" REAL-TIME
ENDERING

FOURTH EDITION

Tomas Akenine-Moller
Eric Haines

Naty Hoffman
Angelo Pesce
Michat Iwanicki
Sébastien Hillaire

Cph
CERTIFIED

The CPD Certification
Service

Real-Time Rendering

Fourth Edition

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Real-Time Rendering
Fourth Edition

Tomas Akenine-Moller
Eric Haines

Naty Hoffman

Angelo Pesce

Michat lwanicki

Sébastien Hillaire

CRC Press
Taylor &Francis Group
Boca Raton London New York

CRC Press is an imprint of the
Taylor & Francis Group, an informa business

AN A K PETERS BOOK

CRC Press

Taylor & Francis Group

6000 Broken Sound Parkway N'W, Suite 300
Boca Raton, FL 33487-2742

© 2018 by Taylor & Francis Group, LLC
CRC Press is an imprint of Taylor & Francis Group, an Informa business

No claim to original U.S. Government works
Printed on acid-free paper
International Standard Book Number-13: 978-1-1386-2700-0 (Hardback)

This book contains information obtained from authentic and highly regarded sources. Reasonable
efforts have been made to publish reliable data and information, but the author and publisher
cannot assume responsibility for the validity of all materials or the consequences of their use. The
authors and publishers have attempted to trace the copyright holders of all material reproduced in
this publication and apologize to copyright holders if permission to publish in this form has not
been obtained. If any copyright material has not been acknowledged please write and let us know so
we may rectify in any future reprint.

Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced,
transmitted, or utilized in any form by any electronic, mechanical, or other means, now known or
hereafter invented, including photocopying, microfilming, and recording, or in any information
storage or retrieval system, without written permission from the publishers.

For permission to photocopy or use material electronically from this work, please access
www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc.
(CCCQC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profit
organization that provides licenses and registration for a variety of users. For organizations that
have been granted a photocopy license by the CCC, a separate system of payment has been
arranged.

Trademark Notice: Product or corporate names may be trademarks or registered trademarks,
and are used only for identification and explanation without intent to infringe.

Library of Congress Cataloging-in-Publication Data

Names: Moller, Tomas, 1971- author.

Title: Real-time rendering / Tomas Akenine-Moller, Eric Haines, Naty Hoffman, Angelo Pesce,
Michat Iwanicki, Sébastien Hillaire

Description: Fourth edition. | Boca Raton : Taylor & Francis, CRC Press, 2018.

Identifiers: LCCN 2018009546 | ISBN 9781138627000 (hardback : alk. paper)

Subjects: LCSH: Computer graphics. | Real-time data processing. | Rendering (Computer graphics)
Classification: LCC T385 .M635 2018 | DDC 006.6/773--dc23

LC record available at https://lccn.loc.gov/2018009546

Visit the Taylor & Francis Web site at
http://www.taylorandfrancis.com

and the CRC Press Web site at

http://www.crcpress.com

www.copyright.com
http://www.copyright.com/
https://lccn.loc.gov/2018009546
http://www.taylorandfrancis.com
http://www.crcpress.com

Dedicated to Eva, Felix, and Elina
T. A-M.

Dedicated to Cathy, Ryan, and Evan
E. H.

Dedicated to Dorit, Karen, and Daniel
N. H.

Dedicated to Fei, Clelia, and Alberto
A. P.

Dedicated to Aneta and Weronika
M. I.

Dedicated to Stéphanie and Svea
S. H.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Contents

Preface xiii
1 Introduction 1
1.1 Contents Overview 3
1.2 Notation and Definitions 5
2 The Graphics Rendering Pipeline 11
2.1 Architecture 12
2.2 The Application Stage 13
2.3 Geometry Processing oo 14
2.4 Rasterization Lo 21
2.5 Pixel Processing Lo 22
2.6 Through the Pipeline 25
3 The Graphics Processing Unit 29
3.1 Data-Parallel Architectures 30
3.2 GPU Pipeline Overview 34
3.3 The Programmable Shader Stage 35
3.4 The Evolution of Programmable Shading and APIs 37
3.5 The Vertex Shader 42
3.6 The Tessellation Stage 44
3.7 The Geometry Shader 47
3.8 The Pixel Shader 49
3.9 The Merging Stage 53
3.10 The Compute Shader 54
4 Transforms 57
4.1 Basic Transforms o 58
4.2 Special Matrix Transforms and Operations 70
4.3 Quaternions 76
4.4 Vertex Blending oo 84
4.5 Morphing 87
4.6 Geometry Cache Playback 92
4.7 Projections 92

vii

viii

Contents
Shading Basics 103
5.1 Shading Models 103
5.2 Light Sources 106
5.3 Implementing Shading Models 117
54 Aliasing and Antialiasing 130
5.5 Transparency, Alpha, and Compositing 148
5.6 Display Encodingo 160
Texturing 167
6.1 The Texturing Pipeline 169
6.2 Image Texturing 176
6.3 Procedural Texturing L. 198
6.4 Texture Animation 200
6.5 Material Mappingo 201
6.6 Alpha Mapping L 202
6.7 Bump Mapping L 208
6.8 Parallax Mapping 214
6.9 Textured Lights o 221
Shadows 223
7.1 Planar Shadows 225
7.2 Shadows on Curved Surfaces. 229
7.3 Shadow Volumes 230
7.4 Shadow Maps 234
7.5 Percentage-Closer Filtering 247
7.6 Percentage-Closer Soft Shadows 250
7.7 Filtered Shadow Maps 252
7.8 Volumetric Shadow Techniques 257
7.9 Irregular Z-Buffer Shadows 259
7.10 Other Applications L 262
Light and Color 267
8.1 Light Quantities 267
8.2 Sceneto Screen 281
Physically Based Shading 293
9.1 Physicsof Light 293
9.2 The Camera 307
9.3 The BRDF 308
9.4 MMumination e 315
9.5 Fresnel Reflectance L. 316
9.6 Microgeometry oL 327

9.7 Microfacet Theory 331

Contents

10

11

12

13

9.8 BRDF Models for Surface Reflection
9.9 BRDF Models for Subsurface Scattering
9.10 BRDF Models for Cloth
9.11 Wave Optics BRDF Models
9.12 Layered Materials 0.
9.13 Blending and Filtering Materials
Local [llumination

10.1 Area Light Sources
10.2 Environment Lighting
10.3 Spherical and Hemispherical Functions
10.4 Environment Mapping L oL
10.5 Specular Image-Based Lighting
10.6 Irradiance Environment Mapping
10.7 Sourcesof Error

Global [llumination

11.1 The Rendering Equation
11.2 General Global llumination
11.3 Ambient Occlusion o
11.4 Directional Occlusion
11.5 Diffuse Global Illumination
11.6 Specular Global Illumination
11.7 Unified Approaches
Image-Space Effects

12.1 Image Processing o
12.2 Reprojection Techniques
12.3 Lens Flare and Bloom
124 Depthof Field
125 Motion Blur
Beyond Polygons

13.1 The Rendering Spectrum
13.2 Fixed-View Effects oL
13.3 Skyboxes.
13.4 Light Field Rendering
13.5 Sprites and Layers o oo
13.6 Billboarding Lo
13.7 Displacement Techniques
13.8 Particle Systemso oL o
13.9 Point Rendering oo
13.10 Voxels oo o

336
347
356
359
363
365

375
377
391
392
404
414
424
433

437
437
441
446
465
472
497
509

513
513
522
524
527
536

545
545
546
047
549
550
551
564
567
572
078

Contents

14 Volumetric and Translucency Rendering

15

16

17

18

14.1
14.2
14.3
14.4
14.5
14.6
14.7
14.8

Light Scattering

Theory

Specialized Volumetric Rendering
General Volumetric Rendering

Sky Rendering

Translucent Surfaces
Subsurface Scattering L Lo

Hair and Fur .

