-color) can be handled easily with simple modifications

to the routine for 640-by-200 2-color mode. Listings 5-16 and 5-17 show the neces-

sary changes.

TITLE “esting so= 16.

NAME SetPixel11

PAGE bop ioe

; Name: SetPixell1

; Function: Set the value of a pixel in 640x480 2-color mode (MCGA or VGA)

7; Caller: Microsoft C:

void SetPixel(x,y,n);

; rate hy VF /* pixel coordinates */

; int /* pixel value */

ARGx EQU word ptr [bpt4] ; stack frame addressing

ARGy EQU word ptr [bpt6]

ARGn EQU byte ptr [bp+8]

DGROUP GROUP _DATA

TEXT SEGMENT byte public 'CODE'
ASSUME cs: _TEXT,ds:DGROUP

(continued)

Listing 5-16. Setting a pixel value in MCGA or VGA 640-by-480 2-color mode.

Chapter 5: Pixel Programming 151

Listing 5-16. Continued.

EXTRN

PUBLIC

_SetPixellt PROC

push

mov

mov

mov

Gall

mov

shl

jmp

not

and

or

jmp

ReplacePixel11:

ANDPixel11: test

jnz

LO1: not

and

jmp

ORPixel11: test

JZ

or

jmp

XORPixel11: test

jz

xOr

L02: mMOv

pop
ret

PixelAddr10:near

_SetPixel11
near

bp
bp, sp

ax, ARGy

bx, ARGx

PixelAddr10

al,ARGn

ax,cl

word ptr SetPixelOp11 Fi

ah

es: [bx],ah

es: [bx],al

short L02

al,al

L02

ah

es: [bx],ah

short L02

aya

L02

es: [bx],al

short L02

al,al

LO2

es: [bx],al

sp, bp

bp

7) AH +=

preserve caller registers

Pee — ay)

Sx

AH := bit mask

ES:BX -> buffer

CL >= # bits to shitt Left

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

jump to Replace, AND,

; OR or XOR routine

routine to Replace pixel value

inverse bit mask

zero the pixel value

set the pixel value

routine to AND pixel value

do nothing if pixel value = 1

AH := inverse of bit mask

set bit in video buffer to 0

routine to OR pixel value

do nothing if pixel value = 0

set bit in video buffer

routine to XOR pixel value

do nothing if pixel value = 0

XOR bit in video buffer

restore caller registers and return

(continued)

152 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 5-16. Continued.

_SetPixeli1

_TEXT

_DATA

SetPixelOp11

_DATA

; Name:

; Function:

; Caller:

ARGx

ARGy

ARGn

DGROUP

PERT

_SetPixel13

ENDP

ENDS

SEGMENT word public 'DATA'

DW ReplacePixell1 ; contains addr of pixel operation

ENDS

END

TITLE TRE SCEG ome

NAME SetPixel13

PAGE Soy SZ

SetPixel13

Set the value of a pixel in 320x200 256-color mode (MCGA or VGA)

Microsoft C:

void SetPixel(x,y,n);

anc 3c5,V 7 /* pixel coordinates */

art My /* pixel value */

EQU word ptr [bp+4] ; stack frame addressing

EQU word ptr [bp+6]

EQU byte ptr [bp+8]

GROUP _DATA

SEGMENT byte public 'CODE'

ASSUME cs: TEXT,ds:DGROUP

EXTRN PixelAddr13:near

PUBLIC _SetPixel13

PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy 7, AX = -y,

mov bx, ARGx ; BX 3= x

call PixelAddr13 ; ES:BX -> buffer

mov al,ARGn ; AL := pixel value

(continued)

Listing 5-17. Setting a pixel value in MCGA or VGA 320-by-200 256-color mode.

Chapter 5: Pixel Programming 153

Listing 5-17. Continued.

jmp

ReplacePixel13: mov

jmp

ANDPixel13: and

jmp

ORPixel13: or

jmp

XORPixel13: xor

OT: mov

pop
ret

_SetPixel13 ENDP

_TEXT ENDS

_DATA SEGMENT

SetPixel0Op13 DW

_DATA ENDS

END

VGA

word ptr SetPixelOp13 ; jump to Replace, AND,

; OR or XOR routine

es: [bx],al

short L0O1

esa (bx]),.an

short L0O1

es: [bx],al

short L0O1

es: [bx],al

sp,bp ; restore caller registers and return

bp

word public 'DATA'

ReplacePixel13

Once you create routines to update pixels on the MCGA and EGA, doing the same

for the VGA is easy. The only VGA video mode that does not exist on the other

subsystems is 640-by-480 16-color mode. Pixel addressing in this mode is the same

as in the EGA’s 640-by-350 16-color mode, so the routines in Listings 5-12 through

5-14 may be used.

Filling the Video Buffer

Usually the first thing you do after selecting a new video mode is clear the video

buffer by filling it with a uniform background of repetitive data. In alphanumeric

modes, it is easy and efficient to fill the buffer with blanks or nulls by using the

80x86 STOSW instruction.

Filling the video buffer in graphics modes is more of a challenge. Zeroing the en-

tire buffer is relatively easy, but filling the screen with a solid color or pixel pat-

tern is more difficult, particularly on the EGA, the VGA, and the InColor Card.

154 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

CGA

On the CGA, you can set the entire buffer to a single pixel value or a pattern of
vertical stripes with a REP STOSW operation, as the routine in Listing 5-18 does.
Because of the two-way interleave in the video buffer map, this technique fills all
even-numbered scan lines before filling the odd-numbered lines. You might
prefer to clear the buffer from the top down by filling it a line at a time. This
technique, used in Listing 5-19, achieves a slightly smoother appearance, but re-
quires slower and bulkier code.

mov di, 0B800h

Mov es, di

xor di,di 7 BS:DI -> start of video buffer

mov al,11110000b 7 AL := pixel pattern

mov ah,al ; AX := replicated pixel pattern

mov cx, 2000h 7 CX := number of words in video buffer

rep stosw ; fill buffer with pixel pattern

; this may also be accomplished using the video BIOS

mov ah, 0Fh 7 AH := OFh (INT 10H function number)

int 10h * get current video state; AH = number of

7; character columns

mov dl,ah ; DL := number of character columns

mov ax, 600h 7 AH := 6 (INT 10H function number)

; AL := 0 (number of rows to scroll)

mov bh, 11110000b ; BH := pixel pattern

mov Cx0 7; CH := 0 (upper left character column)

; CL := 0 (upper left character row)

mov dh, 18h ; DH := 18h (lower right character row)

dec dl ; DL := lower right character column

int 10h

Listing 5-18. Simple CGA graphics buffer fill.

mov di, 0B800h

mov es, di

xOx di,di J ESD => start’ of video butter

mov al,11001100b ; AL pixel pattern

mov ah,al ; AX := replicated pixel pattern

mov bx, 100 ; BX := number of pairs of rows

L01: mov cx, 40 ; CX := number of words in each row

rep stosw ; fill even row

add di, 2000h-80 ; ES:DL => odd row

mov cx, 40

rep stosw 7 Lill oade row

sub di,2000h ; ES:DI -> next even row

dec bx

jnz L01

Listing 5-19. CGA graphics buffer fill using two-way interleave.

Chapter 5: Pixel Programming 155

You can exploit the two-way interleave in the video buffer map to create a color

blend or a simple pattern (see Listing 5-20). In this case, the pixel pattern in the

even-numbered scan lines is shifted in position from the pattern in the odd-

numbered scan lines. This creates a dithered or halftone pattern on the screen.

‘Because the pixels are so close together, the eye blends them, perceiving the dith-

ered pattern as gray in 640-by-200 2-color mode or as an intermediate color blend

in 320-by-200 4-color mode.

mov di, OB800h

mov es,di

xor di,di ; ES:DI -> start of pixel row 0

mov al,10101010b ; AL := pixel pattern for even rows

mov ah,al ; AX := replicated pixel pattern

mov ex, 1000h ; CX := number of words in video buffer

rep stosw ; fill even pixel rows

mov di,2000h 7 ESS Diy => (Start Of ps1 xel rowed

mov al,01010101b ; AL := pixel pattern for odd rows

mov ah,al

mov cx, 1000h

rep stosw ; £i11 odd pixel rows

Listing 5-20. CGA graphics buffer fill with different pixel pattern in odd and even rows.

HGC and HGC+

You can use the same basic techniques for clearing the video buffer in the HGC’s

720-by-348 monochrome graphics mode as in the CGA’s 640-by-200 2-color mode.

However, your routine must be able to clear either of the two displayable portions
of the HGC’s video buffer. Listing 5-21 demonstrates how you can do this. Again,

you can take advantage of the interleaved video memory map to create a dithered

pattern as you clear the buffer.

mov es, BufferSeg 7 ES := OBO000h for first video page

5 or OB800h for second video page

xor aie, Ga: ; BS:DI-=>"first’ byte to £217

mov al,10101010b ; AL pixel pattern

mov ah,al + AX := replicated pixel pattern

LOM: mov cx, 1000h ; CX := number of words in

7 each 8 KB buffer interleave

rep stosw ; fill interleave; increment DI by 2000h

ror ax, 1 ; shift pixel pattern between rows
or ai, dai

jns L01 + jump if DI < 8000h

Listing 5-21. HGC graphics buffer fill using four-way interleave.

156 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

EGA and VGA

The Graphics Controller can provide a certain amount of hardware assistance in
filling the EGA and VGA video buffer. Also, because the buffer holds more data
than can be displayed on the screen, you can choose to clear only the displayed
portion, an undisplayed portion, or the entire buffer.

In 640-by-200 2-color and 320-by-200 4-color modes you can use the routines for
the CGA (see Listings 5-18 through 5-20). Remember, however, that the EGA and
the VGA have enough video RAM to support two screens of data in 320-by-200
4-color mode. Your routine should therefore be capable of clearing any designated
area of the buffer. Filling the video buffer in 640-by-480 2-color mode (see Listing
5-22) and 320-by-200 256-color mode (see Listing 5-23) is also a relatively easy
task, because pixel addressing in these modes is simple.

mov di, 0OA000h

mov es,di

xor di,di 7; ES=DE => Start of video butter

mov al,01010101b ; AL := pixel pattern

mov ah,al 7 AX := replicated pixel pattern
mov cx, 480*40 ; CX := (pixel rows) * (words per row)

rep stosw ; £111 buffer with pixel pattern

; this may also be accomplished using the video BIOS

mov ax,1130h 7 AH := 11h (INT 10H function number)

+ AL := 30h (character generator info)

int 10h 7 get info; DL = number of

; character rows - 1

mov ax, 600h ; AH := 6 (INT 10H function number)

+ AL := 0 (number of rows to scroll)

mov bh,01010101b ; BH := pixel pattern

mov cx, 0 ; CH := 0 (upper left character column)

; CL := 0 (upper left character row)

mov dh, dl ; DH := lower right character row

mov d1,4Fh 7 DL := 4Fh (lower right character column)

int 10h

Listing 5-22. MCGA and VGA 640-by-480 2-color graphics buffer fill.

mov di, 0A000h

mov es,di

xor di,di 7; ES3:DI => start of video buffer

mov ah,PixelValue1 ; AX := 2-pixel pattern

mov al,PixelValue2

mov bx, 100 ; BX := number of pairs of rows

(continued)

Listing 5-23. MCGA and VGA 320-by-200 256-color graphics buffer fill. This routine fills
alternate pixel rows separately to allow dithered pixel patterns.

Chapter 5: Pixel Programming 157

Listing 5-23. Continued.

LO1: mov cx, 160 ; CX := number of words per row

rep stosw ; £111 even-numbered row

xchg ah,al ; exchange pixels in pattern

mov cx, 160

rep stosw ; £111 odd-numbered row

xchg ah,al ; exchange pixels in pattern

dec bx

jnz L01

In 16-color 200-line graphics modes and all 350-line graphics modes, your rou-

tines should program the Graphics Controller to exploit its parallel processing

capabilities. The most efficient way to fill the video buffer with a solid color is to
use write mode 0 to repeatedly copy the Set/Reset value into the video buffer. Be-

cause no CPU read is required for this operation, you can set the entire video buffer

to a solid color with a single REP STOSW instruction as shown in Listing 5-24.

mov di, 0A000h

mov es,di

xor Gae.aas ; ES;DI .=-> start of video buffer

mov dx, 3CEh # DX := Graphics Controller I/O port

mov ah, PixelValue ; AH := pixel value for fill

mov al,0 ; AL := 0 (Set/Reset register number)

out dx,ax 7 load Set/Reset register

mov ax, O0F01 7 AH := 1111b (mask for Enable Set/Reset)

7 AL := 1 (Enable Set/Reset reg number)
out dx, ax ; load Enable Set/Reset register

mov cx,PixelRows*40 ; CX := (pixel rows) * (words per row)

rep stosw ; fill the buffer

mov ax,0001 7 AH := 0 (default Enable Set/Reset value)

; AL := 1 (Enable Set/Reset reg number)
out dx, ax + restore default Enable Set/Reset

Listing 5-24. Solid buffer fill for EGA and VGA native graphics modes. The code assumes
that the Graphics Controller is already in write mode 0 (the BIOS default).

Filling the video buffer with an arbitrary pixel pattern is more difficult. Although
the basic technique is the same, each component of the pattern must be written
separately to the bit planes. The example in Listing 5-25 fills the video buffer with
an 8-by-2 pattern of pixels in the VGA’s 640-by-480 16-color mode. You can adapt
the routine to 200-line and 350-line 16-color modes on both the EGA and VGA.

158 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

mov

mov

xor

Mov

mov

out

mov

L011: mov

mov

rep

mov

mov

rep

dec

jnz

mov

out

di, 0A000h

es,di

aijrat

dx, 3CEh

ax,105h

ax,ax

ax, PixelRows/2

eines sa

cx, 40

stosw

cl,es: [50h]

cx, 40

stosw

ax

L01

ax,0005

dax,ax

r

,

ESRDE -> start of video buffer

DX := Graphics Controller I/O port

AH bits 0-1 := 01b (write mode 1)

AL := 5 (Graphics Mode register)

establish write mode 1

AX := number of pairs of rows to fill

latch pixel pattern for even rows

CX := words per row of pixels

copy latches across even-numbered row

latch pixel pattern for odd rows

fill odd-numbered row
3

loop down the buffer

restore write mode 0 (default)

Listing 5-25. Patterned buffer fill for EGA and VGA native graphics modes. The code
assumes that the desired pixel pattern is already stored in the first eight pixels of the first two
rows of the video buffer (that is, at A000:0000 and A000:0050).

InColor Card

As with the EGA and the VGA, you should use the InColor Card’s graphics data

latches to update the four bit planes in parallel. Filling the video buffer with a

solid color is straightforward, as shown in Listing 5-26. Filling it with a pixel pat-
tern demands the same sort of logic used in the equivalent routine for the EGA

and VGA (shown in Listing 5-27).

mov

xOr

mov

mov

mov

out

mov

out

mov

mov

rep

es, BufferSeg

di, di

dx, 3B4h

ah, PixelValue

al,1Ah

dx,ax

ax,4019h

dx,ax

ax, OFFFFh

cx, 4000h

stosw

ES := OBO00h for first video page

or 0B800h for second video page

HS: Die=> first byte to £120!

DX := control register I/O port

AH := pixel value for fill

AL := 1AH (Read/Write Color register number)

load Read/Write Color register

AH bits 5-6 := 00b (write mode 0)

AL := 19H (Read/Write Control register)

load Read/Write Control reg

AX pixel bit mask

CX := number of words in buffer

fill the buffer

(SZKe/ 72)

Listing 5-26. Solid buffer fill for Hercules InColor graphics mode.

Chapter 5: Pixel Programming 159

mov

xOr

mov

mov

out

mov

LOW: mov

mov

rep

mov

mov

rep

or

jns

mov

out

es, BufferSeg

di, di

dx, 3B4h

ax, 6019h

dx, ax

ax, OFFFFh

cl,es: [0]

ex, 1000h

stosw

cl,es:[2000h]

cx, 1000h

stosw

di,di

L01

ax,4019h

dx, ax

’

,

ES := OBOOOh for first video page

or 0B800h for second video page

ES:DI -> first byte to fill

DX := control register I/O port

AH bits 5-6 := 10b (write mode 2)

AL := 19H (Read/Write Control register)

load Read/Write Control reg

AX := pixel bit mask

latch pixel pattern for even rows

CX := number of words in

each 8 KB buffer interleave

fill even-numbered interleave;

increment DI by 2000h

latch pixel pattern for odd rows

fill odd-numbered interleave

loop while DI < 8000H

restore default value of

Read/Write Control register

Listing 5-27. Patterned buffer fill for InColor Card. The code assumes that the desired pixel
pattern is already stored in the first eight pixels of the first two rows of the video buffer (that
is, at offsets 0 and 2000H in BufferSeg).

MCGA

You can use the routines written for the CGA and the VGA to fill the video buffer

in equivalent graphics modes on the MCGA.

160 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Lines

An Efficient Line-drawing Algorithm

Scan-converting a Straight Line @ Bresenham’s Algorithm

Optimization

Efficient Pixel Addressing
Performance Comparisons @ Special Cases

PC and PS/2 Implementations
Modular Routines

Minimizing Video Buffer Accesses

Efficient Address Calculations

CGA @ HGC @ EGA

MCGA @ VGA

InColor Card

Line Attributes

Clipping

Pixel-by-Pixel Clipping @ A Brut
A Better Algorithm

Most video graphics applications rely on routines that draw straight lines on the

screen. Straight lines are components of many graphics images, including

polygons, filled areas (made up of groups of contiguous lines), and curves (made

up of a series of short line segments joined end to end). Because lines are used

frequently in video graphics, you need fast line-drawing subroutines to obtain

high-performance video graphics. This chapter describes how to construct effi-

cient and flexible line-drawing routines for IBM video subsystems.

An Efficient Line-drawing Algorithm

Imagine what would happen if you tried to draw a straight line on a piece of

paper by painting through the square holes in a sieve (see Figure 6-1). The result

would not really be a line, but a group of square dots that approximates a line.

>
ba

msm

Figure 6-1. Line painted through a sieve.

A raster video display’s rectangular grid of pixels resembles an electronic

‘‘sieve’’ when it comes to drawing straight lines and geometric curves. The best

you can do is to represent each line or curve with a group of pixels that closely

approximates it. The process of determining which set of pixels in the video

buffer best approximate a particular geometric figure is called scan-conversion.

The visual consequence of scan-conversion is that mathematically

smooth lines and curves appear jagged on the screen. Consider the

nearly horizontal line in Figure 6-2a. The only way to represent such a

line within a grid of pixels is as a series of connected horizontal line

segments. The more nearly horizontal or vertical the line, the more

jagged it appears. Although sophisticated software techniques can

minimize the jagged appearance of a scan-converted line, the easiest

way to smooth out a line is to ‘‘use a finer sieve’’; that is, to use a

higher-resolution video mode or higher-resolution video display hard-
ware (see Figure 6-2b).

162 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

b.

Figure 6-2. A nearly horizontal line displayed with (a) low resolution and (b) higher
resolution.

Scan-converting a Straight Line

The simplest way to draw a line is to use the equation of the line

y=mx+b

where m is the slope of the line and b is the y-intercept (the value of y at the point

where the line crosses the y-axis). You can use this equation to calculate the cor-

responding y-coordinate for each pixel x-coordinate between the line’s endpoints

as shown in Listing 6-1. This technique is slow, but it is easy to implement.

/* Listing 6-1 */

BACK SEV Mie RS VS ya Ty)

int Bae Flas /* endpoint */

int S2 V2" /* endpoint */

int n; /* pixel value */

{
int x,Vr

float m; /* slope */

float De /* y-intercept */

2Z£ (x2 == x1) /* vertical line */

{
Pen (ye ye)

Swap(&y1, &y2)j /* force yl < y2 */

for (y=yl; y<=y2; ytt) /* draw from yl to y2 */

SetPixel(x1, vy, nm)

return;

}

mie et eke) /* force x1 < x2 */

{
Swap(&x1, &x2);

Swap(&y1, &y2);

}

Listing 6-1. Drawing a line using the equation of the line. (continued)

Chapter 6: Lines 163

Listing 6-1. Continued.

m = (float) (y2-y1) / (float) (x2-x1); /* compute m and b */

Oyen at)

£om (k=x1y x<=e27 xt) /* draw from x1 to x2 */

{
y = m*x + b;,

SetPrxeli(x, vy, mu)?

Swap(a, b) /* exchange values of a and b */

int calito

{
int te

ea Faby
*Q = *b;

*bh = t;

The problem is that the computational overhead in performing the multiplication,

addition, and rounding necessary to generate y for each x in the line is consider-

able. Furthermore, the slope m must be maintained as a floating-point number,

and using floating-point arithmetic in the calculations slows them down.

Bresenham’s Algorithm

Incrementally calculating the appropriate y-coordinates is much more efficient.

Given the x- and y-coordinates of the first pixel in the line, you can calculate the

location of each subsequent pixel by incrementing the x- and y-coordinates in pro-

portion to the line’s slope. The arithmetic is simpler and faster than that involved

in directly using the equation of the line.

The algorithm presented by J. E. Bresenham in 1965 (IBM Systems Journal 4 (1)

1965, pp. 25-30) plots the set of pixels that lie closest to the line between two

given pixels —(x/,y/) and (x2,y2)—assuming that x/ is less than x2 and that the

slope of the line is between 0 and 1. To simplify the equation of the line, the

algorithm assumes the location of the first endpoint (x/,y/) is (0,0). The equation

of the resulting line is

y = (dy/dx) * x

where

dy = y2 - yl

and

dx = x2 - x1

To visualize how Bresenham’s algorithm works, consider the portion of a line
shown in Figure 6-3. The algorithm proceeds by iteratively determining the corre-
sponding y-coordinate for each value of x from x/ to x2. After plotting the pixel at

164 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

@j7 sia) B

Given (%;-7 .Yi-1):
if (a<b), (;,y;) = pixel A
else (x; ,y;) = pixel B

Figure 6-3. Bresenham’s incremental line-drawing algorithm. Given the pixel at (x;_1,Y;-1),
the algorithm selects either pixel A or B depending on the values of a and b.

(x;_),);_,), for example, the algorithm determines whether pixel A or pixel B is

closer to the exact line and plots the closer pixel.

The difference between pixel A’s y-coordinate and the y-coordinate on the exact

line at x; is

a = (yy+1) - (dy/dx)*x,

where (dy/dx) represents the line’s slope. Similarly, the distance b from pixel B to

the line is

bes (dy/dx) *x, = Ys

If distance b is smaller than distance a, pixel B lies closer to the exact line. If a is

smaller than b, pixel A is closer. In other words, the sign of the difference (b — a)

determines whether pixel A or pixel B is closer to the line.

Now, this may seem like much more work than simply using the equation for the

line. However, the values of a and b can be compared implicitly for each x; by

iteratively computing the value of (b — a) for each succeeding x; in terms of

simpler quantities like dy and dx. The resulting computation is simple, although

deriving it requires a bit of algebra.

To derive the computation, combine the equations for a and b:

i= a) eee eI CL cle oe EV ay 1

Since x/ is less than x2, dx is always positive, so dx *(b — a) can be used instead

of (b — a) to decide whether to plot pixel A or pixel B:

dx*(b-a) = 2*dy*x, - 2*y,*dx - dx

2* (dy*x, - dx*y,;) —- dx

Chapter 6: Lines 165

Let d, represent the quantity dx«(b — a). To calculate d, iteratively, you need to

know how to compute it from d;_;:

(dd, _4) = (2 # (ay 2% yd aty)) (2% (dy#x%s.5- ~--Ox*y yoy)

ll Ze {AY "een mig) ~ OX* (yer ya ie

x, — X;_, is always 1, and y; — y,_, is either 1 (if pixel A at (x,y; + 1) is plotted) or 0

(if pixel B at (x,,y;,) is plotted). Thus, computing the difference between d; and d,_;

is easy, and d, can be calculated simply by incrementing d;_, with one of two

constants:

If d,_, >= 0, plot pixel A at (x;,y; + 1). The increment for d,_; is then

(dj-d,_,) = 2* (dy-dx)

If d,_, <0, plot pixel B at (x;,y,). The increment for d;_, is then

(d,-d,_,) = 2*dy

To calculate d,’s initial value, remember that the first pixel in the line is assumed

to be at (0,0). Substituting x; = 1 and y, = 0 into the equation for d; gives

d, = 12*dy = dx
ele

The resulting algorithm is efficient, because the most complicated calculations

are performed only once, outside the loop that plots the pixels (see Listing 6-2).

Within the loop, incrementally determining which pixels lie closest to the desired

line (using the decision variable d,) eliminates the need for time-consuming
floating-point arithmetic. The result is a faster line-drawing algorithm.

Optimization

Nevertheless, there is still room for improvement. The slowest part of the line-

drawing primitive in Listing 6-2 is the call to Set Pixel (), which calculates the
pixel’s address in the video buffer and then sets the pixel’s value. The pixel ad-

dress calculation is clearly the slowest part of the procedure.

/* Listing 6-2 */

Lannea, Vili exon Vee Te) /* for lines with slope between -1 and 1 */
int x1,yl1;

int RO eae /* endpoints */

int mie /* pixel value */

{

int d,dax, dy;

int Ainer, Bincr, yiner;

int X,Yi

EAE ed (Sea a> mee)

{

Swap(&x1, &x2);

Swap(&y1, &y2);

}

/* force x1 < x2 */

Listing 6-2. A high-level implementation of Bresenham’ s algorithm. (continued)

166 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-2. Continued.

ce Cy2) > yl) /* determine increment for y */
yincr = 1;

else

yincr = -1;

dx = x2 - x1; /* initialize constants */
dy = abs(y2=y1);

d= 2 * dy - dx;

haner = 2 * (dy = dx)
Bincr = 2 * dy;

<= 1 /* initial x and y */
Ye Oy iis

SsetPixel (x, y, n); /* set pixel at (x1,y1) ¥*/

for (x=x1+1; x<=x2; x++)s /* do from x1+1 to x2 */
{

if (d >= 0)

{
y += yincr; /* set pixel A */
d += Aincr;

}
else /* set pixel B */

ad += Bincr;

Seretxed () x fy, er _)is

Swap(pa, pb)

int *pa, *pb;

{
int t;

t = *pa;

*pa oa *pb;

*pb = t;

Efficient Pixel Addressing

Fortunately, you can optimize the pixel address calculation significantly: The

pixel addresses themselves can be calculated incrementally, in the same way you
increment the decision variable d,;. After calculating the address of the first pixel

in the line, you can find its neighbors in the video buffer either by incrementing

the pixel’s byte offset or by rotating the bit mask that represents its bit offset. Cal-

culating pixel addresses incrementally is significantly faster than performing the

computation from scratch for each (x,y) coordinate pair in the line.

For example, you can identify the pixel immediately to the right of a given pixel

by rotating the given pixel’s bit mask one pixel position to the right. (If the given
pixel is the rightmost pixel in its byte, increment the byte offset as well.) To find

Chapter 6: Lines 167

the pixel immediately above a given pixel, decrement the byte offset by the num-

ber of bytes per row of pixels, but keep the bit mask the same. This calculation is

slightly more complicated in video modes with an interleaved video buffer map,

but the principle is the same.

Performance Comparisons

When you compare the techniques for scan-converting lines, the performance

gains from using an incremental line-drawing algorithm and incremental address

calculations are remarkable (see Figure 6-4). Writing your line-drawing routines

in assembly language also helps. Coding and optimizing bit mask manipulation

and address computations is much easier in assembly language than in a high-

level language.

Algorithm Language Pixels per Second

Algorithm based on the equation C 4,800
of a line

Bresenham’s algorithm C 16,000
Bresenham’s algorithm Assembler 26,000

Bresenham’s algorithm with Assembler 70,000
incremental pixel address calculation

Figure 6-4. Performance of line-drawing algorithms in C and in assembly language. Timings
were obtained on a 6 MHz IBM PCIAT with a Hercules Graphics Card.

Special Cases

To further improve the overall performance of your video graphics drivers, use

special routines for drawing horizontal and vertical lines. In many applications,

these special cases account for a surprising percentage of the calls to the line-

drawing primitive. This is especially true if you use lines to fill regions.

/* Listing 6-3 */

PilledRectangle(xi), yl, x2, y2Z, nm)

int Sl avalie /* upper left corner */

int x2, 25 /* lower right corner */

int n; /* pixel value */

{

aint Vie

for (y=yl; y<=y2; yt+) /* draw ‘rectangle as a set of */
Liane (Ui, CV yeeX2 play) eR) S /* adjacent horizontal lines */

}

Listing 6-3. A routine that draws horizontal lines.

For example, the routine FilledRectangle() in Listing 6-3 calls on the
line-drawing function to draw horizontal lines exclusively. If you fill a rectangle
that is 100 pixels high, the line-drawing function is called 100 times to draw
a horizontal line. When the line-drawing function recognizes the special

168 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

case of horizontal lines, functions such as FilledRect angle () run signifi-
cantly faster.

A special-purpose routine can draw horizontal lines 10 times faster than a
general-purpose line-drawing routine. For vertical lines, a special-purpose routine
is about 25 percent faster. Horizontal lines are represented in the video buffer by
contiguous sequences of bytes you can fill with an 80x86 REP STOSB instruction,
which runs much faster than the iterative loop the general line-drawing primitive
requires. In drawing vertical lines, no logic is required to determine pixel loca-
tions. You simply increment the pixel address. Again, the resulting code is
simpler and faster.

PC and PS/2 Implementations
Implementations of Bresenham’s line-drawing algorithm on IBM video hardware

are strongly influenced by the CPU’s capabilities and by the idiosyncrasies of

pixel mapping in the video buffer in various graphics modes. Nevertheless, once

you write a line-drawing routine for one graphics mode, you can adapt the source

code to other graphics modes or to other video hardware with little difficulty.

Modular Routines

You should build your line-drawing routines with a modular structure. One prac-

tical way to break your code into modules is to write separate routines for hori-

zontal lines, vertical lines, lines with slope less than 1, and lines with slope

greater than 1. Each module itself comprises a set of modules for performing each

of the necessary pixel manipulations— XOR, AND, OR, and pixel replacement.

Bresenham’s algorithm as derived in this chapter is applicable only to

lines whose slope lies between 0 and 1. However, it is easy to use the

same algorithm for lines with other slopes. For lines with slopes be-

tween —1 and 0, simply change the sign of the y-increment (see Listing

6-2). For lines with slopes less than —1 or greater than 1 (that is,

| (dy/dx)| > 1), use the same algorithm but exchange the x- and y-
coordinates.

For example, each of the assembly-language line-drawing routines in

this chapter contains two similar subroutines, one for | (dy/dx)| <= |

and another for | (dy/dx)| > 1. Each routine contains a prologue that

detects the special cases of horizontal and vertical lines, initializes

the appropriate increment values, and selects the proper subroutine

for the slope.

Breaking your routines into modules helps when you customize your code for an

application. It also simplifies the task of writing code to run symmetrically in dif-

ferent graphics modes. For example, a routine that draws a vertical line in 640-

by-200 2-color mode on a CGA requires little modification to run properly in

320-by-200 4-color mode.

Chapter 6: Lines 169

Minimizing Video Buffer Accesses

In the 8086 family of microprocessors, data transfer instructions of the form

MOV mem, reg are among the slowest. Try to minimize use of this CPU instruc-

tion within your line-drawing primitives. Neighboring pixels in a line frequently

are grouped in the same byte in the video buffer. (Obviously, such groups occur

more frequently in more nearly horizontal lines.) You can speed your line-

drawing routines by updating all neighboring pixels in each byte you store in

the video buffer.

Efficient Address Calculations

To maximize performance, use CPU registers carefully to hold the values most

frequently updated in the inner loops of your routines: the pixel bit mask, the

buffer offset, and the decision variable. In Listing 6-4, for example, registers DH

and DL hold bit masks, register BX holds the buffer offset, and the decision vari-

able d is maintained in register DI. These values are the ones most frequently up-

dated in these routines, so they are the ones you should try to keep in registers

rather than in memory variables.

If you neglect to use the CPU registers effectively, your routines may run much

slower than necessary. Consider what would happen if you rewrote the routine in

Listing 6-4 to store the decision variable in a memory variable instead of in regis-

ter DI. Just this minor change would cause the routine to run about 20 percent

slower. (Not only does this emphasize why you must make the best possible use of

the CPU registers, but it also suggests why writing highly optimized video

graphics primitives in a high-level language is very difficult.)

CGA

Listing 6-4 contains code for drawing lines in the CGA’s 640-by-200 2-color
graphics mode. The routine consists of a prologue and four line-drawing modules.
The prologue puts the endpoints in ascending order by their x-coordinates, sets
up appropriate vertical increments for computing the pixel address within the
inner loop, and selects an appropriate line-drawing module according to the
slope of the line. The line-drawing modules (Vert Line06, HorizLine06,
LoSlopeLine06, and HiSlopeLine06) contain the inner loops that actually
update pixels and increment addresses.

TITLE "Listing 6-4'

NAME, Line06

PAGE Soles

Name: Line06

i Function: Draw a line in 640x200 2-color mode

z Caller: Microsoft Cs:

Listing 6-4. A line-drawing routine for CGA 640-by-200 2-color mode. (continued)

170 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-4. Continued.

ARGx1

ARGy1
ARGx2

ARGy2
ARGn

VARleafincr

VARincr1

VARincr2

VARroutine

ByteOffsetShift

DGROUP

_TEXT

_Line06

7 Borce xX XZ

EQU
EQU
EQU

EQU

EQU

EQU
EQU

EQU

EQU

EQU

GROUP

SEGMENT

ASSUME

EXTRN

PUBLIC

PROC

push

mov

sub

push

push

mov

mov

mov

sub

42

jns

neg

mov

xchg

mov

mov

xchg

mov

void Line06(x1,y1,x2,y2,n);

SRECR Py 1, K2, V2 /* pixel coordinates */

dan Ee rhe /* pixel value */

word ptr [bpt+4] ;

word ptr [bp+6]

word ptr [bp+8]

word ptr [bp+10]

byte ptr [bp+12]

word ptr [bp-6]

word ptr [bp-8]

word ptr [bp-10]

word ptr [bp-12]

stack frame addressing

3 7 used to convert pixels to byte offset

_DATA

byte public 'CODE'

cs: _TEXT,ds:DGROUP

PixelAddr06:near

_Line06
near

bp ; preserve caller registers

bp, sp
sp, 8 ; stack space for local variables

si

di

si,2000h ; increment for video buffer interleave

di, 80-2000h ; increment from last to first interleave

cx, ARGx2

cx, ARGx1 A Cx B= ee =e

VertLine06 ; jump if vertical line

L01 PUD eae te ok

Cx ; (GX =) x1 = MZ

bx, ARGx2 ; exchange x1 and x2

bx, ARGx1

ARGx2,bx

bx, ARGy2 ; exchange y1 and y2

bx, ARGy1

ARGy2,bx

(continued)

Chapter 6: Lines 171

Listing 6-4. Continued.

; calculate dy = ABS(y2-y1)

LO1: mov

sub

jnz

jmp

L02: jns

neg

neg

neg

xchg

bx, ARGy2

bx, ARGy1

L02

HorizLine06é

L03

bx

Si

di

si,di

; select appropriate routine for slope of

LOS mov

mov

cmp

jle

mov

xchg

VARleafincr,di ,

VARroutine, offset

bx,cx

L04 ,

VARroutine, offset

Dx pox ,

; calculate initial decision variable and

L04: shl

mov

sub

mov

sub

mov

+ calculate first pixel

push

mov

mov

call

mov

shl

mov

not

pop
inc

test

jz

xchg

bx, 1

VARincr1,bx

bx,cx

di,bx

bx, cx

VARincr2,bx

address

cx

ax, ARGy1

bx, ARGx1

PixelAddr06

al,ARGn

ax,cl

dx, ax

dh

Cx

Cx

bx, 2000h

LO5

si,VARleafincr

,

,

BX 3= y2 = y1

jump if horizontal line

BXas= yl —ay2

negate increments for buffer interleave

exchange increments

line

save increment for buffer interleave

LoSlopeLine06

jump if dy <= dx (slope <= 1)

HiSlopeLine06

exchange dy and dx

increments

BX := 2 * dy

ine) += 2e*idy

Di v="d ="2ae dy — ax

iner2 := 2% (dy — dx)

preserve this register

AX := y

BX := x

AH := bit mask

ES:BX -—> buffer

Cihes="* bLitsHio shite Pete

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

DH := bit mask

DL := pixel value

DH := inverse bit mask

restore this register

CX := # of pixels to draw

set zero flag if BX in 1st interleave

exchange increment values if 1st pixel
lies in 1st interleave

(continued)

172, PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-4. Continued.

LOS: jmp VARroutine ; jump to appropriate routine for slope

; routine for vertical lines

VertLine0dé: mov ax, ARGy1 m aX 2S sy

mov bx, ARGy2 pa ene Vie)

mov ex, bx

sub cx, ax ; CX := dy

jge L31 * jump if dy >= 0

neg cx + force dy >= 0

mov ax,bx ; AX 3= y2

37s inc cx + CX := # of pixels to draw

Mov bx, ARGx1 y BX =x

push cx ; preserve this register

call PixelAddr06 ; AH := bit mask

; ES:BX -> video buffer

; CL := # bits to shift left

mov al,ARGn ; AL := pixel value

shl ax,cl ; AH := bit mask in proper position

; AL := pixel value in proper position

not ah ; AH := inverse bit mask

pop cx ; restore this register

test x7 S4- ; set zero flag if BX in 1st interleave

jz L32

xchg si,di ; exchange increment values if 1st pixel

; lies in ist interleave

32's test al,al

nz L34 ; jump if pixel value = 0

LSS = or es: [bx],al ; set pixel values in buffer

add bx, si ; increment to next portion of interleave

xchg B14, AL ; toggle between increment values

loop L33 ; loop down the line

jmp short L35

L34: and es: [bx],ah ; reset pixel values in buffer

add bx, si ; increment to next portion of interleave

xchg Si ,aL ; toggle between increment values

loop L34

L35: jmp Lexit

; routine for horizontal lines (slope = 0)

HorizLine0é: mov ax, ARGy1

mov bx, ARGx1

call PixelAddr06 ; AH := bit mask

; ES:BX -> video buffer

CL ¢= * bits to shitt Lert

mov di,bx ; ES:DI -> buffer

(continued)

Chapter 6: Lines 173

Listing 6-4. Continued.

mov dh, ah

not dh ; DH := unshifted bit mask for leftmost

; byte

mov dl, OFFh ; DL := unshifted bit mask fox

z rightmost byte

shl dh jel ; DH := reverse bit mask for first byte

not dh ; DH := bit mask for first byte

mov cx, ARGx2

and Clad

xor Cua : CL := number of bits to shift left

shl di ,.er: ; DL := bit mask for last byte

; determine byte offset of first and last pixel in the line

mov ax, ARGx2 Pe ee

mov bx, ARGx1 7s BXP SCX

mov cl, ByteOffsetShift ; number of bits to shift to

; convert pixels to bytes

shr ax,cl ; AX := byte offset of x2

shr bx ied ; BX := byte offset of x1

mov cx, ax

sub Cx, Dx > CXlc=" (#e bytes an Line) = "1

; propagate pixel value throughout one byte

mov bx, offset DGROUP:PropagatedPixel

mov al, ARGn ; AL := pixel value

xlat

; set pixels in leftmost byte of the line

or dh,dh

js L43 ; jump if byte-aligned (x1 is leftmost

7 pixel in byte)

or Cx nex

jnz L42 ; jump if more than one byte in the line

and dl,dh ; bit mask for the line

jmp short L44

L42: mov ah,al

and ah, dh ; AH := masked pixel bits

not dh ; DH := reverse bit mask for 1st byte

and es: [di],dh ; zero masked pixels in buffer

or es: [di],ah ; update masked pixels in buffer

Ine di

dec cx

7 use a fast 8086 machine instruction to draw the remainder of the line

L43: rep stosb + update all pixels in the line

; set pixels in the rightmost byte of the line

(continued)

174 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-4. Continued.

L44: and aad

not dal

and es: [di],dl

or es: [di],al

jmp Lexit

7 routine for dy <= dx (slope <= 1)

LoSlopeLine0é:

L10: mov ah,es: [bx]

Rais and ah,dh

or ah,dl

ror ay

ror dh, 1

jnc L14

; bit mask not shifted out

Or di,di

jns L12

add di, VARincr1

loop L11

mov es: [bx],ah

jmp short Lexit

ais add di, VARincr2

mov es: [bx],ah

add bx, Si

xchg si, VARleafincr

loop L10

jmp short Lexit

; bit mask shifted out

L14: mov es: [bx],ah

LAC bx

or di,di

jns L15

add di, VARincr1

loop L10

jmp short Lexit

AL := masked pixels for last byte

zero masked pixels in buffer

update masked pixels in buffer

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

SI = buffer interleave increment

DI = decision variable

AH := byte from video buffer

zero pixel value at current bit offset

set pixel value in byte

rotate pixel value

rotate bit mask

jump if bit mask rotated to

leftmost pixel position

test sign of d

jump if d >= 0

dis= dot aneri

store remaining pixels in buffer

a p= dit sanerZ

update buffer

increment y

exchange interleave increment values

update buffer

BX := offset of next byte

test sign of d

jump if non-negative

a s= d+ ines

(continued)

Chapter 6: Lines 175

Listing 6-4. Continued.

LS

; routine for dy > dx

HiSlopeLine0é:

L202

L22:

L23:

Lexit:

_Line06

_TEXT

_DATA

add

add

xchg

loop

jmp

and

or

add

xchg

or
jns

add

loop

jmp

add

ror

ror

cmc

adc

loop

pop

pop
mov

pop
Cec

ENDP

ENDS

SEGMENT word public

di, VARincr2

bx, si

si,VARleafincr

L10

short Lexit

(slope > 1)

es: [bx],dh

es: [bx],dl

bx, si

si, VARleafincr

aiyida.

L23

di, VARincr1

L21

short Lexit

di, VARincr2

dl, 1

dh, 1

bx, 0

L21

di
Si

sp,bp

bp

,

"'DATA'

dei=td + inex?

increment y

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

Sr buffer interleave increment

DI decision variable

I

zero pixel value in video buffer

set pixel value in byte

increment y

exchange interleave increment values

test sign of d

jump if d >= 0

d ad Panes

d d + iner2

rotate pixel value

rotate bit mask

cf set if bit mask not rotated to

leftmost pixel position

BX := offset of next byte

restore registers and return

(continued)

176 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-4. Continued.

PropagatedPixel DB 00000000b 220

DB UPA A 1.4 15 nel

_DATA ENDS

END

Most of the execution time in this routine is spent in the inner loops of the four

line-drawing modules. To optimize the speed of the inner loops, as much com-

putation as possible is performed outside of them. In particular, the inner loop of

HorizLine06 (at label L43) is very fast because it consists only of a single

80x86 machine instruction.

The routines LoSlopeLine06 and HiSlopeLine06 implement Bresenham’s

algorithm. The inner loop of HiSlopeLine06 (at L21) is simpler than the inner

loop of LoSlopeLine06 (at L11). This is because HiSlopeLine0é6 incre-

ments the pixel y-coordinate, and thus the buffer offset, on every iteration, so the

only other code needed in the loop is the code to increment the decision variable

and update the pixel bit mask. In LoS lopeLine06, the x-coordinate is incre-

mented on each iteration by rotating the pixel bit mask. This necessitates some

extra code to update the bit mask and buffer offset in accordance with the decision

variable’s value.

The routine for 320-by-200 4-color mode, shown in Listing 6-5, is similar to the

one for 640-by-200 2-color mode. In fact, you could write a single routine that

works in either mode without undue sacrifice in performance. The differences lie

in how the address of the first pixel in the line is calculated (that is, a call to

PixelAddr04 versus one to PixelAddr06) and in how many bits are masked

and updated for each pixel in the buffer. The bit mask is 1 bit wide in 640-by-200

2-color mode and 2 bits wide in 320-by-200 4-color mode.

TITLE MSE ing) b="

NAME Line04

PAGE 55), tz

Name: Line04

Function: Draw a line in 320x200 4-color mode

Caller: Mieresoft Cs

void Line04 (x1,y1,x2,y2,n);

We Ne Se Ne Se Ne Ne Se Ne Se Ne Ne Ne

intext, Vips2eves /* pixel coordinates */

PME 7H? /* pixel value */

Listing 6-5. A line-drawing routine for CGA 320-by-200 4-color mode. (continued)

Chapter 6: Lines 177

Listing 6-5. Continued.

ARGx1 EQU word ptr [bpt4] ; stack frame addressing

ARGy1 EQU word ptr [bp+6]

ARGx2 EQU word ptr [bp+8]

ARGy2 EQU word ptr [bp+10]

ARGn EQU byte ptr [bp+12]

VARleafincr EQU word ptr [bp-6]

VARincr1 EQU word ptr [bp-8]

VARincr2 EQU word ptr [bp-10]

VARroutine EQU word ptr [bp-12]

ByteOffsetShift EQU 2 ; used to convert pixels to byte offset

DGROUP GROUP _DATA

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: _TEXT,ds:DGROUP

EXTRN PixelAddr04:near

PUBLIC _Line0Q4

_Line04 PROC near

push bp ; preserve caller registers

mov bp, sp

sub sp,8 ; stack space for local variables

push si

push al

mov si,2000h ; increment for video buffer interleave

mov di, 80-2000h ; increment from last to first interleave

mov cx, ARGx2

sub cx, ARGx1 hy CX 3 x2 = 1

jz VertLine04 ; jump if vertical line

7 Loree, xile< x2

jns L01 A jump ai 2295501

neg cx 7 CX S= e Sexe

mov bx, ARGx2 ; exchange x1 and x2

xchg bx, ARGx1

mov ARGx2,bx

mov bx, ARGy2 * exchange yl and y2

xchg bx, ARGy1

mov ARGy2,bx

7 Calculate dy = ABS(y2-y1)

L0O1: mov bx, ARGy2

sub bx, ARGy1 7; BXat= y2 = yi

jnz L02

jmp HorizLine04 * jump if horizontal line

(continued)

178 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-5. Continued.

L02: jns

neg

neg

neg

xchg

L03

bx

Sa

di

si,di ,

+ select appropriate routine for slope of

L03: mov

mov

cmp

jle

mov

xchg

VARleafincr, di ,

VARroutine, offset

Dxpex

L04 ,

VARroutine, offset

bx, Cx ,

7 calculate initial decision variable and

L04: shl

mov

sub

mov

sub

mov

; calculate first pixel

push

mov

mov

call

mov

shl

mov

not

pop
inc

test

jz

xchg

LOS: jmp

bx, 1

VARincr1,bx

bx, cx

di,bx

bx, cx

VARincr2,bx

address

Cx

ax, ARGy1

bx, ARGx1

PixelAddr04

al, ARGn

aAxpeL

dx,ax

dh

Cx

Cx

bx, 2000h

LOS

si, VARleafincr

VARroutine

™

Ne oN fe

BkeVS' y| —sy2

negate increments for buffer interleave

exchange increments

line

save increment for buffer interleave

LoSlopeLine04

jump if dy <= dx

HiSlopeLine04

exchange dy and dx

(slope <= 1)

increments

BX := 2 * dy

inex| 2= 2°* dy

Dir s= "d=" 2-4 dy = dx

INGE2 = 2 (dy Nd)

preserve this register

AX "=" Vy

Bike = x

AH := bit mask

ES:BX -> buffer

CL’ <= # bits’ to shift left

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

DH := bit mask

DL := pixel value

DH := inverse bit mask

restore this register

CX := # of pixels to draw

set zero flag if BX in Ist interleave

exchange increment values if 1st pixel

lies in ist interleave

jump to appropriate routine for slope

(continued)

Chapter 6: Lines 179

Listing 6-5. Continued.

routine for vertical lines ,

VertLine04: mov ax, ARGy1 7; AX s= yl

mov bx, ARGy2 7) BX Ba sy

mov cx, bx

sub Cx, ax 2 ICX s= dy

jge L31 ; jump if dy >= 0

neg cx ; force dy >= 0

mov ax,bx WAX. s= YZ

E31) inc cx , Cy += + of pixels to draw

mov bx, ARGx1 7 <BxX gS

push cx ; preserve this register

call PixelAddr04 ; AH := bit mask

; ES:BX -> video buffer

7; (CL S= fF bits fo shitt Lete

mov al,ARGn ; AL := pixel value

shl ax, el ; AH := bit mask in proper position

; AL := pixel value in proper position

not ah ; AH := inverse bit mask

pop cx 7 restore this register

test bx, Si 7 set zero flag if BX in 1st interleave

4z 1

xchg si, di 7 exchange increment values if 1st pixel

; lies in 1st interleave

nei and es: [bx],ah 7 (zero pixeljan buffer

or es: [bx],al ; set pixel value in buffer

add bx, Si ; increment to next portion of interleave

xchg si,di ; toggle between increment values

loop L32

jmp Lexit

7 routine for horizontal lines (slope = 0)

HorizLine04: mov ax, ARGy1

mov bx, ARGx1

call PixelAddr04 ; AH s= bit mask

+ ES:BX -> video buffer

7 CL s= # bits-to shift left
mov Ga ox 7; ES: DI -> buffer

mov dh, ah

not dh * DH := unshifted bit mask for leftmost

; byte
mov dl, OFFh + DL := unshifted bit mask for

; rightmost byte

shl dh, cl ; DH := reverse bit mask for first byte
not dh *; DH := bit mask for first byte

(continued)

180 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-5. Continued.

mov cx, ARGx2

and eis

xor eia

shl ona + CL := number of bits to shift left

shl abpeu + DL := bit mask for last byte

; determine byte offset of first and last pixel in the line

mMOv ax, ARGx2 PAX go=e x2

mov bx, ARGx1 : BX. = -x1

mov cl, ByteOffsetShift - numbex of bits to shift to

7 convert pixels to bytes

shr ax,cl ; AX := byte offset of x2

shr peel + BX := byte offset of x1

mov Cx, ax

sub Ckypbs (CAM S=E(@te Dy tess ah chune) =a 1

; propagate pixel value throughout one byte

mov bx,offset DGROUP:PropagatedPixel

mov al,ARGn ; AL := pixel value

xlat ; AL := propagated pixel value

; set pixels in leftmost byte of the line

or dh, dh

js L43 7 jump if byte-aligned (x1 is leftmost

; pixel in byte)

or ex, cx

jnz L42 7 jump if more than one byte in the line

and d1,dh ; bit mask for the line

jmp short L44

L42: mov ah,al

and ah, dh ; AH := masked pixel bits

not dh ; DH := reverse bit mask for 1st byte

and es: [di],dh ; zero masked pixels in buffer

or es:[di],ah ; update masked pixels in buffer

inc di

dec ex

use a fast 8086 machine instruction to draw the remainder of the line

L43: rep stosb ; update all pixels in the line

set pixels in the rightmost byte of the line ,

L44: and al,dl ; AL := masked pixels for last byte

not dl

and es: [di],dl ; zero masked pixels in buffer

or es:[di]J,al ; update masked pixels in buffer

jmp Lexit

(continued)

Chapter 6: Lines 181

Listing 6-5. Continued.

; routine for dy <=

LoSlopeLine04:

L10:

lel aya

mov

and

or

ror

ror

EOE

KOE

jne

dx (slope <= 1)

ah,es: [bx]

ah,dh

ah,dl

dl, 1

dl,1

dh, 1

dh, 1

L14

; bit mask not shifted out

bii2s

; bit mask shifted out

L14:

Lat Sue

or

jns

add

loop

mov

jmp

add

mov

add

xchg

loop

jmp

mov

Hae

jns

add

loop

jmp

add

add

xchg

di, di

L12

di, VARincr1

L14

es: [bx],ah

short Lexit

di, VARincr2

es: [bx],ah

bx, Si

si,VARleafincr

L10

short Lexit

es: [bx],ah

bx

di, di

AS

di, VARincr1

L10

short Lexit

di, VARincr2

bx Si

si, VARleafincr

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

SI = buffer interleave increment

DI = decision variable

AH := byte from video buffer

zero pixel value at current bit offset

set pixel value in byte

rotate pixel value

rotate bit mask

jump if bit mask rotated to

leftmost pixel position

test sign of d

jump if d >= 0

d= depanex}

store remaining pixels in buffer

a s=7%d + aner2

update buffer

increment y

exchange interleave increment values

update buffer

BX := offset of next byte

test sign of id

jump if non-negative

d at inert

d a ck ainiem2

increment y

(continued)

182 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-5. Continued.

, coutine for dy > dx

HiSlopeLine04:

L21:

L224

L23:

Lexit:

_Line0d4

_TEXT

_DATA

loop

jmp

and

or

add

xchg

jns

add

loop

jmp

add

ror

ror

ror

ror

cmc

adc

loop

pop

pop
mov

pop
ret

ENDP

ENDS

SEGMENT word public

L10

short Lexit

(slope > 1)

es: [bx],dh

es: [bx],dl

bx, si

si, VARleafincr

di,di

L23

di, VARincr1

L21

short Lexit

di, VARincr2

dl,1

dl,1

dh, 1

dh, 1

bx, 0

L21

si

sp, bp

bp

'DATA'

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL pixel value in proper position

SI buffer interleave increment

DI = decision variable

i

zero pixel value in video buffer

set pixel value in byte

increment y

exchange interleave increment values

test sign of d

jump if d >= 0

d a+ incr1

d Cerne re

rotate pixel value

rotate bit mask

cf set if bit mask not rotated to

leftmost pixel position

BX := offset of next byte

restore registers and return

(continued)

Chapter 6: Lines 183

Listing 6-5. Continued.

PropagatedPixel DB 00000000b He 0)

DB 01010101b ee)

DB 10101010b rae.

DB At td tip 213

_DATA ENDS

END

On the CGA, the code that handles vertical increments is complicated by the need

to step across the interleaves in the video buffer. The pixel address is incremented

by 2000H to move from the first interleave (even y-coordinates) to the second in-

terleave (odd y-coordinates). To increment from a pixel at an odd y-coordinate to

the pixel just below it, you add —2000H (to increment from the second to the first

interleave) plus 80 (the number of bytes in each pixel row in the buffer). The in-

crement is thus OEOSOH (80 — 2000H).

The routines for the CGA presented in Listings 6-4 and 6-5 can only

copy the specified pixel value into the video buffer. To perform a

XOR, an OR, or an AND operation on the preexisting values in the

buffer using the specified pixel value, change the inner loops of each

of the four line-drawing modules.

In selecting among pixel operations (XOR, AND, and so on), you face

the usual trade-off between speed and code size. To maximize speed,

write a separate line-drawing module for each pixel operation (AND,

OR, XOR, and replace). To minimize redundant code, call a short

subroutine, or add some branching logic to perform one of the pixel
operations.

HGC

The routine for the HGC, contained in Listing 6-6, is similar to the one for the

CGA’s 640-by-200 2-color mode. The important difference is in how the HGC’s

video buffer is mapped. Because of the Hercules video buffer’s four-way in-
terleave, the pixel address is incremented by adding the buffer interleave value
(2000H or —2000H) until the result exceeds the limit of valid buffer offsets.
Because valid buffer offsets lie in the range 0 through 7FFFH, the routine detects
the overflow condition by examining the high-order bit of the result. When the
result overflows, it adds another value (90 — 8000H or 8000H — 90) to it, so that the
new result is the proper offset in the next buffer interleave.

TITLE "Listing 6-6!
NAME LineHGC

PAGE Boyne

(continued)

Listing 6-6. A line-drawing routine for Hercules monochrome graphics mode.

184 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-6. Continued.

; Name:

7 Function:

Caller;

Ne Me Ne Ne Ne Ne Se Ne Ne

ARGx1

ARGy1

ARGx2

ARGy2
ARGn

VARleafincr

VARincr1

VARincr2

VARroutine

ByteOffsetS

DGROUP

_TEXT

_LineHGC

; force x1

hift

<ixZ

LineHGC

Draw a line in HGC or HGC+ 720x348 graphics

Microsoft C:

EQU

EQU

EQU
EQU
EQU

EQU

EQU

EQU
EQU

EQU

GROUP

SEGMENT

ASSUME

EXTRN

PUBLIC

PROC

push

mov

sub

push

push

mov

mov

mov

sub

jz

jns

neg

mov
xchg

mov

void LineHGC(x1,y1,x2,y2,n);

BME oS ay llpRe py 2s /* pixel coordinates */

aaa T's /* pixel value */

word ptr [bp+4] ; stack frame addressing

word ptr [bp+6]

word ptr [bp+8]

word ptr [bp+10]

byte ptr [bpt12]

word ptr [bp-6]
word ptr [bp-8]

word ptr [bp-10]

word ptr [bp—1/2]

3 7 used to convert pixels to byte offset

_DATA

byte public 'CODE'

cs:_TEXT,ds:DGROUP

PixelAddrHGC:near

_LineHGC

near

preserve caller registers = bp
bp, sp

sp, 8 ;

si

di

stack space for local variables

increment for video buffer interleave

increment from last to first interleave

si,2000h F

di, 90-8000h ;

cx, ARGx2

cx, ARGx1 GX, Pe Ze me SE

VertLineHGC 7 Jump Lt vertical Line

L01 7 jump wh x2 x1

Gx 7 Cx = x =a 2

bx, ARGx2 ; exchange x1 and x2

bx, ARGx1

ARGx2,bx

(continued)

Chapter 6: Lines 185

Listing 6-6. Continued.

mov bx, ARGy2

xchg bx, ARGy1

mov ARGy2,bx

; calculate dy = ABS(y2-y1)

OW: Mov bx, ARGy2

sub bx, ARGy1

jz HorizLineHGC

jns L03

neg bx

neg si

neg di

,

; select appropriate routine for slope of

L03: mov

mov

cmp

jle

mov

xchg

VARleafincr,di ,

VARroutine, offset

bisy,.Cx

L04 ,

VARroutine, offset

bx, cx ,

; calculate initial decision variable and

L04: shl

mov

sub

mov

sub

mov

* calculate first pixel

push

MOV

mov

eall

mov

shl

mov

not

pop
inc

jmp

bx, 1

VARincr1,bx

bx,.Cx

da, bx

brick

VARincr2,bx

address

cx

ax, ARGy1

bx, ARGx1

PixelAddrHGC

al,ARGn

ax) GL

ax, ax

dh

Cx

Cx

VARroutine

exchange y1 and y2

BYAe= Vous ya

jump if horizontal line

BX S="yl = y2

negate increments for buffer interleave

line

save increment for buffer interleave

LoSlopeLineHGC

jump if dy <= dx (slope <= 1)

HiSlopeLineHGC

exchange dy and dx

increments

BX i= 2° * dy

incr! := 2 * dy

DI := d= 2 * dy - dx

#NncE2 s= 212 (dy = dx)

preserve this register

AX := y

BX := x

AH := bit mask

ES:BX -> buffer

CL := # bits to shift left

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

DH := bit mask

DL := pixel value

DH := inverse bit mask

restore this register

CX := # of pixels to draw

jump to appropriate routine for slope

(continued)

186 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-6. Continued.

* routine for vertical lines

VertLineHGC: mov ax, ARGy1 ; AX := yl
mov bx, ARGy2 fOBX. 2= y2

mov Cx, Dx

sub CX, ax ¢ CXeR= dy

jge L31 * Jump if dy S= 0

neg Cx + force dy >= 0

mov ax,bx ; AX 3= y2

Eis inc ex + CX := # of pixels to draw
mov bx, ARGx1 aS ker ex
push cx * preserve this register

call PixelAddrHGC + AH := bit mask

+; ES:BX -> video buffer

) Clhat= + bitsato shitty lett

mov al,ARGn ; AL := pixel value

shl ax, cl ; AH := bit mask in proper position

7 ; AL := pixel value in proper position

not. ah ; AH := inverse bit mask

pop cx 7; restore this register

7 Graw the line

test al,al

jz L34 ; jump if pixel value is zero

L32: or es: [bx],al ; set pixel values in buffer

add bx, si ; increment to next portion of interleave

jns L33

add bx, Ai ; increment to first portion of interleave

L333 loop L32

jmp short L36

L34: and es: [bx],ah ; reset pixel values in buffer

add bx, si ; increment to next portion of interleave

jns E35

add bx, Gu ; increment to first portion of interleave

ESS loop L34

L36: jmp Lexit

; routine for horizontal lines (slope = 0)

HorizLineHGC: mov ax, ARGy1

mov bx, ARGx1

call PixelAddrHGC ; AH := bit mask

; ES:BX -> video buffer

i Cl) t= # bits te vshice lett

mov di, bx ; ES:DI -> buffer

mov dh, ah

not dh ; DH := unshifted bit mask for leftmost

: byte

mov dal, OFFh ; DL := unshifted bit mask for

5 rightmost byte

(continued)

Chapter 6: Lines 187

Listing 6-6. Continued.

shl dh,cl ; DH := reverse bit mask for first byte

not dh ; DH := bit mask for first byte

mov cx, ARGx2

and Clie)

xor 61,7 ; CL := number of bits to shift left

shl dl,ek ; DL := bit mask for last byte

; determine byte offset of first and last pixel in the line

mov ax, ARGx2 ; AX := x2

mov bx, ARGx1 ; BX s= x1

mov cl, ByteOffsetShift ; number of bits to shift to

; convert pixels to bytes

shr axpeL ; AX := byte offset of x2

shr bx,cl ; BX := byte offset of x1

mov cx, ax

sub cx, bx ; CX := (# bytes in line) - 1

; propagate pixel value throughout one byte

mov bx,offset DGROUP:PropagatedPixel

mov al,ARGn ; AL := pixel value

xlat ; AL := propagated pixel value

; set pixels in leftmost byte of the line

or dh, dh

js L43 ; jump if byte-aligned (x1 is leftmost

* pixel in byte)

or Cx ex

jnz L42 ; jump if more than one byte in the line

and dl,dh ; bit mask for the line

jmp short L44

L42: mov ah,al

and ah, dh ; AH := masked pixel bits

not dh ; DH := reverse bit mask for 1st byte

and es:[di],dh ; zero masked pixels in buffer

or es:[di],ah ; update masked pixels in buffer

inc di

dec cx

; use a fast 8086 machine instruction to draw the remainder of the line

L43: rep stosb ; update all pixels in the line

+ set pixels in the rightmost byte of the line

L44: and al,dl ; AL := masked pixels for last byte

not dl

and es: [di],dl ; zero masked pixels in buffer

or es: [di],al ; update masked pixels in buffer

jmp Lexit

(continued)

188 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-6. Continued.

* routine for dy <=

LoSlopeLineHGC:

L10:

Bits

mov

and

or

ror

LOL

jnc

(slope <= 1)

ah,es: [bx]

ah,dh

ah,dl

dl, 1

dh, 1

L14

; bit mask not shifted out

Li:

Gio

; bit mask shifted out

L14:

Eroe

or

jns

add

loop

mov

jmp

add

mov

add

jns

add

loop

jmp

mov

inc

or

jns

add

loop

jmp

add

add

jns

add

di,di

L12

di, VARincr1

L11

es: [bx],ah

short Lexit

di, VARincr2

es: [bx],ah

bx, si

L13

bx, VARleafincr

L10

short Lexit

es: [bx],ah

bx

di, di

L15

di, VARincr1

L10

short Lexit

di, VARincr2

bx, si

L16

bx, VARleafincr

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

SI = buffer interleave increment

DI = decision variable

AH := byte from video buffer

zero pixel value at current bit offset

set pixel value in byte

rotate pixel value

rotate bit mask

jump if bit mask rotated to

leftmost pixel position

test sign of d

jump if d >= 0

dem a+) Winer!

store remaining pixels in buffer

a s= d + sinerZ

update buffer

increment y

jump if not in last interleave

increment into next interleave

update buffer

BX := offset of next byte

test sign of d

jump if non-negative

d d + incr

d ad + iner2

increment y

jump if not in last interleave

increment into next interleave

(continued)

Chapter 6: Lines 189

Listing 6-6. Continued.

L16: loop

jmp
L10

short Lexit

~ coutine, for dy > dx (slope > 1)

HiSlopeLineHGC:

E20

L22%

G23):

Lexit:

_LineHGC

ErExXe

_DATA

PropagatedPixel

_DATA

and

or

add

jns

add

or

jns

add

loop

jmp

add

OK

OG

cmc

adc

loop

pop

pop
mov

pop
ret

ENDP

ENDS

SEGMENT

DB

DB

ENDS

END

es: [bx],dh

es: [bx],dl

bx, si

L22

bx, VARleafincr

dai, da.

L23

di, VARincr1

L21

short Lexit

di, VARincr2

dai, 1

dh; 1

bx, 0

L21

si

sp,bp

bp

word public

00000000b

ay 15

'DATA'

loop until all pixels are set

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

SI = buffer interleave increment

DI = decision variable

zero pixel value in video buffer

set pixel value in byte

increment y

jump if not in last interleave

increment into next interleave

jump if d >= 0

da a aimner |

d Gy et nerZ

rotate pixel value

rotate bit mask

cf set if bit mask not rotated to

leftmost pixel position

BX := offset of next byte

restore registers and return

190 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The routines for the HGC never access the video buffer with 16-bit read/write opera-
tions such as MOVSW or AND [BX], DX. Avoiding these 16-bit operations ensures
that the routines will run on the InColor Card as well as on the HGC and HGC+.

You can use the same line-drawing routines on either of the HGC’s

video pages by setting the appropriate value for VideoBufferSeg

in PixelAddrHGC. For video page 0, set VideoBuf ferSeg to
BOOOH. For video page 1, use B800H.

EGA

For the EGA, three line-drawing routines can cover all available graphics modes.

The routines for the CGA’s 640-by-200 2-color and 320-by-200 4-color modes work

equally well in equivalent modes on the EGA. The routine for the remaining

graphics modes (200-line 16-color modes and all 350-line modes) is complicated

by the need to program the Graphics Controller, but simplified in that the

Graphics Controller hardware handles some pixel manipulations that must be

performed in software on the CGA.

The routine in Listing 6-7 uses Graphics Controller write mode 0 to update the
video buffer. The routine stores the pixel value for the line in the Set/Reset regis-

ter. For each pixel updated in the buffer, the routine writes the appropriate bit
mask to the Bit Mask register. Thus, a single 80x86 instruction can read, update,

and rewrite up to 8 pixels at a time.

TITLE "LBusting 6=7*

NAME Line10

PAGE 55) 132

; Name: Line10

; Function: Draw a line in the following EGA and VGA graphics modes:

200-line 16-color modes

350-line modes

640x480 16-color

Caller: Microsoft C:

void Line10(x1,y1,x2,y2,n);

ee

tnt slp Vy) Aker vor /* pixel coordinates */

ant 2 /* pixel value */

ARGx1 EQU word ptr [bp+4] ; stack frame addressing

ARGy1 EQU word ptr [bp+6]

ARGx2 EQU word ptr [bpt+8]

ARGy2 EQU word ptr [bpt10]

ARGn EQU byte ptr [bpt+12]

Listing 6-7. A line-drawing routine for native EGA graphics modes. (continued)

Chapter 6: Lines 191

Listing 6-7. Continued.

VARvertincr EQU

VARincr1 EQU

VARincr2 EQU

VARroutine EQU

ByteOffsetShift EQU

BytesPerLine EQU

RMWbits EQU

_TEXY. SEGMENT

ASSUME

EXTRN

PUBLIC

_Line10 PROC

push

mov

sub

push

push

word ptr [bp-6]

word ptr [bp-8]

word ptr [bp-10]

word ptr [bp-12]

3 ; used to convert pixels to byte offset

80
0 ; value for Data Rotate/Func Select reg

byte public 'CODE'

cs:_TEXT

PixelAddri0:near

_Line10

near

bp ; preserve caller registers

bp, sp

sp, 8 ; stack space for local variables

si

di

; configure the Graphics Controller

mov

mov

xOr

out

mov

out

mov

mov

out

dx, 3CEh ; DX := Graphics Controller port addr

ah, ARGn ; AH := pixel value

al,al ; AL := Set/Reset Register number
dx, ax

ax, OFO1h 7 AH := 1111b (bit plane mask for

; Enable Set/Reset)

dx,ax ; AL := Enable Set/Reset Register #

ah, RMWbits 7 bits 3 and 4 of AH 3= function

al, 3 ; AL := Data Rotate/Func Select reg #
dx, ax

; check for vertical line

mov

mov

sub

az

+ force x1 < x2

jns

neg

Mov

xchg

mov

si,BytesPerLine ; increment for video buffer

cx, ARGx2

cx, ARGx1 ¢; CX := x2 = x1

VertLine10 ; jump if vertical line

L01 7. jump af x2 S34

cx , CK x1 x2

bx, ARGx2 7 exchange x1 and x2
bx, ARGx1

ARGx2,bx

(continued)

192 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-7. Continued.

, calculate dy

LOT:

,

mov bx, ARGy2 .

xchg bx, ARGy1

mov ARGy2,bx

= ABS (y2-y1)

mov bx, ARGy2

sub bx, ARGy1 :

jz HorizLine10 ;

jns L03 ;

neg bx ;

neg si ;

select appropriate routine for slope of

L03:

,

mov

mov

cmp

jle

mov

xchg

VARvertincr,si ;

VARroutine, offset

bx, cx

L04 ;

VARroutine, offset

bx, cx ;

calculate initial decision variable and

L04:

, calculate first pixel

shl

mov

sub

mov

sub

mov

push

mov

mov

call

mov

shl

mov

mov

pop
inc

jmp

Dx | ;

VARincr1,bx i

bx, cx

sil, bx ;

lopaneb.<

VARincr2,bx 3

address

Cx ;

ax, ARGy1 ;

bx, ARGx1 ;

PixelAddr10 .

di,bx ;

ah,cl ;

bl,ah ;

al,8 ;

Cx ;

cx ;

VARroutine Fi

exchange yl and y2

BS 0y.2 = yi

jump if horizontal line

jump if slope is positive

Bxee= yal aye

negate increment for buffer interleave

line

save vertical increment

LoSlopeLine10

jump if dy <= dx

HiSlopeLine10

exchange dy and dx

(slope <= 1)

increments

BX := 2 * dy

iner!l := 2 * dy

Sie Ga= 92 ea Cryer. Clix

iner2) = 2° 4 (dy = dx)

preserve this register

AX 3:= y

BX := x

AH := bit mask

ES:BX -> buffer

Ch f= + bes to shift. lere

ES:DI -> buffer

AH := bit mask in proper position

AH,BL := bit mask

AL := Bit Mask Register number

restore this register

CX := # of pixels to draw

jump to appropriate routine for slope

(continued)

Chapter 6: Lines 193

Listing 6-7. Continued.

; routine for vertical lines

VertLine10: mov ax, ARGy1 ; AX := yl

mov bx, ARGy2 * BK t= y2

mov cx, bx

sub CX, ax 7 (CX s= dy

jge L31 A gump it “dya>= 0

neg cx ; force dy >= 0

mov ax, bx ; AX := y2

L31: inc Cx 7 CX 3= # of pixels to draw

mov bx, ARGx1 , BX := x

push ex ; preserve this register

call PixelAddr10 ; AH := bit mask

; ES:BX -> video buffer

7; Ch i= # Dits to shite Letre

; set up Graphics Controller

shl ah,cl ; AH := bit mask in proper position

mov al,8 ; AL := Bit Mask reg number

out dx, ax

pop cx ; restore this register

; draw the line

mee or es: [bx],al 7 set pixel

add bx, si ; increment to next line

loop L32

jmp Lexit

; routine for horizontal lines (slope = 0)

HorizLine10:

push ds 7 preserve DS

mov ax, ARGy1

mov bx, ARGx1

call PixelAddr10 ; AH := bit mask

7 ES:BX -> video buffer

7 CL 3= # bits, toe shitt Lett

mov di,bx ; ES:DE => buffer

mov dh, ah 7 DH := unshifted bit mask for leftmost
; byte

not dh

shl dh,cl ; DH := reverse bit mask for first byte
not dh ; DH := bit mask for first byte

mov cx, ARGx2

and cued

xor Claw 7 CL := number of bits to shift left
mov dl, OFFh * DL := unshifted bit mask for

: rightmost byte
shl a cu 7 DL := bit mask for last byte

(continued)

194 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-7. Continued.

; determine byte offset of first and last pixel in the line

mov ax, ARGx2 p

mov bx, ARGx1 Z

mov cl, ByteOffsetShift

shr azx,el ;

shr xc ed ;

mov Cx; ax

sub ex, bx :

AX := x2

BXeaS

7 number of bits to shift to

; convert pixels to bytes

AX := byte offset of x2

BX := byte offset of x1

CX := (# bytes in line) - 1

* get Graphics Controller port address into DX

mov ba, dx ; BH := bit mask for first byte

—;-BL-:= bit mask for last byte

mov ax; 3CEh ; DX := Graphics Controller port

mov al,8 ; AL := Bit Mask Register number

+ make video buffer addressable through DS:SI

7 set pixels in

L42:

,

L43:

7; Set pixels in

L44:

push es

pop ds

mov Si, GL ;

leftmost byte of the line

or bh,bh

js L43 ;

or Gx Ox

jnz L42 ;

and bl,bh ;

jmp short L44

mov ah,bh 5

out dx,ax ;

movsb ;

dec ex

mov an piiddd dit 5

out dx,ax ;

rep movsb ;

the rightmost byte of the

mov ah,bl i

out dx, ax ;

movsb ;

pop ds ;

jmp short Lexit

DS:SI -> video buffer

jump if byte-aligned (x1 is leftmost

pixel in byte)

jump if more than one byte in the line

BL := bit mask for the line

AH := bit mask for 1st byte

update Graphics Controller

update bit planes

use a fast 8086 machine instruction to draw the remainder of the line

AH := bit mask

update Bit Mask Register

update all pixels in the line

line

AH := bit mask for last byte

update Graphics Controller

update bit planes

restore DS

(continued)

Chapter 6: Lines 195

Listing 6-7. Continued.

; routine for dy >= dx (slope <= 1)

LoSlopeLine10:

L10: mov ah, bl

Bi: or ah,bl

ror bl, t

Ve L14

; bit mask not shifted out

or Sisk

jns L12

add si, VARincr1

loop L11

out ax,ax

or Sean, aa

jmp short Lexit

L12: add si,VARincr2

out dx, ax

or es:[di],al

add di, VARvertincr

loop L10

jmp short Lexit

; bit mask shifted out

L14: out dx,ax

or es: [di],al

inc di

or Siok

jns L15

add si,VARincr1

loop L10

jmp short Lexit

D154 add Si, VARincr2

add di, VARvertincr

loop L10

jmp short Lexit

,

ES:DI -> video buffer

AL = Bit Mask Register number

BL = bit mask for ist pixel

CX = # pixels to draw

DX = Graphics Controller port addr

SI = decision variable

AH := bit mask for next pixel

mask current pixel position

rotate pixel value

jump if bit mask rotated to

leftmost pixel position

test sign of d

jump if d >= 0

a.2=Sceteer |

update Bit Mask Register

set remaining pixel(s)

Aer—= id See ines?

update Bit Mask Register

update bit planes

increment y

update Bit Mask Register

update bit planes

increment x

test sign of d

jump if non-negative

d dit ines

d := d + incer2

vertical increment

(continued)

196 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-7. Continued.

* routine for dy > dx

HiSlopeLine10:

L2it<

Li22is

23s

mov

out

OF

add

or

jns

add

loop

jmp

add

ror

adc

loop

(slope > 1)

bx, VARvertincr

dx,ax

es: [di],al

da, bs

Say, Su

L23

si,VARincr1

L21

short Lexit

si,VARincr2

ah,1

di,0

L21

=

‘e

ES:DI -> video buffer

AH = bit mask for 1st pixel

AL = Bit Mask Register number

CX = # pixels to draw

DX = Graphics Controller port addr

SI = decision variable

BX := y-increment

update Bit Mask Register

update bit planes

increment y

testesign of d

jump if d >= 0

Ce at ner |

a 2= detainee?

rotate bit mask

increment DI if when mask rotated to

leftmost pixel position

; restore default Graphics Controller state and return to caller

Lexit:

_Line10

TERT

xor

out

ine

out

mov

out

mov

out

pop

pop
mov

pop
ret

ENDP

ENDS

END

ax,ax

dx,ax

ax

dx,ax

al3

dx,ax

ax, OFFO8h

dx,ax

di
si

sp,bp

bp

~ AH := 0, AL := 0

restore Set/Reset Register

AH := 0, AL := 1

restore Enable Set/Reset Register

AH. := 0, AL := 3

AL Data Rotate/Func Select reg # i}

AW f= (101 111b, ALY = <8

restore Bit Mask Register

restore registers and return

Chapter 6: Lines 197

Within the line-drawing modules, the value 3CEH (the port for the Graphics Con-

troller Address register) is maintained in DX, the value 8 (the Bit Mask register

number) is kept in AL, and the current pixel bit mask is kept in AH. This lets you
update the bit planes with only two machine instructions: OUT DX, AX to update

the Bit Mask register and a MOVSB or OR ES: [DI], AL instruction that causes a

CPU read and CPU write to occur.

This routine makes careful use of the 80x86 registers and the Graphics Controller.

The Graphics Controller’s parallel processing helps the routine run at about the

same speed as do CGA and HGC line-drawing routines.

Native EGA graphics modes use no video buffer interleave, so locating a pixel’s

vertical neighbors in the video buffer is easy. If each line contains n bytes of pix-

els, the next pixel up from a given pixel is —n bytes away, and the next pixel down

is n bytes away. The code for incrementing pixel addresses vertically is thus

simpler than the corresponding code for the CGA or the HGC. (Compare, for ex-

ample, the code in the loop at label L32 in Listings 6-4 and 6-7.)

The Graphics Controller handles any of four pixel operations for you (KOR, AND,

OR, and replace), so the only extra code required to support these functions con-

sists of a few instructions to load the Data Rotate/Function Select register (03H).

This task is part of the ‘‘configure the Graphics Controller’’ code near the begin-
ning of the routine in Listing 6-7.

You can use this Jine-drawing routine in 640-by-350 4-color and mono-

chrome modes. Be sure to specify the proper pixel value in these modes

so that the routine sets bits in the proper bit planes (see Chapter 4).

MCGA

In CGA-compatible modes, you can use the CGA line-drawing routines on the
MCGA. The non-CGA modes (640-by-480 2-color and 320-by-200 256-color) re-
quire their own routines, as shown in Listings 6-8 and 6-9, but these are easily
derived from the code for 640-by-200 2-color mode.

TITLE "Listing 6-8'

NAME Line11

PAGE SS ul si

,

; Name: Line11

; Function: Draw a line in 640x480 2-color mode (MCGA, VGA)

Calter: Microsoft C:

void Line11 (x1,y1,x2,y2,n);

(continued)

Listing 6-8. A line-drawing routine for MCGA and VGA 640-by-480 2-color mode.

198 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-8. Continued.

LG Vp ee Ver /* pixel coordinates */

/* pixel value */

stack frame addressing

; bytes in one row of pixels

used to convert pixels to byte offset

preserve caller registers

stack space for local variables

7 int ne

ARGx1 EQU word ptr [bpt+4] ;

ARGy1 EQU word ptr [bp+6]

ARGx2 EQU word ptr [bp+8]

ARGy2 EQU word ptr [bp+10]

ARGn EQU byte ptr [bp+12]

VARincr1 EQU word ptr [bp-6]

VARincr2 EQU word ptr [bp-8]

VARroutine EQU word ptr [bp-10]

BytesPerLine EQU 80

ByteOffsetShift EQU 3 A

DGROUP GROUP _DATA

ScExT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP

EXTRN PixelAddr10:near

PUBLIC _Line11

_Line11 PROC near

push bp ;

mov bp, sp

sub sp, 6 ;

push si

push di

check for vertical line ,

mov si,BytesPerLine

mov cx, ARGx2

sub cx, ARGx1

zs VertLine11

“—Toreca xh < x2

jns L01

neg Cx

mov bx, ARGx2

xchg bx, ARGx1

mov ARGx2,bx

mov bx, ARGy2

xchg bx, ARGy1

mov ARGy2,bx

Si initial y-increment ,

CX x2) eel

jump if vertical line

jump if x2 > x1

CX <1 x2

exchange x1 and x2

exchange y1 and y2

(continued)

Chapter 6: Lines 199

Listing 6-8. Continued.

; calculate dy = ABS(y2-y1)

L01: mov bx, ARGy2

sub bx, ARGy1

jnz L02

jmp HorizLinel1

L02: jns L03

neg bx

neg si

,

; select appropriate routine for slope of

LO3% mov VARroutine, offset

cmp beyex

jle L04 i

mov VARroutine, offset

xchg bx, Cx ;

; calculate initial decision variable and

L04: shl oscput

mov VARincr1,bx

sub psaa7ex

mov ai, bx

sub bx,cx

mov VARincr2,bx

; calculate first pixel address

push Cx

mov ax, ARGy1

mov bx, ARGx1

call PixelAddr10

mov al,ARGn

shl axpeL

mov dx, ax

not dh

pop cx

inc Cx

jmp VARroutine

;. routine for vertical lines

VertLine11: mov ax, ARGy1

mov bx, ARGy2

mov cx, bx

sub CX,ax

jge L31

Bxs= Vy Ze ya

jump if horizontal line

Be=ny1 — y2

negate y-increment

line

LoSlopeLine11

jump if dy <= dx

HiSlopeLine11

exchange dy and dx

(slope <= 1)

increments

BX := 2 * dy

Iner|. <= 92 = dy

Dies= d = 25+ dy — dx

incr2 := 2 * (dy - dx)

preserve this register

Bey
BX := x

AH := bit mask

ES:BX -> buffer

CL := # bits to shift left

AL := unshifted pixel value

AH := bit mask in proper position

AL := pixel value in proper position

DH := bit mask

DL := pixel value

DH := inverse bit mask

restore this register

CX := # of pixels to draw

jump to appropriate routine for slope

AX := yl

BX := y2

CX := dy

jump if dy >= 0

(continued)

200 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-8. Continued.

neg cx ; force dy >= 0

mov ax,bx 7; AX := y2

L313 inc ex ; CX := # of pixels to draw
mov bx, ARGx1 ; BX 3s= x

push ex ; preserve this register

call PixelAddr10 ; AH := bit mask

; ES:BX -> video buffer

; CL 3= # bits to shift left
mov al,ARGn ; AL := pixel value

shl ax,cl ; AH := bit mask in proper position

; AL := pixel value in proper position

not ah ; AH := inverse bit mask

pop Cx ; restore this register

; draw the line

test al,al

AZ L33 ; jump if pixel value = 0

ES2s or es: [bx],al ; set pixel values in buffer

add bx, Ss

loop L32

jmp short L34

L33: and es: [bx],ah ; reset pixel values in buffer

add Dx, Sa

loop L33

L34: jmp Lexit

; routine for horizontal lines (slope = 0)

HorizLine11: mov ax, ARGy1

mov bx, ARGx1

call PixelAddr10 ; AH := bit mask

; ES:BX -> video buffer

, CL t=! # bits to shift Left

mov di,bx > ES:DI -—> buffer

mov dh,ah

not dh ; DH := unshifted bit mask for leftmost

; byte

mov dl, OFFh ; DL := unshifted bit mask for

c rightmost byte

shl dh,cl ; DH := reverse bit mask for first byte

not dh ; DH := bit mask for first byte

mov cx, ARGx2

and Ce

xor Cl 7 > CL s= number of bits to shift left

shl al ol ; DL := bit mask for last byte

(continued)

Chapter 6: Lines 201

Listing 6-8. Continued.

mov

mov

mov

shr

shr

mov

sub

ax, ARGx2

bx, ARGx1

cl, ByteOffsetShift

ax,cl

bx, CL

cx,ax

cx, bx

,

.
,

,

.
,

,

determine byte offset of first and last pixel in the line

AX := x2

BX := x1

; number of bits to shift to

; convert pixels to bytes

AX := byte offset of x2

BX := byte offset of x1

Cx) s= (# bytes in tine) — 3)

; propagate pixel value throughout one byte

mov

mov

xlat

bx, offset DGROUP:PropagatedPixel

al,ARGn ,

; set pixels in leftmost byte of the line

or

js

or

jnz

and

jmp

L42: mov

and

not

and

or

nC

dec

dh, dh

L43

ex, cx

L42

dl,dh

short L44

ah,al

ah, dh

dh

es: [di],dh

es:[dij],ah

di

cx

,

AL := pixel value

jump if byte-aligned (x1 is leftmost

pixel in byte)

jump if more than one byte in the line

bit mask for the line

AH masked pixel bits

DH := reverse bit mask for 1st byte

zero masked pixels in buffer

update masked pixels in buffer

; use a fast 8086 machine instruction to draw the remainder of the line

L43: rep

; set pixels in the

L44: and

not

and

or

jmp

; routine for dy <= dx (slope <= 1)

stosb ’

rightmost byte of the

al, dl

dl

es: [di],dl

es:[di],al

Lexit

.
,

update all pixels in the line

line

AL := masked pixels for last byte

zero masked pixels in buffer

update masked pixels in buffer

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL = pixel value in proper position

SI = bytes per pixel row

DI = decision variable

(continued)

202 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-8. Continued.

LoSlopeLine11:

L10: mov

Bis and

or

ror

ror

jne

ah,es: [bx]

ah,dh

ah,dl

dl,1

dh, 1

L14

7 bit mask not shifted out

or

jns

add

loop

mov

jmp

Te 258 add

mov

add

loop

jmp

; bit mask shifted out

L14: mov

inc

or

jns

add

loop

jmp

Lies add

add

loop

jmp

di,di

L12

di,VARincr1

L11

es: [bx],ah

short Lexit

di, VARincr2

es: [bx],ah

bx, Si

L10

short Lexit

es: [bx],ah

bx

ai dil

L15

di, VARincr1

L10

short Lexit

di, VARincr2

bx, Sz

L10

short Lexit

xoutine for dy > dx (slope > 1)

HiSlopeLine11:

eds and

or

es: [bx],dh

esi; [bx], dal

AH := byte from video buffer

zero pixel value at current bit offset

set pixel value in byte

rotate pixel value

rotate bit mask

jump if bit mask rotated to

leftmost pixel position

test= sign of) d

jump if d >= 0

Qe dee ince

store remaining pixels in buffer

ad ead Se inenZ

update buffer

increment y

update buffer

BX := offset of next byte

test sign of d

jump if non-negative

dis= d+ anecri

d aa aner2 Hl

increment y

ES:BX -> video buffer

CX = # pixels to draw

DH = inverse bit mask

DL pixel value in proper position

SI = bytes per pixel row

DI decision variable

HI

zero pixel value in video buffer

set pixel value in byte

(continued)

Chapter 6: Lines 203

Listing 6-8. Continued.

add bx, Si ; increment y

227 or di,di ; test sign of d

jns L23 ? jump if d >= 0

add di, VARincr1 7 @2=d + ineri

loop L21

jmp short Lexit

ZK add di, VARincr2 7d = de imerZ

ror al ; rotate pixel value

ror dh, 1 ; rotate bit mask

cmc ; cf set if bit mask not rotated to

; leftmost pixel position

adc bx, 0 ; BX := offset of next byte

loop L21

Lexit: pop di ; restore caller registers and return

pop si

mov sp,bp

pop bp
ret

_Line11 ENDP

_TEXT ENDS

_DATA SEGMENT word public 'DATA'

PropagatedPixel DB 00000000b 7 10

DB V11141111b be

_DATA ENDS

END

TITLE "Listing 6-9'
NAME Line13

PAGE 55,132

; Name: Line13

7, EUNnGE LON. Draw a line in MCGA/VGA 320x200 256-color mode

(continued)

Listing 6-9. A line-drawing routine for MCGA and VGA 320-by-200 256-color mode.

204 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-9. Continued.

7 Caller: Microsoft C:

; void Line13(x1,y1,x2,y2,n);

; dntiax pvp koe ves /* pixel coordinates */

; int n; /* pixel value */

ARGx1 EQU word ptr [bp+4] ; stack frame addressing
ARGy1 EQU word ptr [bp+6]

ARGx2 EQU word ptr [bp+8]

ARGy2 EQU word ptr [bp+10]

ARGn EQU byte ptr [bpt+12]

VARincr1 EQU word ptr [bp-6]

VARincr2 EQU word ptr [bp-8]

VARroutine EQU word ptr [bp-10]

BytesPerLine EQU 320

_TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

EXTRN PixelAddr13:near

PUBLIC _Line13
_Line13 PROC near

push bp 7 preserve caller registers

mov bp, sp

sub sp, 6 ; stack space for local variables

push si

push di

; check for vertical line

mov

mov cx, ARGx2

sub cx, ARGx1

jz

2 force x1 < 5x2

jns L01

neg ex

mov bx, ARGx2

xchg bx, ARGx1

mov ARGx2,bx

mov bx, ARGy2

xchg bx, ARGy1

mov ARGy2,bx

si,BytesPerLine ;

VertLine13 -

initial y-increment

2) CX B= exe =a)

jump if vertical line

, up et, x2e> x1

f° CXecm x] gore

; exchange x1 and x2

; exchange y1 and y2

(continued)

Chapter 6: Lines 205

Listing 6-9. Continued.

; calculate dy = ABS(y2-y1)

L01:; mov bx, ARGy2

sub bx, ARGy1 ;

zs HorizLine13 A

jns L03 ;

neg bx ;

neg si ;

; select appropriate routine for slope of

L03: push si i

mMOv VARroutine, offset

cmp bx, ex

jle L04 c

mov VARroutine, offset

xchg lap, epi ,

; calculate initial decision variable and

L04: shl bx, 1 F

mov VARincr1,bx ;

sub bx, Cx

mov si,bx ;

sub ba,cx

mov VARincr2,bx 5

; calculate first pixel address

push cx ;

mov ax, ARGy1 ;

mov bx, ARGx1 F

call PixelAddr13 ;

mov di,bx ;

pop cx

ane cx ;

pop bx ;

jmp VARroutine ;

; routine for vertical lines

VertLine13: mov ax, ARGy1 ;

mov bx, ARGy2 ,

mov CX), OX

sub Gx, ax ;

jge L31 e

neg Cx 6

mov ax,bx ;

Bieit= oy 2 a ayal

jump if horizontal line

jump if slope is positive

BX f= y= "v2

negate y-increment

line

preserve y-increment

LoSlopeLine13

jump if dy <= dx (slope <= 1)

HiSlopeLine13

exchange dy and dx

increments

BX := 2 * dy

inex <=82> tady

Si s= d= 2 °* dy = dx

incr2 := 2°* (dy = dx)

preserve this register

AX 3= y

BX 3=9=

ES:BX -> buffer

ES:DL => buffer

restore this register

CX := # of pixels to draw

BX := y-increment

jump to appropriate routine for slope

AX := yl

BX := y2

CX := dy

jump if dy >= 0

force dy >= 0

AX := y2

(continued)

206 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-9. Continued.

G3 inc cx ; CX := # of pixels to draw
mov bx, ARGx1 } BXit= x

push cx 7 preserve this register

call PixelAddr13 7 ES:BX -> video buffer
pop cx

mov di,bx ; ES:DI -> video buffer

dec si + SI := bytes/line - 1

mov al,ARGn ; AL := pixel value

L32 stosb ; set pixel value in buffer

add Qa, Si ; increment to next line

loop L32

jmp Lexit

* routine for horizontal lines (slope = 0)

HorizLine13:

push cx ; preserve CX

mov ax, ARGy1

mov bx, ARGx1

call PixelAddr13 ; ES:BX -> video buffer

mov Gi, Dx PenSowDi => but fer

pop cx

inc cx ; CX := number of pixels to draw

mov al,ARGn 7 AL := pixel value

rep stosb ; update the video buffer

jmp short Lexit

7; xoutine for dy <= dx (slope <= 1) ; ES:DI -> video buffer

; BX = y-increment

; CX = # pixels to draw

; SI = decision variable

LoSlopeLine13:

mov al,ARGn ; AL := pixel value

ahahes stosb ; store pixel, increment x

or si,si ; test usign of +d

jns L12 ; jump if d >= 0

add si,VARincr1 ; d s= da + incr!

loop L11

jmp short Lexit

(continued)

Chapter 6: Lines 207

Listing 6-9. Continued.

Tanleene add

add

loop

jmp

; routine for dy > dx

HiSlopeLinel3:

“21%

L22:

L233

Lexit:

shine 13

Sra

VGA

mov

stosb

add

or

jns

add

dec

loop

jmp

add

loop

pop

pop
mov

pop
ret

ENDP

ENDS

END

si, VARincr2

Gin, x

L11

short Lexit

(slope > 1)

al, ARGn

di, bx

si,si

L23

si,VARincr1

di

L21

short Lexit

si, VARincr2

L21

di

si

sp, bp

bp

d, t=ed + inerZ

increment y

ES:DI -> video buffer

BX = y-increment

CX = # pixels to draw

SI = decision variable

; AL := pixel value

update next pixel, increment x

increment y

test sign of d

jump if d >= 0

a vd 4h nerd

decrement x (already incremented

by stosb)

Q =a + ines2

restore registers and return

Once you implement routines for the EGA and the MCGA, you can draw lines in

any of the VGA’s graphics modes. To draw lines in 640-by-480 16-color mode, use

the 640-by-350 16-color routine.

208 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

InColor Card

Because pixel addressing in the video buffer is the same on the InColor Card as

on Hercules monochrome cards, the only significant difference in the line-

drawing routines for the InColor Card, as you’ll see in Listing 6-10, is some extra

code to select the specified pixel value. Note how the InColor Card’s write mode

1 is used along with an appropriate foreground value in the Read/Write Color

register to set the values of neighboring pixels in each byte of the buffer. This
technique parallels the use of write mode 0 and the Set/Reset register on the EGA.

; Name:

; Function:

2 Cakilers

ARGx1

ARGy1
ARGx2

ARGy2

ARGn

VARleafincr

VARincr1

VARincr2

VARroutine

ByteOffsetShift

DefaultRWColor

_TEXT

_LineInc

PST "Listing 6-10'
NAME LineInc

PAGE Sop oe

LineInC

Draw a line in Hercules InColor 720x348 16-color mode

Mierosore Cs

void LinemnG(xlpyl,*%2,V2,a) 7

ie xy Vly key oe /* pixel coordinates */

aUnite aay /* pixel value */

EQU word ptr [bp+4] ; stack frame addressing

EQU word ptr [bp+6]

EQU word ptr [bp+8]

EQU word ptr [bp+10]

EQU byte ptr [bpt12]

EQU word ptr [bp-6]

EQU word pte [ipp=8]]

EQU word ptr [bp-10]

EQU word ptx [bp—2]

EQU 3 ; used to convert pixels to byte offset

EQU OFh ; default value for R/W Color register

SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

EXTRN PixelAddrHGC:near

PUBLIC _LineInC
PROC near

push bp ; preserve caller registers

mov bp, sp

sub sp,8 ; stack space for local variables

push si

push di

(continued)

Listing 6-10. A line-drawing routine for the InColor Card’ s 720-by-348 16-color mode.

Chapter 6: Lines 209

Listing 6-10. Continued.

mov

mov

si,2000h ;

di, 90-8000h ;

; set up InColor control registers

mov

mov

out

ine

mov

out

mov

sub

az

7 force xi < x2

jns

neg

mov

xchg

mov

mov

xchg

mov

dx, 3B4h ;

ax, 5F19h 7

dx,ax ;

ax ;

ah, ARGn ;

dx,ax ;

cx, ARGx2

cx, ARGx1 ;

VertLineInC B

L01 is

ex ;

bx, ARGx2 a

bx, ARGx1

ARGx2, bx

bx, ARGy2 ,

bx, ARGy1

ARGy2,bx

; Calculate dy = ABS(y2-y1)

LO1: mMOv

sub

Nz

jns

neg

neg
neg

bx, ARGy2
bx, ARGy1 9

HorizLineInC ;

L03

bx :

sa ;

di

; select appropriate routine for slope of

LO3: MOV

mov

cmp

jle

mov

xchg

VARleafincr,di ;

VARroutine, offset

bx, Cx

L04 ;

VARroutine, offset

Bx, Cx iz

increment for video buffer interleave

increment from last to first interleave

DX = CRIC 1/0 port

AH bit 6 := 1 (Mask Polarity)

AH bits 5-4 := 1 (Write Mode)

AH bits 3-0 := "don’t care" bits

AL := R/W Control Register number

set R/W Control Register

AL 1Ah (R/W Color Reg number)

AH := foreground value

set R/W color register

CXapaox2e eed

jump if vertical line

qump LE 22> x1

Gx s= -ax2

exchange x1 and x2

exchange yl and y2

BX := y2 - yl

jump if horizontal line

BX = yio-gy2

negate increments for buffer interleave

line

save increment for buffer interleave

LoSlopeLineInC

jump if dy <= dx (slope <= 1)

HiSlopeLineIncC

exchange dy and dx

(continued)

210 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-10. Continued.

; calculate initial decision variable and increments

L04: shl bx, 1 ; BX := 2 * dy

mov VARincr1,bx fener sas 2e) dy

sub bx ,ex

mov di,bx 7; DIE s= d= 2: * dy = dx

sub bx, ck

mov VARincr2,bx 7 ANCE2S =i 2N+e (dy = dx)

; Calculate first pixel address

push Cx * preserve this register

mov ax, ARGy1 ; AX t= y

mov bx, ARGx1 PBX ek

call PixelAddrHGC ; AH 3;= bit mask

; ES:BX -> buffer

reClet——7 OLese tosh tte le fits

shl ah,cl

mov dh,ah ; DH := bit mask in proper position

pop Cx ; restore this register

inc cx ; CX := # of pixels to draw

jmp VARroutine ; jump to appropriate routine for slope

; routine for vertical lines

VertLinelInc: mov ax, ARGy1 ; AX := yl

mov bx, ARGy2 7; BX c= y2

mov cx, bx

sub Cx, ax 7, CX = dy

jge L31 7 Jump at dy >= 0

neg ex ; force dy >= 0

mov ax,bx , AX G= y2

Bots inc Cx ; CX := # of pixels to draw

mov bx, ARGx1 a BX sux

push cx ; preserve this register

call PixelAddrHGC ; AH := bit mask

; ES:BX -> video buffer

} Ciniv= 4 bits) to shitt Lett

shl ah,cl ; AH := bit mask in proper position

pop cx ; restore this register

SZ: or es: [bx],ah ; update pixel in buffer

add bx, si ; increment to next portion of interleave

jns Ess

add bx, di ; increment to first portion of interleave

LS 3's loop L32

jmp Lexit

(continued)

Chapter 6: Lines 211

Listing 6-10. Continued.

; routine for horizontal lines (slope = 0)

HorizLineIncC: mov ax, ARGy1

mov bx, ARGx1

call PixelAddrHGC e

mov Gil ox :

mov dh,ah

not dh F

’

mov dl, OFFh .

shl dh,cl ;

not dh 5

mov cx, ARGx2

and ely 7

xor lle 7) K

shl ai Fed: ©

; determine byte offset

mov

mov

mov

shr

shr

mov

sub

of £ixst and last

ax, ARGx2 ;

bx, ARGx1 ;

cl,ByteOffsetShift

axy,el ;

bx, el: ;

cx,ax

ex, DX ;

; set pixels in leftmost byte of the line

Or

js

or

jnz

and

jmp

L42: or

ince

dec

dh, dh

L43 ;

cx, CX

L42 ;

d1,dh i

short L44

es:[di],dh ;

di

ex

AH := bit mask

ES:BX -> video buffer

Chis= # bits toushife Left

ES:DI -> buffer

DH := unshifted bit mask for leftmost

byte

DL := unshifted bit mask for

rightmost byte

DH := reverse bit mask for first byte

DH := bit mask for first byte

€L := number of bits to shift left

Di. ?= bit mask for Last byte

pixel in the line

AX := x2

BXet= x1

; number of bits to shift to

; convert pixels to bytes

AX := byte offset of x2

BX := byte offset of x1

CX := (# bytes in line) - 1

jump if byte-aligned (x1 is leftmost

pixel in byte)

jump if more than one byte in the line

bit mask for the line

update masked pixels in buffer

; use a fast 8086 machine instruction to draw the remainder of the line

L43: mov

rep

al, OFFh i

stosb i

8-pixel bit mask

update all pixels in the line

; set pixels in the rightmost byte of the line

L44: or

jmp
es: [di],dl ;

Lexit

update masked pixels in buffer

(continued)

212 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-10. Continued.

7 xvoutine for dy <= dx (slope <= 1)

LoSlopeLineInc:

L10: mov ah,es: [bx]

LVi3 or ah,dh

ror dh, 1

4c L14

; bit mask not shifted out

or Gi 7a

jns L12

add di, VARincr1

loop L11

mov es: [bx],ah

jmp short Lexit

BV2: add di, VARincr2

mov es: [bx],ah

add Dx, Sd.

jns his

add bx, VARleafincr

L13: loop L10

jmp short Lexit

; bit mask shifted out

L14;: mov es: [bx],ah

inc bx

or di, ai

jns L15

add di, VARincr1

loop L10

jmp short Lexit

Titois add di, VARincr2

add bx, Si

jns L16

add bx, VARleafincr

ES:BX -> video buffer

CX = # pixels to draw

DH = bit mask

SI buffer interleave increment

DI decision variable

latch bit planes

AH := 0 because all planes

are "don’t care"

set pixel value in byte

rotate bit mask

jump if bit mask rotated to

leftmost pixel position

test sign of d

jump if d >= 0

ad sid ane

store remaining pixels in buffer

Gl GES ol eS eWalohat

update buffer

increment y

jump if not in last interleave

increment into next interleave

update buffer

BX := offset of next byte

test sign of d

jump if non-negative

d (oll ae pbaloha|

d ad + aner2

increment y

jump if not in last interleave

increment into next interleave

(continued)

Chapter 6: Lines 213

Listing 6-10. Continued.

Des loop

jmp

L10

short Lexit

; routine for dy > dx (slope > 1)

HiSlopeLineInC:

2a: or

add

jns

add

L22: or

jns

add

loop

jmp

nZ3% add

1g(@)ia

adc

loop

jmp

Lexa: mov

mov

out

MOV

out

LMe

mov

out

pop

pop
mov

pop
ret

_LineIncC ENDP

_TEXT ENDS

END

es: [bx],dh

bx, si

L22

bx, VARleafincr

di,di

L23

di, VARincr1

L21

short Lexit

di, VARincr2

dh, 1

bx, 0

L21

short Lexit

dx, 3B4h

ax,0F18h

Giscp ras

ax,4019h

ax, ax

ax

ah, DefaultRWColor

dx,ax

di

si

sp, bp

bp

loop until all pixels are set

ES:BX -> video buffer

CX = # pixels to draw

DH = bit mask

SI = buffer interleave increment

DI = decision variable

set pixel value in video buffer

increment y

jump if not in last interleave

increment into next interleave

jump if d >= 0

a sd = anert

Qu s=ea+ “snen2

rotate bit mask

BX := offset of next byte (incremented

if bit mask rotated to

leftmost pixel position)

DX := CRTC I/O port

restore default Plane Mask value

restore default R/W Control value

restore default R/W Color value

restore registers and return

214 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Line Attributes

The line-drawing algorithm in this chapter draws lines that are exactly one pixel
wide. Consequently, diagonal lines appear less bright than horizontal or vertical
lines. You can fatten diagonal lines by modifying the pixel-setting inner loop of a
Bresenham line-drawing routine so that it always sets pixel B before selecting the
next pixel in the line. The resulting lines are fatter, but the modified routine runs
more slowly because it must update more pixels, particularly in lines with slopes
near 1 or -1.

To draw wider lines, simply draw contiguous, neighboring parallel lines. If you
are using a pointing device to draw a wide line interactively, use a series of
neighboring horizontal or vertical lines. After implementing a fast routine for
drawing horizontal lines, you can write a high-level routine that paints wide lines
by calling the horizontal line primitive.

In some applications, you may wish to draw dashed lines or multicolored lines
that incorporate a pattern of pixel values. To do this, modify the inner loop of
your line-drawing routine to select pixel values from a circular list of possible
values. Rotate the list each time you set a pixel.

Clipping

Not one of the assembly-language routines in this chapter validates the pixel coor-
dinates you supply as endpoints. For example, if you call the 640-by-200 2-color

routine to draw a line from (0,0) to (1000,1000), the routine blithely updates about

800 pixels at memory locations that don’t exist in the available video RAM, all the

way from (200,200) through (1000,1000). To avoid this sort of error, you must de-

termine which part of any arbitrary line lies within a given area of the video
buffer. This process is known as clipping.

In the case of 640-by-200 2-color mode, the area into which lines must be clipped
is the rectangular region defined by (0,0) in the upper left corner and (639,199) in

the lower right corner. You would therefore clip a line with endpoints at (0,0) and

(1000,1000) so that only the portion from (0,0) to (199,199) is drawn. In avoiding

the error of updating nonexistent RAM, you might also improve your program’s

performance, since the line-drawing primitive will not attempt to update those
nonexistent pixels.

Pixel-by-Pixel Clipping

A simplistic approach to clipping is to include a clipping test in the inner loop of

your line-drawing routines. Just before setting the value of each pixel, your rou-
tine could compare the current pixel bit mask and buffer address with a set of pre-

calculated limits. If the address, the bit mask, or both exceeded the limits, the

routine would not update the video buffer. However, the overhead involved in

clipping in this manner can be considerably greater than the work required to

calculate and draw the pixels in the line.

Chapter 6: Lines 215

In general, avoid integrating code for line clipping into low-level line-

drawing routines, regardless of how efficient the code might be. Keep-

" ing the functions separate can improve performance, because an

application can invoke the line-drawing routines directly, bypassing

the clipping code altogether when it’s not needed.

A Brute-Force Approach

Another way to clip a line is to use its equation to calculate where, if anywhere,

the line segment to be drawn intersects the edges of the rectangular display

region. For example, in Figure 6-5, the slope m of the line is

m = dy/dx = (y2-y1)/(x2-x1) = (100-40)/(750-150) = 0.1

The y-intercept can be calculated by substituting x/ and y/ into the equation of

the line:

1) Ail a ae i SAO is ESO) 2S:

The equation of the line is thus

yo= O71*x +. 25

To calculate the coordinates of the intersections of the line and the edges of the

window, substitute the x-coordinates of the window’s vertical edges and the

y-coordinates of its horizontal edges into the equation. Each time you solve the

equation for one side of the rectangle, check the result to see whether the inter-

section point actually lies within the line segment to be drawn as well as within

the rectangle.

(0,0)

(150,40)

(639,89)

(750,100)

(639,199)

F sieht 6-5. Line segment (150,40)-(750,100) clipped at (639,89) in 640-by-200 2-color
mode.

216 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

This approach to line clipping involves a lot of computation, primarily because
the equation of the line must be solved four times for every line segment you clip.
You must also check the results against the limits of the line segment to deter-
mine whether the intersection points fall between the endpoints. Furthermore,
you must still handle special cases such as horizontal and vertical lines or degen-
erate “‘lines’’ consisting of a single pixel. This computational burden makes
brute-force clipping impractical.

A Better Algorithm

A more efficient algorithm for line clipping compares the endpoints of the line
segment with the boundaries of the rectangular region before computing intersec-
tion points. Thus, little computation is performed for lines that need not be
clipped. The Sutherland-Cohen algorithm, which uses this approach, is widely
known because of its simplicity and computational efficiency. (See Sproull and
Sutherland, *‘A Clipping Divider,’ Conference Proceedings, Fall Joint Computer
Conference, volume 33, pp. 765-776. AFIPS Press, 1968.)

Conceptually, the algorithm extends the edges of the rectangular clipping region,
dividing the plane into nine regions (see Figure 6-6). Each endpoint of the line
segment to be clipped falls into one of these regions. Identifying the region that
corresponds to each endpoint makes it easy to determine the location of the line
segment relative to the rectangular clipping area.

Mapping of bits
in 4-bit codes

bit 0: 1 =left

1: 1 =above

i 2: 1=right
(X15Y1,) 3: 1=below

1001 1100

Figure 6-6. Rectangular clipping using the Sutherland-Cohen algorithm.

The algorithm uses a computational shortcut to determine the relative location of

the line segment. Each of the nine regions is represented by a 4-bit code; each bit

corresponds to whether the region is above, below, left, or right of the clipping

rectangle. The relationship of the endpoints to the rectangle is then quickly deter-

mined by bitwise combination of the 4-bit codes.

If the logical OR of the two codes is 0 (that is, the 4-bit code for both endpoints is

0), both endpoints lie within the rectangle, and no clipping is needed. If the logi-

cal AND of the two 4-bit codes is nonzero, both endpoints lie on the same side of

the rectangle, and the entire line is clipped out. These tests can be performed

rapidly, because both the bitwise AND and OR operations can be implemented in

single 80x86 machine instructions.

Chapter 6: Lines 217

If the logical OR of the endpoints’ 4-bit codes is nonzero but the logical AND is 0,

then the line segment is clipped against one of the rectangle’s edges. The values

of the 4-bit codes then determine which edge is used. The resulting intersection

point becomes a new endpoint for the line segment.

This process is repeated for the new line segment. The 4-bit codes are recal-

culated, the bitwise comparison is again performed, and, if necessary, a new end-

point is calculated. Since a rectangle has four sides, the algorithm requires at most

four iterations.

The routine Clip () in Listing 6-11 is a C illustration of the Sutherland-Cohen

algorithm. The while block repeats while neither of the two termination condi-

tions (Inside or Out side) is true. The 4-bit codes are used to determine which

of the four sides of the rectangle the clipping calculation uses. The intersection

point between the line segment and the side of the rectangle becomes a new end-
point. At the bottom of the while block, the 4-bit code for the new endpoint is

calculated, and the loop repeats.

/* Listing 6-11 */

struct EndpointStruct /* endpoints for clipped line */

{
int Syke

int x2,y2;

}e

struct RegionStruct /* rectangular clipping region */

{
int xu

int Yuu

int SS;

int Veber

he

union OutcodeUnion /* outcodes are represented as bit fields ¥*/
{

struct

{

unsigned code0 :

unsigned codel

unsigned code2 :

unsigned code3 :

/*

/*

/*

/*

Xul */

Yul */

Xlr */

VYire«/ < eK MK VY VAN Me Ne Ne Ne

OCs;

int outcodes;

be

#define X1 ep->x1

#define Y1 ep->y1
#define X2 ep->x2

(continued)

Listing 6-11. An implementation of the Sutherland-Cohen clipping algorithm.

218 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 6-11. Continued.

#define Y2 ep->y2

#define XUL r->Xul

#define YUL ¥r=>Yul

#define XLR r->Xlr

#define YLR r->Ylr

Clip (ep,r)

struct EndpointStruct *ep;

struct RegionStruct ce

{
union OutcodeUnion

int Inside;

int Outside;

/* initialize 4-bit

SetOutcodes(&o0cul,

SetOutcodes(&0cu2,

Inside

Outside

while (!Outside &&

{
if (ocul.outcodes

{
Swap(&X1, &X2

Swap(&Y1, &Y2

==()

ocul,ocu2;

codes */

Cyl Yolen er /*

Be OL NEES NEE:

((ocul .outcodes | ocu2.outcodes)

((ocul.outcodes & ocu2.outcodes)

! Inside)

initial 4-bit codes */

== 0);
Ve Oi)

/* swap endpoints if necessary so */

/* that (x1,y1) needs to be clipped */

);

)e

Swap(&£0cul, &ocu2);

if (ocul.ocs.code0) /*

{
YT +=" (Tong) (x2

X1 = XUL;

else if (ocul.ocs

=Y¥1) * (XUL=X1) / (X2=X1) 7

.code1) /*

X1 += (long) (X2=X1) *(YUL=Y1) / (Y2=Y1);7

Y= YUL;

else if (ocul.ocs .code2) /*

Y1 += (long) (Y2-Y1) * (XLR-X1) / (X2-X1) ;

X1 = XLR;

else if (ocul.ocs .code3) /*

X1 += (long) (X2-X1) * (YLR-Y1) / (Y2-Y1) +

Y¥1 = YLR;

clip left */

clip above */

elip right) */

clip below */

(continued)

Chapter 6: Lines 219

Listing 6-11. Continued.

SetOutcodes(&o0cul, £, X1, Y1)7 /* update for (x1,y1) */

Inside = ((ocul.outcodes | ocu2.outcodes) == 0); /* update */

Outside = ((ocul.outcodes & ocu2.outcodes) != 0); /* 4-bit codes */

}

return(Inside);

SeEOureodes (Ww, i, 20y)

union OutcodeUnion *u;

struct RegionStruct we

int ye

{
u->outcodes = 0;

u->ocs.code0 = (x < XUL);

u->ocs.codel = (y < YUL);

u->ocs.code2 = (x > XLR);

u->ocs.code3 = (y > YLR);

Swap(pa, pb)

int *pa, *pb;

{
int dere

t= pa),

*pa = *pb;

*pb = t;
}

A program could call Clip () before drawing a line with a fast primitive such as

Line ().If you are careful to define the values XUL, YUL, XLR, and YLR as

variables rather than constants, you can use Clip () in any video mode. Further-

more, line clipping need not be limited to clipping lines to the limits of available

RAM in the video buffer. You may instead want to define an arbitrary rectangular

region in the video buffer and clip lines against it. A good high-level video

graphics interface supports clipping into such arbitrary regions.

220 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Circles and Ellipses

Circles and Pixel Scaling

An Ellipse-drawing Algorithm

Scan-converting an Ellipse

An Incremental Algorithm

A Typical Implementation

Problems and Pitfalls

Accuracy

Optimization

Clipping

True Circles

Circles and ellipses are probably the most common graphics elements other than

straight lines. This chapter describes techniques for displaying circles, ellipses,

and arcs with IBM video hardware. These techniques are similar to the algo-

rithms and programming examples for displaying straight lines (described in

Chapter 6). Although an ellipse-drawing routine is somewhat more complicated

than a routine for drawing straight lines, the algorithmic design and programming

techniques are similar.

Circles and Pixel Scaling

The only way to draw a circle on the IBM video subsystems discussed in this book

is to calculate and draw an ellipse. The reason is that the horizontal scale in

which pixels are displayed differs from the vertical scale in most graphics modes

(Chapter 4). If you display a ‘‘circle’’ whose pixels are computed without scaling,

what you see on the screen is an ellipse. For example, Figure 7-1a shows a

‘circle’ with a radius of 100 pixels in both horizontal and vertical directions as

displayed in a 640-by-200 graphics mode.

Because of this problem of pixel scaling, drawing a circle on the screen requires

that you compute the pixels that correspond to a mathematical ellipse. In other

100 pixels 100 pixels

1) b.

a.

F igure 7-1. In Figure 7-la, a mathematical circle with a 1 00-pixel radius appears elliptical
in 640-by-200 2-color mode. In Figure 7-1b, an ellipse whose axes have been properly scaled
appears circular when displayed in this mode.

ma
oO

*
e

S
—

222 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

words, to draw a circle that really looks like a circle, you must compute an ellipse
whose major and minor axes are in the same ratio as the pixel coordinate scaling
factor. On the screen, such an ellipse appears circular (see Figure 7-1b). For this
reason, this chapter concentrates on a practical algorithm for drawing ellipses.

An Ellipse-drawing Algorithm

Scan-converting an Ellipse

You can use the algebraic formula for an ellipse to compute x- and y-coordinates
for all of the pixels that represent a given ellipse. As in the case of scan-
converting a straight line, many of these pixel coordinates will necessarily ap-
proximate the actual values, and the resulting figure will be jagged. This effect is
especially noticeable when displaying a very thin ellipse (see Figure 7-2), but in
most cases this side effect is acceptable.

Figure 7-2. A thin ellipse can appear jagged when it is scan-converted.

You can use the equation of the ellipse

Rar ee eee (Yves et
a2 b2

to scan-convert and display an ellipse. This equation describes an ellipse centered

at (xc,yc) with major and minor axes a and D parallel to the x- and y-axes.

However, the computational overhead of drawing ellipses by solving this equa-

tion, as in Listing 7-1, is very large. The multiplication, division, and square-root

operations to determine each pixel’s coordinates are very time-consuming. A bet-

ter approach is to compute pixel coordinates incrementally in a manner similar to

that used in the line-drawing algorithm in Chapter 6.

/* Listing 7-1 */

Hilipse(xe, ye, a0, bo) /* using equation of ellipse */

int Repyce /* center of ellipse */

int a0,b0; /* major and minor axes */

{

double x = 0;

double y = b0;

double Bsquared = (double)b0 * (double) b0;

double Asquared = (double)a0 * (double) a0;

double sqrt();

Listing 7-1. Drawing an ellipse using the equation of the ellipse. (continued)

Chapter 7: Circles and Ellipses 223

Listing 7-1. Continued.

do /* do while dy/dx >= -1 */

{
y = sqrt (Bsquared — ((Bsquared/Asquared) * x * x));

Set4Pixels((int)x, (int)y, xc, ye, PixelValue);

++X 7

}
while ((x <= a0) && (Bsquared*x > Asquared*y));

while (y >= 0) /* do while dy/dx < -1 */

{
x = sqrt(Asquared - ((Asquared/Bsquared) * y*y));

Set4Pixels,((int), Kimt)y, «¢, ye, PaxelkValue |);

VF

}
}

Ser4Pixelis\((x, Vv, XC, ye, mR) /* set pixels in 4 quadrants by symmetry */

int SVG

mate XC, YC;

Dts n;

SPRUNG (Kets, yiCa ya7 ale

SPHUNG (XC—sx Vie ry, Mp

SPEUNC(Xe hia, Vie— vip O)iy

SPFunc (xe=x, yeo-y, 2) 7

An Incremental Algorithm

The derivation of an incremental algorithm for drawing ellipses resembles the

derivation of Bresenham’s line algorithm. The ellipse-drawing algorithm draws

an ellipse pixel by pixel. After drawing each pixel, the algorithm selects the next

pixel by determining which of the current pixel’s two neighbors is closer to the
actual ellipse.

Creating an ellipse-drawing algorithm is easiest for an ellipse centered at the

origin of the coordinate system, with major and minor axes congruent with the

x- and y-axes (see Figure 7-3). The equation of such an ellipse is

exs Fas = aebe = 10

Because the ellipse is symmetric in relation to both the x- and y-axes, you only

need derive an algorithm to draw one of its quadrants. Your routine can then de-

termine the pixel coordinates in the other three quadrants by symmetry.

T If you need an algorithm to draw ellipses with axes that are not paral-
, lel to the video buffer’s x- and y-axes, refer to M. L. V. Pitteway,
" ‘Algorithm for Drawing Ellipses or Hyperbolae with a Digital Plot-

ter,’’ Computer Journal vol. 11 no. 3 (November 1967), p. 282.

The algorithm presented here is known as the ‘‘midpoint algorithm.’’ It draws an
ellipse iteratively, pixel by pixel. For each pixel it draws, the algorithm selects

224 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

y

Figure 7-3. An ellipse centered at the origin of the coordinate system.

which of the pixel’s neighbors is closer to the ellipse by computing whether the

point halfway between the pixels lies inside or outside the ellipse (see Figure 7-4).

(This algorithm was described by J. R. Van Aken in ‘‘An Efficient Ellipse-

Drawing Algorithm,’’ JEEE Computer Graphics and Applications, September 1984,

p. 24, and improved by M. R. Kappel in ‘‘An Ellipse-Drawing Algorithm for Ras-

ter Displays,’’ Fundamental Algorithms for Computer Graphics, R. A. Earnshaw

[editor], Springer-Verlag 1985, p. 257.)

To determine which pixel lies closer to the ellipse, the algorithm uses the value of

the equation of the ellipse at the midpoint between the pixels. If the value is 0,

the midpoint lies on the ellipse. If the value is negative, then the midpoint lies in-

side the ellipse; if the value is positive, the midpoint is outside the ellipse. Thus,

the algorithm can choose which of the two pixels lies closer to the ellipse by ex-

amining the value’s sign.

One complication lies in determining which pair of neighboring pixels to investi-

gate at each step in the iteration. This depends on dy/dx, the slope of the tangent to

the ellipse (see Figure 7-5). When dy/dx is greater than —1, the algorithm chooses

between two vertically oriented pixels (see Figure 7-6a). When dy/dx is less than

—1, the choice is between two horizontally oriented pixels (see Figure 7-6b).

While dy/dx is greater than —1, the algorithm iteratively determines, for each pixel

it draws, whether neighboring pixel A or B is closer to the ellipse. This is done by

deciding whether the midpoint between A and B lies inside or outside the exact

ellipse. In Figure 7-6a, the pixel selected in the previous iteration is at (x;_7,);_7).

The midpoint between A and B is therefore (x,_,+/,y;_;—‘2).

The algorithm chooses between pixel A and pixel B by examining the sign of the

value of the ellipse equation evaluated at the midpoint:

d= eZ (x.

The variable d, the value of the function at the midpoint, is the algorithm’s deci-

sion variable. As in Bresenham’s line algorithm, the key to this algorithm’s speed

pte + <a? (Y. 2, = 17 2) 2,482

Chapter 7: Circles and Ellipses 225

Figure 7-4, Three iterations of the midpoint algorithm. After drawing the black pixel in
illustration 7-4a, the algorithm chooses to draw either pixel A or pixel B by comparing the
midpoint M to the actual ellipse. Because M is inside the ellipse, it chooses pixel A. Illustra-
tions 7-4b and 7-4c represent the next two iterations.

226 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Figure 7-5. The slope of the tangent to the ellipse within the first quadrant.

(eps Vez) A (x, 41, yi1)

(x. » Vin)

exact ellipse

(4.7 +1, Y;.)

b.

Figure 7-6. The midpoint algorithm chooses between A and B by substituting x and y at the

midpoint M into the formula for the ellipse and testing the sign of the result. If the result is

positive, pixel B is chosen; if the result is negative, pixel A is chosen.

Chapter 7: Circles and Ellipses 227

is that it can compute d iteratively on the basis of its value at each previous step

in the iteration. The difference between the current value of d and its previous

value is

dd, af" = 1b? (xi, A ae a2 yy get 2) = Pee
Mean sage 4 ia alee ee _ a*b2]

=e (2 cea all)

= 2b2x,_, + b?

Now, finding the difference between d; and d,_, (that is, dx) still involves
multiplying the previous value of x by a constant. You can avoid this multiplica-

tion, however, by computing dx, as well as d, incrementally; that is, by adding 2b

to dx at each step of the iteration.

If pixel A is nearer to the ellipse (that is, d; > 0), the newly calculated value of d;

can be used as d;_, in the next iteration. If pixel B is nearer, however, d; must be
adjusted for the downward step in the y direction. In this case, the value of the

equation of the ellipse for the midpoint below pixel B must be computed. If

(x;_),y;-, +2) is the midpoint between pixels A and B, then (x,_;,y;_;—“2) is the
midpoint below pixel B, and dy is then

Cle=OG_4 = joe (X;_,) 24 42 (Ya -—'/2)2 — a2b2] -

[b2(x,_,)2 + a2(y,_,+'/2)2 - a2b2]

= ~2a*y,.;

When dy/dx is less than —-1, pixels A and B are horizontal rather than vertical

neighbors (see Figure 7-6b). The values of dy and dx are therefore computed

somewhat differently. When pixel B is chosen, the midpoint at (x,_,+/2,y;_,-1) is
used, so the increment for d is

Aj-dycy =) To? ey F102)" + at(yy <1) i— a2b2]-=
[b2 (X,_,4+1 2) cata (Yaey) a= a2b2]

ll ae (= e2yneenn i)

Zaye a

Also, when pixel A is chosen, d must be adjusted for the step in the rightward
direction:

Gi-dy_y =) [be (x, 142) 4+ a4 (yy) Peay =

[b? (xy 4 = 172) 4 eae (Yo) 2 OSS]

EO eke

These derivations provide a way to draw an ellipse iteratively, with only simple
addition and subtraction required within the iterative loops. The analysis distin-
guishes between the case where dy/dx is greater than —1 and the case where dy/ldx
is less than —1. You determine when dy/dx has reached —1 by differentiating the
equation of the ellipse and setting dy/dx to -1.

228 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

d
eS (b2x2 ae a*y4 = a2b2) = 0

dx

262x277 Zaey ae 0
ex

dy =a

ax 2a2y

Thus, at the point where dy/dx = —-1,

2b?x = 2a2y

Because the algorithm already keeps track of the quantities 2b2x and 2a7y to com-

pute the differentials dx and dy, these quantities can be used to detect where dy/dx

reaches —1. The algorithm can then start at the point (0,b) on the y-axis and pro-

ceed clockwise around the ellipse until it reaches (a,0).

Initially, the quantity dy/dx is greater than —1, and the choice is made iteratively

between vertically oriented pixels (see Figure 7-6a). When dy/dx reaches —1, the

algorithm chooses between horizontally oriented pixels (see Figure 7-6b) and con-

tinues to do so until it reaches the x-axis.

The only remaining computation occurs when the algorithm reaches the pixel for

which dy/dx = —1. At this point, a new value for d will already have been com-

puted (M_,,, in Figure 7-7) under the assumption that the next midpoint would have

been between two vertically oriented pixels. Therefore, the value of d must be ad-

justed to reflect the value of the ellipse function at the midpoint between two

horizontally oriented pixels (M,,,,,, in Figure 7-7). The increment for d (from M,)4

to M_,..) in this case is
new.

Gide. © Ib (kt 1/2)2 + a? (yy4-1)* = arb?) -

eee I) cl yeaa ee = a2b2]

ll b2 (-x,
24
wa 374A) toa? krVaeit 3/4)

Ps(a-—-b-)/4 — (0-x,_, a-y._7)

Again, since the algorithm already uses the quantities 2b2x and 2a7y, the incre-

ment for d at this point can be computed by

=a, ="s4e--b) /4 = (2b7xi 1+ Zaeys 7/2

Adding this value to d at the point where dy/dx = —1 gives the new value for d.

Chapter 7: Circles and Ellipses 229

(X12 > Vir)

M old

(& .) +1,9 1-3)

ant ai =}

Figure 7-7. When the value of dy/dx reaches —1, a new midpoint (M,,,,,) is selected, and d,
which has already been computed for M ,1q, is adjusted to reflect the value of the equation of
the ellipse at M,,.)-

A Typical Implementation

The C routine in Listing 7-2 is fast and efficient because all decision-variable

computation within the inner iterative loops has been reduced to addition and

subtraction. The routine eliminates multiplication within the inner loops by pre-

calculating the values of a?, b?, 2a?, and 2b2. The initial values for the decision

variables are computed assuming that the first pixel to be drawn is at (0,b). Thus,

the initial value of d is calculated for the midpoint between the pixels at (/,b) and

(/,b—1); that is, at (1,b—/2):

des b=(1)\i2 ae (b—1,/ 2) 45 — az

= b2 — atb + a2/4

The initial values for dx and dy are

dx = 2b2(x,) = 0

and

dy = 2a*(y,)) = 2a2b

The routine Ellipse () follows the algorithm closely. It first draws all the pix-
els between (0,b) and the point where dy/dx becomes —1. Then it updates d as in
Figure 7-7. Iterative pixel selection continues until the routine reaches the x-axis.
The routine calls the function Set 4Pixels () to replicate each pixel in each of
the four quadrants of the ellipse. Set 4Pixels () also translates each pixel’s
coordinates relative to the actual center of the ellipse.

/* Listing 7-2 */

Eillipse(xc, yc, a0, b0O)

ate xCpy.cy /* center of ellipse */
int a0,b0; /* semiaxes */

Listing 7-2. A high-level implementation of the midpoint algorithm. (continued)

230 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 7-2. Continued.

{
int x = 0;

int y = b0;

long a = a0; /* use 32-bit precision */
long b = bO;

long Asquared = a * a; /* initialize values outside */

long TwoAsquared = 2 * Asquared; {* ‘of loops */

long Bsquared = b * b;

long TwoBsquared = 2 * Bsquared;

long ay

long dx, dy;

d = Bsquared - Asquared*b + Asquared/4L;

dx = 0;

dy TwoAsquared * b;

while (dx<dy)

{
Set4Pixels(x, y, xc, yc, PixelValue);

rE Cd > 01)

{
Vir

dy -= TwoAsquared;

d -= dy;
}

ime

dx += TwoBsquared;

d += Bsquared + dx;

d += (3L* (Asquared-Bsquared) /2L - (dx+dy)) / 2L;

while (y>=0)

{
Set4Pixels(x, y, xC, yc, PixelValue);

Af (d < OL)

{
++X}

dx += TwoBsquared;

d += dx;

--y;

dy -= TwoAsquared;

d += Asquared - dy;

(continued)

Chapter 7: Circles and Ellipses 231

Listing 7-2. Continued.

SetAPaxeksu(Xp ey ye Ser ey Cy) ie) /* set pixels by symmetry in 4 quadrants */

int nya

ant XC, Cr

aeinite ny

{
SetPixeli(xetx, yey, ia diy

SeePaxell(Gxe=x, yoery, Mm)i7

SetPixel (xc+x, ye-y, 1);

Serr uxell(txe—x, Vie—-y,ean yer

}

Problems and Pitfalls

One difficult problem you’!l encounter is that tiny ellipses appear somewhat

angular rather than elliptical when they are scan-converted. When an ellipse is

small and comparatively few pixels are used to display it, the best approximation

generated by the algorithm can appear polygonal.

Although it is possible to redesign the ellipse-drawing algorithm to draw ‘‘fatter”’

or ‘‘thinner’’ ellipses in this situation, a better solution is to display the ellipses

with higher resolution. Tiny ellipses look much better with 640-by-480 resolution

than they do with 320-by-200 resolution.

A related problem is that very eccentric ellipses may be drawn inaccurately at

the points where they curve most sharply. This happens when the point where

dy/dx = —1 lies nearly adjacent to either the x-axis or the y-axis. Again, you can

modify the algorithm to accommodate this situation, but if your application re-

quires accurate representations of very thin ellipses, a better solution is to display

them at higher resolution.

A further consideration involves “‘degenerate’’ ellipses for which the length of

either the major or minor axis is 0 (that is, a= 0 or b= 0). Because either dy or
dx is 0 in this situation, the iterative routines do not terminate correctly. In these

cases, either test for the special condition before executing the loops (and draw

the appropriate straight line) or modify the termination conditions of the loops.

Accuracy

As does Bresenham’s line algorithm, the midpoint algorithm attempts to mini-
mize the vertical or horizontal distance to the ellipse from the pixels it selects.
This is faster than minimizing the distance between each pixel and the nearest
point to it on the ellipse, but if you examine its performance closely, you may
find rare occasions when the pixel that the midpoint algorithm selects is not the
one closest to the ellipse. Nevertheless, the accuracy of the midpoint algorithm in
selecting the best pixels to represent the ellipse is sufficient for nearly all applica-
tions. (For more discussion of this topic, see Van Aken and Novak, ‘‘Curve-
Drawing Algorithms for Raster Displays,’’ ACM Transactions on Graphics, April
1985, p. 147, or Kappel, *““An Ellipse-Drawing Algorithm for Raster Displays,”’
Fundamental Algorithms for Computer Graphics, p. 257.)

:

232 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Although the source code in Listing 7-2 is a straightforward implementation of the
algorithm, you need to remember a few details if you plan to modify the code or
translate it into another language. It is important to compute all decision variables
as 32-bit integers. Because these values involve the squaring of pixel coordinates,
16 bits are inadequate to maintain precision.

Another detail to remember is that this routine can draw the same pixels twice.
This is an artifact of the ellipse’s four-way symmetry. For example, the pixels at
(+a,0) and (0,+b) are updated twice by Set 4Pixels () in Listing 7-2. This be-
comes a problem when you use the routine to XOR pixels into the video buffer. If
you perform a XOR on these pixels twice, they disappear. To avoid this, either test
for these special cases in Set 4Pixels () (Listing 7-3) or modify Ellipse ()
to draw these pixels separately.

/* Listing 7-3 */

See4Pixeiis(x, y, xe, yo, n) /* avoids setting the same pixel twice */
int X,Ve

int ZC, YES

almals n;

{

if (x!=0)

{
SeEPAxci(xCEx, Viety, 5

SGePixed (exc=x, yery, mi;

if (y!=0)

{

SCEPaxeH (XC ey Ve-Vi7 hit Die

Serra xe (C= K VC —y- eine

}

}
else

{
SetPixel(xc, yety, n);

if (y!=0)

SeePixel(xe, ye=-y, ne

}

Listing 7-3. A modified version of Set4Pixels that avoids updating the same pixel twice.

Optimization

For many applications, a high-level language implementation such as the one in

Listing 7-2 is fast enough. The slowest part of the high-level version of

Ellipse () is its repeated calls to the pixel-setting routine, which recomputes

pixel addresses with every iteration. By writing Ellipse () in assembly

language, you can calculate the pixel addresses much more efficiently. The

resulting assembly-language routine is about three times faster than the equivalent

high-level version.

Listing 7-4 is a typical assembly-language implementation, in this case for the

EGA. Note how the routine Set 4Pixels maintains a set of four buffer offsets

and bit masks instead of (x,y) coordinates for the four pixels it updates. When

Chapter 7: Circles and Ellipses 233

Set 4Pixels increments a pixel x-coordinate, it rotates a bit mask in the proper

direction. The y-coordinates are incremented by adding the number of bytes in

each line of pixels to the buffer offset. (This is the same technique used in the line

routines in Chapter 6.) This method of video buffer addressing is much faster than

making a call toa Set Pixel () function for every pixel in the ellipse.

TITLE "Listing 7-4'

NAME Ellipse10

PAGE Doig UZ

; Name: Ellipse10

Pp Pumet von: Draw an ellipse in native EGA/VGA graphics modes.

*, Callers Microsoft C:

; void Ellipse10(xc,yc,a,b,n);

; int xc, yc; /* center of ellipse */

; Tents eb Oe /* major and minor axes */

i. Anite Ay /* pixel value */

ARGxc EQU word ptr [bp+4] ; stack frame addressing
ARGyc EQU word ptr [bp+6]

ARGa EQU word ptr [bp+8]

ARGb EQU word ptr [bp+10]

ARGn EQU byte ptr [bp+12]

ULAddr EQU word ptr [bp-6]

URAddr EQU word ptr [bp-8]

LLAddr EQU word ptr [bp-10]

LRAddr EQU word ptr [bp=12]

LMask EQU byte ptr [bp-14]

RMask EQU byte ptr [bp-16]

VARA EQU word ptr [bp-20]

VARAx EQU word ptr [bp-24]
VARdy EQU word ptr [bp-28]

Asquared EQU word ptr [bp-32]
Bsquared EQU word ptr [bp-36]
TwoAsquared EQU word ptr [bp-40]
TwoBsquared EQU word ptr [bp-44]

RMWbits EQU 00h + read-modify-write bits
BytesPerLine EQU 80

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT

EXTRN PixelAddr10:near

(continued)

Listing 7-4. An assembly-language implementation of the midpoint algorithm.

234 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 7-4. Continued.

_Ellipse10

’

,

,

,

,

PUBLIC _Ellipse10

PROC near

push bp ;

mov bp, sp

sub sp, 40 ;

push si

push di

set Graphics Controller Mode register

mov dx, 3CEh So DX. is

mov ax,0005h ; AL :=

; AH :=

out dx, ax ;

set Data Rotate/Function Select register

mov ah, RMWbits ; AH :=

mov aes ; AL 3:=

out dx,ax

set Set/Reset and Enable Set/Reset registers

initial constants

plot pixels from (0,b)

; bit planes enabled)

preserve caller registers

reserve local stack space

Graphics Controller I/O port

Mode register number

Write Mode 0 (bits 0,1)

Read Mode 0 (bit 4)

Read-Modify-Write bits

Data Rotate/Function Select reg

pixel value

Set/Reset reg number

value for Enable Set/Reset (all

Enable Set/Reset reg number

mov ah, ARGn ; AH’ :=

mov al,0 ; AL :=

out dax,ax

mov ax, O0FO1h ; AH :=

out dx,ax i Bi =

mov ax, ARGa

mul ax

mov Asquared, ax

mov Asquared+2,dx 7; a%2

shl ax pl

Bok dx, 1

mov TwoAsquared, ax

mov TwoAsquaredt+2,dx ; 2 * a%2

mov ax, ARGD

mul ax

mov Bsquared, ax

mov Bsquared+2, dx Peja,

shl ax, 1

Bed dx, 1

mov TwoBsquared, ax

mov TwoBsquared+2,dx ; 2 * b*2

until dy/dx = -1

initial buffer address and bit mask

(continued)

Chapter 7: Circles and Ellipses 235

Listing 7-4. Continued.

mov ax,BytesPerLine ;

mul ARGb ,

mov si,ax

mov di,ax

mov ax, ARGyc z

mov bx, ARGxc ,

call PixelAddr10 ;

mov ah,1

shl ah,cl az

mov LMask, ah

mov RMask, ah

add si,bx ,

mov ULAddr, si

mov URAddr, si

sub bx, Gi ;

mov LLAddr, bx

mov LRAddr, bx

; initial decision variables

xor ax,ax

Mov VARdAxX, ax

mov VARGX+2, ax :

mov ax, TwoAsquared

mov dx, TwoAsquared+2

mov cx, ARGb

call LongMultiply z

mov VARdy, ax

mov VARdy+2, dx .

mov ax, Asquared

mov dx, Asquared+2 F

sar dx, 1

ror ax, 1

sar (be ||

BCH ax, 1 g

add ax, Bsquared

adc dx, Bsquared+2 ;

mov VARd, ax

mov VARd+2, ax

mov ax, Asquared

mov dx, Asquaredt2

mov cx, ARGb

call LongMultiply 5

sub VARd, ax

sbb VARd+2,dax :

? loop until dy/dx >= -1

mov bx, ARGb ;

AX := video buffer line length

AX := relative byte offset of b

Rega Vc

BX = XC

AH := bit mask

ES:BX -> buffer

CL sSre i bits-torshreey ere

AH := bit mask for first pixel

SI := offset of (0,b)

AX := offset of (0,-b)

dx = 0

perform 32-bit by 16-bit multiply

dy = TwoAsquared * b

DX:AX = Asquared

DX:AX Asquared/4

DX:AX = Bsquared + Asquared/4

DX:AX = Asquared*b

d = Bsquared - Asquared*b + Asquared/4

BX := initial y-coordinate

(continued)

236 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 7-4. Continued.

xor Gx por ij CH = 10. (interal y-increment)

* CL := 0 (initial x-increment)
Li: mov ax, VARdx

mov dx, VARGx+2

sub ax, VARdy

sbb dx, VARdy+2

jns L20 # jump if dx>=dy

call Set4Pixels

mov Cx + CH := 0 (y-increment)

, CL := 1 (x-increment)
cmp VARd+2, 0

js L11 7 jump oUt d.<20

mov ch, 1 + increment in y direction
dec bx ; decrement current y-coordinate

mov ax, VARdy

mov dx, VARdy+2

sub ax, TwoAsquared

sbb dx, TwoAsquared+2 ; DX:AX := dy - TwoAsquared
mov VARdy, ax

mov VARdy+2, dx ; dy -= TwoAsquared

sub VARd, ax

sbb VARd+2, dx 7; a’-= dy

Bit: mov ax, VARdx

mov dx, VARdx+2

add ax, TwoBsquared

adc dx, TwoBsquared+2 ; DX:AX := dx + TwoBsquared

mov VARdx, ax

mov VARGx+2,dax ; dx += TwoBsquared

add ax, BSquared

adc dx, Bsquaredt+2 ; DX:AX := dx + Bsquared

add VARd, ax

adc VARd+2,dx 7 ad += dx + Bsquared

jmp L10

7; plot pixels from current (x,y) until y <0

,

; initial buffer address and bit mask

L20: push bx ; preserve current y-coordinate

push Cx ; preserve x- and y-increments

mov ax, Asquared

mov dx, Asquared+2

sub ax, Bsquared

sbb dx, Bsquared+2 ; DX:AX := Asquared-Bsquared

(continued)

Chapter 7: Circles and Ellipses 237

Listing 7-4. Continued.

mov

mov

sar

rer

add

adc

sub

sbb

sub

sbb

sar

ECE

add

adc

7 loop unk y <0

pop

pop

L21: call

mov

cmp

jns

mov

mov

mov

add

adc

mov

mov

add

adc

L22: mov

mov

sub

sbb

mov

mov

sub

sbb

sub

sbb

dec

jns

bx, ax

cx,dx ;

dx, 1

ax, 1 i

ax, bx

ax, cx ;

ax, VARdx

dx, VARdx+2

ax, VARdy

dx, VARdy+2 ;

dx, 1

ax, 1 ;

VAR, ax

VARd+2, dx 2

cx 5

bx -

Set4Pixels

cx, 100h .

VARG+2,0

L22 :

ela ;

ax, VARAx

dx, VARdx+2

ax, TwoBsquared

dx, TwoBsquared+2

VARAx, ax

VARAx+2,dax .

VARd, ax

VARd+2, dx ;

ax, VARdy

dx, VARdy+2

ax, TwoAsquared

dx, TwoAsquared+2

VARdy, ax

VARdy+2,dax i

ax, Asquared

dx, Asquared+2 .

VARd, ax

VARd+2, ax ;

bx 5

L21 ;

CX:BX

DX:AX

DX:AX

DX:AX

DX: AX
(a2

updat

CH, CL

CH

Chi =

(As

ed

ey:

= 1
0

(Asquared-Bsquared)

(Asquared-Bsquared) /2

3* (Asquared-Bsquared) /2

3* (Asquared-Bsquared) /2 - (dx+dy)

quared-Bsquared) /2 - (dxtdy))/2

y- and x-increments

(y-increment)

(x-increment)

wuMpeLe a S=e0

increment in x direction

7 DX:AX := dx + TwoBsquared

dx += TwoBsquared

dad += dx

; DX:AX := dy - TwoAsquared

dy -= TwoAsquared

DX:AX := dy - Asquared

d += Asquared - dy

decrement y

loop if y >= 0

(continued)

238 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 7-4. Continued.

7 restore default Graphics Controller registers

Lexit: mov ax, OFFO8h +; Gefault Bit Mask
mMOv dx, 3CEh

out dx,ax

MOV ax, 0003 7 default Function Select
out dx, ax

mov ax, 0001 + default Enable Set/Reset
out dx,ax

pop di

pop si

mov sp,bp

pop bp
Fret

_Ellipse10 ENDP

Set4Pixels PROC near 7 aCadhl awl thie CH := y-increment (0, -1)

. CL := x-increment (0, 1)

push ax ; preserve these regs

push bx

push dx

mov dx, 3CEh ; DX := Graphics Controller port

xor bx bx SUBK B= 0

test ch,ch

jz L30 ; jump if y-increment = 0

mov bx,BytesPerLine ; BX := positive increment

neg bx ; BX := negative increment

L30: mov al,8 ; AL := Bit Mask reg number

Pepixels at. (xc—-x,yvety) and (xe—-x, yc-y)

xor Si ,3% 4 Sl. 4= "0

mov ah, LMask

rol ah,cl ; AH := bit mask rotated horizontally

rel Shey ; SI := 1 if bit mask rotated around

neg si 7 Ot = 0) LO

mov di,si ; SI,DI := left horizontal increment

add si,ULAddr ; SI := upper left addr + horiz incr

add Si bx ; SI := new upper left addr

add di, LLAddr

sub Gi pbx ; DI := new lower left addr

mov LMask, ah ; update these variables

mov ULAddr,si

mov LLAddr, di

(continued)

Chapter 7: Circles and Ellipses 239

Listing 7-4. Continued.

out dx,ax ; update Bit Mask register

mov ch,es: [si] ; update upper left pixel

mov essa}, ch

mov ch,es: [di] ; update lower left pixel

mov es: [di],ch

* pixels at (xctxpycty) and (xctx,yc—y)

xor Say Sa 7 (SDS 40

mov ah, RMask

ror Ellays oul ; AH := bit mask rotated horizontally

rel Si, 1 ; SI := 1 if bit mask rotated around

mov ais, Sa ; SI,DI := right horizontal increment

add si, URAddr 7 SI := upper right add= + horiz incr

add Si, bx ; SI := new upper right addr

add di, LRAddr

sub di,bx ; DI := new lower right addr

mov RMask, ah 7 update these variables

mov URAddr, si

mov LRAddr, di

out dx,ax 7 update Bit Mask register

mov ches: [sai] 7 update upper right pixel

mov es:[si],ch

mov chyess [din] + update lower right pixel

mov es: [di],ch

pop dx 7 restore these regs

pop bx

pop ax

ret

Set4Pixels ENDP

LongMultiply PROC near perCaldiers DX = ul (hi-order word

; of 32-bit number)

; AX = u2 (lo-order word)
: CX = vi (16-bit number)
; Returns: DX:AX = 32-bit result)

push ax ; preserve u2

mov ax, ax ; AX ¢= a1

mul cx 7 AX := hi-order word of result
xchg ax, Cx + AX := v1, CX := hi-order word

pop dx a Dike = 02
mul dx 7 AX := lo-order word of result

7 DX s=hcarry
add axex 7 CX := hi-order word of result
ret

(continued)

240 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 7-4. Continued.

LongMultiply ENDP

_ TEXT ENDS

END

One optimization technique used in Chapter 6 is omitted here. In practice,
minimizing video buffer accesses by setting more than one pixel at a time in each
byte of the buffer is not worthwhile. The overhead involved in keeping track of
which bytes contain more than one updated pixel is greater than the time saved in
reducing video buffer accesses. Besides, the code is complicated enough already.

Clipping

If you clip an ellipse within a rectangular window, the result is an arc (see Figure
7-8). The place to perform the clipping is in the Set 4Pixels () routine. You
can clip each pixel’s (x,y) coordinates against the window boundary before you
call SetPixel () to update the video buffer.

clipping window

Figure 7-8. Clipping an ellipse produces an arc. :

Implementing clipping in this way slows the ellipse-drawing routine somewhat. If

your application rarely requires clipping, consider implementing two different

versions of Set 4Pixels (), one that performs clipping and one that omits it.

Before calling Ellipse (), you can compare the maximum and minimum coor-

dinate values of the pixels in the ellipse (xc + a,yc + b) with the clipping bound-

aries to determine whether it can be drawn without clipping. Only if clipping is

required do you need to use the slower, clipping version of Set 4Pixels().

Chapter 7: Circles and Ellipses 241

True Circles

After you implement the ellipse routine, you can draw true circles in all graphics

modes on PC and PS/2 video subsystems. To display a circle, draw an ellipse with

its major and minor axes scaled in proportion to your video display’s horizontal
and vertical resolutions. Listing 7-5 shows how you might do this in a 640-by-350

graphics mode on an EGA.

Because the scaling varies with the video mode, the same routine cannot draw cir-

cles in different video modes unless it accommodates the pixel coordinate scaling
in each mode. Figure 4-9 in Chapter 4 is a table of pixel scaling factors for all
graphics modes.

/* Listing 7-5 */

Ca eeleOne xy. ViGpeexiy) Venu i) /* circles in 640x350 16-color mode */

int xepyes /* center of circle */
int xe, VGe /* point on circumference */

int oe /* pixel value */

{

double x,y;

double sqrt();

double Scale10 = 1.37; /* pixel scaling factor */
int a,b;

X = xr - xc; /* translate center of ellipse */
y = (yr -— ye) * Scalel0; /*® to origin */

ale esqre(ex*sx hay eye je /* compute major and minor axes */
b =a / Scalel0;

Bldipsel0(xe, ye, a, b, m)s /* draw it */
}

Listing 7-5. Using pixel coordinate scaling to display a circle in 640-by-350 16-color mode.

242 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Region Fill

What Is a Region?

Interior and Border Pixels @ Connectivity

Simple Fills with Horizontal Lines

Three Region Fill Algorithms

Simple Recursive Fill

Line-Adjacency Fill

Border Fill

Comparing the Algorithms

This chapter describes several methods for filling a region of the video buffer

with a pattern of pixels. Region fill techniques are used in many areas of com-

puter graphics programming, including color manipulation, shading, and repre-

sentation of three-dimensional objects, as well as in applications such as image

processing, image data transmission, and computer animation.

This chapter contains working source code for three region fill algorithms, but

the discussion is by no means comprehensive. These algorithms and implementa-

tions are intended to be working models that you can experiment with, modify,

and optimize for your own applications.

What Is a Region?
A region is a connected group of pixels in the video buffer that is delineated by

some sort of boundary. You can think of a region in the video buffer as compris-

ing an interior and a border. To understand how the algorithms in this chapter are

implemented, however, it is worth considering how a region can be clearly

defined in terms of pixel values and pixel geometry in the video buffer.

Interior and Border Pixels

In this chapter, a region is assumed to be surrounded by pixels whose values dis-

tinguish them from the pixels in the interior. You could assume, for instance, that

all interior pixels have the same value, in which case a border pixel is simply any

pixel whose value differs from the values of pixels in the interior (see Figure

8-1a). You could also assign a range of allowable pixel values to both interior and

border pixels. The algorithms in this chapter adhere to the convention that all pix-

els in the border have one specified value and pixels in the interior can be of any

other value (see Figure 8-1b).

In many applications, it is practical to use a range of pixel coordinates to define

all or part of a region’s border. The definition of a ‘border pixel’’ can thus be

broadened to include pixels outside a predetermined range of (x,y) coordinates. In

this way a region can be bounded by the limits of the screen buffer or by a soft-

ware window, as well as by pixels of a predetermined value or range of values.

a. b.

Figure 8-1. In Figure 8-1a, a region is defined by interior pixels of a given value. In Figure
8-1b, a region is defined by border pixels of a given value.

244 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Connectivity

To distinguish border pixels from interior pixels, you must also specify the way
the pixels are connected. If you allow interior pixels to be connected diagonally
as well as orthogonally (horizontally and vertically), you must assume that the
border pixels surrounding the region are always connected orthogonally (see
Figure 8-2a). Conversely, if you allow border pixels to be diagonally connected,
you must constrain interior pixels to orthogonal connections (see Figure 8-2b).
Consider the reason for this constraint: If both border and interior pixels could be
diagonally connected, then interior pixels could be connected to pixels outside the
border at places where border pixels are diagonally connected.

Figure 8-2. Connectivity of pixels. In Figure 8-2a, border pixels (black) are orthogonally
connected, while interior pixels (gray) are both orthogonally and diagonally connected. In
Figure 8-2b, border pixels are both orthogonally and diagonally connected, so interior pixels
are only connected orthogonally.

Chapter 8: Region Fill 245

Simple Fills with Horizontal Lines

Before you become involved with the intricacies of region fill algorithms, remem-

ber that you can fill many regular geometric shapes without using a specialized

algorithm. A common application of this technique is shown in Listing 8-1. This

routine fills a rectangular region in the video buffer with pixels of a specified

value. It is fast, because the subroutine that draws horizontal lines is fast.

/* Listing 8-1 */

FilledRectangle(x1, yl, x2, y2, n)

int Ay Vill /* upper left corner */

int x2 Vier /* lower right corner */

int n; /* pixel value */

{
int yi

for (y = yl7 y<.= y27 yr) /* draw rectangle as a set of */

Gainer xp oy en Vie Me a /* adjacent horizontal lines */

}

Listing 8-1. Filling a rectangle with horizontal lines.

Creating similar routines to draw filled triangles, hexagons, and circles is not

difficult, because of these objects’ regularity and symmetry. Writing a general-

purpose routine that can fill convex or irregular polygons is more difficult; in

this case, you must scan-convert each of the polygon’s sides (using, for example,

Bresenham’s algorithm from Chapter 6) to create a list of the pixels that define

the border of the polygon. This list contains pairs of pixels that can then be con-

nected with horizontal lines to fill the interior of the polygon.

pe Several good textbooks deal with the problem of scan-converting and
| a
, filling arbitrary polygons. For example, see Fundamentals of Interac-

" tive Computer Graphics by J. D. Foley and A. VanDam (Addison—

Wesley 1982).

Though polygon fill techniques have many uses, some applications require filling

a region with completely arbitrary borders, such as a map or an irregular shape

that was drawn interactively. In this case, your fill routine must define the region
using only the pixel values in the video buffer. The remainder of this chapter pre-
sents algorithms and working source code for three such routines.

Three Region Fill Algorithms
The three algorithms described here are all designed with IBM video subsystems
in mind. They use the pixel manipulation and line-drawing subroutines developed
in Chapters 4, 5, and 6. Also, all three algorithms assume that border pixels can
be diagonally connected and that interior pixels must be orthogonally connected
(as in Figure 8-2b). You can thus fill regions with boundaries drawn using the

246 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

line-drawing and ellipse-drawing routines in Chapters 6 and 7, since those line
and ellipse routines draw diagonally connected figures.

Furthermore, all three algorithms can fill a region that contains a hole in its
interior (see Figure 8-3). Such holes are collections of border pixels that are
not contiguous with the pixels in the region’s outer border. Each algorithm is
designed to detect the presence of holes and to properly fill the interior pixels
surrounding them.

Figure 8-3. A region whose interior (gray pixels) contains two holes.

Simple Recursive Fill

One way to fill a region is to start by filling a given ‘‘seed’’ pixel in its interior,

and then to fill each of the seed’s immediate neighbors, each of the neighbors’

neighbors, and so on until the entire region is filled. The C routine in Listing 8-2,

PixelFill(), shows how to do this. In Pixel Fill (), as in the other

algorithms in this chapter, pixels in the interior of the region are assumed to be

connected horizontally and vertically, but not diagonally. (PixelFill() can

be easily modified to fill diagonally connected regions if so desired.)

/* Listing 8-2 */

int FillValue; /* value of pixels in filled region */

int BorderValue; /* value of pixels in border */

PixelFill(x, y)

int Steir

{
st War

v = ReadPixel(x, y)7

Listing 8-2. A simple recursive region fill. (continued)

Chapter 8: Region Fill 247

Listing 8-2. Continued.

if ((vl=FillValue) && (v!=BorderValue))

{
SetPixel(x, y, FillValue);

Pixe lms lI Sx=1, ye)

Pace la (sects ee yinw) ae

PuxelPa li x, yo)ip

PixelFill(x, yr)s

}

Before it fills a pixel, Pixel1Fill() examines the pixel’s value to determine

whether filling is required. If the pixel is neither a border pixel nor a previously

filled pixel, the routine updates the pixel value and calls itself recursively. Be-

cause PixelFill() does not fill previously filled pixels, the routine works

properly even in regions with holes.

Although simple, Pixe1Fill () is inefficient. One reason is that on average

only one of the four recursive calls to Pixel Fil1() ever does anything. (Each

pixel can only be filled once, but each time a pixel is filled, four recursive calls

are made to the function. The only exception is in the case of the seed pixel.)

Thus, Pixel Fill() accomplishes nothing about 75 percent of the time, which

is not very efficient.

Another problem with Pixe1Fil1 () is that the depth of recursion

can increase beyond the limits of available stack memory. For exam-

ple, the default stack space for code generated with the Microsoft C

compiler is 2 KB. You can easily exceed this limit by using

PixelFill() to fill even relatively small regions.

Line-Adjacency Fill

A better approach is to regard the interior of the region as a group of adjacent line

segments that are connected vertically instead of as a group of pixels connected

both vertically and horizontally. An algorithm that fills adjacent line segments

tends to be much more efficient than a pixel-by-pixel recursive fill, because it in-

spects and fills pixels more efficiently. Also, this conception of the region is

closer to the physical representation of pixels in the video buffer, in which pixels
are arranged in horizontal rows to be displayed during the raster scan.

The routine in Listing 8-3, LineAdjFil1 (), implements a line-adjacency

algorithm for filling a region. Its general strategy is to locate each group of

horizontally connected pixels in the interior of the region. Like the simple recur-
sive fill, this algorithm also starts at a seed pixel known to be in the region’s in-

terior. It scans left and right to find the ends of the seed pixel’s row, then fills the

entire row.

248 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

/* Listing 8-3 */

#define UP -1

#define DOWN 1

LineAdjFill(SeedxX, Seedy, D, PrevxXL, PrevxXR)

int Seedx, SeedY; /* seed for current row of pixels */

int Dis /* direction searched to find current row */

int PrevxXL, PrevXR; /* endpoints of previous row of pixels */

{
int SSyie

int lip x ioe

int Vv;

y = Seedy; /* initialize to seed coordinates */
xl = Seedx;

xr = Seedx;

ScanLeft(&xl, &y); /* determine endpoints of seed line segment */

ScanRight(&xr, &y);

Line(xl, y, xr, y, FillValue); /* £111 line with FillValue */

/* find and fill adjacent line segments in same direction */

EGG (x) =) sl <= XT ects) /* inspect adjacent rows of pixels */

{
v = ReadPixel(x, y+D);

if ((v != BorderValue) && (v != FillValue))

xX = LineAdjFill(x, ytD, D, xl, xr);

}

/* find and fill adjacent line segments in opposite direction */

for (x = xl; x < Prevx; x+t)

{
v = ReadPixel(x, y-D);

if ((v != BorderValue) && (v != FillValue))

Re hIneaaye mle x, YD; =D, XL, XE);

}

fou (x = Prevxks x < xr; xt)

{
v = ReadPixel(x, y-D);

if ((v != BorderValue) && (v != FillValue))

x = DineAdjFill(x, y-D, =—Dyexl, xx) +

return(xr);

ScanLeft(x, y)

int #x,*y;

{
int aie

Listing 8-3. A line-adjacency fill routine. (continued)

Chapter 8: Region Fill 249

Listing 8-3. Continued.

do

{ .

==1(*x))7 /* move left one pixel */

v = ReadPixel(*x, *y)7 /* determine its value */

}
while ((v != BorderValue) && (v != FillValue));

++ (*x)7 /* x-coordinate of leftmost pixel in row */

}

ScanRight(x, y)

int #x, FY;

{
Lat Vi

do

{
++ (*xX) ; /* move right one pixel */

v = ReadPixel(*x, *y); /* determine its value */

}
while ((v != BorderValue) && (v != FillValue));

—-(*x); /* x-coordinate of rightmost pixel in row */

}

The algorithm proceeds by locating all groups of horizontally connected pixels

that are vertically adjacent to the group it just scanned. Each time it finds an adja-

cent group of not-yet-filled pixels, LineAdjFill1() is called recursively to fill

them. The algorithm terminates when all interior pixels have been filled.

Figure 8-4 illustrates the order in which LineAdjFil1 () fills a simple region

comprising seven line segments. The seed pixel is assumed to lie inside line seg-

ment 1, and the routine is initially called with an upward search direction. The

routine first searches the row of pixels above the seed (that is, line segment 2) for

unfilled pixels. Because the row has not yet been filled, the routine is called

recursively to fill it. Similarly, line segments 3 and 4 are filled by subsequent

recursive calls to LineAdjFil1(). At this point, neither line segment 4 nor line

Figure 8-4. Given a seed pixel in line segment 1, LineAdjFill() fills the adjacent line seg-
ments in this region in numerical order.

250 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

segment 3 has any unfilied pixels adjacent to it, but when the pixels below line
segment 2 are scanned, line segment 5 is discovered and filled. Finally, line seg-
ments 6 and 7 are filled recursively.

A line-adjacency graph (LAG) is essentially a diagram of the connec-
tions between the adjacent line segments in the interior of a region
(see Figure 8-5). The problem of filling a region is equivalent to tra-
versing its LAG in such a way that all nodes in the graph are visited.
In practice, traversing the LAG is relatively easy (there are several
textbook algorithms for graph traversal) compared to generating the
graph given only the pixels in the video buffer (which is essentially
what LineAdjFill() does). For more information see ‘‘Filling
Regions in Binary Raster Images: A Graph-Theoretic Approach’’ by
U. Shani (SIGGRAPH Proceedings 1980, pp. 321-327).