Unified Approaches

Non-Photorealistic Rendering

15.1
15.2
15.3
15.4
15.5

Toon Shading .

Outline Rendering o
Stroke Surface Stylization

Lines
Text Rendering

Polygonal Techniques
Sources of Three-Dimensional Data
Tessellation and Triangulation

16.1
16.2
16.3
16.4
16.5
16.6

Consolidation .

Triangle Fans, Strips, and Meshes

Simplification .

Compression and Precision

Curves and Curved Surfaces
Parametric Curves
Parametric Curved Surfaces

17.1
17.2
17.3
17.4
17.5
17.6

Implicit Surfaces

Subdivision Curves L
Subdivision Surfaces
Efficient Tessellation

Pipeline Optimization
Profiling and Debugging Tools
Locating the Bottleneck
Performance Measurements

18.1
18.2
18.3
18.4
18.5

Optimization .
Multiprocessing

589
589
600
605
613
623
632
640
648

651
652
654
669
673
675

681
682
683
690
696
706
712

717
718
734
749
753
756
767

783
784
786
788
790
805

Contents

19 Acceleration Algorithms

20

21

22

19.1
19.2
19.3
19.4
19.5
19.6
19.7
19.8
19.9
19.10

Spatial Data Structures
Culling Techniques
Backface Culling
View Frustum Culling
Portal Culling
Detail and Small Triangle Culling .
Occlusion Culling
Culling Systems
Level of Detail
Rendering Large Scenes

Efficient Shading

20.1
20.2
20.3
20.4
20.5
20.6

Deferred Shading
Decal Rendering
Tiled Shading
Clustered Shading
Deferred Texturing
Object- and Texture-Space Shading

Virtual and Augmented Reality

21.1
21.2
21.3
214

Equipment and Systems Overview
Physical Elements
APIs and Hardware
Rendering Techniques

Intersection Test Methods

22.1
22.2
22.3
224
22.5
22.6
22.7
22.8
22.9
22.10
22.11
22.12
22.13
22.14
22.15
22.16

GPU-Accelerated Picking
Definitions and Tools
Bounding Volume Creation
Geometric Probability
Rules of Thumb
Ray/Sphere Intersection
Ray/Box Intersection
Ray/Triangle Intersection
Ray/Polygon Intersection
Plane/Box Intersection
Triangle/Triangle Intersection . . .
Triangle/Box Intersection

Bounding-Volume/Bounding-Volume Intersection

View Frustum Intersection
Line/Line Intersection
Intersection between Three Planes

xi

817
818
830
831
835
837
839
840
850
852
866

881
883
888
892
898
905
908

915
916
919
924
932

941
942
943
948
953
954
955
959
962
966
970
972
974
976
981
987
990

xii Contents

23 Graphics Hardware 993
23.1 Rasterization Lo 993
23.2 Massive Compute and Scheduling 1002
23.3 Latency and Occupancy 1004
23.4 Memory Architecture and Buses 1006
23.5 Caching and Compression 1007
23.6 Color Buffering 1009
23.7 Depth Culling, Testing, and Buffering 1014
23.8 Texturing 1017
23.9 Architecture 1019
23.10 Case Studies. 1024
23.11 Ray Tracing Architectures 1039

24 The Future 1041
24.1 Everything Else o o 1042
24.2 You ..o e 1046

Bibliography 1051

Index 1155

Preface

“Things have not changed that much in the past eight years,” was our thought entering
into this fourth edition. “How hard could it be to update the book?” A year and a
half later, and with three more experts recruited, our task is done. We could probably
spend another year editing and elaborating, at which time there would be easily a
hundred more articles and presentations to fold in. As a data point, we made a
Google Doc of references that is more than 170 pages long, with about 20 references
and related notes on each page. Some references we cite could and do each take up a
full section in some other book. A few of our chapters, such as that on shadows, have
entire books dedicated to their subjects. While creating more work for us, this wealth
of information is good news for practitioners. We will often point to these primary
sources, as they offer much more detail than appropriate here.

This book is about algorithms that create synthetic images fast enough that the
viewer can interact with a virtual environment. We have focused on three-dimensional
rendering and, to a limited extent, on the mechanics of user interaction. Modeling,
animation, and many other areas are important to the process of making a real-time
application, but these topics are beyond the scope of this book.

We expect you to have some basic understanding of computer graphics before
reading this book, as well as knowledge of computer science and programming. We
also focus on algorithms, not APIs. Many texts are available on these other subjects.
If some section does lose you, skim on through or look at the references. We believe
that the most valuable service we can provide you is a realization of what you yet do
not know about—a basic kernel of an idea, a sense of what others have discovered
about it, and ways to learn more, if you wish.

We make a point of referencing relevant material as possible, as well as providing
a summary of further reading and resources at the end of most chapters. In prior
editions we cited nearly everything we felt had relevant information. Here we are
more a guidebook than an encyclopedia, as the field has far outgrown exhaustive (and
exhausting) lists of all possible variations of a given technique. We believe you are
better served by describing only a few representative schemes of many, by replacing
original sources with newer, broader overviews, and by relying on you, the reader, to
pursue more information from the references cited.

Most of these sources are but a mouse click away; see realtimerendering.com for
the list of links to references in the bibliography. Even if you have only a passing
interest in a topic, consider taking a little time to look at the related references, if
for nothing else than to see some of the fantastic images presented. Our website also

xiii

Xiv Preface

contains links to resources, tutorials, demonstration programs, code samples, software
libraries, book corrections, and more.

Our true goal and guiding light while writing this book was simple. We wanted to
write a book that we wished we had owned when we had started out, a book that both
was unified yet also included details and references not found in introductory texts.
We hope that you will find this book, our view of the world, of use in your travels.

Acknowledgments for the Fourth Edition

We are not experts in everything, by any stretch of the imagination, nor perfect writ-
ers. Many, many people’s responses and reviews improved this edition immeasurably,
saving us from our own ignorance or inattention. As but one example, when we asked
around for advice on what to cover in the area of virtual reality, Johannes Van Wa-
veren (who did not know any of us) instantly responded with a wonderfully detailed
outline of topics, which formed the basis for that chapter. These kind acts by com-
puter graphics professionals were some of the great pleasures in writing this book.
One person is of particular note: Patrick Cozzi did a yeoman’s job, reviewing every
chapter in the book. We are grateful to the many people who helped us along the way
with this edition. We could write a sentence or three about everyone who helped us
along the way, but this would push us further past our book-breaking page limit.