Figure 8-5. A simple line-adjacency graph (LAG).

LineAdjFill() is much more efficient than Pixe1lFill (), because it rarely

visits a pixel more than once to determine whether it needs to be filled. Each time

the routine is called, it fills one line segment and then inspects the adjacent rows
of pixels for unfilled pixels. The routine does not examine pixels that were in-
spected during the previous invocation of the routine (that is, pixels between
PrevxXL and PrevxXR), nor does it inspect pixels to be filled by subsequent in-

vocations (that is, pixels between the current value of x and the value returned

from a call to LineAdjFil1 ()). The recursive logic becomes clear when you

trace the execution of the routine as it fills a region such as the one diagrammed

in Figure 8-4.

If you implement a line-adjacency fill algorithm in assembly

language, you can improve its efficiency by maintaining a push-down

stack of parameters and executing the function iteratively rather than
recursively. The skeleton of the algorithm then becomes

push (°.. initial parameters on stack ..);

while (.. stack not empty ..)

LineAdjFill();

Chapter 8: Region Fill 251

The fill routine pops the topmost parameters off the stack and pushes

new sets of parameters instead of calling itself recursively.

LineAdjFill

{
pop (.. current parameters off of stack ..)

if (.. adjacent line needs to be filled ..)

push (.. new parameters ..)

} -

In assembly language, a single machine instruction can perform each

push and pop, so the algorithm’s performance is greatly improved.

A line-adjacency algorithm can be adapted to fill a region with a pattern of pixels

as well as with a single pixel value. For this reason, it is used commonly in com-

mercial graphics packages. (IBM BASICA and Microsoft GW-BASIC are exam-

ples.) Modifying the algorithm to do patterned fills requires that the horizontal

line-drawing routine be replaced with a pattern-drawing routine and that the test

that determines whether a pixel has been filled take into account the pixel values

in the fill pattern.

These modifications may seem innocuous, but they can significantly degrade the

fill routine’s performance. The logic required to detect the presence of previously

filled pixels can be complicated, particularly if you allow the fill pattern to con-

tain pixels with the same value as border pixels.

Border Fill

Because the border of a region defines the extent of its interior, it is possible to fill

a region by following the connected border pixels at the ends of the adjacent line

segments that make up the interior. (See ‘‘Contour Filling in Raster Graphics’’ by

T. Pavlidis, Computer Graphics, August 1981, p. 29). As long as you fill the region

at the same time that you trace the border, however, this kind of border-tracing

fill algorithm offers no clear advantage over a line-adjacency algorithm.

However, if you separate the problem of tracing the border from that of filling the
region’s interior, the resulting algorithm becomes more flexible. The process of
filling a region then breaks down into three discrete steps:

1) Create an ordered list of the border pixels (trace the border).

2) Scan the interior of the region for holes.

3) ‘‘Connect the dots’’ in the list from left to right with horizontal lines, thereby
filling the region.

The routine BorderFill () in Listing 8-4 performs a region fill using this
three-step method. The algorithm executes the three steps iteratively, once for the
boundary of the region and once for each hole in the interior of the region.

252 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

/* Listing 8-4 */

#define

#define

#define

#define

struct

{

ame

int

int

int

BorderFill(x,

Ene

{

ScanRegion(x,

int

{

Listing 8-4. A region fill routine that traces a region’s border.

BLOCKED

UNBLOCKED

TRUE

FALSE a = p=

BPstruct

int

int

X,Y

flag;

BP [3000];

BP Start;

BPend = 0;

FillValue;

BorderValue;

iy my)

X,Y;

do

{
TraceBorder(x, y);

SOEtBP(BP)+

ScanRegion(&x, &y);

}
while (BPstart < BPend);

FillRegion();

y)
*x,*y;

int ~ = BPstart;

int ve ae

while (i < BPend)

{
if (BP[i].flag == BLOCKED)

Fora

else

LEM (BE tah sy =

eae

BP[i+1].y)

else

{
Pee(ee ae BP tei]. x—4,)

{
xe = (ScanRight(BP [i].xt1,

ate

{
xX =

zy

(xr<BP [i+1] .x)

x7

BE aay

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

/*

table of border pixels */

(increase if necessary) */

of table */
empty cell in table */

of pixels in filled region */

of pixels in border */

start

fais

value

value

do until entire table is scanned */

trace border starting

sort the border pixel

look for holes in the

at x,y */

table */

interior */

use the table to fill the interior */

skip pixel if blocked */

skip pixel if last in line */

if at least one pixel to fill */
/* scan the line */

BP! evan) ie

/* if a border pixel is found */

/* return its x,y coordinates */

(continued)

Chapter 8: Region Fill 253

Listing 8-4. Continued.

break;

BPstart = i;

SortBP ()

{
rie CompareBP () ;

gsort (BP+BPstart,

CompareBP(argl, arg2)

SELUCE S BPSELUGCE SS Farg1, tanqZyy

{

int vs

te—larg| Sys sarg2—>y,

WES (i aih="0))

Mecurn (Atte FO ee — Apel.)

eee rage see

PES (ES! =10)

ngeyeroe ag (= Xl Ke 10) ay) Ge ie inn

i = argi—>filag = arg2->filag;

return) (<0) 52 = a ye

}

FillRegion ()

{
int aye

for(i = 0; i < BPend;)

{
Ef (BP [i].flag == BLOCKED)

al a

else

if (BP[i].y != BP[it+1].y)

toile

else

{

Z£ (BP [ij < BP fit] .x=1)

Line(BP[i].x+1, BP tag Vir

a

BPend-BPstart,

/* returns -1

/* advance past this pair of pixels */

/* uses Microsoft C library quicksort routine */

sizeof (struct BPstruct), CompareBP);

if argl<arg2, 1 if arg1>arg2 */

sort by y-coordinate */

hit eeacOr 1 sara SO ees (return

sort by x-coordinate */

/* sort by flag */

/* skip pixel if blocked ¥*/

/* skip pixel if last in line */

/* if at least one pixel to fill
/* draw a line */
BP[i+1].x-1, BP[i+1].y,

*/

FillValue);

(continued)

254 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 8-4. Continued.

/* border tracing routine */

struct BPstruct CurrentPixel;

ae, De /* current search direction */
int PrevD; /* previous search direction */
int PrevV; /* previous vertical direction */

TraceBorder(StartX, StartyY)

int Startx, StaxrtyY;

{

int NextFound; /* flags */

ime Done;

/* initialize */

CurrentPixel.x = StartxX;

CurrentPixel.y = StartyY;

D = 6; /* current search direction */

PrevD = 8; /* previous search direction */
PrevV = 2; /* most recent vertical direction */

/* loop around the border until returned to the starting pixel */

do

{
NextFound = FindNextPixel ();

Done =

(CurrentPixel.x == StartX) && (CurrentPixel.y == StartyY);

}

while (NextFound && !Done);

/* if only one pixel in border, add it twice to the table */

if (!NextFound) /* pixel has no neighbors */

{
AppendBPList(StartX, StartY, UNBLOCKED);

AppendBPList(StartX, StartY, UNBLOCKED);

}

/* if last search direction was upward, add the starting pixel to the table */

else

if ((PrevD <= 3) && (PrevD >= 1))

AppendBPList(StartX, StartY, UNBLOCKED);

FindNextPixel ()

{
int i;

int flag;

for (R= =i <= 5; i++)

{
flag = FindBP((Dti) & 7); /* search for next border pixel */

(continued)

Chapter 8: Region Fill 255

Listing 8-4. Continued.

if (flag) /* flag is TRUE if “found +7

{
id) = (ONE) fe Ge /* (D+i) MOD 2 */
break; /* exit from loop */

return(flag);

}

FindBP(d)

int d; /* direction to search for next border pixel */

{

int X,Yi

x = CurrentPixel.x;

y = CurrentPixel.y;

NextXY(&x, &y, d); /* get x,y of pixel in direction d */

if (BorderValue == ReadPixel(x, y))

{
AddBPList(d); /* add pixel at x,y to table */

CurrentPixel.x = x; /* pixel at x,y becomes current pixel */

CurrentPixel.y = y;

return(TRUE);

}

else

return(FALSE);

}

NextXY(x, y, Direction)

int *x,*y;

int Direction;

{

switch(Direction) /* BNP */

{ /* 4 0 */

case 1: /* SGuay */
case 2:

case 3:

hve Sail? /* up */
break;

case 5:

case 6:

case 7?

Venta eal /* down */
break;

}

switch (Direction)

{

case 3:

case 4;

case 5:

as /* left */
break;

(continued)

256 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 8-4. Continued.

case 1:

case 0:

case 7:

Seba ye

break;

AddBPList(d)

int ar

{

if (d == PrevD)

SameDirection() ;

else

{
DifferentDirection(d);

PrevV = PrevD;

PrevD = d;

SameDirection ()

{

if (PrevD == 0)

BP [BPend-1].flag = BLOCKED;

else

if (PrevD != 4)

AppendBPList (CurrentPixel.x,

DifferentDirection(d)

int Cz

{

/* previously moving left */

EE

{

(PrevD 4)

if (Prevv == 5)

BP [BPend-1].flag = BLOCKED;

AppendBPList (CurrentPixel.x,

}

/* previously moving right */

else

if (PrevD == 0)

{
BP [BPend-1].flag = BLOCKED;

ie 4a =="7)

/* right */

/* new previous vertical direction */

/* new previous search direction */

/* moving right */

/* block previous pixel */

/* if not moving horizontally */

CurrentPixel.y, UNBLOCKED);

/* if from above * /

/* block rightmost in line */

CurrentPixel.y, BLOCKED);

/* previously moving right */

/* block rightmost in line */

/* if line started from above */

AppendBPList (CurrentPixel.x, CurrentPixel.y, BLOCKED);

else

AppendBPList (CurrentPixel.x, CurrentPixel.y, UNBLOCKED);

(continued)

Chapter 8: Region Fill 257

Listing 8-4. Continued.

/* previously moving in some vertical direction */

else

{
AppendBPList (CurrentPixel.x, CurrentPixel.y, UNBLOCKED Wie

/* add pixel twice if local vertical maximum or minimum */

if (((d>=1) 6& (d<=3)) && ((PrevD >= 5) && (PrevDs<= 111) ||

((d>=5) && (d<=7)) && ((PrevD >= 1) && (PrevD <= 3)))

AppendBPList (CurrentPixel.x, CurrentPixel.y, UNBLOCKED);

}

AppendBPList(p, q, f)

int P, ai /* pixel x,y coordinates */

int fi /* flag */

{
BP [BPend] .x = p;

BP [BPend].y = qs

BP (BPend].flag = f;

I

++BPend; /* increment past last entry in table */

}

/* routine to scan a line for a border pixel */

ae Xmax; /* largest valid pixel x-coordinate */

ScanRight (x, y)

int Sep Vie

{
while (ReadPixel(x, y) != BorderValue)

{
Seay /* increment x */

Le) (x == Xmax) /* if end of line in buffer ... */

break; /* exit from the loop */

}

return(x);

}

The module TraceBorder () creates a table that contains the pixel address

of every pixel in the region’s border. Sort BP () then sorts the table of border

pixels by increasing y- and x-coordinates. The routine ScanRegion ()
examines the interior line segment between each pair of border pixels in the

table. If it detects a border pixel within the line segment, ScanRegion ()

assumes it has encountered a hole in the region; it then returns the border pixel’s

(x,y) coordinates so that TraceBorder() and Sort BP () can update the table

with the hole’s border pixels. This process continues until the entire interior of

the region has been scanned. Then Fill Region () uses the sorted list of border

pixels to fill the region by drawing a horizontal line between each pair of pixels
in the list.

258 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

TraceBorder () starts with a seed pixel on the right-hand border of the region.

It steps clockwise from pixel to pixel in the border. Because the search proceeds

clockwise, the interior of the region is always to the right of the direction in

which the search is moving. If a pixel is not adjacent to the interior, the algorithm
does not identify it as a border pixel. The algorithm ensures that the border pixels

it detects are indeed adjacent to the interior by always examining pixels to the

right of the search direction first.

The algorithm identifies its search direction with one of the eight numeric codes
shown in Figure 8-6. (This technique is taken from ‘‘Algorithms for Graphics and

Image Processing”’ by T. Pavlidis [Computer Science Press, 1982].) Thus, in Figure

8-7, the algorithm moves from pixel b to pixel c in direction 6 (downward). To

find the next pixel in the border, the algorithm starts by examining the pixel to

the right of direction 6; that is, direction 4. This pixel is not a border pixel, but the

pixel in direction 5 (pixel d) is, so d is added to the list. The algorithm continues

to trace the border until it returns to the starting pixel. (The search terminates im-

mediately in the case of a degenerate ‘‘border’’ consisting of only one pixel.)

TraceBorder () performs another task in addition to identifying the pixels in

the border. It also indicates whether each border pixel defines the left or right end-

point of a horizontal interior line segment. (Because FillRegion() draws

horizontal lines from left to right, TraceBorder () marks each border pixel

with a flag indicating whether the pixel can be used as a left border.) Further-

more, if a pixel can serve as both a left and a right border (see Figure 8-8),

Figure 8-6. Numeric codes for border pixel trace directions.

Direction

a+b 6

boc 6

c—d 5

d-e 5

ef 4

f +g 4

Figure 8-7. Border pixel identification in TraceBorder‘().

Chapter 8: Region Fill 259

Figure 8-8. Pixels may border the interior on the left, right, or both directions: Pixelaisa

border pixel on the right of a row of interior pixels; it is blocked to its right by other border

pixels. Pixel b serves as both a left and a right border.

TraceBorder () adds it to the table twice. The logic in SameDirection ()

and DifferentDirection() accomplishes these tasks.

TraceBorder () may seem complex, but it is a relatively fast routine. The

slowest steps in BorderFill () are actually Sort BP (), which sorts the table

of border pixels, and ScanRegion (), which searches for border pixels in the

interior of the region. If Sort BP () and ScanRegion () are slow,

BorderFill() will be slow, because these routines are executed iteratively,

once for each hole in the region.

You can significantly improve BorderFil1l ()’s performance by modifying

TraceBorder () so that it builds its list of border pixels in the proper order to

begin with, avoiding the sort altogether. You can build the ordered list efficiently

using any of several data structures, including a linked list, a heap, or a fixed-size

table. This type of modification is particularly effective when the algorithm is

used to fill regions that contain one or more holes. Instead of sorting the list each

time it detects a hole, the modified algorithm simply inserts the hole’s border pix-

els into the list.

Writing ScanRegion() ina high-level language is relatively easy, but because

the routine examines all pixels in the interior of the region, you should write it in

assembly language so it will execute rapidly. Furthermore, using assembly

language on the EGA, the VGA, and the InColor Card offers a distinct advantage,

because the graphics control hardware in these subsystems can examine eight

pixels at a time and indicate which, if any, match the border pixel value. The

assembly-language routine ScanRight () in Listing 8-5, which can be used in

EGA and VGA 16-color graphics modes, runs 50 times faster than the C version
in Listing 8-4.

TITLE ‘Listing 8-5"
NAME ScanRight10

PAGE 597 32

; Name: ScanRight10

Listing 8-5. An assembly-language version of ScanRight(). (continued)

260 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 8-5. Continued.

7 EuNnceLon: Scan for a pixel of a given value in 16-color EGA/VGA graphics

: Caller: Microsoft C:

: int ScanRight10 (x,y);

; imt x, ye /* starting pixel */

: extern int BorderValue; /* value of border pixel */

; Returns the x-coordinate of the rightmost border pixel.

ARGx EQU word ptr [bp+4] ; stack frame addressing

ARGy EQU word ptr [bpt6é]

ByteOffsetShift EQU 3 ; used to convert pixels to byte offset

BytesPerLine EQU 80 ; 80 for most 16-color graphics modes

Fi (40 for 320x200 16-color)

DGROUP GROUP _DATA

_ TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP

EXTRN PixelAddr10:near

PUBLIC —_ScanRight10

_ScanRight10 PROC near

push bp ; preserve caller registers

mov bp, sp

push di

push Si

; calculate pixel address of (0,y)

mov ax, ARGy PAs ay

xor bx, bx 7; Bx ese 0)

call PixelAddr10 ; ES:BX -> buffer

mov di, bx ; ES:DI -> buffer

; calculate offset of x in row

mov ax, ARGx

mov si,ax eS pax reo

mov cl, ByteOffsetShift

shr si,cl ; SI := offset of x in row y

add ai, sz - DL s= offset of x in butter

calculate a bit mask for the first byte to scan
,

mov ela

and el Cl ¢= <6 7 7

mov ch, OFFh

shr ch, cl ; CH := bit mask for first scanned byte

(continued)

Chapter 8: Region Fill 261

Listing 8-5. Continued.

; configure the Graphics Controller

mov dx, 3CEh 2

mov ah, BorderValue ;

mov alge ;

out dx,ax

mov ax, 805h z

out ax,ax i

mov ax, OFO7h i.

out dx, ax ;

; byte for border pixels inspect the first

mov al,es: [di] ;

inc di ;

and al, ch :

jnz L01 ;

scan remainder of line for border pixels ,

mov cx,BytesPerLine

sub exis .

;

dec cx ;

repe scasb 7

compute x value of border pixel ,

mov al,es: [di-1] ;

LO1: sub di,bx ;

mov cl, ByteOffsetShift

shl ai, ea :

mov exe 2

THOZ: shl al,1 :

7c L03

loop L02

L03: sub di ,.ex 9

7 restore default Graphics Controller stat

mov ape i.

out ax, ax :

mov al,5 ’

out dx, ax a

DX := Graphics Controller port addr

AH := pixel value for Color Compare reg

AL := Color Compare Reg number

AH := 00001000b (Read Mode 1)

AL := Mode reg number

AH := 00001111b (Color Compare reg value)

AL := Color Compare reg number

AL := nonzero bits corresponding to

border pixels

ES:DI -> next byte to scan

apply bit mask

jump if border pixel(s) found

CX BytesPerLine -

starting pixel)

CX # of bytes to scan

(byte offset of

scan until nonzero byte read; i.e.,

border pixel(s) found

AL last byte compared

DI offset of byte past the one which

contains a border pixel

DI MI x-coordinate of 1st pixel in byte

CX loop limit

isolate first border pixel

DI x-coordinate of border pixel

e and return to caller

AH 0 (default Color Compare value)
restore Color Compare reg

AH <= 0, AL 3)

restore Mode reg

(continued)

262 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 8-5. Continued.

mov ax,di ; AX := return value

pop si 7 restore caller registers and return
pop di

mov sp, bp

pop bp
ret

_ScanRight10 ENDP

EER ENDS

_DATA SEGMENT word public 'DATA'

EXTRN _BorderValue:byte

_DATA ENDS

END

The fastest step in BorderFil1 () is the fill itself, because horizontal lines can

be drawn rapidly. Thus, if you need to fill the same region repeatedly or to copy

the same filled region several times, you can preserve the list of border pixels

generated the first time you execute BorderFill (). This greatly accelerates

subsequent fills, because you can skip the border-tracing and sorting steps.

Comparing the Algorithms

Which region fill algorithm is best? Each algorithm described in this chapter has
its pros and cons. You can compare them in several ways. A valid comparison

considers the simplicity of the algorithm, the speed of the compiled code, and the

suitability of each algorithm for particular types of region fills.

The recursive, pixel-by-pixel algorithm implemented as Pixe1Fil1() is about

as simple as you can get. The source code is short and easy to implement in

assembly language as well as in a high-level language. However, Pixel Fill ()

is too inefficient and too highly recursive to be generally useful.

The line-adjacency fill algorithm LineAdjFil1() is more complicated than

PixelFill(). Nevertheless, LineAdjFill() improves on the performance

of PixelFill() because it examines pixel groups instead of individual pixels.

LineAdjFill() also runs faster when it is written to access the video buffer in

one-byte increments instead of one-pixel increments. LineAdjFil1() is also

much less recursive than PixelFill (), so its runtime memory requirements

are smaller than those of PixelFill().

The three-step algorithm implemented in BorderFill() is more complicated

and somewhat slower than the other two algorithms. The advantage of using

Chapter 8: Region Fill 263

BorderFill () is its generality. Its modules can be readily adapted to alternate

types of region fills, including pattern fills and fills of regions defined as numeric

lists of (x,y) coordinates.

The performance of BorderFill() depends on the number of holes in the

region. It is as fast as LineAdjFil1 () in filling a region without holes.

However, when the region to be filled looks like Swiss cheese, BorderFill()

slows down because it must update the sorted list of border pixels whenever it

fills around a hole.

Nevertheless, BorderFill() can do several things that the other algorithms

cannot. For example, it can reliably fill regions that contain previously filled pix-

els. Unlike BorderFill(), both PixelFill() and LineAdjFill() rely

on the implicit assumption tht no interior pixels have the same value as the fill

value. Thus, BorderFill() correctly fills the region shown in Figure 8-9, but

both of the other routines fail.

F igure 8-9. A test case for fill algorithms. Neither PixelFill() nor LineAdjFill() can correctly
fill this region with gray pixels, because the “‘holes’’ are treated as if they have been already
filled.

You could modify a routine such as LineAdjFill () so that its a} : : ;
7 detection of holes in the region does not depend on the presence of
P previously filled pixels. This means the algorithm must somehow

keep track of pixels it has already filled. One way to do this is to keep
track of points where the border reaches a local minimum or max-
imum (see Figure 8-10). These locations can identify the top and bot-
tom of a hole in the region, enabling the fill algorithm to determine
when to stop working its way around the hole.

264 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

Figure 8-10. An algorithm can detect the presence of a hole in a region by
locating the border’s local maximum and minimum. Pixels marked a identify a
local maximum. Pixels marked b identify a local minimum.

For some applications, BorderFill() has a strong advantage over the other

algorithms, because its border-tracing and sorting steps generate a list of numeric

pixel coordinates. This list completely defines a two-dimensional region of pixels.

You can translate or change the scale of the region by applying the appropriate

conversions to the list of border pixels. As long as you preserve the pixels’ order

in the list, you can use the FillRegion() routine in BorderFill () to fill

the region the list defines. For this reason, the BorderFill() algorithm is best
suited for applications that must copy arbitrary regions, change their scale or size,

or draw them repeatedly into the video buffer.

Furthermore, by modifying the horizontal line routine in BorderFill() you

can easily fill a region with an arbitrary pattern or allow pixel AND, OR, and

XOR functions. Although you can augment PixelFill() or LineAdjFill ()

in this way, the source code can become complicated because these algorithms in-

spect pixels to determine whether they have been filled.

The trade-offs in complexity and performance in these algorithms leave a great

deal to your programming judgment. No single region fill algorithm is best for all

possible graphics applications. Your choice of implementation should depend on

your performance demands, the requirements of the application itself, the

capabilities of your video display hardware, and the effort you can afford to

expend in integrating and optimizing the code.

Chapter 8: Region Fill 265

Pi re Cree rey sate: nip. trian

3 ag 4s th ato * rv nbties EAN Maree ‘ao

agp iege 43 3 as) paris ew

7) ; Jas - & as a! ¥ eis mat ro ~— —~4 ee

tytn é oa ty ws Ban. eee or —_ } iz :

~ Wet as L = 7 % a.
;

’ bad tat sonst aes. ine

ee ia ashe ka ae at ae it aed tes 3

ooo) 3 La. ie ak. mee ot ange
a a 7 _ I : ‘ ; “+ ‘ : ; : +. f bach

7 oe - mn uy ha Ce re er 5 ao! SHO 27% 1h ual eZ wit say apa ce

oe : : I ray Sy Ch & Se = # te ie hay ih tye 3 me ie ape

: ie TEWeAa lw tri! a sy Tie nye i i os hey dap a

fe Pep stroae = oat wha? Boelighess area ty lena Por
ao pa f reget rw gaa itt eyed } ut padte Isat +o oTOF ni v

| a -
tery » avbol cant lvonla ceva ni: SORBET feMe UR Liastegnan i ot oy tind o

D, _ ii a ree 1) BU) dip oe § 5 GT laniz ASH. stro Bo buh wasn

; a a och ~ bi sal a o aa tery! i ey sy oY hee AUK

ae Bee? Hoes aaa angele aa we ity oe - p
‘s

- ; . Pai a. . : rs sel are

) | den the a 88 i le
7 gs — D 7 (ie

onlin cee Pigcaite B10), “Fhatae Seeders el ape
> = HAY SPS: SE at Aeng no #1 eporeie % ten if

J a: be oui * Pp ie bs et the eles AS "ae
6m laa

a) ee

vie on ibd

en

Graphics Text

Character Definition Tables
Video BIOS Support

Creating a Character Definition Table

Software Character Generators

Video BIOS Support @ Pixel Handling

Designing a Software Character Generator

Horizontal Alignment

Variable Character Sizes @ Clipping

Character Orientation

Cooperating with the Video BIOS

More Power, More Complexity

Implementing a Software Character Generator

CGA @ HGC and HCG+ © MCGA
EGA and VGA @ InColor Card

Few programs are complete without some sort of text display. Most graphics ap-

plications incorporate text with graphics images. In graphics modes, the software

that draws characters requires the same thoughtful design and construction as do

routines that draw geometric figures such as lines and ellipses.

In alphanumeric video modes, of course, displaying text is easy. You simply place

a character code and attribute in the video buffer and let the hardware character

generator put pixels on the screen. In graphics modes, however, your program

must store every pixel of every character in the video buffer.

This chapter discusses how to translate character codes into the pixel patterns that

form characters in graphics modes. The programming examples are hardware-

specific, of course, but you can adapt the table-driven character generator

described here for use with other computers and in other graphics applications.

Character Definition Tables

Every character that an IBM video subsystem displays is made up of a pattern of

contiguous pixels. The pixels are arranged to appear as coherent, recognizable

characters on the screen. The pixel pattern that represents a character is the same

no matter where in the buffer or on the screen the character is located.

The most convenient way to describe the pixel patterns that represent the charac-

ters in a character set is to create a table in which bit patterns represent the pixel

patterns. Such a character definition table contains a bit pattern for every display-

able character (see Figure 9-1). Each character’s bit pattern is defined within a

rectangular matrix. When the character matrix is the same size for all characters

in the table, and the definitions in the table are organized by character code, con-

verting a character code to an offset into the table is easy.

You can use a character definition table formatted in this way in alphanumeric as

well as graphics modes in video subsystems that support RAM-based alphanu-

meric character definitions. Chapter 10 covers this topic in detail.

Binary

01111110 g fa

1ooo0001 MH | | | {| |
| 10100101

F000: FA6E

F000:FA76 10000001
F000:FA7E 10111101
F000:FA86 10011001
F000:FA8E
F000:FA96 10000001
F000:FA9E 01111110 i
FOO00:FAA6

F000: FAAE

Figure 9-1. The beginning of the bit patterns that define IBM’s ROM BIOS 8-by-8 character
definitions.

268 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Video BIOS Support

The PC and PS/2 ROM BIOS contains default character definition tables for use in
graphics modes. The size of the characters in the table depends on the vertical
resolution of the video mode. In 200-line, CGA-compatible video modes, the
default character matrix is 8 pixels wide and 8 pixels high; in 350-line graphics
modes, it is 8 wide by 14 high; in 400-line and 480-line modes, it is 8 by 16. In all
graphics modes, the default characters are 8 pixels wide simply because there are

8 bits in a byte. Because each byte in a character definition table represents 8

horizontal pixels, defining characters as a multiple of 8 pixels in width makes the
table easy to manipulate in software.

No equivalent constraint applies to the height of characters defined in a character

definition table. In practice, however, the character matrix used with IBM video

subsystems should rarely be smaller than 8 by 6 pixels or larger than 8 by 16 pix-

els. With a character matrix outside this range, the displayed height and width of

the characters become disproportionate and the characters tend to appear too

short or too elongated to be easily read.

Default CGA Characters
Figure 9-1 shows the beginning of the character definition table for the default

character set in CGA graphics modes. The table contains an 8-byte definition for

each of the first 128 ASCII characters (0 through 7FH). The first eight bytes of the

table correspond to character code 0, the second eight bytes to character code 1,

and so forth. The bit pattern in each group of eight bytes represents the pixel pat-

tern displayed for the corresponding row of pixels in the character. The first of

the eight bytes in each group corresponds to the topmost row of eight pixels.

This table of 8-by-8 character definitions is located at FO00:FA6E in the mother-

board ROM on all PCs and PS/2s. However, the table defines only the first 128

ASCII characters. Character definitions for the second group of 128 ASCII codes

(80H through OFFH) are found in a table whose address is stored in interrupt vec-

tor 1FH (0000:007C). Because the motherboard BIOS contains no definitions for

these characters, the address is initialized to 0000:0000. If you use the ROM BIOS

to display ASCII characters between 80H and OFFH in CGA graphics modes

without pointing this interrupt vector to a character definition table, the ‘‘charac-

ters’ you see on the screen are whatever binary patterns happen to lie in the first

1024 bytes of RAM.

The MS-DOS utility GRAFTABL leaves a table of definitions for char-

acters 80H through OFFH resident in RAM and updates the interrupt
1FH vector to point to it. The characters defined in GRAFTABL are

the same as those the alphanumeric character generator displays for

ASCII codes 80H through OFFH.

Chapter 9: Graphics Text 269

Default EGA, VGA, and MCGA Characters

The ROM BIOS in the EGA, VGA, and MCGA subsystems contains definitions for

all 256 ASCII codes for all graphics modes. (You can access these tables directly;

their addresses may be obtained by calling INT 10H function 11H with AL = 30H.)

When you select a graphics mode with INT 10H function 0, the video BIOS loads

the address of the appropriate character definition table for the graphics mode

into interrupt vector 43H (0000:010C). In CGA-compatible 200-line graphics

modes, the BIOS also points the interrupt 1FH vector to the definitions for charac-

ters 80H through OFFH.

Creating a Character Definition Table

The easiest way to obtain a character definition table is to use one of the default

BIOS tables. If the staid, placid characters in those tables aren’t to your liking, you

can find many others commercially available or in the public domain.

Several standard character sets are defined and registered with the

International Standards Organization (ISO). IBM refers to these char-

acter sets as code pages and has assigned arbitrary identification num-

bers to them. For example, the standard IBM PC ASCII character set is

designated by code page 437; the Canadian French code page is 863;

and code page 850 is the general-purpose ‘‘multilingual’’ character set

devised by IBM for languages that use a Latin alphabet.

Both MS-DOS (starting in version 3.3) and OS/2 allow applications to

switch between code pages on an EGA or VGA. When a program dis-

plays characters with operating system function calls, the operating

system uses the character definitions in the currently selected code

page. Applications that use foreign language character sets should,

whenever possible, exploit the code pages supported by the operating
system.

When you define your own character set, you can select among several alternative
methods. The ugly alternative is to build your character definition table by speci-
fying every byte in source code. Figure 9-2 shows the beginning of such a table. A
more elegant alternative is to use a character-set editing program. With such edi-
tors, you use cursor-control keys or a pointing device such as a light pen or mouse
to specify the bit patterns in the table. Character-set editors are also available both
commercially and in the public domain. (You can even write your own, using the
routines in this book.)

Another approach is to start with one of the BIOS character sets and transform the
bit patterns in a regular way. For example, you could reverse the bit patterns ina
table by converting 0s to 1s and 1s to 0s (that is, apply a bitwise logical NOT to
each byte in the table), thus creating a ‘‘reverse’’ character set.

270 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

CharDefs db 000h, 000h, 000h, 000h, 000h, 000h, 000h,000h ; character
db 03Ch, 066h, 0COh, 0COh, 0COh, 066h, 03Ch,000h ; character

db OFCh, 066h, 066h, 07Ch, 06Ch, 066h, OE6h,000h ; character

db OFEh, 062h, 068h, 078h, 068h, 062h, OFEh,000h ; character

YD UBP WNYC

db 078h, 0CCh, 0CCh, 078h, 0CCh, OCCh, 078h,000h ; character

db 078h, 030h, 030h, 030h, 030h,030h,078h,000h ; character

db OCCh, 0CCh, 0CCh, 0CCh, 0CCh, 078h,030h,000h ; character

character db OFEh, 062h, 068h, 078h, 068h, 062h, OFEh,000h ;

Figure 9-2. A hand-coded character definition table.

Software Character Generators

A software routine that uses the bit patterns in a character definition table to draw

characters in the video buffer is called a software character generator. A software

character generator performs several functions. It locates the bit pattern for a

given character code, translates the bit pattern into a corresponding pattern of

pixels, and updates pixels at a specified location in the video buffer.

Video BIOS Support

The video BIOS provides a software character generator that is used whenever INT

10H functions 09H, OAH, OEH, and 13H are called in graphics modes. The soft-

ware character generator in the IBM PC and AT uses only the 8-by-8 characters

defined at F000:FAGE and at the address indicated by interrupt vector 1FH. The

version in the EGA and PS/2 BIOS uses the table to which interrupt vector 43H

points; this version determines the height of displayed characters from the BIOS

variable POINTS at 0040:0085.

You can use the BIOS software character generator to display characters from any

character definition table by updating the appropriate interrupt vectors with the

address of the table. On the EGA and PS/2s, use INT 10H function 11H to do this.

The BIOS character generator is convenient to use, but it is somewhat limited in

its capabilities. In particular, it can only store byte-aligned characters in the video

buffer. If you are willing to sacrifice compatibility with the INT 10H interface,

you can write a faster software character generator that is more powerful than the

default video BIOS version.

Pixel Handling

You store characters in the video buffer by changing the values of the appropriate

pixel groups. You can update the video buffer simply by replacing old pixel

values with new ones. You can also perform bitwise logical operations (AND, OR,

or XOR) to update the pixels.

Chapter 9: Graphics Text 271

Your routine to display text in graphics modes can handle the background pixels

in the character matrix in one of two ways. One is to preserve the contents of the

video buffer as much as possible by updating only foreground pixels; that is, by

updating only those pixels that represent the character itself (see Figure 9-3a). The

other is to update all foreground and background pixels within the bounds of the

rectangular character matrix (see Figure 9-3b).

a. b.

Figure 9-3. Characters written without background pixels (a.) and with background
pixels (b.).

Updating only the character’s foreground pixels preserves as many pixels in the

video buffer as possible. This may be the best way to display text in front of a

detailed or patterned graphics image. However, reading the displayed characters

can be difficult if the graphics image in some way blends with the character. For

example, text is invisible against a region filled with pixels having the same value

as the character’s foreground pixels.

To avoid such problems, you can update all foreground and background pixels in

the character matrix each time you store a character in the buffer. This avoids a

background pattern inadvertently masking the characters. The trade-off is that

each time you store a character in the buffer you must replace the previous con-
tents of the buffer with a rectangular blot.

The source code for the two types of graphics text routines is similar. The exam-

ples in this chapter demonstrate the second type, which makes them more compli-

cated than routines that draw only foreground pixels. You can convert the routines

to draw only the foreground pixels by eliminating the code for incorporating the
background pixels.

272 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Designing a Software Character Generator
Software character generators for IBM PC video subsystems have a number of

design considerations in common. Because the performance of your character

generator strongly influences the overall performance of many graphics applica-

tions, always consider the trade-offs between function and simplicity in your
character generator routines.

Horizontal Alignment

In graphics modes, the left edge of a character is not necessarily byte-aligned.

When a character is written so that its leftmost pixels fall somewhere in the mid-

dle of a byte in the video buffer (see Figure 9-4a), the character generator must

shift and mask the character matrix so that only pixels that are part of the charac-

ter are updated.

Usually, however, characters are written into the video buffer at byte-aligned

pixel addresses (see Figure 9-4b). This is the case, for example, whenever the dis-

play is used in a “‘teletype mode’’; that is, when each line of characters starts at

the left edge of the display. Generating byte-aligned characters requires no rota-

tion or masking of pixels, so using a separate routine for byte-aligned characters

improves the character generator’s performance.

Figure 9-4. Alignment of characters in the video buffer. In Figure 9-4a, characters are not

aligned; in Figure 9-4b, characters are byte-aligned.

Variable Character Sizes

Writing a character generator that accommodates characters of different heights is

relatively easy. The height of a character corresponds to the number of bytes in its

definition in the character definition table. You can thus use the height of your

characters as a loop limit inside the character generator routine without signifi-

cantly affecting the complexity of the routine.

Chapter 9: Graphics Text 273

Handling characters of different widths is more difficult. If the width of a charac-

ter does not fit exactly into an integer number of bytes, you must mask each row

of pixels in the character as you store it in the video buffer. Again, the extra over-

head of forming the appropriate bit mask and masking pixels in the video buffer

complicates and slows the character generator routine.

Clipping

You can clip characters in several ways. The simplest is to clip the entire charac-

ter before you store it in the video buffer; if any portion of the character matrix

would lie outside the clipping area, don’t write the character.

Clipping a character so that only a portion of it is stored in the video buffer is
more difficult. One way to do this is to modify the character generator so that any

clipped portion of a character is not written to the buffer. Another approach is to

write the entire character into an auxiliary buffer and then copy the clipped char-

acter into the video buffer with a pixel block copy routine (see Chapter 11).

Character Orientation

Usually, characters are displayed so that they can be read from left to right and

from the top down. To change this orientation, apply the appropriate transforma-

tion to the bit patterns in the character definition table. For example, the sub-

routine in Listing 9-1 rotates the 8-byte bit pattern that represents an 8-by-8

character so that the displayed characters read upward. With this transformation,

you can use the same character generator to display vertically or horizontally

oriented characters. Only the bit patterns differ.

mov si,seg OldCharDef

mov ds,si

mov si,offset OldCharDef > DS:SI -> old character definition

mov di,seg NewCharDef

mov es,di

mov di,offset NewCharDef 7 ES:DI -> new character definition

mov bsp Feo = 10

7 BL := bit mask

LO1: push si + preserve SI

mov cx, 8 ; CX := number of bits in each byte

L02;: lodsb ; AL := next byte in old

* character definition

and al,bl 7 mask one bit

cmp bh,al # Set carry flag af mask bit

is nonzero

(continued)

Listing 9-1. A routine that rotates an 8-by-8 character definition by 90 degrees.

274 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-1. Continued.

aCe ah, 1 # rotate bit into AH

loop L02 + loop across old character definition

mov al,ah

stosb + store next byte in new

; character definition

pop si MLO => Start of old

; character definition

shl as , BL := new bit mask

jnz L01 ; loop until bit mask is

shifted out of BL

Cooperating with the Video BIOS

Even if your character definition tables and character generator software avoid

using video BIOS functions, you should nevertheless try to preserve compatibility

by cooperating with the BIOS routines when possible. In 200-line graphics modes,

you should update the address in interrupt vector 1FH whenever you use an 8-by-8

character definition table that includes the second 128 ASCII characters. On the

EGA, VGA, and MCGA, you should generally use INT 10H function 11H to keep

the BIOS interrupt vectors and Video Display Data Area variables up to date.

More Power, More Complexity

You can add functionality to a software character generator in several ways. You

might, for example, write a character generator that refers to a table of relative

character widths to display proportionally spaced characters. As your routine

reads bit patterns from the character definition table, you might have it shift them

to the right by a predetermined number of pixels to generate bold or italic charac-

ter sets. You might apply a pattern of pixel values to the foreground pixels you

update. You might allow a character definition table to extend beyond the usual
range of 256 characters; the more characters you define, the wider range of char-

acters you can display at one time. Any of these possibilities adds power and flex-

ibility to your software character generator, but all of them complicate your

source code and ultimately slow it down.

Implementing a Software Character Generator
All software character generator examples in this chapter require that you specify

the x- and y-coordinates of the pixel in the upper left corner of the displayed char-

acter matrix. Each routine detects the special case where the character matrix is

byte-aligned in the video buffer, but the routines do not validate pixel coordinates

or perform any clipping. All the routines except DisplayChar10 () update

pixels in the video buffer by replacing their values. To perform a bitwise AND,

OR, or XOR operation, you must modify the routines (see Chapter 5).

Chapter 9: Graphics Text 275

CGA

In 640-by-200 2-color mode on the CGA, the software character generator applies
the bit patterns in the character definition table directly to the pixels in the video

buffer (see Listing 9-2). When the character is byte-aligned in the video buffer,

the routine copies pixel values directly from the character definition table. Other-

wise, for each row of eight pixels in the character, a rotated 16-bit mask is used to
zero the proper eight pixels in the buffer. Then the pixels from the character

definition table are rotated into position and stored in the buffer using a bitwise
OR operation.

7; Name:

; Function:

TITLE TULseangeI—2.

NAME DisplayChar06

PAGE Doe

DisplayChar06

Display a character in 640x200 2-color mode

7 Caller: Microsoft C:

; void DisplayChar06(c,x,y,fgd,bkgd) ;

2 TeR egy /* character code */

G TEN Vp /* upper left pixel */

¢ int fgd,bkgd; /* foreground and background
; pixel values */

ARGc EQU word ptr [bp+4] ; stack frame addressing
ARGx EQU word ptr [bp+6]
ARGy EQU word ptr [bp+8]
ARGfgd EQU byte ptr [bp+10]
ARGbkgd EQU byte ptr [bp+12]

VARmask EQU [bp-8]
VARtoggle EQU [bp-10]

LEX? SEGMENT byte public 'CODE'

ASSUME cs: TEXT

EXTRN PixelAddr06:near

PUBLIC DisplayChar06
_DisplayChar06 PROC near

push bp * preserve caller registers
mov bp, sp

sub sp,4 # stack space for local variables
push di

push si

push ds

Listing 9-2. A software character generator for 640-by-200 2-color mode. (continued)

276 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-2. Continued.

7 set up foreground

7 calculate first pixel

mov

ror

cwd

not

mov

mov

mov

call

xOr

mov

ror

mov

pixel toggle mask

ah, ARGfgd

ah, 1

dx

VARtoggle, dx

address

ax, ARGy

bx, ARGx

PixelAddr06

CA

ax, OFFOOh

ax, el

VARmask, ax

; set up video buffer addressing

mov

mov

test

Fz

xchg

dx, 2000h

di, 80-2000h

bx, 2000h

L01

di, dx

,

AH := 0 or 1 (foreground pixel value)

high-order bit of AH := 0 or 1

propagate high-order bit through DX

DX := 0 if foreground = 1

or FFFFh if foreground 0

AX 3= y

BX := x

ES:BX -> buffer

Clic= Febits; to shift left

CL := # bits to rotate right

AX := bit mask in proper position

increment for video buffer interleave

increment from last to first interleave

set zero flag if BX in 1st interleave

exchange increment values if 1st pixel

lies in 1st interleave

; set up character definition table addressing

LO1:

L02:

push

mov

mov

mov

xOr

mov

mov

cmp

jae

mov

jmp

mov

sub

bx

ax,40h

ds,ax

ch, ds: [85h]

ax,ax

ds,ax

ax,ARGc

al,80h

L02

bx, 43h*4

short L03

bx, 1Fh*4

al, 80h

’ preserve buffer address

DS := segment of BIOS Video

Display Data area

CH := POINTS (pixel rows in character)

DS := absolute zero

AL := character code

DS:BX -> int 43h vector if char < 80h

DS:BX -> int 1Fh vector if char >= 80h

put character code in range of table

(continued)

Chapter 9: Graphics Text 277

Listing 9-2. Continued.

LO3: lds Si, as sos DS:SI -> start of character table

mul ch AX := offset into char def table

(POINTS * char code)

add si,ax SI := addr of char def

pop bx restore buffer address

test eure test # bits to rotate

gn L20 jump if character is not byte-aligned

; routine for byte-aligned characters

mov ah, VARtoggle ; AH := foreground toggle mask

xchg chyicl 7; CX s= POINTS

L10: lodsb ; AL := bit pattern for next pixel row

xor al,ah ; toggle pixels if foreground = 0

mov es: [bx],al ; store pixels in buffer

add bx, dx ; BX := next row, in buffer

xchg i Cx ; swap buffer increments

loop L10

jmp short Lexit

; routine for non-byte-aligned characters

L20: mov ax, VARmask

and es: [bx],ax ; mask character pixels in buffer

xor ah, ah

lodsb ; AX := bit pattern for next pixel row

xor al, VARtoggle ; toggle pixels if foreground = 0

ror ax,cl ; rotate pixels into position

or es: [bx],ax ; store pixels in buffer

add bx, ax ; BX := next row in buffer

xchg di, dx ; swap buffer increments

dec ch

jnz L20

Lexit: pop ds ; restore caller registers and return
pop si

pop di

mov sp, bp

pop bp
ret

_DisplayChar06 ENDP

SIEXT ENDS

END

278 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The routine for 320-by-200 4-color mode in Listing 9-3 is more complicated

because each bit in the character definition must be expanded into the appropriate

2-bit pixel value. A 0 bit in the character definition table becomes a 2-bit back-

ground pixel value; a 1 bit in the table is expanded into a 2-bit foreground pixel

value. Thus, each byte in the table is transformed into a word of pixels.

7 Name:

; Function:

TITLE "hastang 9=3."

NAME DisplayChar04

PAGE 55,132

DisplayChar04

Display a character in 320x200 4-color graphics mode

; Caller: Microsoft C:

; void DisplayChar04 (c,x,y, fgd,bkgd) ;

i inicecr /* character code */

; ete cpr /* upper left pixel */

- int fgd,bkgd; /* foreground and background

; pixel values */

ARGc EQU word ptr [bp+4] ; stack frame addressing

ARGx EQU word ptr [bp+6]

ARGy EQU word ptr [bp+8]

ARGfgd EQU [bp+10]
ARGbkgd EQU [bp+12]

VARshift EQU word ptr [bp-8]

VARincr EQU word ptr [bp-10]

DGROUP GROUP _DATA

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP

EXTRN PixelAddr04:near

PUBLIC _DisplayChar04

_DisplayChar04 PROC near

push bp ; preserve caller registers

mov bp, sp

sub sp,4 ; stack space for local variables

push di

push si

push ds

Listing 9-3. A software character generator for 320-by-200 4-color mode. (continued)

Chapter 9: Graphics Text 279

Listing 9-3. Continued.

; propagate pixel values

mov

mov

xlat

mov

mov

mov

xlat

mov

mov

7 CaliculaLesturstspixe)

mov

mov

call

mov

shl

xOr

mov

bx, offset DGROUP:PropagatedPixel

al, ARGfgd

ah,al

ARGfgd, ax

al, ARGbkgd

ah,al

ARGbkgd, ax

address

ax, ARGy

bx, ARGx

PixelAddr04

ch, OFCh

ch,cl

Cuno

VARshift,cx

; set up video buffer addressing

mov

mov

ESE

jz

xchg

di,2000h

VARincr, 80-2000h

bx, 2000h

L01

VARincr,di

,

’

,

,

,

propagate foreground pixel value

propagate background pixel value

10,

BX :=

ES: BX

CL :=

ee
x

-> buffer

Dirts to shift Tefe

to mask pixel

CH :=

CL, s=

into

bit mask for right side of char

6 - CL (# bits to rotate char

position)

increment for video buffer interleave

; increment from last to first interleave

set zero flag if BX in 1st interleave

exchange increment values if 1st pixel

lies

; set up character definition table addressing

L01: push

mov

mov

mov

xOr

mov

mov

cmp

jae

mov

jmp

O24 mov

sub

bx

ax, 40h

ds,ax

ch, ds: [85h]

ax,ax

ds,ax

ax, ARGc

al, 80h

L02

bx, 43h*4

short L03

bx, 1Fh*4

al,80h

,

se

in 1st interleave

preserve buffer address

DS := segment of BIOS Video

Display Data area

CH :=

DS: BX

DS: BX

POINTS (pixel rows in character)

absolute zero

character code

-> int 43h vector if char < 80h

-> int 1Fh vector if char >= 80h

put character code in range of table

(continued)

280 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-3. Continued.

L03: lds si,ds: [bx]

mul ch

add si,ax

pop bx

xchg ch,ecl

test Gh, ch

jnz L20

7 routine for byte-aligned characters

L10:

eMht 2

; routine for non-byte-aligned characters

L20:

TZ) =

L225

lodsb

xor Gs, aac

mov ah,8

shr ada

rer ax, |

sar Goo al

dec ah

jnz L11

mov ax, ax

and ax,ARGfgd

not dx

and dx, ARGbkgd

or ax, dx

xchg ah,al

mov es: [bx],ax

add bx da

xchg di, VARincr

loop L10

jmp short Lexit

xOxr ch,ch

push cx

mov cx, VARshift

lodsb

xor dx, dx

mov ah, 8

shr al,1

rer dx, 1

; AH

DS:SI -> start of character table

AX := offset into char def table

(POINTS * char code)

SI := addr of char def

restore buffer address

CH := # bits to rotate

CL POINTS I

test # bits to rotate

jump if character is not byte-aligned

; AL := bit pattern for next pixel row

DX := initial value for doubled bits

= # of bits in pattern

cf := lo-order bit of AL

hi-order bit of CX := cf

double hi-order bit of DX

loop 8 times

AX,DX := doubled bit pattern

AX := foreground pixels

DX := background pixels

AX := eight pixels

put bytes in proper order

update video buffer

BX := next row in buffer

swap buffer increments

CX := POINTS

preserve CX

CH := mask for right side of char

Cims= #F bits to rotate

AL := bit pattern for next pixel row

DX := initial value for doubled bits

AH := # of bits in pattern

DX := double bits in AL

(same as above)

(continued)

Chapter 9: Graphics Text 281

Listing 9-3. Continued.

sar

dec

jnz

xchg

mov

and

not

and

or

EOE

mov

xOr

and

not

and

or

mov

not

and

and

Oi

add

xchg

pop
loop

Lexit: pop

pop

pop
mov

pop
mee

_DisplayChar04 ENDP

SLEXT, ENDS

_DATA SEGMENT

PropagatedPixel DB

DB

DB

DB

_DATA ENDS

END

dx, 1

ah

L22

dh, dl

ax, dx

ax, ARGfgd

dx

dx, ARGbkgd

dx,ax

as, ek

al,ch

ah,ah

es: [bx],ax

ax

ax, ax

es: [bx],ax

alv,ch:

al

es: [bx+2],al

ch,dl

es: [bx+2],ch

bx, di

di, VARincr

cx

L21

si

di

sp,bp
bp

word public

00000000b

01010101b

10101010b

TANS ATS

,

’

’

,

"DATA'

DH :=

DL :=

AX :=

DX. :=

DX :=

DH i=

DL :=

AX :=

update pixels in left and middle bytes

AL :=

mask pixels in right-hand byte in buffer

update pixels in right-hand byte

BX :=

restore CX

restore caller registers and return

GIN = ©&

282 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

bits for right half of char

bits for left half of char

foreground pixels

background pixels

eight pixels

left and right side pixels

middle pixels

mask for left and middle

bytes of char

zero pixels in video buffer

mask for right-hand byte

next row in buffer

swap buffer increments

In Listing 9-3, when the character is byte-aligned in the video buffer, the routine

moves the 16-bit word of pixels directly into the buffer. A character that is not

byte-aligned spans three bytes in the buffer. In this case, the routine must rotate
the eight pixels in each row of the character into position. Then the first two bytes

of the character in the buffer are masked and updated, followed by the third

(rightmost) byte of the character.

HGC and HGC+

A routine for the 720-by-348 monochrome graphics mode on the HGC and the

HGC+ can use the same bit-masking technique that the CGA 640-by-200 2-color

routine uses. You could convert DisplayChar06() into a Hercules-compatible

routine by revising the call to PixelAddr06() and by changing video buffer

addressing to accommodate the different buffer interleaves on the two adapters.

It is worthwhile, however, to exploit the HGC’s 720-pixel horizontal resolution by

displaying characters in a matrix that is 9 pixels wide, so that each row on the

screen contains 80 evenly spaced characters. The routine in Listing 9-4 does this

by appending a ninth bit to each 8-bit pattern it reads from the character defini-

tion table. The ninth bit is 0 except for box-drawing characters (ASCII OCO—ODFH).

For these characters, the ninth bit is a copy of the rightmost bit in the bit pattern.

(This mimics the function of the hardware character generator in alphanumeric

modes. See Chapter 10.)

TITLE "Listing 9-4'

NAME DisplayCharHGC

PAGE 5a iS2

;

; Name: DisplayCharHGC

Function: Display a character in Hercules 720x348 monochrome graphics mode

Caller: Microsoft C:

void DisplayCharHGC (c,x,y,fgd,bkgd) ;

int c; /* character code */

Imes xp Vie /* upper left pixel */

int fgd,bkgd; /* foreground and background

pixel values */

Me Se Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne Ne

ARGc EQU word ptr [bp+4] ; stack frame addressing

ARGx EQU word ptr [bpt6]

ARGy EQU word ptr [bp+8]

ARGfgd EQU byte ptr [bp+10]

ARGbkgd EQU byte ptr [bpt+12]

(continued)

Listing 9-4. A software character generator for Hercules monochrome graphics mode.

Chapter 9: Graphics Text 283

Listing 9-4. Continued.

VARmask

VARtoggle

VAR9bits

_TEXT

_DisplayCharHGC

EQU

EQU

EQU

[bp-8]
[bp-10]

byte ptr [bp-12]

SEGMENT byte public 'CODE

ASSU ME ¢si_TEXT

EXTRN PixelAddrHGC:near

PUBL

PROC

push

mov

sub

push

push

push

Ic _DisplayCharHGC

near

bp ;

bp, sp

sp, 6 7

di

si

ds

; calculate first pixel address

mov

mov

call

xor

ax, ARGy Zi

bx, ARGx ;

PixelAddrHGC :

Ca, ;

; set up 8- or 9-bit mask

L01:

mov

mov

mov

mov

cmp

je

mov

cmp
jb

cmp

ja

inc

ror

mov

; set up foreground

mov

ror

ax, 40h

ds,ax ;

ax, OFFOOh 3

VAR9bits,0 ;

byte ptr ds: [4Ah]

L01 ;

ah, 7Fh ;

ARGc, 0COh

L01 °

ARGc, ODFh

L01 ;

VAR9bits ;

ax,cl ;

VARmask, ax

pixel toggle mask

ah, ARGfgd :
ah, 1 ;

preserve caller registers

stack space for local variables

AX = y

BX := x

ES:BX -> buffer

CL t=" bits) topshrle tert

CL := # bits to rotate right

DS := segment of BIOS Video

Display Data area

AX := 8-bit mask

zero this flag

790 ; does CRT_COLS = 90?

jump if characters are 8 pixels wide

AX := 9-bit mask

jump if character code

outside of range OC0Q-ODFh

set flag to extend to 9 bits

AX bit mask in proper position

I AH := 0 or 1 (foreground pixel value)

high-order bit of AH := 0 or 1

(continued)

284 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-4. Continued.

7 set up character definition

L02:

L03:

; mask and set pixels in the video

As

bets

R228

cwd

not

mov

not

and

mov

push

mov

xor

mov

mov

cmp

jae

mov

jmp

mov

sub

lds

mul

add

pop

mov

and

xor

lodsb

cmp

je

ror

rel

ror

xor

or

add

jns

add

dec

jnz

dx

ax, VARmask

ax

ax, ax

VARtoggle, dx

bx

ch, ds: [85h]

ax,ax

ds,ax

ax, ARGc

al,80h

L02

bx, 43h*4

short LO3

bx, 1Fh*4

al, 80h

si,ds: [bx]

ch

si,ax

bx

ax, VARmask

es: [bx],ax

ah,ah

VAR9bits, 0

L21

ax, 1

al, 1

ax,cl

ax, VARtoggle

es: [bx],ax

bx, 2000h

L22

bx, 90-8000h

ch

L20

,

,

,

,

buffer

propagate high-order bit through DX

DX := 0 if foreground = 1

or FFFFh if foreground = 0

zero unused bits of toggle mask in DX

table addressing

preserve buffer address

CH := POINTS (pixel rows in character)

DS := absolute zero

AL := character code

DSiBke=ouant. 43h vector 2f char <—80h

DS:BX -> int 1Fh vector if char >= 80h

put character code in range of table

DS:SI -> start of character table

AX := offset into char def table

(POINTS * char code)

SI := addr of char def

restore buffer address

mask character pixels in buffer

AX := bit pattern for next pixel row

jump if character is 8 pixels wide

copy lo-order bit of AX into

hi-order bit

rotate pixels into position

toggle pixels if foreground = 0

store pixels in buffer

increment to next portion of interleave

increment to first portion of interleave

(continued)

Chapter 9: Graphics Text 285

Listing 9-4. Continued.

Lexit: pop ds ; restore caller registers and return

pop si

pop di

mov Sp, Dp

pop bp
igfshe

_DisplayCharHGC ENDP

LES

MCGA

In 640-by-480 2-color mode on the MCGA, pixels are stored eight to a byte, so you

can adapt the 640-by-200 2-color character generator for use in this mode by modi-

fying its video buffer addressing. A character generator for 320-by-200 256-color

mode is a little different, because each bit in the character definition table ex-

pands into a byte in the video buffer (see Listing 9-5).

,

Name:

Function:

Caller:

ENDS

END

Note how the CGA and Hercules routines use interrupt vector 43H to

point to the start of the current character definition table. This is the

interrupt vector the EGA and VGA ROM BIOS uses for this purpose.

Also, the routines determine the size of the displayed character matrix

by inspecting the variables POINTS (0040:0085) and CRT_COLS

(0040:004A) in the BIOS Video Display Data Area. If you are not using

an EGA, MCGA, or VGA, the BIOS won’t keep the interrupt vector and

POINTS up to date; in this case, your program should either update

these values explicitly or maintain equivalent values elsewhere.

TITLE Dies engi o ot

NAME DisplayChar13

PAGE 55, 132

DisplayChar13

Display a character in MCGA/VGA 320x200 256-color mode

MrGrosort iG:

void DisplayChar13(c,x,y, fgd,bkgd) ;

Arte ees /* character code */

(continued)

Listing 9-5. A character generator for MCGA and VGA 320-by-200 256-color mode.

286 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-5. Continued.

3 SNE ee ee

; int fgd,bkgd;

ARGc EQU word ptr [bp+4];

ARGx EQU word ptr [bpt+6]

ARGy EQU word ptr [bp+8]

ARGfgd EQU byte ptr [bp+10]

ARGbkgd EQU byte ptr [bpt+12]

BytesPerLine EQU 320

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT

EXTRN PixelAddr13:near

PUBLIC DisplayChar13

_DisplayChar13 PROC near

push bp ;

mov bp, sp

push di

push si

push ds

; calculate first pixel address

mov ax, ARGy ;

mov bx, ARGx 5

call PixelAddr13 p

mov di,bx ;

,

mov ax, 40h

mov ds,ax

mov cx, ds: [85h] ;

xor ax,ax

mov ds,ax i

mov ax, ARGc ;

mov bx, 43h*4 ;

lds si,das? (bx ‘

mul el ;

add si,ax fF

store the character in the video buffer :
,

-bl,ARGfgd ;

bh, ARGbkgd ;

mov

mov

/* upper left pixel */

/* foreground and background
pixel values */

stack frame addressing

preserve caller registers

AX 3= y

BX := x

ES:BX -> buffer

ES!DE => buffer

set up character definition table addressing

DS := segment of BIOS Video

Display Data area

CX := POINTS (pixel rows in character)

DS := absolute zero

AL := character code

DSIBX => int 43h vector 1f char < 80h

DS:SI -> start of character table

AX := offset into char def table

(POINTS * char code)

SI := addr of char def

BL := foreground pixel value

BH := background pixel value

(continued)

Chapter 9: Graphics Text 287

Listing 9-5. Continued.

L10: push cx ; preserve CX across loop

mov Cx,.8 ; CX := character width in pixels

lodsb

mov ah,al ; AH := bit pattern for next pixel row

Ellis mov aly, pi ; AL := foreground pixel value

shl ah, 1 ; carry flag := high-order bit

AG L12 ; jump if bit pattern specifies a

3} foreground pixel (bit = 1)

mov al,bh ; AL := background pixel value

L12: stosb ; update one pixel in the buffer

loop L11

add di,BytesPerLine-8 ; increment buffer address to next

 rew Of pixels

pop ex

loop L10 ; loop down character

pop ds ; restore caller registers and return

pop si

pop di

mov sp,bp

pop bp
ret

_DisplayChar13 ENDP

_TEXT ENDS
END

EGA and VGA

The routine for the EGA and VGA in Listing 9-6 uses the Graphics Controller to
update pixels in the video buffer. The routine is similar in some ways to the rou-

tine for the CGA’s 640-by-200 2-color mode, because each byte of the video buffer

represents eight pixels. Of course, the code is complicated by the need to program

the Graphics Controller to handle the foreground and background pixel values.

The routine writes each row of pixels in the character by latching the bit planes,

updating the foreground pixels, updating the background pixels, and then writing

the latches back to the bit planes. The Graphics Controller cannot conveniently

update both foreground and background pixels at the same time, so the routine
must perform these operations separately.

TITLE "Listing 9-6"

NAME DisplayChar10

PAGE Sop rs2

; Name: DisplayChar10

(continued)

Listing 9-6. A software character generator for native EGA and VGA graphics modes.

288 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-6. Continued.

+ Function:

7 Caller:

ARGc

ARGx

ARGy

ARGfgd

ARGbkgd

VARshift

BytesPerLine

RMWbits

_TEXT

_DisplayChar10

Display a character in native EGA and VGA graphics modes

Microsoft C:

EQU

EQU

EQU

EQU

EQU

EQU

SEGMENT

ASSUME

EXTRN

PUBLIC

PROC

push

mov

sub

push

push

push

; calculate first pixel

mov

mov

call

inc

and

mov

shl

mov

push

mov

void DisplayChar10(c,x,y,fgd,bkgd) ;

Intc; /* character code */

ants ap vay /* upper left pixel */

int fgd,bkgd; /* foreground and background

pixel values */

word ptr [bp+4] ; stack frame addressing

word ptr [bpt+6]

word ptr [bp+8]

byte ptr [bp+10]

byte ptr [bp+12]

[bp-8]

80 7 (or 40 in 320x200 16-color mode)

18h ; Read-Modify-Write bits

byte public 'CODE'

cs: TEXT

PixelAddr10:near

_DisplayChar10

near

bp ; preserve caller registers

bp, sp
sp,2 ; stack space for local variable

di

si

ds

address

ax, ARGy AX BS ny.

bx, ARGx =). sg

PixelAddr10 ; ES:BX -> buffer

, Chi s="t bits to shift left) to mask

; pixel

cx

el, 7 ; Ch t= * bits to shift to mask char

ch, OFFh

ch,eu * CH 3= bit maskefor right “side of char

VARshift, cx

es ; preserve video buffer segment

si,bx ; SI := video buffer offset

(continued)

Chapter 9: Graphics Text 289

Listing 9-6. Continued.

,

mov

mov

mov

xor

mov

mov

mov

les

mul

add

pop

ax, 40h

ds,ax

cx, ds; [85h]

ax,ax

ds,ax

ax, ARGc

bx, 43h*4

di,ds: [bx]

el

di,ax

ds

; set up Graphics Controller registers

; select output

mov

mov

out

mov

mov

out

mov

out

routine

mov

mov

cmp

jne

dx, 3CEh

ax, OAO5h

dx, ax

ah, RMWbits

al,3

dx,ax

ax, 0007

dx, ax

set up character definition table addressing

DS := segment of BIOS Video

Display Data area

CX := POINTS (pixel rows in character)

DS := absolute zero

AL := character code

DS:BX -> int 43h vector

ES:DI -> start of character table

AX := offset into char def table

(POINTS * char code)

Di's="addr of char def

DS:SI -> video buffer

Graphics Controller address reg port

AL Mode register number

AH := Write Mode 2 (bits 0-1)

Read Mode 1 (bit 4)

AH := Read-Modify-Write bits

AL := Data Rotate/Function Select reg

AH := Color Don’t Care bits

AL := Color Don’t Care reg number

"don’t care" for all bit planes

depending on whether character is byte-aligned

bl, ARG£gd
bh, ARGbkgd

byte ptr VARshift,0 2

L20

; routine for byte-aligned characters

L10:

mov

mov

out

and

not

out

and

al,8

ah,es: [di]

dx,ax

bsaely ow

ah

dx, ax

(Sa }ybh

,

.
,

,

’

'

BL

BH

= foreground pixel value

background pixel value

test # bits to shift

jump if character is not byte-aligned

AL := Bit Mask register number

AH := pattern for next row of pixels

update Bit Mask register

update foreground pixels

update background pixels

(continued)

290 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-6. Continued.

inc

add

loop

jmp

di ,

si,BytesPerLine ;

L10

short Lexit

routine for non-byte-aligned characters

L20: push

mov

; left side of character

mov

xOor

shl

push

mov

out

and

not

xor

out

and

cx

cx, VARshift

apes [di]

ah,ah

ax,cl

ax

al,8

dx,ax

[si], bi

ch

ah,ch

dx,ax

{si],bh

; right side of character

pop
mov

mov

out

inc

and

not

xor

out

and

; increment to next

inc

dec

add

pop
loop

ax

ah,al

al,8

dx, ax

SA

sal, bL

ch

ah,ch

dx,ax

[si],bh

di

si

,

si,BytesPerLine ;

cx

L20

ES:DI -> next byte in char def table

increment to next line in video buffer

preserve loop counter

CH := mask for left side of character

Clnct= # biter to shitt left

AL := bits for next row of pixels

AH := bits for left side of char

AL := bits for right side of char

save bits for right side on stack

AL := Bit Mask Register number

set bit mask for foreground pixels

update foreground pixels

CH := mask for left side of char

AH := bits for background pixels

set bit mask

update background pixels

AH := bits for right side of char

set bit mask

DS:SI -> right side of char in buffer

update foreground pixels

CH := mask for right side of char

AH := bits for background pixels

set bit mask

update background pixels

row of pixels in character

ES:DI -> next byte in char def table

DS:SI -> next line in video buffer

(continued)

Chapter 9: Graphics Text 291

Listing 9-6. Continued.

restore default Graphics Controller registers
,

Lexit: mov ax, OFFO8h ; default Bit Mask

out dx,ax

mov ax, 0005 ; default Mode register

out dax,ax

mov ax,0003 ; default Data Rotate/Function Select

out dx,ax

mov ax, OFO7h ; default Color Don’t Care

out dx, ax

pop ds ; restore caller registers and return

pop si

pop di

mov sp, bp

pop bp
ret

_DisplayChar10 ENDP

_TEXT ENDS

END

InColor Card

The technique for storing characters in the video buffer on the Hercules InColor
Card, shown in Listing 9-7, is different from that on the EGA or VGA because you

can use the InColor Card’s Read/Write Color register (1AH) and write mode 0 to

update both foreground and background pixel values in one operation. Thus, the
actual process of updating the bit planes collapses into relatively few machine

instructions.

However, the InColor Card cannot perform pixel AND, OR, or XOR operations in

hardware. To do this, you must write additional subroutines that use the Plane

Mask register to map logical operations onto the bit planes (see Chapter 5).

TITLE "Listing 9-7'

NAME DisplayCharInC

PAGE Dole

; Name: DisplayCharIncC

: Function: Display a character in InColor 720x348 16-color mode

; Caller: Microsoft C:

; void DisplayCharInC(c,x,y, fgd,bkgd) ;

(continued)

Listing 9-7. A software character generator for Hercules InColor graphics modes.

292 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-7. Continued.

ARGc

ARGx

ARGy

ARGfgd

ARGbkgd

VARmask

VAR9bits

_TEXT

_DisplayCharInc

EQU

EQU

EQU

EQU

EQU

EQU

EQU

SEGMENT

ASSUME

EXTRN

PUBLIC

PROC

push

mov

sub

push

push

push

; calculate first pixel

mov

mov

Call

xOr

push

mov

; set up flag for 8-bit

mov

mov

mov

mov

cmp

je

antic:

DEE Ve

int fgd,bkgd;

word ptr

word ptr

word ptr

byte ptr

byte ptr

word ptr

byte ptr

byte public

cs:_TEXT

PixelAddrHGC:near

[bp+4] ;
[bp+6]

[bp+8]
[bp+10]

[bp+12]

(bp-8]
[bp-10]

_DisplayCharInc

near

bp
bp, sp
sp,4

di

si

ds

address

ax, ARGy

bx, ARGx

PixelAddrHGC ;

qb, 7

es

si,bx

"CODE'

/* character code */

/* upper left pixel */

/* foreground and background
pixel values */

stack frame addressing

preserve caller registers

stack space for local variables

AX := y

BX 3= x

ES:BX -> buffer

CL := # bits to shift left to mask

pixel

CL := # bits to rotate right

preserve video buffer segment

DI := video buffer offset

or 9-bit characters

ax, 40h

ds,ax ; DS := segment of BIOS Video

; Display Data area

ax, OFFOOh ; AX := 8-bit mask

VAR9bits, 0 7 vero this fiag

byte ptr ds: [4Ah],90 ; does CRT COLS = 90?

L01 ; jump if characters are 8 pixels wide

(continued)

Chapter 9: Graphics Text 293

Listing 9-7. Continued.

mov

cmp

jb

cmp

ja

inc

LO1: IONS

mov

ah, 7Fh ;

ARGc, 0COh

L01 ;

ARGc, ODFh

L01 ;

VAR9bits ;

ax,cl ;

VARmask, ax

AX := 9-bit mask

jump if character code

outside of range OC0O-ODFh

set flag to extend to 9 bits

AX := bit mask in proper position

; set up character definition table addressing

mov

mov

mov

xOr

mov

mov

cmp

jae

mov

jmp

L002: mov

sub

L03: les

mul

add

pop

ax, 40h

ds,ax 7

ch, ds: [85h] ;

ax, ax

ds,ax ;

ax, ARGC ;

al, 80h

L02

bx, 43h*4 ;

short L03

bx, 1Fh*4 ;

al, 80h iF

di,ds: [bx] ;

eh ;

ai ,ax ;

ds ;

* set up control registers

mov

push

mov

Mov

shl

ox

pop

mov

out

dx, 3B4h ;

cx ;

ah, ARGbkgd ‘

cl,4

ah pic ;

ah, ARGfgd ;

cx 2

al,1Ah ;

dx,ax ;

7 mask and set pixels in the video buffer

L20: xor

mov

bh,bh

bl,es: [di] ;

DS := segment of BIOS Video

Display Data area

CH := POINTS (pixel rows in character)

DS := absolute zero

AL := character code

DS:BX -> int 43h vector if char < 80h

DS:BX -> int 1Fh vector if char >= 80h

put character code in range of table

ES:DI -> start of character table

AX := offset into char def table

(POINTS * char code)

DI := addr of char def

DS:SI -> video buffer

control register I/O port

preserve CX

AH := background pixel value

Il AH bits 4-7 background pixel value

AH bits 0-3 := foreground pixel value

restore CX

AL := Read/Write Color reg number

set Read/Write Color value

BX := bit pattern for next pixel row

(continued)

294 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 9-7. Continued.

L2t:

B22:

ine

cmp

je

ror

re:

ror

mov

out

or

mov

out

or

or

or

add

jns

add

dec

jnz

di

VAR9bits,0

L21 ;

bezel ;

ax, 5F19h F.

dx, ax ;

[si],bl ;
{sit+1],bh

ah, 6Fh ;

dx, ax

bx, VARmask 2

[si],bl ;
[si+1],bh

si,2000h .

L22

si,90-8000h ;

ch

L20

; restore default InColor register values

_DisplayCharInC

SEX

mov

out

mov

out

pop
pop
pop
mov

pop
ret

ENDP

ENDS

END

ax,4019h ;

dx, ax

ax,071Ah 3

dx,ax

ds ;

si

di

sp, bp

bp

increment pointer to char def table

jump if character is 8 pixels wide

copy lo-order bit of BX into

hi-order bit

rotate pixels into position

AH bit 6 := 1 (mask polarity)

AH Dilese 4 = 5 O1b (write mode 1)

AH bits 0=3 1111b (don’t care bits)

AL := 19h (Read/Write Control reg)

set up Read/Write Control reg

lI

update foreground pixels

set up write mode 2

BX := background pixel bit pattern

update background pixels

increment to next portion of interleave

increment to first portion of interleave

default Read/Write Control reg

default Read/Write Color reg

restore caller registers and return

Chapter 9: Graphics Text 295

vi
a

a j

7 io

%

*

e 4 7 ' :
‘

: 4
= *

:

— :

t£2

a ’ :
3 ?

nF

ee *

.
- .

e \ ‘

.
a.

'
i 4

i :

_
ie

we
io + a4

k ¥
' tre", at:

: a a

ed I 7

par = os ‘

Raa yr
oe nl 1

-
: ‘

es

10

Alphanumeric
Character Sets

Character Definition Tables
Alphanumeric Character Definitions in ROM

Alphanumeric Character Definitions in RAM

Updating Character Generator RAM ae

EGA and VGA @ HGC+ @ InColor Card © MCGA |

Using RAM-based Character Sets

ASCII Character Sets

Extended Character Sets

Compatibility Problems with Extended Character Codes

Changing the Displayed Character Matrix
EGA @ VGA ® MCGA @ HGC+ and InColor Card

Graphics Windows in Alphanumeric Modes
HGC-+ and InColor Card @ EGA and VGA @® MCGA

One of the easiest ways to speed up a program’s video interface is to use an

alphanumeric video mode. To gain this speed advantage, however, you must ac-

cept the limitations of the video subsystem’s alphanumeric character generator.

On the original MDA and CGA, the only characters you could display in

alphanumeric mode were those defined in a table located in ROM on the adapter.

The hardware character generator on these adapters was not designed to use a

character definition table located in RAM. However, the EGA, the MCGA, the

VGA, the HGC+, and the InColor Card can all display alphanumeric characters

defined in RAM.

This chapter shows you how to exploit RAM-based alphanumeric character sets on

these subsystems. It describes how to format character definition tables and where

to place them in RAM to be used in alphanumeric modes. It discusses the pros and

cons of using extended character sets that contain more than the usual 256 ASCII

characters. The chapter concludes with techniques for displaying true graphics

images in an alphanumeric video mode.

Character Definition Tables

Like the software graphics character generators described in Chapter 9, the hard-

ware alphanumeric character generator in all IBM video subsystems references a

memory-resident character definition table that contains bit-pattern representa-

tions of the pixels in each displayable character. Unlike the graphics-mode tables,

whose location in memory may vary, the alphanumeric tables must lie in a pre-

designated portion of memory to allow the alphanumeric character generator to
access them.

Alphanumeric Character Definitions in ROM

The MDA, the CGA, and the Hercules adapters have an alphanumeric character

definition table located in ROM that is not within the CPU’s address space. Only

the character generator hardware can access it. The character set that these adapt-

ers display in alphanumeric modes is therefore not controlled by software.

On the EGA, the MCGA, and the VGA, the alphanumeric character generator uses a
table of bit patterns stored in RAM rather than in dedicated ROM. The video ROM
BIOS contains tables with which it initializes character generator RAM whenever
it establishes an alphanumeric video mode. Because these video subsystems can
set up alphanumeric modes with different vertical resolutions, the sizes of the
default alphanumeric characters vary (see Figure 10-1).

200-Line Modes
The CGA’s 200-line alphanumeric modes use an 8-by-8 character matrix. In
80-by-25 alphanumeric mode, the screen is thus 640 pixels wide; in 40-by-25 al-
phanumeric mode, the screen is 320 pixels wide. Although the CGA uses the same
character set and font in its alphanumeric and graphics modes, the character
definitions for alphanumeric modes reside in dedicated ROM, accessible only to

298 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

a

Character Matrix
Adapter Video Mode (width by height in pixels)

MDA, HGC Monochrome 9-by-14
CGA 40-by-25 16-color 8-by-8

80-by-25 16-color 8-by-8
EGA 80-by-25 16-color 8-by-8 (200-line resolution)

8-by-14 (350-line resolution)
80-by-25 monochrome 9-by-14

MCGA 40-by-25 16-color 8-by-16
80-by-25 16-color 8-by-16

VGA 40-by-25 16-color 8-by-8 (200-line resolution)
8-by-14 (350-line resolution)
9-by-16 (400-line resolution)

80-by-25 16-color 8-by-8 (200-line resolution)
8-by-14 (350-line resolution)
9-by-16 (400-line resolution)

80-by-25 monochrome 9-by-14 (350-line resolution)
9-by-16 (400-line resolution)

HGC+ 80-by-25 monochrome 9-by-14
InColor Card 80-by-25 16-color 9-by-14

Figure 10-1. The default alphanumeric character matrix in various video modes.

the hardware character generator. (As described in Chapter 9, the graphics-

mode definitions are found in the ROM BIOS and in a table in RAM addressed

by the vector for interrupt 1FH.)

The CGA comes with two tables of 8-by-8 characters in the alpha-

numeric character generator’s ROM. A jumper on the adapter selects

P which table the alphanumeric character generator uses. By default,

jumper P3 on the CGA is not connected, and the usual ‘‘double-dot’’

8-by-8 characters are displayed. If you connect jumper P3, the CGA’s

alphanumeric character generator uses a “‘single-dot’’ font (see Figure

10-2). The ‘‘single-dot’’ characters appear sharper on some monitors

because their vertical strokes are only one pixel wide.

ABCDEFGHI JKLMNOPQRSTUVWXYZ <—— Jumper P3 removed (default)

abcdef ghi jkl mnopqrs tuywxyz

6123456789

ABCDEFGHI JKLMNOPQRSTUVWXYZ +—— Jumper P3 connected

abcdefghi jkl mnopgrstuvwxyz

0123456789

Figure 10-2. Double-dot and single-dot alphanumeric character sets on the CGA.

350-Line Modes
In 350-line alphanumeric modes on the MDA and the Hercules adapters, the char-

acters are defined in an 8-by-14 matrix. Again, the character definition table

Chapter 10: Alphanumeric Character Sets 299

resides in ROM outside the CPU address space that is dedicated to the hardware

character generator. Because the horizontal resolution is 720 pixels on these

adapters, each 8-by-14 character actually is displayed in a matrix 9 pixels wide.

Thus, each row on the screen contains 720+9, or 80, characters.

If characters are defined in ROM in an 8-by-14 matrix but displayed in a 9-by-14

matrix, where does the extra pixel come from? The hardware character generator

in the MDA, the Hercules cards, the EGA, and the VGA (in monochrome mode)

adds an extra pixel to the right of each row of eight pixels in each character. For

the block graphics characters (ASCII OCOH through ODFH), the value of the right-

most pixel is replicated in each row. For all remaining character codes, the extra

pixel is displayed with the character’s background attribute.

Since the ninth (rightmost) pixel in block graphics characters is a copy of the

eighth, these characters abut and can be used to draw horizontal lines. All other

displayable characters are separated from each other by that ninth pixel. The

resulting display appears less crowded than it would be without the extra space.

With the EGA and the VGA, you can control whether or not the alpha-

numeric character generator replicates the eighth pixel of block
graphics characters. When bit 2 of the Attribute Controller’s Mode

Control register (10H) is set to 1, the ninth pixel is the same as the

eighth. When bit 2 is set to 0, the ninth pixel is a background pixel.

400-Line Modes
The default alphanumeric modes of both the MCGA and the VGA have 400-line

vertical resolution. The characters used in these modes are defined in an 8-by-16

matrix. On the VGA, the 8-by-16 characters are displayed in a 9-by-16 matrix, just

as on an MDA or an EGA with a monochrome display.

Alphanumeric Character Definitions in RAM

The EGA, the VGA, the MCGA, the HGC+, and the InColor Card all have alphanu-

meric character generators that use character definition tables located in predesig-
nated areas of RAM. In all these subsystems, this RAM lies within the address

space of the video buffer. If you know how character generator RAM is mapped,

you can write programs that read or update the alphanumeric character definition
tables and thereby change the displayed alphanumeric character set.