To all the rest, in our hearts we give our appreciation and thanks to you: Sebas-
tian Aaltonen, Johan Andersson, Magnus Andersson, Ulf Assarsson, Dan Baker, Chad
Barb, Rasmus Barringer, Michal Bastien, Louis Bavoil, Michael Beale, Adrian Bent-
ley, Ashwin Bhat, Antoine Bouthors, Wade Brainerd, Waylon Brinck, Ryan Brucks,
Eric Bruneton, Valentin de Bruyn, Ben Burbank, Brent Burley, Ignacio Castano,
Cem Cebenoyan, Mark Cerny, Matthaeus Chajdas, Danny Chan, Rob Cook, Jean-
Luc Corenthin, Adrian Courreges, Cyril Crassin, Zhihao Cui, Kuba Cupisz, Robert
Cupisz, Michal Drobot, Wolfgang Engel, Eugene d’Eon, Matej Drame, Michal Drobot,
Alex Evans, Cass Everitt, Kayvon Fatahalian, Adam Finkelstein, Kurt Fleischer, Tim
Foley, Tom Forsyth, Guillaume Francois, Daniel Girardeau-Montaut, Olga Gocmen,
Marcin Gollent, Ben Golus, Carlos Gonzalez-Ochoa, Judah Graham, Simon Green,
Dirk Gregorius, Larry Gritz, Andrew Hamilton, Earl Hammon, Jr., Jon Harada, Jon
Hasselgren, Aaron Hertzmann, Stephen Hill, Rama Hoetzlein, Nicolas Holzschuch,
Liwen Hu, John “Spike” Hughes, Ben Humberston, Warren Hunt, Andrew Hurley,
John Hutchinson, Milan Ikits, Jon Jansen, Jorge Jimenez, Anton Kaplanyan, Gokhan
Karadayi, Brian Karis, Nicolas Kasyan, Alexander Keller, Brano Kemen, Emmett
Kilgariff, Byumjin Kim, Chris King, Joe Michael Kniss, Manuel Kraemer, Anders
Wang Kristensen, Christopher Kulla, Edan Kwan, Chris Landreth, David Larsson,
Andrew Lauritzen, Aaron Lefohn, Eric Lengyel, David Li, Ulrik Lindahl, Edward
Liu, Ignacio Llamas, Dulce Isis Segarra Lopez, David Luebke, Patrick Lundell, Miles
Macklin, Dzmitry Malyshau, Sam Martin, Morgan McGuire, Brian Mclntyre, James
McLaren, Mariano Merchante, Arne Meyer, Sergiy Migdalskiy, Kenny Mitchell, Gre-
gory Mitrano, Adam Moravanszky, Jacob Munkberg, Kensaku Nakata, Srinivasa G.
Narasimhan, David Neubelt, Fabrice Neyret, Jane Ng, Kasper Hgy Nielsen, Matthias

Preface XV

Niefiner, Jim Nilsson, Reza Nourai, Chris Oat, Ola Olsson, Rafael Orozco, Bryan
Pardilla, Steve Parker, Ankit Patel, Jasmin Patry, Jan Pechenik, Emil Persson, Marc
Petit, Matt Pettineo, Agnieszka Piechnik, Jerome Platteaux, Aras Pranckevic¢ius, Eli-
nor Quittner, Silvia Rasheva, Nathaniel Reed, Philip Rideout, Jon Rocatis, Robert
Runesson, Marco Salvi, Nicolas Savva, Andrew Schneider, Michael Schneider, Markus
Schuetz, Jeremy Selan, Tarek Sherif, Peter Shirley, Peter Sikachev, Peter-Pike Sloan,
Ashley Vaughan Smith, Rys Sommefeldt, Edvard Sgrgard, Tiago Sousa, Tomasz Sta-
chowiak, Nick Stam, Lee Stemkoski, Jonathan Stone, Kier Storey, Jacob Strom, Filip
Strugar, Pierre Terdiman, Aaron Thibault, Nicolas Thibieroz, Robert Toth, Thatcher
Ulrich, Mauricio Vives, Alex Vlachos, Evan Wallace, lan Webster, Nick Whiting, Bran-
don Whitley, Mattias Widmark, Graham Wihlidal, Michael Wimmer, Daniel Wright,
Bart Wroniski, Chris Wyman, Ke Xu, Cem Yuksel, and Egor Yusov. We thank you
for your time and effort, selflessly offered and gratefully received.

Finally, we want to thank the people at Taylor & Francis for all their efforts, in
particular Rick Adams, for getting us going and guiding us along the way, Jessica
Vega and Michele Dimont, for their efficient editorial work, and Charlotte Byrnes, for
her superb copyediting.

Tomas Akenine-Moller
Eric Haines

Naty Hoffman

Angelo Pesce

Michat Iwanicki
Sébastien Hillaire
February 2018

Acknowledgments for the Third Edition

Special thanks go out to a number of people who went out of their way to provide
us with help. First, our graphics architecture case studies would not have been any-
where as good without the extensive and generous cooperation we received from the
companies making the hardware. Many thanks to Edvard Segrgard, Borgar Ljosland,
Dave Shreiner, and Jgrn Nystad at ARM for providing details about their Mali 200 ar-
chitecture. Thanks also to Michael Dougherty at Microsoft, who provided extremely
valuable help with the Xbox 360 section. Masaaki Oka at Sony Computer Enter-
tainment provided his own technical review of the PLAYSTATION® 3 system case
study, while also serving as the liaison with the Cell Broadband Engine™ and RSX®
developers for their reviews.

In answering a seemingly endless stream of questions, fact-checking numerous pas-
sages, and providing many screenshots, Natalya Tatarchuk of ATT/AMD went well be-
yond the call of duty in helping us out. In addition to responding to our usual requests
for information and clarification, Wolfgang Engel was extremely helpful in providing
us with articles from the upcoming ShaderX® book and copies of the difficult-to-

XVi Preface

obtain Shader X2 books [427, 428], now available online for free. Ignacio Castafio at
NVIDIA provided us with valuable support and contacts, going so far as to rework a
refractory demo so we could get just the right screenshot.

The chapter reviewers provided an invaluable service to us. They suggested nu-
merous improvements and provided additional insights, helping us immeasurably. In
alphabetical order they are: Michael Ashikhmin, Dan Baker, Willem de Boer, Ben
Diamand, Ben Discoe, Amir Ebrahimi, Christer Ericson, Michael Gleicher, Manny
Ko, Wallace Lages, Thomas Larsson, Grégory Massal, Ville Miettinen, Mike Ramsey,
Scott Schaefer, Vincent Scheib, Peter Shirley, K.R. Subramanian, Mauricio Vives, and
Hector Yee.

We also had a number of reviewers help us on specific sections. Our thanks go
out to Matt Bronder, Christine DeNezza, Frank Fox, Jon Hasselgren, Pete Isensee,
Andrew Lauritzen, Morgan McGuire, Jacob Munkberg, Manuel M. Oliveira, Aurelio
Reis, Peter-Pike Sloan, Jim Tilander, and Scott Whitman.

We particularly thank Rex Crowle, Kareem Ettouney, and Francis Pang from
Media Molecule for their considerable help in providing fantastic imagery and layout
concepts for the cover design.

Many people helped us out in other ways, such as answering questions and pro-
viding screenshots. Many gave significant amounts of time and effort, for which we
thank you. Listed alphabetically: Paulo Abreu, Timo Aila, Johan Andersson, An-
dreas Baerentzen, Louis Bavoil, Jim Blinn, Jaime Borasi, Per Christensen, Patrick
Conran, Rob Cook, Erwin Coumans, Leo Cubbin, Richard Daniels, Mark DeLoura,
Tony DeRose, Andreas Dietrich, Michael Dougherty, Bryan Dudash, Alex Evans, Cass
Everitt, Randy Fernando, Jim Ferwerda, Chris Ford, Tom Forsyth, Sam Glassenberg,
Robin Green, Ned Greene, Larry Gritz, Joakim Grundwall, Mark Harris, Ted Him-
lan, Jack Hoxley, John “Spike” Hughes, Ladislav Kavan, Alicia Kim, Gary King,
Chris Lambert, Jeff Lander, Daniel Leaver, Eric Lengyel, Jennifer Liu, Brandon
Lloyd, Charles Loop, David Luebke, Jonathan Maim, Jason Mitchell, Martin Mit-
tring, Nathan Monteleone, Gabe Newell, Hubert Nguyen, Petri Nordlund, Mike Pan,
Ivan Pedersen, Matt Pharr, Fabio Policarpo, Aras Pranckevicius, Siobhan Reddy,
Dirk Reiners, Christof Rezk-Salama, Eric Risser, Marcus Roth, Holly Rushmeier,
Elan Ruskin, Marco Salvi, Daniel Scherzer, Kyle Shubel, Philipp Slusallek, Torbjorn
Séderman, Tim Sweeney, Ben Trumbore, Michal Valient, Mark Valledor, Carsten
Wenzel, Steve Westin, Chris Wyman, Cem Yuksel, Billy Zelsnack, Fan Zhang, and
Renaldas Zioma.