EGA and VGA

In alphanumeric modes on the EGA and the VGA, the video buffer is organized as
four parallel memory maps, just as in graphics modes. In alphanumeric modes,

however, only maps 0 and 1 contain displayable data (see Figure 10-3). Even-

numbered bytes (character codes) in the CPU’s address space are located in map

0, and odd-numbered bytes (attribute bytes) are located in map 1. This mapping is
invisible to the CPU; the CRTC internally translates odd addresses to offsets into
map 1 and even addresses into references to map 0.

300 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Character definitions

Attribute bytes

Character codes

Map 3

Map 2

Map 1

B800:0000
or

B000:0000 Map 0

Figure 10-3. Video RAM layout in EGA and VGA alphanumeric modes.

The alphanumeric character generator uses a set of 256-character tables stored in

map 2. The EGA supports four such tables (see Figure 10-4); the VGA supports

eight (see Figure 10-5). Each table consists of 256 32-byte bit patterns, so the max-

imum height of the character matrix is 32 scan lines. When the displayed charac-

ter matrix contains fewer than 32 lines, the character generator ignores the extra

bytes in each character definition.

On the EGA, each of the four alphanumeric character definition tables starts at a

16 KB boundary. Since only 8 KB (256 characters x 32 bytes per character) are

used, 8 KB of unused RAM follows each table. On the VGA, these unused areas in

map 2 can contain additional character definitions. Of course, in writing an appli-
cation that must run on both the EGA and the VGA, you should avoid using these
extra tables because the EGA does not support them.

On the IBM EGA, which may be equipped with less than 256 KB of

video RAM, the number of character definition tables you can load

into video RAM depends on the amount of RAM installed on the card.

For example, without IBM’s Graphics Memory Expansion Card, an

IBM EGA has only 64 KB of video RAM, so each video memory map

in alphanumeric modes contains only 16 KB, and only one character

definition table will fit in map 2.

Chapter 10: Alphanumeric Character Sets 301

Figure 10-4. Character generator RAM in EGA video memory map 2.

Figure 10-5. Character generator RAM in VGA video memory map 2.

CO00H

Offset 8000H

4000H

0000H

E000H

C000H

A000H

Offset 8000H

6000H

4000H

2000H

0000H

HGC+
Character generator RAM on the HGC+ starts at B000:4000 and extends to the end

of available video RAM at BO00:FFFF (see Figure 10-6). You can fill this entire 48

KB area with character definitions. Each character definition is 16 bytes long, so a
table that defines 256 characters occupies 4 KB. Thus, this RAM can hold 3072

character definitions.

302 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

B000:FFFF

Character definitions

B000:4000

Character codes and attributes

B000:0000

Figure 10-6. Video RAM layout in alphanumeric modes on the HGC+.

If the HGC+ is configured so that video RAM above BO000:8000 is

masked out of the CPU address space (that is, bit 1 of the Configura-

tion Switch at 3BFH is set to 0), then only the 16 KB of RAM between

B000:4000 and B000:7FFF can be used for character definitions.

InColor Card

Character generator RAM occupies the same range of addresses on the InColor

Card as on the HGC+, that is, B000:4000 through B000:FFFF. Also, each InColor

character definition is 16 bytes long. Unlike the HGC+, however, the 16-color

InColor Card uses all four bit planes in this range of addresses for character

definitions (see Figure 10-7).

Because of this, you can control the value of each pixel in each character you

define. You can also program the InColor Card so that different bit planes define

different characters; when the characters are displayed, their attribute bytes select

which bit plane is used. By loading each of the four bit planes with different char-

acter definitions, you can maintain as many as 12,288 (3072 x 4) character defini-

tions in RAM. Or, to preserve compatibility with the HGC+, you can load all four

bit planes with the same bit patterns.

In using both the EGA and the Hercules cards, be careful in changing

from an alphanumeric mode that uses a RAM-based character defini-

tion table to a graphics mode. The same RAM that contains pixel data

in graphics modes is used to store character definitions in alphanu-
meric modes. You can corrupt or erase your character definition tables

by updating the video buffer in a graphics mode and then returning to

an alphanumeric mode.

MCGA
Unlike the EGA and VGA, the MCGA has no parallel memory maps in which to

store character definitions. Instead, alphanumeric character definitions are main-

tained in the 32 KB of video RAM between A000:0000 and A000:7FFF. You can

store as many as four 8 KB character definition tables at A000:0000, A000:2000,

A000:4000, and A000:6000 (see Figure 10-8).

Chapter 10: Alphanumeric Character Sets 303

Character definitions

Character definitions

Bit plane 3

Character definitions

Bit plane 2

Character definitions

Bit plane 1

B000:4000

Character codes and attributes

B000:0000 Bit plane 0

Figure 10-7. Video RAM layout in alphanumeric modes on the Hercules InColor Card.
Character definitions start at BO00:4000 in all four bit planes.

Character codes and attributes

A000:8000
(B800:0000)

256 character definitions 30H

A000:6000

256 character definitions 20H

A000:4000

256 character definitions 10H

A000:2000

256 character definitions 00H

A000:0000
: aac

Value in Character Font Pointer register

Figure 10-8. Layout of video RAM in MCGA alphanumeric modes.

304 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The format of the MCGA’s character definition tables is very different from that
of any other tables discussed thus far. Each 8 KB table is divided into 16 512-byte
lists of character codes and bit patterns (see Figure 10-9). Each list corresponds to
one scan line of the characters being defined; the first list represents the bit pat-
terns in the topmost scan line of each character, the second list corresponds to the
second scan line, and so on (see Figure 10-10). Since there are 16 lists, the max-
imum height of a character is 16 lines.

Oo to 23 4 5 6 7 © 39 A B C DD E F 0123456789ABCDEF
A000:0400 00 00 01 7E 02 7E 03 00 04 00 05 00 06 00 07 00 2... cece eens
A000:0410 O08 FF 09 OO OA FF OB 1E 0C 3C OD 3F OE 7F OF 00 <1 Peeee
A000:0420 10 CO 11 06 12 18 13 66 14 7F 15 C6 16 001718 Locccecse
A0O0O310430 18°48; 19 385 7A 00 2B) 00 2C 00 1D 00 1E 00 YF 00) Sic sees ssc es
A000:0440 20 00 21 18 22 66 23 00 24 7C 25 00 26 38 27 30 «1. "£H#.$|%.&8'0
A000:0450 28 OC 29 30 2A 00 2B 00 2C 00 2D 00 2E 00 2F 00 (.)0*.+.,.-.../

- 687. A000:0460 30 7C 31 18 32 7C 33 7C 34 OC 35 FE 36 38 37 FE 0(/1.2/3|4.5
A000:0470 38 7C 39 7C 3A 00 3B 00 3C 00 3D 00 3E 00 3F 7C 8|9|:.;.<.=.>.?|
A000:0480 40 00 41:10 42 FC 43 3C 44 F8 45 FE 46 FE 47 3C @.A.B.C<D.E.F.G<
A000:0490 48 C6 49 3C 4A 1E 4B E6 4C FO 4D C6 4E C6 4F 38 H.I<J.K.L.M.N.O8
A000:04AO0 50 FC 51 7C 52 FC 53 7C 54 7E 55 C6 56 C6 57 C6 P.Q|R.S|T U.V.W.
A000:04B0 58 C6 59 66 5A FE 5B 3C 5C 00 5D 3C 5E 6C 5F 00 X.YfZ.[<\.]<"l..
A000:04CO 60 18 61 00 62 EO 63 00 64 1C 65 00 66 38 67 00 ~.a.b.c.d.e.f8g.
A000:04D0 68 EO 69 18 6A 06 6B EO 6C 38 6D 00 6E 00 6F 00 h.i.j.k.18m.n.0.
A000:04EO 70 00 71 00 72 00 73 00 74 10 75 00 76 00 77 00 p.q.r.s.t.u.v.w.
A000:04FO 78 00 79 00 7A 00 7B OE 7C 18 7D 70 7E 76 7F 00 x.y.z.{.|.}p v..
A000:0500 80 3C 81 CC 82 18 83 38 84 CC 85 30 86 6C 87 00 .<..... Sie Oe der
A000:0510 88 38 89 CC 8A 30 8B 66 8C 3C 8D 30 8E C6 8F 38 .8...0.f.<.0...8
A000:0520 90 60 91 00 92 3E 93 38 94 C6 95 30 96 78 97 30 .°...>.8...0.x.0
A000:0530 98 C6 99 C6 9A C6 9B 18 9C 6C 9D 66 9E CC OF 1B... Det ieee
A000:0540 AO 30 Al 18 A2 30 A3 30 A4 76 A5 00 A6 6C A7 6C_ .O...0.0.v...1.1
A000:0550 A8 30 A9 00 AA OO AB CO AC CO AD 18 AE 00 AF 00 .0.......00 ee ee

Figure 10-9. One of 16 lists of character codes and bit patterns in MCGA character genera-
tor RAM. This table defines the bit patterns for the third scan line of each character. Charac-
ter codes are in the even-numbered bytes. The odd-numbered bytes contain the corresponding
bit patterns.

0 22°34 55° 6° 7° 8.9 A BC DEF 0123456789ABCDEF
A000:0000 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 .weeeeereeeeeees
A000:0010 O08 FF 09 0O OA FF OB 00 OC 00 OD 00 OE 00 OF 00 ...eeueeeee eeeee

A000:0200 00 00 01 00 02 00 03 00 04 00 05 00 06 00 07 00 .wweeeeeeeeeeees
A000:0210 O08 FF 09 OO OA FF OB 00 OC 00 OD 00 OE 00 OF 00) .-eeeeeeeeseeeee

A000:0400 00 00 01 7E 02 7E 03 00 04 00 05 00 06 00 07 00 ... 7s seeeeseees
A000:0410 08 FF 09 OO OA FF OB 1E OC 3C OD 3F OE 7F OF 00see- Sa Pecee

A000:0600 00 00 01 81 02 FF 03 00 04 00 05 18 06 18 07 00 weeeeevereeeeees
A000:0610 O08 FF 09 00 OA FF OB OE OC 66 OD 33 OE 63 OF 18 ...seeeee f.3.c..

A000:0800 00 OO 01 AS5 02 DB 03 6C 04 10 05 3C 06 3C 07 00 ..sueee Lis e<e<ee
A000:0810 08 FF 09 OO OA FF OB 1A OC 66 OD 3F OE 7F OF 18 ...-seeee Lui2ecee

A000:0A00 00 00 01 81 02 FF 03 FE 04 38 05 3C 06 7E 07 00 «eseeeeee Se <ariais
A000:0A10 08 FF 09 3C OA C3 OB 32 OC 66 OD 30 OE 63 OF DB ...<...2.f.0.c..

A000:0C00 00 00 01 81 02 FF 03 FE 04 7C 05 E7 06 FF 07 18) .ssseeees I srsisiets
A000:0C10 08 E7 09 66 OA 99 OB 78 OC 66 OD 30 OE 63 OF 3C ...f...xX.f,0.C.<

A000:0E0O0 00 00 01 BD 02 C3 03 FE 04 FE 05 E7 06 FF 07 3C_ «eee beevcsvene <

A000:0E10 08 C3 09 42 OA BD OB CC OC 3C OD 30 OE 63 OF E7_ ...B..... <.0.C..

A000:1000 00 00 01 99 02 E7 03 FE 04 7C 05 E7 06 7E 07 3C seesseeee orate re

A000:1010 08 C3 09 42 OA BD OB CC OC 18 OD 30 OE 63 OF 3C_ ...Beseueee 0.c.<

A000:1200 00 00 01 81 O02 FF 03 7C 04 38 05 18 06 18 07 18 ««sseeee |B. eeeee

A000:1210 08 E7 09 66 OA 99 OB CC OC 7E OD 70 OE 67 OF DB ...f..... -P-g..

A000:1400 00 00 01 81 02 FF 03 38 04 10 05 18 06 18 07 00 .«seees Bows sceee

A000:1410 08 FF 09 3C OA C3 OB CC OC 18 OD FO OE E7 OF 18) sue<sseeeveevees

A000:1600 00 00 O01 7E 02 7E 03 10 04 00 05 3C 06 3C 07 00 Siaid-ney. aCe iarad)s <.<.

A000:1610 08 FF 09 00 OA FF OB 78 OC 18 OD EO OE E6 OF 18 ..«.«.-+. Keeesseee

Figure 10-10. MCGA character definitions for the first 12 scan lines of the first 16

characters. The top scan line for each character is defined starting at AO00:0000, the

second scan line starting at A000:0200, and so on. (Only the first 32 bytes of each 51 2-byte

list are shown.)

Chapter 10: Alphanumeric Character Sets 305

Updating Character Generator RAM
After you create a table of character definitions (discussed in Chapter 9), you
must make the table accessible to the hardware character generator by properly

locating it in the video buffer. One way to do this is to create the table in RAM

(outside the video buffer) and then copy it to character generator RAM. You can

also read the table directly from a disk file into character generator RAM. Either

technique works on any of the video subsystems discussed here.

EGA and VGA

To copy a character definition table into video memory map 2, you must program

both the Sequencer’s Memory Mode register and its Map Mask register, as well as

the Graphics Controller’s Mode and Miscellaneous registers, to make memory

map 2 directly addressable. You can then copy character definitions to any of the

available table locations in map 2. After you update map 2, restore the Sequencer

and Graphics Controller registers to values appropriate for the alphanumeric
video mode you are using.

Listing 10-1a demonstrates how the Sequencer and Graphics Controller are

programmed on both the EGA and the VGA to make character generator RAM in

map 2 accessible. Listing 10-1b is the converse routine; it restores the Sequencer

and Graphics Controller registers to their alphanumeric mode default values. You

can use the routines in Listings 10-1a and 10-1b in a program that copies character
definitions directly from a file into character generator RAM (as shown in List-
ings 10-2a and 10-2b).

TITLE "Listing 10-1a'

NAME CGenModeSet

PAGE Dp hoz

; Name: CGenModeSet

; Direct access to EGA and VGA alpha character generator RAM

; Caller: Microsoft €:

. void CGenModeSet ();

DGROUP GROUP _DATA

aaa SEGMENT byte public 'CODE'
ASSUME cs: _TEXT,ds:DGROUP

PUBLIC —CGenModeSet

_CGenModeSet PROC near

push bp * preserve caller registers
mov bp, sp

push Sai

Listing 10-1a. Using character generator RAM on the EGA and VGA. (continued)

306 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-la. Continued.

7 Program the Sequencer

edi ; disable interrupts
mov dx, 3C4h ; Sequencer port address
mov si,offset DGROUP:SeqParms
mov Cx 4

LO1: lodsw * AH := value for Sequencer register
7 AL := register number

out ax, ax * program the register
loop L01

Sta ; enable interrupts

7 Program the Graphics Controller

mov dl, 0CEh 7 DX := 3CEH (Graphics Controller port
; address)

mov si,offset DGROUP:GCParms

mov ex; 3

L02: lodsw 7 program the Graphics Controller
out dx, ax

loop L02

pop si

pop bp
feb

_CGenModeSet ENDP

_ TEXT ENDS

_DATA SEGMENT word public

7 Format of the parameters is:

,

SeqParms DW 0100h

DW 0402h

DW 0704h

DW 0300h

GCParms DW 0204h

DW 0005h

DW 0006h

_DATA ENDS

END

Lo-order byte:

Hi-order byte:

"DATA'

Register number

Value for reg

+ synchronous reset

; CPU writes only to map 2

; sequential addressing

; Clear synchronous reset

7 select map 2 for CPU reads

; disable odd-even addressing

7; map starts at A000:0000

Chapter 10: Alphanumeric Character Sets 307

TITLE Ristang 10=1b.

NAME CGenModeClear

PAGE Say haz

; Name: CGenModeClear

Restore EGA or VGA alphanumeric mode after accessing

character generator RAM

; Caller: Microsoft C:

DGROUP GROUP

DIE E SEGMENT

ASSUME

PUBLIC

_CGenModeClear PROC

push

mov

push

; Program the Sequencer

elke

mov

mov

mov

LO1: lodsw

out

loop

sti

void CGenModeClear();

_DATA

byte public 'CODE'

cs: TEXT, ds:DGROUP

_CGenModeClear

near

bp ; preserve caller registers

bp, sp
si

; disable interrupts

dx, 3¢4h ; Sequencer port address

si,offset DGROUP:SeqParms

cx,4

; AH := value for Sequencer register

; AL := register number

dx,ax ; program the register

L01

; enable interrupts

; Program the Graphics Controller

mov dl, OCEh ; DX := 3CEH (Graphics Controller port

; address)

mov si,offset DGROUP:GCParms

mov eS)

L02: lodsw * program the Graphics Controller

out dx, ax

loop L02

mov ah, OFh 7 AH := INT 10H function number

int 10h 7 get video mode

cmp al,7

jne L03 ; jump if not monochrome mode

mov ax, 0806h 7 program Graphics Controller

out dx, ax 7 to start map at B000:0000

Listing 10-1b. Restoring character generator RAM on the EGA and VGA. (continued)

308 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-1b. Continued.

L03:

_CGenModeClear

_TEXT

_DATA

7 Format of the

,

SeqParms

GCParms

_DATA

; Name:

i Caller:

ARGf

ARGp

CGenRAMSeg

CGenRAMOf fset

CGenDefSize

_TEXT

Listing 10-2a. Loading character definitions on an EGA or VGA.

pop

pop

ret

ENDP

ENDS

SEGMENT word public

parameters is:

si

bp

Lo-order byte:

Hi-order byte:

"DATA'

Register number

Value for reg

+ synchronous reset

7 CPU writes to maps 0 and 1

; odd-even addressing

; clear synchronous reset

7 select map 0 for CPU reads

7 enable odd-even addressing

7 Map starts at B800:0000

DW 0100h

DW 0302h

DW 0304h

DW 0300h

DW 0004h

DW 1005h

DW OEO6h

ENDS

END

TITLE "Lasting 10-22"

NAME CGenRead1

PAGE 55, 132

CGenRead1

Read 256 character definitions into EGA or VGA character RAM

Microsoft C:

EQU

EQU

EQU

EQU

EQU

void CGenRead!1 (f,p);

int fe

int P;

[bp+4]
[bp+6]

OA000h

0

32

/* file handle */
/* bytes per character definition */

; start of character generator RAM

; size in bytes of one character def

SEGMENT byte public 'CODE'

ASSUME

PUBLIC

ese TEXT

_CGenRead1

(continued)

Chapter 10: Alphanumeric Character Sets 309

Listing 10-2a. Continued.

_CGenRead1 PROC

push

mov

push

push

push

near

bp ; preserve registers

bp, sp

ds

si

di

; zero character definition RAM

mov

mov

mov

mov
xor

rep

di,CGenRAMSeg

es, di ;

di, CGenRAMOffset

ES := char gen RAM segment

cx, 256*CGenDefSize/2 ; CX := number of words to zero

ax,ax

stosw

; load character definitions from file

mov

mov

mov

push

pop
mov

L0O1: xchg

mov

int

add

xchg

loop

pop

pop

pop

pop

ret

_CGenRead1 ENDP

_ TEXT ENDS

END

eCxpZo6 ; assume 256 character defs in the file

bx, ARGf ; BX := file handle

si, ARGp ; CX := bytes per character definition

es

ds

dx,CGenRAMOffset ; DS:DX -> start of character gen RAM

Cx Se ; CX := number of bytes to read

7S 3= Loop, counter

ah, 3Fh ; AH := INT 21H function number

21h

dx,CGenDefSize ; DS:DX -> next character def in RAM

Cx, Su ; CX s=] Loop) counter

; SI := number of bytes to read

L01

di ; restore registers and exit

si

ds

bp

310 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

/* Listing 10-2b */

#include

#include

main (argc,argv)

int

char

{

}

<font) h>

<stdio.h>

argc;

**argv;

int ou

int FileHandle;

int Points; /* bytes per character definition */
long lseek ();

long FileSize;

tf farge)="2) /* verify filename */
{

printf("\nNo filename specified\n");

exat(1)

}

FileHandle = open(argv[1], O RDONLY); /* open the file */

if (FileHandle == -1)

: PEIMeE("\nCan’ = open "Ss" \n, argv);

CxTEt 2e)>

}

CGenModeSet () ; /* make character generator RAM addressable */

FileSize = lseek(FileHandle, OL, SEEK END); /* get file size */

Points = FileSize / 256; /* determine character size */

lseek(FileHandle, OL, SEEK SET); 7/* start of fille */

CGenRead1(FileHandle, Points);

CGenModeClear(); /* restore previous alphanumeric mode */

Listing 10-2b. Calling CGenReadI from a C program.

A faster and more portable way to load character definitions into RAM is to use
INT 10H function 11H with AL = 0 (see Listings 10-3a and 10-3b). When you use

the INT 10H function, you can selectively update any portion of a table in map 2

by choosing appropriate values for DX (the character offset into the table) and CX
(the number of character definitions to update). To use this video BIOS function,

you must first store the character definition table in an intermediate buffer. This
technique consumes more memory than reading character definitions directly
from disk, but it results in faster code.

Chapter 10: Alphanumeric Character Sets 311

TITLE ViusteLimgy Osu.

NAME CGenRead2

PAGE S Sys

7

; Name: CGenRead2

Use video BIOS to read 256 character definitions into EGA or VGA

character RAM

» Callers Microsoft C:

ARGE£ EQU

DGROUP GROUP

_ TEXT SEGMENT

ASSUME

PUBLIC

_CGenRead2 PROC

push

mov

void CGenRead2 (f);

int fe /* file handle */

[bp+4]

_DATA

byte public 'CODE'

csi, TEXT

_CGenRead2

near

bp ; preserve registers

bp, sp

; load character definitions from file

mov

mov

mov

mov

int

Ex Zoots2 ; assume 256 32-byte character defs

70) an the ibe

bx, ARGf£ ; BX := file handle

dx,offset DGROUP:CharBuf ; DS:DX -> start of buffer

ah, 3Fh ; AH := INT 21H function number

Zhi ; read the file

; AX := number of bytes read

; call video BIOS to load character generator RAM

push ds

pop es

mov bp,offset DGROUP:CharBuf ; ES:BP -> character defs

mov b1,0 ; BL := block of char gen RAM to load

mov bh, ah ; AH := bytes per character

; (number of bytes read) / 256

mov Cxploo ; number of character defs to store

one dx, ax ; first character number

mMOv ax,1100h ; AH := 11H (INT 10H function number)

; AL := 0 (subfunction number)

int 10h

pop bp ; restore BP and exit

ret

_CGenRead2 ENDP

Listing 10-3a. Using the BIOS to load character definitions. (continued)

312 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-3a. Continued.

SIEXt ENDS

_DATA SEGMENT word public 'DATA'

CharBuf DB 256*32 dup(?)

_DATA ENDS

END

7* Listing 10=3b */

#include <fentd .h>

main (argc, argv)

int argc;

char **argv;

{
int aS

int FileHandle;

if (argc != 2) /* verify filename */

{
printf("\nNo filename specified\n");

CELE IT Ope

}

FileHandle = open(argv[1], O RDONLY); /* open the file */

if (FileHandle == -1)

{
printf("\nCan’t open '%s'\n", argv[1]);

Cx EE CUZ ie

CGenRead2(FileHandle); /* call video BIOS to load file into */

/* character generator RAM */

}

Listing 10-3b. Calling CGenRead2 from a C program.

The INT 10H function 11H services can also update character generator RAM from

the character tables in the ROM BIOS. To use one of the ROM BIOS character defi-

nition tables, call INT 10H function 11H with AL = 1 (for 8-by-14 character defini-

tions) or AL = 2 (for 8-by-8 definitions). (See Listing 10-4.)

mov ax,1102h ; AH := INT 10H function number

; AL := 02h (load ROM BIOS 8x8 characters)

mov ii, 0 ; BL := character generator RAM bank

int 10h ; load alphanumeric character set

Listing 10-4. Using a ROM BIOS character definition table.

Chapter 10: Alphanumeric Character Sets 313

HGC+

Moving a character definition table into RAM is easier on the HGC+, because

memory addressing is simpler. Character generator RAM is mapped linearly,

starting at B000:4000. Since each 256-character table occupies 4 KB (256 x 16),

subsequent 256-character tables start at BO00:5000, B000:6000, and so on.

Because HGC+ memory has no bit planes, you can access character generator

RAM as easily as any other system RAM. You can, for example, use a single

REP MOVSB instruction to move bit patterns into character generator RAM

from elsewhere in system RAM, or you can read a character definition table

directly into RAM from a disk file. For example, you can modify Listing 10-2a

to read a file directly into HGC+ character generator RAM by changing the

values of CGenRAMSeg to BOOOH, CGenStartOffset to 4000H, and

CGenDefSize to 16.

InColor Card

. Although the InColor Card uses all four bit planes to store character definitions,

you can use virtually the same routine to copy bit patterns into its character

generator RAM that you use on the HGC+. The only difference is that you can

select which of the four bit planes to update. Do this by setting bits 4 through 7

of the Plane Mask register (18H) to write-protect one or more of the bit planes.

For compatibility with the HGC+, set these four bits to 0 so that all four bit planes

contain the same bit patterns.

MCGA

As on the Hercules adapters, character generator RAM on the MCGA is mapped

linearly in the video buffer. Thus, you can update MCGA character definitions

simply by writing the bit patterns in the appropriate format in the character

definition tables.

If you update the MCGA character definition tables directly, however, your pro-

gram must store bit patterns and character codes in the format expected by the

MCGA character generator. It is usually better to use INT 10H function 11H to

copy character definitions into MCGA character generator RAM. This video BIOS

function translates character definition tables from the linear format used on the
EGA and VGA into the formatted lists used on the MCGA.

The MCGA is different from the other video subsystems discussed here in that its

alphanumeric character generator does not fetch bit patterns from the tables at

A000:0000 as it generates characters. Instead, the character generator uses two in-

ternal character definition tables, called font pages. To display the characters

from one of the four tables in video RAM, you must load the table into one of the

character generator’s font pages. Listing 10-5 shows how this is done.

314 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

7 Name:

y Caller:

ARGn0O

ARGn1

aFEXT

_SetFontPages

_SetFontPages

_TEXT

TITLE "Listing 10-5'

NAME SetFontPages

PAGE So bse

SetFontPages

Update MCGA Font Pages

Microsoft C:

EQU
EQU

SEGMENT

ASSUME

PUBLIC

PROC

push

mov

mov

mov

shl

shl

int

pop
ret

ENDP

ENDS

END

void SetFontPages(n0,n1);

int n0,n1; /* font page values */

[bp+4]
[bp+6]

byte public 'CODE'

es_ TEXT

_SetFontPages

near

bp ; preserve caller registers

bp, sp

ax,1103h ; AH := INT 10H function number

7 AL z= 3 (Set Block Specifier)

b1,ARGn1 ; BL s= value for bits 2=3

bly i

bial PE mote see — Ss as — ral

bl, ARGn0O 9 Jails Voricey Oi) gas si)

10h 7 load font pages

bp

Listing 10-5. Loading font pages on an MCGA.

Thus, displaying a new alphanumeric character set on the MCGA is a two-step

process. First, you store character definition tables in one or more of the four 8 KB
blocks of video RAM reserved for this purpose. Then you update the character

generator’s font pages to display the characters.

Using RAM-based Character Sets

When you use characters defined in a RAM-based table, you must choose how the

alphanumeric character generator is to decode the character codes and attributes
stored in the displayed portion of the video buffer. Using the usual 256-character

Chapter 10: Alphanumeric Character Sets 315

ASCII set, with 8-bit character codes and 8-bit attributes, is simplest. However, to

display more than 256 different characters at once or to switch rapidly between

character sets, you must use a wider range of ‘‘extended’’ character codes and a

different set of attributes.

ASCII Character Sets

The simplest way to customize alphanumeric characters is to use 8-bit ASCII char-

acter codes and attributes with a RAM-based character definition table. Because

there are only 256 ASCII character codes, you can display only one 256-character

set at a time. However, the character codes and attribute bytes stored in the dis-

played portion of the video buffer retain their usual format, so software that

knows nothing about the RAM-based character definitions can run unchanged

while displaying the RAM-based character set.

EGA, VGA, and MCGA
Whenever you select an alphanumeric video mode using the video BIOS, the al-

phanumeric character generator is configured to display the characters defined in

the first table in character generator RAM. Thus, to display a different set of

ASCII characters, all you need do is update the table. As described above, INT

10H function 11H provides a convenient mechanism for doing this. This same

BIOS function also lets you display the 256 characters defined in any of the other

character definition tables as described later in this chapter.

HGC+ and InColor Card

When you power up an HGC+ or an InColor Card, the alphanumeric character

generator uses the ROM-based character definition table by default. To display a

different ASCII character set, configure the alphanumeric character generator to

use the RAM-based table (see Listing 10-6) and then load a character definition

table into video RAM at B000:4000.

To do this, set bit 0 of the adapter’s xMode register (14H) to 1. This causes the
adapter to display the characters defined in the table in RAM at B000:4000. Also,
set bit 0 of the Configuration Switch register (3BFH) to 1 to make character
generator RAM addressable at B000:4000. (This configuration is called ‘‘4K Ram-
Font mode”’ in Hercules documentation.) After you update character generator
RAM, you can protect it from subsequent modification by resetting bit 0 of the
Configuration Switch register.

mov dx, 3B4h

mov ax,0114h ; AH bit 0 := 1 (enable RAM character

. generator)

; AL := 14h (xMode register number)
out dx,ax

(continued)

Listing 10-6. Configuring an HGC+ or InColor Card for updating character
generator RAM.

316 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-6. Continued.

mov dl, OBFh + DX := 3BFh (Config Switch register)

mov ale 7 AL bit 0 := 1 (make RAM at BO00:4000

; addressable)

out dx,al

(update character generator RAM)

mov dx, 3BFh ; DX := 3BFh (Config Switch register)

mov ow 0) ; AL bit 0 := 0 (exclude RAM at

; BO00:4000 from memory map)

out dx,al

Updating character generator RAM is more complicated on the InColor Card

because all four bit planes are used for character definitions. The complexity lies

in the way colors are displayed for characters defined in the bit planes. A charac-

ter’s color is determined not only by its foreground and background attributes, but

also by the bit planes used to define its pixel pattern.

The InColor Card combines the pixel values in a character definition (in character

generator RAM) with the character’s foreground and background attributes (in the

displayed portion of the video buffer) to produce a 4-bit attribute for every pixel

in the character. The logic used is:

(pixel value AND foreground attribute) OR

(NOT pixel value AND background attribute)

In the example in Figure 10-11, one of the pixels in a character has a value of 2

(0010B) in the character definition table. The character’s attribute byte in the

video buffer specifies a foreground value of 0 and a background value of 7

(0111B). The InColor Card thus displays this pixel with an attribute of (2 AND 0)

OR (NOT 2 AND 7), or 5.

AND
0101

Background attribute 6-bit

OR 0101 —> Palette —» digital

5 Character definition pixel
Foreground attribute P

0000
AND

Figure 10-11. InColor foreground color attribute decoding using RAM-based character

definitions (8-bit character codes). The pixel value in the character definition and both at-

tributes in the character’ s attribute byte all contribute to foreground attribute decoding.

Using colors on the InColor Card is simpler if you load all four bit planes with

identical bit patterns so that all pixels in the character definitions have the value

Chapter 10: Alphanumeric Character Sets 317

OFH (1111B). Then a character’s foreground and background attributes depend

solely on the values in its attribute byte. Alternatively, you can specify a fore-

ground attribute of OFH (1111B) and a background attribute of 0 for every charac-

ter in the video buffer. In this case, the displayed colors depend solely on the pixel

values in the character definitions.

A more practical use of the InColor Card’s character definition RAM is to load

each bit plane with a different character definition table. Then each bit in a char-

acter’s foreground attribute acts as a mask to select a different character set. Of

course, a 4-bit foreground attribute is still generated, as in Figure 10-11, so in

effect each character set is associated with the color that corresponds to its bit

plane. You can, of course, display the character sets in any colors you want by

programming the palette registers.

To load the bit planes separately, use the high-order nibble in the Plane Mask

register (18H) to write-protect the bit planes each time you load a different charac-

ter set. This permits you to use different foreground attributes to display the dif-

ferent character sets. For example, if all four bit planes contain different character

sets, you can select each of the four character sets by using the foreground attri-

butes 1, 2, 4, and 8.

Extended Character Sets

All of the video subsystems discussed in this chapter have enough character

generator RAM to store definitions for more than 256 characters, so they all pro-

vide a way for the character generator to recognize extended character codes

larger than the usual eight bits.

EGA and VGA
On the EGA and the VGA, the usual range of 256 ASCII codes is doubled by using

bit 3 of a character’s attribute byte to designate one of the character definition

tables in map 2 (see Figure 10-12). In this way, 512 different characters can be dis-

played in an alphanumeric mode.

Normally, the value of bit 3 of a character’s attribute byte does not affect the
character set displayed. This is why: The value of this bit selects one of two bit

fields in the Sequencer Character Map Select register. In turn, the value in each of

these two bit fields designates one of the available character definition tables in

RAM. When the video BIOS establishes a video mode, it loads a default set of

character definitions into the first character definition table in map 2 and clears

both bit fields in the Character Map Select register. Thus, default alphanumeric

characters are defined by the bit patterns in the first table in map 2, regardless of

the value of bit 3 of the attribute bytes of the characters displayed.

Changing the value in the Character Map Select register, however, changes the

character definition tables associated with bit 3 of each character’s attribute byte.

If two different values appear in the bit fields in the Character Map Select regis-

ter, the value of bit 3 designates one of two different character definition tables.

318 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

ine CO Pro RaAGNS 22 WACO Se LaeGr Sr 435 2% lind

High-order byte Low-order byte

LLL Lititizs 8-bit character code

4-bit foreground attribute

Z 4-bit background attribute

OMDB Sy 2a Os aL On eA ap 920) 1,0

High-order byte Low-order byte

II
|| Le He 9-bit extended character code

-- 4-bit foreground attribute

nO are sel AON On, aoe ead 1) 10

4-bit background attribute

High-order byte Low-order byte

|| LEE 12-bit extended character code

4-bit attribute

Cc.

Figure 10-12. Character codes and attributes. Figure 10-12a shows the usual 8-bit format.
Figure 10-12b shows the extended 9-bit format used on the EGA, VGA, and MCGA. Figure
10-12c shows the extended 12-bit format used on the HGC+ and InColor Card.

For example, in Figure 10-13, bit 3 is set to 1, so bits 2, 3, and 5 of the Character

Map Select register designate which character definition table to use. (This exam-

ple pertains to the VGA; on the EGA, only bits 2 and 3 of the Character Map Select

value would be meaningful.)

Offset
3-bit value in map 2

Attribute byte oe E000H
— = — al 011 CO00H

uae A000H

ae 8000H

tO 6000H

oe 4000H

Ah 2000H
000 A

Figure 10-13. Function of the VGA Character Map Select register.

Chapter 10: Alphanumeric Character Sets 319

Listing 10-7 illustrates two methods of updating this register. Although the tech-

nique of using an INT 10H function call generally requires less code and is more

portable, you might prefer to program the Sequencer directly in applications that

require rapid switching between character sets.

; using the video BIOS

mov ax,1103h ; AH := INT 10H function number

7 Ae 2 3

mov bl,CharMapValue ; BL := value for Character Map Select register

abit 10h

; programming the register directly

mov dx, 3C4h ; DX := Sequencer I/O port

mov ax,100h ; AH bit 1 := 0 (synchronous reset)

; AL := 0 (Sequencer Reset register number)

elle ; disable interrupts

out dx, ax ; reset Sequencer

mov ah,CharMapValue ; AH := value for Character Map Select register

mov al,3 ; AL := 3 (Char Map Select register number)

out acyiax ; update this register

mov ax, 300h ; AH bit 1 := 1 (clear synchronous reset)

; AL := 0 (Reset register number)

out dx, ax ; clear the reset

SiteL ; enable interrupts

Listing 10-7. Programming the Sequencer Character Map Select register on the EGA

and VGA.

If both bit fields in the Character Map Select register contain the same value, the

value of bit 3 of a character’s attribute byte does not affect which character set is
used. If the bit fields designate different character definition tables, then the value

of bit 3 of each character’s attribute byte selects between two different character

sets. Keep in mind, however, that bit 3 is also part of each character’s 4-bit fore-

ground attribute. When bit 3 of a character’s foreground attribute is set to 0, the

character’s displayed color is taken from one of the first eight palette registers

(0000B through 0111B). When bit 3 is set to 1, the color derives from one of the

second eight palette registers (1000B through 1111B).

Thus, the two 256-character sets selected by bit 3 are displayed with two different

sets of eight palette register values. This is handy if you want to associate a par-

ticular set of colors with a character set. Otherwise, you might prefer to load the

second eight palette registers with the same set of values as the first eight so that
the value of bit 3 of a character’s attribute byte has no effect on its displayed

color. Another technique is to mask bit 3 of the foreground attribute by zeroing bit

3 of the Attribute Controller’s Color Plane Enable register, as in Listing 10-8.

Because the value in the Color Plane Enable register masks the 4-bit attribute

value, zeroing bit 3 in this register allows only the first eight palette registers to

be referenced, regardless of the value of bit 3 in a character’s attribute byte.

320 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

mov ax,1000h AH 10H (INT 10H function number)

; AL := 0 (set specified register)

mov bx,0712h + BH := 0111b (Color Plane Enable value)

* BL := 12H (Color Plane Enable reg number)

int 10h ; update Color Plane Enable register

Listing 10-8. Zeroing bit 3 of the Color Plane Enable register. This causes bit 3 of a charac-
ter’s attribute byte to have no effect on its displayed attribute.

MCGA

The MCGA supports 8-bit and 9-bit character codes with the same BIOS interface

as the EGA and VGA, although the hardware implementation is different. On the

MCGA, the two character definition tables selected by bit 3 of a character’s at-

tribute byte are the ones in the MCGA’s two internal font pages. Although you can

load the font pages by programming the MCGA’s Character Generator Interface

register (12H), Character Font Pointer register (13H), and Number of Characters to

Load register (14H), it is easier to use INT 10H function 11H with AL = 3.

As on the EGA and VGA, bit 3 of a character’s attribute byte does double duty as

part of the 9-bit character code as well as the high-order bit of the character’s

foreground attribute. If you want to use the same colors for both 256-character

sets, you can call INT 10H function 10H to store the same set of color values in the

second eight video DAC color registers as you do in the first eight. You can also

call INT 10H function 10H to mask bit 3 out of alphanumeric attribute decoding

(see Listing 10-8).

HGC+¢ and InColor Card
On the HGC+ and the InColor Cards, you can configure the character generator to

regard the four low-order bits of each character’s attribute byte as part of the

character code. Do this by setting both bit 2 and bit 1 of the xMode register to 1.

(Hercules calls this configuration ‘‘48K RamFont mode.’’)

By using 12-bit character codes, you can display all characters defined anywhere

in the Hercules adapter’s 48 KB of character generator RAM. In practice, you can

regard all 48 KB of character generator RAM as one continuous character defini-

tion table. However, in some applications, you might find it more convenient to

think of character generator RAM as a set of twelve 256-character tables, where

the four high-order bits of the character code designate one of the tables, and the

eight low-order bits designate a character definition within a table.

When 12 bits are used as an extended character code, only bits 4 through 7 of the

high-order byte specify a character’s attribute (see Figure 10-12c). The attributes

that Hercules assigned to these bits differ somewhat from the usual monochrome

display attributes (see Figure 10-14).

Chapter 10: Alphanumeric Character Sets 321

Enable Blink Bit = 1 Enable Blink Bit = 0

Attribute Bit (blink enabled) (blink disabled)

vi High-intensity Boldface

6 Blink Reverse

5 Overstrike No overstrike

4 Underline No underline

Figure 10-14. Extended attribute set on the HGC+ and the InColor Card.

When using 12-bit character codes on the HGC+ and the InColor Card,

you can specify the scan line on which the overstrike and underscore

" attributes appear. Bits 0 through 3 of the Underscore register (15H)

control the position of the underscore. Bits 0 through 3 of the Over-

strike register (16H) control the position of the overstrike. On the

InColor Card, you can also control the displayed color of the under-

score and overstrike by storing a value between 1 and OFH in bits 4

through 7 of the corresponding control register.

As on the HGC+, the 12-bit character codes on the InColor Card designate loca-

tions in the character definition tables. Attribute decoding is more complicated on

the InColor Card, however (see Figure 10-15). The 4-bit foreground attribute gen-

erated for each pixel in a character is derived by combining the character’s 4-bit

attribute with the pixel’s value in the character definition table.

MDA-compatible Attributes (Exception register bit 5 = 1)
Enable Blink On Enable Blink Off

Foreground (pixel value) OR (background) (pixel value) XOR (background)
Background 0 if bit 7 of attribute = 0 0 if bit 6 of attribute = 0

8 if bit 7 of attribute = 1 OFH if bit 6 of attribute = 1

Color Attributes (Exception register bit 5 = 0)

Foreground (pixel value) AND (NOT attribute)
Background 0

Figure 10-15. /nColor Card color attribute decoding using 12-bit character codes.

As was the case when using 8-bit character codes, the peculiar interaction of char-
acter attributes with the pixel values in the character definition table makes con-

trolling colors difficult. To simplify matters, you can store the same character

definitions in all four bit planes when using color attribute decoding; this allows
each character’s 4-bit attribute to specify all 16 colors. When using MDA-

compatible attributes, you can store the same bit patterns in bit planes 0 through 2

and zero bit plane 3. Again, this allows each character’s 4-bit attribute to com-

pletely control the displayed attributes.

322 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

If you elect to store different character definition tables in each bit plane, each of
a character’s attribute bits can select one of the bit planes. Again, you should pro-
gram the palette registers carefully so that characters from different bit planes are
displayed with appropriate colors.

Compatibility Problems with Extended Character Codes

Most PC and PS/2 programs, including the BIOS, MS-DOS, and most commercially
available applications, expect you to use 8-bit ASCII character codes. This means

you can update character generator RAM with an 8-bit ASCII character set in a

different font, but you cannot take advantage of the extended 9-bit or 12-bit char-
acter codes supported by IBM and Hercules.

If you use the INT 10H interface to display characters with extended character

codes, you must be careful when you use certain ROM BIOS functions. For exam-

ple, INT 10H function 0AH, which stores an 8-bit character code in the video

buffer, is not very useful for writing characters with a 9-bit or a 12-bit extended

character code. On the other hand, you can use INT 10H function 9, which handles

a 16-bit character code and attribute combination, to process extended character

codes and attributes.

When you run an application that uses extended character codes, you can encoun-

ter problems when your application interacts inadvertently with software that

doesn’t recognize the different character-attribute format. Consider what might

happen if a RAM-resident utility program popped up in the middle of your appli-

cation without being “‘aware’’ that you were using extended character codes.

When the utility program placed 8-bit character codes and attributes in the buffer,

the alphanumeric character generator would interpret them as extended character

codes and attributes. The results would probably be unusable.

Changing the Displayed Character Matrix

There is another dimension to customizing a RAM-based character definition

table: You can control the height of the character matrix in which characters are

displayed. The height of the displayed character matrix determines how many

rows of characters appear on the screen. For example, a 350-line display accom-

modates 43 rows of 8-by-8 characters but only 25 rows of 8-by-14 characters.

With all of the subsystems discussed in this chapter, you can vary the displayed

height of alphanumeric characters by programming the CRT Controller to display

characters the same size as the characters defined in character generator RAM.

Thus, to display 8-by-8 characters on a 350-line display, you place 8-by-8 charac-

ter definitions into character generator RAM and then program the CRTC to dis-

play characters that are 8 pixels high.

On the EGA and the VGA, you can perform both these tasks by calling INT 10H

function 11H, although in some situations you may prefer to update the character

definitions or program the CRTC explicitly. Hercules adapters, of course, have no

ROM BIOS, so you must do the work yourself.

Chapter 10: Alphanumeric Character Sets 323

EGA

Consider how you would display 43 rows of 8-by-8 characters in an EGA alphanu-

meric mode with 350-line vertical resolution, as in Listing 10-9. In this example,

the call to INT 10H function 11H with AL = 12H copies the ROM’s 8-by-8 character

set (normally used in 200-line video modes) into the first of the four tables in map

2 and then calculates the proper CRTC register values based on the values of

POINTS and ROWS in the BIOS Video Display Data Area.

establish 80x25 alphanumeric mode (350-line vertical resolution)

mov ax,3 ; AH := 0 (INT 10H function number)

int 10h * ALvs= 3 °(80x25 16-color mode)

; load video BIOS 8x8 characters into alphanumeric character generator

mov axel bly ; AH := INT 10H function number

; AL := 8x8 character set load

mov b1,0 > BL s= block te oad

opts 10h ; load 8x8 characters into RAM

; set cursor position in character matrix

mov ax, 40h

mov es,ax ; ES -> video BIOS data area

mov dx,es: [63h] ; DX := CRTC address port from 0040:0063

: (3B4H or 3D4H)

mov ax, 060Ah ; AH := 6 (Cursor Start value)

; AL := OAH (Cursor Start reg number)

out dx, ax ; update CRTC Cursor Start register

mov ax, OOOBh ; AH := 0 (Cursor End value)

; AL := OBH (Cursor End reg number)

out dx, ax ; update CRTC Cursor End register

; use alternate video BIOS print screen routine

mov ah,12h ; AH := INT 10H function number

mov bi, 20h ; BL := subfunction number

int 10h ; update INT 5 vector (print screen)

Listing 10-9. Establishing an 80-by-43 alphanumeric mode on an EGA.

INT 10H function 11H calls INT 10H function 1 to set the position of the alphanu-
meric cursor in the displayed character matrix. As described in Chapter 3, the

EGA BIOS version of INT 10H function 1 computes this cursor position incor-
rectly, leading to an improperly displayed cursor. Therefore, the routine in List-

ing 10-9 updates the CRTC Cursor Start and Cursor End registers directly.

T If your program changes the number of displayed character rows, it

, should also call INT 10H function 12H to select the EGA BIOS’s alter-

" nate print screen routine. This routine functions identically to the one

in the motherboard BIOS except that it uses the Video Display Data

Area value ROWS to determine how many lines to print. (The mother-

board BIOS routine disregards ROWS and always prints 25 lines.)

324 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

VGA

You can also use INT 10H function 11H on the VGA to establish an alphanumeric
mode with a nondefault character matrix (see Listing 10-10). On the VGA, you set
the vertical resolution of the video mode using INT 10H function 12H (with BL =
30H) before calling function 11H. Also, the cursor emulation computations are
performed properly in the VGA BIOS, so no extra code is required to avoid cursor
emulation on the VGA.

* establish 80x25 alphanumeric mode with 400-line vertical resolution

mov ax,1202h ; AH := 12h (INT 10H function number)

7; AL := 2 (select 400 scan lines)

mov bl, 30h ; subfunction number

int 10h

mov axes ; AH := 0 (INT 10H function number)

lI int 10h ; Aly J= "3: (80x25 16-collor mode)

; load video BIOS 8x8 characters into alphanumeric character generator

mov ax,1112h ; AH := INT 10H function number

; AL := 8x8 character set load

mov DL, 0 7 BL := block to load

int 10h ; load 8x8 characters into RAM

Listing 10-10. Establishing an 80-by-50 alphanumeric mode on a VGA.

MCGA

The MCGA can only display characters with 2, 4, 6, 8, 10, 12, 14, or 16 scan lines.

(This is a limitation of the MCGA’s Memory Controller.) To change the displayed

character matrix, use INT 10H function 11H to load a new character set into the

character generator. Then program the Scan Lines per Character register (09H)

with a value from 0 through 7; if the value is n, the number of scan lines displayed

in the character matrix is (n + 1) x 2. Listing 10-11 shows how to set up an 8-by-10

character matrix using the MCGA’s 400-line vertical resolution to produce 40 rows

of 80 characters.

; establish 80x25 alphanumeric mode

ll mov ax, 3 ; AH := 0 (INT 10H function number)

; AL := 3 (80x25 16-color mode)

int 10h

; zero the bit patterns in character generator RAM

mov di, 0A000h

mov es,di

xor di,di ; ES?DI -> character generator RAM

xor ax,ax ; AH := 0 (bit pattern)

AL c= © Ninteial Character code)

mov cx, 256*16 ; CX := number of words

Listing 10-11. Establishing an 80-by-40 alphanumeric mode on an MCGA. (continued)

Chapter 10: Alphanumeric Character Sets 325

Listing 10-11. Continued.

L01: stosw ; store character code and zero

Aline! al > AL := next character code

loop L01

load video BIOS 8x8 characters into alphanumeric character generator
,

mov ax,1102h ; AH := INT 10H function number

; AL := 8x8 character set load

mov bil, 0 > BL s= block to Load

int 10h ; load 8x8 characters into RAM

mov ax,1103h ; AH := INT 10H function number

; AL := character generator load

mov b1,0 3 BL := blocks to load

sorte 10h ; load characters into character generator

; program CRT Controller to display 8x10 characters

mov dx, 3D4h ; DX := MCGA I/O port address

mov ax, 409h ; AL := 9 (register number)

; AH := 4 (value for register)

out dx, ax ; update Scan Lines register

mov al,OAh ; AL := OAH (register number)

out dx, ax ; update Cursor Start register

mov al,OBh ; AL := OBH (register number)

out ax, ax ; update Cursor End register

; update status variables in video BIOS data segment

mov ax, 40h

mov ds,ax 7 DS -> video BIOS data segment

mov word ptr ds: [4Ch],80*40*2 ; update CRT_LEN in BIOS data area

mov byte ptr ds:[84h],40-1 ; update ROWS

mov word ptr ds:[85h],10 ; update POINTS

For some values in the Scan Lines per Character register, the MCGA incorrectly

displays the bottommost scan line of the screen. Specifically, when the value in

the Scan Lines per Character register is 1, 3, 5, or 6, the MCGA replicates part of

the topmost scan line on the screen at the bottom of the screen. Thus, you should

generally avoid using these values for the Scan Lines per Character register.

HGC+z+ and InColor Card

You must program the HGC+ CRTC explicitly to change the number of displayed

lines in alphanumeric characters. The subroutine Set HercCRTC in Listing 10-14

illustrates a table-driven technique for setting up the CRTC’s vertical timing

parameters for a variety of character sizes. Figure 10-16 summarizes the CRTC

timing parameters recommended by Hercules for any character matrix between 4

and 16 scan lines high as well as for characters that are either 8 or 9 pixels wide.

326 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Width of Character Matrix

CRTC register 8 Pixels 9 Pixels

00H 6DH 61H
01H 5AH 50H
02H 5CH 52H
03H OFH OFH

CRTC Height of Character Matrix (in pixels)
register 4 5 6 7 8 9 10m 31s, gh2eed3: 1149.15.40 16

04H SCH 4Ah 3DH 34H 2DH 28H 24H 20H 1DH 1BH 19H 17H 16H
OSH 02H OOH 04H 06H 02H OI1H OOH 07H OAH 06H 06H OAH 02H
06H 58H 46H 3AH 32H 2BH 26H 23H 1FH 1DH 1AH 19H 17H 15H
07H 59H 46H 3BH 33H 2CH 27H 23H 20H 1DH 1BH 19H 17H 16H

Figure 10-16. CRTC timing parameters for height and width of the alphanumeric character
matrix (HGC+ and InColor Cara).

On the InColor Card, the techniques for changing the displayed character matrix

parallel those used on the HGC+. The values you place in the CRTC registers for

each possible character matrix are also the same.

Programming Examples

The routines on the following pages unify the programming techniques for

changing the displayed character matrix on the EGA (see Listing 10-12), on the

VGA (see Listing 10-13), and on the HGC+ and InColor Card (see Listing 10-14).

In each case, the function AlphaModeSet () programs the alphanumeric char-

acter generator and the CRTC to accommodate the dimensions of the specified

character matrix and character code size.

TITLE “isting, VO—1t2"

NAME AlphaModeSet

PAGE Dig oe

Name: AlphaModeSet

Program the CRTC in 80-column EGA alphanumeric modes

Caller: Microsoft C:

Me Ne Ne Ne Ne Ne Ne Ne
void AlphaModeSet (w,h,c);

: int WwW; /* width of character matrix */

; int Ey /* height of character matrix */

2 int ey /* character code size */

Listing 10-12. Programming the EGA alphanumeric character size. (continued)

Chapter 10: Alphanumeric Character Sets 327

Listing 10-12. Continued.

byte ptr [bpt4] 7; must
byte ptr [bp+6] ; must

byte ptr [bp+8] 7 must

49h ; addresses in

4Ah

63h

_DATA

byte public 'CODE'

cs:_TEXT,ds:DGROUP

_AlphaModeSet

be 8 or 9 pixels wide

be 2-32 pixels high

be. 8 ox 9 bats

video BIOS data area

ARGw EQU

ARGh EQU

ARGc EQU

CRT_MODE EQU
CRT_COLS EQU

ADDR_6845 EQU

DGROUP GROUP

_TEXT SEGMENT

ASSUME

PUBLIC

_AlphaModeSet PROC

push

mov

push

; Program the CRTC

mov

mov

mMOv

mov

call

; Program the Sequencer

OTs

mov

mov

Gilet:

out

mov

cmp

je

mov

mov

mov

out

mov

out

Sta

mov

mov

aN

near

bp
bp, sp

si

bx, 40h

es,bx

bl, ARGw

bh, ARGh

SetCRTC

preserve caller registers

ES video BIOS data segment

character width

character height

BL

BH

and Attribute Controller for 8 or 9 dots per character

dx, 3C4h

ax,0100h

ARGw, 8

L01

bx, 0800h

ah,bl

alaul

dx, ax

ax,0300h

adxyax

ipo:

ax, 1000h

10h

AH bit 1 := 0 (synchronous reset)

AL := 0 (Reset register number)

disable interrupts

Sequencer synchronous reset

BH,BL := values for 8-wide chars:

BH := 0 (value for Horiz Pel Pan)

BL := 1 (value for Clocking Mode)

jump if 8-wide characters

BH,BL := values for 9-wide characters

AH := value for Clocking Mode reg

AL := Clocking Mode reg number

program the Sequencer

AH := 3 (disable reset)

AL := 0 (Sequencer register number)

disable Sequencer reset

enable interrupts

BL := Horizontal Pel Pan reg number

AH := 10H (INT 10H function number)

; AL := 0 (set specified register)

program Attribute Controller

(continued)

328 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-12. Continued.

Program the Attribute Controller for 8- or 9-b , it character codes

mov ax,1000h + AH := 10H (INT 10H function number)

; AL := 0 (set specified register)
mov bx, OF12h + BH := OFH (Color Plane Enable value)

; BL := 12H (Color Plane Enable reg #)
cmp ARGc, 8

je L02 ; jump if 8-bit character codes

mov bh, 7 7p Bebe 3 =O) “ignore bik Sitot call

; attributes)
L02: int 10h 7 update Color Plane Enable register

is data area update video BIOS

cmp byte ptr es: [CRT _MODE],7

jne L03 ; jump if not monochrome mode

mov ax, 720 ; AX := displayed pixels per row

div ARGw ; AL := displayed character columns

mov es: [CRT _COLS],al

LO3: pop si

pop bp
ret

_AlphaModeSet ENDP

SetCRTC PROC near 7; Callers BH = character height

, BL = character width

push dx

mov dx,es:[ADDR_ 6845] ; CRTC I/O port

establish CRTC vertical timing and cursor posi ,

push bx ; preser

mov ax,1110h ; AH :=

pA e210)

xor CX, CX 2Cxk =

Laie 10h 7 cali s

; heigh

pop ax ; AH 3=

push ax ; preser

sub ale * AH “=

mov al, OAh ; AL :=

out dx, ax 7 update

mov ax, 000Bh ; AH :=

, AL?

out dx, ax ; update

; establish CRTC horizontal timing

pop bx ; BX :=

cmp byte ptr es: [CRT_MODE],7

tion in character matrix

ve height and width

11H (INT 10H function number)

(user alpha load)

(store no characters)

IOS to program CRTC for

t of characters

0

character height

ve height and width

starting scan line for cursor

OAH (Cursor Start reg number)

CRIC Cursor Start register

0 (Cursor End value)

= OBH (Cursor End reg number)

CRTC Cursor End register

character height and width

(continued)

Chapter 10: Alphanumeric Character Sets 329

Listing 10-12. Continued.

jne L10 exit if not monochrome mode

xor bh, bh BX := character width

sub b1,8 BX z= Oone4

neg bx BX s= 0 or OFFFER

and bx, 14 BX := 0 or 14 (offset into table)

mov si,bx SI := offset into table

add si,offset DGROUP:HorizParms ; DS:SI -> parameters

call UpdateCRTC

I OB pop dx

ret

SetCRTC ENDP

UpdateCRTC PROC near Caller: DX = CRTC address port

DSsSE —> parameters

Destroys: AX, CX

mov Cx CX := number of registers to update

L20: lodsw AH := data for CRTC register in AL

out dx,ax update the register

loop L20

ret

UpdateCRTC ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

HorizParms DW 6C00h, 5901h, 6002h, 2403h,5B04h,6A05h,2D13h ; 8-wide

DW 6000h, 4F01h, 5602h, 3A03h,5104h,6005h,2813h ; 9-wide

_DATA ENDS
END

TREHE "Listing 10-13!
NAME AlphaModeSet

PAGE So ntS2

; Name: AlphaModeSet

; Program the CRTC in 80-column VGA alphanumeric modes

, Caller: Microsoft C:

Listing 10-13. Programming the VGA alphanumeric character size. (continued)

330 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-13. Continued.

ARGw

ARGh

ARGc

CRT_COLS
ADDR_6845

DGROUP

_TEXT

_AlphaModeSet

EQU

EQU
EQU

EQU

EQU

GROUP

SEGMENT

ASSUME

PUBLIC

PROC

push

mov

push

; Program the CRTC

mov

mov

mov

mov

call

; Program the Sequencer

ONG

mov

mov

ela

out

mov

cmp

je

mov

mov

mov

out

void AlphaModeSet (w,h,c) ;

int Ww; /* width of character matrix */
int he. /* height of character matrix */
int ey /* character code size */

byte ptr [bp+4] * must be 8 or 9 pixels wide
byte ptr [bpt+6] 7 must be 2-32 pixels high
byte ptr [bp+8] 7 must be 8 or 9 bits

4Ah ; addresses in video BIOS data area
63h

_DATA

byte public 'CODE'

cs: _TEXT,ds:DGROUP

_AlphaModeSet

near

bp ; preserve caller registers

bp, sp
si

bx, 40h

es, bx ; ES := video BIOS data segment

character width

character height

ll bl, ARGw 7; BL

bh, ARGh 7; BH

SetCRTC

and Attribute Controller for 8 or 9 dots per character

dx, 3C4h

ax,0100h ; AH bit 1 := 0 (synchronous reset)

; AL := 0 (Reset register number)

; disable interrupts

dx,ax ; Sequencer synchronous reset

i, 4 ; BH,BL := values for 8-wide chars:

; BH := 0 (value for Horiz Pel Pan)

* BL := 1 (value for Clocking Mode)

ARGw, 8

L01 + jump if 8-wide characters

bx,0800h ; BH,BL := values for 9-wide characters

ah,bl ; AH := value for Clocking Mode reg

al,1 ; AL := Clocking Mode reg number

dx, ax ; program the Sequencer

(continued)

Chapter 10: Alphanumeric Character Sets 331

Listing 10-13. Continued.

mov

out

sti

mov

mov

int

; Program the Attribute

mov

mov

cmp

je

mov

L02: int

7 update video BIOS

mov

div

mov

pop

pop

ret

_AlphaModeSet ENDP

SetCRTC PROC

push

mov

ax, 0300h ;

dx,ax ;

bly shy ;

ax,1000h ;

10h ;

Controller, for 38=

ax, 1000h P

bx, 0F12h .

ARGc, 8

LO2 ;

bh, 7 ;

10h ;

data area

ax, 720 ;

ARGw 7

es: [CRT_COLS],al

si

bp

near ;

dx

dx,es: [ADDR _ 6845]

AH := 3 (disable reset)

AL := 0 (Sequencer register number)

disable Sequencer reset

enable interrupts

BL := Horizontal Pel Pan reg number

AH := 10H (INT 10H function number)

AL := 0 (set specified register)

program Attribute Controller

or 9-bit character codes

AH := 10H (INT 10H function number)

AL := 0 (set specified register)

BH OFH (Color Plane Enable value)

BL 12H (Color Plane Enable reg #)

jump if 8-bit character codes

BH bit 3 := 0

attributes)

update Color Plane Enable register

(ignore bit 3 of all

AX := displayed pixels per row

AL := displayed character columns

Caller: BH = character height

BL = character width

7 CRTC L/O.port

7 establish CRTC vertical timing and cursor position in character matrix

push

mov

xor

int

pop

; enable I/O writes

mov

out

inc

in

dec

bx ;

ax,1110h 6

Cx, Cx ;
10h ;

bx

to CRTC registers

aly tinh ;

dx,al

dx

al,dx 7

dx

preserve char height and width
AH := 11H (INT 10H function number)

AL := 0 (user alpha load)

CX := 0 (store no characters)

call BIOS to program CRTC

AL Vertical Retrace End reg number

AL current value of this register

(continued)

332 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-13. Continued.

mov ah,al

mov al,1jih

push ax

and ab, oir itt

out dx,ax

; establish CRTC horizontal timing

xor bh, bh

sub b1,8

neg bx

and bx, 14

mov Say,

add

call UpdateCRTC

write-protect CRTC registers

si,offset DGROUP:HorizParms r

7 AH := current value

; AL register number

Save on stack

? Zero! bute 7

; update this register

+ BX := character width

7, BX := 0 or 1

+ BX := 0 or OFFFFH

7 BX s= 0 or 14 (offset into table)

+ SI := offset into table

DS:SI -> parameters

pop ax ; AX := previous VR End register data
out dx, ax ; restore this register

pop dx

Fret

SetCRTC ENDP

UpdateCRTC PROC near , Caller: DX = CRTC address port

; DS:SI -> parameters

7 Destroys: AX, CX

mov cx,7 7 CX := number of registers to update

L10: lodsw ; AH := data for CRTC register in AL

out dx,ax ; update the register

loop L10

ret

UpdateCRTC ENDP

SED ENDS

_DATA SEGMENT word public 'DATA'

HorizParms DW 6A00h, 5901h, 5A02h, 8D03h, 6304h,8805h,2D13h ; 8-wide

DW 5F00h, 4F01h, 5002h, 8203h, 5504h, 8105h,2813h ; 9-wide

_DATA ENDS

END

Chapter 10; Alphanumeric Character Sets 333

; Name:

; Function:

5; Caller:

ARGw

ARGh

ARGc

CRT_COLS
CRT_LEN
CRT_MODE_SET
ROWS

DGROUP

_TEXT

_AlphaModeSet

; Set Configuration Switch to bring RAM

TITLE 'histing 10=14"

NAME AlphaModeSet

PAGE DS leo

AlphaModeSet

Program the CRTC in alphanumeric modes on HGC+ or InColor Card

Microsoft C:

EQU

EQU

EQU

EQU

EQU

EQU
EQU

GROUP

SEGMENT

ASSUME

PUBLIC

PROC

push

mov

push

push

mov

mov

out

void AlphaModeSet (w,h,c) ;

int Ww;

int h;

int C;

byte ptr [bp+4]

byte ptr [bpt6]

byte ptr [bp+8]

4Ah

4Ch

65h

84h

_DATA

byte public

_AlphaModeSet
near

bp
bp, sp
ds

si

dx, 3BFh

al,1

ax,ax

/* width of character matrix */

/* height of character matrix */

/* character code size */

"CODE"

cs: _TEXT,ds:DGROUP

,

; must be 8 or 9 pixels wide

; must be 4-16 pixels high

; must be 8 or 12 bits

preserve caller registers

starting at B000:4000 into memory map

,

,

DX := Configuration Switch port

AL bit 1 := 0 (exclude 2nd 32K of

video buffer)

AL bit 0 := 1 (make RAM at BO000:4000

addressable)

; Blank the screen to avoid interference during CRTC programming

mov

xor

out

7 Program the CRTC

mov

mov

call

dx, 3B8h

al,al

dx,al

bh, ARGw

b1,ARGh

SetHercCRTC

DX := CRTC Mode Control Register port

AL bit 3 := 0 (disable video signal)

blank the screen

I BH character width

BL := character height

(continued)

Listing 10-14. Programming the alphanumeric character size on the HGC+ and InColor Card.

334 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-14. Continued.

; Set the xModeReg

mov ax, 3B4h

mov ax,114h

cmp ARGw, 9

je L01

or ah,2

LO1: cmp ARGc, 8

je L02

Or ah,4

L02: out dx,ax

; update video BIOS data area

fx CRTC address port

; AH bit 0 := 1 (enable RAM-based

* character generator)

; AL 14h (xModeReg number)

+ jump if 9-wide characters

; AH bit 1 := 1 (8-wide characters)

7 jump if 8-bit character codes

; AH bit 2 := 1 (12-bit character codes)

* update the register

mov ax, 40h

mov ds,ax 7 DS := video BIOS data segment

mov ax, 720 ; AX := displayed pixels per row

div ARGw ; AL := displayed character columns

mov ds: [CRT_COLS],al

mov ax,o50 7; AX := number of displayed scan lines

div ARGh ; AL := displayed character rows

dec al ; AL := (character rows) - 1

mov ds: [ROWS],al

inc al

mul byte ptr ds: [CRT_COLS]
shl ax, 1 ; AX := rows * columns *# 2

mov ds: [CRT_LEN],ax

; re-enable display and exit

mov dx, 3B8h ; DX := CRT Mode Control port

mov al,ds: [CRT_MODE SET] ; restore previous value

out ax, al

pop si

pop ds

pop bp
ret

_AlphaModeSet ENDP

SetHercCRTC PROC near * Callers BH = character width

; BL = character height

push dx

mov dx, 3B4h ; DX := CRTC Address Reg port 3B4h

(continued)

Chapter 10: Alphanumeric Character Sets 335

Listing 10-14. Continued.

establish cursor position in character matrix
,

mov ah,bl

dec ah ; AH := value for Max Scan Line reg

mov aly, 9 ; AL := Max Scan Line register number

out dx,ax

mov al,0OBh ; AL := Cursor End reg number

out dx, ax ; set cursor to end on last line of

, character matrix

sub ax,101h ; AH := second-to-last line

> AL := OAH (Cursor Start reg number)

out ax,ax ; set cursor to start on second-to-

; last line

; compute offsets into parameter tables

sub bx, 0804h > BE s= 90 oF 1

; BL := 0 through 12

add bx, bx

add bx, bx ; BH := 0 or 4

; BL := 0 through 48

; establish CRTC horizontal timing

push bx 7; preserve Bx

mov bl,bh

xOr bh,bh 7 BX := 0 or 4

add bx,offset DGROUP:HorizParms ; DS:BX -> parameters

mov al,0 ; AL := first CRTC reg to update

call UpdateCRTC

; establish vertical timing

pop bx

xor bh, bh 7 BX := 0 through 48

add bx,offset DGROUP:VertParms ; DS:BX -> parameters

mov al,4 ; AL := first CRTC reg to update

call UpdateCRTC

pop dx ; restore DX

eis

SetHercCRTC ENDP

UpdateCRTC PROC near ; Caller: AL = first reg number

; DX = CRTC address port

; DS:BX -> parameters

7 Destroys: AX, CX

mov cx, 4 ; CX := number of registers to update

L10: mov ah, [bx] ; AH := data for CRTC register in AL
out dx, ax + update the register

inc ax ; AL := next register number

(continued)

336 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-14. Continued.

inc bx 7 DS:BX -> next value in table
loop L10

ret

UpdateCRTC ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

HorizParms DB 6Dh, 5Ah, 5Ch, 0Fh ; 8 pixels wide
DB 61h, 50h, 52h, 0Fh ; 9 pixels wide

VertParms DB 5Ch,02h,58h,59h 7 4 scan lines high
DB 4Ah, 00h, 46h, 46h HS
DB 3Dh, 04h, 3Ah, 3Bh * 6
DB 34h, 06h, 32h, 33h ey

DB 2Dh, 02h, 2Bh, 2Ch 7 8

DB 28h,01h,26h,27h 79

DB 24h, 00h, 23h, 23h a to

DB 20h, 07h, 1Fh,20h a 44

DB 1Dh, OAh, 1Dh, 1Dh me

DB 1Bh, 06h, 1Ah,1Bh celts

DB 19h, 06h, 19h,19h rama

DB 17h, OAh,17h,17h le ales)

DB lob, 02h, 15h, 16h main

_DATA ENDS

END

Graphics Windows in Alphanumeric Modes
When you update a RAM-resident character definition table, you alter the ap-

pearance of any characters displayed using those definitions. The contents of the

displayed portion of the video buffer need not be updated. You can exploit this

characteristic of RAM-based character definitions to display pixel-addressable

graphics images in an alphanumeric mode, thereby displaying text with max-

imum speed while including pixel-by-pixel graphics images on the same screen.

The technique is similar on both IBM and Hercules subsystems. Tile an area of

the screen with a sequence of characters whose attribute selects a character defini-

tion table that contains the graphics image (see Figure 10-17). The graphics image

is created and modified by updating the appropriate character definitions in the

table. You can regard the character definition table as a sort of virtual graphics
buffer and access individual pixels within it just as you do in the usual graphics

modes.

On the InColor Card, you can specify the value of each individual pixel you store

in the character definition table as though you were using 720-by-348 16-color

graphics mode. On other subsystems, however, only one memory map is used for

Chapter 10: Alphanumeric Character Sets 337

These characters are from one character set

These characters are from

a special character set.
Each character is one "tile";

taken together, the tiled
characters form a

complete graphics image.

Figure 10-17. A tiled graphics window in an alphanumeric mode.

character definitions, so you do not have pixel-by-pixel attribute control. Instead,

pixels in the character definition table have a value of 0 or 1; the attributes with

which the character codes are stored in the video buffer determine the appearance

of the pixels.

Listing 10-15 illustrates the technique for producing a tiled graphics window in

80-column alphanumeric mode on the EGA and VGA. The first part of the pro-

gram creates the tiled window by storing the second 128 ASCII characters in four

rows of 32 at the start of the video buffer (that is, in the upper left corner of the

screen). Then the program clears the window by setting the second 128 character

definitions to 0.

To update a pixel in the window, the subroutine Set Pixel () computes a byte

offset in the character definition table that corresponds to the pixel’s location in

the tiled window. As in graphics modes, the routine accesses each individual pixel
with a bit mask.

/* Listing 10-15.-*7

#define Points 14 /* displayed scan lines per character */

#define StartCharCode 0x80 /* first character code in "window" */

#define CGenDefSize 32 /* (use 16 for Hercules) */

char far *CRT_MODE = 0x00400049; /* BIOS video mode number */
int far *CRT COLS = 0x0040004A; /* characters per row */

char far *VideoBuffer; /* pointer to video buffer */
char far *CharDefTable = 0xA0000000; /* pointer to char def RAM */

/* (use 0xB0004000 for Hercules) */
main ()

{
int Les

int CharCode;

int CharOffset;

Listing 10-15. Creating a tiled graphics window on the EGA or VGA. (continued)

338 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 10-15. Continued.

int CharScanLine;

ome CharDefOffset;

inte Row, Column;

/* establish alphanumeric mode */

if (*CRT_ MODE == 7) /* set video buffer pointer */
VideoBuffer = 0xB0000000;

else

VideoBuffer = 0xB8000000;

AlphaModeSet(8, Points, 8);

/* establish a tiled graphics window in the upper left corner */

CharCode = StartCharCode;

for (Row = 0; Row < 4; Rowt++)

for (Column = 0; Column < 32; Columnt++)

CharOffset = (Row*(*CRI COLS) + Column) * 2;

VideoBuffer[CharOffset] = CharCode++;

}

/* clear the window */

CGenModeSet (); /* make character generator RAM addressable */

for (CharCode = StartCharCode; CharCode < 256; CharCode++)

for (CharScanLine = 0; CharScanLine < Points; CharScanLine++)

{
CharDefOffset = CharCode * CGenDefSize + CharScanLine;

CharDefTable[CharDefOffset] = 0;

}

/* draw a few lines */

HOt a= Or des 2 or att) /* horizontal lines */

{
SeEPixel (ai, Ole)

SetPixel(i, 4*Points-1);

for (i= 0; i < 4*Points-1; i++) /* vertical lines */

{
SeePixel (0, i)7

SetPixel(255, i)%

fou (i,=] O;01 < Points*4; i++.) /* diagonal lines */

{
Sererxzer(iL, 2)

Setpixel(i 2551, 2.)

CGenModeClear(); /* restore alphanumeric mode */

(continued)

Chapter 10: Alphanumeric Character Sets 339

Listing 10-15. Continued.

SetPaxel (x, vy)

int oir /* pixel coordinates */

{
int CharCode;

sige CharScanLine;

int BitMask;

int CharDefOffset;

CharCode = StartCharCode + (y/Points) *32 + x/8;

CharScanLine = y % Points; /* y MOD Points */

BitMask = 0x80 >> (x % 8); /* 10000000b SHR (x MOD 8) #*/

CharDefOffset = CharCode*CGenDefSize + CharScanLine;

CharDefTable[CharDefOffset] |= BitMask; /* OR the pixel */

}

HGC+ and InColor Card

Clearly, the size of a tiled graphics window is restricted if you use 8-bit character

codes because the 8-bit ASCII character set contains only 256 characters. If you

configure a Hercules adapter for 12-bit character codes, however, you can create

much larger tiled windows without running out of character codes. Also, you can

create larger windows by displaying taller characters (that is, by increasing the

height of the displayed character matrix). Of course, if you use taller characters

you decrease the number of rows of text that you can display at the same time;

this can be a drawback in some applications.

You can use similar programming techniques for alphanumeric graphics on

Hercules adapters and on IBM subsystems. For example, Listing 10-15 can be

modified for use with the HGC+ and InColor Card by changing the values of

CGenDefSize and CharDefTable and removing the calls to the functions

CGenModeSet () and CGenModeClear().

In establishing a graphics window on a Hercules card, avoid using a

character matrix that is 9 pixels wide. Because the ninth (rightmost)
pixel in each character is actually a hardware-generated copy of the

eighth dot, you cannot control it independently by updating the char-

acter definition table.

EGA and VGA

On the EGA and VGA, you can create larger tiled graphics windows if you use
9-bit extended character codes. For instance, you could dedicate one 256-character

definition table to text characters and a second character definition table to
graphics tiling characters. Nevertheless, the EGA and VGA are still limited to dis-
playing no more than 512 different characters at a time, so the largest tiled
graphics window is much smaller than it can be on a Hercules adapter.

340 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

MCGA

When you update pixels in the tiled window, you should minimize
the number of times your program resets the Sequencer (for example,
in the routines CGenModeSet () and CGenModeClear ()). If you
reset the Sequencer each time you update a pixel, you might create

screen interference. (Synchronizing Sequencer resets with the vertical

retrace interval can eliminate this interference but can also greatly
decrease the speed of a program.) If you draw a complicated graphics
figure containing many pixels, draw the entire figure at one time as in
Listing 10-15.

Character definition tables in MCGA character generator RAM are formatted dif-

ferently than those on the EGA and VGA, so a routine that manipulates pixels in

character generator RAM must address the tables differently (see Listing 10-16).

Also, remember that the screen does not reflect changes to the MCGA’s char-

acter definition tables until you load the character generator’s font pages (see

Listing 10-5).

SetPixel(x, y)

int

{

}

=, Vr /* pixel coordinates */

int CharCode;

int CharScanLine;

int BitMask;

int CharDefOffset;

/* the window is 32 characters across */

CharCode = StartCharCode + (y/Points) *32 + x/8;

CharScanLine = y % Points; /* y MOD Points */
BitMask = 0x80 >> (x % 8); /* 10000000b SHR (x MOD 8) */

CharDefOffset = CharCode*2 + CharScanLine*512 + 1;

CharDefTable[CharDefOffset] |= BitMask; /* OR the pixel */

Listing 10-16. A routine to set pixels in a tiled graphics window on the MCGA.

Chapter 10: Alphanumeric Character Sets 341

:

'

-
1 >

.

Pi

-
_ '

7

a ‘

ay : aan ag

. pp

0 7
a ae

= -

ze

j

aac,
k a

2

, -
_ -

Capen <— ©
_

a 7 I

a

_
>. _

= = =

z

a +
_ i

.. =

 & ‘

a » -
-
r
ro.

t

a

>
hs

ie

-

ba egy’ reall

seete. ov) wpa 4 § reagept ‘

‘ 1 %+4¢ rset ae ea ay hee tam - peek ee) at ry

6 4) tee aso it 7g BS “etn a ani? tome ye :

4 hia star rar vis ; ae 5 win pare? >) oe wie jo Kt OD : ”

leery Cals Gee RL mepe eee eccrine Lewes , = ; v4
As TS Fal bese peyy ry eH sain

: -
on 7 4

Fr 1} Se. ah PRE RE NE® Til AR
2 *

e F peice

i
: r

ea i. Ja
+ vel A 2 Suter sss but" x

7 eu saplinyite Bi eit. GY en a ca , cult 4 ae
~ y. Ss yi s,

Lac eae im sete sat) cave te wet AMA Rey : ‘ x
; ae eee ed 7 “ eka eS

hav 2d & 1 eyeriers So ba fot eon) A nhs dovachs beret yt woh
oe fie ot Pathe 18 vs Stisienee ; we) ‘nl

Bk ahaa a ees SAP oe Tee ee ae
cae ea » th aici get Te 7S 2 ee

7 - * ee 3

aioe i we Phar mansteBy tee 1 Pie hike een, Sawa |
Lo . “ .

e9 < eG a {u) cs Zt i aca et eX
f tes oA. * iB _

rie re 49 = ; ad ni y Is
. .

' A 7 _ tga © * er. is ca ri I i.

- 4 ity bP Eas €
we ra é + 0 ' : . tee - ws

1 € . « -

? oes iane3 arene.

: "4 oH i m3 ‘ n3*Ss sf w eney ie, ‘a “33 or 9 tabi: pioyive a) ae cay ra yee Ly. ee:
" 7 “ a in ‘ * . ei + ° mM oe r iy’! «+ eee x

‘ © ae i : 2 * Teh 7

a es ee I oo oS auth '¥ a “= = Hae dies
- 7 Z . gett f 7 i> te = =

LC eee aemntee | Seer ae relist
a? Pale : 8 trie i) png hetieD a okey ett

i on”: ' 9 " + , ih Vey aS os - ars.

1 7 ~*~. 7

oe ; pene wide. Betae a : M , Fy —

Phas if, rah ty PAS Lib rie watt ary oe oh

7 a , eo
vert . wa 4 a Re |

: ‘a

,
:

:

i z

m éslld

* oe 77

- ”

; *

mist

.

.»

, a

$: ni ie y Ary _

ut

Bit Blocks and

Animation

. Bit Block Move
CGA and MCGA @ EGA and VGA @ HGC @ InColor Card

Bitwise Pixel Operations

XOR @ NOT @ AND @ OR

Bit Block Tiling

Animation
XOR Animation

Z ., Overlapping Bit Block Moves

(A Graphics-Mode Cursor
XOR @ Bit Block Move <

This chapter is about moving things around in the video buffer and on the screen.

Some of the most useful and entertaining graphics-mode programs create the ap-

pearance of on-screen motion. Objects as mundane as a cursor or as unusual as an

alien spaceship can appear to move across the screen if you erase them and then

immediately redraw them in successive locations. PC and PS/2 video subsystems
are not particularly well equipped to support this kind of real-time animation, but

the techniques in this chapter should help you fully exploit their capabilities.

You might think of video animation in the same context as video games, but
animation has other uses in computer graphics. For instance, all interactive

graphics programs require a moving cursor that allows the user to point to screen

locations. Many drawing or design programs let the user move shapes and images

around the screen. Robotic control programs indicate the status of a robot arm

with an animated representation of its position. You can create such animation

effects using the techniques in this chapter.

Bit Block Move

The basic software tool for many animation techniques is the bit block move—a
routine that copies a rectangular block of pixels into, out of, or within the video
buffer. The name ‘‘bit block move”’ describes this routine well. After all, a rect-
angle of pixels is in essence nothing more than a block of bits. Still, a bit block
move routine can do more than simply copy pixel values. As can other video
graphics drawing routines, a bit block move routine can update pixel values using
the bitwise logical operations AND, OR, and XOR. These operations can create at-
tractive effects when used as part of bit block moves.

To copy a bit block from one location to another within the video buffer in PC and
PS/2 video subsystems, it is usually more efficient to use an intermediate buffer in
system RAM. You first copy pixel values from the video buffer into the intermedi-
ate buffer, then copy the values from this buffer to the desired position in the
video buffer.

Creating an intermediate copy of the pixels in a bit block might seem superfluous,
but in most situations it is preferable to trying to move the bit block entirely
within the video buffer. For example, neither the EGA nor the InColor Card sup-
ports direct logical operations (AND, OR, and XOR) between pixels in the bit
planes. Also, CPU accesses to video RAM are slower than equivalent accesses to
system RAM. Thus, when multiple copies of the same bit block are to be stored in
the video buffer, making a single copy in system RAM and then making multiple
copies from system RAM to video RAM is more efficient.

CGA and MCGA

Listing 11-1 is a bit block move routine for the CGA. The routine
GetBitBlock () copies a block of pixels from the video buffer to a buffer in
system RAM. The complementary routine StoreBitBlock (),in Listing 11-2,

344 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

copies pixels from system RAM to the video buffer. StoreBitBlock () con-
tains subroutines to perform AND, OR, or XOR operations on the pixels in system
RAM using the previous contents of the video buffer.

TITLE "Listing 11-1"

NAME GetBitBlock06

PAGE Shoe

7 Name: GetBitBlock06

+ Function: Copy bit block from video buffer to system RAM

- in 640x200 2-color mode

; Caller: Microsoft C:

; int GetBitBlock06(x0,y0,x1,y1,buf) ;

; int x0,y0; /* upper left corner of bit block */

Ns Benen (iW lly /* lower right corner */

; Char far *but; /* buffer */

; Notes: Returns size of bit block in system RAM.

ARGx0 EQU word ptr [bp+4]

ARGy0 EQU word ptr [bp+6]

ARGx1 EQU word ptr [bp+8]

ARGy1 EQU word ptr [bp+10]

ADDRbuf EQU [bp+12]

VARPixelRows EQU word ptr [bp-2]

VARPixelRowLen EQU word ptr [bp-4]

VARincr EQU word ptr [bp-6]

ByteOffsetShift EQU 3 ; reflects number of pixels per byte

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs:_TEXT

EXTRN PixelAddr06:near

PUBLIC _GetBitBlock06

_GetBitBlock06 PROC near

push bp ; preserve caller registers

mov bp, sp

sub sp, 6 ; establish stack frame

push ds

push si

push di

; compute dimensions of bit block

mov ax, ARGx1

sub ax, ARGx0

(continued)

Listing 11-1. A routine to copy a block of pixels from the CGA video buffer to system RAM.

Chapter 11: Bit Blocks and Animation 345

Listing 11-1. Continued.

mov

and

xor

shl

mov

push

mov

shr

ine

push

mov

sub

inc

push

; establish addressing

mov

mov

call

xor

push

pop
mov

mov

test

jz

mov

L01: mov

les

cx, OFFO7h

cl,al

Cray

ehycu:

el, en

cx

cl, ByteOffsetShift

ax) Gu

ax

ax

ax, ARGy1

ax, ARGyO

ax

ax, ARGyO

bx, ARGx0

PixelAddr06

Gey

es

ds

si,bx

bx, 2000h

si,2000h

L01

bx, 80-2000h

VARincr,bx

di, ADDRbuf

; build 5-byte bit block header

pop

mov

stosw

pop

mov

stosw

pop

mov

stosb

; copy from video buffer to system RAM

LO2: mov

push

ax

VARPixelRows,ax

ax

,

VARPixelRowLen, ax

ax

eh oud:

,

bx, VARPixelRowLen

si ,

CH := unshifted bit mask

CL := AND mask for AL

CL := number of pixels in last

byte of row

CL := number of bits to shift

CH := bit mask for last byte of row

save on stack

AX == number of bytes per row

save on stack

AX := number of pixel rows

save on stack

ES:BX -> x0,y0 in video buffer

Cl 2=!numbes of ‘buts te, shite Letu

DS:SI -> video buffer

BX := increment from 1st to 2nd

interleave in CGA video buffer

jump if x0,y0 is in 1st interleave

increment from 2nd to 1st interleave

initialize this variable

ES:DI -> buffer in system RAM

byte 0-1 := number of pixel rows

byte 2-3 := bytes per pixel row

CH := bit mask for last byte

byte 4 := bit mask for last byte

preserve SI at start of pixel row

(continued)

346 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-1. Continued.

LO3:

_GetBitBlock06

_TEXT

,

,

,

,

Name:

Function:

Caller:

lodsw 7 AL := next byte in video buffer

; AH := (next byte) + 1
dec si * DS:SI -> (next byte) + 1
Erol ax, cl 7 AL := next 4 pixels in row
stosb ; copy to system RAM

dec bx + loop across row

jnz L03

and es: [di-1],ch 7 mask last byte of row

pop si peDSwsl —> eStart, OF erow

add si, VARincr 7, DS?SI => start of next row

Siete VARincr,2000h XOR (80-2000H) ; update increment

dec VARPixelRows

jnz L02 ; loop down rows

mov ax, di

sub ax, ADDRbuf , AX := return value (size of bit block

; in system RAM)

pop di ; restore registers and exit

pop si

pop ds

mov sp,bp

pop bp
ret

ENDP

ENDS

END

TITLE iuestang) 12)

NAME StoreBitBlock06

PAGE BOypo2

StoreBitBlock06

Copy bit block from video buffer to system RAM

in 640x200 2-color mode

Microsoft C:

void StoreBitBlock06 (buf,x,y);

char far *buf; /* buffer */

ante es, ¥ /* upper left corner of bit block */

(continued)

Listing 11-2. A routine to copy a block of pixels from system RAM to the CGA video buffer.

Chapter 11: Bit Blocks and Animation 347

Listing 11-2. Continued.

ADDRbuf EQU dword ptr [bp+4]

ARGx EQU word ptr [bp+8]

ARGy EQU word ptr [bp+10]

VARPixelRows EQU word ptr [bp-2]

VARPixelRowLen EQU word ptr [bp-4]

VARincr EQU word ptr [bp-6]

DGROUP GROUP _DATA

STEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP

EXTRN PixelAddr06:near

PUBLIC _StoreBitBlock06

_StoreBitBlock06 PROC near

push bp ; preserve caller registers

mov bp, sp
sub sp,6 ; establish stack frame

push ds

push si

push di

; establish addressing

mov ax, ARGy

mov bx, ARGx

call PixelAddr06 ; ES:BX -> byte offset of x,y

xor el; 7 7; CL := number of bits to shift right

mov iy 7 ES! DL =>)x,Votnevadec. butte:

mov bx,2000h ; BX := increment from 1st to 2nd

; interleave in CGA video buffer

test di,2000h

Vz L01 ? jump if x,y is in 1st interleave

mov bx, 80-2000h ; increment from 2nd to 1st interleave

L011: mov VARincr, bx ; initialize this variable

mov bx,StoreBitBlockOp ; BX := subroutine address

lds si, ADDRbuf + ES:DI -> buffer in system RAM

; obtain dimensions of bit block from header

lodsw + AX := number of pixel rows

mov VARPixelRows,ax ‘

lodsw ; AX := bytes per pixel row

mov VARPixelRowLen, ax

lodsb ; AL := bit mask for last byte in row
mov ch,al

jmp bx ; jump to subroutine

(continued)

348 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-2. Continued.

ReplaceBitBlock:

cmp

jnz

cx, OFFO0Oh

L15

7 routine for byte-aligned bit blocks

mov cx, VARPixelRowLen

L10: push di ;
push cx

rep movsb ;

pop ex ;

pop di

add di, VARincr ;

xor VARincr,2000h XOR

dec VARPixelRows

jnz L10 ;

jmp Lexit

7 routine for all other bit blocks

Ll Se not ch r

mov dx, OFFOOh

ror ax, cn fi

mov bx, VARPixelRowLen

dec bx ;

L16: push di

test bx, bx

jz L18 ;

push bx

Eivis and es: [di],dx Z

lodsb 7

xor ah,ah

ror axed 7

or es: [di],ax .

inc di ;

dec bx

jnz L17

pop bx

L18: mov al,ch

mov ah, OFFh 6

ror ax,cl a

and es: [di],ax .

lodsb ;

xor ah,ah

Oe axel ‘

or es: [di],ax ;

if mask = OFFH and bits to shift = 0

jump if not byte-aligned

preserve DI and CX

copy one pixel row into video buffer

restore DI and CX

ES:DI -> next pixel row in buffer

(80-2000h) ; update increment

loop down pixel rows

CH := mask for end of row

DX := rotated mask for each byte

BX := bytes per row - 1

jump if only one byte per row

mask next 8 pixels in video buffer

AL := pixels in bit block

AX := pixels rotated into position

set pixels in video buffer

ES:DI -> next byte in bit block

AX := mask for last pixels in row

AX := mask rotated into position

mask last pixels in video buffer

AL := last byte in row

AX := pixels rotated into position

set pixels in video buffer

(continued)

Chapter 11: Bit Blocks and Animation 349

Listing 11-2. Continued.

pop
add

xor

dec

jnz

jmp

XORBitBlock:

mov

L20: push

push

lodsb

xOr

ror

xor

ee:

dec

WZ

Tezalee

pop

pop
add

xor

dec

jnz

jmp

ANDBitBlock:

not

mov

dec

30% push

test

az

push

esas lodsb

mov

ror

and

inc

dec

jnz

‘pop

sizes lodsb

or

mov

ror

and

di

di, VARincr F

VARincr,2000h XOR

VARPixelRows

L16 ?

Lexit

bx, VARPixelRowLen

di

bx

ah,ah

ax,cl ;

es: [di],ax ;

di ;

bx

L21

bx

di

di, VARincr ,

VARincr, 2000h XOR

VARPixelRows

L20 7

Lexit

ch ;

bx, VARPixelRowLen

bx ;

di

bx, bx

L32 :

bx

ah, OFFh

axe :

es: [di],ax .

di ;

bx

L31

bx

al,ch ;

ah, OFFh

ax,cl :

es; [di],ax ;

ES:DI -> next pixel row in buffer

(80-2000h)

loop down pixel rows

AL := pixels in bit block

AX := pixels rotated into position

XOR pixels into video buffer

ES:DI -> next byte in bit block

ES:DI -> next pixel row in buffer

(80-2000h)

loop down pixel rows

CH mask for end of row

bytes per row - 1

jump if only one byte per row

AL := pixels in bit block

AX := pixels rotated into position

AND pixels into video buffer

ES:DI -> next byte in bit block

AL := last byte in row

mask last pixels in row

AX := pixels rotated into position
AND pixels into video buffer

(continued)

350 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-2. Continued.

pop
add

xor

dec

jnz

jmp

ORBitBlock:

mov

L40: push

push

L41: lodsb

xor

ror

or

inc

dec

jnz

pop

pop
add

xor

dec

jnz

Lexit: pop

pop

pop
mov

pop
ret

_StoreBitBlock06 ENDP

_ TEXT ENDS

DATA SEGMENT

StoreBitBlockOp DW

_DATA ENDS

END

di

di, VARincr ;

VARincr,2000h XOR

VARPixelRows

L30 9

Lexit

bx, VARPixelRowLen

di

bx

ah,ah

AX CL ;

es: [di],ax ;

bx

L41

bx

di

di, VARincr ;

VARincr,2000h XOR

VARPixelRows

L40 ;

di ;

Sal:

ds

sp, bp

bp

word public 'DATA'

ReplaceBitBlock ;

,

ES:DI -> next pixel row in buffer
(80-2000h)

loop down pixel rows

AL := pixels in bit block

AX := pixels rotated into position

OR pixels into video buffer

ES:DI -> next byte in bit block

ES:DI -> next pixel row in buffer

(80-2000h)

loop down pixel rows

restore registers and exit

address of selected subroutine

(replace, XOR, AND, OR)

In the MCGA’s 640-by-480 2-color and 320-by-200 256-color modes, pixel address-

ing is different than in the two CGA-compatible modes. Otherwise, versions of
GetBitBlock() and StoreBitBlock () are similar in all MCGA modes.

Chapter 11: Bit Blocks and Animation 351

EGA and VGA

In native EGA and VGA graphics modes, the bit block move routine must move

the contents of all four bit planes to system RAM. The Get BitBlock () routine

in Listing 11-3 extracts bytes from each bit plane using read mode 0 and selecting

each bit plane in turn with the Graphics Controller’s Read Map Mask register.

StoreBitBlock (), in Listing 11-4, then uses write mode 0 to copy data into

the bit planes. The bit planes are isolated in write mode 0 by programming the

Sequencer’s Map Mask register.

Do not use the routines in Listings 11-3 and 11-4 on an EGA with only 64 KB of

video RAM. Because the memory maps are chained together to form the two bit

planes used in 640-by-350 graphics modes, these routines will not work properly

in this situation. (Chapter 4 discusses this in greater detail.)

TITLE "Listing 11-3!
NAME GetBitBlock10

PAGE Soi loz

Name: GetBitBlock10

Beant nes stat Nie Function: Copy bit block from video buffer to system RAM

in native EGA and VGA graphics modes

Caller: Mierosote Cr

int GetBitBlock10(x0,y0,x1,y1,buf) ;

Ne Ne Ne Ne Ne Ne Se Se Ne Ne Ne Ne

sloohe. S40) AwA0)e /* upper left corner of bit block */
Semmes Valin /* lower right corner */
char far *buf; /* buffer */

Notes: Returns size of bit block in system RAM.

ARGx0 EQU word ptr [bp+4]
ARGy0 EQU word ptr [bp+6]
ARGx1 EQU word ptr [bp+8]
ARGy1 EQU word ptr [bp+10]
ADDRbuf EQU [bp+12]

VARPixelRows EQU word ptr [bp-2]
VARPixelRowLen EQU word ptr [bp-4]

BytesPerRow EQU 80
ByteOffsetShift EQU 3 *; reflects number of pixels per byte

_TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT

EXTRN PixelAddr10:near

(continued)

Listing 11-3. A routine to copy a block of pixels from the EGA or VGA vi
RAM in native graphics modes. : Ten

352 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-3. Continued.

PUBLIC
_GetBitBlock10 PROC

push

Mov

sub

push

push

push

7 compute dimensions of

mov

sub

mov

and

xor

shl

mov

push

mov

shr

ine

push

mov

sub

Inc

push

; establish addressing

mov

mov

call

xor

push

pop
mov

les

_GetBitBlock10
near

; build 5-byte bit block header

pop

mov

stosw

pop

mov

stosw

pop

mov

stosb

bp 7 preserve caller registers

bp, sp

sp,4 7 establish stack frame

ds

si

di

bit block

ax, ARGx1

ax, ARGx0

cx, OFFO7h ; CH := unshifted bit mask

7 CL := AND mask for AL

cl,al ; CL 3= number) of pixells in last

7 byte of row

CL 7 CL, c= number sot bits to shitt

ch, cl 7 CH := bit mask for last byte of row

clyen

cx 7 Save on stack

cl, ByteOffsetShift

Ax yc

ax 7 AX := number of bytes per row

ax 7 Save on stack

ax, ARGy1

ax, ARGyO

ax ; AX := number of pixel rows

ax *; Save’ on stack

ax, ARGyO

bx, ARGx0

PixelAddr10 + ES:BX -> x0,y0 in video buffer

Cla ; CL := number of bits to shift left

es

ds

Si, DX 7 DS?SI -—> video buffer

di, ADDRbuf ; ES:DI -> buffer in system RAM

ax

VARPixelRows, ax

; byte 0-1 := number of pixel rows

ax

VARPixelRowLen, ax

; byte 2-3 := bytes per pixel row

ax

ch,al ; CH := bit mask for last byte in row

; byte 4 := bit mask for last byte

(continued)

Chapter 11: Bit Blocks and Animation 353

Listing 11-3. Continued.

; set up Graphics Controller

mov dx, 3CEh

mov ax,0005

out dx, ax

mov ax, 0304h

; copy from video buffer to system RAM

LO1: out dx,ax ;

push ax ;

push VARPixelRows £

push Si ;

L02: mov bx, VARPixelRowLen

push si ;

L0O3: lodsw ;

dec si ;

rol ax,cl -

stosb ;

dec bx -

jnz L03

and es: [di-1],ch ;

pop si -

add si,BytesPerRow ;

dec VARPixelRows

jnz L02 ;

pop si ;
pop VARPixelRows i

pop ax ;

dec ah

jns L01 ;

mov ax, di

sub ax, ADDRbuf i

pop di ;
pop si

pop ds

mov sp, bp

pop bp
j ret

_GetBitBlock10 ENDP

_ TEXT ENDS

END

DX := Graphics Controller address port

AH := 0 (read mode 0, write mode 0)

AL := 5 (Mode register number)

set up read mode 0

AH := 3 (first bit plane to read)

AL := 4 (Read Map Select reg number)

select next memory map to read

preserve memory map number

preserve number of pixel rows

preserve offset of x0,y0

preserve SI at start of pixel row

AL := next byte in video buffer

AH := (next byte) + 1

DS:Si -> (next byte) + 1

AL := next 4 pixels in row

copy to system RAM

loop across row

in row

of row

of next row

mask last byte

DS:SI => start

DS:SI -> start

loop down rows

DS:SI => start

restore number

AH := last map

AL := Read Map

of bit block

of pixel rows

read

Select reg number

loop across bit planes

AX := return value (size of bit block
in system RAM)

restore registers and exit

354 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

7 Name:

7 Functions

; Callens

ADDRbuf

ARGx

ARGy

VARPixelRows

VARPixelRowLen

VARRowCounter

VARStartMask

VAREndMaskL

VAREndMaskR

BytesPerRow

ByteOffsetShift

RMWbits

_TEXT

TITLE "Listing 11-4'

NAME StoreBitBlock10

PAGE SOyioe

StoreBitBlock10

Copy bit block from video buffer to system RAM

in native EGA and VGA graphics modes

Microsoft C:

void StoreBitBlock10 (buf,x,y);

_StoreBitBlock10 PROC near

; establish addressing

char far *buf; /* buffer */

int x,y? /* upper left corner of bit block */

EQU dword ptr [bp+4]

EQU word ptr [bp+8]

EQU word ptr [bp+10]

EQU word ptr [bp-2]

EQU word ptr [bp-4]

EQU word ptr [bp-6]

EQU word ptr [bp-8]

EQU word ptr [bp-10]

EQU word ptr [bp-12]

EQU 80 ; logical width of video buffer

EQU 5) ; reflects number of pixels per byte

EQU 18h ; selects replace, XOR, AND, or OR

SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

EXTRN PixelAddr10:near

PUBLIC _StoreBitBlock10

push bp ; preserve caller registers

mov bp, sp

sub Sppiia ; establish stack frame

push ds

push si

push di

mov ax, ARGy

mov bx, ARGx

ead PixelAddr10 ; ES:BX -> byte offset of x,y

inc onl

and ely ; CL t= number of bits to shift left

(continued)

Listing 11-4. A routine to copy a block of pixels from system RAM to the EGA or VGA video

buffer in native graphics mode.

Chapter 11: Bit Blocks and Animation 355

Listing 11-4. Continued.

mov

lds

lodsw

mov

lodsw

mov

lodsb

mov

di,bx ;

si, ADDRbuf ,

VARPixelRows, ax

VARPixelRowLen, ax

;

ehiyal

; set up Graphics Controller

mov

mov

mov

out

mov

out

mov

out

mov

out

mov

mov

cmp

jne

dx, 3CEh ;

ah, RMWbits :

alba S) ;

ax, ax ;

ax,0805h ;

dx, ax ;

ax, 0007 ;

dx, ax ;

ax, OFFO8h ;

dx, ax ’

d1,0C4h ;

ax,0802h :

cx, OFFOOh .

LAS ;

; routine for byte-aligned bit blocks

mov

L10: out

push

push

mov

Tats push

push

LZ lodsb

and

inc

loop

cx, VARPixelRowLen

dx,ax ;

ax

di

bx, VARPixelRows

di

cx

es: [dij,al 2

di

L12

ES:DI -> x,y in video buffer

ES:DI -> buffer in system RAM

obtain dimensions of bit block from header

AX := number of pixel rows

AX := bytes per pixel row

AL := bit mask for last byte in row

DX := Graphics Controller I/O port

AH := value for Data Rotate/Function

Select register

update this register

AH := 8 (read mode 1, write mode 0)

AL := 5 (Mode register number)

set up read mode 0

AH := 0 (don’t care for all maps;

CPU reads always return OFFH)

AL := 7 (Color Don’t Care reg number)

set up Color Don’t Care reg

AH := OFFH (value for Bit Mask reg)

set up Bit Mask reg

DX := 3C4H (Sequencer I/O port)

AH := 1000B (value for Map Mask reg)

AL := 2 (Map Mask register number)

DEoMask <> 0FFH or bits torshite <> 0

jump if not byte-aligned

enable one bit plane for writes

preserve Map Mask value

preserve video buffer offset of x,y

preserve DI and CX

AL := next byte of pixels

update bit plane

(continued)

356 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-4. Continued.

pop cx * restore DI and CX

pop di

add di,BytesPerRow ; ES:DI -> next pixel row in buffer
dec bx

jnz L11 ; loop down pixel rows

pop di ; ES:DI -> video buffer offset of x,y

pop ax ; AH := current Map Mask reg value

shr ah, 1 ; AH := new Map Mask value

jnz L10 ; loop across all bit planes

jmp Lexit

* routine for non-aligned bit blocks

EAS push ax ; preserve Map Mask reg values

mov bx, OFFh + BH := 0 (mask for first byte in row)

7 BL) = "OEE

mov al,ch ; AL := mask for last byte in pixel row

cbw ; AH := OFFh (mask for last-1 byte)

cmp VARPixelRowLen, 1

jne L16 ; jump if more than one byte per row

mov bi 7ch

mov ah,ch ; AH := mask for last-1 byte

xor al,al ; AL := 0 (mask for last byte)

L16: shl axyicL ; shift masks into position

shl Dxper

mov bl,al ; save masks along with

mov al,8 ; Bit Mask register number

mov VAREndMaskL, ax

mov ah,bl

mov VAREndMaskR, ax

mov ah,bh

mov VARStartMask, ax

mov bx, VARPixelRowLen

pop ax ; restore Map Mask reg values

; set pixels row by row in the bit planes

LV he out dx,ax ; enable one bit plane for writes

push ax ; preserve Map Mask value

push di ; preserve video buffer offset of x,y

mov dl, 0CEh ; DX := 3CEH (Graphics Controller port)

mov ax, VARPixelRows

mov VARRowCounter,ax ; initialize loop counter

(continued)

Chapter 11: Bit Blocks and Animation 357

Listing 11-4. Continued.

, set pixels at start of row in currently

sis push di ;

push si ;

push bx ;

mov ax, VARStartMask

out ax, ax p

lodsw ;

dec si ;

test Gicu

jnz TEN ;

dec bx ;

jnz L20 =

jmp short L22 ;

L19: rol ax,el 2

and es: [di],ah B

inc di

dec bx ;

L20: push ax ;

mov ax, OFFO8h

out dx, ax :

pop ax

dec bx

jng L22 ;

,

a2 des

,

22):

set pixels in middle of row

and es: [di],al ;

ae di ;

lodsw ;

dec si 7

rol ax,cl 5

dec bx

jnz L21 ;

set pixels at end of row

mov bx, ax 5

mov ax,VAREndMaskL ;

enabled bit plane

preserve offset of start of pixel row

preserve offset of row in bit block

preserve bytes per pixel row

set Bit Mask reg for first byte of row

AH := 2nd byte of pixels

AL ¢= listebyte of prxels

DS:SI -> 2nd byte of pixels

jump if not left-aligned

BX := bytes per row - 1

jump if at least 2 bytes per row

jump if only one byte per row

AH := left part of 1st byte,

right part of 2nd byte

AL := right part of Ist byte,

left part of 2nd byte

set pixels for left part of first byte

BX := bytes per row - 2

preserve pixels

set Bit Mask reg for succeeding bytes

jump if only 1 or 2 bytes in pixel row

set pixels in right part of current

byte and left part of next byte

AH := next+1 byte of pixels

AL := next byte of pixels

AH := left part of next byte, right

part of next+1 byte

Ali 3= right part of next byte, left

part of next+1 byte

loop across pixel row

BH i= right part of last byte, left

part of last-1 byte

BL := left part of last byte, right

part of last-1 byte

AH := mask for last-1 byte

AL := Bit Mask reg number

(continued)

358 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-4. Continued.

out dax,ax

and es: [di],bl

mov ax, VAREndMaskR

out dx,ax

and es: [di+1],bh

pop bx

pop si

add Sa) bx

pop di

add di, BytesPerRow

dec VARRowCounter

jnz L18

pop di

pop ax

mov dl,0C4h

shr ah, 1

jnz L17

set Bit Mask register

set pixels for last-1 byte

mask for last byte in pixel row

last byte in pixel row

set pixels for last byte

BX := bytes per pixel row

DS:SI -> next row in bit block

ES:DI -> next pixel row in buffer

loop down pixel rows

ES:DI -> video buffer offset of x,y

AX := current Map Mask value

DX := 3C4H

AH := next Map Mask value

loop across bit planes

; restore Graphics Controller and Sequencer to their default states

Lexit: mov ax, OFO2h

out dx,ax

MOV dl, OCEh

mov ax,0003

out dax,ax

mov ax,0005

out dx,ax

mov ax,O0FO7h

out dx, ax

mov ax, OFFO8h

out dx,ax

pop di

pop si

pop ds

mov sp,bp

pop bp
ret

_StoreBitBlock10 ENDP

TEXT ENDS

END

HGC

, default Map Mask value

DX := 3CEh

default Data Rotate/Function Select

default Mode value

default Color Compare value

default Bit Mask value

restore registers and exit

Bit block move routines for HGC and HGC+ 720-by-348 monochrome graphics

mode are similar to routines for CGA 640-by-200 2-color mode. The differences

are in how they calculate pixel addresses and in the way the video buffer is

interleaved.

Chapter 11: Bit Blocks and Animation 359

InColor Card

The routines for the InColor Card’s 720-by-348 16-color mode resemble the EGA

routines in Listings 11-3 and 11-4, because both adapters’ video buffers are

mapped in parallel bit planes. Differences between the routines lie in the way

pixel addresses are computed, in how the video buffer is interleaved, and in how

individual bit planes are accessed. On the InColor Card, you can use the same

technique as ReadPixelInc () (discussed in Chapter 5) to program the

Read/Write Control and Color registers and isolate the contents of each bit

plane. Similarly, a bit block store routine for the InColor Card follows

StorePixelInC () inits use of the Plane Mask register and the Read/Write

Control and Color registers.

Bitwise Pixel Operations
If you experimented with the pixel-programming and line-drawing examples in

previous chapters, you probably know why the bitwise logical operations—XOR,

AND, and OR—are useful in video graphics programming. In this case, you can

skip the next few paragraphs. Otherwise, read on to see how video graphics pro-

grams can exploit the ability to perform XOR, AND, and OR on pixel values.

XOR

The XOR operation is useful because it is reversible. When you change a pixel’s

value in the video buffer using the XOR function, you can restore its original

value by repeating the operation. For example, if a pixel in the video buffer has

the value 9, setting its value by XORing it with a value of 5 results in a pixel value

of OCH. XORing the resulting pixel value (OCH) with a value of 5 restores the

original pixel value of 9.

This implies that you can XOR objects into the video buffer and onto the screen,

and then erase them, without worrying about saving and restoring the contents of

the video buffer. The use of XOR has limitations, however. One is that an image

containing zero-value pixels cannot be XORed into the video buffer. Because
XORing a pixel with 0 leaves the pixel’s value unchanged, only nonzero pixels in
the image affect the video buffer.

Another more serious limitation is that a patterned background can obscure the
image you are trying to XOR into the video buffer. Consider Figure 11-1, in which
a text string is XORed against progressively distracting backgrounds. The text is
perfectly readable against a solid background, but a striped background signifi-
cantly obscures the letters. In the worst case, XORing a single-color image into a
pattern of random pixels results only in another pattern of random pixels.

360 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Hello, World Hello, World

Figure 11-1. Effects of XORing a text string against various backgrounds.

NOT

A bitwise NOT operation on a pixel value toggles all 1 bits to 0 and all 0 bits to 1.

Obviously, two sequential NOT operations will leave the pixel value unchanged.

A common programming practice in monochrome graphics modes is to use NOT

to toggle a reverse video state. For instance, a black-on-white character can be

reversed to white-on-black by performing NOT operations on its pixels.

The effect of NOT on multibit pixel values is less clear. In this situation, the NOT

operation converts one pixel value into some other pixel value, but the colors cor-

responding to these two values may be unrelated. Thus, in a color graphics mode,

performing a NOT operation on all pixels in a character matrix changes both the

foreground and background values, but the resulting color combination may not

be particularly attractive or even readable. In manipulating pixels in color

graphics, use NOT with caution.

A bitwise NOT is equivalent to performing a bitwise XOR using a bi-

nary value of all 1 bits. This means you can use any of the pixel XOR

routines developed in this book to perform NOT operations as well.

Thus, little can be gained by writing special-purpose NOT routines for

pixel manipulation.

AND

The bitwise logical operation AND is also useful in manipulating graphics im-

ages. Consider, for instance, how you might go about drawing the striped circle in

Figure 11-2b. You could do it the hard way, by intersecting a set of parallel lines

with the circle. This procedure would be laborious, however, because of the extra

programming and increased computational overhead involved in determining the

intersection points.

Chapter 11: Bit Blocks and Animation 361

Figure 11-2. Using AND to draw a striped circle. The circle in Figure 11-2a consists of pix-
els of the maximum possible value. The lines are drawn across the circle using a pixel AND
operation to produce the striped circle in Figure 11-2b.

a.

It is much easier to draw a filled circle (see Figure 11-2a) with pixels of the max-

imum possible value (that is, all bits set to 1) against a background of zero-value

pixels. This circle is used as a mask against which you AND the pixels in the par-

allel lines. When pixels in each line are ANDed with pixels inside the circle, their

original values are stored intact in the video buffer. Outside the circle, the result

of ANDing the line pixels with the zero background always results in zero-value

pixels being stored in the buffer. The result: a striped circle.

You-can apply this technique to any graphics form, but it is particularly attractive

in conjunction with a bit block move routine. You can superimpose patterned im-

ages with a short sequence of bit block moves using pixel AND and OR opera-

tions. In Figure 11-3, a circular chunk of pattern B is superimposed on pattern A

by using a mask to isolate a ‘“‘hole’’ in pattern A. The inverse of the same mask

Mask Pattern A Pattern B

cp
A AND mask B AND (NOT mask) (A AND mask)

OR (B AND (NOT mask))

Figure 11-3. Masking patterned images with pixel AND operations.

362 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

extracts the congruent piece of pattern B. The two masked patterns are then

superimposed by a third bit block move that uses OR (or XOR) to update pixels.

OR

The bitwise OR operator is less frequently used than XOR for manipulating pixel

values. The OR operation, unlike XOR or NOT, is not reversible. The result of

ORing pixels always depends on their previous values in the video buffer.

One typical use of the pixel OR operation is to accentuate intersections of forms

in the video buffer. Consider what happens when you OR two different-colored

areas into a 16-color video buffer (see Figure 11-4). If one rectangle is filled with

pixels of value 3 and the other rectangle with pixels of value 5, the pixels at the

intersection points have the value 7 (3 OR 5). With the usual default color palette,

the upper rectangle appears cyan, the lower rectangle is violet, and the intersec-

tion is white.

Figure 11-4. ORing two colored areas into a 16-bit video buffer.

Bit Block Tiling

You can use bit block move routines to fill an area of the video buffer with any ar-

bitrary pattern. Do this by tiling the buffer through bit block moves to adjoining

rectangular areas of the buffer (see Figure 11-5). Using the AND mask technique,

you can tile any arbitrary form, such as the circle in Figure 11-6, with a pattern

contained in a bit block.

‘o— @ ooo
onele
'O_0_¢.

Figure 11-5. Bit block tiling.

Chapter 11: Bit Blocks and Animation 363

sO
| oe

o ¢ %
a 6G Ve 7

Figure 11-6. Tiling with AND mask.

You can use a variation of bit block tiling as a sort of software char-

acter generator. If you define a group of bit blocks, each of which rep-

resents a character in a character set, you can tile the screen with

characters. This is one technique for displaying proportionally

spaced characters.

Animation

PC and PS/2 video subsystems have no built-in hardware to support animation.

Consequently, moving images across the screen is a task relegated to software.

(This is a good reason to make your video graphics routines as efficient as possi-

ble.) Several software techniques can produce real-time video animation. Each

technique is best suited to a particular type of animation.

XOR Animation

You can take advantage of the reversibility of the logical XOR operation to make

any pixel or set of pixels appear to move across the display. To make an object

appear to move, XOR it into the video buffer twice. The object flickers onto the

screen the first time it is drawn. It immediately disappears the second time it is

drawn. If you repeatedly redraw the object in a slightly different position, it ap-
pears to move across the screen.

Outlining

Consider the C fragment in Listing 11-5. This bit of code makes a circle appear to
grow outward from its center by repeatedly XORing it into the video buffer with a
gradually increasing radius.

/* Listing 11-5 */

main ()

{
arate XC = 400; /* center of circle */
int yc Sm ZiaK

int anole /* semimajor and semiminor axes */
int n= 12; /* pixel value */
me a0

float ScaleFactor = 1.37; /* for 640x350 16-color mode */

Listing 11-5. XORing a circle into the video buffer. (continued)

364 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 11-5. Continued.

for(i=0O; i<10; i++)

for(a=0; a<100; at++)

{
b = (float) a / ScaleFactor; /* scale semiminor axis */

HPLLPSE(XC, VCx ia, Ds om jie /* draw a circle */

Bilapse(xc; yO, a, Dy 2) 7 /* draw it again */

}
}

This technique is frequently used interactively to outline a rectangular area of the

display. The outline is rapidly XORed into and out of the video buffer as the user

moves a pointing device such as a mouse. Just as the circle created by the routine

in Listing 11-5 appears to grow, a rectangular outline can appear to move, grow,

or shrink in response to the user’s actions.

The routine in Listing 11-6 slides a rectangle across the screen. At each iteration,

the rectangle is drawn and then erased using lines that are XORed into the video

buffer. In this example, the rectangle’s onscreen location is changed within an
iterative loop. In practice, however, the rectangle’s size and location could be

changed in response to input from the keyboard or from a pointing device. In this

case, the rectangle would be erased and redrawn whenever the input indicated a

change in position.

/* Listing 11-6 */

#define Xmax 640

main ()

{
int x0 = 0; /* corners of box at 0,0 and 150,100 */

int yO = 0;

int x1 = 150;

int yl = 100;
int nH ="12; /* pixel value */

while(x1 < Xmax) /* slide box right */

XORBox(x0++, yO, x1++, yl, nm);

while(x0 > 0) /* slide box left */

XORBox(--x0, yO, --x1, yl, n)

XORBox (x0, yO); xl, yi, n)

int x0,y0,x1,yle /* pixel coordinates of opposite corners */

int n; /* pixel value */

{
Rectangle(x0, yO, x1, yl, n)¢ /* draw the box */

Rectangle(x0, yO, x1, yl, n)# /* erase the box */

}

Listing 11-6. XORing a rectangle into the video buffer. (continued)

Chapter 11: Bit Blocks and Animation 365

Listing 11-6. Continued.

Rectangle(x0, y0, x1, yl, n)
int x0,y0,x1,yl;
asaite n;

{
Line(ex0, yO; £0, yi, mi de

ihaiMe (x0. yOpex<in VO, Mm dir

Dane lary I XOy Vl ee Nee
Tees ENS) (eal Te Vale ellli7 eV, Olga

Rubberbanding
A related technique based on the XOR operation is rubberbanding, in which a
moving object remains attached to a stationary object by a straight line. The tech-

nique is called rubberbanding because the line that connects the two objects ap-

pears to stretch as it moves. Listing 11-7 is similar to Listing 11-6, but moves a

rubberbanded line around the point at (150,100).

/* Listing 11-7 */

#define Xmax 640 /* screen dimensions in 640x350 mode *

#define Ymax 350

main ()

{

int x0 = 150; /* fixed endpoint at 150,100 */

int yO = 100;

Bore x = 0; /* moving endpoint at 0,0 */
int y = 0;

int n = 27 /* pixel value */

for(; x<Xmax; x++) /* move right */

NORTIne(xO, yO, xp ym ee

for(--x; y<Ymax; yt+) /* move down */
XORLine(x0, yO, x, y, n);

LOR (g—— Veex> (ie ——sc0) /* move left */
XORDLIne (x0, v0, oe, avin me es

for(x++; y>=0; --y) /* move up */
AORLine(x0, yO, x, y, nm)>

XORLine (7x0; yO, xi, yi, nm)
int X OGY Oia vals /* endpoints */
int Hp /* pixel value */

Line (OY On eX Vilna lus /* the line is onscreen */
Hane (CeO eeyOl ex, yl, m bp /* the line is erased */

}

Listing 11-7. XORing a line into the video buffer.

366 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Bit Block Moves
You can use XOR with a bit block move to animate any arbitrary group of pixels.
But use this technique only with a relatively small bit block, since generally a bit
block contains many more pixels to be drawn and redrawn than does a line or a
rectangle. The longer it takes to maneuver the bit block around the screen, the
slower your video routine performs.

Problems with XOR Animation
Objects that are animated by XOR operations always flicker. The reason is ob-
vious: An object is visible only after you first XOR it into the buffer. The second
XOR makes it disappear. The resulting flicker draws attention to the animated
object, and may be desirable, particularly if the object is repeatedly XORed even
when you aren’t moving it. On the other hand, the flickering can be distracting,
particularly on color displays where the XORed object alternates between two
garish colors.

You can sometimes alleviate flickering during XOR animation by inserting a soft-

ware ‘‘pause’’ between the first and second XOR operations. This pause can be an

empty loop, a call to some short subroutine, or perhaps a wait for the next vertical

blanking interval. In any case, because the XORed object remains on the screen

slightly longer, it may flicker less.

The animated image can disappear if the loop that performs the XOR operations

inadvertently becomes synchronized with the display refresh cycle. In this situa-

tion, the animated object is never visible if both XOR operations occur outside the

relatively brief time interval when the raster is displaying the relevant portion of

the video buffer. Solving this sort of problem is tricky because it involves both the

speed of your program and the size of the animated image.

Overlapping Bit Block Moves

In some applications, you can avoid XOR animation problems by rapidly redraw-

ing a block of pixels in overlapping locations in the video buffer (see Figure 11-7

and Listing 11-8). The bit block in Figure 11-7 has a margin of background pixels

along its left edge. Each time you store the bit block in the video buffer, this

margin overlaps the foreground pixels in the previously drawn block. Without

this margin, unexpected streaks of foreground pixels trail the bit block as it

moves to the right across the screen.

Although they are fast enough for most purposes, the bit block move routines in

this chapter are too slow for such performance-intensive applications as arcade-

style video games. You can tailor the code in several ways to increase the anima-

tion speed if you’re willing to sacrifice their general-purpose approach.

Chapter 11: Bit Blocks and Animation 367

ieee of | Inari
background pixels Previous margin

a. b.

Figure 11-7. Overlapping bit block moves. The bit block is drawn (Figure 11-7a), then drawn

again slightly to the right (Figure 11-7b). The margin of background pixels restores the back-

ground as the bit block is ‘‘moved’’ to the right.

char far buf[(32/4) *21+5]; /* bit block buffer large enough */

/* to contain a 32- by 21-pixel block */

ear eu tae ily, ul Osean pmsl Op ECL Jia. /* a right-pointing arrowhead */

ace 2 ilee Oran sen Op mmEC Clon pry /* in a 32- by 21-pixel bit block */

Teer’ (eel eee Ome Silnp eee i Ole Billa,

inemer (eeu Opell OG Clary

GetBuebliock(OF) 05 si, 20, but)% /* copy the bit block to */

/* system RAM */

moe (Cs SaOe Shks SOO aks 8)

StoreBlteBlock(buf, 2, 0) /* slide rightward */

Listing 11-8. A program to move a block of pixels using the overlapping technique.

One technique is to limit the bit block routines to byte-aligned (or, on the CGA

and the HGC, word-aligned) blocks of pixels. This eliminates much of the bit-

mask logic and lets you make full use of the 80x86 MOVS instruction. Another ap-

proach is to write routines that handle bit blocks of a fixed, predetermined size.

This lets you replace some iterative loops in the routines with repetitive sequences

of in-line code. Unfortunately, even highly optimized CGA and EGA animation

routines rarely come close to the speed you can expect from arcade-style video
display hardware.

A Graphics-Mode Cursor

In alphanumeric modes, the on-screen cursor indicates the location where your

program expects the user’s next input. Most alphanumeric-mode programs rely on

the hardware-generated blinking cursor to indicate the current input location. In

graphics modes, on the other hand, hardware does not support a cursor; your soft-
ware must generate one.

368 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Implementing a cursor in a graphics mode is somewhat complicated, because you
must draw the form that represents the cursor directly into the video buffer, while
preserving the pixels that the operation overwrites. You can do this in two ways:
by using XOR to display the cursor, or by saving and restoring the bit block that is
overlaid by the cursor.

XOR

The simplest way to display a graphics cursor is to XOR it into and then out of the
video buffer. This technique is the same one used to animate graphics images,
and the same pros and cons apply.

Probably the worst side effect of XORing a graphics cursor into the video buffer is

that the color displayed for the XORed cursor can change with the background.

The cursor can all but disappear on a patterned background or on a background

with a displayed color near that of the XORed cursor.

Palette programming can prevent this problem. For example, the EGA palette in

Figure 11-8 is set up assuming that all pixels in the cursor shape have the value 8

(1000B) and that all preexisting pixels in the video buffer have a value from 0

through 7. With this arrangement, XORing the cursor into the video buffer causes

it always to be displayed with color value 3FH (high-intensity white). The obvious

drawback is that this technique halves the number of colors you can display.

Palette Register Color Value

00H
01H 1
02H 2
03H 3
04H 4
OSH 5
06H 6
07H 7
08H 3FH
09H 3FH
OAH 3FH
OBH 3FH
OCH 3FH
ODH 3FH
0OEH 3FH
OFH 3FH

ne UEEEEEEEEEEDEEEEE!

Figure 11-8. EGA palette values for a high-intensity white XOR graphics cursor.

Chapter 11: Bit Blocks and Animation 369

Bit Block Move

Another approach is to make a copy of the bit block of pixels that the cursor

replaces. You can then erase the cursor by restoring the pixels in the video buffer

from the copy. This technique is attractive because it lets you use any means you

choose to draw the cursor.

A good way to draw the cursor, once you have made a copy of the underlying pix-

els in the video buffer, is to copy the cursor shape into the buffer with a bit block

move. Obviously, this technique works best with a rectangular cursor. To draw a

cursor of any arbitrary shape, use a two-step process (see Figure 11-9). First, zero

a group of pixels in the shape of the cursor in the video buffer with a bit block
AND operation. Then draw the cursor with a bit block OR or XOR operation.

Whenever you use a graphics-mode cursor, you must ensure that the

cursor is erased before updating the video buffer. If you do not, your

program may inadvertently update the portion of the video buffer that

contains the cursor image. The next cursor move will restore the con-

tents of the buffer to what they were before the cursor was drawn,

leaving a ‘‘hole’’ where the cursor was (see Figure 11-10).

a. b. Cc:

Figure 11-9. Drawing a graphics cursor with a 2-step mask-and-replace technique: First, a
mask (Figure 11-9a) is ANDed into the video buffer. Then the cursor shape (Figure 11-9b) is
ORed into the buffer to give the result in Figure 11-9c. ; :

370 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

H orld Hella Horld
| |
| |
Leen

a. b.

Figure 11-10. Jf a graphics cursor is accidentally overwritten (Figure 11-10a), a ‘‘hole’’
appears when the cursor is erased (Figure 11-10b).

Chapter 11: Bit Blocks and Animation 371

12

Some Advanced Video
Programming
Techniques

A Vertical Interrupt Handler

EGA and VGA @ MCGA

Panning on the EGA and VGA

Positioning the Screen Window @ Panning

es Resizing the Video Buffer

Bit-Plane Layering

EGA and VGA Split Screen

_The Light Pen Interface
Light Pen Position @ Light P
Det Hercules Video Modes

This chapter deals with some of the less frequently exploited capabilities of PC

and PS/2 video subsystems. Most programmers do not concern themselves with

these hardware features, because they are infrequently used in most video soft-

ware. Still, each of these hardware features lends itself to programming tech-

niques that can be used in certain applications where nothing else is as effective.

Nothing in this chapter requires ‘‘gonzo programming’’ or any magical

knowledge of the hardware. You should nevertheless be comfortable with 80x86

assembly-language programming before tackling the details of this material.

Most of the chapter describes programming techniques for the EGA and the VGA,

but the discussions of the light pen interface and bit-plane layering are pertinent

to Hercules adapters as well.

A Vertical Interrupt Handler
It’s neither the interrupt nor the handler that’s vertical— it’s the fact that the

CRTC on the EGA, the VGA, and the MCGA can generate a hardware interrupt at

the start of the vertical blanking interval, that is, at the start of the scan line after

the bottom line of displayed video buffer data. An interrupt handler for this Verti-

cal Interrupt can thus update the video buffer or program the video hardware

without interfering with the display.

The interrupt is generated on interrupt request line 2 (IRQ2). The computer’s

programmable interrupt controller (PIC) is set up during the ROM BIOS coldstart

to map IRQ? to interrupt vector OAH, so a Vertical Interrupt handler should be

designed to handle interrupt OAH.

n The programmable interrupt controller used in the IBM PC, PC/AT,

, and PS/2 Models 50, 60, and 80 is the Intel 8259A; in the PS/2 Model 30,

" the same functions are supported in a proprietary VLSI chip, the I/O
Support Gate Array. In all cases, however, the programming interface
to the PIC for managing Vertical Interrupts is the same.

EGA and VGA

The scan line number at which the interrupt is issued is 1 greater than the value in
the CRTC’s Vertical Display Enable End register (12H). The value in this register
specifies the number of scan lines of video buffer data that are displayed, so the
CRTC generates Vertical Interrupts at the start of the vertical blanking interval.

Bits 4 and 5 of CRTC’s Vertical Retrace End register (11H) control whether and
when the CRTC signals a Vertical Interrupt. You set bit 5 to 1 to enable the CRTC
to generate the interrupt. Bit 4 controls a 1-bit latch whose status appears in bit 7
of Input Status Register Zero (3C2H). You must zero bit 4 to clear the status latch.
When you set bit 4 to 1, the latch status bit changes from 0 to 1 when the next ver-
tical interrupt occurs, and remains set to 1 until you again clear the latch.

374 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

To use the Vertical Interrupt feature, you must perform the following actions:

@ Point the interrupt OAH vector to a Vertical Interrupt handler.

@ Enable IRQ2.

@ Enable the Vertical Interrupt.

The routine in Listing 12-1 shows how to do this. Note how this routine is coordi-

nated with the interrupt handler itself. The routine preserves the interrupt OAH

vector so the interrupt handler can chain to the previous handler if necessary, and

so the routine can eventually restore the previous interrupt vector when the inter-

rupt handler is no longer needed.

TITLE VELSting lie— le

NAME VREGA

PAGE 55, 132

; Name: VREGA

; Function: Vertical Interrupt Service routine for EGA and VGA

7 Caller: Microsoft C:

3 int EnableISROA(); /* returns 0 if installed ok */

; void DisableISROA();

CRT_MODE EQU 49h ; addresses in video BIOS data area

ADDR_6845 EQU 63h

DGROUP GROUP _DATA

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP

ISROA PROC far ; Interrupt handler for INT OAh

push ax ; preserve registers

push dx

push ds

mov ax,seg DGROUP

mov ds,ax * DS => DGROUP

; determine whether a Vertical Interrupt has occurred

mov dx, 3CZ2h a De 4= ol /O BOrt elon

; Input Status Register zero

in a loci

test al, 80h ; test bit 7 of the Status Reg value

jnz L10 ; jump if vertical interrupt

Listing 12-1. Handling Vertical Interrupts on the EGA and VGA. (continued)

Chapter 12: Some Advanced Video Programming Techniques 375

Listing 12-1. Continued.

pushf

call

jmp

ds:PrevISROA

short Lexit

; handle a Vertical Interrupt

L10: mov

in

push

mov

and

out

jmp

dx, Port3x4

al,dx

ax

ax, DefaultVREnd

ah,11101111b

dx, ax

$+2

,

,

not a Vertical Interrupt so chain to previous interrupt handler

simulate an INT

to the previous INT OAh handler

DX 3B4h or 3D4h

AL := value of CRTC address reg

preserve this value

AH := default value for VR End reg

AL := 11h (register number)

AH bit 4 := 0 (clear interrupt latch)

update VR End register

wait for CRTC to respond

; send End of Interrupt to Intel 8259A Programmable Interrupt Controller

; to allow subsequent IRQ2 interrupts to occur

mov

out

jmp
Sta

; do something useful

inc

al,20h

20h,al

$+2

word ptr _VRcount

8259A I/O port

send nonspecific EOI to 8259A

wait for PIC to respond

enable interrupts

7 increment a counter

; enable CRTC to generate another interrupt

ewe

mov

and

or

out

jmp

pop
out

Lexit: pop

pop

pop
iret

ISROA ENDP

,

ax, DefaultVREnd

ah,11011111b

ah, 00010000b

dx, ax

$+2

ax

Cbacul

ds

dx

ax

,

,

disable interrupts

AH := default value for VR End reg

AL := 11h (register number)

AH bit 5 := 0 (enable vertical int)

AH bit 4 := 1 (enable int latch)

restore previous Address reg value

restore registers and exit

; EnableISROA — enable Vertical Interrupt Handler
,

PUBLIC

_EnableISROA PROC

_EnableISROA

near

(continued)

376 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS
.

Listing 12-1. Continued.

’

Fy

push

mov

push

push

mov

mov

bp * preserve caller registers

bp, sp

Su

di

ax, 40h

es,ax ES -> video BIOS data area ™

save default CRTC register values

mov

mov

mov

int

cmp

jne

cmp

je

cmp

je

mov

jmp

get default value for

L20: mov

,

mov

xlat

jmp

get default value for

TZ ie mov

out

AINCS

in

L225 mov

,

dx,es: [ADDR_6845] ; DX := CRTC Address port

Port3x4,dx 7; Save port address

ax, 1A00h , AH := 1AH (INT 10H function number)

7; AL := 0 (read Display Combination)

10h ; AL := 1AH if function 1AH supported

7 BL := active video subsystem

al,1Ah

L20 ; jump if not a VGA

rou ay

L21 ; jump if VGA

b1,8

L21 7 jump) 2 VGA

ax, OFFFFh ; return OFFFFh if neither EGA nor VGA

short 123

EGA Vertical Retrace End register

al,es: [CRT MODE] ; AL := video BIOS mode number

bx,offset DGROUP:EGADefaultVals

; AL := default value for VR End reg

short L22

VGA Vertical Retrace End register

al, VREndReg ; AL := VR End register number

dx,al

dx 7; DX s= 3B5H or 3D5H

al,dx ; AL := current value for register

VREndValue, al ; save this value

save old interrupt OAh vector

mov

int

mov

mov

ax, 350Ah ; AH := 35H (INT 21h function number)

; AL := OAH (interrupt number)

21h ; ES:BX := previous INT OAH vector

word ptr PrevISROA,bx

word ptr PrevISROA+2,es ; save previous vector

(continued)

Chapter 12: Some Advanced Video Programming Techniques 377

Listing 12-1. Continued.

; update interrupt OAH vector with address of this handler

push ds

mov dx,offset ISROA

push cs

pop ds

mov ax, 250Ah

int 21h

pop ds

’

eat

mov dx,21h

ain) al,dx

and aati!) 10s ho

out dx,al

+ enable vertical interrupts

mov dx, Port3x4

mov ax, DefaultVREnd

and ah,11001111b

out dx, ax

jmp $+2

or ah, 00010000b

out dx,ax

jmp $+2

Sins

xor ax,ax

L23: pop di

pop si

mov sp,bp

pop bp
ret

_EnableISROA ENDP

'

,

preserve DS

DS:DX -> ISROA

AH := 25H (INT 21H function number)

AL := OAH (interrupt number)

update INT OAH vector

restore DS

enable IRQ2 by zeroing bit 2 of the 8259A’s mask register

clear interrupts

DX := 8259A mask register

AL := mask register value

reset bit 2

3B4H or 3D4H

clear bits 4 and 5 of VR End reg

wait for CRTC to respond

set bit 4

enable interrupts

AX := 0 (return value)

restore registers and exit

; DisableISROA — disable Vertical Interrupt Handler

PUBLIC DisableISROA

_DisableISROA PROC near

push bp

mov bp, sp

push si

push di

push ds

(continued)

378 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 12-1. Continued.

+ disable vertical interrupts

ela. ; disable interrupts
mov dx, Port3x4

mov ax, DefaultVREnd

out dx,ax *# restore Vertical Retrace End reg
jmp $+2

sti ; enable interrupts

* restore previous interrupt OAh handler

lds dx, PrevISROA 7 DS:DX := previous INT OAH vector
mov ax, 250Ah + AH := 25H (INT 21H function number)

7 AL := OAH (interrupt number)

int 21h

pop ds 7 restore registers and exit
pop di

pop Sa

MOv sp,bp

pop bp
ret

_DisableISROA ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

EXTRN _VRcount : word ; declared in C caller

PrevISROA DD ? 7 Save area for old int OAh vector

Port3x4 DW ? ; 3B4h or 3D4h

DefaultVREnd LABEL word

VREndReg DB ik ; Vertical Retrace End register number

VREndValue DB g ; default value for VR End register

EGADefaultVals DB 2Bh, 2Bh, 2Bh, 2Bh, 24h, 24h, 23h, 2Eh ; default values for

DB 00h, 00h,00h, 00h, 00h, 24h,23h,2Eh ; EGA VR End reg

DB 2Bh

_DATA ENDS

END

The handler itself, in procedure ISROA, gains control whenever interrupt OAH

occurs. To distinguish between the hardware Vertical Interrupt on IRQ2 and a
possible software interrupt OAH, the handler examines bit 7 of Input Status Regis-

ter Zero. If this bit is 1, a Vertical Interrupt has occurred, and the handler con-

tinues about its business. If the bit is 0, no Vertical Interrupt has occurred, so the

handler chains to the previous interrupt OAH handler.

Chapter 12: Some Advanced Video Programming Techniques 379

A drawback to using the Vertical Interrupt is that any hardware inter-

rupt on IRQ2 causes the status bit in Input Status Register Zero to be

set. Thus, although the status bit can be used to detect software inter-

rupt OAH, an interrupt handler cannot distinguish between EGA Verti-

cal Interrupts and IRQ2 interrupts generated by other hardware unless

the other hardware can be reliably interrogated. Since some other IBM

PC adapters can use IRQ2 (for example, the bus version of the

Microsoft Mouse), you can reliably use the Vertical Interrupt only

when certain about the exact hardware configuration of the PC on

which your program is running.

Once the handler detects a Vertical Interrupt (that is, bit 7 of Input Status Register

Zero is 1), it issues a nonspecific end-of-interrupt (EOI) instruction to the inter-

rupt controller so that subsequent IRQ2 interrupts can be processed. Reentrance is

not a problem, because additional Vertical Interrupts will not be signalled until

the handler itself clears and reenables the status latch. Once the EOI has been

issued, the handler is free to perform some useful action. In this example, it sim-

ply increments a counter. Just before exiting, the handler reprograms the Vertical

Retrace End register to enable the next Vertical Interrupt.

The example in Listing 12-2 shows how you can integrate a Vertical Interrupt

handler into a high-level program. The example is intentionally simple. It does

nothing but count a designated number of Vertical Interrupts and display a mes-

sage. Of course, your own Vertical Interrupt handler might perform more compli-

cated actions than simply updating a variable. For instance, you could perform
animation by updating the video buffer each time the interrupt occurs. You might
also update the CRT and Attribute controllers to produce a panning effect using
techniques described later in this chapter.

/* Listing 12-2 */

alias VRcount = 0; /* vertical interrupt counter */

main ()

{

if (EnableISROA())

{
printf("\nCan’t enable vertical interrupt handler\n");
eric (alias

}

while (VRcount < 600)

printf£("\015Number of vertical interrupts: $%d", VRcount);

DisableISROA();

}

Listing 12-2. Using a Vertical Interrupt handler in a C program.

380 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

T Hardware support for the Vertical Interrupt feature can vary. IBM’s

, VGA adapter, for example, does not support Vertical Interrupts at all.

p On some EGA clones, the polarity of bit 7 in Input Status Register

Zero is Opposite to that of the equivalent EGA bit; that is, a Vertical In-

terrupt has occurred when bit 7 is 0. (Second-source manufacturers of

EGA-compatible adapters do not always emulate every detail of the

EGA’s occasionally inscrutable hardware design.) To ensure that your

Vertical Interrupt handler works correctly on EGA clones, determine

the status bit’s polarity when the bit is in a known state and devise

your test for the Vertical Interrupt accordingly.

MCGA

A Vertical Interrupt handler for the MCGA, such as the one in Listing 12-3, is

similar to the handler for the EGA and the VGA. On the MCGA, the Interrupt Con-

trol register (11H) contains the control and status bits used to set up and detect a

Vertical Interrupt. Zeroing bit 5 of the Interrupt Control register enables the

MCGA to generate a Vertical Interrupt. Zeroing bit 4 clears the interrupt status

latch. Setting bit 4 to 1 allows the MCGA to detect subsequent interrupts. Bit 6 is

the interrupt status bit. The MCGA sets this bit to 1 to indicate that a Vertical In-

terrupt has occurred.

void DisableISROA();

TITLE Mista 2— 5)"

NAME VRMCGA

PAGE 557 32

7 Name: VRMCGA

; Function: Vertical Interrupt Service routine for MCGA

; Caller: Miereso£tt ‘Cs

; int EnableISROA(); /* returns 0 if installed ok */

ADDR_6845 EQU 63h

DGROUP GROUP DATA

TEXT “ SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP

ISROA PROC far ; Interrupt handler for INT OAh

push ax ; preserve registers

push dx

push ds

mov ax,seg DGROUP

mov ds,ax - DS => DGROUP

Listing 12-3. Handling Vertical Interrupts on the MCGA. (continued)

Chapter 12: Some Advanced Video Programming Techniques 381

Listing 12-3. Continued.

mov

in

push

,

mov

out

jmp
nae

in

dec

test

qn

dx, Port3x4

alyiGx

ax

al, IContReg

dx, al

$+2

dx

al,dx

(abe

al,40h

L10

Fi

,

DX := CRTC Address reg number

preserve CRTC Address reg value

determine whether a Vertical Interrupt has occurred

AL := register number

wait for MCGA to respond

DX := 3D5H

AL := current Interrupt Control

register value

test bit 6

jump if Vertical Interrupt

; not a Vertical Interrupt so chain to previous interrupt handler

pushft

Cal

jmp

ds:PrevISROA

short Lexie

+ handle a Vertical Interrupt

Silo. mov

and

out

jmp

ax, DefaultiICont

aby tion nis

dx, ax

$+2

; send End of Interrupt to Programmable

7 to allow subsequent IRQ2 interrupts to occur

mov

out

jmp
sti

7 do something useful

Ene

al,20h

20h,al

$+2

,

’

5) Sn) oe

simulate an INT to the

previous INT OAh handler

AH := default value for

Interrupt Control register

AL := 11h (register number)

AH bit 4 := 0 (clear interrupt latch)

update Interrupt Control reg

wait for MCGA to respond

Interrupt Controller

Neo‘

word ptr VRcount

PIC I/O port

send nonspecific EOI to PIC

wait for PIC to respond

enable interrupts

; increment a counter

7; enable CRTC to generate another interrupt

edi

mov

and

or

out

jmp

exalts pop

out

ax, DefaultICont

ah,11011111b

ah,00010000b

dx, ax

$+2

ax

dx,al

,

,

disable interrupts

AH := default value for

Interrupt Control register
AL := 11h (register number)
AH bit 5 := 0 (enable Vert Int)
AH bit 4 := 1 (enable int latch)

restore previous 3D4H value

(continued)

382 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 12-3. Continued.

ISROA

+ EnableISROA —

,

_EnableISROA

pop

pop

pop
iret

ENDP

enable Vertical Interrupt

PUBL

PROC

push

mov

push

push

mov

mov

7 save default CRTC

L20:

mov

mov

mov

int

cmp

jne

cmp

je

cmp

je

mov

jmp

; get default value

R243 mov

eli

out

jmp
inc

in

St

mov

ds ;

dx

ax

IC _EnableISROA

near

bp ;

bp, sp

si

di

ax, 40h

es,ax ;

register values

dx,es: [ADDR_6845]

Port3x4,dx 3

ax, 1A00h ?

10h ;

al,1Ah

L20 ;

b1,0OBh

L21 ;

b1,0Ch

L21 ;

ax, OFFFFh

short L23

restore registers and exit

Handler

preserve caller registers

ES -> video BIOS data area

, DX := CRTC Address port

Save port address

AH

AL

AL

BL

= 1AH (INT 10H function number)

0 (read Display Combination)

1AH if function 1AH supported

active video subsystem

jump if not an MCGA

jump if MCGA

jump if MCGA

return OFFFFh if not an MCGA

for MCGA Interrupt Control register

al, IContReg ;

dx,al

$+2

dx ;

al,dx ;

IContValue, al P

AL

DX

AL

Interrupt Control reg number

3D5H

current value for register

save this value

(continued)

Chapter 12: Some Advanced Video Programming Techniques 383

Listing 12-3. Continued.

; save old interrupt

mov

int

mov

mov

,

push

mov

push

pop
mov

erate

pop

7 enable IRO2 by zeroing bit 2 of the PIC’

ale

mov

in

and

out

OAh vector

ax, 350Ah

21h

,

,

r

AH := 35H (INT 21h function number)

AL := OAH (interrupt number)

ES:BX := previous INT OAH vector

word ptr PrevISROA,bx

word ptr PrevISROA+2,es ; save previous vector

ds

dx,offset ISROA

ES

ds

ax, 250Ah

21h

ds

dx,21h

al,dx

aly Wit 101 No

dx,al

; enable Vertical Interrupts

mov

mov

and

out

jmp
(one

out

jmp
SHES.

xOr

2h pop

pop
mov

pop
ret

_EnableISROA ENDP

,

dx, Port3x4

ax,DefaultICont

ah, 11001111b

ax, ax

$+2

ah, 00010000b

ax, ax

$+2

ax,ax

di
si

sp,bp
bp

a
,

update interrupt OAH vector with address of this handler

preserve DS

DS:DX -> ISROA

AH := 25H (INT 21H function number)

AL := OAH (interrupt number)

update INT OAH vector

BESEOre DS

s mask register

clear interrupts

DX := PIC mask register

AL := mask register value

SRSEKSIE LOG

DX := CRIC Address port

clear bits 4 and 5 of Int Control reg

wait for MCGA to respond

set bit 4

enable interrupts

AX := 0 (return value)

restore registers and exit

; DisableISROA — disable Vertical Interrupt handler
,

PUBLIC _DisableISROA
_DisableISROA PROC near

(continued)

384 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 12-3. Continued.

push

mov

push

push

push

bp
bp, sp

si

di

ds

; disable Vertical Interrupts

ela.

mov

mov

out

jmp
Syed:

; disable interrupts
dx, Port3x4

ax, DefaultICont

dx, ax 7 restore Interrupt Control register
$+2

7 enable interrupts

; restore previous interrupt OAh handler

_DisableISROA

EEXE

_DATA

PrevISROA

Port3x4

DefaultICont

IContReg

IContValue

_DATA

lds

mov

int

pop

pop

pop
mov

pop
ret

ENDP

ENDS

SEGMENT

EXTRN

DD

DW

LABEL

DB

DB

ENDS

END

dx, PrevISROA + DS:DX := previous INT OAH vector

ax, 250Ah 7 AH 3= 25H (INT 21H function number)

7 AL := OAH (interrupt number)

21h

ds + restore registers and exit

di

si

sp,bp

bp

word public 'DATA'

_VRcount: word ; Geclared in C caller

2 7; save area for old int OAh vector

? ; 3B4h or 3D4h

word

1th 7 Interrupt Control register number

a ; default value for Int Control reg

On the EGA and MCGA, if a Vertical Interrupt handler gains control
while a video BIOS (INT 10H) function is executing, the interrupt

handler may inadvertently disrupt BIOS CRTC programming. The

reason can be traced to a subroutine buried in the IBM BIOS in these

video subsystems. This subroutine is called by several video BIOS rou-

tines to perform I/O port output to video hardware registers, including

CRT Controller, Sequencer, Graphics Controller, and Attribute Con-

troller registers.

Chapter 12: Some Advanced Video Programming Techniques 385

Unfortunately, this subroutine is not impervious to interrupts. It con-

tains a sequence of two 8-bit port writes (OUT DX, AL). The first OUT

loads the designated address register. The second OUT writes a data

byte to the corresponding data register. If an interrupt occurs between

the two port writes, and if the interrupt handler itself writes to the

same port, the BIOS subroutine’s second port write may be invalid.

To avoid this situation on the EGA and MCGA, the Vertical Interrupt

handlers in Listings 12-1 and 12-3 read the value of the CRTC Address

register at port 3D4H (3B4H on an EGA with a monochrome display).

On the EGA, this value is only readable for about 15 milliseconds after

the port has been written, but this is enough time for the Vertical In-

terrupt handler to read and preserve the value of the CRTC Address

register. The handler can thus restore the value before it returns from

the interrupt.

Panning on the EGA and VGA
The 256 KB video buffer of the EGA and the VGA can store several screens of

data. Thus, in a sense, what is displayed represents a ‘‘screen window,”’ a sort of

hardware window into the contents of the video buffer.

Positioning the Screen Window

On an adapter such as the MDA or the CGA, the CRT Controller’s Start Address

registers control which portion of the video buffer is displayed. Because these

registers contain a byte offset into the video buffer, you can control the position of
the screen window only to the nearest byte. On the other hand, the CRT Controller

on the EGA and the VGA can position the start of the screen window at any given

pixel position.

In graphics modes, the contents of the CRTC’s Start Address High and Start Ad-
dress Low registers (OCH and ODH) locate the screen window to the nearest byte

offset in the video buffer. The contents of the CRTC’s Preset Row Scan register
(08H) and the Attribute Controller’s Horizontal Pel Pan register (13H) ‘‘fine-

tune’’ the screen window’s position pixel by pixel (see Figure 12-1).

When you change the screen window’s position smoothly, pixel by pixel, the dis-
played image appears to pan across the screen. A convenient way to do this is to
write a routine that locates the screen window at a specified pixel position and
then call the routine iteratively from within a loop. This routine, as demonstrated
in Listing 12-4, must distinguish between alphanumeric and graphics modes. It
must also handle a 9-pixel-wide character matrix in VGA and EGA monochrome
alphanumeric modes.

386 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Start Address registers specify this character

0a
LIL)

Origin of
screen window

en Value for

Horizontal
Pel Pan register

Displayed portion of buffer

Value for Preset
Row Scan register

Video buffer

Figure 12-1. Control of the displayed portion of the video buffer in alphanumeric modes.

TITLE "Listing 12-4!
NAME ScreenOrigin

PAGE 557 lez

; Name: ScreenOrigin

; Function: Set screen origin on EGA and VGA

nm Caller: Microsoiin Cx

void ScreenOrigin(x,y);

; int X7Vip /* pixel x,y coordinates */

ARGx EQU [bp+4]

ARGy EQU [bpt+6]

CRT MODE EQU 49h ; addresses in video BIOS data area

ADDR_6845 EQU 63h

POINTS EQU 85h

BIOS FLAGS EQU 89h

DGROUP GROUP _DATA

TEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP

PUBLIC _ScreenOrigin

Listing 12-4. Setting the screen origin on the EGA and VGA. (continued)

Chapter 12: Some Advanced Video Programming Techniques 387

Listing 12-4. Continued.

_ScreenOrigin PROC near

push bp ; preserve caller registers

mov bp, sp

push si

push di

mov ax, 40h

mov es,ax ; ES -> video BIOS data area

mov cl,es: [CRT_MODE]

mov ax, ARGx ; AX := pixel x-coordinate

mov bx, ARGy ; BX := pixel y-coordinate

cmp eur

ja L01 ; jump if graphics mode

je L02 ; jump if monochrome alpha

test byte ptr es:[BIOS FLAGS],1
jnz L02 7 jump Le VGA

jmp short L03

; setup for graphics modes (8 pixels per byte)

L011: mov cx, 8 ; CL := 8 (displayed pixels per byte)

FC Head)

div en ; AH := bit offset in byte

; AL := byte offset in pixel row

mov Cl ah 7 CL s= bit offset (for Horiz Pel Pan)

ZOE ah,ah

xchg ax, bx 7; AREY

; BX := byte offset in pixel row

mul word ptr BytesPerRow

; AX := byte offset of start of row

jmp short LO5

; setup for VGA alphanumeric modes and EGA monochrome alphanumeric mode

; (9 pixels per byte)

L02: ; routine for alpha modes

mov Carne ; CL := 9 (displayed pixels per byte)

PCH s=0

div el ; AH := bit offset in byte

; AL := byte offset in pixel row

dec ah DR — Oe

jns L04 ; jump if bit offset 0-7

mov ah, 8 ; AH := 8

jmp short L04

; setup for EGA color alphanumeric modes (8 pixels per byte)

L03: mov CSc ; CL := 8 (displayed pixels per byte)

; CH := 0

div ous ; AH := bit offset in byte

7 AL byte offset in pixel row

(continued)

388 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 12-4. Continued.

L04:

TOS‘:

_ScreenOrigin

SetOrigin

mov

xor

xchg

div

xchg

mul

shr

call

pop

pop

mov

pop

ret

ENDP

PROC

add

mov

add

Cal ; CL := value

ah,ah

ax, bx fp ROG ime ay
; BX =

byte ptr es:[POINTS] ; AL :=

; AH :=

ah,ch ; AX t=

CH=

,

word ptr BytesPerRow ; AX

ax, 1 ; AX 3:=

SetOrigin

di ;

si

sp, bp

bp

near ge Callers Ax

; BX

i CH

; cL

bx, ax Bees =

dx,es: [ADDR_6845] CRE Cw1/O

dl1,6 ;

; update Start Address High and Low registers

L20:

E212

in

test

jz

in

test

jnz

Cla

sub

mov

mov

out

mov

inc

out

sti

add

video status port

for Horiz Pel Pan reg

byte offset in row

character row

scan line in char matrix

character row

scan line (value for Preset

Row Scan register)

:= byte offset of char row

word offset of character row

restore registers and exit

offset of character row

byte offset within row

Preset Row Scan value

= Horizontal Pel Pan value

ll

buffer offset

(3B4H or 3D4H)

(3BAH or 3DAH)

port

wait for start of vertical retrace

wait for end of vertical retrace

for Start Address High

Address High reg number

for Start Address Low

Address Low reg number

status port

al,dx ;

al,8

L20

al,dx ;

al,8

L21

; disable interrupts

a6 ; DX := 3B4H or 3D4H

ah,bh ; AH := value

al,0Ch , AL s= "Start

dx, ax ; update this register

ah,bl ; AH := value

al ; AL := Start

dx,ax ; update this register

; enable interrupts

Ge ; DX := video

(continued)

Chapter 12: Some Advanced Video Programming Techniques 389

Listing 12-4. Continued.

h22e in al, dx

test al,8

jz L22

ge

sub d1,6

mov ah,ch

mov al,8

out dx,ax

mov dl,0COh

mov Ale sheOR ZO

out dx,al

mov al,cl

out dx,al

sti

ret

SetOrigin ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

EXTRN _BytesPerRow:word

_DATA ENDS

END

; AH

: AL := Preset Row Scan reg number

» wait for start of vertical retrace

disable interrupts

DX := 3B4H or 3D4H
value for Preset Row Scan reg ll

update this register

DX := 3COh (Attribute Controller port)

> AL bit 0-4 := Horiz Pel Pan reg number

> AL bit 5 := 1

+ write Attribute Controller Address reg

(The Attribute Controller address

flip-flop has been reset by the

EN at b22-..)

> AL := value for Horiz Pel Pan reg

update this register

reenable interrupts

7 bytes per pixel row

ScreenOrigin() accepts as input the x- and y-coordinates of the pixel that

identifies the origin (the upper left corner) of the screen. The routine first updates

the CRTC’s Start Address registers. In effect, this positions the screen at the upper

left pixel of the character that contains the origin in alphanumeric modes, or at

the leftmost pixel in the byte that contains the origin in graphics modes. Then

ScreenOrigin() positions the screen exactly by updating the Horizontal Pel

Panning and Preset Row Scan registers.

The content of the Attribute Controller Horizontal Pel Panning register corre-

sponds to the bit offset of the pixel in the screen’s upper left corner. The value to
store in this register is thus

x MOD 8

In the case of 9-pixel characters in VGA alphanumeric modes and in 80-by-25
monochrome mode on the EGA, the value is

(Coes) MODES

390 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

The Horizontal Pel Panning register is programmed the same way in both alpha-
numeric and graphics modes. This is not the case, however, for the CRTC’s Preset
Row Scan register, which controls the vertical position of the start of the screen.

In alphanumeric modes, the number of rows of pixels displayed for each row of

characters in the video buffer depends on the height of the displayed character

matrix. This is the value stored as POINTS in the ROM BIOS Video Display Data

Area. The Start Address registers position the screen to a particular character in

the video buffer, and the Preset Row Scan register indicates which line in the

character matrix contains the origin of the screen. The Preset Row Scan register

thus contains a value between 0 (the top line of the character) and POINTS-1

(the bottom line). In graphics modes, the pixels in each byte in the video buffer

correspond one-to-one with pixels on the screen, so the Preset Row Scan register

always contains 0.

To avoid interference with the display, updates to the Horizontal Pel Panning,

Preset Row Scan, and Start Address registers should be synchronized with the

display refresh cycle. The Horizontal Pel Panning register must be updated during

the vertical blanking interval. On the other hand, the CRTC samples the values in

the Start Address and Preset Row Scan registers at the beginning of vertical

retrace, so these registers should be updated when vertical retrace is not active.

Panning

The routine in Listing 12-5 shows how you can call ScreenOrigin() to pan

the screen up and down or across the video buffer. Because the position of the vir-

tual screen always changes during a vertical blanking interval, the panning effect

is smooth, with no interference on the screen.

Pan x0, eve ON yt)
int x0,y0; /* starting pixel coordinates */

int Bcily Valle /* ending pixel coordinates */

{
Ie i = x0;

int j = yO;

int Xinc, Yinc; /* horizontal and vertical increments */

LAS ROR SN) /* compute signs of increments */

Xinc = 1;

else

Xinc = -1;7

pie yo vie}

Yiney= 07

else

Yino = 2—17

(continued)

Listing 12-5. A routine to perform smooth pixel-by-pixel panning on an EGA or VGA.

Chapter 12: Some Advanced Video Programming Techniques 391

Listing 12-5. Continued.

while ((i != x1) Il (4 != y1))
{

tof (a | Wes set) /* compute next screen origin */

== Aaney

aA Set VA)
7} += Viney

ScreenOrigin(i, j); /* move screen origin */

}

}

Resizing the Video Buffer

Horizontal panning introduces a problem. The way the video buffer is normally

mapped, the first byte of each line of data in the buffer immediately follows the

last byte of the previous line. If you try to pan horizontally with this map, each

line appears to wrap around the screen as the screen window moves across the

video buffer. To perform horizontal panning usefully, you should resize the video

buffer so each line of data in it is wider than the screen window.

The value in the CRT Controller’s Offset register (13H) controls the way the CRTC

maps lines in the video buffer. As it scans the raster, the CRTC uses the value in

this register to locate the start of each line in the video buffer map. Normally,

lines in the video buffer are the same width as displayed lines. Increasing the

value in the Offset register widens the lines in the video buffer map so only part

of each line can be displayed at one time. This lets you pan horizontally without
wraparound.

For example, consider how you could double the logical width of the video buffer
in 80-by-25 alphanumeric mode. By default, the video BIOS stores the value 28H
in the CRTC’s Offset register, so the CRTC regards each line in the buffer as being
40 words (80 bytes) wide. Although each logical line in the buffer contains 160
bytes of data (80 character codes and 80 attribute bytes), character codes and at-
tributes are stored in different video memory maps (see Figure 10-3 in Chapter
10). Thus, to double the logical line width, store 50H (80 decimal) in the CRTC’s
Offset register. The CRTC will still display 80 characters in each row on the
screen, but it skips 160 characters of data between rows of characters in the
video buffer.

When you resize the video buffer by programming the CRTC’s Offset register, be
careful not to exceed the bounds of the 256 KB video buffer. For example, in 640-
by-350 16-color graphics mode, one screen’s worth of pixels occupies 28,000 bytes
(80 bytes per line x 350 lines) in each of the 64 KB video memory maps. If you
resize the video buffer by increasing the value stored in the CRTC Offset register,
you cannot go beyond 187 bytes per line in this video mode without exceeding the
64 KB limit.

The routine Buf ferDims () in Listing 12-6a can be called to redimension the
video buffer in either graphics or alphanumeric modes. It accepts as parameters

392 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

the desired horizontal and vertical dimensions of the buffer in pixels. The routine
updates the relevant variables in the video BIOS data area and then programs the

CRTC Offset register with the appropriate value. The example in Listing 12-6b
shows how Buf ferDims () could be called to transform a default 80-by-25 al-

phanumeric mode into a 160-by-102 mode in which the Pan () routine in Listing

12-5 can be used.

TITLE "Listing 12-6a"

NAME BufferDims

PAGE 55, 132

7 Name: BufferDims

; Function: Set video buffer dimensions on EGA

7 Callers Microsoft C:

i void BufferDims (x,y);

5 int Boy Vie /* horizontal and vertical */

5 /* dimensions in pixels */

ARGx EQU word ptr [bp+4]

ARGy EQU word ptr [bpt+6]

CRT_ MODE EQU 49h ; addresses in video BIOS data area

CRT_COLS EQU 4Ah

CRT_LEN EQU 4Ch

ADDR 6845 EQU 63h
ROWS EQU 84h

POINTS EQU 85h

_TEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT

PUBLIC _BufferDims

_BufferDims PROC near

push bp ; preserve BP

mov bp, sp

mov ax, 40h

mov es,ax ; ES -> video BIOS data area

determine width of displayed character matrix (8 or 9 pixels)
,

mov bx, 8 ; BX := 8 pixels wide

cmp byte ptr es:[CRT_MODE],7 ; check BIOS mode number

jne L01 ; jump if not monochrome

inc bx ; BX := 9 pixels wide

; update video BIOS data area

Listing 12-6a. Redimensioning the video buffer. (continued)

Chapter 12: Some Advanced Video Programming Techniques 393

Listing 12-6a. Continued.