We also thank many others who responded to our queries on public forums such
as GD Algorithms. Readers who took the time to send us corrections have also been
a great help. It is this supportive attitude that is one of the pleasures of working in
this field.

As we have come to expect, the cheerful competence of the people at A K Peters
made the publishing part of the process much easier. For this wonderful support, we
thank you all.

Preface xvii

On a personal note, Tomas would like to thank his son Felix and daughter Elina
for making him understand (again) just how fun it can be to play computer games
(on the Wii), instead of just looking at the graphics, and needless to say, his beautiful
wife Eva. ..

Eric would also like to thank his sons Ryan and Evan for their tireless efforts in
finding cool game demos and screenshots, and his wife Cathy for helping him survive
it all.

Naty would like to thank his daughter Karen and son Daniel for their forbearance
when writing took precedence over piggyback rides, and his wife Dorit for her constant
encouragement and support.

Tomas Akenine-Moller
Eric Haines

Naty Hoffman

March 2008

Acknowledgments for the Second Edition

One of the most agreeable aspects of writing this second edition has been working
with people and receiving their help. Despite their own pressing deadlines and con-
cerns, many people gave us significant amounts of their time to improve this book.
We would particularly like to thank the major reviewers. They are, listed alpha-
betically: Michael Abrash, Tan Ashdown, Ulf Assarsson, Chris Brennan, Sébastien
Dominé, David Eberly, Cass Everitt, Tommy Fortes, Evan Hart, Greg James, Jan
Kautz, Alexander Keller, Mark Kilgard, Adam Lake, Paul Lalonde, Thomas Larsson,
Dean Macri, Carl Marshall, Jason L. Mitchell, Kasper Hgy Nielsen, Jon Paul Schel-
ter, Jacob Strom, Nick Triantos, Joe Warren, Michael Wimmer, and Peter Wonka. Of
these, we wish to single out Cass Everitt at NVIDIA and Jason L. Mitchell at ATI
Technologies for spending large amounts of time and effort in getting us the resources
we needed. Our thanks also go out to Wolfgang Engel for freely sharing the contents
of his upcoming book, ShaderX [426], so that we could make this edition as current
as possible.

From discussing their work with us, to providing images or other resources, to writ-
ing reviews of sections of the book, many others helped in creating this edition. They
all have our gratitude. These people include: Jason Ang, Haim Barad, Jules Bloomen-
thal, Jonathan Blow, Chas. Boyd, John Brooks, Cem Cebenoyan, Per Christensen,
Hamilton Chu, Michael Cohen, Daniel Cohen-Or, Matt Craighead, Paul Debevec,
Joe Demers, Walt Donovan, Howard Dortch, Mark Duchaineau, Phil Dutré, Dave
Eberle, Gerald Farin, Simon Fenney, Randy Fernando, Jim Ferwerda, Nickson Fong,
Tom Forsyth, Piero Foscari, Laura Fryer, Markus Giegl, Peter Glaskowsky, Andrew
Glassner, Amy Gooch, Bruce Gooch, Simon Green, Ned Greene, Larry Gritz, Joakim
Grundwall, Juan Guardado, Pat Hanrahan, Mark Harris, Michael Herf, Carsten Hess,
Rich Hilmer, Kenneth Hoff ITI, Naty Hoffman, Nick Holliman, Hugues Hoppe, Heather
Horne, Tom Hubina, Richard Huddy, Adam James, Kaveh Kardan, Paul Keller, David

xviii Preface

Kirk, Alex Klimovitski, Jason Knipe, Jeff Lander, Marc Levoy, J.P. Lewis, Ming Lin,
Adrian Lopez, Michael McCool, Doug McNabb, Stan Melax, Ville Miettinen, Kenny
Mitchell, Steve Morein, Henry Moreton, Jerris Mungai, Jim Napier, George Ngo, Hu-
bert Nguyen, Tito Pagan, Jorg Peters, Tom Porter, Emil Praun, Kekoa Proudfoot,
Bernd Raabe, Ravi Ramamoorthi, Ashutosh Rege, Szymon Rusinkiewicz, Chris Seitz,
Carlo Séquin, Jonathan Shade, Brian Smits, John Spitzer, Wolfgang Strafier, Wolf-
gang Stiirzlinger, Philip Taylor, Pierre Terdiman, Nicolas Thibieroz, Jack Tumblin,
Fredrik Ulfves, Thatcher Ulrich, Steve Upstill, Alex Vlachos, Ingo Wald, Ben Wat-
son, Steve Westin, Dan Wexler, Matthias Wloka, Peter Woytiuk, David Wu, Garrett
Young, Borut Zalik, Harold Zatz, Hansong Zhang, and Denis Zorin. We also wish to
thank the journal ACM Transactions on Graphics for providing a mirror website for
this book.

Alice and Klaus Peters, our production manager Ariel Jaffee, our editor Heather
Holcombe, our copyeditor Michelle M. Richards, and the rest of the staff at A K Peters
have done a wonderful job making this book the best possible. Our thanks to all of you.

Finally, and most importantly, our deepest thanks go to our families for giving us
the huge amounts of quiet time we have needed to complete this edition. Honestly,
we never thought it would take this long!

Tomas Akenine-Moller
Eric Haines
May 2002

Acknowledgments for the First Edition

Many people helped in making this book. Some of the greatest contributions were
made by those who reviewed parts of it. The reviewers willingly gave the benefit
of their expertise, helping to significantly improve both content and style. We wish
to thank (in alphabetical order) Thomas Barregren, Michael Cohen, Walt Donovan,
Angus Dorbie, Michael Garland, Stefan Gottschalk, Ned Greene, Ming C. Lin, Jason
L. Mitchell, Liang Peng, Keith Rule, Ken Shoemake, John Stone, Phil Taylor, Ben
Trumbore, Jorrit Tyberghein, and Nick Wilt. We cannot thank you enough.

Many other people contributed their time and labor to this project. Some let us use
images, others provided models, still others pointed out important resources or con-
nected us with people who could help. In addition to the people listed above, we wish
to acknowledge the help of Tony Barkans, Daniel Baum, Nelson Beebe, Curtis Bee-
son, Tor Berg, David Blythe, Chas. Boyd, Don Brittain, lan Bullard, Javier Castellar,
Satyan Coorg, Jason Della Rocca, Paul Diefenbach, Alyssa Donovan, Dave Eberly,
Kells Elmquist, Stuart Feldman, Fred Fisher, Tom Forsyth, Marty Franz, Thomas
Funkhouser, Andrew Glassner, Bruce Gooch, Larry Gritz, Robert Grzeszczuk, Paul
Haeberli, Evan Hart, Paul Heckbert, Chris Hecker, Joachim Helenklaken, Hugues
Hoppe, John Jack, Mark Kilgard, David Kirk, James Klosowski, Subodh Kumar,
André LaMothe, Jeff Lander, Jens Larsson, Jed Lengyel, Fredrik Liliegren, David Lue-
bke, Thomas Lundqvist, Tom McReynolds, Stan Melax, Don Mitchell, André Moller,

Preface Xix

Steve Molnar, Scott R. Nelson, Hubert Nguyen, Doug Rogers, Holly Rushmeier, Ger-
not Schaufler, Jonas Skeppstedt, Stephen Spencer, Per Stenstrom, Jacob Strom, Fil-
ippo Tampieri, Gary Tarolli, Ken Turkowski, Turner Whitted, Agata and Andrzej
Wojaczek, Andrew Woo, Steve Worley, Brian Yen, Hans-Philip Zachau, Gabriel Zach-
mann, and Al Zimmerman. We also wish to thank the journal ACM Transactions on
Graphics for providing a stable website for this book.

Alice and Klaus Peters and the staff at AK Peters, particularly Carolyn Artin and
Sarah Gillis, have been instrumental in making this book a reality. To all of you,
thanks.

Finally, our deepest thanks go to our families and friends for providing support
throughout this incredible, sometimes grueling, often exhilarating process.

Tomas Moller
Eric Haines
March 1999

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 1

Introduction

Real-time rendering is concerned with rapidly making images on the computer. It
is the most highly interactive area of computer graphics. An image appears on the
screen, the viewer acts or reacts, and this feedback affects what is generated next.
This cycle of reaction and rendering happens at a rapid enough rate that the viewer
does not see individual images, but rather becomes immersed in a dynamic process.

The rate at which images are displayed is measured in frames per second (FPS)
or Hertz (Hz). At one frame per second, there is little sense of interactivity; the user
is painfully aware of the arrival of each new image. At around 6 FPS, a sense of
interactivity starts to grow. Video games aim for 30, 60, 72, or higher FPS; at these
speeds the user focuses on action and reaction.

Movie projectors show frames at 24 FPS but use a shutter system to display each
frame two to four times to avoid flicker. This refresh rate is separate from the display
rate and is expressed in Hertz (Hz). A shutter that illuminates the frame three times
has a 72 Hz refresh rate. LCD monitors also separate refresh rate from display rate.

Watching images appear on a screen at 24 FPS might be acceptable, but a higher
rate is important for minimizing response time. As little as 15 milliseconds of temporal
delay can slow and interfere with interaction [1849]. As an example, head-mounted
displays for virtual reality often require 90 FPS to minimize latency.

There is more to real-time rendering than interactivity. If speed was the only
criterion, any application that rapidly responded to user commands and drew anything
on the screen would qualify. Rendering in real time normally means producing three-
dimensional images.

Interactivity and some sense of connection to three-dimensional space are suffi-
cient conditions for real-time rendering, but a third element has become a part of
its definition: graphics acceleration hardware. Many consider the introduction of the
3Dfx Voodoo 1 card in 1996 the real beginning of consumer-level three-dimensional
graphics [408]. With the rapid advances in this market, every computer, tablet, and
mobile phone now comes with a graphics processor built in. Some excellent examples
of the results of real-time rendering made possible by hardware acceleration are shown
in Figures 1.1 and 1.2.

2 1. Introduction

Figure 1.2. The city of Beauclair rendered in The Witcher 8. (CD PROJEKT®, The Witcher® are
registered trademarks of CD PROJEKT Capital Group. The Witcher game(© CD PROJEKT S.A.
Developed by CD PROJEKT S.A. All rights reserved. The Witcher game is based on the prose of
Andrzej Sapkowski. All other copyrights and trademarks are the property of their respective owners.)

Advances in graphics hardware have fueled an explosion of research in the field
of interactive computer graphics. We will focus on providing methods to increase
speed and improve image quality, while also describing the features and limitations of
acceleration algorithms and graphics APIs. We will not be able to cover every topic in
depth, so our goal is to present key concepts and terminology, explain the most robust
and practical algorithms in the field, and provide pointers to the best places to go for
more information. We hope our attempts to provide you with tools for understanding
this field prove to be worth the time and effort you spend with our book.

1.1. Contents Overview 3

1.1 Contents Overview

What follows is a brief overview of the chapters ahead.

Chapter 2, The Graphics Rendering Pipeline. The heart of real-time rendering is the
set of steps that takes a scene description and converts it into something we can see.

Chapter 3, The Graphics Processing Unit. The modern GPU implements the stages of
the rendering pipeline using a combination of fixed-function and programmable units.

Chapter 4, Transforms. Transforms are the basic tools for manipulating the position,
orientation, size, and shape of objects and the location and view of the camera.

Chapter 5, Shading Basics. Discussion begins on the definition of materials and lights
and their use in achieving the desired surface appearance, whether realistic or stylized.
Other appearance-related topics are introduced, such as providing higher image quality
through the use of antialiasing, transparency, and gamma correction.

Chapter 6, Texturing. One of the most powerful tools for real-time rendering is the
ability to rapidly access and display images on surfaces. This process is called textur-
ing, and there are a wide variety of methods for applying it.

Chapter 7, Shadows. Adding shadows to a scene increases both realism and compre-
hension. The more popular algorithms for computing shadows rapidly are presented.

Chapter 8, Light and Color. Before we perform physically based rendering, we first
need to understand how to quantify light and color. And after our physical rendering
process is done, we need to transform the resulting quantities into values for the
display, accounting for the properties of the screen and viewing environment. Both
topics are covered in this chapter.

Chapter 9, Physically Based Shading. We build an understanding of physically based
shading models from the ground up. The chapter starts with the underlying physical
phenomena, covers models for a variety of rendered materials, and ends with methods
for blending materials together and filtering them to avoid aliasing and preserve surface
appearance.

Chapter 10, Local lllumination. Algorithms for portraying more elaborate light sources
are explored. Surface shading takes into account that light is emitted by physical
objects, which have characteristic shapes.

Chapter 11, Global lllumination. Algorithms that simulate multiple interactions be-
tween the light and the scene further increase the realism of an image. We discuss
ambient and directional occlusion and methods for rendering global illumination ef-
fects on diffuse and specular surfaces, as well as some promising unified approaches.

Chapter 12, Image-Space Effects. Graphics hardware is adept at performing image
processing at rapid speeds. Image filtering and reprojection techniques are discussed

4 1. Introduction

first, then we survey several popular post-processing effects: lens flares, motion blur,
and depth of field.

Chapter 13, Beyond Polygons. Triangles are not always the fastest or most realistic way
to describe objects. Alternate representations based on using images, point clouds,
voxels, and other sets of samples each have their advantages.

Chapter 14, Volumetric and Translucency Rendering. The focus here is the theory
and practice of volumetric material representations and their interactions with light
sources. The simulated phenomena range from large-scale atmospheric effects down
to light scattering within thin hair fibers.

Chapter 15, Non-Photorealistic Rendering. Attempting to make a scene look realistic
is only one way of rendering it. Other styles, such as cartoon shading and watercolor
effects, are surveyed. Line and text generation techniques are also discussed.

Chapter 16, Polygonal Techniques. Geometric data comes from a wide range of sources,
and sometimes requires modification to be rendered rapidly and well. The many facets
of polygonal data representation and compression are presented.

Chapter 17, Curves and Curved Surfaces. More complex surface representations offer
advantages such as being able to trade off between quality and rendering speed, more
compact representation, and smooth surface generation.

Chapter 18, Pipeline Optimization. Once an application is running and uses efficient
algorithms, it can be made even faster using various optimization techniques. Finding
the bottleneck and deciding what to do about it is the theme here. Multiprocessing
is also discussed.

Chapter 19, Acceleration Algorithms. After you make it go, make it go fast. Various
forms of culling and level of detail rendering are covered.

Chapter 20, Efficient Shading. A large number of lights in a scene can slow performance
considerably. Fully shading surface fragments before they are known to be visible is
another source of wasted cycles. We explore a wide range of approaches to tackle these
and other forms of inefficiency while shading.

Chapter 21, Virtual and Augmented Reality. These fields have particular challenges and
techniques for efficiently producing realistic images at rapid and consistent rates.

Chapter 22, Intersection Test Methods. Intersection testing is important for rendering,
user interaction, and collision detection. In-depth coverage is provided here for a wide
range of the most efficient algorithms for common geometric intersection tests.

Chapter 23, Graphics Hardware. The focus here is on components such as color depth,
framebuffers, and basic architecture types. A case study of representative GPUs is
provided.

Chapter 24, The Future. Take a guess (we do).