L01: mov ax, ARGx ; AX := number of pixels per row

div De ; AL := number of character columns

mov es: [CRT_COLS],al

mov bh,al ; BH := number of character columns

mov ax, ARGy ; DX:AX := number of pixel rows

div byte ptr es: [POINTS] ; AL := number of character rows

dec al

mov es: [ROWS],al

inc al

mul bh ; AX := character rows * character cols

mov es:[CRT_LEN],ax ; update video BIOS data area

; update CRTC Offset register

mov ah,bh

shr ah, 1 ; AH := number of words per row

mov al,13h ; AL := CRTC Offset register number

mov dx,es:[ADDR_6845] ; DX := 3B4H or 3D4H

out ax, ax

pop bp ; restore BP and exit

iaeete

_BufferDims ENDP

Sin ENDS

END

/* Listing 12-6b */

#define CharColumns 160 /* desired character dimensions */

#define CharRows 102

#define CharacterWidth 8 /* 8 for EGA color modes */

stan

main ()

}

/* 9 for EGA monochrome or VGA */

BytesPerRow = CharColumns * 2; /* for 80-column alphanumeric modes */

int i;

int far *POINTS = 0x00400085; /* (in video display data area) */

BufferDims(CharColumns * CharacterWidth, CharRows * (*POINTS));

for(i = 0; i < CharColumns / 10; i++) /* display a long line */
printf ("0123456789") ;

Pan(0, 0, 80 * CharacterWidth, 0); /* pan right */
Pan(80 * CharacterWidth, 0, 0, 0); /* pan left */
Pan(0, 0, 0, 50 * (*POINTS)); /* pan down */
Pant 0, 50) * (POINTS), 90, (0); /* pan up */

Listing 12-6b. Creating a 160-by-102 alphanumeric mode.

394 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Bit-Plane Layering
In EGA and VGA 16-color graphics modes and in the InColor Card’s 720-by-348
16-color mode, you can display any combination of the four bit planes. On the
EGA and VGA, the four low-order bits of the Attribute Controller’s Color Plane
Enable register (12H) control which bit planes are displayed. Similarly, on the In-
Color Card, the four low-order bits of the Plane Mask register (18H) determine
which bit planes are displayed. In all three subsystems, all four bits are set to 1 to
enable the display of all four bit planes. You can zero any combination of these
bits to prevent display of the corresponding bit planes.

When you disable a bit plane in this way, pixel values are interpreted as though
the corresponding bit in each pixel were set to 0. The contents of a disabled bit
plane are unaffected. This means you can draw different images into different bit
planes and display them selectively. When bit planes containing different images

are displayed together, the images appear to overlap, as if the bit planes were
transparent and layered one above the other.

Consider the example in Figure 12-2. The grid is drawn in bit plane 3 and the

cylinder in bit planes 0 through 2. (A quick way to draw both figures into the bit

planes is to OR the appropriate pixel values into the video buffer.) If you use a

default 16-color palette, the grid appears gray, and the cylinder can have any of

the usual eight unintensified colors.

cas

Figure 12-2. Bit-plane layering. The cylinder’s pixels have values between 0 and 7 (bit
planes 0 through 2); the grid’s pixels have the value 8 (bit plane 3 only). Selectively enabling
or disabling bit planes 0 through 2 and bit plane 3 displays the cylinder, the grid, or both.

Chapter 12: Some Advanced Video Programming Techniques 395

If all four bit planes are displayed, both grid and cylinder appear on the screen. If

you disable bit plane 3, the grid disappears. If you disable bit planes 0 through 2,

displaying only bit plane 3, the cylinder disappears and only the grid is visible. In

all three cases, the contents of the bit planes remain intact.

In using the default palette register values with the grid and cylinder, you’ll find

the pixels at which the grid and cylinder intersect are displayed with intensified

colors. You can avoid this by updating the palette so that the colors displayed for

the intersection points (pixel values 9 through OFH) are the same as the corre-

sponding unintensified colors (1 through 7). Then, when both grid and cylinder

are displayed, the cylinder appears in front of the grid.

EGA and VGA Split Screen

You can configure the CRT Controller on the EGA and the VGA to display two dif-

ferent portions of the video buffer on the same screen (see Figure 12-3). To do

this, program the CRTC’s Line Compare register (18H) with the raster line at

which you want to split the screen, as shown in Listing 12-7a and Listing 12-7b.

CRTC

Start Address registers ——>

Start of video buffer ——»

Figure 12-3. Appearance of an EGA or VGA split screen. The top part of the screen displays
data from the location in the video buffer specified by the CRTC Start Address registers. The
bottom part of the screen displays data from the start of the video buffer.

The contents of the CRTC Start Address registers determine which portion of the
video buffer is displayed in the top part of the screen. As the raster is drawn dur-
ing each display refresh cycle, the CRTC compares the current scan line with the
value in the Line Compare register. When the values are equal, the CRTC resets
its internal address counter so that the remaining scan lines in the raster are
drawn using data from the start of the video buffer. Thus, the top of the video
buffer is always displayed in the bottom part of the split screen.

Both the EGA and the VGA accommodate Line Compare values larger than eight
bits (OFFH or 255 scan lines) by using other CRTC registers to contain additional
high-order bits. Thus, bit 8 of the Line Compare value is represented in bit 4 of

396 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

the CRTC Overflow register (07H). On the VGA, a ninth bit must also be specified
for the Line Compare value; this bit is represented in bit 6 of the the Maximum
Scan Line register (09H). Programming the CRTC with a Line Compare value thus
requires you to update two different registers on the EGA and three different
registers on the VGA.

; Name:

7; Function:

7; Caller:

ARGn

ADDR_6845

_TEXT

_SplitScreen

TITLE "Listing 12-7a'

NAME SplitScreen

PAGE Solos

SplitScreen

Horizontal split screen on EGA

Microsoft C:

void SplitScreen(n) ;

int n; /* scan line at which */

/* to split screen */

EQU word ptr [bp+4]

EQU 63h

SEGMENT byte public 'CODE'

ASSUME cs: TEXT

PUBLIC _SplitScreen

PROC near

push bp 7; preserve BP

mov bp, sp

mov ax, 40h

mov es,ax ; ES -> video BIOS data area

mov dx,es: [ADDR_6845] ; DX = CRIC address port

; wait for vertical retrace

LO1:

L002:

,

add dl1,6 ; DX := 3BAH or 3DAH (CRT status port)

in al,dx 7; wait for end of vertical retrace

test alte

jnz L01

in al,dx ; wait for start of vertical retrace

tesi= al,8

za LO2

sub dl1,6 ; DX 3:= CRIC’ address port

isolate bits 0-7 and bit 8 of the Line Compare value

Listing 12-7a. Splitting the screen on the EGA. (continued)

Chapter 12: Some Advanced Video Programming Techniques 397

Listing 12-7a. Continued.

mov ax, ARGn ; AX := scan line value

mov bh, ah

and bh, 1 >; BH bit 0 := Line Compare bit 8

mov cl,4

shl bhyicz ; BH bit 4 := Line Compare bit 8

; program the CRTC registers

mov ah,al ; AH := low-order 8 bits of value

mov apneic ; AL := Line Compare register number

out CLmas ; update Line Compare register

mov ah, 1Fh ; default value for EGA 350-line modes

, (use 11h in EGA 200-line modes)

and ahy dot i tb 3 AH bite 4 os a0)

or ah,bh ; AH bit 4 := Line Compare bit 8

mov al yd ; AL := Overflow register number

out dx, ax ; update Overflow register

pop bp ; restore BP and exit

IgG

_SplitScreen ENDP

CEE ENDS

END

TITLE ‘Listing 12-7b'
NAME SplitScreen

PAGE DO oe

; Name: SplitScreen

pj) LUNCELon: Horizontal split screen on VGA

i Gadtkers Muerosoftac:

; void SplitScreen(n) ;

; int n; /7* scan line at which */
; /* to split screen */

ARGn EQU word ptr [bp+4]

ADDR_6845 EQU 63h

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT

PUBLIC —_SplitScreen

Listing 12-7b. Splitting the screen on the VGA. (continued)

398 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing 12-7b. Continued.

_SplitScreen PROC

push

mov

mov

mov

mov

* wait for vertical

LO1:

LO02:

add

in

test

jnz

in

test

4zZ

sub

; isolate bits 0-7,

mov

mov

mov

and

mov

shl

shl

near

bp
bp, sp

ax, 40h

es,ax ,

dx,es: [ADDR _ 6845]

retrace

bit

dl,6

al,dx

al,8

L01

al,dx

al,8

L02

dl,6

Sande bat £-o mot

ax, ARGn

bh, ah

bl,bh

bx,0201h

eure 4

bx, cl

bh, 1

; update the CRTC registers

mov

mov

out

mov

out

inc

in

dec

mov

and

or

mov

out

mov

out

inc

in

dec

ah,al

al,18h

dx,ax

al,7

dx,al

dx

al, dx

dx

ah,al

ah, 111011115

ah,bl

ally. 7

dx, ax

al,9

dx,al

ax

al,dx

dx

,

preserve BP

ES -> video BIOS data area

7 DX s= CRIC address) port

DX := 3BAH or 3DAH (CRT status port)

wait for end of vertical retrace

wait for start of vertical retrace

DX := CRTC address port

the Line Compare value

Ne Ne Ne

,

~

AX := scan line value

BH bats 0=1 3= bres 8-9 of

Line Compare value

BH bit 1 := Line Compare bit 9

BL bit 0 := Line Compare bit 0

BH bit 5 := Line Compare bit 9

BL bit 4 := Line Compare bit 8

BH bit 6 := Line Compare bit 9

AH := low-order 8 bits of value

AL := Line Compare register number

update Line Compare register

AL := Overflow register number

AL := current Overflow reg value

AH bit 4 := 0

AH bit 4 := Line Compare bit 8

AL := Overflow register number

update Overflow register

AL := Max Scan Line register number

AL current Max Scan Line reg value lI

(continued)

Chapter 12: Some Advanced Video Programming Techniques 399

Listing 12-7b. Continued.

mov ah,al

and ah,10111111b Fag tslidoylnss Moye Re (0,

or ah, bh ; AH bit 6 := Line Compare bit 9

mov al, 9 ; AL := Max Scan Line reg number

out dx, ax ; update Max Scan Line register

pop bp ; restore BP and exit

mec

USspMeEscreen ENDP

_ TEXT ENDS

END

Because the CRTC uses the Line Compare value while it is actively

updating the raster, the best time to change this value is during a ver-

tical retrace interval as in Listings 12-7a and 12-7b.

The video BIOS default Line Compare value is the maximum possible
value (1FFH on the EGA, 3FFH on the VGA). Use this default value to

‘‘unsplit’’ the screen. There are also certain values that the CRTC

does not handle in a useful manner. On both the EGA and VGA, do not

specify a Line Compare value that is between the Vertical Retrace

Start and Vertical Total values. Also, in 200-line modes on the VGA,
the Line Compare register value should be an even number.

In native graphics modes in the IBM EGA, the CRTC duplicates the

scan line at which the screen is split. This anomaly is also found in

some EGA clones.

You might find it convenient to regard the bottom portion of the split screen as a

sort of window superimposed on the top portion. Use the first portion of the video

buffer for the window foreground (the lower part of the split screen) and some

other portion of the buffer for the background.

One attractive way to use the split-screen feature is to scroll the split smoothly up

or down the screen. Do this by incrementing or decrementing the value in the

Line Compare register within a loop, as is done by the routine in Listing 12-8.

#define MaxScanLine 349 /* (depends on video mode) */

for (i = MaxScanLine; i >= 0; --i) /* scroll up */

SplitScreen(i);

for (i= 0; i < MaxScanLine; i++) /* scroll down */
SplitScreen(i);

SplitScreen(0x3FF); /* restore default value */

Listing 12-8. Smooth vertical scrolling of a split screen on the EGA or VGA.

400 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The Light Pen Interface
On most video subsystems covered in this book, the CRT Controller can return the
position of a light pen. When you trigger a light pen, it sends a signal to the CRTC
at the moment the video display’s electron beam sweeps past the pen’s light sen-
sor. The CRTC responds by storing the current value of its internal address coun-
ter into its Light Pen High and Light Pen Low registers. This value corresponds to
the offset in the video buffer of the data displayed in the raster at the point where
the light pen was triggered. Thus, the value in the Light Pen High and Low regis-
ters can be translated into row and column coordinates for screen locations.

You can’t attach a light pen to IBM’s MDA, but Hercules monochrome

adapters can support one. However, a light pen used with a mono-

chrome display must be capable of operating with the high-persistence

P39 phosphor used in green monochrome displays.

Light Pen Position

The light pen position that the CRTC returns is not an exact pixel location. One

reason is simply that the value returned in the CRTC’s Light Pen registers is a byte

offset into the video buffer, so the light pen’s horizontal position can be deter-

mined only to the nearest byte of pixels. Another source of inaccuracy is that the

CRTC chip itself introduces a small amount of delay between the time it receives

a signal from the light pen and the time it stores a value in its Light Pen registers.

The value returned in the Light Pen registers thus can be as much as 5 bytes too

large; the actual amount of error must be determined empirically.

The light pen programming interface, shown in Figure 12-4, is similar on all IBM

and Hercules adapters. To determine a light pen’s position, your program must

first reset the CRTC’s light pen latch by writing a 0 to I/O port 3DBH (3BBH on an

MDA, a Hercules adapter, or an EGA with a monochrome display). Then it must

poll the Status Port at 3DAH (3BAH in monochrome modes). When bit 1 of the ,,

Status Port value changes from 0 to 1, the light pen has been triggered and the

routine can obtain its location from the CRTC (see Listing 12-9a).

After reading the light pen location from the Light Pen registers, you must apply

an empirical correction for the intrinsic delay in the CRTC. The routine in Listing
12-9b, for the EGA’s 80-by-25 alphanumeric mode, subtracts 7 from the value that

the CRTC returns. To convert the result into a pixel location, subtract the value in

the Start Address High and Start Address Low registers from the corrected CRTC

value. (You can get the Start Address value by dividing the value in CRT_ START

in the Video Display Data Area by 2. You can also read it from the Start Address

High and Start Address Low registers on the EGA, the HGC+, and the InColor

Card.) Then divide the difference by the number of characters in each row of the

video buffer. (This value is represented in the CRTC’s Horizontal Displayed regis-
ter, or in CRT COLS on the EGA.) The quotient is the y-coordinate of the light

pen location. The remainder is the character column corresponding to the position

of the light pen.

Chapter 12: Some Advanced Video Programming Techniques 401

MDA, HGC, HGC+, and InColor Card
V/O Port Function

3B9H Set light pen latch
3BAH bit 1 Light pen trigger
3BAH bit 2 Light pen switch (IBM adapters only)
3BBH Reset light pen latch

CGA, EGA
V/O Port Function

3DAH bit 1 Light pen trigger
3DAH bit 2 Light pen switch (IBM adapters only)
3DBH Reset light pen latch
3DCH Set light pen latch

Figure 12-4. Light pen programming interface. Note: In EGA monochrome modes, read
light pen trigger and switch status from 3BAH instead of 3DAH.

TITLE "Listing 12-9a'
NAME, GetLightPen

PAGE Soaks

7 Name: GetLightPen

7 BuNnction.: Get light pen position

3; Caltex: Microsoft C:

; int GetLightPen() ; /* returns buffer offset */

ADDR_6845 EQU 63h

_ TEXT SEGMENT byte public 'CODE'

ASSUME cs: TEXT

PUBLIC _GetLightPen

_GetLightPen PROC near

push bp

mov bp, sp

mov ax, 40h

Mov es, ax 7 ES -> video BIOS data area

mov dx,es: [ADDR 6845] * DX := 3B4H or 3D4H

add Clare a, * DX := 3BBH or 3DBH
xor alyal , ALT=" 0
out dx,al * reset CRTC light pen latch
jmp $+2 7 ensure that CRTC has time to respond

dec dx * DX := 3BAH or 3DAH

Listing 12-9a. Getting the light pen’s location from the CRTC. (continued)

402 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing 12-9a. Continued.

L01: in al, dx
test aly.2

jz L01

ela

sub dl,6

mov al,10h

out dx,al

inc dx

in al,dx

mov ah,al

dec ax

mov adja th

out Ox, all

inc dx

en al,dax

sti

pop bp
ret

_GetLightPen ENDP

_ TEXT ENDS

END

/* Listing 12-9b */

main ()

{
int BufferOffset, Row, Column;

int far *CRT_START = 0x0040004E;

wait for light pen to be triggered

disable interrupts

DX := 3B4H or 3D4H

AL := Light Pen High register number

AH := Light Pen High value

AL := Light Pen Low register number

AX := offset at which light pen

was triggered

reenable interrupts

char far *CRT_COLS = 0x0040004A;

print£("\nCRT_COLS = %d", (int) (#CRTLCOLS));

LOEW a)

{
BufferOffset = GetLightPen();

printf("\nLight pen offset: %4xh", BufferOffset);

BufferOffset = BufferOffset - 7; /* empirical correction */

BufferOffset = BufferOffset - (*CRT_START)/2; /* offset relative to */
/* start of screen */

Row = BufferOffset / (int) (*CRT_COLS) ; /* character row */
Column = BufferOffset % (int) (*CRT_COLS); /* character column */

printf(" Column = %d_ Row = %d", Column, Row);

}

Listing 12-9b. Using GetLightPen in a C program.

Chapter 12: Some Advanced Video Programming Techniques 403

If this seems like more trouble than it’s worth, you’re probably right. On IBM

video adapters, you can call INT 10H function 4 to return the light pen location. If

you plan to use a light pen with a Hercules adapter, however, you’re on your own.

Light Pen Switch

On IBM adapters, you can determine whether the light pen switch is depressed by

examining bit 2 of the Status Port value returned from port 3DAH (3BAH in

monochrome modes). This bit is set to 1 while the switch is closed. It returns to 0

when the switch is opened. You should usually test the status of the light pen

switch before attempting to read the CRTC’s Light Pen registers.

Determining Hercules Video Modes

The Light Pen registers can also be used to determine video modes on Hercules

adapters. In most applications, determining the current video mode is not a

problem, because the application itself establishes the mode. Sometimes, however,

a program may not know the video mode a priori. For example, a screen dump

program (see Appendix B) may need to determine the video mode to correctly in-

terpret the contents of the video buffer. Similarly, a RAM-resident “‘pop up’’ pro-

gram should save and then restore the video mode into which it ‘‘pops.”’

You can easily determine the current ROM BIOS video mode by calling INT 10H

function OFH. The task is more difficult for the Hercules adapters, because the

BIOS does not keep track of the video mode. You can sometimes infer the video

mode from the Video Display Data Area variables CRT_COLS, CRT_LEN, and

POINTS, but not everybody who writes programs for Hercules adapters keeps

these variables updated.

Moreover, there is no direct way to interrogate the hardware to determine the

video mode. For example, the Mode Control register (3B8H), used to select the

video mode, is unfortunately a write-only register. Nevertheless, you can infer a

Hercules adapter’s video mode by latching the 6845’s Light Pen High and Low

registers (10H and 11H) at the start of vertical retrace, as shown in Listing 12-10.

TITLE TLESEENge t2— Ol

NAME GetHercMode

PAGE Doe NSS

; Name: GetHercMode

7 Hunctwon: Determine video mode on Hercules adapters by estimating the size
F of the displayed portion of the video buffer.

Caller: Microsoft «Cs

ri int GetHercMode(n) ; /* returns approximate size */
A /* of displayed portion of ¥*/
; /* video buffer in words */

Listing 12-10. Identifying the current video mode on a Hercules adapter. (continued)

404 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 12-10. Continued.

_ TEXT

_GetHercMode

7 reset CRTC

SEGMENT byte public

ASSUME

PUBLIC

PROC

push

Mov

cs;_ TEXT

_GetHercMode

near

bp
bp, sp

light pen latch

mov

out

dx, 3BBh

dax,al

"CODE'

* wait for start of next vertical retrace

L01:

L002:

L032

dec

in

test

jnz

in

test

jz

eu

in

test

jnz

ax

al,dx

al, 80h

L01

al,dx

al, 80h

L02

al,dx

al,80h

L03

seoN

preserve BP

DX := light

OUT to this

(the value

pen reset port

port clears the latch

in AL doesn’t matter)

DX := 3BAH (CRT status port)

wait for start of vertical retrace

wait for end of vertical retrace

disable interrupts

wait for start of vertical retrace

; latch the current CRTC address counter in the Light Pen registers

,

dec

out

sti

mov

mov

out

inc

in

dec

mov

mov

out

inc

in

pop

ret

dx

dx,al

dl, 0B4h

al,10h

dx,al

dx

al,ax

dx

ah,al

alee 1h

dx,al

dx

al,dax

bp

,

,

,

,

,

DX =" 3B9H

OUT to this port loads the latch

reenable interrupts

; return the value in the Light Pen registers

DX :=

AL :=

3B4H (CRTC address port)

Light Pen High register number

read this register

AH := current Light Pen High value

AL := Light Pen Low register number

AX := current light pen latch value

(i1.e., value of CRTC address counter

at start of vertical retrace)

(continued)

Chapter 12: Some Advanced Video Programming Techniques 405

Listing 12-10. Continued.

_GetHercMode ENDP

_ TEXT ENDS

END

The routine in Listing 12-10 waits for the start of vertical retrace and triggers the

light pen at this point with an OUT instruction to port 3B9H. The Light Pen regis-

ters reflect the value of the CRTC’s internal address counter at the point where

vertical retrace begins. (This value is the product of the values in the CRTC

Horizontal Displayed and Vertical Sync registers.) You can expect the Light Pen

registers to contain at least 7DOH (80 words per character row X 25 rows) in 80-

by-25 alphanumeric mode and OF4BH (45 words per character row X 87 rows) in

720-by-348 graphics mode. Inspecting the Light Pen value thus reveals whether

the HGC is in alphanumeric or graphics mode.

In practice, the Light Pen value returned is somewhat larger than these

expected values because of the delay in the CRTC timing. This im-

precision makes the technique somewhat less useful on the HGC+ and

InColor cards, where you must distinguish among all the different

character sizes that can be displayed by the CRTC in alphanumeric

mode. For example, the value returned by Get HercMode () when
9-by-8 characters are displayed is near ODCOH (80 x 44) and near
ODB6H (90 x 39) when 8-by-9 characters are displayed. Because the
‘Light Pen value is inexact, you may not be able to distinguish these
two different CRTC configurations.

406 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

13

Graphics Subroutines in -_
High-Level Languages A

Linking Graphics Subroutines
Subroutine Calls

Interrupts to a Memory-Resident Driver

Inline Code

Global Data Areas

Layered Graphics Interfaces

Direct Hardware Programming

Extended BIOS Interface

High-Level Interface

Most programming examples in this book are written in assembly language, the

language of choice for programs that need to control hardware precisely and to

run as fast as possible. Nevertheless, most IBM PC programmers prefer not to

write large applications entirely in assembly language because they can write,

debug, and maintain a program in a high-level language much more effectively.

As you write the code for a program that produces video output, you must balance

the convenience and conceptual clarity a high-level language provides against the

speed and exact control provided by assembly language. A good rule of thumb is

to use assembly language whenever you directly access the video buffer or the

video subsystem’s control registers. The rest of the time, you can generally obtain

satisfactory performance using any compiled high-level language.

This chapter focuses on the interface between programs written in high-level lan-

guages and the low-level, assembly-language drivers that actually access the video

hardware. You can implement the interface in several ways. The method you

select should depend on the language you are using, your familiarity with the

memory models and parameter-passing techniques that your compiler uses, and

(as always) your own good judgment in evaluating the alternatives.

The last part of the chapter introduces several different high-level video program-

ming interfaces. The focus is on the reasons why high-level programming inter-

faces are used and the programming approach involved in using them.

Linking Graphics Subroutines

You can tie low-level graphics subroutines to high-level applications in several

ways. The three techniques discussed here—subroutine calls, calling a set of

memory-resident routines, and using inline code in a high-level-language pro-

gram—have all been proved in various graphics applications. As usual, the

““best’’ method to use in any given application is a matter of judgment.

Subroutine Calls

This book contains numerous subroutines that are designed to be called from
within a high-level-language program. Most are to be linked to programs com-
piled with the Microsoft C compiler. However, you can link these subroutines to
any high-level-language program if you know the proper protocol for structuring
executable code, and for passing parameters to a subroutine and returning values
from it. The routines in Listings 13-1 through 13-4 show how to call the same
assembly-language subroutine from Microsoft C, Microsoft FORTRAN, Turbo
Pascal, and interpreted BASIC.

ATER, "histang 13=ta"

NAME SetPixel

PAGE Spe

(continued)

Listing 13-la. The SetPixel subroutine (Microsoft C small-model calling conventions).

408 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

Listing 13-1a. Continued.

’

; Name: SetPixel

* Function: Set the value of a pixel in native EGA graphics modes.

+ Caller: Microsoft C (small memory model):
;

void SetPixel (x,y,n);

; DPA iF /* pixel coordinates */
; Sniey Nip /* pixel value ¥*/

7 Notes: This is the same routine as in Chapter 5.
,

ARGx EQU word ptr [bpt+4] ; stack frame addressing
ARGy EQU word ptr [bp+6]

ARGn EQU byte ptr [bp+8]

RMWbits EQU 0 + xread-modify-write bits

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT

EXTRN PixelAddr:near

PUBLIC _SetPixel

_SetPixel PROC near

push bp ; preserve caller registers

mov bp, sp

mov ax, ARGy 7, AX = oy

mov bx, ARGx }. BX Wa x

call PixelAddr ; AH := bit mask

; ES?BX => buffer

7a Cy # bits to shift left

; set Graphics Controller Bit Mask register

shl ah,cl ; AH := bit mask in proper position

mov dx, 3CEh 7 GC address register port

mov al,8 ; AL := Bit Mask register number

out dax,ax

set Graphics Controller Mode register

mov ax,0005h ; AL := Mode register number

; AH := Write Mode 0 (bits 0,1)

;; Read Mode 0 (bit 3)

out dx, ax

; set Data Rotate/Function Select register

mov ah, RMWbits ; AH := Read-Modify-Write bits

mov aS ; AL := Data Rotate/Function Select reg

out dx, ax

(continued)

Chapter 13: Graphics Subroutines in High-Level Languages 409

Listing 13-1a. Continued.

set Set/Reset and Enable Set/Reset registers
,

mov ah, ARGn ; AH := pixel value

mov ale, 0 ; AL := Set/Reset reg number

out dx, ax

mov ax, OFO1h ; AH := value for Enable Set/Reset (all

; bit planes enabled)

; AL := Enable Set/Reset reg number

out dx,ax

; set the pixel value

or es: [bx],al ; load latches during CPU read

; update latches and bit planes during

e) {CPUl write

restore default Graphics Controller registers
,

mov ax, OFFO8h ; default Bit Mask

out ax, ax

mov ax,0005 ; default Mode register

out dx, ax

mov ax, 0003 ; default Function Select

out dx,ax

mov ax,0001 ; default Enable Set/Reset

out dx, ax

mov sp,bp ; restore caller registers and return

pop bp
ret

psetPixel ENDP

_ TEXT ENDS

END

/* Listing 13-1b ¥*/

/* draws an n-leaved rose of the form rho = a * cos(n * theta) */

#define Leaves (double) 11 /* n must be an odd number */

#define Xmax 640

#define Ymax 350

#define PixelValue 14

#define ScaleFactor (double) 1.37

main ()

{
int xpi /* pixel coordinates */

double a; /* length of the semi-axis */

Listing 13-1b. Calling SetPixel() from a C program. (continued)

410 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 13-1b. Continued.

double rho,theta; /* polar coordinates */
double pi = 3.14159265358979;

double sin(),cos();

void SetPixel();

a = (Ymax/2) - 1; /* a reasonable choice for a */

for (theta=0.0; theta < pi; theta+=0.001)

{
rho = a * cos(Leaves * theta); /* apply the formula */

x = rho * cos(theta); /* convert to rectangular coords */

y.= rho * sin(theta) / ScaleFactor;

/* plot the point */
SetPixel(x + Xmax/2, y + Ymax/2, PixelValue);

TITLE "Lasting 13=2Za"

NAME SETPEL

PAGE D5, 132

; Name: SETPEL

; Function: Set the value of a pixel in native EGA graphics modes.

7. Caters Microsoft Fortran

; integer*2 x, Vr

? call SETPEL(x,y,n)

ADDRx EQU dword ptr [bp+14] ; X, Y, and n are referenced

ADDRy EQU dword ptr [bpt+10] ; by 32-bit addresses

ADDRn EQU dword ptr [bpté6]

RMWbits EQU 0

SETPEL TEXT SEGMENT byte public 'CODE'
ASSUME cs:SETPEL TEXT

EXTRN PixelAddr: far

PUBLIC SETPEL

SETPEL PROC far

push bp

mov bp, sp

(continued)

Listing 13-2a. The SETPEL subroutine (Microsoft FORTRAN calling conventions).

Chapter 13: Graphics Subroutines in High-Level Languages 411

Listing 13-2a. Continued.

’

les bx, ADDRn

push es: [bx]

les bx, ADDRy

mov ax,es: [bx]

les bx, ADDRx

mov bx,es: [bx]

call PixelAddr

shl ah,cl

; program the Graphics Controller

mov dx, 3CEh

mov al,8

out dx, ax

mov ax,0005h.

out ax, ax

mov ah, RMWbits

mov al,3

out dx, ax

pop ax

mov ah,al

mov al,0

out dx,ax

mov ax, OFO1h

out dx, ax

7 update the pixel, restore the default

or es: [bx],al

mov ax, OFFO8h

out dx, ax

mov ax,0005

out dx, ax

Mov ax,0003

out dx,ax

mov ax,0001

out dx, ax

MOv sp, bp

pop bp
ret ae

SETPEL ENDP

SETPEL TEXT ENDS

END

get parameters via 32-bit addresses on stack

3s ES:BX =>on

; preserve n on stack

elt BRS gs=0ok

; compute pixel address

Graphics Controller state, and return

; update the pixel

; restore default Graphics

7 Controller values

; restore registers and exit

; discard caller’s parms

412 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

c Listing 13-2b
c

c draws an n-leaved rose of the form rho =a * cos (n*theta)

real*8 Leaves /11/

real*8 ScaleFactor /1.37/

integer*2 Xmax /640/, Ymax /350/, PixelValue /14/

integer*2 X,Y

real*8 a

real*8 rho,theta

real*8 pi /3.14159265358979/

real*8 sin,cos

a = (Ymax/2) - 1

do 100 theta = 0.0, pi, 0.001

rho = a * cos(Leaves * theta)

x = rho * cos(theta)

y = rho * sin(theta) / ScaleFactor

100 call SETPEL(x + Xmax/2, y + Ymax/2, PixelValue)

stop

end

Listing 13-2b. Calling SETPEL() from a FORTRAN program.

; Name:

7 Functions

, Callers

3; Notes

ADDRx

ADDRy

ARGn

_TEXT

TITLE ‘Tasting 13—3a!

NAME SETPEL

PAGE 55 Se

SETPEL

Set the value of a pixel in 320x200 4-color mode

Turbo Pascal

PROCEDURE SETPEL(VAR x,y: INTEGER; PixelValue: INTEGER) ;

EXTERNAL 'setpel.bin';

The code segment is named TEXT so that PixelAddr may be linked

in the same segment.

EQU dword ptr [bp+10] ; x and y are VAR so their

EQU dword ptr [bpté6] ; addresses are passed

EQU byte ptr [bpt4] ; n’s value is passed on

; the stack

SEGMENT byte public 'CODE'

ASSUME cs: _ TEXT

(continued)

Listing 13-3a. The SETPEL subroutine (Turbo Pascal calling conventions).

Chapter 13: Graphics Subroutines in High-Level Languages 413

Listing 13-3a. Continued.

EXTRN PixelAddr:near

SETPEL PROC near

push bp ; preserve caller registers

mov bp, sp

push ds

; make this routine addressable through SI

call L01 ; push offset of L01

LO1: pop si 7 CSco = On

sub si,offset L01

; get parameters via 32-bit addresses on stack

lds di, ADDRy ; DStDiv => ¥

mov ax, [di] a sa,

lds di, ADDRx

mov bx, [di] ; BX := x

call PixelAddr ; AH := bit mask

; ES:BX -> buffer

; Ch =F bits to shake Lette

mov al,ARGn ; AL := pixel value

shl ax,cl ; AH := bit mask in proper position

; AL := pixel value in proper position

; jump through the variable SetPixelOp to the appropriate routine

mov di,cs:SetPixelOp[si] ; DI := address

add aims 7 DI := relocated address

jmp di

; routine to replace pixel value

ReplacePixel: not ah 7 AH := inverse bit mask

and es: [bx],ah + zero the pixel value

or es: [bx],al 7; set the pixel value

jmp short L02

; routine to AND pixel value

ANDPixel: not ah + AH := inverse bit mask

or al,ah ; AL := all 1's except pixel value
and es: [bx],al

jmp short L02

ORPixel: or es: [bx],al 7 routine to OR pixel value
jmp short L02

XORPixel: xor es: [bx],al # routine to XOR pixel value

(continued)

414 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing 13-3a. Continued.

L02: pop ds ; restore regs and exit

mov sp,bp

pop bp
ret 10 ; discard parameters and return

SETPEL ENDP

SetPixelOp DW ReplacePixel ; contains addr of pixel operation

_TEXT ENDS

END

{ Lasting 13=3b }

PROGRAM rose; { draws an n-leaved rose of the form rho = a * cos(n*theta)

CONST

Leaves = 11.0; { must be an odd number

Xmax = 320;

Ymax = 200;

PixelValue =a

ScaleFactor = 2204

Pi = 3.14159265358979;

VAR

pays INTEGER; { pixel coordinates

a: REAL; { length of the semi-axis

rho,theta: REAL; { polar coordinates

PROCEDURE SETPEL(VAR x,y:INTEGER; PixelValue: INTEGER); EXTERNAL 'setpel.bin';

BEGIN

END.

GraphColorMode; { set 320x200 4-color mode

aa ymax/ 2) — vie { a reasonable choice for a

theta := 0.0;

WHILE theta < Pi DO

BEGIN

rho := a * Cos(Leaves * theta); { apply the formula

x s= Truno(rhoe* Cos (theta)); { convert to rectangular coords

y := Trunc(rho * Sin(theta) / ScaleFactor);

x := x + Trunc(Xmax/2); { center on screen

y := y + Trunc(Ymax/2);

SETPEL (x,y, PixelValue) ; { plot the point

theta := theta + 0.001;

END

Listing 13-3b. Calling SETPEL() from a Turbo Pascal program.

Chapter 13: Graphics Subroutines in High-Level Languages 415

}

}

TITLE ‘Listing 13-4a"

NAME SETPEL

PAGE SS yao e

;

, Name: SETPEL

7 Function:

; Caller: IBM BASICA or Microsoft GWBASIC

; Notes: The code segment is named TEXT
p in the same segment.

,

ADDRx EQU word ptr [bp+10]

ADDRy EQU word ptr [bp+8]

ADDRn EQU word ptr [bp+6]

CGROUP GROUP _TEXT,END_ TEXT

TEXT SEGMENT byte public 'CODE'

ASSUME cs:CGROUP,ds:CGROUP

EXTRN PixelAddr:near

; header for BASIC BLOAD

DB OFDh

DW 2 dup (0)

DW (offset CGROUP:BLEnd) -7

7 Start of subroutine

SETPEL PROC far

push bp

mov bp, sp

push es

7 make this routine addressable through SI

eens L01 ;
HOW: pop Sal nCSTS&

sub si,offset L0O1

7 get parameters via 16-bit addresses on stack
mov di,ADDRy * DS:DI
mov ax, [di] 7; AX :=
mov di, ADDRx

mov bx, [di] 7 BX gs
call PixelAddr ; AH :=

7 SOVBxX

7 (Che s=

mov di, ADDRn

mov anual ; AL v=
shl ax,cl Coan =

; AL 3:=
7 jump through the variable SetPixelOp to

Set the value of a pixel in 320x200 4-color mode

so that PixelAddr may be linked

7 Size of subroutine

; preserve caller registers

push offset of L0O1

= Ol

=> y

yi

x

bit mask

-> buffer

bits to shift left

pixel value

bit mask in proper position
pixel value in proper position

the appropriate routine

7 DI := address

relocated address

7 routine to replace pixel value

mov di,SetPixelOp[si]
add ai ,isa 7 Dias
jmp di

ReplacePixel: not ah 7 AH. r=
and es: [bx],ah M

or es: [bx],al ;
jmp short L02

Listing 13-4a. The SETPEL subroutine (BASICA calling convention).

inverse bit mask

zero the pixel value

set the pixel value

(continued)

416 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing 13-4a. Continued.

; routine to AND pixel value
ANDPixel: not ah ; AH := inverse bit mask

or al,ah ; AL := all 1s except pixel value
and es: [bx],al

jmp short L02

ORPixel: or es: [bx],al ; routine to OR pixel value
jmp short L02

XORPixel: xor es: [bx],al ; routine to XOR pixel value
LO2: pop es ; restore registers

mov sp,bp

pop bp
ret 6 ; discard parameters and return

SETPEL ENDP

SetPixelOp DW ReplacePixel 7 contains addr of pixel operation
_ TEXT ENDS

END_TEXT SEGMENT byte public 'CODE'

BLEnd LABEL BYTE ; this segment is linked after _ TEXT,

7 so this label can be used to compute

; the size of the TEXT segment

END_TEXT ENDS a
END

100 * Listing 13-4b

110 ' Draws an n-leaved rose of the form rho = a * cos(n#¥theta)

120 DEFINT A-Z

130 LEAVES = 11

140 XMAX = 320 YMAX = 200

150 PIXELVALUE = 2

160 SCALEFACTOR# = 1.2

170 PI# = 3.14159265358979#
LEO =- 0 Y= "C6 ' pixel coordinates

190 A# = 0 ' length of the semi-axis

200 RHO# = 0 : THETA# = 0 ' polar coordinates

Zip"

220 SETPEL = 0

230 DIM SPAREA (256) ' reserve RAM for the subroutine

240 SETPEL = VARPTR(SPAREA (1)) ' address of subroutine

250 BLOAD "setpel.bin", SETPEL ' load subroutine into RAM

260)"
270 SCREEN 1 COLOR 0,0 CLS " set 320x200 4-color mode

280 A# =, (YMAX / 2) — J "a reasonable choice for A

290 THETA# = 0

300 WHILE (THETA# < PI#)

310 RHO# = A# * COS(LEAVES * THETA#) ' apply the formula

320 X = RHO# * COS (THETA#) " convert to rectangular coords

330 Y = RHO# * SIN(THETA#) / SCALEFACTOR#
340 "xX = xX + XMAX/2 " center on screen

350° Y = ¥ + YMAX/2

360 CALL SETPEL(X, Y, PIXELVALUE) " plot the point

370 THETA# = THETA# + .001

380 WEND

390 END

Listing 13-4b. Calling SETPEL from a BASICA program.

Chapter 13: Graphics Subroutines in High-Level Languages 417

One of the ways these assembly-language subroutines differ is that they use differ-

ent memory models. A memory model describes the segment organization of a

program— whether executable code is separated from program data, and whether

segments are accessed with 16-bit (near) or 32-bit (far) addresses. For example, a

small-model program has one near code and one near data segment; a large-model

program can have multiple far code and far data segments. The subroutines in
Listings 13-1 through 13-4 conform to the default memory models used by the dif-

ferent language translators.

The protocol for passing parameters also varies among compilers and program-

ming languages. In Pascal, for example, parameters are pushed on the stack in the

order they appear in the PROCEDURE statement, while in C, parameters are

pushed in reverse order. Also, either the actual value of a parameter or its address

may be passed; this depends on the programming language you use as well as on

the type of data involved. Each compiler’s reference manual contains details on
its parameter-passing protocol.

Microsoft C

Source code examples in previous chapters that can be called from a C program

are all designed to be linked with small- or compact-model programs. To call

them from a medium- or large-model program, you must make three modifica-

tions to the source code to make it conform to these memory models’ subroutine-
calling conventions.

@ Change the name of the executable code segment.

@ Use the far keyword in assembler PROC directives.

@ Modify the stack frame addressing to accommodate the calling routine’s 32-bit
return address.

For example, to call SetPixel10() within a medium-model C program,
change the name of the TEXT segment in SetPixel10 ()’s source code toa
name of the form module_TEXT and use the far keyword in the routine’s
PROC directive. Also, adjust the stack frame addresses by two bytes to account
for the 32-bit return address.

Microsoft FORTRAN
Microsoft’s FORTRAN compiler does not generate small- or compact-model pro-
grams, so the far addressing conventions applicable to medium- and large-model
programs apply to FORTRAN-callable assembly-language graphics subroutines.
The C-callable version in Listing 13-1a and the FORTRAN equivalent in Listing
13-2a differ in several ways. These differences relate to the way parameters are
passed on the stack to the subroutine.

The C compiler passes the current values of each subroutine argument in reverse
order, so the first argument is on top of the stack. The FORTRAN compiler passes
the 32-bit address of each argument’s value in the order in which the arguments

418 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

appear in the subroutine’s argument list. The C subroutine obtains the argument
values directly from the stack; the FORTRAN routine must obtain the arguments’
addresses from the stack, then use the addresses to obtain the values. Also, in C,
the routine that called the subroutine discards the arguments on the stack. In con-
trast, in FORTRAN the called subroutine cleans up the stack when it exits.

The Microsoft C, FORTRAN, and Pascal compilers let you specify the

parameter-passing protocol used to call a particular subroutine. For

example, you can write a C-callable subroutine and then access it

using the appropriate compiler directive in your FORTRAN or Pascal

program. This interlanguage linking capability became available

in MS C version 3.00, MS Pascal version 3.3, and MS FORTRAN

version 3.3.

Including a compiler directive in your high-level source code can be

more convenient than modifying an assembly-language subroutine.

For example, a C subroutine can be called from a FORTRAN program

by declaring the subroutine ina FORTRAN INTERFACE unit:

interface to subroutine SP10[C] (x,y,n)

integer*2 x,y,n

end

This INTERFACE unit instructs the FORTRAN compiler to generate

code that calls the subroutine sp10() using C’s parameter-passing

protocol. However, this technique does not affect the memory model

used; the C-callable routine is called with a far call, because it lies in

a different segment from the FORTRAN caller. Thus, sp10() must
still be declared with the far keyword, and the stack frame must be

addressed with the assumption that a 32-bit far return address lies on

top of the stack when the procedure is called.

If you intend to write graphics routines that can be called from either

Microsoft C, Pascal, or FORTRAN, you should use a medium or large

memory model, so the routine can be called as a far procedure. You

can use any parameter-passing protocol; the Microsoft language

translators can generate code for all of them.

Turbo Pascal

Turbo Pascal links EXTERNAL assembly-language subroutines dynamically.

However, Turbo Pascal’s dynamic linker does not perform address relocation or

resolve symbolic references between the main program and the subroutine. Thus,

the assembly-language subroutine has a very simple structure. Listing 13-3a is an

example of this type of subroutine. Note how the subroutine performs “‘self-

relocation’’ by initializing a register with the starting offset of the subroutine

(using a CALL LO1 followed by a POP), then adding this value to all references

to labels within the subroutine.

Chapter 13: Graphics Subroutines in High-Level Languages 419

BASIC
IBM BASICA and Microsoft GWBASIC have their own intrinsic video output rou-

tines. However, you can use assembly-language subroutines to customize your

BASIC programs for video modes or hardware not supported by these BASIC inter-

preters. Listings 13-4a and 13-4b show how to do this.

Like Turbo Pascal, BASICA requires you to link your subroutine dynamically. In

Listing 13-4a, the subroutine is assembled in the form of a binary file that can be

loaded with the BASIC BLOAD command, as in lines 220—250 of Listing 13-4b. In

BASICA, as in Pascal, parameters are passed to the subroutine in the order they

are specified in the high-level source code. Unlike the Turbo Pascal subroutine,

however, the BASIC subroutine is a far procedure. Also, in BASIC the addresses of

parameters are passed instead of the values of the parameters themselves.

Interrupts toa Memory-Resident Driver

Another way to implement the interface between high-level-language programs

and machine-language graphics routines is to make the graphics routines resident

in memory. When they are, programs can access the graphics routines by execut-

ing a software interrupt. This is the design of the interface used by all video BIOS
routines in the PC and PS/2 families. The routines reside at a fixed address in

ROM. Interrupt vector 10H is initialized at bootup to point to a service routine that

calls the BIOS routines.

Your own video output routines can be accessed in a similar manner if you make

them resident in RAM and set an interrupt vector to point to them. (On the PC and
PS/2s, interrupt numbers 60H through 67H are reserved for such user-defined in-

terrupts.) Listing 13-5 is an example of a simple RAM-resident routine that stores

pixels in the EGA’s 640-by-350 16-color mode. The source for this routine assem-

bles to a EXE file that installs the routine in RAM and sets interrupt vector 60H to

point to the code that sets the pixel value. After the interrupt vector is initialized,

any program can access the routine by loading the CPU registers with the pixel
location and value and then executing interrupt 60H.

TITLE ‘Listing 13-5'

NAME SetPixel

PAGE Oise

7 Name: SetPixel

7; Function: Set the value of a pixel in native EGA graphics modes.

; Caller: Memory-resident routine invoked via interrupt 60H:

7 mov ax,PixelX ; pixel x-coordinate

mov bx,PixelY ; Pixel y-coordinate

mov cx,PixelValue ; pixel value

(continued)

Listing 13-5. A RAM-resident routine to write pixels in 640-by-350 graphics mode.

420 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing 13-5. Continued.

Ne Ne Ne Ne Oe

RMWbits EQU 0

_TEXT SEGMENT byte public

ASSUME cs:_TEXT

EXTRN PixelAddr:near

PUBLIC SetPixel

SetPixel PROC near

Sty

push ax

push bx

push Cx

push dx

push Cx

call PixelAddr

shl ah,cl

mov dx, 3CEh

mov al,8

out dax,ax

mov ax,0005h

OUE ax, ax

mov ah, RMWbits

mov al,3

out Gia, ak

pop ax

mov ah,al

mov al,0

out dx, ax

mov ax,O0FO1h

out dx,ax

or es: [bx],al

mov ax, OFFO8h

out Ck; ax

mov ax,0005

out ax, ax

mov ax,0003

out dx,ax

mov ax,0001

out dx, ax

"CODE"

,

Notes: - Assemble and link to create SETPIXEL.EXE.

- Execute once to make SetPixel resident in memory and to point

the INT 60H vector to the RAM-resident code.

- Requires MS-DOS version 2.0 or later.

RAM-resident interrupt 60H handler

enable interrupts

preserve caller registers on

caller’s stack

preserve pixel value on stack

compute pixel address

program the Graphics Controller

AL := Bit Mask register number

AH := Read-Modify-Write bits

AL := Data Rotate/Function Select reg

AH pixel value

set the pixel value

restore default Graphics Controller

values

(continued)

Chapter 13: Graphics Subroutines in High-Level Languages 421

Listing 13-5. Continued.

pop
pop
pop
pop
iret

SetPixel ENDP

_TEXT ENDS

SEGMENT

ASSUME

TRANSIENT TEXT

Install PROC

mov

mov

mov

mov

int

mov

mov

sub

mov

aes

Install ENDP

TRANSIENT TEXT ENDS

STACK SEGMENT

DB

STACK ENDS

END

Inline Code

ax

Cx

ax

para

restore caller registers and return
,

cs:TRANSIENT TEXT,ss:STACK

near

ax,2560h

dx,seg _TEXT

ds, dx

dx,offset TEXT:

21h

dx,cs

ax,es

dx, ax

ax, 3100h

Zh

para stack

80h dup (?)

Install

25H

= 60H

(INT 21H function number)

(interrupt number)
; AH

SetPixel ; DS:DX -> interrupt handler

; point INT 60H vector to

; SetPixel routine

7; DX segment of start of transient

i (discardable) portion of program

; ES := Program Segment Prefix

; DX := size of RAM-resident portion

; AH := 31H (INT 21H function number)

; AL := 0 (return code)

; Terminate but Stay Resident

"STACK'

; stack space for transient portion

7 of program

A technique familiar to many C, Modula-2, and Turbo Pascal programmers is to

implement low-level subroutines as inline machine instructions in high-level
source code. Doing so can simplify the problem of using consistent memory-

model and parameter-passing protocols, because the high-level-language compiler

handles these implicitly. However, inline code is rarely portable and can be dif-
ficult to adapt for use with other languages.

422 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Global Data Areas

When you link video output subroutines to a high-level program, you face the
problem of transferring information about the current state of the video hardware
between the high-level program and the subroutines. Although you can pass such
information to subroutines using argument lists, a better approach is to use a
global data structure that both the high-level program and the low-level sub-
routines can access. Information contained in a global data area can include:

@ Hardware identification (‘‘EGA with 350-line color display’’)

@ Hardware coordinate system (orientation of x- and y-axes, maximum x- and
y-coordinates)

e@ Video buffer status, including video mode, buffer dimensions (maximum x-

and y-coordinates), and currently displayed portion of the buffer

Foreground and background pixel values for text and graphics output

Color values for palette registers

Current pixel operation (replace, XOR, AND, OR, or NOT)

Current region fill pattern

Current line-drawing style (thick or thin line, dashed or broken line)

In many applications it is better to maintain several global areas instead of just

one. Because almost all PC and PS/2 video hardware supports more than one dis-

play mode, you can create a separate global data block for each mode and make

an entire block ‘‘current’’ when you select a video mode. In a windowing envi-

ronment, a block of global data can apply to each displayable window. In addition

to the above information, such a block can also describe the way graphics images

and text are mapped into a window. This can include clipping boundaries, verti-

cal and horizontal scaling, or window visibility (whether a window is on or off

the screen, overlapping another window, and so on).

Using a global data area has several advantages. Because both high-level and low-

level routines can determine output hardware status, you can write hardware-

independent programs that examine the descriptive information in the global data

area to determine how to format their output. This information is relatively static,

sO maintaining it in a global area helps minimize redundant parameter passing

between graphics routines. Moreover, global data areas can be used contextually:

the contents of a global data area can be saved, modified transiently, and restored.

Of course, the information in a global data area can pertain to output

devices other than video adapters and displays. A graphics interface

that accommodates printers or plotters can also incorporate informa-

tion about their status in a global data area.

Chapter 13: Graphics Subroutines in High-Level Languages 423

Layered Graphics Interfaces

After implementing an interface between your low-level video output routines

and your high-level program, you may still find that a certain amount of high-

level source code is concerned with low-level hardware-dependent manipulations

such as pixel coordinate scaling and clipping. You can insulate high-level appli-

cation code from considerations about hardware capabilities by creating one or

more intermediate layers of functionality between the high-level application and

the hardware drivers.

A simple layered graphics interface is depicted schematically in Figure 13-1. The

bottom layer comprises a set of hardware driver routines like the ones in this

book. The top layer provides a set of subroutines that can be called by a high-level

application.The routines in the top layer may call the hardware drivers in the bot-

tom layer directly, or there may be one or more intermediate binding layers inter-

posed between the high-level routines and the hardware drivers. In any case, the

top-level subroutines present a consistent, hardware-independent software inter-

face to the programmer who uses a high-level language, and thereby insulate

high-level programs from the vagaries of video hardware programming.

The ROM video BIOS provides an example of this sort of layering. The set of rou-

tines that you invoke by issuing INT 10H serves as an intermediate layer between

assembly-language applications and the low-level routines that actually program

the hardware. From the application’s point of view, the INT 10H interface is rela-

tively hardware-independent; the video BIOS programs the graphics controller,

updates the video buffer, and performs many other hardware-dependent program-

ming tasks. Because the video BIOS routines contain the hardware-dependent

code, a program that uses the BIOS is to some extent portable to different types of
video hardware.

You can, of course, build many more functions into a layered interface than the

video BIOS provides. For example, commercially available video graphics inter-

faces can produce sophisticated graphics and perform video control functions,

including geometric transformations (scaling, translation, rotation of graphics
images), three-dimensional graphics (hidden-line removal, three-dimensional
surface representation), or sophisticated color mixing and shading. Such graphics

High-level-language interface "Top laver"
(independent of hardware) oy

Language binding

Device driver "Boteienen

(hardware-dependent) ottom layer

Figure 13-1. A simple layered graphics interface.

424 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

packages can support output to printers or plotters, as well as to video displays.
In this case, the layered interface provides a set of routines and data structures
that allow a high-level program to determine the status of an output device and
to select appropriate output attributes (line style, drawing color, and so on) on
each device.

In an operating environment that relies heavily on a graphics-oriented video in-
terface, access to operating system functions can be combined with video output

routines in a high-level application program interface (API). This is the approach
taken in Apple’s Macintosh and in Microsoft Windows. In both these environ-

ments, support for system functions like windows, pull-down menus, and icons is
integrated into a unified, graphics-oriented API.

Most layered graphics interfaces comprise more than one intermediate layer. Fur-

thermore, each layer can be broken into several independent modules. The desire
to preserve software portability, particularly as existing software is adapted to

new video hardware, is the main reason for this. Many PC graphics programs are

designed so that the end-user can customize the hardware-dependent layer(s) to a

particular hardware configuration. This is a great convenience for the user, since

adapting a program with a layered video interface to a newly acquired piece of

hardware is no more difficult than installing a new device driver or relinking the

program with a new subroutine library.

The price you pay for this flexibility is a certain amount of extra code needed to

support the layered interface, so programs run somewhat slower. You must con-

sider this trade-off whenever you write an application that relies on video display

output. Although the benefits of using a layered graphics interface are great,

many applications are simpler to develop and run faster when you dispense with
the formal graphics interface and use only the necessary low-level drivers.

To get an idea of the type of programming required when you use a layered

graphics interface, consider how you might draw a filled rectangle in a video

graphics mode. The following examples show how you could do this using one

of the routines developed earlier in this book and using two different layered

graphics interfaces. As you compare the source code and the programming tech-

nique in each of the following examples, you will see where the advantages and

disadvantages of each graphics interface might lie.

Direct Hardware Programming

The routine in Listing 13-6 draws a filled rectangle directly, by computing the

endpoints of the set of adjacent line segments that make up the rectangle and

using a horizontal line-drawing routine to update the video buffer. Strictly speak-

ing, this routine could be written entirely in assembly language by adapting one

of the line-drawing routines from Chapter 6. The high-level routine in Listing

13-6 runs nearly as fast, however, since most of the time is spent drawing the

lines, not computing their endpoints.

Chapter 13: Graphics Subroutines in High-Level Languages 425

fF MAsiting S=6 257

FilledRectangle(x1, yl, x2, V2

int ey gs /* upper left corner */

int XZ VCE /* lower right corner */

int ry /* pixel value */

{
int yi

forul(y = ylr y <= "v27 Yt) /* draw rectangle as a set of */

Terie (cll) AV’ pee /* adjacent horizontal lines * /

}

Listing 13-6. Using C to draw a filled rectangle.

If raw speed is the major constraint on your program, this is the best way to draw

a rectangle. The code, however, is relatively nonportable, because it makes im-

plicit assumptions about such hardware-dependent constraints as the (x,y) coordi-

nate system and color capabilities of the video subsystem. You could not use a

routine such as the one in Listing 13-6 in a multitasking or windowing operating

environment, because it programs the video hardware directly and could therefore

inadvertently corrupt video output from a concurrently executing program.

Extended BIOS Interface

As mentioned previously, the video ROM BIOS provides a certain amount of hard-

ware independence and portability through the interrupt 10H interface. The trade-

off, of course, is speed and a certain amount of flexibility. Apart from inefficient

implementations, the INT 10H routines are relatively unstructured and limited in

their capabilities. As IBM video subsystems have become more complex, addi-

tional functionality has been grafted onto the INT 10H interface, making it more

powerful but increasingly difficult to master.

Direct Graphics Interface Standard (DGIS) is a firmware interface developed by

Graphics Software Systems that extends the capabilities of the INT 10H interface

in a structured manner. DGIS was designed to provide a uniform low-level inter-

face to video hardware based on graphics coprocessors such as the Intel 82786 or

the Texas Instruments TMS34010. Programming with DGIS is reminiscent of

programming with IBM’s video BIOS, but many elements of a high-level graphics

interface have also been incorporated into DGIS.

DGIS implements a hardware-independent interface by describing actual video

subsystems, or devices, in terms of their possible display modes, or configurations.

An application can interrogate DGIS to determine what devices are supported in

the computer. It then selects a subsequent video output configuration, based on the
configuration’s resolution, number of colors, graphics and/or alphanumeric text
support, and so on.

For example, Listing 13-7 calls DGIS to draw the same filled rectangle as before.

This time, however, instead of programming the hardware, the source code is

concerned primarily with programming the interface. The routine first establishes

426 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

the presence of a suitable graphics output device in the computer by calling the
DGIS Inquire Available Devices function. This function returns a list of available
DGIS devices; in a system with an EGA, for example, the configurations associ-
ated with the ‘‘EGA”’ device correspond to the EGA’s video modes.

; Name:

; Function:

7 Notes:

CR

LF

_TEXT

EntryPoint

7 Look for

TITLE *Lusting 13=%'

NAME dgisrect

dgisrect

draw a filled rectangle using DGIS

assemble and link to create DGISRECT.EXE

EQU

EQU

ODh

OAh

SEGMENT byte public 'CODE'

ASSUME

PROC

mov

mov

push

pop

©s;_TEXT,ds:_ DATA,ss;STACK

far

ax,seg DATA

ds,ax

ss

es

installed DGIS devices

xOr

xOr

xOr

mov

aont

or

jnz

mov

jmp

ax, dx

Cx, Cx

sc, Ox

ax, 6A00h

10h

xe, ex

L01

dx,offset DATA:Msg0

ErrorExit

DS -> DATA

ES -> stack segment

DX = 0 (buffer length)

CX = 0

BX = 0

AX = DGIS opcode (Inquire

Available Devices)

jump if device(s) installed

; find a graphics output device in the list of installed DGIS devices

L0O1:

L02:

LHC

and

mov

sub

mov

push

mov

xor

xOr

mov

int

pop

cmp

je

sub

jnz

mov

jmp

(re

cx, OFFFEh

bp, sp

sp,cx

di,sp

di

axe

CK, Cx

bx, bx

ax, 6A00h

10h

di

word ptr es: [dit2],0

L04

bx,es: [di]

L03

dx,offset _DATA:Msg1

ErrorExit

Listing 13-7. Using DGIS to draw a filled rectangle.

,

,

Cx = (f of bytes ain Tist) + 1

CX = even number of bytes

establish stack frame

(SS:BP -> end of frame)

ES:DI -> start of stack frame

save for later

DX = size of buffer

AX = DGIS opcode (Inquire

Available Devices)

get device list at ES:DI

ES:DI -> device list

is this a graphics device?

jump if so

BX = bytes remaining in list

jump if more devices in list

(continued)

Chapter 13: Graphics Subroutines in High-Level Languages 427

Listing 13-7. Continued.

L03: add di,es: [di] ; ES:DI -> next device in list

jmp L02

; establish a logical connection to the graphics device

; using the first available configuration on the device

L04: les di,es: [dit+6] ; ES:DI -> device entry point

mov word ptr GrDevEntry,di

mov word ptr GrDevEntry+2,es ; save entry point

mov ex, 0 ; CX = first configuration index

mov ax,0027h ; AX = DGIS opcode (Connect)

call dword ptr GrDevEntry ; connect to graphics device

cmp bx, -1 ; test returned handle

jne LO5 ; jump if connected

mov dx,offset DATA:Msg2

jmp ErrorExit

LO5: mov ChannelHandle, bx ; save the handle for later

mov ax, 001Bh AX = DGIS opcode (Init DGT)

initialize the device with

7 default attributes

; draw a filled rectangle using default attributes

call dword ptr GrDevEntry
eo Ne Ne

mov di,100 7 DI = lower right corner y

mov si,100 7 SI = lower right corner x

mov dx, 0 ; DX = upper left corner y

mov cx, 0 7; CX = upper left corner x

mov bx, ChannelHandle ; BX = handle

mov ax, 003Fh ; AX = DGIS opcode (Output

call dword ptr GrDevEntry 5 Filled Rectangle)

; disconnect and exit

mov bx, ChannelHandle ; BX = handle

mov ax, 002Bh ; AX = DGIS opcode (Disconnect)

call dword ptr GrDevEntry

Lexie. mov ax, 4C00h

int 24 ta 7 Heturn to DOS

ErrorExit: mov ah, 9

int 21h 7 display error message
mov ax, 4C0O1h

emit 21h ; Heturn to DOS

EntryPoint ENDP

_TEXT ENDS

_DATA SEGMENT para public 'DATA'

GrDevEntry DD ? 7 graphics device entry point
ChannelHandle DW 2 7 handle to connected device

* configuration

Msg0 DB CR, LF,'No DGIS devices installed',CR,LF,'$!
Msg1 DB CR,LF,'No graphics devices installed',CR,LF,'$'
Msg2 DB CR,LF,'Can't connect to graphics device',CR,LF,'S'
_DATA ENDS

STACK SEGMENT stack 'STACK!

DB 400h dup (?)
STACK ENDS

END EntryPoint.

428 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The application program ‘‘connects’’ to an appropriate configuration, which
DGIS identifies with a handle. The application can then associate an attribute
context with the handle; the attribute context is a data structure that defines draw-
ing colors, line styles, clipping boundaries, and so on. Subsequent calls to DGIS
graphics output functions like Output FilledRectangle refer to the attribute
context associated with a specified handle.

This general sequence of operations is inherently flexible. One reason is that it
lets an application program access hardware features without actually program-
ming the hardware. For example, an application can use DGIS functions to change
a color palette or update pixels without writing directly to hardware control regis-
ters or to the video buffer.

However, an application that performs video output through a DGIS interface runs
slower than an equivalent application that programs the video hardware directly.

As always, when you interpose a layer of functionality between your application

and the hardware, you gain increased functionality and portability at the price of

a decrease in speed. You must decide whether this trade-off is worthwhile in your
own applications.

High-Level Interface

There are several high-level graphics interface implementations available for IBM

video subsystems. These high-level interfaces differ from DGIS and the IBM video

BIOS in that they are implemented as software libraries or RAM-loadable device

drivers instead of firmware routines. All of them relieve you of the need to pro-

gram the hardware directly, and all provide a structured programming interface

that can be used in a program written in a high-level language.

The differences between the high-level graphics interfaces lie in the amount and

type of functionality built into them. For example, the Virtual Device Interface

(VDI) is a proposed ANSI standard designed to promote hardware independence in

programs written in high-level languages. VDI presents a consistent programming

interface to all graphics output hardware, including video subsystems, printers,

and plotters. (The Graphics Development Toolkit sold by Graphics Software Sys-

tems and IBM support VDI.)

Another well-known interface is the Graphical Kernel System (GKS), an inter-

nationally recognized ANSI standard. GKS offers a highly structured interface

with powerful graphics data manipulation features. GKS deals not with individual

hardware devices but with workstations that can include several related input and

output devices (such as a display, a keyboard, and a mouse). A GKS implementa-

tion can be layered above a lower-level interface like VDI, an application can then

use either interface without sacrificing functionality or portability.

Still another type of high-level interface integrates graphics output with the com-

puter’s operating environment, as does the Graphics Device Interface (GDI) in

Microsoft Windows. In contrast to DGIS, which is designed to be a low-level in-

terface to display hardware, GDI serves as a high-level interface to Windows’

Chapter 13: Graphics Subroutines in High-Level Languages 429

graphics-oriented operating environment. In a layered graphics interface, GDI

would be closer to the topmost layer while an interface like DGIS would be near

the bottom. In fact, you can install Windows to run on top of DGIS; a Windows

application can then use GDI functions which in turn call DGIS functions to ac-

cess the hardware (Figure 13-2).

The C source code fragment in Listing 13-8 merely scratches the surface of GDI

programming in Windows, but it should give you an idea of how the video inter-

face is structured. Most of the code in the example establishes a device context for

the Rectangle () function to use. In GDI, a device context is a global data

structure that contains information on the colors with which text and graphics are

drawn, as well as scaling factors for pixel (x,y) coordinates, clipping boundaries,

and other information. Windows maintains a device context for each window on

the screen. Each device context is identified by a 16-bit handle. When an applica-

tion calls a GDI output function like Rectangle () or Ellipse (), it passes

the handle of a device context to the function; the function then refers to the infor-

mation in the device context to produce output in a window.

To produce graphics output in a window, a Windows application starts by calling

the Windows function Creat eWindow (), which returns a handle (hWnd) that

identifies the window. The application then monitors Windows’ applicaiton mes-

sage queue to determine when to update the window.

To generate output to the window, the application can use another Windows func-

tion, BeginPaint (), to associate a device context (identified with the handle

hDC) with the window. The application then uses GDI functions to establish draw-

ing attributes and pixel coordinate mapping in the device context. In the example

in Listing 13-8, the attributes of the rectangle’s border (line style and color) are

specified by creating a data structure that becomes part of the device context.

Application

Figure 13-2. Microsoft Windows GDI installed on DGIS.

430 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

HDC hDC; /* device context handle */
HPEN hpen;

HBRUSH hbrush;

PAINTSTRUCT ps;

/* initialize device context for window */

hDC = BeginPaint(hWnd, &ps);

/* associate attributes with device context */

hpen = CreatePen (PS SOLID, 0, GetSysColor (COLOR _WINDOWTEXT));
SelectObject(hDC, (HANDLE) hpen);

hbr = CreateSolidBrush (GetNearestColor(hDC,RectFillColor));

SelectObject(hDC, (HANDLE)hbr);

/* draw a filled rectangle */

Rectangle(RDC, 0, 0, 100, 100:)-

EndPaint(hWnd, &ps);

Listing 13-8. Using Microsoft Windows GDI (version 1.03) to draw a filled rectangle.

The function CreatePen () creates the data structure and returns an identifying
handle that is assigned to the variable hpen. The function Select Object ()

then updates the device context with this information. Similarly, calls to

CreateSolidBrush() and SelectObject () establish the color and pat-
tern used to fill the rectangle.

When Rectangle () executes, it uses the “‘pen’’ and “‘brush’’ attributes in the

device context to draw the rectangle’s border and interior. The (x,y) coordinates

specified in the call to Rectangle () indicate the rectangle’s upper left and
lower right corners. The coordinates do not indicate absolute pixel locations in the

video buffer; they specify points in the coordinate system that relates to the win-

dow in which the rectangle is displayed.

GDI’s general design is similar to that of other high-level graphics interfaces —

the hardware-dependent, machine-language routines are isolated in the lowest

layer of the interface, and portable, hardware-independent functions are imple-
mented in the interface’s upper layers. The differences among GDI, VDI, and other

high-level graphics interfaces lie not so much in implementation details as in the

types and complexity of the graphics functions they can perform.

Chapter 13: Graphics Subroutines in High-Level Languages 431

eT ee frees
: —o s: 2 =

: - ae

i fia

ae = tees ia pe ea oe
a 3 . a

~~ 7 ad

hay
“Ty =

te :
ese *

Fes , -
Le
_ = " >»

7 rf Pe Sayre 7 ae
io - Po) 1 a oP ae 7

. 3 “

a

ha So Suet we 22508, ae

, eu pie S yoREy ee eed a bethite®

Ss elas SA eS OP nen

at 8 ra) *
—

= . en ae -
Y >

es a

ey OP ae

ss Rin na es ewe Pe 9

" OT sia ee ee Aa ae JR an
; : a 1s 1) see wat Po ae ot ee

; “aes

ie’ - rir » hairs & oop lL ae Saree
ow) Dr 7 7 : = = ee Pe i. Fer wow i 4 Sanere i 7

_ i A a>, cS i» toe * | ASO wr a

a os = SS, 1A
. , oes eae: hin “Gt cae = Bonin BA

oo i nies CaN
cz a * LG X » eT
Pes cess, gi as ww “gape —— ib

AAG 7 & Lhe? ac
2 : ; : : 7 4

7 = ie ee es : these es 16 He me oa

439 aie Well Arb St 5 Neral: hago te RAG nih nial =
F hye ated all: as: WEO4 Peat Moree ore ey Ui —— —e

w= neh be Arete ote Wicd oP clasts () cate year 9. ; ees ‘hes onc aR pip cat amT csig4 sia alos bngins am wee _ | SAMS oocacirw att et itite Lemos vain Bile
oy ; ie bas eles the seaien Vp soar thdoal+< bay 1) Aare lL eee

| . | | , Rynnsosa sete as a

; efi) enna.” Aagg het: qo" mls soag ti petiseces ‘ aeaaiel rah

- ; ; eta re pes SPSST weir) hous wilvowd & ‘stensroot oad wiewiad e ae

a . 7G Rak egg Veins sa? ater (to pene goer we Da voit ¢
= ty i Meal tet af hain Piydorda syaleu toy ab pias wt Tr

) REP WH OI aval WY Geatege sipa irtcare wilt mi Zhao Daag wet oye
i

2
7

a : ; Sonelpaiaa ot stgestiet #
i 5 7. * or ea te ~ satin sein trad (Pa) ae

: eet ah ab irsectos Tit 2e3ttRA uu gna!-sait>arn tp

Pog, bm 1 hs Se ool armatied ; sia la.
= wales beg fH I erwey, teppei esa T ata ys

rut ie at theta RoLlatrereeiqhal &- Pang oe pent a
ty Gas y Nis Sy fade

= _;

a ; PW canta “

Appendix A

Video BIOS Summar

All computers in the IBM PC and PS/2 family have a BIOS (Basic Input/Output

System) in ROM. The ROM BIOS contains a set of assembly-language routines that

provide a low-level programming interface for accessing various hardware fea-

tures, including disk drives, the system timer, serial I/O ports, a parallel printer,

and, of course, the video hardware. By building a video BIOS in ROM into every

machine, IBM has attempted to provide a common software interface for the

various machines, despite substantial hardware differences among the IBM PC,

the PC/XT, the PC/AT, and the PS/2s.

To a large extent, this endeavor succeeded. Transporting programs between IBM

PCs with different hardware tends to be easier when the programs access the hard-

ware only by calling ROM BIOS routines. This is particularly true of programs

that manipulate the video display. When you consider the many video display

configurations available, you might regard the BIOS as a sort of “‘lowest common

denominator’ for the software developer.

Still, you might not always choose to use ROM BIOS routines for video output for

several reasons. For one, ROM BIOS video support routines are not very fast.

When performance is critical, you probably will not use them. The speed of the

routines is rarely important for tasks performed infrequently, such as loading a

character set into RAM or changing a video display mode. On the other hand, in

displaying graphics images or producing animation effects, using the BIOS can

substantially decrease performance.

Many other tasks are better performed by your operating system rather than the

BIOS. For example, when you call the BIOS to write characters to the screen, you

bypass any operating system processing of those characters. The BIOS routines

know nothing about input/output redirection, windowing, or other functions the
operating system provides.

Clearly, the video ROM BIOS is essential to IBM PC video programming, but the
extent to which your programs use it is a matter for your judgment.

Hardware Supported by ROM Video BIOS

MDA and CGA

The ROM BIOS on the motherboard of every IBM/PC, PC/XT, and PC/AT supports
both the MDA and the CGA. Also, the PS/2 Model 30’s video BIOS supports an
MDA, in addition to its integrated MCGA. When you power a PC on, the vector for
interrupt 10H is initialized to point to the video service routine in ROM.

IBM’s technical documentation frequently refers to the motherboard ROM BIOS
in the PCs and PS/2s as the ‘‘planar’’ BIOS. The planar BIOS routines start at
F000:E000 in the CPU’s address space.

434 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

EGA

IBM’s EGA contains its own set of video drivers in ROM, located at C000:0000.
The EGA’s cold boot routines initialize interrupt 10H to point to its service rou-
tine in the EGA ROM BIOS. The EGA BIOS uses the interrupt 42H vector to point
to the motherboard video service routine. Because the EGA’s interrupt 10H rou-

tines access the motherboard BIOS routines whenever necessary through INT 42H,

you rarely need to execute this interrupt explicitly.

MCGA

The video ROM BIOS in the PS/2 Models 25 and 30 supports the integrated MCGA

subsystem in these computers. The Model 30’s ROM BIOS supports the concurrent

use of an MDA, but a CGA cannot be used in the same machine because its I/O

port assignments and video memory usage conflict with those of the MCGA.

VGA

Video ROM routines in the PS/2 Models 50, 60, and 80, starting at E000:0000, sup-

port the VGA exclusively. The other video adapters described in this book cannot

be installed in these computers because they are incompatible with the PS/2

MicroChannel bus.

VGA Adapter

The VGA Adapter’s video ROM BIOS routines start at C000:0000. The BIOS rou-

tines on the VGA Adapter are the same as those in the PS/2 Model 50, 60, and 80

video BIOS, except for minor differences related to the different hardware imple-

mentations of the adapter and the integrated VGA subsystem.

Interrupt 10H

The BIOS video routines are written in assembly language and accessed by per-

forming 80x86 interrupt 10H. The INT 10H interface is designed for assembly-

language programs, but you can call the BIOS routines directly from programs

written in languages such as C or Pascal if your language compiler provides a way

to execute the interrupt.

You select a BIOS video support routine by loading a function number into regis-

ter AH. To pass parameters to the BIOS routine, place their values in the 80x86

registers before executing INT 10H. Values that the BIOS routines return to your

program are left in registers as well.

The IBM PC motherboard BIOS routines explicitly preserve the contents of regis-

ters DS, ES, BX, CX, DX, SI, and DI (unless they are used for parameter passing).

The EGA, MCGA, and VGA BIOS routines also preserve register BP.

Appendix A: Video BIOS Summary 435

If you are using the IBM PC or PC/XT planar BIOS, preserve register

BP across INT 10H calls to the BIOS. For example:

push bp ; preserve BP

Ine Oh ; call the BIOS

pop bp ; restore BP

As arule, BIOS video input/output routines do not validate data, nor do they

return status codes or error flags. Thus, your programs should never attempt to

access an invalid video buffer address, select a video page in a video mode that

does not support them, or access hardware not installed in your system. The BIOS

routines do not reliably detect any of these errors.

Video BIOS Data Areas

Video Display Data Area

The BIOS routines maintain several dynamic variables in an area of memory

called the Video Display Data Area. Figure A-1 contains a summary of these vari-

ables’ addresses, their symbolic names, and their contents.

Address

0040:0049
_0040:004A
F 0040:004C
.0040:004E
0040:0050

0040:0060

0040:0062
0040:0063

0040:0065

0040:0066

0040:0084

Figure A-1.

Name Type Description

CRT_MODE Byte Current BIOS video mode number
CRT_COLS Word Number of displayed character columns
CRT_LEN Word __ Size of video buffer in bytes
CRT_START Word Offset of start of video buffer
CURSOR_POSN Word Array of eight words containing the cursor

position for each of eight possible video
pages. The high-order byte of each word
contains the character row, the low-order
byte the character column.

CURSOR_MODE Word _ Starting and ending lines for alphanumeric
cursor. The high-order byte contains the
starting (top) line; the low-order byte con-
tains the ending (bottom) line.

ACTIVE_PAGE Byte Currently displayed video page number
ADDR_6845 Word I/O port address of CRT Controller’s Address

register (3B4H for monochrome, 3D4H
for color).

CRT_MODE_SET Byte Current value for Mode Control register
(3B8H on MDA, 3D8H on CGA). On the
EGA and VGA, the value emulates those

used on the MDA and CGA.
CRT_PALETTE Byte Current value for the CGA Color Select

register (3D9H). On the EGA and VGA,
the value emulates those used on the
MDA and CGA.

ROWS Byte Number of displayed character rows — 1

BIOS Video Display Data Area. (continued)

436 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

va"

Figure A-1. Continued.

SS a ES SI SES OTSEGO

Address Name Type Description

0040:0085 POINTS Word _— Height of character matrix
0040:0087 INFO Byte (See Figure A-1a)
0040:0088 INFO_3 Byte (See Figure A-1b)
0040:0089 Flags Byte Miscellaneous flags (see Figure A-1c)
0040:008A DCC Byte Display Combination Code table index
0040:00A8 SAVE_PTR Dword Pointer to BIOS Save Area (see Figure A-3)

Bit Description

in Reflects bit 7 of video mode number passed to INT 10H function 0
6-5 Amount of video RAM:

00b - 64K
01b - 128K
10b - 192K
11b - 256K

4 (reserved)
5 1 - video subsystem is inactive
2: (reserved) "
1 1 - video subsystem is attached to monochrome display
0) 1 - alphanumeric cursor emulation is enabled

Figure A-la. Mapping of INFO byte at 0040:0087 in the EGA and VGA Video Display Data

Area.

1S a
SSS SS

Bit Description

7 Input from feature connector on FEAT] (bit 6 of Input Status register 0) in

response to output on FC1 (bit 1 of Feature Control register)

6 Input from feature connector on FEATO (bit 5 of Input Status register 0) in

response to output on FC1 (bit 1 of Feature Control register)

5 Input from feature connector on FEAT! (bit 6 of Input Status register 0) in

response to output on FCO (bit 0 of Feature Control register)

4 Input from feature connector on FEATO (bit 5 of Input Status register 0) in

response to output on FCO (bit 0 of Feature Control register)

3 Configuration switch 4 (1 - off, 0 - on)

2 Configuration switch 3 (1 - off, 0 - on)

1 Configuration switch 2 (1 - off, 0 - on)

0 Configuration switch 1 (1 - off, 0 - on)
a

Figure A-1b. Mapping of INFO_3 byte at 0040:0088 in the EGA and VGA Video Display

Data Area. Bits 4 through 7 reflect the power-on status of the EGA feature connector. Bits 0

through 3 reflect the settings of the four EGA configuration switches. (The switch values are

emulated by the VGA BIOS, depending on the type of display attached.)

Appendix A: Video BIOS Summary 437

SS __.

Bit Description

a Alphanumeric scan lines (with bit 4):

bit 7 bit 4
0 0 350-line mode
0 1 400-line mode
1 0 200-line mode
1 1 (reserved)

6 1 - display switching is enabled
0 - display switching is disabled
(reserved)
(see bit 7)
1 - default palette loading is disabled
0 - default palette loading is enabled

2 1 - using monochrome monitor
0 - using color monitor

1 1 - gray scale summing is enabled
0 - gray scale summing is disabled

0 1 - VGA active
0 - VGA not active

whN

Figure A-1c. Mapping of Flags byte at 0040:0089 in MCGA and VGA Video Display Data
Area.

Video BIOS routines update the values in the Video Display Data Area to reflect

the status of the video subsystem. If you alter the video environment without in-

voking an INT 10H routine, be sure you update the relevant variables in the Video

Display Data Area. Failing to do so can cause the BIOS video routines to
malfunction.

Save Areas

The ROM BIOS routines on the EGA, the MCGA, and the VGA support a set of save
areas, which are dynamic tables of video hardware and BIOS information. The
video BIOS can use these save areas to supplement the Video Display Data Area.
You can also use them to override the usual video BIOS defaults for character sets,
palette programming, and other configuration functions.

The video BIOS save areas are linked by a set of doubleword (segment:offset)
pointers (see Figure A-2). Use the variable SAVE_PTR (at 0040:00A8 in the Video
Display Data Area) to locate the save areas. SAVE_PTR contains the address of
the SAVE POINTER table (see Figure A-3). This table contains addresses of as
many as seven data structures, each with a different format and a different set of
data pertaining to operation of the video hardware or of the video BIOS routines.

The fifth address in the SAVE POINTER table is that of the SECONDARY SAVE
POINTER table (see Figure A-4), which only the VGA’s BIOS uses. This table also
contains the addresses of several data structures with contents relating to the
functioning of the video hardware and the BIOS.

438 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

SAVE_PTR

SAVE POINTER Table

Video Parameter Table

Parameter Save Area

Alphanumeric Character Set Override

Graphics Character Set Override

SECONDARY SAVE

POINTER Table

(VGA only)

Display Combination Code Table

2nd Alphanumeric Character Set Override

User Palette Profile Table

Figure A-2. Video BIOS Save Areas.