1.2. Notation and Definitions 5

Due to space constraints, we have made a chapter about Collision Detection free
for download at realtimerendering.com, along with appendices on linear algebra and
trigonometry.

1.2 Notation and Definitions

First, we shall explain the mathematical notation used in this book. For a more
thorough explanation of many of the terms used in this section, and throughout this
book, get our linear algebra appendix at realtimerendering.com.

1.2.1

Table 1.1 summarizes most of the mathematical notation we will use. Some of the
concepts will be described at some length here.

Note that there are some exceptions to the rules in the table, primarily shading
equations using notation that is extremely well established in the literature, e.g., L
for radiance, F for irradiance, and o, for scattering coefficient.

The angles and the scalars are taken from R, i.e., they are real numbers. Vectors
and points are denoted by bold lowercase letters, and the components are accessed as

Mathematical Notation

that is, in column vector format, which is commonly used in the computer graphics
world. At some places in the text we use (vy,vy,v,) instead of the formally more
correct (v, vy v;)T, since the former is easier to read.

Type Notation Examples
angle lowercase Greek | ai, @, p,n, V242,60
scalar lowercase italic a,b,t,ur, v, wi;

vector or point

lowercase bold

a,u, vs h(p), h,

matrix capital bold T(t), X, Rz(p)
plane m: avectorand | m:n-x+d=0,

a scalar m Ny -x+dy =0
triangle A 3 points Avovivae, Acba
line segment two points uv, a;b;
geometric entity | capital italic Aopp T Baags

Table 1.1. Summary of the notation used in this book.

6 1. Introduction

Using homogeneous notation, a coordinate is represented by four values v =
(vy vy v, wy)T, where a vector is v.= (v, v, v, 0)T and a point is
v=(vy vy v, 1)T. Sometimes we use only three-element vectors and points, but we
try to avoid any ambiguity as to which type is being used. For matrix manipulations,
it is extremely advantageous to have the same notation for vectors as for points. For
more information, see Chapter 4 on transforms. In some algorithms, it will be conve-
nient to use numeric indices instead of x, y, and z, for example v = (v v1 wv2)T. All
these rules for vectors and points also hold for two-element vectors; in that case, we
simply skip the last component of a three-element vector.

The matrix deserves a bit more explanation. The common sizes that will be used
are 2 x 2, 3 x 3, and 4 x 4. We will review the manner of accessing a 3 x 3 matrix
M, and it is simple to extend this process to the other sizes. The (scalar) elements of
M are denoted m;;, 0 < (4,75) < 2, where ¢ denotes the row and j the column, as in
Equation 1.1:

Moo Mo1 Mo2
M = mio Mi11 M12 . (11)
mao MM21 M22

The following notation, shown in Equation 1.2 for a 3 x 3 matrix, is used to isolate
vectors from the matrix M: m ; represents the jth column vector and m; represents
the ith row vector (in column vector form). As with vectors and points, indexing
the column vectors can also be done with z, y, z, and sometimes w, if that is more
convenient:

M = (mgo m; mj): (m, m, m,): m? |. (1.2)

A plane is denoted 7 : n - x + d = 0 and contains its mathematical formula, the
plane normal n and the scalar d. The normal is a vector describing what direction
the plane faces. More generally (e.g., for curved surfaces), a normal describes this
direction for a particular point on the surface. For a plane the same normal happens
to apply to all its points. 7 is the common mathematical notation for a plane. The
plane 7 is said to divide the space into a positive half-space, where n - x + d > 0, and
a negative half-space, where n-x +d < 0. All other points are said to lie in the plane.

A triangle can be defined by three points vg, vi, and v, and is denoted by
AVOV1V2.

Table 1.2 presents some additional mathematical operators and their notation.
The dot, cross, determinant, and length operators are explained in our downloadable
linear algebra appendix at realtimerendering.com. The transpose operator turns a
column vector into a row vector and vice versa. Thus a column vector can be written
in compressed form in a block of text as v = (v, vy, v.)T. Operator 4, introduced
in Graphics Gems IV [735], is a unary operator on a two-dimensional vector. Letting

1.2. Notation and Definitions

Operator | Description

1: dot product

2: X cross product

3: vT transpose of the vector v

4: + the unary, perp dot product operator

5: |- determinant of a matrix

6: |- absolute value of a scalar

7 Il length (or norm) of argument

8: x" clamping = to 0

9: zt clamping = between 0 and 1
10: n! factorial
11: (Z) binomial coefficients

Table 1.2. Notation for some mathematical operators.

this operator work on a vector v = (v, vy)T gives a vector that is perpendicular to v,
ie., vt =(-v, v;)T. We use |a| to denote the absolute value of the scalar a, while
|A| means the determinant of the matrix A. Sometimes, we also use |A| =]a b c| =
det(a, b, c), where a, b, and ¢ are column vectors of the matrix A.

Operators 8 and 9 are clamping operators, commonly used in shading calculations.

Operator 8 clamps negative values to 0:

ifx>0
gt={" nE=0 (1.3)
0, otherwise,
and operator 9 clamps values between 0 and 1:
1, ifz>1,
a7t =Lz f0<z<l, (1.4)

0, otherwise.

The tenth operator, factorial, is defined as shown below, and note that 0! = 1:

nl=nn—-1)Mn-2)---3-2-1. (1.5)
The eleventh operator, the binomial factor, is defined as shown in Equation 1.6:
n n!
=—. 1.6
<I<:) El(n — k)! (16)

8 1. Introduction

Function | Description

1: | atan2(y,x) | two-value arctangent

2: log(n) natural logarithm of n

Table 1.3. Notation for some specialized mathematical functions.

Further on, we call the common planes x = 0, y = 0, and z = 0 the coordinate
planes or azis-aligned planes. The axes e, = (1 0 0)7, e, = (0 1 0)7, and
e. = (0 0 1)T are called main azes or main directions and individually called the
z-axis, y-axis, and z-axis. This set of axes is often called the standard basis. Unless
otherwise noted, we will use orthonormal bases (consisting of mutually perpendicular
unit vectors).

The notation for a range that includes both a and b, and all numbers in between,
is [a,b]. If we want all number between a and b, but not a and b themselves, then we
write (a,b). Combinations of these can also be made, e.g., [a,b) means all numbers
between a and b including a but not b.

The C-math function atan2(y,x) is often used in this text, and so deserves some
attention. It is an extension of the mathematical function arctan(z). The main
differences between them are that —% < arctan(z) < 7, that 0 < atan2(y,x) < 2,
and that an extra argument has been added to the latter function. A common use for
arctan is to compute arctan(y/z), but when « = 0, division by zero results. The extra
argument for atan2(y,x) avoids this.

In this volume the notation log(n) always means the natural logarithm, log,(n),
not the base-10 logarithm, log;,(n).

We use a right-hand coordinate system since this is the standard system for three-
dimensional geometry in the field of computer graphics.

Colors are represented by a three-element vector, such as (red, green, blue), where
each element has the range [0, 1].

1.2.2 Geometrical Definitions

The basic rendering primitives (also called drawing primitives) used by almost all
graphics hardware are points, lines, and triangles.

Throughout this book, we will refer to a collection of geometric entities as either
a model or an object. A scene is a collection of models comprising everything that
is included in the environment to be rendered. A scene can also include material
descriptions, lighting, and viewing specifications.

Examples of objects are a car, a building, and even a line. In practice, an object
often consists of a set of drawing primitives, but this may not always be the case; an
object may have a higher kind of geometrical representation, such as Bézier curves or

IThe only exceptions we know of are Pixel-Planes [502], which could draw spheres, and the
NVIDIA NV1 chip, which could draw ellipsoids.

1.2. Notation and Definitions 9

surfaces, or subdivision surfaces. Also, objects can consist of other objects, e.g., a car
object includes four door objects, four wheel objects, and so on.

1.2.3 Shading

Following well-established computer graphics usage, in this book terms derived from
“shading,” “shader,” and related words are used to refer to two distinct but related
concepts: computer-generated visual appearance (e.g., “shading model,” “shading
equation,” “toon shading”) or a programmable component of a rendering system
(e.g., “vertex shader,” “shading language”). In both cases, the intended meaning
should be clear from the context.

Further Reading and Resources

The most important resource we can refer you to is the website for this book:
realtimerendering.com. It contains links to the latest information and websites rele-
vant to each chapter. The field of real-time rendering is changing with real-time speed.
In the book we have attempted to focus on concepts that are fundamental and tech-
niques that are unlikely to go out of style. On the website we have the opportunity
to present information that is relevant to today’s software developer, and we have the
ability to keep it up-to-date.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 2

The Graphics
Rendering Pipeline

“A chain is no stronger than its weakest link.”
—Anonymous

This chapter presents the core component of real-time graphics, namely the graphics
rendering pipeline, also known simply as “the pipeline.” The main function of the
pipeline is to generate, or render, a two-dimensional image, given a virtual camera,
three-dimensional objects, light sources, and more. The rendering pipeline is thus the
underlying tool for real-time rendering. The process of using the pipeline is depicted
in Figure 2.1. The locations and shapes of the objects in the image are determined
by their geometry, the characteristics of the environment, and the placement of the
camera in that environment. The appearance of the objects is affected by material
properties, light sources, textures (images applied to surfaces), and shading equations.

Figure 2.1. In the left image, a virtual camera is located at the tip of the pyramid (where four lines
converge). Only the primitives inside the view volume are rendered. For an image that is rendered
in perspective (as is the case here), the view volume is a frustum (plural: frusta), i.e., a truncated
pyramid with a rectangular base. The right image shows what the camera “sees.” Note that the red
donut shape in the left image is not in the rendering to the right because it is located outside the
view frustum. Also, the twisted blue prism in the left image is clipped against the top plane of the
frustum.

11

12 2. The Graphics Rendering Pipeline

We will explain the different stages of the rendering pipeline, with a focus on
function rather than implementation. Relevant details for applying these stages will
be covered in later chapters.

2.1 Architecture

In the physical world, the pipeline concept manifests itself in many different forms,
from factory assembly lines to fast food kitchens. It also applies to graphics rendering.
A pipeline consists of several stages [715], each of which performs part of a larger task.

The pipeline stages execute in parallel, with each stage dependent upon the result
of the previous stage. Ideally, a nonpipelined system that is then divided into n
pipelined stages could give a speedup of a factor of n. This increase in performance
is the main reason to use pipelining. For example, a large number of sandwiches can
be prepared quickly by a series of people—one preparing the bread, another adding
meat, another adding toppings. Each passes the result to the next person in line and
immediately starts work on the next sandwich. If each person takes twenty seconds
to perform their task, a maximum rate of one sandwich every twenty seconds, three
a minute, is possible. The pipeline stages execute in parallel, but they are stalled
until the slowest stage has finished its task. For example, say the meat addition
stage becomes more involved, taking thirty seconds. Now the best rate that can be
achieved is two sandwiches a minute. For this particular pipeline, the meat stage is
the bottleneck, since it determines the speed of the entire production. The toppings
stage is said to be starved (and the customer, too) during the time it waits for the
meat stage to be done.

This kind of pipeline construction is also found in the context of real-time com-
puter graphics. A coarse division of the real-time rendering pipeline into four main
stages—application, geometry processing, rasterization, and pizel processing—is shown
in Figure 2.2. This structure is the core—the engine of the rendering pipeline—which
is used in real-time computer graphics applications and is thus an essential base for

L Geometry —'\ . Pixel
Application E> Processing Rasterization Processing

i 7
N
I 7 %

Figure 2.2. The basic construction of the rendering pipeline, consisting of four stages: application,
geometry processing, rasterization, and pixel processing. Each of these stages may be a pipeline in
itself, as illustrated below the geometry processing stage, or a stage may be (partly) parallelized, as
shown below the pixel processing stage. In this illustration, the application stage is a single process,
but this stage could also be pipelined or parallelized. Note that rasterization finds the pixels inside
a primitive, e.g., a triangle.

2.2. The Application Stage 13

discussion in subsequent chapters. Each of these stages is usually a pipeline in itself,
which means that it consists of several substages. We differentiate between the func-
tional stages shown here and the structure of their implementation. A functional stage
has a certain task to perform but does not specify the way that task is executed in the
pipeline. A given implementation may combine two functional stages into one unit
or execute using programmable cores, while it divides another, more time-consuming,
functional stage into several hardware units.

The rendering speed may be expressed in frames per second (FPS), that is, the
number of images rendered per second. It can also be represented using Hertz (Hz),
which is simply the notation for 1/seconds, i.e., the frequency of update. It is also
common to just state the time, in milliseconds (ms), that it takes to render an image.
The time to generate an image usually varies, depending on the complexity of the
computations performed during each frame. Frames per second is used to express
either the rate for a particular frame, or the average performance over some duration
of use. Hertz is used for hardware, such as a display, which is set to a fixed rate.

As the name implies, the application stage is driven by the application and is
therefore typically implemented in software running on general-purpose CPUs. These
CPUs commonly include multiple cores that are capable of processing multiple threads
of execution in parallel. This enables the CPUs to efficiently run the large variety of
tasks that are the responsibility of the application stage. Some of the tasks tradition-
ally performed on the CPU include collision detection, global acceleration algorithms,
animation, physics simulation, and many others, depending on the type of application.
The next main stage is geometry processing, which deals with transforms, projections,
and all other types of geometry handling. This stage computes what is to be drawn,
how it should be drawn, and where it should be drawn. The geometry stage is typically
performed on a graphics processing unit (GPU) that contains many programmable
cores as well as fixed-operation hardware. The rasterization stage typically takes as
input three vertices, forming a triangle, and finds all pixels that are considered inside
that triangle, then forwards these to the next stage. Finally, the pizel processing stage
executes a program per pixel to determine its color and may perform depth testing
to see whether it is visible or not. It may also perform per-pixel operations such as
blending the newly computed color with a previous color. The rasterization and pixel
processing stages are also processed entirely on the GPU. All these stages and their
internal pipelines will be discussed in the next four sections. More details on how the
GPU processes these stages are given in Chapter 3.

2.2 The Application Stage

The developer has full control over what happens in the application stage, since it
usually executes on the CPU. Therefore, the developer can entirely determine the
implementation and can later modify it in order to improve performance. Changes
here can also affect the performance of subsequent stages. For example, an application

14 2. The Graphics Rendering Pipeline

stage algorithm or setting could decrease the number of triangles to be rendered.

All this said, some application work can be performed by the GPU, using a separate
mode called a compute shader. This mode treats the GPU as a highly parallel general
processor, ignoring its special functionality meant specifically for rendering graphics.

At the end of the application stage, the geometry to be rendered is fed to the
geometry processing stage. These are the rendering primitives, i.e., points, lines, and
triangles, that might eventually end up on the screen (or whatever output device is
being used). This is the most important task of the application stage.

A consequence of the software-based implementation of this stage is that it is
not divided into substages, as are the geometry processing, rasterization, and pixel
processing stages.! However, to increase performance, this stage is often executed
in parallel on several processor cores. In CPU design, this is called a superscalar
construction, since it is able to execute several processes at the same time in the same
stage. Section 18.5 presents various methods for using multiple processor cores.

One process commonly implemented in this stage is collision detection. After a
collision is detected between two objects, a response may be generated and sent back
to the colliding objects, as well as to a force feedback device. The application stage
is also the place to take care of input from other sources, such as the keyboard, the
mouse, or a head-mounted display. Depending on this input, several different kinds of
actions may be taken. Acceleration algorithms, such as particular culling algorithms
(Chapter 19), are also implemented here, along with whatever else the rest of the
pipeline cannot handle.