SSS ET EE ILI OC LE EE LOO I APTA LIAL AE EELS

Offset Type Description

0 Dword Address of Video Parameter table
4 Dword Address of Parameter Save Area (EGA, VGA only)

8 Dword Address of Alphanumeric Character Set Override
OCH Dword Address of Graphics Character Set Override
10H Dword Address of SECONDARY SAVE POINTER table

(VGA only)
14H Dword (reserved)

18H Dword (reserved)

Figure A-3. SAVE POINTER table (EGA, MCGA, VGA).

Offset Type Description

0 Word Length of SECONDARY SAVE POINTER table in bytes
2 Dword Address of Display Combination Code table
6 Dword Address of second Alphanumeric Character Set Override
OAH Dword Address of User Palette Profile table
OEH Dword (reserved)

12H Dword (reserved)

16H Dword (reserved)

Figure A-4. SECONDARY SAVE POINTER table (VGA only).

Appendix A: Video BIOS Summary 439

Apart from the SAVE POINTER and SECONDARY SAVE POINTER tables, the only

data structures provided in the ROM BIOS are the Video Parameter table and, on

the VGA, the Display Combination Code table. Thus, the only initialized ad-

dresses in the SAVE POINTER table are those of the Video Parameter table and of

the SECONDARY SAVE POINTER table. The only initialized address in the

SECONDARY SAVE POINTER table belongs to the Display Combination Code

table. Remaining addresses are initialized to 0.

Video Parameter Table

This data structure contains configuration parameters used by the BIOS video

mode set routines. The table contains entries for each available video mode. Its

structure and format differ on the EGA, the MCGA, and the VGA. Figure A-5 is a

typical entry in the VGA Video Parameter table. Formats for table entries in the

EGA and MCGA BIOS are similar.

EE

Offset Type Description

0 Byte Value for CRT_COLS

1 Byte Value for ROWS

2D Byte Value for POINTS

3 Word Value for CRT_LEN

5 4-byte array Values for Sequencer registers 1-4

9 Byte Value for Miscellaneous Output register

OAH 25-byte array Values for CRTC registers 0-18H

23H 20-byte array Values for Attribute Controller registers 0-13H

37H 9-byte array Values for Graphics Controller registers 0-8

Figure A-5. Format of a VGA Video Parameter table entry. The VGA Video Parameter table

comprises 29 such entries.

Parameter Save Area

When present, this table contains the values of the EGA or the VGA Graphics Con-

troller palette registers (00H through OFH) and the Overscan register (11H), as

shown in Figure A-6. The video BIOS updates the Parameter Save Area whenever

it updates the corresponding Attribute Controller registers.

Offset Type Description

0 16-byte array Current contents of Graphics Controller Palette registers
10H Byte Current contents of Graphics Controller Overscan register
11H—OFFH (reserved)

Figure A-6. Parameter Save Area. This area is 256 bytes in size.

When a User Palette Profile (see Figure A-10 later in this discussion)

overrides the default palette register values, the Parameter Save Area

is updated with default values, not those in the User Palette Profile.

440 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Alphanumeric Character Set Override

This data structure (see Figure A-7) indicates an alphanumeric character set to be
used instead of the BIOS default character set. The character set is loaded when-
ever the video BIOS is called to select one of the video modes that the data struc-
ture specifies.

SSS SSS SSS SS

Offset Type Description

0 Byte Length in bytes of each character definition
1 Byte Character generator RAM bank
a Word Number of characters defined
= Word First character code in table
6 Dword Address of character definition table
OAH Byte Number of displayed character rows
OBH Byte array Applicable video modes

Byte OFFH (end of list of video modes)

Figure A-7. Alphanumeric Character Set Override.

On the VGA, you can specify a second 256-character set by creating a second

Alphanumeric Character Set Override data structure and storing its address in the

SECONDARY SAVE POINTER table.

Graphics Character Set Override

This data structure (see Figure A-8) overrides the default BIOS character set selec-

tion whenever the video BIOS sets up one of the specified video modes.

Offset Type Description

0 Byte Number of displayed character rows
1 Word Length in bytes of each character definition
3 Dword Address of character definition table
D Byte array Applicable video modes

Byte OFFH (end of list of video modes)

Figure A-8. Graphics Character Set Override.

Display Combination Code Table

Figure A-9 lists all combinations of video subsystems that the video BIOS sup-
ports. The description of INT 10H function 1AH in this appendix explains how

this table is used.

The MCGA video BIOS contains a Display Combination Code table in

ROM to support INT 10H function 1AH. However, the MCGA BIOS

does not support a SECONDARY SAVE POINTER table, so you can’t

modify its DCC table.

Appendix A: Video BIOS Summary 441

a

Offset Type - Description

0 Byte Number of entries in table
1 Byte DCC table version number
2 Byte Maximum display type code
3 Byte (reserved) ; ots

4 Word array Each pair of bytes in the array describes a valid display

combination (see INT 10H function 1AH)

Figure A-9. Display Combination Code table.

User Palette Profile Table

This data structure contains user-specified overrides for the default Attribute

Controller Palette and Overscan register values, for the default values in the 256

video DAC color registers, and for the default value in the CRTC Underline Loca-

tion register (see Figure A-10). Only the VGA video BIOS supports this table.

Offset Type Description

0 Byte Underlining: 1 - Enable in all alphanumeric modes
0 - Enable in monochrome alphanumeric mode

—1 - Disable in all alphanumeric modes
1 Byte (reserved)
2) Word (reserved)

4 Word Number of Attribute Controller registers in table
6 Word First Attribute Controller register number
8 Dword Address of Attribute Controller register table
OCH Word Number of video DAC Color registers in table
OEH Word First video DAC Color register number
10H Dword Address of video DAC Color register table
14H Byte array Applicable video modes

Byte OFFH (end of list of video modes)

Figure A-10. User Palette Profile table.

Video BIOS Save Area Programming

To use a data structure supported in the SAVE POINTER and SECONDARY SAVE
POINTER tables, place the data structure in RAM and update the appropriate
SAVE POINTER or SECONDARY SAVE POINTER addresses to point to it. Because
the default SAVE POINTER and SECONDARY SAVE POINTER tables are located
in ROM, you must copy these tables to RAM and update SAVE_PTR (0040:00A8)
appropriately before you can modify them.

Listings A-1 and A-2 demonstrate two uses of the video BIOS save areas. The rou-
tine in Listing A-1 provides a parameter save area for the EGA or VGA BIOS. Once
the parameter save area is established, its first 17 bytes are updated with the con-
tents of the Attribute Controller’s 16 palette registers and its Overscan register
each time the video BIOS writes to them.

442 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

TITLE ‘Listing A-1'
NAME EstablishPSA
PAGE 55,132

Name: EstablishPSA

Me Ne Ne

fh Functions Establish a Parameter Save Area for the EGA or VGA video BIOS.

; This save area will reflect the current values of the Attribute

; Controller’s Palette and Overscan registers.

A Cakler: Microsoft C:

void EstablishPSA() ;

Me Ne Ne

SAVE_PTR EQU OA8h

DGROUP GROUP DATA

_TEXT SEGMENT byte public 'CODE'
ASSUME cs:_TEXT,ds:DGROUP,es:DGROUP

PUBLIC _EstablishPSA

_EstablishPSA PROC near

push bp

mov bp, sp

push si

push di

; preserve previous SAVE PTR

push ds

pop es eS) DCROUP

mov di,offset DGROUP:Old_ SAVE_PTR

mov ax, 40h

mov ds,ax ; DS -> video BIOS data area

mov si,SAVE_PTR 7 DS'Si => SAVERPTR

mov cx,4

rep movsb

copy SAVE POINTER table to RAM ,

lds si,es:Old SAVE PTR ; DS:SI -> SAVE POINTER table

mov di,offset DGROUP:SP_TABLE1

mov cx, 1*4 ; number of bytes to move

rep movsb

update SAVE PTR with the address of the new SAVE POINTER table
,

mov ds,ax ; DS -> video BIOS data area

mov si,SAVE_PTR

mov word ptr [si],offset DGROUP:SP_TABLE1

mov [sit2],es

(continued)

Listing A-1. Using a Parameter Save Area to keep track of EGA or VGA palette registers.

Appendix A: Video BIOS Summary 443

Listing A-1. Continued.

update SAVE POINTER table with address of Parameter Save Area
,

push es

pop ds ; DS -> DGROUP

mov word ptr SP_TABLE1[4],offset DGROUP: PSA

mov word ptr SP_TABLE1[6],ds

; restore registers and exit

pop di

pop si

mov sp,bp

pop bp
ret

_EstablishPSA , ENDP

_TEXT ENDS

_DATA SEGMENT word public 'DATA'

Old_ SAVE PTR DD G ; previous value of SAVE PTR
SP_TABLE1 DD 7 dup (?) ; RAM copy of SAVE POINTER table

PSA DB 256 dup (0) ; Parameter Save Area

_DATA ENDS

END

Listing A-2 shows how to specify the palette values to be used when the video

BIOS routines are invoked to establish a new video mode. First, place the values

in a table whose address is stored in a User Palette Profile data structure. Then

place the address of this data structure in the SECONDARY SAVE POINTER table.

(Since this example uses the SECONDARY SAVE POINTER table, you can run it

only on the VGA.)

TITLE "Listing A-2'

NAME EstablishUPP

PAGE Sop lsZ

; Name: EstablishUPP

; Function. Establish a User Palette Profile Save Area for the VGA

; video BIOS. This save area overrides the usual default
F palette values for a specified list of video modes.

; Caller: Microsoft C:

; void EstablishUPP ();

(continued)

Listing A-2. Using a User Palette Profile to override the default VGA palette.

444 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing A-2. Continued.

SAVE_PTR EQU

DGROUP GROUP

_ TEXT SEGMENT

ASSUME

PUBLIC

_EstablishUPP PROC

push

mov

push

push

OA8h

_DATA

byte public 'CODE'

cs: _TEXT,ds:DGROUP,es:DGROUP

_EstablishUPP

near

bp
bp, sp

si

di

7 preserve previous SAVE PTR

™

push

pop
mov

mov

mov

mov

mov

rep

ds

es ; ES -> DGROUP

di,offset DGROUP:Old_ SAVE PTR

ax, 40h

ds,ax ; DS -> video BIOS data area

si,SAVE_PTR ; DS:SI -> SAVE PTR

eCx,4

movsb

copy SAVE POINTER table to RAM

lds

mov

mov

rep

si,es:Old_ SAVE PTR ; DS:SI -> SAVE POINTER table

di,offset DGROUP:SP_TABLE1

cx, 7*4 7 number of bytes to move

movsb

update SAVE PTR with the address of the new SAVE POINTER table

mov

mov

mov

mov

ds,ax ; DS -> video BIOS data area

si,SAVE_PTR
word ptr [si],offset DGROUP:SP_TABLE1

[si+2],es

copy SECONDARY SAVE POINTER table to RAM

lds

mov

mov

rep

si,es:SP_TABLE1 [16] ; DS:SI -> SEC SAVE POINTER table

di,offset DGROUP:SP_TABLE2

ex, [Si]

movsb

update new SAVE POINTER table with address of new SECONDARY SAVE POINTER table

push

pop

es

ds , Ds? =>) DGROUP.

(continued)

Appendix A: Video BIOS Summary 445

Listing A-2. Continued.

,

mov

mov

update SECONDARY SAVE

mov

mov

; restore registers and

pop

pop
mov

pop
ret

_EstablishUPP ENDP

Stexe

_DATA

ENDS

SEGMENT

Old_SAVE_PTR DD

SP_TABLE1

SP_TABLE2

UPP

PalTable

_DATA

DD

DW

DD

DB

DB

DW

DW

DW

DW

DW

DW

DW

DD

DB

DB

DB

DB

ENDS

END

word ptr SP TABLE1([16],offset DGROUP: SP_TABLE2

word ptr SP_TABLE1[18],ds

POINTER with address of User Palette Profile

word ptr SP_TABLE2[10],offset DGROUP : UPP

word ptr SP_TABLE2[12],ds

exit

di

si

sp,bp

bp

word public 'DATA'

eg

7 dup (?)

on dup (?)

So =o © &

DGROUP:PalTable

seg DGROUP

0

0

0)

3, OFFh

,

,

,

previous value of SAVE PTR

copy of SAVE POINTER table

copy of SECONDARY SAVE POINTER table

underlining flag

(reserved)

(reserved)

of palette & overscan registers

first register specified in table

pointer to palette table

number of video DAC color regs

first video DAC register

pointer to video DAC color table

list of applicable video modes

30h, 31h, 32h, 33h, 34h, 35h, 36h, 37h ; a custom palette

00h, 01h, 02h,03h,04h,05h,14h, 07h

Oth 7 overscan reg

Generally, your application should restore SAVE_PTR to its original

value when the SAVE POINTER tables and save areas are no longer

needed. If you want to preserve these tables in RAM for use by subse-

quent applications, use the MS-DOS ‘‘Terminate-but-Stay-Resident’’
function (INT 21H function 31H) so that the RAM containing the
tables is not freed when the program that creates them terminates.

446 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Interrupt 1DH Vector

This interrupt vector contains the address of a table of video initialization values

(see Figure A-11). These values are useful only for the MDA and the CGA;

however, the table is maintained for compatibility among all PCs and PS/2s.

Offset Type Description

0 16-byte array CRTC registers for 40-by-25 alphanumeric mode (CGA)
10H 16-byte array CRTC registers for 80-by-25 alphanumeric mode (CGA)
20H 16-byte array CRTC registers for 320-by-200 4-color or 640-by-200

2-color graphics modes (CGA)
30H 16-byte array CRTC registers for 80-by-25 monochrome (MDA)
40H Word Video buffer length (40-by-25 alphanumeric mode)
42H Word Video buffer length (80-by-25 alphanumeric mode)
44H Word Video buffer length (CGA graphics modes)
46H Word Video buffer length (CGA graphics modes)
48H 8-byte array Number of displayed character columns for video BIOS

modes 0 through 7
50H 8-byte array Values for CRT Mode Control register 3x8H for video

BIOS modes 0 through 7

Figure A-11. MDA and CGA Video Initialization table. This table’s address is stored in the

vector for INT IDH.

IBM PC and PS/2 Video BIOS Functions
(INT 10H Interface)

The following pages provide detailed descriptions of each BIOS function available

through software interrupt 10H. The descriptions are intended to complement the

function summaries and assembly-language source code listings in IBM’s techni-

cal literature. The accompanying source code fragments represent typical

programming examples that you can modify for your own purposes.

This summary includes information on the ROM BIOS routines found on the

motherboard, the EGA, the MCGA, and the VGA. However, not all the routines are

available or function identically on all computers in the IBM PC and PS/2 family.

All information in this chapter is based on IBM technical specifications and on

the following dated versions of the video ROM:

IBM PC motherboard ROM: 10/27/82

IBM PC/AT motherboard ROM: 6/10/85

IBM PS/2 Model 30 (MCGA) ROM: 9/2/86

IBM PS/2 Model 60 (VGA) ROM: 2/13/87

®

@

@ IBMEGA ROM: 9/13/84

e

@

e IBM PS/2 (VGA) Display Adapter ROM: 10/27/86

Appendix A: Video BIOS Summary 447

Function 0: Select Video Mode

Caller registers:

AH = 0

AL = video mode number:

OAH

OBH

0CH

0DH

OEH

OFH

10H

11H
12H
13H

(none)

0040:0049
0040:004A

0040:004C
0040:004E

0040:0050
0040:0060
0040:0062

0040:0063
0040:0065

0040:0066

0040:0084

40-by-25 16-color alphanumeric, color burst disabled

40-by-25 16-color alphanumeric, color burst enabled

80-by-25 16-color alphanumeric, color burst disabled

80-by-25 16-color alphanumeric, color burst enabled

320-by-200 4-color graphics, color burst enabled

320-by-200 4-color graphics, color burst disabled

640-by-200 2-color graphics, color burst enabled

80-by-25 monochrome alphanumeric (MDA, Hercules, EGA,

and VGA only)

8 160-by-200 16-color graphics (PCjr only)

9 320-by-200 16-color graphics (PCjr only)

640-by-200 4-color graphics (PCjr only)

Reserved (used by EGA BIOS function 11H)

Reserved (used by EGA BIOS function 11H)

320-by-200 16-color graphics (EGA and VGA only)

640-by-200 16-color graphics (EGA and VGA only)

640-by-350 monochrome graphics (EGA and VGA only)
640-by-350 16-color graphics (VGA, EGA with at least 128 KB)
640-by-350 4-color graphics (64 KB EGA)
640-by-480 2-color graphics (MCGA, VGA only)
640-by-480 16-color graphics (VGA only)
320-by-200 256-color graphics (MCGA and VGA only)

ANDNHPWNK OC

Returned values:

Video Display Data Area updates:

CRT_MODE
CRT_COLS

CRT_LEN
CRT_START

CURSOR_POSN
CURSOR_MODE
ACTIVE_PAGE
ADDR_6845

CRT_MODE_SET
CRT_PALETTE
ROWS

448 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

0040:0085 POINTS
0040:0087 INFO
0040:0088 INFO_3

INT 10H function 0 puts the video subsystem in the video mode you specify with

the value in register AL. Function 0 programs the CRT Controller, selects a default

color palette, and optionally clears the video buffer. You can modify several

default tasks that function 0 performs by setting flags in the Video Display Data

Area (see INT 10H function 12H) or by providing character set or palette attribute
overrides in BIOS save areas.

Video mode numbers 0BH and OCH are reserved for the EGA BIOS support routine

for RAM-loadable character sets, in which video memory map 2 is selectively

enabled so a table of character definitions can be loaded.

On the EGA, the MCGA, and the VGA, composite video displays are not supported,

and there is no color burst signal to control. Thus, mode 0 is the same as mode 1,

mode 2 = mode 3, and mode 4 = mode 5.

If you use this BIOS routine to request a video mode your system hardware does

not support, the results are unreliable. In particular, if you select mode 7 (mono-

chrome alphanumeric) with a CGA, the motherboard BIOS programs the CGA’s

CRT Controller with parameters appropriate for an MDA, which results in in-

comprehensible noise on the CGA screen. The third example below shows how to

solve this problem by setting bits 4 and 5 of EQUIP_FLAG (0040:0010) to indicate

which subsystem the BIOS is to use.

On the EGA, the MCGA, and the VGA, if bit 7 of the requested video mode number

in AL is set to 1, the video buffer is not cleared when the new video mode is

selected. Thus, a program can alternate between two video subsystems without

losing the contents of their video buffers.

The following example selects 320-by-200 4-color graphics mode.

mov ax,0004 ; AH := 0 (INT 10H function number)

; AL := 4 (video mode number)

int 10h

This routine shows how to change modes on the EGA without clearing the video

buffer.

mov ax,QQ0EH ; select a video mode (in this case,

; 640x200 16-color mode)

or al,10000000b Set. bit. 7

int 10h

To select video modes in a system containing both a CGA and an MDA, use a

routine such as the following.

Appendix A: Video BIOS Summary 449

mov ax,40h

mov esS,ax

and byte ptr es:[10h],11001111b

or byte ptr es:[10h],00110000b

zero bits 4 and 5 of HQUIP FLAG

set bits 4 and 5:

11b - monochrome

10b. = color (80x25)

01b - color (40x25)

00b —- (unused) Se Ne Ne Ne Ne Oe

mov ax,0007

apoye — {'i(0)Is) ; select monochrome mode 7

and byte ptr es:[10],11001111b 7 zero those bres

or byte ptr es:[10],00100000b + batts) fom 80x25) 1Go—colvor

mov ax,0003

ime 41) 0h ; select 80x25 16-color mode 3

Function 1: Set Alphanumeric Cursor Size

Caller registers:

AH = 1

CH top line of cursor

CL bottom line of cursor

Returned values:

(none)

Video Display Data Area update:

0040:0060 CURSOR_MODE

INT 10H function 1 programs the CRT Controller to display the specified alphanu-
meric cursor. It programs the CRT Controller’s Cursor Start and Cursor End
registers so that the alphanumeric cursor appears between the specified lines in
the character matrix. The contents of register CX are copied into
CURSOR_MODE.

If the value in CH is 20H the alphanumeric cursor is disabled.

On the EGA and the VGA, if bit 0 of the INFO byte (0040:0087) is set to 0, the BIOS
processes the top and bottom line values passed in CH and CL relative to an eight-
line character matrix. Chapter 3 discusses this ‘‘cursor emulation’’ in detail.

Use INT 10H function 1 only in alphanumeric video modes.

To select a full-height cursor in video mode 3 (80-by-25 16-color alphanumeric
mode) ona CGA:

mov cx,0007h 7 CH= 0) (Geopmduime)
* CL := 7 (bottom line of the 8x8 character matrix)

mov ah,1 ; AH := 1 (INT 10H function number)
Ine 0h

450 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

On an EGA with a 350-line monitor, video mode 3 is a 350-line alphanumeric
mode with an 8-by-14 character matrix. Nevertheless, the above code normally
runs unchanged in this situation, because the BIOS ‘‘emulates”’ the corresponding
200-line CGA mode and programs the Cursor Start and End registers accordingly.

SSS a a

Function 2: Set Cursor Location

Caller registers:

AH = 2

BH = video page

DH = character row

DL = character column

Returned values:

(none)

Video Display Data Area update:

0040:0050 CURSOR_POSN

INT 10H function 2 updates the BIOS Video Display Data Area with a new cursor

position. If the value in BH references the currently displayed video page, this

routine also programs the CRT Controller to update the displayed cursor position.

To set the cursor position to column 10, row 5, in 80-by-25 16-color mode:

mov ah,2 * AH := 2 (INT 10H function number)

mov bh,1 ; BH := video page

mov dh,5 » DH = icow

mov dl1,10 ; DL := column

pe, 91 Oh

eer rere ee

Function 3: Return Cursor Status

Caller registers:

AH = 3
BH = video page number

Returned values:

CH = top line of cursor

CL = bottom line of cursor

DH = character row

DL = character column

Appendix A: Video BIOS Summary 451

Video Display Data Area updates:

(none)

INT 10H function 3 returns the character cursor location for the specified video

page. The character row and column values are copied from CURSOR_POSN in

the Video Display Data Area.

The values returned in CH and CL are copied from CURSOR_MODE, also in the

Video Display Data Area. They are meaningful only in alphanumeric modes.

To determine the current cursor location (and size in an alphanumeric mode) in

video page 0:

mov ah,3 ; AH := 3 (INT 10H function number)

mov bh,0 ; BH := 0 (video page)

cenit ee Ot

Function 4: Return Light Pen Position

Caller registers:

AH = 4

Returned values:

AH = 1if valid light pen position returned

0 if no light pen position returned

BX = pixel x-coordinate

CH = pixel y-coordinate (CGA and EGA video modes 4, 5, and 6)

CX = pixel y-coordinate (EGA except modes 4, 5, and 6)
DH = character row

DL = character column

Video Display Data Area updates:

(none)

INT 10H function 4 gets the current position of the light pen from the CRT Con-
troller’s Light Pen High and Light Pen Low registers.

If the light pen switch is not set, or if the light pen latch has not been triggered
(that is, if the CRTC’s Light Pen High and Light Pen Low registers do not contain
a valid light pen address), function 4 returns 0 in register AH. Otherwise, function
4 sets AH to 1, leaves the light pen position in registers BX, CX, and DX, and
resets the light pen trigger.

When function 4 returns, BX contains the calculated pixel x-coordinate at which
the light pen was triggered. Since the CRTC returns the light pen position as a

452 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

byte address, the value in BX is only as accurate as the number of pixels in each

byte of the video buffer. (In 640-by-200 2-color mode, for example, each byte of

the video buffer represents eight pixels; function 4 therefore returns the pixel

x-coordinates of every eighth pixel.) The light pen position is calculated relative

to the start of the displayed portion of the video buffer (CRT_START).

INT 10H function 4 returns the pixel y-coordinate in either CH (in the mother-
board BIOS) or CX (in all video modes in the EGA BIOS except modes 4, 5, and 6).

For example, in 320-by-200 4-color graphics mode, the pixel y-coordinate is al-

ways returned in CH, but in 80-by-25 16-color alphanumeric mode, the value is

returned in CH on a CGA but in CX on an EGA.

The values that function 4 returns in DH and DL represent the character row and

column at which the light pen was triggered.

INT 10H function 4 always returns AH = 0 on the MCGA and the VGA, which do

not support light pens.

To determine the light pen status in any video mode, call INT 10H function 4:

mov ah,4 ; AH := 4 (INT 10H function number)

the 9 Oh

For example, if you trigger the light pen near the center of the display in 640-

by-350 16-color mode, the values returned by this function might be:

AH = | 1 (valid light pen results were returned)

BX = 320 (x-coordinate of first pixel at the byte address where the pen was

triggered)

CX = 175 (pixel y-coordinate)

DH = 12 (character row)

DL = 40 (character column) .

ee ——_—_—_—_—_—_—_=ioE

Function 5: Select Video Page

Caller registers:

AH = 5
AL = video page number

Returned values:

(none)

Video Display Data Area updates:

0040:004E CRT_START

0040:0062 ACTIVE_PAGE

Appendix A: Video BIOS Summary 453

INT 10H function 5 selects which portion of the video buffer is displayed on the

CGA, the EGA, the MCGA, and the VGA. It works by programming the CRTC Start

Address registers. You can use the function in 40-by-25 or 80-by-25 alphanumeric

video modes (BIOS modes 0, 1, 2, and 3) in any of these subsystems.

On the CGA, the entire 16 KB video buffer is used in both 320-by-200 and 640-

by-200 graphics modes, so no video paging is possible. Calls to function 5 are ig-

nored in these modes.

On the MCGA, the EGA, and the VGA, video pages are available in both alphanu-
meric and graphics modes up to the limits of video RAM. However, the BIOS rou-

tine does not check whether video RAM is sufficient to support a requested video

page; if the requested video page lies outside the video buffer, the resulting dis-

play is unusable.

The BIOS maintains a current cursor location for as many as eight video pages in
CURSOR_POSN. When you invoke Function 5, the BIOS moves the cursor to

where it was located the last time the requested video page was displayed.

The following routine sets the displayed portion of the CGA’s video buffer to start
at B800:1000 (video page 1) in 80-by-25 alphanumeric mode:

mov ax,0501h ; AH

o: . Puliees

5 (INT 10H function number)

1 (video page number) iol

int 10h

Function 6: Scroll Up

Caller registers:

AH = 6
AL = number of lines to scroll

BH = attribute

CH = upper left corner row

CL = upper left corner column

DH = lower right corner row

DL = lower right corner column

Returned values:

(none)

Video Display Data Area updates:

(none)

INT 10H function 6 performs a row-by-row upward scroll of characters in a desig-
nated area of the active video page. You specify the number of rows of characters

454 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

to scroll in AL. The rectangular area in which the scroll is to be performed is

defined by its upper left corner, specified in CH and CL, and its lower right cor-

ner, specified in DH and DL.

The attribute you specify in BH is used for all blank lines inserted in the bottom

of the scrolled area. In alphanumeric modes, this attribute is formatted in the

usual manner, with the background attribute in the high nibble and the foreground

attribute in the low nibble. In graphics modes, the format of the attribute in BH

depends on the mode.

In 640-by-200 2-color and 320-by-200 4-color modes, and in 640-by-480 2-color

mode on the MCGA, the value in BH represents a 1-byte pixel pattern. The byte

represents eight 1-bit pixels in 2-color modes or four 2-bit pixels in 320-by-200

4-color mode. The pixel pattern is replicated throughout all lines that function 6

blanks in the scroll area. In all other EGA, MCGA, and VGA graphics modes, the

value in BH determines the value of all pixels in the blanked lines.

In 320-by-200 4-color mode on the EGA, the MCGA, and the VGA, function 6 al-

ways scrolls video page 0, regardless of which video page is currently displayed.

Specifying 0 as the number of rows to scroll in AL causes the entire scroll area to

be blanked.

In 80-by-25 16-color alphanumeric mode, you can scroll the entire screen up one

line with the following sequence:

mov ax,601h ; AH := 6 (INT 10H function number)

; AL := 1 (number of lines to scroll up)

mov bh,7 ; BH := 7 (attribute)

mov cx,0 ; CH := upper left corner: row 0

; CL := upper left corner: column 0

mov dx,184Fh ; DH := lower right corner: row 24 (18H)

+ DL := lower right corner: column 79 (4FH)

ave mee OL!

In the same video mode, you could clear only the top three lines of the display

with a background attribute of 1 (blue on a CGA) and a foreground attribute of 7

(white) using this routine:

mov ax,600h ; AH s= INT 10H function number

* AL $= © (clear the scroll area)

mov bh,17h ; BH := attribute (background 1, foreground 7)

mov cx,0 ; CH,CL := upper left corner at (0,0)

mov dx,024Fh ; DH,DL := lower right corner at (79,2)

int 10h

To get the same result in 640-by-350 16-color graphics mode on the EGA, you set

the value in BH to indicate a pixel value instead of an alphanumeric attribute:

mov ax,600h

mov bh,1 ; BH := pixel value

mov cx,0

mov dx,024Fh

amit Ola

Appendix A: Video BIOS Summary 455

In 640-by-200 2-color mode, the following call to INT 10H function 6 fills the dis-

play with vertical stripes of alternating pixel values:

mov ax,600h

mov bh,10101010b ; BH := pixel pattern

mov cx,0

mov dx,184Fh

shigie illo

Function 7: Scroll Down

Caller registers:

AH = 7

AL = number of lines to scroll
BH = attribute

CH = upper left corner row

CL = upper left corner column

DH = lower right corner row

DL = lower right corner column

Returned values:

(none)

Video Display Data Area updates:

(none)

INT 10H function 7 performs a row-by-row downward scroll of characters in a
designated area of the active video page. Except for the direction of the scroll,
this BIOS function is identical to function 6.

Ss

Function 8: Return Character Code and Attribute at Cursor

Caller registers:

AH@=s8

BH = video page

Returned values:

AH
AL

ll attribute (alphanumeric modes only)
ASCII code

Video Display Data Area updates:

(none)

456 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

INT 10H function 8 returns the ASCII code of the character at the current cursor

position in the video page that BH specifies. In alphanumeric modes, this is done

by reading a single word from the video buffer. In graphics modes, the routine

compares the character matrix at the cursor position to the bit patterns in the cur-

rent graphics character definition table.

In graphics modes, the PC/XT and PC/AT BIOS uses the ROM character definitions

at FO00:FA6E; the EGA, MCGA, and VGA BIOS uses the definitions designated by

the interrupt 43H vector. For ASCII codes 80-OFFH in CGA-compatible graphics

modes 4, 5, and 6, the BIOS uses the characters defined in the table indicated by

the interrupt 1FH vector.

To determine the character code for a character in a graphics mode, the BIOS rou-

tine regards nonzero pixels as foreground pixels. It is the pattern of foreground

(nonzero) and background (zero) pixels that is compared to the bit patterns in the

table. If the pixel pattern in the video buffer matches a bit pattern in the character

definition table, the BIOS determines the character’s ASCII code from the bit pat-

tern’s location in the table. If the pixel pattern in the video buffer does not match

any bit pattern in the table, the BIOS routine returns 0 in AL.

In 320-by-200 4-color mode on the EGA, the MCGA, and the VGA, this function

works properly only in video page 0.

The following code fragment reads the character in the screen’s upper left corner:

mov ah,OFh ; AH := OFH (INT 10H function number)

ant Oh ; leaves BH = active video page

mov ah,2 > AH := 2 (INT 10H function number)

mov dx,0 ; DH,DL v= row 0, column 0

Tite 1 Ob * sets cursor position to (07,0)

mov ah,8 ; AH := 8 (INT 10H function number)

imc 10h ; leaves AL = ASCII code

Function 9: Write Character and Attribute at Cursor

Caller registers:

AH = 9
AL = ASCII code

BH = background pixel value (320-by-200 256-color mode) or video page (all

other modes)

BL = foreground pixel value (graphics modes) or attribute value (alphanu-

meric modes)

CX = repetition factor

Returned values:

(none)

Appendix A: Video BIOS Summary 457

Video Display Data Area updates:

(none)

INT 10H function 9 writes a character one or more times into the video buffer
without moving the cursor. You must specify a repetition factor of 1 or greater in

CX. The BIOS writes a string composed of the character in AL into the buffer. The

length of the string is determined by the repetition factor in CX.

In alphanumeric modes, both the ASCII code and the corresponding attribute byte

are updated for each character written into the video buffer. In graphics modes,
each character is written into the buffer in a rectangular area the size of the char-

acter matrix. The value in BL is used for the character’s foreground pixels. In 320-

by-200 256-color graphics mode, the value in BH specifies the character’s back-

ground pixel value; in all other graphics modes, BH designates a video page, so

the character’s background pixels are 0. In all graphics modes except 320-by-200

256-color mode, the character is XORed into the buffer if bit 7 of BL is set to 1.

INT 10H function 9 does not compare the repetition factor with the number of dis-

played character columns. In alphanumeric modes, this may not matter; the video

buffer map is such that a string too long to be displayed in one row of characters

wraps to the next row. In graphics modes, however, a string should be no longer

than the remainder of the current character row.

You must specify a video page in register BH in alphanumeric modes as well as in
native EGA graphics modes, but the value in BH is ignored by the EGA, the
MCGA, and the VGA BIOS in 320-by-200 4-color graphics mode.

The following routine writes a string of 20 asterisks to the upper left corner of the
display in 80-by-25 16-color mode. The foreground value in each character’s attri-
bute byte is set to 7, and the background value is set to 1. The cursor is positioned
with a call to INT 10H function 2 before the string is written with function 9.

mov ah,2 ; AH := 2 (INT 10H function number)
mov bh,0O ; BH := video page
mov dx,0 * DH := cursor row

7 DL := cursor column
int) 0h 7 set cursor position to (0,0)
mov ah,9 7 AH := 9 (INT 10H function number)
mov al,'*' 7 AL := ASCII code
mov bl,17h ; BL := attribute byte
mov cx, 20 ; CX := repetition factor
aioe {Ola

ee

Function 0AH: Write Character(s) at Cursor Position

Caller registers:

AH = OAH

AL = ASCII code

458 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

BH

other modes)

BL

Returned values:

(none)

Video Display Data Area updates:

(none)

background pixel value (320-by-200 256-color mode) or video page (all

foreground pixel value (graphics modes only)
CX = repetition factor

INT 10H function OAH is the same as INT 10H function 9, with this exception: In

alphanumeric video modes, only the character code is written into the video

buffer. The character’s attribute remains unchanged in the buffer.

This example clears one character row from the cursor position to its end. Before

calling function OAH, the example determines the active video page and the num-

ber of displayed character columns with a call to INT 10H function OFH, and the

cursor position using INT 10H function 3.

mov

int

mov

xor

push

mov

int

pop

sub

xor

mov

int

ah, OFh

10h

al,ah

ah,ah

ax

ah, 3

10h

Cx

erat

blip pl

ax, OA20h

10h

,

,

,

Re Ne Ne Ne Ne Ne Ne

AH := OFH (INT 10H function number)

leaves AH number of columns,

BH active video page

AX := number of columns

AH := 3 (INT 10H function number)

leaves DH,DL = cursor position

CX := displayed character columns

CX := number of remaining chars in line

BL := foreground pixel value

AH := OAH (INT 10H function number)

AL := 20H (ASCII blank character)

eee aaa eee eee eee a eee eee cena nese nn ee I AED

Function 0BH: Set Overscan Color, Select 4-Color Palette

Caller registers:

AH = OBH
0 to set border or background color

1 to select 4-color palette

color value (if BH = 0)

palette value (if BH = 1)

BH

BL

Returned values:

(none)

Appendix A: Video BIOS Summary 459

Video Display Data Area update:

0040:0066 CRT_PALETTE

INT 10H function 0BH comprises two subfunctions selected according to the value

in BH. Function OBH is intended for use only in 320-by-200 4-color mode and in

CGA alphanumeric modes, but you can use it with caution in other video modes.

BH=0
When BH = 0 on the CGA and the MCGA, the BIOS loads the low-order five bits of

the value in BL into the Color Select register (3D9H). In 320-by-200 4-color

graphics mode, bits 0-3 determine the background color (the color displayed for

pixels of value 0) as well as the border color. In 640-by-200 and 640-by-480 2-color

modes, bits 0—3 specify the color of foreground (nonzero) pixels. On the CGA,

these same four bits also determine the border color in alphanumeric modes.

Bit 4 of the Color Select register selects between normal and high-intensity colors

in CGA and MCGA graphics modes (see Chapter 4). For compatibility, the BIOS

for the EGA and the VGA emulates this effect by using a palette of high-intensity

colors when bit 4 of BL is set.

In 200-line modes on the EGA and VGA, the value in BL is placed in the Attribute

Controller’s Overscan Color register (11H). This sets the border color. If either

subsystem is in a graphics mode, the same value is also stored in palette register

0. This establishes the same color for all pixels of value 0.

Don’t use function 0BH with BL = 0 in other EGA and VGA video modes. In some

modes, the BIOS routine stores incorrect color values in the Palette and Overscan

registers, while in others it does nothing at all. You should use INT 10H function

10H to program the Attribute Controller on the EGA and VGA.

Once the color register or Attribute Controller has been programmed, the BIOS

routine copies bit 5 of CRT_PALETTE in the Video Display Area to bit 0 of regis-

ter BL, and transfers control to the routine for BH = 1.

BH=1

When BH = 1, the low-order bit of the value in BL determines which of two
4-color palettes is used for 320-by-200 4-color mode (see Figure A-12). On the
CGA and the MCGA, this bit is copied into bit 5 of the Color Select register
(3D9H). On the EGA and the VGA, the bit determines which set of color values is
loaded into the Attribute Controller’s Palette registers. The colors correspond to
the CGA’s 320-by-200 4-color palettes. (See Chapter 4 for more details.)

460 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

a a aS Se eR EET

Pixel Value

(bit 0 of BL = 0) Color Displayed

1 Green

2 Red

3 Yellow

Pixel Value

(bit 0 of BL = 1) Color Displayed

1 Cyan
2 Violet
3 White

Figure A-12. Function OBH 4-color palettes.

Function 0BH with BH = 1 has no effect in alphanumeric modes. In graphics

modes other than 320-by-200 4-color mode, however, the Color Select register (on

the CGA and the MCGA) is loaded or the palette registers (on the EGA and the

VGA) are updated as if 320-by-200 4-color mode were in effect. For this reason,

you should use this subfunction cautiously in graphics modes other than 320-

by-200 4-color mode.

The following example has three different effects, depending on the current video

mode. In 200-line alphanumeric modes, it sets the border color; in 320-by-200

4-color mode it sets both border and background colors; and in CGA or MCGA

2-color graphics modes, it sets the foreground color.

mov ah,0OBH ; AH := OBH (INT 10H function number)

mov bh,0 ; BH := subfunction number

mov bl,BorderColor ; BL := color value

ane 90h

To select a 4-color palette in 320-by-200 4-color mode, call function OBH with

BH = 1:

mov ah,OBh

mov bh,1 ; BH := subfunction number

mov bl,0 ; bit 0 of BL := 0 (red-green-yellow palette)

int 10h

In 320-by-200 4-color mode, select a high-intensity set of colors by calling func-

tion OBH with BH = 0 and with bit 4 of BL set to 1:

mov ah,OBh

mov bh,0

mov bl1,10h ; bit 4 selects high-intensity palette

; bits 3-0 select border/background color

int 10h

Appendix A: Video BIOS Summary 461

EEE

Function 0CH: Store Pixel Value

Caller registers:

AH = OCH
AL = pixel value

BH = video page

CX = x-coordinate

DX = y-coordinate

Returned values:

(none)

Video Display Data Area updates:

(none)

INT 10H function 0CH updates the value of a pixel at a specified location in the

video buffer. In all graphics modes except 320-by-200 256-color mode, if the high-

order bit of the value in AL is set to 1, the value in AL is XORed into the video

buffer. Otherwise, the value in AL becomes the pixel’s new value.

On the EGA, the MCGA, and the VGA, the value in BH is used to select among

available video pages in the current video mode. However, the value in BH is ig-

nored in 320-by-200 4-color mode.

To set the value of a pixel in a 350-line graphics mode on an EGA with only 64 KB

of video RAM, you must account for the chaining of memory maps to bit planes

(as discussed in Chapter 4). In this situation, the BIOS routine expects you to spec-

ify the pixel value in AL using only its odd-numbered bits. Thus, the four possible

pixel values should be specified as 0 (0000B), 1 (0001B), 4 (0100B), and 5 (0101B)

instead of 0, 1, 2, and 3.

The following routine shows how you would set the value of the pixel at (200,100)
to 1 in any graphics mode:

mov ah,OCh ; AH := OCH (INT 10H function number)

mov al,1 ; AL := pixel value

mov cx,200 ; CX += x-coordinate

mov dx,100 ; DX := y-coordinate

Bot) SaeeathO hn

To XOR a pixel value into the video buffer, set bit 7 of AL to 1 before executing
interrupt 10H, as in the following procedure:

mov ah,0OCh

mov al,1

mov cx,200

mov dx,100

or al,10000000b ; set bit 7 to indicate xXoOR
Sore IeOsIa

462 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

This code fragment illustrates the special situation that arises in a 350-line video
mode on an IBM EGA with only 64 KB of video RAM. The code sets the value of

the pixel at (75,50) to 3.

mov ah,O0OCh

mov al,0101b ; AL := pixel value of 3 (11B)

7 represented in odd bits only

mov —Gx, 75

mov dx,50

ine, Oh

Function 0DH: Return Pixel Value

Caller registers:

AH = ODH

BH = video page

CX = x-coordinate

Dx y-coordinate

Returned values:

AL = pixel value

Video Display Data Area updates:

(none)

INT 10H function ODH returns the value of a pixel at a specified location in the

video buffer.

On an EGA in 320-by-200 4-color mode, the function ignores the video page value

specified in BH.

IBM’s EGA BIOS (9/13/84 version) contains a bug in INT 10H function ODH. In

350-line graphics modes on an IBM EGA with only 64 KB of video RAM, the value

returned in AL is incorrect. Apparently, the BIOS routine calculates the pixel’s

byte offset in the video buffer without properly accounting for the mapping of

even addresses to even bit planes and odd addresses to odd bit planes.

To determine the value of the pixel at (100,100), you could execute the following

sequence of instructions:

mov ah,ODh ; AH := ODH (INT 10H function number)

mov bh,0O ; BH := video page (0 in this example)

mov cx,100 * CX 3= xX-coordinate

mov dx,100 ; DX := y-coordinate

int 10h ; leaves AL = pixel value

Appendix A: Video BIOS Summary 463

ET

Function 0EH: Display Character in Teletype Mode

Caller registers:

AH = OEH
AL = ASCII code

BH video page (PC BIOS versions dated 10/19/81 and earlier)

BL foreground pixel value (graphics modes only)

Returned values:

(none)

Video Display Data Area update:

0040:0050 CURSOR_POSN

INT 10H function OEH calls INT 10H function OAH to display the character you

pass in register AL. Unlike function OAH, however, function 0EH moves the cur-

sor, and ASCII codes 7 (bell), 8 (backspace), ODH (carriage return), and OAH

(linefeed) are treated as cursor control commands instead of displayable charac-

ters. Function OEH always updates the active (currently displayed) video page

except as noted above.

If the character is displayed in the rightmost character column, function 0EH ad-

vances the cursor to the start of the next character row. If necessary, function 0EH

calls INT 10H function 06H to scroll the screen. In alphanumeric modes, the at-

tribute of the displayed character is used for the scroll. In graphics modes, the
scroll attribute is always 0.

In alphanumeric modes, the attribute byte at the position where the character is

written determines the character’s foreground and background attributes. For this

reason, you should probably fill the video buffer with the desired alphanumeric

attributes before using function 0EH.

In graphics modes, the character is written into the video buffer in a rectangular

area the size of the character matrix. The character’s pixels have the value BL

specifies, and the remaining background pixels have a value of 0. Because the
value in BL is passed through to INT 10H function OAH, you can set bit 7 so that
the character is XORed into the video buffer.

NOTE: Unfortunately, function 0EH does not expand tab characters (ASCII code
9) into blanks.

464 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

The following routine shows how you might use function 0EH to display a string
of characters.

mov cx,StringLength ; CX := number of bytes in string
Jiexz 02 # do nothing if null string
mov si,StringAddr 7 DSsSil s= address! of string
mov bl,GraphicsAttribute ; BL := attribute (graphics modes only)

L01: lodsb ; AL := next character in string
mov ah,0OEh ; AH := OEH (INT 10H function number)
int 10h

loop L01

L02: P

a ne er ne al ee |

Function 0FH: Return Current Video Status

Caller register:

AH = OFH

Returned values:

AH = number of displayed character columns

AL = video mode number

BH = active video page

Video Display Data Area updates:

(none)

INT 10H function OFH returns information about the current video mode and the

width of the displayed portion of the video buffer. The number of character col-

umns (returned in AH) and the number of the current video page (returned in BH)

are copied from CRT_COLS and ACTIVE_PAGE in the Video Display Data Area.

The value returned in AL is copied from CRT_MODE in the Video Display Data

Area. It corresponds to the video display modes tabulated for function 0. On the

EGA and the VGA, bit 7 of the value in AL is derived from bit 7 of the INFO byte.
(INT 10H function 0 sets bit 7 of the INFO byte whenever you use function 0 to

select a video mode without clearing the video buffer.)

This example shows how to determine the current position of the displayed cur-

sor. Before calling INT 10H function 3 to find out the cursor position, the example

uses function OFH to determine the currently displayed video page.

mov ah,OFh ; AH := OFH (INT 10H function number)

int 10h ; leaves BH = active video page

mov ah,3 ; AH := 3 (INT 10H function number)

int 1,0h ; leaves DH,DL = cursor position

Appendix A: Video BIOS Summary 465

Function 10H: Set Palette Registers, Set Intensity/Blink Attribute

Caller registers:

AH = 10H

Update a specified palette register:

AL = 0
BH color value
BL palette register number

Specify the overscan (border) color:

AL =

BH = color value

Update all 16 palette registers plus the Overscan register:

AL ae
ES:DX address of 17-byte table

Select Background Intensity or Blink attribute:

AL = 3

BL = 0 for background intensity (blink disabled)

= 1 for blink

Read a specified palette register:

AL mal

BL = palette register number

Returned value:

BH = contents of specified palette register

Read the contents of the Overscan register:

AL as

Returned value:

BH = contents of Overscan register

Read all 16 palette registers plus the Overscan register:

AL = 9

ES:DX address of 17-byte table

Returned values:

Bytes 00H through OFH of table contain palette register values.
Byte 10H of table contains Overscan register value.

466 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Update the specified video DAC Color register:

AL = 10H

BX = color register number

CH = green value

CE = blue value

DH = red value

Update a block of video DAC color registers:

AL = 12H
BX = first register to update

CX = number of registers to update

ES:DX = address of table of red-green-blue values

Set Attribute Controller Color Select State:

AL = 13H

BL 0 to set Mode Control register bit 7, 1 to set Color Select register

BH value for bit 7 (if BL = 0) or value for Color Select register

Gf BL=1)

Read specified video DAC Color register:

AL = 15H
BX = color register number

Returned values:

CH = green

CL = blue

DH = red

Read a block of video DAC color registers:

AL =i itt
BX = first register to read

CX = number of registers to read

ES:DX = address of table of red-green-blue values

Returned values:

Bytes 0 through 3n — 1 (where n is the number of registers passed in CX) contain

the red-green-blue values read from the specified block of color registers.

Update video DAC Mask register:

AL seer

BL new mask value iH]

Appendix A: Video BIOS Summary 467

Read video DAC Mask register:

AL elon

Returned value:

BL = value read from video DAC Mask register

Read Attribute Controller Color Select register:

AL PWN S|

Returned values:

BL = bit 7 of Mode Control register

BH bits 2 through 3 of Color Select register (if BL = 0)

bits 0 through 3 of Color Select register (if BL = 1)

Perform gray-scaling on a block of video DAC color registers:

AL = 1BH
BX first color register in block

CX number of color registers

Video Display Data Area updates:

0040:0065 CRT_MODE_SET

0040:0066 CRT_PALETTE

INT 10H function 10H exists only in the EGA, MCGA, and VGA BIOS. The function

comprises 16 subfunctions that are selected according to the value in AL. Figure

A-13 shows the support that the various subsystems provide for these subfunc-

tions. All subfunctions work in both alphanumeric and graphics modes.

Subfunctions 0 through 9 support attribute and palette programming. Subfunc-

tions 10H through 1BH support the video DAC on the MCGA and the VGA.

AL=0
When AL = 0 on the EGA and the VGA, function 10H updates the value in one of
the palette registers in the Attribute Controller. The routine loads the value in BH

into the register that BL specifies.

Although this subfunction’s intended purpose is to load a color value into a

palette register, the BIOS routine does not validate the register number in BL.

Thus, you can also use it to update the Attribute Controller’s Mode Control, Over-

scan, Color Plane Enable, and Horizontal Pel Panning registers.

On the MCGA, when BH = 7 and BL = 12H, the BIOS routine sets bit 3 of the Video

DAC Mask register (3C6H) to 0. This causes the BIOS to regard bit 3 of all 4-bit

pixel values or alphanumeric attributes as a ‘‘don’t care’’ bit in reference to the

Video DAC color registers, so only the first eight registers can be referenced. This

is useful in displaying two 256-character sets in an alphanumeric mode (see Chap-

ter 10). The MCGA BIOS ignores all other values in BH or BL.

468 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Subfunction EGA MCGA VGA ee a ew se
0 X X :
1 x 7
2, X x

3 xX X x

4 (reserved)

5 (reserved)

6 (reserved)

7 X
8 X
9 x

10H x x

11H (reserved)
12H x x
13H x

14H (reserved)
15H x x

16H (reserved)

17H x %

18H x x

19H x x

1AH ys
1BH Xs x

Figure A-13. NT JOH Function 10H support in EGA, MCGA, and VGA BIOS.

AL=1

When AL = 1 on the EGA and the VGA, the BIOS copies the value in BH into the

Attribute Controller’s Overscan register (11H).

AL=2

When AL = 2 on the EGA and the VGA, the BIOS expects ES:DX to contain the ad-

dress of a 17-byte table of values for the 16 Palette registers (bytes 0 through 15)

and for the Overscan register (byte 16). The routine copies these values into the

corresponding registers in the Attribute Controller.

AL=3

When AL = 3 on the EGA and the VGA, the value in BL determines the value of bit

3 of the Attribute Controller’s Mode Control register (10H). If BL = 0, bit 3 of the

Mode Control register value is set to 0, disabling the blinking attribute. If BL is 1,

bit 3 is set to 1 to enable blinking.

When AL = 3 on the MCGA, bit 5 of the Color Control register (3D8H) is set to

reflect the value in BL. If BL = 0, bit 5 is set to 0 to disable blinking. If BL is 1,

bit 5 is set to 1.

Appendix A: Video BIOS Summary 469

AL=7
?

When AL =7 on the VGA, the value in the Attribute Controller Palette register

that BL specified is returned in BH. Because the BIOS does not check the specified

register number, this subfunction may be used to return the contents of any VGA

Attribute Controller register.

AL=8

When AL = 8 on the VGA, the contents of the Attribute Controller’s Overscan

register are returned in BH.

AL=9
When AL = 9 on the VGA, the contents of all 16 palette registers and the Overscan

register are returned to a 17-byte table whose address was passed to the BIOS in

the register pair ES:DX.

AL=10H
When AL = 10H on the MCGA and the VGA, the video DAC color register that BX

specifies is updated with the red, green, and blue values specified in DH, CH, and

CL. Only the low-order six bits of each of the three color values are significant.

If gray-scale summing is enabled, the value stored in the color register is the

gray-scale value that corresponds to the specified color values (see INT 10H func-

tion 12H with BL = 33H).

AL =12H
When AL = 12H on the MCGA and the VGA, a block of consecutive video DAC

color registers is updated from the table whose address is passed in ES:DX. The

value in BX (00H through OFFH) indicates the first color register to update, and

CX contains the number of registers affected. The BIOS routine performs no error

checking; if the sum of the values in BX and CX is greater than 256 (100H), the

routine wraps around and updates the first color register(s) in the video DAC.

If gray-scale summing is enabled, the values stored in the color registers are the

gray-scale values that correspond to the color values in the table (see INT 10H

function 12H with BL = 33H).

You must format the table in three-byte groups. Each group must contain a red

color value in the first byte, a green value in the second byte, and a blue value in

the third byte. Only the low-order six bits of each color value are significant.

AL=13H

On the VGA, when AL = 13H, the ROM BIOS updates the Attribute Controller’s

Mode Control register (10H) and the Color Select register (14H) to enable group-
ing of the 256 video DAC color registers into blocks of 16 or 64 registers each, as
discussed in Chapter 3.

When BL = 0, the BIOS uses the value passed in BH to update bit 7 of the Mode
Control register. When BH = 1, bit 7 is set to 1. This causes the BIOS to use bits 0

470 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

and 1 of the Color Select register in place of bits 4 and 5 of the palette register

values. When BH = 0, bit 7 is set to 0, and all six low-order bits of the values in

the palette registers are significant.

When BL = 1, the value in BH is stored in the appropriate bit field in the Color
Select register. If bit 7 of the Mode Control register is 1, bits 0 through 3 of the

value in BH are copied into bits 0 through 3 of the Color Select register. If bit 7 of

the Mode Control register is 0, bits 0 through 1 of BH are copied into bits 2

through 3 of the Color Select register.

AL = 15H
When AL = 15H on the MCGA and the VGA, the contents of the video DAC color

register specified in BX are returned in registers DH (red), CH (green), and CL

(blue). Only the low-order six bits of each of the color values are significant.

AL=17H
When AL = 17H on the MCGA and the VGA, the values from a block of adjacent

video DAC color registers are copied to the table whose address is passed in

ES:DX. The value in BX (00H through OFFH) indicates the first color register to be

read, and CX contains the number of registers affected. The BIOS routine per-

forms no error checking; the sum of the values in BX and CX should not exceed

256 (100H).

The table must contain three bytes for every color register read. Color values for

each register are stored sequentially in the table in three-byte groups. The first

byte of each group contains the color register’s red value, the second its green

value, and the third its blue value.

AL=18H

On the MCGA and the VGA, when AL = 18H, the value in BL is copied into the

video DAC Mask register (3C6H).

AL=19H

On the MCGA and the VGA, when AL = 19H, the value in the video DAC Mask

register (3C6H) is returned in BL.

NOTE: The BIOS on the VGA Adapter does not support subfunctions 18H and 19H.

Also, IBM’s BIOS Interface Technical Reference does not document these sub-

functions, so they might not be supported in future BIOS releases.

AL=1AH

On the VGA, when AL = 1AH, the current values of bit 7 of the Attribute Con-

troller’s Mode Control register (10H) and bits 0 through 3 of the Color Select

register (14H) are returned in BL and BH respectively. If bit 7 of the Mode Control

register is 1, the value in BH represents bits 0 through 3 of the Color Select regis-

ter. If bit 7 of the Mode Control register is 0, only bits 2 through 3 are returned as

bits 0 through 1 of BH.

Appendix A: Video BIOS Summary 471

AL =1BH
On the MCGA and the VGA, when AL = 1BH, gray-scale summing is performed on

a block of consecutive video DAC color registers. BX indicates the first color

register affected. CX specifies the number of registers to update.

The following example uses INT 10H function 10H to update the color value ina

single palette register:

mov ax,1000h ; AH := 10H (INT 10H function number)

; AL := 0

mov bh,6 ; BH := new color value (yellow)

mov bl,7 ; BL := palette register number

stave, {NO)at

To update the Overscan register and change the displayed border color, call func-

tion 10H with AL = 1:

mov ax,1001h ; AH := 10H

MmALSS=F 1

mov bh,1 ; BH := color value for overscan

stage ist

To load all 16 palette registers and the Overscan register from a table, call func-
tion 10H with AL = 2:

mov ax,1002h ; AH := 10H

mov dx,seg PaletteTable

mov es,dx

mov dx,offset PaletteTable ; ES:DX -> table of palette register values
aoe UDI

PaletteTable db 00h, 01h, 02h, 03h, 04h,05h,06h,07h ; palette registers 0-7
db 38h, 39h, 3Ah, 3Bh, 3Ch, 3Dh, 3Eh, 3Fh ; palette regs 8-OFH
db 00h ; Overscan reg

To disable the blinking attribute, call function 10H with AL = 3 and BL= 0:

mov ax,1003h ; AH := 10H

; AL := 3
mov bil, 0 ; BL := 0 (disable blinking)
Ine Oh

The following fragment performs gray-scale summing on the first 16 video DAC
color registers. The remaining 240 registers are unaffected.

mov ax,101Bh ; AH := 10H

7 AL := 1BH

mov bx,0 ; BX := first color register affected
mov — ex, 1'6

int 10h
7, Chay number of color registers

472 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Se

Function 11H: Character Generator Interface

Caller registers:

AH = 11H

Load alphanumeric character definitions.

User-specified character definition table:
AL = 0
BH = points (bytes per character definition)
BL = table in character generator RAM
CX = number of characters defined in table
DX = ASCII code of first character defined
ES:BP = address of user-specified table

ROM BIOS 8-by-14 character definitions:
AL = 1

BL = table in character generator RAM

ROM BIOS 8-by-8 character definitions:

AL = 52

BL = table in character generator RAM

ROM BIOS 8-by-16 character definitions:

AL a

BL = table in character generator RAM

Select displayed character definition tables.

AL = 3

BL value for Character Map Select register (EGA, VGA)

character generator RAM table numbers (MCGA)

Load alphanumeric character definitions and program the CRT Controller.

User-specified character definition table:

AL = 10H

BH = points
BL = table in character generator RAM

CX = number of characters defined in table

DX = ASCII code of first character defined

ES:BP = address of user-specified table

ROM BIOS 8-by-14 character definitions:

AL = 11H
BL = table in character generator RAM

Appendix A: Video BIOS Summary 473

ROM BIOS 8-by-8 character definitions:

AL = 124
BL = table in character generator RAM

ROM BIOS 8-by-16 character definitions:

AL = 14H
BL = table in character generator RAM

Load graphics character definitions.

User-specified 8-by-8 character definition table for interrupt 1FH vector:

AL = 20H
ES:BP = address of user-specified character definition table

User-specified character definition table:

AL = 21H

BL = 0 (character rows per screen specified in DL)

1 14 character rows per screen

2 25 character rows per screen

3 43 character rows per screen

CX = points (bytes per character definition)

DL = character rows per screen (when BL = 0)

ES:BP = address of user-specified character definition table

ROM BIOS 8-by-14 character definitions:

AL =22H

BL = character rows per:screen (as above)

DL = (as above)

ROM BIOS 8-by-8 character definitions:

AL =. 23H

BL = character rows per screen (as above)

DL = (as above)

ROM BIOS 8-by-16 character definitions:
AL = 24H
BL = character rows per screen (as above)
DL = (as above)

Get current character generator information.

AL = 30H
BH 0 Contents of interrupt 1FH vector

Contents of interrupt 43H vector
Address of ROM 8-by-14 character table
Address of ROM 8-by-8 character table
Address of second half of ROM 8-by-8 character table
Address of ROM 9-by-14 alternate character table
Address of ROM 8-by-16 character table
Address of ROM 9-by-16 alternate character table

I

NADU WN =

474 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Returned values:

CX = POINTS (height of character matrix)

DL ROWS (displayed character rows — 1)

ES:BP address of character definition table

Video Display Data Area updates:

0040:004C CRT_LEN
0040:0060 CURSOR_MODE
0040:0084 ROWS
0040:0085 POINTS

INT 10H function 11H comprises a gamut of subfunctions that support both the

alphanumeric and the graphics character generators on the EGA, the MCGA, and

the VGA. You choose a subfunction with the value you specify in AL. The con-

tents of the other registers depend on the subfunction.

AL=0,1,2,or4

You can use subfunctions 0, 1, 2, and 4 to load a table of character definitions into

video RAM for use by the character generator. (Chapter 10 describes this in

detail.) All four subfunctions are available on the VGA. On the EGA, the BIOS

ignores subfunction 4. The MCGA BIOS does not contain an 8-by-14 character

definition table, so calls with AL = 1 are treated as calls with AL = 4.

On the MCGA, character definitions in character generator RAM are not displayed

until they are loaded into the character generator’s internal font pages (see Chap-

ter 10). To accomplish this through the video BIOS, follow each call to function

11H performed with AL = 0, 1, 2, or 4 with a call to function 11H with AL = 3.

The MCGA’s CRTC can only display characters that are 2, 4, 6, 8, 10, 12, 14, or 16

lines high. Thus, BH should specify one of these values. Also, for compatibility

with the VGA BIOS, the MCGA BIOS routine extends character definitions for 14-

line characters into definitions for 16-line characters by duplicating the 14th line

of each character definition.

AL=3
On the EGA and the VGA, when AL = 3, function 11H loads the value passed in BL

into the Sequencer’s Character Map Select register. On the EGA and the MCGA,

bits 0 and 1 of BL indicate which of four 256-character tables is used when bit 3 of

a character’s attribute byte is 0. Bits 2 and 3 of BL indicate which table is used

when bit 3 of a character’s attribute is 1. On the VGA, bits 0, 1, and 4 specify one

of eight tables to be used when a character’s attribute bit 3 is 0, and bits 2, 3, and 5

specify the table used when attribute bit 3 is 1.

If both bit fields in BL specify the same character definition table, only that table

is loaded and displayed.

Appendix A: Video BIOS Summary 475

AL = 10H, 11H, 12H, or 14H
Subfunctions 10H, 11H, 12H, and 14H are analogous to subfunctions 0, 1, 2, and 4

in that they load an alphanumeric character definition table into video RAM. The

difference is that, for these subfunctions on the EGA and the VGA, the BIOS repro-

grams the CRT Controller to accommodate the height of the character matrix. On

the MCGA, calls to function 11H with AL = 10H, 11H, 12H, and 14H are treated as

calls to functions 0, 1, 2, and 4 respectively.

NOTE: Disable alphanumeric cursor emulation before using these subfunctions on

the EGA. The EGA BIOS cursor emulation routine does not always produce a

satisfactory alphanumeric cursor. (Chapter 3 discusses this in detail.)

AL =20H

If AL = 20H, the address in ES:BP is copied into the interrupt 1FH vector at

0000:007C. This vector points to a table of 8-by-8 character definitions for ASCII

codes 80H through FFH. This character definition table is used by the BIOS in

CGA-compatible 320-by-200 4-color and 640-by-200 2-color graphics modes.

AL = 21H, 22H, 23H, or 24H
Subfunctions 21H, 22H, 23H, and 24H make a character definition table accessible
to the BIOS graphics-mode character generator. They are analogous to subfunc-
tions 0, 1, 2, and 4 respectively. The BIOS updates the interrupt 43H vector and the
Video Display Data Area variables POINTS and ROWS with values that describe
the specified graphics character definitions.

The BIOS does not reprogram the CRT Controller when it loads graphics-mode
character definition tables.

AL =30H
If AL = 30H, INT 10H function 11H returns information about the BIOS character
generator’s current status. The value in POINTS in the Video Display Data Area is
copied into register CX, the value of ROWS is returned in DL, and the address of
one of eight character definition tables is returned in ES:BP. The value in BH indi-
cates which table’s address is returned.

NOTE: If you call this subfunction on the EGA with BH equal to 6 or 7, or on the
MCGA with BH equal to 5 or 7, the address returned in ES:BP is undefined.

To select an 80-by-43 alphanumeric mode on a 350-line display, invoke INT 10H
function 11H to load the ROM 8-by-8 character set and reprogram the CRTC to
display 43 character rows. (Dividing 350 lines by 8 lines per character gives 43
character rows.) The following example assumes that the EGA is already in an
80-by-25 alphanumeric mode (BIOS mode number 3 or By.

mov ax,40h

mov eS,ax

476 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

push es: [87h]

or byte ptr es:[87h],1

mov ax,1112h

mov bl,0

ante. 10h

pop es: [87h]

7; preserve INFO

; disable cursor emulation

; AH := 11H (INT 10H function number)

; AL := 12H (subfunction: load 8x8

alphanumeric characters, reprogram CRTC)

; BL := table 0 in character generator RAM

; restore INFO

Function 12H: Video Subsystem Configuration (Alternate Select)

Caller registers:

AH = 12H

Return video configuration information:

BL = 10H

Returned values:

BH = default BIOS video mode

0 Color

1 Monochrome

BL = amount of EGA video RAM

0 64KB

1 128KB

2 192 KB

3 256 KB

CH = feature bits

CL = configuration switch setting

Select alternate Print Screen routine:

BL = 20H

Select scan lines for alphanumeric modes:

BL = 30H

AL = Q 200 scan lines

1 350 scan lines

2 400 scan lines

Returned value:

AL mei

Select default palette loading:

BL = sont

AL 0 Enable default palette loading

1 Disable default palette loading

Appendix A: Video BIOS Summary 477

Returned value:

AL = 12H

CPU access to video RAM:

BL = 32H

0 Enable CPU access to video RAM and J/O ports

1 Disable CPU access to video RAM and I/O ports
AL

Returned value:

Ale een

Gray-scale summing:

BL 33H

AL 0 Enable gray-scale summing

1 Disable gray-scale summing

Returned value:

AL eee

Cursor emulation:

BL = 34H

AL OQ Enable cursor emulation

1 Disable cursor emulation

Returned value:

AL = 12H

PS/2 video display switching:

BL 35H

AL 0 Initial adapter video off

1 Initial planar video on

2 Switch active video off

3 Switch inactive video on
ES:DX = address of 128-byte save area (for AL = 0, 2, or 3)

Returned value:

AL =e LOE

Video refresh control:

BL = 36H

AL = 0 Enable refresh

1 Disable refresh

Returned value:

AL =) 12H

478 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Video Display Data Area updates:

(see below)

INT 10H function 12H comprises nine subfunctions selected using the value in BL.

BL=10H

When BL = 10H on the EGA and the VGA, this BIOS routine returns information

about the configuration of the video subsystem. This information is copied from

INFO and INFO_3 in the Video Display Data Area. These variables are initialized
in the BIOS power-on startup code.

The value returned in BH reflects whether the video subsystem is configured for a

color (BH = 0) or monochrome (BH = 1) video mode. Bits 0 and 1 in BL indicate

how much video RAM is present. The values returned in CH and CL are derived

from the INFO_3 byte. Bits 4 through 7 of INFO_3 (input from the EGA feature

connector) are copied to bits 0 through 3 of CH. Bits 0 through 3 of INFO_3 (con-

figuration switch settings) are copied to bits 0 through 3 of CL.

BL =20H

When BL = 20H on the MCGA, the EGA, and the VGA, the BIOS points the inter-

rupt 5 vector at 0000:0014 to an alternate Print Screen routine contained in the

video ROM BIOS. The difference between this routine and the default planar BIOS

routine is that the video ROM version uses the Video Display Data Area variable

ROWS to determine the number of character rows to print. The PC/XT and PC/AT

planar BIOS versions always print 25 rows.

BL = 30H
When BL = 30 on the VGA, the BIOS routine updates bits 0—3 of the INFO_3 byte

(0040:0088) and bits 7 and 4 of the Flags byte at 0040:0089. INT 10H function 0

refers to INFO_3 and the Flags byte to determine whether to configure the video

subsystem for a 200-line, 350-line, or 400-line mode when it establishes an alpha-
numeric video mode. You can thus select among 200-line, 350-line, and 400-line

alphanumeric modes by first executing INT 10H function 12H with BL = 30H and

AL = 0, 1, or 2, and then calling INT 10H function 0 to set the video mode.

This function normally returns the value 12H in AL. If the VGA is inactive (bit 3

of INFO is set to 1), the function returns with AL = 0.

BL = 31H
When BL = 31H on the MCGA or VGA, the BIOS routine updates bit 3 of the Flags

byte at 0040:0089 to indicate whether ROM BIOS default palette values should be

loaded when a video mode is selected using INT 10H function 0. If the value 0 is

passed in AL, bit 3 of the Flags byte is set to 0 to enable default palette setting. If

AL = 1, bit 3 is set to 1 to disable default palette setting.

When a valid value is passed in AL, the function returns with AL = 12H.

Appendix A: Video BIOS Summary 479

BL =32H

When BL = 32H on the MCGA or the VGA, the value in AL specifies whether CPU

access to the video buffer and I/O ports is enabled (AL = 0) or disabled (AL = 1).

Although the hardware interface for control of video addressing differs on the

MCGA, the VGA, and the VGA Adapter, this BIOS function is the same in all three

subsystems (see Chapter 2).

When a valid value is passed in AL, the function returns with AL = 12H.

NOTE: Although the EGA video BIOS does not support this function, you can con-

trol CPU addressing of video RAM on the EGA by updating bit 1 of the Miscella-

neous Output register (3C2H).

BL = 33H
When BL = 33H on the MCGA or the VGA, the BIOS routine updates bit 1 of the

Flags byte at 0040:0089 to indicate whether red-green-blue color values should be

averaged to gray-scale values when INT 10H functions 0 and 10H update the video

DAC color registers. If the value 0 is passed in AL, bit 1 of the Flags byte is set to

1 to enable gray-scale summing. If AL = 1, bit 1 is set to 0 to disable gray-scale

summing.

When a valid value is passed in AL, the function returns with AL = 12H.

BL = 34H

When BL = 34H on the VGA, the BIOS routine updates bit 0 of INFO (0040:0087) to

indicate whether BIOS cursor emulation is in effect. If the value 0 is passed in AL,

bit 0 of INFO is set to 0 to enable cursor emulation. If AL = 1, bit 0 is set to 1 to

disable cursor emulation.

When a valid value is passed in AL, the function returns with AL = 12H.

BL = 35H
INT 10H function 1AH with BL = 35H provides a set of routines that support
switching between two PS/2 video subsystems in the same computer. In a com-
puter that contains two different PS/2-compatible video subsystems, calls to this
function let a program separately access the video BIOS on a video adapter and
the video BIOS on a PS/2 motherboard.

When you boot a PS/2 that contains a PS/2-compatible video adapter, the adapter
subsystem is always the active subsystem by default. To use the PS/2’s planar
(motherboard) subsystem, you must use the display switch interface to disable the
adapter subsystem and enable the planar subsystem.

You can specify four related subfunctions for function 12H with BL = 35H, using
the value passed in register AL. The four subfunctions are designed to be called in
pairs. Subfunctions 0 and 1 should be called once each to initialize the BIOS dis-
play switch interface and to establish a default video mode for the planar video
subsystem. Subsequent calls to subfunctions 2 and 3 then let you switch between
the two video subsystems.

480 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

When AL = 0, the adapter BIOS initializes the display switch interface. First, the
adapter BIOS calls the motherboard BIOS to set bit 6 of the Flags byte at 0040:0089
to 1 to indicate that the interface is supported. Next, the current Video Display
Data Area and video interrupt vectors are preserved in the 128-byte buffer whose
address is passed in ES:DX, and the video interrupt vectors are redirected to the
motherboard BIOS. Finally, the adapter’s video buffer and control port addressing
are disabled (see INT 10H function 12H, BL = 32H).

When AL = 1, the motherboard BIOS establishes a default 80-by-25 alphanumeric
mode on the planar video subsystem.

When AL = 2 and bit 6 of the Flags byte is 1, the contents of the Video Display
Data Area and video interrupt vectors are copied to the 128-byte buffer whose ad-
dress is passed in ES:DX, and the video interrupt vectors are redirected to the cur-

rently inactive BIOS. Then video buffer and control port addressing are disabled

for the currently active subsystem. A call to this subfunction should normally be

followed by a call with AL = 3.

When AL = 3 and bit 6 of the Flags byte is 1, the contents of the Video Display

Data Area and interrupt vectors are restored from the buffer whose address is in

ES:DX. (This buffer should contain information previously saved by a call with

AL =0 or AL=2.) Then video buffer and control port addressing are enabled,

using the restored video information.

When a valid value is passed in AL, and when both the adapter BIOS and the

planar BIOS support the display switch interface, each of the four subfunctions

returns with AL = 12H.

NOTE: The PS/2 Model 30 BIOS (dated 12/12/86 and earlier) and the PS/2 Model 25

BIOS (dated 6/26/87) contain a bug that makes the display switch interface un-

usable. The problem should be corrected in later BIOS versions.

BL = 36H
When BL = 36H on the VGA, the value in AL specifies whether the BIOS routine

enables (AL = 0) or disables (AL = 1) video refresh. (Temporarily disabling video

refresh can speed software that performs repeated video memory accesses.) Bit 5

of the VGA’s Sequencer Clocking Mode register (01H) controls whether video

refresh is enabled or disabled. When the value 0 is passed in AL, bit 5 is set to 0 to

enable video refresh; when AL is 1, bit 5 is set to 1 to disable video refresh.

The function always returns with AL = 12H.

To obtain EGA configuration information, call INT 10H function 12H with

BL = 10H:

mov ah, 12h

mov bl,10h

ante, 1 Ol

Appendix A: Video BIOS Summary 481

To vector the EGA BIOS alternate Print Screen routine, call INT 10H function 12H

with BL = 20H:

mov ah,12h

mov bl,20h

slgguic, e InO)gt

To implement display switching between a VGA Adapter and the MCGA in a PS/2

Model 30:

save areas for video BIOS display switch interface ,

VGAsave db 128 dup(?) ; save area for VGA

MCGAsave db 128 dup(?) ; Save area for MCGA

initialize display switching (execute this code only once) ’

mov ax,1200h ; AH := 12H (INT 10H function number)

 ALLeH=s0

mov bl,35h ; BL := 35H (display switch interface)

mov dx,seg VGAsave

mov es,dx

mov dx,offset VGAsave ; ES:DX -> save area for VGA BIOS info

int 10h

cmp Walnai2h

jne Error ; exit if display switching not supported

mov ax,1201h

mov. bi,35h

ert et Oy ; disable adapter, enable planar video

7 switch from planar (MCGA) to adapter (VGA) subsystem

mov ax,1202h , AL := 2 (switch active

; video off)

mov bil,/35h

mov dx,seg VGAsave

mov es,dx

mov dx,offset VGAsave 7 ES:DX -> save area for

* Currently active subsystem
int 10h

mov ax,1203h 7 AL := 3 (switch inactive

+ video on)

mov bl,35h

mov dx,offset MCGAsave ; ES:DX -> save area for

* subsystem to be made active
int lOh

; (to switch from adapter to planar, interchange VGAsave and
; MCGAsave in the calls with AL = 2 and AL = 3)

482 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Se

Function 13H: Display Character String

Caller registers:

AH = 13H
AL = 0 BL contains attribute for string. Cursor position not updated.

= 1 BL contains attribute for string. Cursor position updated.
= 2 String contains embedded attribute bytes. Cursor position not

updated.
= 3 String contains embedded attribute bytes. Cursor position

updated.
BH = video page

BL = attribute

CX = string length

DH = character row

DL = character column

ES:BP = address of start of string

Returned values:

(none)

Video Display Data Area updates:

0040:0050 CURSOR_POSN

INT 10H function 13H writes a character string into the video buffer. Bell,

backspace, linefeed, and carriage-return characters embedded in the string are

treated as commands rather than displayable characters. If the string cannot be

displayed in one row of characters, function 13H wraps the string around to the

start of the next line. Function 13H also scrolls the screen upward as necessary.

The string is copied from the address you specify in ES:BP to the location in the

video buffer indicated by registers DH and DL (character row and column) and

register BH (video page). You must also specify the number of characters in the

string in register CX.

Function 13H comprises four subfunctions that are selected according to the value

in AL. These four subfunctions allow you to select the method of specifying dis-

play attributes for characters in the string and to control the cursor’s final position

after the string is displayed.

You can specify the attribute used for each character either in BL (AL = 0 or 1) or
by pairing each character code with its attribute in the string itself (AL = 2 or 3).
Also, you can indicate whether the cursor will stay in place after the string is

written (AL = 0 or 2) or will move to the character position just past the end of the

string (AL = 1 or 3).

Appendix A: Video BIOS Summary 483

In all graphics modes except 320-by-200 256-color mode, setting bit 7 of the at-

tribute value in BL to 1 causes the BIOS to XOR the string into the video buffer.

The video page specified in BH must be 0 in 320-by-200 4-color mode.

NOTE: On the PC/AT, the EGA, and the MCGA, linefeed and carriage-return char-

acters are always written to the currently displayed video page, regardless of the

value you specify in BH. If you write a string containing any of these control

characters to a video page not currently displayed, function 13H writes them to the

wrong video page.

The following routine writes the string ‘‘Hello, World’’ into the video buffer in

video page 0 at row 12, column 34. An attribute value of 7 is used for all charac-

ters in the string.

mov ax,1300h ; AH := 13H (INT 10H function number)

; AL := 0 (attribute specified in BL,

7 don’t move the cursor)

mov bh,0O ; BH := video page

ony isl, 7 , BL := attribute

mov cx,12 7 CX := number of characters to display
mov, dh, 12 - DH := row 12

mov dl,34 7 DL := column 34

mov bp,seg HelloString

mov es,bp

mov bp,offset HelloString ; ES:BP := string address
int 10h

Hellostring db "Hello, World'

This example displays the digits 1 through 7 in the upper left corner of video page
0. The attribute used for each digit corresponds to the digit:

mov ax,1303h 7 AH := 13H (INT 10H function number)
7 AL := 3 (string contains embedded
7 attribute bytes, move cursor to end
7 “OE Vsitrang)

mov bh,0 7 BH := video page
MOV 1exX,. 7. 7 CX := number of characters to display
mov dax,0 7 DH := row 0

+ DL := column 0
mov bp,seg StringData

mov es,bp

mov bp,offset StringData 7 ES:BP := address of string
ane 10h

StringData db PAN N72, AND by BA id NEUEN CUE eam

484 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Function 14H: (PC Convertible only)

Function 15H: (PC Convertible only)

Function 16H: (reserved)

Function 17H: (reserved)

Function 18H: (reserved)

Function 19H: (reserved)

Function 1AH: Video Display Combination

Caller registers:

AH = 1AH

Return video display combination:

AL = 0

Returned values:

AL = 1AH
BL = active display

BH = inactive display

Set video display combination:

AL =k
BL active display

BH = inactive display

Returned value:

AL = [AH

Video Display Data Area update:

0040:008A DCC byte

INT 10H function 1AH returns or updates the video BIOS video display combina-

tion status. This status is represented in the DCC byte at 0040:008A in the Video

Display Data Area. This byte contains an index into the ROM BIOS Display Com-

bination Code table, which contains a list of byte pairs that specify valid com-

binations of one or two video subsystems. Video subsystems are designated by the

following values.

Appendix A: Video BIOS Summary 485

FFH Unrecognized video subsystem

0 No display

1 MDA with monochrome display

2 CGA with color display

3. (reserved)

4 EGA with color display

5 EGA with monochrome display

6 Professional Graphics Controller

7 VGA with analog monochrome display

8 VGA with analog color display

9 (reserved)

OAH MCGA with digital color display
OBH MCGA with analog monochrome display

OCH MCGA with analog color display

AL=0
When AL = 0 on the MCGA or the VGA, the video BIOS routine uses the value in

the DCC byte as an index into its Display Combination Code table and copies the

2-byte table entry into BH and BL. If two video subsystems are present, one sub-

system must be monochrome and the other color; the BIOS routine determines

which is active by examining bits 4 through 5 of EQUIP_FLAG (0040:0010).

AL=1
When AL = 1 on the MCGA or the VGA, the BIOS routine scans the Display Com-

bination Code table for the combination specified in BH and BL. If the specified

combination is found in the table, the DCC byte is updated with the appropriate

index into the table. If the specified combination is not found, OFFH is stored in

the DCC byte.

When a valid value (0 or 1) is passed in AL, INT 10H function 1AH returns with

AL = 1AH.

The following sequence returns the display combination in registers BH and BL.

mov ax,1A00h ; AH := 1AH (INT 10H function number)

; AL := 0

int, 10h

cmp al,1AH

jne ErrorExit + jump if function not supported

; at this point BL = active display

; BH = inactive display

If this sequence is executed on a PS/2 Model 30 with an analog monochrome dis-
play attached to the MCGA and a monochrome display attached to an MDA, the
values returned are:

Ala = JAH
BL = OBH (active display = MCGA with analog monochrome)
BH = 1 (inactive display = MDA with digital monochrome)

486 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

See eetereeeetreenee tea eeeee n weie s
Function 1BH: Video BIOS Functionality/State Information

Caller registers:

AH = 1BH
BX implementation type (must be 0)
ES:DI address of 64-byte buffer

II

Returned values:

ES:DI buffer updated with function and state information
AL = 1BH

Video Display Data Area updates:

(none)

INT 10H function 1BH returns a table of video BIOS state information on the

MCGA and the VGA. The table contains dynamic information (shown in Figure

A-14) that is determined when function 1BH is invoked, as well as static informa-

tion (shown in Figure A-15) describing the capabilities of the video BIOS itself.

The dynamic information is copied into the 64-byte buffer whose address is

passed to the BIOS routine in ES:DI. The 32-bit address of the static information

table is returned as bytes 0 through 3 of the dynamic information table.

When called with BX = 0, INT 10H function 1BH always returns with AL = 1BH.

Offset Data Type Description

0 Dword Address of static functionality table
4 Byte Video mode
3 Word Number of displayed character columns
U Word Length of displayed portion of video buffer in bytes
9 Word Start address of upper left corner of video buffer

OBH 16-byte array Table of cursor locations (column, row) for eight
video pages

1BH Byte Cursor end line
1CH Byte Cursor start line
1DH Byte Active video page
1EH Word I/O port for CRTC Address register
20H Byte CRT_MODE_SET (current value of 3x8H register)
21H Byte CRT_PALETTE (current value of 3x9H register)
22H Byte Number of displayed character rows

23H Word POINTS (height of displayed character matrix)

25H Byte Active display combination code
26H Byte Inactive display combination code

(continued)

Figure A-14. Dynamic video state table returned by INT 10H function 1BH.

Appendix A: Video BIOS Summary 487

Figure A-14. Continued.

Offset Data Type Description

27H Word Number of displayed colors (0 for monochrome)
29H Byte Number of video pages supported
2AH Byte Raster scan lines:

0: 200 lines
1: 350 lines
2: 400 lines
3: 480 lines

2BH Byte Alphanumeric character table used when attribute bit 3
is 0 (VGA only)

2CH Byte Alphanumeric character table used when attribute bit 3
is 1 (VGA only)

2DH Byte Miscellaneous state information (bits are set to 1 if state
is true)

Bit 0: all modes active on all video subsystems (always 0
on MCGA)

Bit 1: gray-scale summing enabled
Bit 2: monochrome display attached
Bit 3: default palette loading disabled
Bit 4: cursor emulation enabled
Bit 5: blinking attribute enabled
(bits 6-7 reserved)

2EH Byte (reserved)

2FH Byte (reserved)

30H Byte (reserved)
31H Byte Video RAM available

0: 64K

1: 128K
2: 192K
3: 256K

32H Byte Save area status (bits are set to 1 if state is true)
Bit 0: two alphanumeric character sets are active

(VGA only)

Bit 1: dynamic save area is active
Bit 2: alphanumeric character set override is active
Bit 3: graphics character set override is active
Bit 4: palette override is active
Bit 5: display combination code extension is active
(bits 6-7 reserved)

33H through 3FH (reserved)
EEE See

488 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Offset Data Type

0 Byte

1 Byte

Z Byte

3 Byte
“ Byte
5 Byte
6 Byte
7 Byte

8 Byte

9 Byte

OAH Byte

Description

Video modes supported (bits = 1 if a mode is supported)
Bit 0: mode 0
Bit 1: mode 1
Bit 2: mode 2
Bit 3: mode 3
Bit 4: mode 4
Bit 5: mode 5
Bit 6: mode 6
Bit 7: mode 7

Video modes supported (bits = 1 if a mode is supported)
Bit 0: mode 8
Bit 1: mode 9
Bit 2: mode 0AH
Bit 3: mode OBH
Bit 4: mode OCH
Bit 5: mode ODH
Bit 6: mode OEH
Bit 7: mode OFH

Video modes supported (bits = 1 if a mode is supported)
Bit 0: mode 10H
Bit 1: mode 11H
Bit 2: mode 12H
Bit 3: mode 13H
Bit 4: (reserved)
Bit 5: (reserved)
Bit 6: (reserved)
Bit 7: (reserved)

(reserved)
(reserved)
(reserved)
(reserved)

Scan lines available in alphanumeric modes (bits = 1 if
supported)
Bit 0: 200 lines
Bit 1: 350 lines
Bit 2: 400 lines

Maximum number of displayable alphanumeric character
sets

Number of available alphanumeric character definition
tables in character generator RAM

Miscellaneous video BIOS capabilities (bits = 1 if
available)

Bit 0: all modes on all monitors (INT 10H function 0)

(Note: This bit is always 0 on MCGA)
Bit 1: gray-scale summing (INT 10H function 10H

and 12H)
Bit 2: character set loading (INT 10H function 11H)
Bit 3: default palette loading (INT 10H function 0)

(continued)

Figure A-15. Static functionality table. This table’s address is returned by INT 10H function
1BH. The table describes the capabilities of the ROM BIOS in the video subsystem.

Appendix A: Video BIOS Summary 489

Figure A-15. Continued.

Offset Data Type Description

Bit 4: cursor emulation (INT 10H function 1)

Bit 5: 64-color palette (INT 10H function 10H)
Bit 6: video DAC loading (INT 10H function 10H)
Bit 7: control of video DAC via Attribute Controller

Color Select (INT 10H function 10H)
OBH Byte Miscellaneous video BIOS capabilities (bits = 1 if

available)

Bit 0: light pen support (INT 10H function 4)
Bit 1: save/restore video state (INT 10H function 1CH)
Bit 2: blinking/background intensity (INT 10H func-

tion 10H)
Bit 3: Display Combination Code (INT 10H function

1AH)
(bits 4-7 reserved)

OCH Byte (reserved)
ODH Byte (reserved)
OEH Byte Save area capabilities

Bit 0: multiple alphanumeric character sets
Bit 1: dynamic save area
Bit 2: alphanumeric character set override
Bit 3: graphics character set override
Bit 4: palette override
Bit 5: Display Combination Code extension
(bits 6-7 reserved)

OFH Byte (reserved)
a eee eg

The following sequence returns video BIOS state information in the buffer whose
address is passed in ES:DI.

mov ax, 1B00h 7 AH := 1BH (INT 10H function number)
A AL == 0

mov Ord ; BX := 0 (Implementation type)
mov di,seg StateTable
mov es,di

mov di,offset StateTable ; ES:DI -> buffer
int 10h

cmp al, 1BH

jne ErrorExit *; jump if function not supported

7 at this point StateTable contains < 7 the dynamic information table StateTable db 64 dup (?)

490 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

ees

Function 1CH: Save or Restore Video State

Caller registers:

AH = 1CH

Return save/restore buffer size:

AL =10

Cx = requested states

Bit 0: video hardware state

Bit 1: video BIOS data areas

Bit 2: video DAC state

Bits 3—OFH: reserved

Returned values:

AL = 1CH

BX buffer size in 64-byte blocks

Save requested state(s):

AL |

CX requested states (as above)

ES:BX = buffer address

Restore requested state(s):

AL me

CX requested states (as above)

ES:BX buffer address

Video Display Data Area updates:

(see below)

INT 10H function 1CH, supported only on the VGA, lets you save and restore the

state of the video hardware and video ROM BIOS. INT 10H function 1CH com-
prises three subfunctions selected by the value passed in AL. For each subfunc-

tion, you must set the low-order three bits in CX to indicate the combination of
video subsystem states you wish to save or restore. You must also pass the address

of a save/restore buffer in ES:BX whenever you use function 1CH to save or

restore the video state.

AL=0
When AL = 0, function 1CH returns the size of the buffer required to store the

state information for states requested in CX. The value returned in BX is in 64-

byte blocks.

Appendix A: Video BIOS Summary 491

Function 1CH returns AL = 1CH when called with AL = 0 and at least one of the

low-order three bits in CX set to 1.

AL=1
When AL = 1, function 1CH copies the state information requested in CX into the

buffer whose address is passed in ES:BX.

AL=2
When AL = 2, function 1CH restores the video hardware state, the BIOS state, or

both using information saved in the buffer whose address is passed in ES:BX.

NOTE: The BIOS routine may modify the current video state as it executes func-

tion 1CH. If you plan not to change the video state after saving it with function

1CH, restore the video state immediately afterward (using function 1CH with

AL = 2) to ensure that it isn’t inadvertently modified.

The following sequence runs under MS-DOS version 2.0 or later. It calls MS-DOS

INT 21H function 48H to allocate RAM for a save/restore buffer. It then calls INT

10H function 1CH to save the current video state.

mov ax,1C00h ; AH := 1CH (INT 10H function number)

Feta

mow ex, 11 1b 7 CX := 111b (all three video states)

ier LO tal

cmp al,1Ch

jne ErrorExit jump if function not supported

Sil osc ad 7 convert number of 64-byte blocks

shill bs, 1 7 to number of 16-byte blocks
mov ah,48h 7 AH := 48H (MS-DOS INT 21H function number)
alms 2 ie 7 AX := segment of allocated buffer
He ErrorExit

mov eS,ax

xor | bx, bx

jump if error

ES:BX -> buffer

mov cx,111b CX := 111b (all three video states)
mov ax,1COth AH := INT 10H function number

AL := 1

ase ey el 6) int 10h ; Save video state in buffer

492 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Appendix B

Printing the Screen

Many computer users find it convenient to ‘‘snapshot’’ the current contents of the

video display. Although all members of the IBM PC and PS/2 series come with a

short ROM BIOS routine that dumps the contents of the video buffer to a printer,

you may need to write your own video snapshot program to supplement the ROM

routine. This appendix discusses how to use the BIOS screen dump utility, as well

as why and how to write your own.

Alphanumeric Modes

You invoke the motherboard ROM’s alphanumeric screen dump routine by execut-

ing software interrupt 5. (The ROM BIOS keyboard handler issues this interrupt

when you press Shift-PrtSc.) This routine copies the contents of the currently dis-

played video page to the printer in 80-by-25 or 40-by-25 alphanumeric mode. The

routine prints only the ASCII character codes, ignoring the attribute bytes in the

video buffer.

EGA, MCGA, VGA

The EGA, the MCGA, and the VGA ROM BIOS contain a more flexible version of

the INT 5 screen dump routine. That version uses the Video Display Data Area

value ROWS (0040:0084) to determine how many rows of characters to print. (The
motherboard ROM version always prints 25 rows.) An IBM PC/XT or PC/AT uses
the motherboard version by default. To make the EGA or VGA ROM BIOS routine
accessible through interrupt 5, call INT 10H function 12H with BL = 20H. This
points the interrupt 5 vector to the more flexible routine.

Block Graphics Characters

Because most printers are designed to work with many different computers, not
just IBM PCs, manufacturers do not always design their printers to print the same
256 ASCII characters that the video hardware displays in alphanumeric modes. In
particular, the characters used for block graphics are not always available on PC-
compatible printers. These characters may print differently than they are dis-
played or they may not print at all.

Graphics Modes
The ROM BIOS does not support screen dumps in graphics modes, so in these
modes you must use some other program to print the video buffer’s contents.

GRAPHICS

GRAPHICS is a RAM-resident graphics-mode screen dump program that
Microsoft supplies as part of MS-DOS under the name GRAPHICS.COM or
GRAPHICS.EXE. This program establishes a memory-resident screen dump pro-
gram for CGA graphics modes (320-by-200 4-color and 640-by-200 2-color) when
executed. The program uses an IBM- or Epson-compatible dot-matrix printer
for output.

494 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

The RAM-resident portion of GRAPHICS traps interrupt 5 and tests the current

video mode. If a graphics mode is active, it performs the screen dump. Otherwise,

the BIOS interrupt 5 routine gets control and performs the alphanumeric-mode

screen dump. Thus, once GRAPHICS.COM or GRAPHICS.EXE has been executed,

you can obtain a graphics-mode screen dump by pressing Shift-PrtSc, just as you

would in alphanumeric video modes.

Writing a Screen Dump Routine

If you want screen snapshots in native EGA, VGA, or MCGA graphics modes or

on a Hercules adapter, or if GRAPHICS produces unsatisfactory output on your

printer, you can write your own screen dump routine. Listing B-1 is an example of

a simple routine for CGA graphics modes. ScreenDumpCGA can be incorporated

into an assembly-language program or a high-level-language program by calling

it with the appropriate register values and memory model. (See Chapter 13 for

more on this topic.) You might also build ScreenDumpCGA into a Terminate-

but-Stay-Resident program that, like GRAPHICS, chains into the interrupt 5 vector

and executes whenever Shift-PrtSc is pressed.

TITLE ‘hasting B="

NAME ScreenDumpCGA

PAGE 55) 132

; Name: ScreenDumpCGA

2 Functions Screen Dump for CGA 640x200 2-color and 320x200 4-color modes

' Caller: (undefined)

; Notes: The main procedure of this program, ScreenDumpCGA, may be

5 called from an application program or as part of a TSR

r (Terminate-but-Stay-Resident) handler for interrupt 5.

STDPRN = 4 ; MS-DOS standard printer handle

DGROUP GROUP _DATA

TEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP

; PrintLine

i. Writes one line of characters to the standard printer device. Ignores

5 errors.

PrintLine PROC near 7; Caller: DS:DX -> data

; CX = # of bytes

Listing B-1. A simple screen dump routine for the CGA. (continued)

Appendix B: Printing the Screen 495

Listing B-1. Continued.

mov bx, STDPRN

mov ah, 40h

alhoke 21h

ret

PrintLine ENDP

; PrinterGraphics

‘ Puts the printer in its "graphics mode."

customized for different printers.

’ INT 21h function 40h: write

This routine must be

PrinterGraphics PROC near ; Configures Epson MX-80 printer

7 for 480 dots/line

mov dx,offset DGROUP:EpsonGraphics

mov xe

call PrintLine

sete

PrinterGraphics ENDP

,

,

,

,

,

’

PrinterDefault

Puts the printer in its default (non-graphics) mode. Again, this
routine must be customized for different printers.

PrinterDefault PROC near ; Configures Epson MX-80 for default

7 alphanumeric output

mov dx,offset DGROUP:EpsonReset

mov expe

call PrintLine

Bee

PrinterDefault ENDP

; ChopZeros

ChopZeros

Chops trailing zeros from the printer output buffer.

PROC near

JCxXzZ L01

add aarex

dec di

xor al,al

~

Caller: ES; Dis-=> butter

CX = buffer length
Returns: CX = adjusted length

exit if buffer is empty

ES:DI -> last byte in buffer

AL := 0 (byte to scan for)

(continued)

496 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing B-1. Continued.

std * scan backwards
repe scasb

cld * restore direction flag

7¢ L01 ; jump if buffer filled with zeros

Ine cx # adjust length past last nonzero byte

LO1: ret

ChopZeros ENDP

PrintPixels

; Prints one row of pixels on an Epson MX-80.

7

PrintPixels PROC near ; (Calsler: DI = offset of buffer

; CX = buffer length

push ds

pop es 7 ES) 3= DS

push di ; preserve buffer offset

call ChopZeros

push cx 7 preserve length

mov word ptr DataHeader+2,cx ; store buffer length

7 in output data header
mov dx,offset DGROUP:DataHeader

mov cx, 4

call PrintLine ; print data header

pop Cx 7 CX := buffer length

pop dx 7 DX := buffer offset

call PrintLine ; print the pixels

mov dx,offset DGROUP:CRLF

mov ex, 2

call PrintLine

ret

PrintPixels ENDP

; TranslatePixels

~

Ne Se Ne

™

‘ee

Copies one printable row of pixels from the video buffer to the

print buffer. This routine can be modified at will to change the

scaling or orientation of the printed image, to interpolate gray-

scale values for color pixels, etc.

This routine formats the printer buffer for output to an Epson

MX-80. The page is printed sideways, with two horizontal printed pixels

for each vertical pixel in the video buffer. Since the CGA screen

is 200 pixels high, the printed output is 400 pixels wide.

(continued)

Appendix B: Printing the Screen 497

Listing B-1. Continued.

TranslatePixels PROC

push

mov

add

mov

mov

mov

std

ive lodsb

mov

stosw

add

xchg

loop

eid

pop

ret

TranslatePixels ENDP

7 ScreenDumpCGA

ScreenDumpCGA PROC

call

push

pop
xOr

adie push

mov

call

mov

mov

call

pop
inc

cmp

jb

call

ret

near

ds

ds, VideoBufSeg

dines

cx, 200

bx, 2000h+1

dx, 81-2000h

ah,al

Sau x

bse, asc

L11

ds

near

PrinterGraphics

ds

es

Sasi

Sau

,

Caller: SI = video buffer offset

ES 3Di —> print buffer

preserve DS

DS:SI -> video buffer

ES:DI -> 2 bytes before end of buffer

CX := # of vertical pixels

BX := 1st video buffer increment

DX := 2nd video buffer increment

fill the print buffer backwards

AL := 8 pixels from video buffer

AX 8 doubled pixels

write them to print buffer

increment to next interleave of

video buffer

clear direction flag

restore DS

Caller: DS = DGROUP

configure the printer for graphics

DS,ES := DGROUP

SI := offset of start of video buffer

di,offset DGROUP:PrintBuf

TranslatePixels ; copy one printable row of pixels

ex, 400

di,offset DGROUP:PrintBuf

PrintPixels

si

si

si,80

L21

PrinterDefault

,

,

’

,

print them

loop across all 80 columns in
the video buffer

restore the printer to its default
state

(continued)

498 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing B-1. Continued.

ScreenDumpCGA ENDP

_TEXT ENDS

_DATA SEGMENT word public 'DATA'

PrintBuf DB 400 dup(?) * print output buffer

VideoBufSeg DW OB800h

EpsonGraphics DB 1Bh,33h,18h

EpsonReset DB 1Bh, 40h

DataHeader DB 1Bh, 4Bh, 00h, 00h

CRLF DB ODh, OAh

_DATA ENDS
END

ScreenDumpCGaA copies pixels from the video buffer into an intermediate print

buffer. It formats the print buffer so that its contents can be sent directly to the

printer (an Epson MX-80 in this example). Since the video buffer can be accessed

randomly, ScreenDumpCGaA reads pixels from it in an order that is conveniently

transmitted to the printer.

The heart of ScreenDumpCGaA is the subroutine TranslatePixels. This

routine maps pixels from the video buffer into the print buffer. In this example,

the routine is short and fast, because it uses a simple transformation to convert

video buffer pixels to printer pixels. Because the Epson MX-80 prints vertically

oriented groups of pixels (see Figure B-1), the easiest way to print an image from

the horizontally mapped video buffer is to rotate it by 90 degrees.

To customize ScreenDumpCGA, concentrate on how best to map pixels from the

video buffer to your printer. Change the TranslatePixels routine to scale or

rotate the pixels differently, or modify ScreenDumpCGA to change the order in

which the contents of the video buffer are copied to the printer.

Printed

pixels

0.12 3 4 5 6 74——Bit number

Figure B-1. Pixel mapping for a typical dot-matrix graphics printer. As the print head moves

across the page, it prints eight rows of pixels at a time. Each byte of data transmitted to the

printer controls 8 vertical pixels as shown.

Appendix B: Printing the Screen 499

For example, you could modify ScreenDumpCGA and TranslatePixels

to dump the contents of the EGA or VGA video buffer in 640-by-350 16-color mode

as in Listing B-2. The modified routine prints all nonzero pixels in the video
buffer as black dots. Note how the Graphics Controller’s read mode 1 simplifies

this task in TranslatePixels.

TITLE "Lasting B=2!

NAME ScreenDumpEGA

PAGE 5S, N32

; Name: ScreenDumpEGA

; Function: Screen Dump for EGA 640x350 16-color mode

A Celulares (undefined)

; Notes: The main procedure of this program, ScreenDumpEGA, may be

8 called from an application program or as part of a TSR

i. (Terminate-but-Stay-Resident) handler for interrupt 5.

STDPRN = 4 * MS-DOS standard printer handle

DGROUP GROUP _DATA

_TEXT SEGMENT byte public 'CODE'
ASSUME cs: TEXT,ds:DGROUP

- Printhane

9 Writes one line of characters to the standard printer device. Ignores
p errors.

PrintLine PROC near ; Caller: DS:DX -> data

; CX = # of bytes
mov bx, STDPRN

mov ah, 40h 7 INT 21h function 40h: Write
int 21h

ret

PrintLine ENDP

; PrinterGraphics

i: Puts the printer in its "graphics mode." This routine must be
it customized for different printers.

PrinterGraphics PROC near ; Configures Epson MX-80 printer

+ for 480 dots/line

mov dx, offset DGROUP :EpsonGraphics
mov ex, 3

caulk PrintLine

Geis

PrinterGraphics ENDP

Listing B-2. An EGA screen printing routine. (continued)

500 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Listing B-2. Continued.

; PrinterDefault

; Puts the printer in its default (non-graphics) mode. Again, this

; routine must be customized for different printers.

;

PrinterDefault PROC near ; Configures Epson MX-80 for default

+ alphanumeric output

mov dx,offset DGROUP:EpsonReset

mov Cxy2

call PrintLine

ret

PrinterDefault ENDP

; ChopZeros

; Chops trailing zeros from the printer output buffer.

ChopZeros PROC near ; Caller: HSiDil=>s but fer

; CX = buffer length

; Returns: CX = adjusted length

WeCXZ L01 ; exit if buffer is empty

add di, cx

dec di 7; ESSDE => llast byte wn butter

xor al,al ; AL := 0 (byte to scan for)

std ; scan backwards

repe scasb

cld ; restore direction flag

je L01 ; jump if buffer filled with zeros

inc cx ; adjust length past last nonzero byte

LO1: EGE

ChopZeros ENDP

; PrintPixels

Prints one row of pixels on an Epson MX-80.

Me Ne Ne

PrintPixels PROC near 7; Cabler: DI = offset of buffer

CX = buffer length

push ds

pop es ; ES 3= DS

(continued)

Appendix B: Printing the Screen 501

Listing B-2. Continued.

push di ; preserve buffer offset

call ChopZeros

push cx ; preserve length

mov word ptr DataHeader+2,cx ; store buffer length

; in output data header

mov dx,offset DGROUP:DataHeader

mov exy4

call PrintLine ; print data header

pop ex ; CX := buffer length

pop dx >; DX s= buffermmoftiset

Cail PrintLine ; pLint the pixels

mov dx,offset DGROUP:CRLF

mov exe

call PrintLine

ret

PrintPixels ENDP

; TranslatePixels

; Copies one printable row of pixels from the video buffer to the

9 print buffer. This routine can be modified at will to change the

f scaling or orientation of the printed image, to interpolate gray-

a scale values for color pixels, etc.

i, This routine formats the printer buffer for output to an Epson

F MxX-80. The page is printed sideways, so the printed output is

& 350 pixels wide.

TranslatePixels PROC near ? Galler: SI = video buffer offset

: ES:DI => print buffer

push ds ; preserve DS

mov ds,VideoBufSeg ; DS:SI -> video buffer

add di, 349 7 ES:DI -> last byte in print buffer

mov Cx, s50 ; CX := # of vertical pixels

* set up the Graphics Controller for read mode 1

mov dx, 3CEh ; Graphics Controller I/O port

mov ax, 805h * AH := 00001000b (read mode 1)

+ AL := Mode register number
out dax,ax

mov ax, 002 ; AH := 0 (color compare value)
out dx,ax ; AL := Color Compare register number

mov ax, 0FO7h 7 AH := 00001111b (color don’t care mask)
out dx,ax ; AL := Color Don’t Care register number

(continued)

502 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing B-2. Continued.

Bids

std

lodsb

not

stosb

add

loop

cld

al

si, 81

L11

,

; fi11 the print buffer; all nonzero pixels in the video buffer are printed

fill the print buffer backwards

AL := 8-pixel color compare value

(bits) = "0 "at pixel <0)

AL := 8 printable pixels

store in print buffer

increment to next row in video buffer

clear direction flag

7 restore Graphics Controller default state

TranslatePixels

;

7 ScreenDumpEGA

,

ScreenDumpEGA

L21:

ScreenDumpEGA

mov

out

mov

out

pop
ret

ENDP

PROC

call

push

pop

xor

push

mov

call

mov

mov

call

pop
ine

cmp

jb

call

ret

ENDP

ax, 5.

ax, ax

ax, 7

dax,ax

ds

near

PrinterGraphics

ds

es

Saya

si

,

,

,

,

AH := read mode 0, write mode 0

AL := Mode register number

AH := 0 (color don’t care mask)

AL := Color Don’t Care register number

restore DS

Caller: DS = DGROUP

configure the printer for graphics

DS,ES := DGROUP

SI := offset of start of video buffer

di,offset DGROUP:PrintBuf

TranslatePixels

Cx, 500

, copy one printable row of pixels

di,offset DGROUP:PrintBuf

PrintPixels

oa

Si

si, 80

L21

PrinterDefault

,

,

,

,

print them

loop across all 80 columns in

the video buffer

restore the printer to its default

state

(continued)

Appendix B: Printing the Screen 503

Listing B-2. Continued.

_TEXT ENDS

DATA SEGMENT word public 'DATA'

PrintBuf DB 350 dup(?) ; print output buffer

VideoBufSeg DW OA000h

EpsonGraphics DB 1Bh,33h,18h

EpsonReset DB 1Bh, 40h

DataHeader DB 1Bh, 4Bh, 00h, 00h

CRLF DB ODh, OAh

_DATA ENDS

END

RAM-Based Alphanumeric Character Definitions

You can also modify the graphics-mode screen dump routine to print RAM-based
characters used in alphanumeric modes on the EGA, MCGA, VGA, HGC+, and

InColor Card. The technique is to use the character codes stored in the displayed

portion of the video buffer to index the bit patterns in character definition RAM.

The bit pattern that defines each character can then be used as a dot pattern for

the printer.

As an example, Listing B-3 shows how this can be done for the characters defined

in the default character definition table in memory map 2 on the EGA or VGA.

The routine prints each column of characters in the video buffer by filling the

buffer (PrintBuf) with the bit patterns that define each of the characters. Mem-

ory map 0 (containing the character codes) and map 2 (containing the character
definitions) are addressed separately in the subroutine TranslatePixels by

programming the Sequencer and Graphics Controller as discussed in Chapter 10.

called from an application program or as part of a TSR

(Terminate-but-Stay-Resident) handler for interrupt 5.

TITLE rhaSstang B—3.

NAME ScreenDumpAlpha

PAGE Sol s2

; Name: ScreenDumpAlpha

7 Eunceton: Screen Dump for EGA alphanumeric modes with 350-line resolution

; Caller: (undefined)

+ Notes: The main procedure of this program, ScreenDumpAlpha, may be

;

STDPRN = 4 7 MS-DOS standard printer handle

DGROUP GROUP _DATA

(continued)

Listing B-3. Using RAM-based character definition tables to print the character set.

504 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing B-3. Continued.

ETEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP,es:DGROUP

+ PrintLine

; Writes one line of characters to the standard printer device. Ignores
c errors.

;

PrintLine PROC near 2 Calle: DS:DX -> data

; CX = # of bytes
mov bx, STDPRN

Mov ah, 40h 7 INT 21h function 40h: Write

int 21h

Fret

PrintLine ENDP

; PrinterGraphics

% Puts the printer in its "graphics mode." This routine must be

; customized for different printers.

PrinterGraphics PROC near ; Configures Epson MX-80 printer

mov

mov

call

ret

PrinterGraphics ENDP

; PrinterDefault

; routine must be

,

PrinterDefault PROC

mov

mov

call

ret

PrinterDefault ENDP

ChopZeros

Se Ne Ne

Chops trailing ‘

; for 480 dots/line

dx,offset DGROUP:EpsonGraphics

CxS

PrintLine

Puts the printer in its default (non-graphics) mode. Again, this

customized for different printers.

near ; Configures Epson MX-80 for default

; alphanumeric output

dx,offset DGROUP:EpsonReset

Cee

PrintLine

zeros from the printer output buffer.

(continued)

Appendix B: Printing the Screen 505

Listing B-3. Continued.

ChopZeros

LO1:

ChopZeros

; PrintPixels

PROC

J1CXZ

add

dec

xor

std

repe

end

je

inc

ret

ENDP

near ;

L01 ;

dat ,ex

di ;

al,al ;

scasb

L01 ;

Cx ;

Caller: ES3DE => butter

CX = buffer length

Returns: CX = adjusted length

exit if buffer is empty

ES:DI -> last byte in buffer

AL := 0 (byte to scan for)

scan backwards

restore direction flag

jump if buffer filled with zeros

adjust length past last nonzero byte

; Prints one row of pixels on an Epson MX-80.

PrintPixels

PrintPixels

PROC

push

pop

push

call

push

mov

mov

mov

call

pop

pop
call

mov

mov

call

ret

ENDP

near 7

ds

es ;

di ;

ChopZeros

cx :

Caller: DI = offset of buffer

Cx buffer length I

ES := DS

preserve buffer offset

preserve length

word ptr DataHeadert+t2,cx ; store buffer length

; in output data header

dx,offset DGROUP:DataHeader

cx, 4

PrintLine ;

cx ;

dx ;

PrintLine ;

print data header

CX := buffer length

DX := buffer offset

print the pixels

dx,offset DGROUP:CRLF

Cx pe

PrintLine

(continued)

506 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing B-3. Continued.

™

, TranslatePixels

Copies one printable row of pixels from the first character definition

table in map 2 to the print buffer.

This routine formats the printer buffer for output to an Epson

MX-80. The page is printed sideways, so the printed output is

350 pixels wide. ~

TranslatePixels PROC near ; Caller: SI = video buffer offset

; EStDi—> print burner

push ds ; preserve DS

mov ds,VideoBufSeg ; DS:SI -> video buffer

add di,es:PrintBufSize

dec di 7 ES tDin=> laste bytemineprinkg butter

mov dx, 3CEh ; Graphics Controller I/O port

7 fal) Che prank” busses

sy

L12:

mov cx,es:Rows ; CX := number of character rows

push ex ; preserve CX and SI

push Sa

mov ax,0004h ; AH := value for Read Map Select reg

; AL := Read Map Select reg number

out dx, ax ; select map 0 (character codes)

lodsb ; AX := next char code in video buffer

mov CLD

shl ax, cll ; AX := AX * 32

mov si,ax ; SI s= offset of character definition

; \anemap 2

mov ax,0204h

out dx, ax ; select map 2 (bit patterns)

mov cex,es:Points ; CX := size of character definition

cld

lodsb ; AL := 8-bit pattern from character

; definition table

2 Sl = oleae

std

stosb s store bit pattern in print buffer

7 Diag Di Ty

loop L12 ; loop down character definition

pop si ; restore SI and CX

pop cx

add si,es:Columns ; DS:SI -> next row of characters

loop L11 ; loop down character rows

(continued)

Appendix B: Printing the Screen 507

Listing B-3. Continued.

eld

pop
ret

TranslatePixels ENDP

;

; ScreenDumpAlpha

’

ScreenDumpAlpha PROC

call

call

clear direction flag

restore DS
,

, ds

near 7 Callers DS = DGROUP

PrinterGraphics ; configure the printer for graphics

address EGA memory maps in parallel: ;
; map 0 contains character codes

; map 2 contains character definitions

CGenModeSet

; copy screen dimensions from Video Display Data Area

mov

mov

mov

Aine

mov

mov

add

mov

mov

mov

mul

mov

7 prank the screen

push

pop
xor

L215 push

mov

call

mov

mov

call

pop
add

cmp

jb

call

call

Get

ScreenDumpAlpha ENDP

ax, 40h

es,ax ; ES -> video BIOS data area

al,es: [84h] ; AX := ROWS

ax

ROWS, ax

ax,es: [4Ah] ; AX := CRT_COLS

ax,ax ; * 2 for proper buffer addressing

Columns, ax

ax,es: [85h] ; AX := POINTS

Points, ax

Rows ; AX := ROWS * POINTS

PrintBufSize,ax

ds

es ; DS,ES := DGROUP

si,si ; SI := offset of start of video buffer

Sa

di,offset DGROUP:PrintBuf

TranslatePixels ; copy one printable row of pixels

cx,PrintBufSize

di,offset DGROUP:PrintBuf

PrintPixels ; print them

si

Sipe ; increment to next character column

si,Columns ; loop across all character columns

L21

CGenModeClear ; restore previous alphanumeric mode

PrinterDefault ; restore the printer to its default

, state

(continued)

508 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing B-3. Continued.

7 CGenModeSet (from Chapter 10)

CGenModeSet PROC near

push si

push cx

eli

mov ax, 3C4h

mov

mov cx, 4

Sits lodsw

out dx, ax

loop L31

Sted

mov dl, OCEh

mov

mov CxS

L32's lodsw

out dx, ax

loop L32

pop cx

pop si

ret

CGenModeSet ENDP

; CGenModeClear (from Chapter 10)

CGenModeClear PROC near

push si

push CX

ene

mov dx, 3C4h

mov

mov cx,4

L41: lodsw

out dx,ax

loop L41

sti

mov al, 0CEh

; preserve these registers

; disable interrupts

; Sequencer port address

si,offset DGROUP:SetSeqParms

AH := value for Sequencer register

; AL := register number

; program the register

“

enable interrupts ‘

; DX := 3CEH (Graphics Controller port

; address)

si,offset DGROUP:SetGCParms

; program the Graphics Controller

; restore registers and return

; preserve these registers

; disable interrupts

; Sequencer port address

si,offset DGROUP:ClearSeqParms

; AH := value for Sequencer register

AL := register number

; program the register

~

; enable interrupts

7 DX S= 3CEH (Graphics Controller port

2 address)

(continued)

Appendix B: Printing the Screen 509

Listing B-3. Continued.

mov si,offset DGROUP:ClearGCParms

mov Cxre

L42: lodsw ; program the Graphics Controller

out dx,ax

loop L42

mov ah, OFh ; AH := INT 10H function number

int 10h + get video mode

cmp al,7

jne L43 ; jump if not monochrome mode

mov ax, 0806h ; program Graphics Controller

out dx,ax ; to start map at B000:0000

L43: pop cx ; restore registers and return

pop si

ECE

CGenModeClear ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

PrintBuf DB 400 dup(?) j print output buffer

VideoBufSeg DW OAO00h

EpsonGraphics DB 1Bh, 33h, 18h

EpsonReset DB 1Bh, 40h

DataHeader DB 1Bh, 4Bh, 00h, 00h

CRLF DB ODh, OAh

Columns DW 2 7 number of displayed character columns

Rows DW 2 7 number of displayed character rows

Points DW ? ; vertical size of character matrix

PrintBufSize DW 2 7 Rows * Points

SetSeqParms DW 0100h ; parameters for CGenModeSet

DW 0402h

DW 0704h

DW 0300h

SetGCParms DW 0204h

DW 0005h

DW 0006h

ClearSeqParms DW 0100h ; parameters for CGenModeClear

DW 0302h

DW 0304h

DW 0300h

ClearGCParms DW 0004h

DW 1005h

DW OEO6h

_DATA ENDS
END

510 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Appendix C

Identifying Video
Subsystems

Programs need to determine the configuration of the video hardware on which

they are run for two reasons. One is to maintain portability. A program that

recognizes the video subsystems in the computer in which it runs can adapt itself

to specific hardware configurations. Imagine, for example, a program that dis-

plays both text and graphics images. This program could display text and

graphics on a single screen in a computer with only one video subsystem, but it

could also take full advantage of a dual-display configuration by placing text on

one screen and graphics on the other.

Another reason to enable a program to examine its video hardware environment is

to allow use of the fastest possible video output routines. For example, if your pro-

gram runs in an alphanumeric mode on a CGA, you may need to avoid snow by

synchronizing with the CRT Controller’s timing signals. However, this overhead

can be avoided if the program is running on some other video subsystem. If your

program ‘‘knows’’ that it’s not running on a CGA, it can use faster video output

routines that omit the overhead of avoiding snow.

CGA and Clones

Unfortunately, for Color Graphics Adapters and clones, no reliable way exists to

determine whether the hardware manages conflicts over video buffer memory
access without display interference (see Chapter 3). If your program must run on
a CGA, you might wish to ask the user to configure your alphanumeric output rou-
tines by testing whether or not they produce snow.

You can also detect whether your program is running on a CGA work-alike that
does not have the alphanumeric snow problem. If you know that your program
may run on a CGA work-alike such as the video hardware built into a COMPAQ or
an AT&T 6300, you can search the ROM BIOS for a string indicating the name of
the computer, for example, ‘“COMPAQ’’. You might also inspect the ROM BIOS ID
byte at FO00:FFFE to determine whether your program is running on a member of
the IBM PC family that does not have the snow problem (such as the PCjr).

Other Video Adapters
Although determining whether a particular CGA or clone has a problem with al-
phanumeric snow can be hard, distinguishing among the various common IBM
video adapters is relatively easy. Some of the techniques described in this appen-
dix rely on serendipitous peculiarities of different adapters’ firmware or hard-
ware, but all are based on IBM and Hercules recommendations.

PS/2s

On the PS/2s, INT 10H function 1AH lets you determine which video subsystems
are present and active in the computer (see Appendix A). Of course, the PS/2
video BIOS does not recognize non-IBM video adapters. For example, if you use a

512 PROGRAMMER’S GUIDE TO PC «& PS/2 VIDEO SYSTEMS

Hercules adapter in a PS/2 Model 30, a call to INT 10H function 1AH returns only

the information that an MDA-compatible adapter is present in the system. Identi-

fying the adapter is then up to you.

VideoID, the routine in Listing C-1, detects the presence of either one or two

adapters. If two adapters are present, VideoID indicates which is active (that is,

which one the BIOS is currently using for output). The techniques used to identify

each adapter are described in the listing.

TITLE Lhestang) C= = VideorbD:!

NAME VideoID

PAGE 55; is2

; Name: VideoID

; Function: Detects the presence of various video subsystems and associated

; monitors.

wie auhery: Microsoft C:

; void VideoID(VIDstruct) ;

; struct

Fi {
7 char VideoSubsystem;

2 char Display;

; }
; *VIDstruct [2];

: Subsystem ID values:

; Q = (none)

; il = MDA

; 2 = CGA

7 3 = EGA

; 4 = MCGA

; 5 = VGA

; 80h = HGC

; 81h = HGC+

82h = Hercules InColor

= (none)

= MDA-compatible monochrome

= CGA-compatible color

EGA-compatible color

= PS/2-compatible monochrome

= PS/2-compatible color

Pe Display types:

Oe wn -— Oo

i]

The values returned in VIDstruct[0].VideoSubsystem and

VIDstruct[0].Display indicate the currently active subsystem.

ARGpVID EQU word ptr [bpt4] ; stack frame addressing

viDstruct STRUC ; corresponds to C data structure

Listing C-1. A routine to identify PC and PS/2 video subsystems. (continued)

Appendix C: Identifying Video Subsystems 513

Listing C-1. Continued.

i
preted tem type

VideoOType DB ? ; first subsys

Riscrsoueyee DB Bs ; display attached to first subsystem

VideolType DB 2 ; second subsystem type

Display1Type DB 2 ; display attached to second subsystem

VIDstruct ENDS

DeviceO EQU word ptr VideoOType[di]

Devicel EQU word ptr VideotType[di]

MDA EQU 1 ; subsystem types

CGA EQU 2

EGA EQU 3

MCGA EQU 4

VGA EQU 5

HGC EQU 80h

HGCPlus EQU 81h

InColor EQU 82h

MDADisplay EQU 1 ; display types

CGADisplay EQU 2

EGAColorDisplay EQU 3

PS2MonoDisplay EQU 4

PS2ColorDisplay EQU a

TRUE EQU 1

FALSE EQU 0

DGROUP GROUP _DATA

STEXT SEGMENT byte public 'CODE'

ASSUME cs: _TEXT,ds:DGROUP

PUBLIC —_VideoID

_VideoID PROC near

push bp ; preserve caller registers

mov bp, sp

push Sa

push di

; initialize the data structure that will contain the results

mov di, ARGpVID ; DS$DI, => start of, datasstructure

mov Device0,0 ; zero these variables

mov Devicel,0

; look for the various subsystems using the subroutines whose addresses are

; tabulated in TestSequence; each subroutine sets flags in TestSequence

; to indicate whether subsequent subroutines need to be called

mov byte ptr CGAflag, TRUE

mov byte ptr EGAflag, TRUE

mov byte ptr Monoflag, TRUE

(continued)

514 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing C-1. Continued.

mov cx,NumberOfTests

mov si,offset DGROUP : Test Sequence

LO1: lodsb ? AL := flag
test al,al

lodsw + AX := subroutine address

Az L02 ; skip subroutine if flag is false

push Soe

push Cx

call ax 7 call subroutine to detect subsystem

pop cx

pop si

L02: loop L01

; determine which subsystem is active

call FindActive

pop di + restore caller registers and return

pop si

mov sp,bp

pop bp
ret

_VideoID ENDP

; FindPS2

; This subroutine uses INT 10H function 1Ah to determine the video BIOS

= Display Combination Code (DCC) for each video subsystem present.

FindPS2 PROC near

mov ax, 1A00h

int 10h ; call video BIOS for info

cmp al,1Ah

jne L13 ; exit if function not supported (i.e.,

; no MCGA or VGA in system)

; convert BIOS DCCs into specific subsystems & displays

mov Gx, bx

xor bh, bh ; BX := DCC for active subsystem

or ch, ch

Pz L11 ; jump if only one subsystem present

mov bl,ch ; BX := inactive DCC

add bx Dx

mov ax, [bxtoffset DGROUP:DCCtable]

mov Devicel,ax

mov bay ce

xO bh, bh ; BX := active DCC

(continued)

Appendix C: Identifying Video Subsystems 515

Listing C-1. Continued.

Teiles add

mov

mov

Jopienlop.<

ax, [bxtoffset DGROUP:DCCtable]

Device0,ax

; reset flags for subsystems that have been ruled out

Teele

Li3':

FindPS2

; FindEGA

mov

mov

mov

lea

cmp

je

lea

cmp

jne

mov

mov

ret

ENDP

; Look for an EGA.

; which doesn’t exist in the default (MDA, CGA) BIOS.

FindEGA PROC

mov

mov

int

cmp

je

mov

shr

mov

xlat

mov

mov

Cada

cmp

je

byte ptr CGAflag, FALSE

byte ptr EGAflag, FALSE

byte ptr Monoflag, FALSE

bx,VideoOType[di] ; if the BIOS reported an MDA

byte ptr [bx],MDA

L12

bx, Videol1Type [di]

byte ptr [bx],MDA

L13

word ptr [bx],0 ; ... Hercules can’t be ruled out

byte ptr Monoflag, TRUE

This is done by making a call to an EGA BIOS function

near a Callies AH = flags

; Returns: AH = flags

. Video0Type and

; Display0OType updated

bi, 10h ; BL := 10h (return EGA info)

ah, 12h ; AH := INT 10H function number

10h ; call EGA BIOS for info

; i£ EGA BIOS is present,

: BL 108

; CL = switch setting
b1,10h

L22 ; jump if EGA BIOS not present

aly el

aly ; AL := switches/2

bx,offset DGROUP:EGADisplays

; determine display type from switches
ah,al 7 AH := display type

al,EGA 7 AL := subystem type

FoundDevice

ah,MDADisplay

L21 7; jump if EGA has a monochrome display

(continued)

516 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing C-1. Continued.

mov CGAflag, FALSE * no CGA if EGA has color display
jmp short L22

G24 mov Monoflag,FALSE ; EGA has a mono display, so MDA and

; Hercules are ruled out
L22: ret

FindEGA ENDP

; FindCGA

; This is done by looking for the CGA’s 6845 CRTC at I/O port 3D4H.

FindCGA PROC near ; Returns: VIDstruct updated

mov dx, 3D4h 7 DX := CRTC address port

call Find6845

ake L31 ; jump if not present

mov al,CGA

mov ah, CGADisplay

call FoundDevice

B31 3 ret

FindCGA ENDP

; FindMono

This is done by looking for the MDA’s 6845 CRTC at I/O port 3B4H. If

: a 6845 is found, the subroutine distinguishes between an MDA

a and a Hercules adapter by monitoring bit 7 of the CRT Status byte.

This bit changes on Hercules adapters but does not change on an MDA.

The various Hercules adapters are identified by bits 4 through 6 of

F the CRT Status value:

001b = HGC+
: 101b = InColor card

FindMono PROC near ; Returns: VIDstruct updated

mov dx, 3B4h ; DX := CRIC address port

call Find6845

ae L44 A jlnpreit net present

mov dl, OBAh ; DX := 3BAh (status port)

in al,dx

and al,80h

mov ah,al ; AH s= bit 7 (vertical sync on HGC)

(continued)

Appendix C: Identifying Video Subsystems 517

Listing C

L41:

L42:

L43:

L44:

FindMono

; Find68

Find6845

-1. Continued.

mov

in

and

cmp

loope

jne

mov

mov

call

jmp

in

mov

and

mov

mov

cmp

je

mov

cmp

jne

mov

mov

call

ret

ENDP

45

This routine detects the presence of the CRTC on an MDA,

The technique is to write and read register OFh of the chip

Location Low). If the same value is read as written,

cx, 8000h

al,dx

al, 80h

ah,al

L41

L42

al,MDA

ah,MDADisplay

FoundDevice

short L44

al,dax

dl,al

d1,01110000b

ah,MDADisplay

al,HGCPlus

d1,00010000b

L43

al,HGC

d1,01010000b

L43

al, InColor

do this 32768 times

isolate bit 7

wait for bit 7 to change

it’s a Hercules if bit 7 changed,

if bit 7 didn’t change, it’s an MDA

DL := value from status port

> mask off bits 4 thru 6

assume it’s a monochrome display

look for an HGC+t

jump if it’s an HGC+

look for an HGC

it’s an InColor card

ah, EGAColorDisplay

FoundDevice

CGA, or HGC.

(Cursor

assume the chip

is present at the specified port address.

PROC

mov

out

inc

in

mov

MOV

out

mov

near

al,0OFh

dx,al

dx

al,dx

ah,al

al, 66h

dx,al

cx, 100h

Caller:

Returns:

DX = port addr

cf set if not present

select 6845 reg OFh (Cursor Low)

AL := current Cursor Low value

preserve in AH

AL := arbitrary value

try to write to 6845

(continued)

518 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing C-1. Continued.

Si loop L51 wait for 6845 to respond

in al,dx

xchg ah,al AH := returned value

AL := original value

out dx, al restore original value

cmp ah, 66h test whether 6845 responded

je L52 jump if it did (cf is reset)

stc set carry flag if no 6845 present

hS2 ret

Find6845 ENDP

; FindActive

A This subroutine stores the currently active device as Device0. The

a current video mode determines which subsystem is active.

FindActive

L61:

L62%

L63:

FindActive

PROC

cmp

je

cmp

jge
cmp

jge

mov

int

and

cmp

je

cmp

jne

jmp

cmp

je

mov

xchg

mov

ret

ENDP

near

word ptr Devicel,

L63

VideoOType[di],4

L63

VideolType[di],4

L63

ah, OFh

10h

aly

al,7

L61

Display0OType[di],

L63

short L62

DisplayOTypel[di],

L63

ax, DeviceO

ax,Devicel

DeviceO,ax

0

7; exit if only one subsystem

; exit if MCGA or VGA present

y (INT 10H function 1AH

; already did the work)

; AL := current BIOS video mode

; jump if monochrome

; (mode 7 or OFh)

MDADisplay

; exit if DisplayO is color

MDADisplay

; exit if DisplayO is monochrome

; make DeviceO currently active

(continued)

Appendix C: Identifying Video Subsystems 519

Listing C-1. Continued.

; FoundDevice

This routine updates the list of subsystems.

FoundDevice PROC near 7 Caller: AH = display #

; AL = subsystem #

; Destroys: BX

lea bx, Video0OType [di]

cmp byte ptr [bx],0

je L71 ; jump if 1st subsystem

lea bx, VideoiType [di] ; must be 2nd subsystem

L713 mov [bx] ,ax ; update list entry

ret

FoundDevice ENDP

_ TEXT ENDS

_DATA SEGMENT word public 'DATA'

EGADisplays DB CGADisplay ; 0000b, 0001b (EGA switch values)

DB EGAColorDisplay ; 0010b, 0011b

DB MDADisplay 7 0100b, 0101b

DB CGADisplay POT VOD, SON iM

DB EGAColorDisplay ; 1000b, 1001b

DB MDADisplay 2 TONOb,. WO tts

DCCtable DB 0,0 ; translate table for INT 10h func 1Ah

DB MDA, MDADisplay

DB CGA, CGADisplay

DB 0,0

DB EGA, EGAColorDisplay

DB EGA, MDADisplay
DB 0,0

DB VGA, PS2MonoDisplay

DB VGA, PS2ColorDisplay

DB 0,0

DB MCGA, EGAColorDisplay

DB MCGA, PS2MonoDisplay

DB MCGA, PS2ColorDisplay

TestSequence DB 2 ; this list of flags and addresses

DW FindPS2 ; determines the order in which this

program looks for the various

EGAflag DB ie 7 subsystems

DW FindEGA

CGAflag DB 2
DW FindCGA

Monoflag DB o

DW FindMono

(continued)

520 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Listing C-1. Continued.

NumberOfTests EQU ($-TestSequence) /3

_DATA ENDS

END

The VideoID routine checks for adapters by a process of elimination. For exam-
ple, if the routine is run on a PS/2, the INT 10H call returns the desired informa-

tion. On PC/XTs and PC/ATs, if an EGA with a monochrome display is detected,

there is no reason to look for an MDA or a Hercules card in the same system. If a
monochrome adapter is present, the routine differentiates between the MDA and

the various Hercules adapters.

INT 10H function 1AH on the VGA adapter fails to report the presence

of the MCGA when the adapter is installed in a PS/2 Model 30. Also,

function 1AH in the MCGA ignores the presence of an EGA if one is

installed in a Model 30. If you are concerned about these combina-

tions, you must test for them explicitly after you call INT 10H function

1AH. (In the first situation, inspect the motherboard BIOS identfica-

tion byte at F000:FFFE to detect the presence of a Model 30. In the

second situation, execute INT 10H function 12H with BL = 10H to

detect the presence of an EGA.)

The C program in Listing C-2 demonstrates how you might use VideoID.

/* Listing C-2 */

main ()

{
char *SubsystemName () ;

char *DisplayName() ;

static struct

{
char Subsystem;

char Display;

}
viIDstruct [2];

/* detect video subsystems */

VideoID(VIDstruct);

/* show results */

printf("Video subsystems in this computer:");

Listing C-2. Calling VideolD from a C program. (continued)

Appendix C: Identifying Video Subsystems 521

Listing C-2. Continued.

print £(UNn tsetse, SubsystemName (VIDstruct [0] .Subsystem),

DisplayName (VIDstruct [0] .Display) My

if (VIDstruct(1].Subsystem)

Denes (eeNn ws Sees). i, SubsystemName (VIDstruct [1] .Subsystem),

DisplayName (VIDstruct [1] .Display) yz

char *SubsystemName(a)

char a;

{
static char *IBMname[] =

{
W (none) " ;

"MDA" ;

NEGA” :

WGA 7

"MCGA",
WTGAN

he

static char *Hercname[] =

{
"HGC™,
"HGC+",
"TnColor™

};

Lf Ca &0x80'=)

return (Hercname[a & Ox7F]);

else

return(IBMname[a]);

char *DisplayName(d)

char as

{
static char *name[] =

{
"(none)",

"MDA-compatible monochrome display",

"CGA-compatible color display",

"EGA-compatible color display",

"PS/2-compatible monochrome display",

"PS/2-compatible color display"

i

return(name[d]);

522 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Glossary
This glossary includes some of the acronyms, abbreviations, buzzwords, engineering
terms, and programming jargon that appear frequently throughout this book.

80x86: Refers to all the processors in the Intel 8086 family. The IBM PCs and PS/2s
all use one of these processors: 8086, 8088, 80286, or 80386.

active display: In a computer that contains two video subsystems and displays, the
display to which a program sends its output.

adapter: A modular, plug-in circuit that performs a specialized task such as

generating video output. Well-known IBM PC video adapters include the MDA,

CGA, HGC, EGA, and VGA Adapter.

ANSI: American National Standards Institute. One of ANSI’s many activities is to

certify the standardization of programming tools, including languages (such as C

and FORTRAN) and software interfaces (such as GKS).

APA: All Points Addressable; describes graphics modes on the CGA, EGA, and

Hercules graphics cards.

API: Application Program Interface; a set of system-level routines that can be

used in an application program for basic input and output, file management, and

so on. In a graphics-oriented operating environment like Microsoft Windows,

high-level support for video graphics output is part of the API.

ASCII: American Standard Code for Information Interchange. The ASCII stan-

dard specifies the basic character set used in IBM PCs and PS/2s.

aspect ratio: The ratio of a video screen’s width to its height. A typical IBM PC

display has an aspect ratio of about 4:3. This term is also frequently used to

describe pixels: If you think of a pixel as being rectangular, its aspect ratio would

be the ratio of its width to height.

attributes: Color, intensity, blinking, and other displayed characteristics of char-

acters or pixels.

BIOS: Basic Input/Output System; a low-level programming interface to the sys-

tem’s major I/O devices.

bit plane: Video RAM containing formatted graphics data. In IBM video sub-

systems up to four bit planes can be addressed in parallel, with pixel values repre-

sented by the bits at corresponding locations in the bit planes.

CGA: IBM’s Color Graphics Adapter.

character code: A numeric code associated with a character. The default ASCII

character set used in all PCs and PS/2s comprises 256 8-bit character codes.

character matrix: The rectangular array of pixels in which characters are dis-

played on the screen. On IBM’s Monochrome Display Adapter, each character is

displayed in a character matrix that is 9 dots wide and 14 dots high. On the Color

Graphics Adapter, the character matrix is 8 by 8.

Glossary 523

character set: A set of alphabetic and numeric characters and symbols.

clipping: The process of determining which portions of a graphics image lie

within a specified boundary.

code page: A character set designed for use with computers. Each character in a

code page is associated with a numeric code (such as an ASCII or EBCDIC code).

CPU: Central Processing Unit, or the main processor in a computer. For example,

the CPU is an Intel 8088 in PCs and an 80286 in PC/ATs.

CRT: Cathode Ray Tube, or the picture tube you see when you look at your com-

puter monitor. Some people refer to the entire monitor (the tube and its associated

circuitry) as a CRT.

CRTC: CRT Controller; a chip that controls a video display’s timing signals.

DGIS: Direct Graphics Interface Specification; a firmware graphics interface

designed for video subsystems based on hardware graphics coprocessors.

display: A video monitor.

driver: Software or firmware that directly programs a specific hardware unit

such as a video adapter or a printer.

EBCDIC: Extended Binary Coded Decimal Interchange Code; the character-set

implementation used on IBM mainframe computers.

EGA: Enhanced Graphics Adapter.

font: A description of the style and shapes of the characters in a character set.

gate array: An integrated circuit that is partly prefabricated in its manufacture.

An application-specific integrated circuit based on gate array technology can be

less expensive and manufactured more rapidly than a custom integrated circuit.

GKS: Graphical Kernel System; a standard high-level graphics interface.

HGC: Hercules monochrome Graphics Card.

HGC+ (HGC Plus): Hercules Graphics Card Plus; a monochrome video adapter

like the HGC, but with a hardware character generator that can use RAM-based
character sets.

InColor: Hercules InColor Card; a 16-color version of the HGC+.

latch: A hardware register external to the CPU and used for transient storage of
data. For example, the EGA Graphics Controller uses four internal 8-bit latches to
mediate data transfers between the bit planes and the CPU.

LSI: Large Scale Integration.

MCGA: Multi-Color Graphics Array; the video subsystem integrated into the PS/2
Model 30. Also, Memory Controller Gate Array, one of the components of the
Model 30’s video subsystem.

524 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

MDA: IBM’s Monochrome Display Adapter.

MDPA: Monochrome Display and Printer Adapter; same as an MDA.

monitor: The hardware that displays your computer’s video output; comprises a
CRT (cathode ray tube) and associated circuitry.

MPA: Monochrome/Printer Adapter; same as an MDA.

palette: A range of colors that can be displayed by a video subsystem.

pel: A pixel.

PGA: Professional Graphics Adapter; another name for IBM’s PGC.

PGC: IBM’s Professional Graphics Controller.

pixel: One dot or point in an image that is composed of a matrix of dots or points.

The image on the video screen or on a page printed by a dot-matrix printer is
composed of a large number of pixels. (The word ‘‘pixel’’ is a rough acronym for

““picture element.’’)

planar BIOS: BIOS routines found in ROM on the IBM PC or PS/2 motherboard.

PS/2: Personal System/2.

PS/2 Display Adapter: A VGA-compatible IBM video adapter that may be used in

a PC/XT, PC/AT, or PS/2 Model 30; commonly called ‘‘VGA Adapter.”’

raster: The group of closely spaced horizontal scan lines that makes up a dis-

played video image.

RGB: Red, Green, Blue; the three primary colors displayed by the monitors used

in PC and PS/2 video subsystems. All other colors are blends of these three pri-

maries. Video displays that are driven by separate red, green, and blue signals are

often called RGB displays.

scan line: One horizontal line traced across the screen by a CRT’s electron beam.

VDI: Computer Graphics Virtual Device Interface; a proposed ANSI standard

high-level graphics interface. The Graphics Development Toolkit (GDT) sold by

IBM and Graphics Software Systems is a commercial implementation of VDI.

VGA: Video Graphics Array. People refer to the video subsystem integrated into

the PS/2 Models 50, 60, and 80, as well as the IBM PS/2 Display Adapter, as the

‘““VGA.”’ Strictly speaking, however, the VGA is the circuitry in the video sub-

system that performs the tasks of the CRT Controller, the Sequencer, the Graphics

Controller, and the Attribute Controller. Most of this circuitry is contained in a

single VLSI chip.

VGA Adapter: The IBM PS/2 Display Adapter.

video buffer: A buffer that contains the data that appears on the video display;

variously known as a ‘‘display buffer,” ‘‘frame buffer,”’ ‘‘refresh buffer,” or

‘*regenerative buffer.”’

Glossary 525

Video Control Data Area: Part of the Video Display Data Area. The block of
RAM from 0040:0049 through 0040:0066 is Video Control Data Area 1; the block

between 0040:0084 and 0040:008A is Video Control Data Area 2.

Video Display Data Area: A global data area maintained by the ROM BIOS for

storage of parameters related to its INT 10H video I/O routines.

VLSI: Very Large Scale Integration.

526 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

Index

References to source code listings
and illustrative figures are in
italics.

A
Adapter. See Video adapter
Algorithm. See Circle; Ellipse;

Line; Region fill
All Points Addressable (APA)

modes 86
Alphanumeric mode. See Video

modes, alphanumeric
Alternate select. See Interrupt 10H,

function 12H
Analog video signals 5—6. See also

Video DAC
Animation 364—68
Application Program Interface

(API) 425
Aspect ratio 100
Assembly language 7-9, 168, 408
Attribute Controller (EGA and

VGA)
programming 35-36, 53-56,

60-62, 466-72
registers 35—36

Attributes
alphanumeric mode

CGA 51-53
EGA 53-56, 320-21
HGC 51
HGC+ 51, 321-22
InColor Card 56-58, 321—23
MCGA 58-60, 63-64, 321
MDA 49-51
VGA 60-64, 320-21

graphics mode
CGA 100-103
EGA 103-7
HGC 103
InColor Card 107
MCGA 107-10
VGA 110

B
BASIC 416-17, 420
BIOS (Basic Input/Output System).

See also Interrupt 10H
about 6-11, 420, 424
anomalies 82, 385—86, 481,

484, 521
data area

about 438-39, 442—46
Alphanumeric Character Set
Override 441

Display Combination Code
table 441-42, 485-86

Graphics Character Set
Override 441

BIOS (continued)

Parameter Save Area 440
SAVE POINTER table
438-40

SECONDARY SAVE
POINTER table
438-40

User Palette Profile table 442
Video Parameter table 440

hardware supported by 434-35
planar 434
programming interface 7-11,

435-36
status 8—11, 437-38, 465,

485-86, 487-90
video modes

determining 465, 487-88
establishing 448-50

Bit block. See also CGA; EGA;
HGC; MCGA; VGA

about 344
animation 367-68
tiling 363-64

Bit planes
about 112-14
layering 395—96
programming

EGA 114-21
InColor Card 121—25
VGA 114-21

write-protecting
EGA 121
InColor Card 124

Blanking
horizontal 17, 27-28

vertical 18
Blinking. See also Interrupt 10H,

function 10H
alphanumeric mode

CGA 52-53
EGA 54-55
InColor 57
MDA 50

graphics mode 106—7
Border (region fill). See Region fill

Border (video display). See
Overscan

Bresenham, J.E. 164

C
C language 10-11, 408-9, 418-19
Cathode ray tube. See CRT

Controller
CGA (Color Graphics Adapter)

about 2—4

CGA (continued)
alphanumeric mode

attributes 51-53
character generator 47—49,
298-99

data representation 47—49
snow 66-74

BIOS 434
graphics I/O

bit block 344-51
circle 242
ellipse 230-33
line 170-84

pixel 125—27, 137-40,
462-63

text 26°, 276-83, 458-59,
464-65, 483-84

graphics mode
attributes 100-103
character generator 276-83
data representation 87—88

Character definition tables
alphanumeric mode

address map 300-305
BIOS 298, 313, 324—26, 441,
473-77

dedicated ROM 298-99
format 300-305

graphics mode
BIOS 269-70, 441, 457,
473-77

format 268-71
Character generator. See also

Character definition tables
alphanumeric mode 48,

298-305, 473-77
graphics mode 271-75, 364,

458-59, 464-65,
473-17, 483-84

Character string. See Text
Circle. See also Ellipse

algorithm 222—23, 242
clipping 241

Code page 270
Cohen, D. 217
Color Select register (VGA)

60-62, 467, 468, 470-71
Compagq 51, 512
Composite video 2, 15
Configuration Switch (Hercules)

33, 42, 303, 316
CRT Controller (CRTC)

about 16
programming 18—26

Index 527

CRT Controller (continued)
registers

CGA 19, 20
EGA 21-22
Hercules 20—21
MCGA 22-23
MDA 18-20
VGA 23

status (see CRT Status register)

timing
computations 24—26
horizontal 17-18, 25, 27—28

vertical 18, 26

write-protecting 31-32
CRT Status register 26—29, 67-72
Cursor

alphanumeric
emulation by BIOS 82,

450-51, 478, 480
invisible 83, 450
location 76—78, 451-52

size 76—83, 450-51, 451-52
graphics 368-71

D
DAC. See Video DAC
Decoder gate array (InColor Card)

121-22
DGIS (Direct Graphics Interface

Standard) 426-29, 430
Digital video signals 5-6
Display

active
interference (see Snow)

refresh 15-18, 478, 481
switching

BIOS support for 40, 450,
478, 480-82

configurations (see

Dual-display
configurations)

video 2-6, 15
Display Combination Code

441-42, 485-86
Display Enable 18-19, 27-28,

67-72
DOS. See MS-DOS
Dot clock 24
Dual-display configurations 40—43

E
EGA (Enhanced Graphics

Adapter)
about 5
alphanumeric mode

attributes 53-56, 320-21
character generator 47—49,
298-302, 306-13, 441,
473-77, 504-10

528 PROGRAMMER’S GUIDE TO PC & PS/2 VIDEO SYSTEMS

EGA, alphanumeric mode

(continued)
data representation 47—49,

316, 318—20
BIOS 435
graphics I/O

bit block 352-59
circle 242
ellipse 230-41
line 191-98
pixel 127-31, 141-50,
409-17, 462-63

region fill 260—63
text 270, 288-92, 458-59,
464-65, 483-84

graphics mode
attributes 103-7
character generator 288-92,

441, 473-77
data representation 89-91

Ellipse
algorithm

derivation 224-33
optimization 233-41
scan-conversion 223-24, 232

clipping 241
implementation 230—41

Enable Blink bit 57
Encoder gate array (InColor Card)

121-22
EQUIP_FLAG 7-8, 9-10, 40, 449,

486
Exception register (InColor Card)

56-57, 107

F
Fill. See Region fill; Video buffer,

fill
Font pages (MCGA) 314-15,

341, 475
FORTRAN 411-13, 418-19

G
GDI (Graphics Device Interface)

429-31
GKS (Graphical Kernel

System) 429

Global data area 423

GRAFTABL 269
GRAPHICS 494-95
Graphics Controller (EGA

and VGA)

about 114-15

programming 115—21
read/write modes

read mode 0 116, /42, 352

read mode 1 1/5, 116-17, 262,
290, 502

write mode 0 117-19,
141-45, 352

Graphics Controller, read/write
modes (continued)

write mode 1 119—20
write mode 2 120, 145-47,
290

write mode 3 120, /2/
registers 34—35, 116

Graphics Memory Expansion Card
(EGA) 89

Graphics mode. See Video mode,

graphics
Graphics window (alphanumeric

mode) 337-41

Gray-scale
palette 60, 62—63
summing 63—64, 468, 470, 472,

478, 480
GWBASIC. See BASIC

H
Hercules Color Card 5
Hercules InColor Card. See

InColor Card
HGC (Hercules Graphics Card)

about 4
alphanumeric mode

attributes 51
character generator 47—49
data representation 47—49
determining 404-6

graphics I/O
bit block 359
circle 242
ellipse 230—33
line 184-91
pixel 127, 140
text 283-86

graphics mode
attributes 103
character generator 283-86
data representation 88—89
determining 404-6
establishing 36, 38—40

HGC+ (Hercules Graphics

Card Plus)
about 4—5
alphanumeric mode

attributes 51, 321-22

character generator 47—49,
298, 302-3

data representation 47—49,
321-22

determining 404-6
establishing 326-27, 334-37

graphics I/O (see also HGC)
pixel 127, 140

graphics mode (see HGC)
Horizontal sync. See Retrace,

horizontal

I
IBM PS/2. See PS/2
InColor Card

about 5

alphanumeric mode

attributes 56—58, 321-23
character generator 47—49,

298, 303
data representation 47—49,

321-23
determining 404-6
establishing 326-27, 334-37

compared with EGA 122
graphics I/O

bit block 360
circle 242
ellipse 230—33
line 209-14
pixel 132—34, 147-51
text 292-95

graphics mode
attributes 107
character generator 292—95
data representation 91
determining 404-6
establishing 36, 38—40

Inline code 422
Intel 8259A 374
Intel 82786 426
Intensity 15. See also Attributes
Interface. See Layered interface;

Subroutines
Interrupt 5. See Print screen
Interrupt OAH. See Vertical

interrupt
Interrupt 10H

about 7-11, 434, 435-36, 447
functions

OOH (Select Video Mode)
7-8, 64, 102, 103, 106, 270,
448-50, 479

01H (Set Alphanumeric
Cursor Size) 76-77, 82-83,

450-51
02H (Set Cursor Location)

78,451
03H (Return Cursor Status)

451-52
04H (Return Light Pen
Position) 452—53

05H (Select Video Page) 75,

453-54
06H (Scroll Up) 454-56

07H (Scroll Down) 456

08H (Return Character Code
and Attribute at Cursor)

456-57
09H (Write Character and
Attribute at Cursor) 271,

323, 457-58

Interrupt 10H, functions

(continued)

OAH (Write Character(s) at

Cursor Position) 271, 323,
458-59

OBH (Set Overscan Color,

Select 4-Color Palette) 64,

100, 459-61
OCH (Store Pixel Value) 143,
462-63

ODH (Return Pixel
Value) 463

OEH (Display Character in
Teletype Mode) 271,
464-65

OFH (Return Current Video
Status) 9, 1/7, 465

10H (Set Palette Registers,
Set Intensity/Blink
Attribute) 36, 55, 60,
62-63, 321, 466-72

11H (Character Generator

Interface) 270, 271, 311-13,

320, 321, 324—26, 473-77
12H (Video Subsystem
Configuration) 42—43,

324-25, 477-82
13H (Display Character
String) 271, 483-84

Layered interface
about 424-25
BIOS 424, 426
DGIS 426-28
GDI 429-31
GKS 429
VDI 429

Light pen
about 401
programming 401-6, 452-53

Line
algorithm

derivation 163—66
optimization 166—69
scan-conversion 162—63

clipping 215—20
implementation

CGA 170-84
EGA 191-98
HGC 184-91
InColor Card 209-14
MCGA 198-208
VGA 208

Line-adjacency graph (LAG) 251
Linking 11, 408, 418—20

M
Macintosh 425

MCGA (Multi-Color
1AH (Video Display
Combination)
485-86, 512-13, 515

1BH (Video BIOS
Functionality/State
Information) 487—90

1CH (Save or Restore Video

State) 490-92

Interrupt 1DH 447
Interrupt 1FH 269-71, 275, 277,

457, 474, 476
Interrupt 43H 270-71, 277,

286, 474
I/O Support Gate Array

(MCGA) 374

K
Kappel, MLR. 225, 232

L
Language. See Assembly language;

BASIC; C language;

FORTRAN; Pascal

Latch
graphics mode

EGA and VGA 112—20
InColor Card 122—25

vertical interrupt 374
Latch Protect register (InColor

Card) 122, 124

Graphics Array)
about 5—6
alphanumeric mode

attributes 58—60, 63-64, 321
character generator 47—49,

300, 303-5, 473-77
data representation 47—49,

321
BIOS 435
graphics I/O

bit block 344-51
circle 242
ellipse 230-33
line 198-208
pixel 134—36, 151-54,
462-63

text 270, 286-88, 458-59,
464-65, 483-84

graphics mode
attributes 107-10
character generator 286-88,

473-77
data representation 91

MDA (Monochrome Display
Adapter)

about 2—4
attributes 49-51
BIOS 434
character generator 47—49, 298
data representation 47—49

Index 529

Memory Controller Gate Array
(MCGA) 22-23

Memory-resident program 420—22
Microsoft Windows 425, 430-31
Miscellaneous Output register

(EGA) 42, 480
Mode Control register

CGA 31-32
Hercules 33, 38—40
MCGA 31-32
MDA 30

Monitor. See Display, video

Motorola 6845 16
MS-DOS 46, 270, 323, 494

N
Novak, M. 232

O
Optimization

alphanumeric mode 46—47, 512
graphics mode

ellipse 233—41
line 166—69, 170, 184,

198, 216
region fill 260, 263—65
text 271, 273

techniques 20—21, 23, 46—47,

97, 167-68
Overscan

color 64—66, 442—46, 459-61,
466, 469-70

EGA 65-66
horizontal 17-18, 26

vertical 18

P
Palette. See also Attributes

colors 54, 101, 104, 107-9, 461
programming

BIOS 440, 442—46, 459-61,
466-72, 477, 479

CGA 101-3

EGA and VGA 53-56, 103-7,
440, 442-46

InColor Card 56-58, 107

MCGA 58-60, 107-8

Panning (EGA and VGA) 386-92
Pascal 413-15, 419

Pavlidis, T. 252, 259

Personal System/2. See PS/2
Pixel

attributes

CGA 100-103
EGA 103-7

HGC 103

InColor Card 107

MCGA 107-10
VGA 110

connectivity 245

Pixel (continued)
coordinates

computation of 92—98
scaling 98-100, 222—23, 242

logical operations
about 136-37
AND 361-62
NOT 361
OR 363
XOR 360, 462

representation
in video buffer 87-92
on screen 15

value (see also individual names

of adapters)
reading 125—36, 463
setting 136-54, 338-41,
462-63

Plane Mask register (InColor Card)

122, 124, 314, 318, 395
Print screen

alphanumeric mode 494, 504-10
BIOS 324, 494-95, 477, 479
graphics mode 494-504

Programmable interrupt controller
(PIC) 374

Programming language. See
Assembly language;
BASIC; C language;
FORTRAN; Pascal

PS/2
Display Adapter. See VGA;

VGA Adapter
Model 25 2, 5-6, 435, 481. See

also MCGA
Model 30 2, 5—6, 435, 481, 482.

See also MCGA
Models 50, 60, and 80 2, 5—6,

435. See also VGA

R
Raster 15-18

Read mode. See Pixel, value,
reading

Read/Write Color register

(InColor Card) 122, 124,
292, 360

Read/Write Control register
(InColor Card) 122-25,
360

Refresh. See Display, refresh
Regeneration buffer. See Video

buffer
Region fill

about 244-45
algorithms

border trace 252—63
line adjacency 248—52
recursive 247—48

using horizontal lines 246
optimization 251-52, 260-63
scan-conversion 246

530 PROGRAMMER’S GUIDE TO PC « PS/2 VIDEO SYSTEMS

Retrace

horizontal 17, 25—26, 29

vertical 18, 26, 29

Reverse video 49. See also

Attributes

RGB (Red, Green, Blue) 2

ROM BIOS. See BIOS
Rubberbanding 366

S
Save area

BIOS (see BIOS, data area)
display switch 478, 480-81
video state 490-92

SAVE POINTER table. See BIOS,
data area =

Scaling factors 99
Scan-conversion

about 162—63
ellipse 223—24, 232
line 162-64
region 246

Screen dump. See Print screen
Scrolling 454-56
SECONDARY SAVE POINTER

table. See BIOS, data area
Sequencer (EGA and VGA)

programming 34, 306-9,
318-20, 341

Tegisters 34
Shani, U. 251

Shift-PrtSc 494-95
Snapshot. See Print screen
Snow 66-74

Split screen (EGA and VGA)

396-400
Sproull, R.F. 217
Status

BIOS (see BIOS, status)

CRT Controller 26—29, 404-6
register (see CRT Status

register)
video subsystem 477, 479,

485—86, 487-88
Subroutines

linking 11, 408, 418-20
memory models 418-19
parameter passing 418—20
structure

BASIC 416-17, 420
C 408-9, 418-19
FORTRAN 411-13, 418-19
Pascal 413-15, 419

Sutherland, I.E. 217

T
Text. See also Attributes

alphanumeric mode 66-74,

456-59, 464-65,
483-84

Text (continued)

graphics mode (see names of
individual adapters)

Tiling. See Bit block, tiling
TMS34010 426

U
Underline attribute 49-5 1, 56, 442.

See also Attributes,
alphanumeric mode

Vv
Van Aken, J.R. 225, 232
Van Dam, A. 246

VDI (Virtual Device Interface)
429

Vertical interrupt
EGA 374-81, 385-86
MCGA 374, 381-86
VGA 374-81, 385-86

Vertical sync. See Retrace, vertical
VGA (Video Graphics Array)

about 6

alphanumeric mode
attributes 60—64, 320-21

character generator 47—49,

306-13, 441, 473-77,
504-10

data representation 47—49,
316, 318-20

BIOS 435
graphics I/O

bit block 352-59
circle 242
ellipse 230—41
line 208
pixel 136, 154, 462-63
text 270, 288-92, 458-59,
464-65, 483-84

graphics mode
attributes 110
character generator 288—92,

441,473-77
data representation 91-92

VGA Adapter 43, 381, 435. See
also VGA

Video adapter 2, 3. See also names
of individual adapters

Video bandwidth. See Dot clock
Video BIOS. See BIOS
Video buffer

about 15-16
address map 41—43
CPU access 41—43, 478, 480
data representation

alphanumeric mode 47—49,
300-305

graphics mode 87—92

Video buffer (continued)
fill

about 154
CGA 155-56
EGA 157-59
HGC 156

InColor Card 159-60
MCGA 160
VGA 157-59

paging 74-76, 453-54
panning 386—92
resizing 392—94
scrolling 454—56
split screen 396—400

Video Control Data Area. See

Video Display Data Area
Video DAC (Digital-to-Analog

Converter)

about 6, 58—59

programming 59-63, 442,
467-68, 470-72

Video display
about 2—6, 15

resolution 4—6

Video Display Data Area (VDDA)
about 9-10

format 436-38

variables

ACTIVE_PAGE 40, 448,
453, 465

ADDR_6845 20, 40, 50, 75,
329, 377, 389, 394, 397, 448

CRT_COLS 20, 40, 284, 286,
329, 339, 401, 404, 448, 465

CRT_LEN 40, 326, 394, 404,
448,475

CRT_MODE 40, 329, 339,
377, 388, 394, 448, 465

CRT_MODE_ SET 40, 50,
102, 335, 448, 468

CRT_PALETTE 40, 64, 100,
102, 448, 460, 468

CRT_START 20, 40, 75, 401,
448, 453

CURSOR_ MODE 40,77,
448, 450-51, 452, 475

CURSOR_POSN 40, 448,
451-52, 454, 464, 483

INFO 437, 449, 450, 465,
479-80

INFO_3 437, 449, 479
POINTS 271, 277-78, 286,

324, 326, 389, 391, 394, 404,
449, 475-76

ROWS 324, 326, 394, 448,
475-76, 494

SAVE_ PTR 438-40,
443-46

Video Formatter (MCGA) 58-59
Video modes

about 28—29
alphanumeric

about 46—47
attributes 49-63
data representation 47—49

BIOS interface 7-9, 36—38
determining

BIOS 9, 465
Hercules 404-6

establishing 7—8, 38—40,
323-27, 448-50

graphics
about 86
attributes 100-110
data representation 87-92

hardware control 30—40
Video monitor. See Video display
Video page. See Video buffer,

paging

W
Window

alphanumeric mode 337—41
Microsoft Windows 429-31

Write mode. See Pixel, value,
setting

xX
xMode register 34, 316, 321

Index 531

Richard Wilton

Richard Wilton has been programming computers since the late 1960s. He has
written systems software and graphics applications in FORTRAN, Pascal, C,

Forth, and assembly language. His articles and reviews have appeared in several

computer publications, including BYTE, Computer Language, and The Seybold

Outlook on Professional Computing. Wilton lives in Los Angeles, California.

The manuscript for this book was prepared and submitted to Microsoft Press in
electronic form. Text files were processed and formatted using Microsoft Word.

Cover design by Becker Design Associates
Interior text design by Darcie S. Furlan
Illustrations created on Adobe Illustrator™ by Nick Gregoric and Rick Bourgoin
Chapter opener artwork by Chuck Solway
Principal typographer: Ruth Pettis
Principal production artist: Peggy Herman

Text and display composition by Microsoft Press in Times Roman, using the
Magna composition system and the Linotronic 300 laser imagesetter.

NUK. €90.06

| Round out your microcomputer bookshelf with these Microsoft Press titles:

rn iT

(-

eT Ricceins
oe HE Wag ae

ee ea A Tt co See. ue

The Programmer's Gute ip PDS PAZ Video Systems
RICHARD WILTON

Here, for serious programmers, is all the information needed to exploit excit-

ing PC and PS/2 video capabilities to produce fast, professional, even

stunning, video graphics. No matter what your hardware configuration — EGA,

CGA, HGC, MDA, VGA, or MCGA— you'll find specialized, comprehensive advice

and examples to help you tackle the exacting problems of video programming.

Author Wilton details PC and PS/2 video hardware and provides a refresher

on the ROM BIOS video support routines. He also covers the fundamentals of

hardware architecture, video display modes, and the program/hardware

interface, all of which are prerequisites for effective video programming. The

heart of the book includes tested techniques and valuable insights, accom-

panied by scores of source code examples, for creating a variety of text and _

graphics output, including lines, circles and ellipses, region fill, graphics text, 5

alphanumeric character sets, bit blocks, and animation. In addition, program- .

mers will find advanced information on vertical retrace interrupts, bit planes,

linking video hardware drivers to high-level Bedee and using commercial

video output packages.

,

a. a a et a a ee

“ie ae -n <ae ae

A one-of-a-kind resource for every system-level programmer, application

designer, and programming enthusiast.

_ U.S.A. $24.95

Aust. $37.95
i (recommended)