2.3 Geometry Processing

The geometry processing stage on the GPU is responsible for most of the per-triangle
and per-vertex operations. This stage is further divided into the following functional
stages: vertex shading, projection, clipping, and screen mapping (Figure 2.3).

Vertex J\

Shading —l/ Clipping

Projection

J\
—l/

Figure 2.3. The geometry processing stage divided into a pipeline of functional stages.

1Since a CPU itself is pipelined on a much smaller scale, you could say that the application stage
is further subdivided into several pipeline stages, but this is not relevant here.

2.3. Geometry Processing 15

2.3.1 Vertex Shading

There are two main tasks of vertex shading, namely, to compute the position for a
vertex and to evaluate whatever the programmer may like to have as vertex output
data, such as a normal and texture coordinates. Traditionally much of the shade of
an object was computed by applying lights to each vertex’s location and normal and
storing only the resulting color at the vertex. These colors were then interpolated
across the triangle. For this reason, this programmable vertex processing unit was
named the vertex shader [1049]. With the advent of the modern GPU, along with some
or all of the shading taking place per pixel, this vertex shading stage is more general
and may not evaluate any shading equations at all, depending on the programmer’s
intent. The vertex shader is now a more general unit dedicated to setting up the data
associated with each vertex. As an example, the vertex shader can animate an object
using the methods in Sections 4.4 and 4.5.

We start by describing how the vertex position is computed, a set of coordinates
that is always required. On its way to the screen, a model is transformed into several
different spaces or coordinate systems. Originally, a model resides in its own model
space, which simply means that it has not been transformed at all. Each model can
be associated with a model transform so that it can be positioned and oriented. It
is possible to have several model transforms associated with a single model. This
allows several copies (called instances) of the same model to have different locations,
orientations, and sizes in the same scene, without requiring replication of the basic
geometry.

It is the vertices and the normals of the model that are transformed by the model
transform. The coordinates of an object are called model coordinates, and after the
model transform has been applied to these coordinates, the model is said to be located
in world coordinates or in world space. The world space is unique, and after the models
have been transformed with their respective model transforms, all models exist in this
same space.

As mentioned previously, only the models that the camera (or observer) sees are
rendered. The camera has a location in world space and a direction, which are used to
place and aim the camera. To facilitate projection and clipping, the camera and all the
models are transformed with the view transform. The purpose of the view transform
is to place the camera at the origin and aim it, to make it look in the direction of the
negative z-axis, with the y-axis pointing upward and the z-axis pointing to the right.
We use the —z-axis convention; some texts prefer looking down the +z-axis. The
difference is mostly semantic, as transform between one and the other is simple. The
actual position and direction after the view transform has been applied are dependent
on the underlying application programming interface (API). The space thus delineated
is called camera space, or more commonly, view space or eye space. An example of
the way in which the view transform affects the camera and the models is shown in
Figure 2.4. Both the model transform and the view transform may be implemented as
4 x 4 matrices, which is the topic of Chapter 4. However, it is important to realize that

16 2. The Graphics Rendering Pipeline

Camera direction

View transform View frustum

@ ﬁ> m\’

y Xc
Camera‘D Zc .
position world space view space

Figure 2.4. In the left illustration, a top-down view shows the camera located and oriented as the
user wants it to be, in a world where the +z-axis is up. The view transform reorients the world so
that the camera is at the origin, looking along its negative z-axis, with the camera’s +y-axis up, as
shown on the right. This is done to make the clipping and projection operations simpler and faster.
The light blue area is the view volume. Here, perspective viewing is assumed, since the view volume
is a frustum. Similar techniques apply to any kind of projection.

the position and normal of a vertex can be computed in whatever way the programmer
prefers.

Next, we describe the second type of output from vertex shading. To produce a
realistic scene, it is not sufficient to render the shape and position of objects, but their
appearance must be modeled as well. This description includes each object’s material,
as well as the effect of any light sources shining on the object. Materials and lights can
be modeled in any number of ways, from simple colors to elaborate representations of
physical descriptions.

This operation of determining the effect of a light on a material is known as shading.
It involves computing a shading equation at various points on the object. Typically,
some of these computations are performed during geometry processing on a model’s
vertices, and others may be performed during per-pixel processing. A variety of mate-
rial data can be stored at each vertex, such as the point’s location, a normal, a color,
or any other numerical information that is needed to evaluate the shading equation.
Vertex shading results (which can be colors, vectors, texture coordinates, along with
any other kind of shading data) are then sent to the rasterization and pixel processing
stages to be interpolated and used to compute the shading of the surface.

Vertex shading in the form of the GPU vertex shader is discussed in more depth
throughout this book and most specifically in Chapters 3 and 5.

As part of vertex shading, rendering systems perform projection and then clip-
ping, which transforms the view volume into a unit cube with its extreme points at
(=1,-1,-1) and (1,1,1). Different ranges defining the same volume can and are
used, for example, 0 < z < 1. The unit cube is called the canonical view volume.
Projection is done first, and on the GPU it is done by the vertex shader. There are
two commonly used projection methods, namely orthographic (also called parallel)

2.3. Geometry Processing 17

Figure 2.5. On the left is an orthographic, or parallel, projection; on the right is a perspective
projection.

and perspective projection. See Figure 2.5. In truth, orthographic is just one type of
parallel projection. Several others find use, particularly in the field of architecture,
such as oblique and axonometric projections. The old arcade game Zazzon is named
from the latter.

Note that projection is expressed as a matrix (Section 4.7) and so it may sometimes
be concatenated with the rest of the geometry transform.

The view volume of orthographic viewing is normally a rectangular box, and the
orthographic projection transforms this view volume into the unit cube. The main
characteristic of orthographic projection is that parallel lines remain parallel after the
transform. This transformation is a combination of a translation and a scaling.

The perspective projection is a bit more complex. In this type of projection, the
farther away an object lies from the camera, the smaller it appears after projection.
In addition, parallel lines may converge at the horizon. The perspective transform
thus mimics the way we perceive objects’ size. Geometrically, the view volume, called
a frustum, is a truncated pyramid with rectangular base. The frustum is transformed

18 2. The Graphics Rendering Pipeline

into the unit cube as well. Both orthographic and perspective transforms can be
constructed with 4 x 4 matrices (Chapter 4), and after either transform, the models
are said to be in clip coordinates. These are in fact homogeneous coordinates, discussed
in Chapter 4, and so this occurs before division by w. The GPU’s vertex shader must
always output coordinates of this type in order for the next functional stage, clipping,
to work correctly.

Although these matrices transform one volume into another, they are called projec-
tions because after display, the z-coordinate is not stored in the image generated but
is stored in a z-buffer, described in Section 2.5. In this way, the models are projected
from three to two dimensions.

2.3.2 Optional Vertex Processing

Every pipeline has the vertex processing just described. Once this processing is done,
there are a few optional stages that can take place on the GPU, in this order: tessella-
tion, geometry shading, and stream output. Their use depends both on the capabilities
of the hardware—mnot all GPUs have them—and the desires of the programmer. They
are independent of each other, and in general they are not commonly used. More will
be said about each in Chapter 3.

The first optional stage is tessellation. Imagine you have a bouncing ball object.
If you represent it with a single set of triangles, you can run into problems with
quality or performance. Your ball may look good from 5 meters away, but up close
the individual triangles, especially along the silhouette, become visible. If you make
the ball with more triangles to improve quality, you may waste considerable processing
time and memory when the ball is far away and covers only a few pixels on the screen.
With tessellation, a curved surface can be generated with an appropriate number of
triangles.

We have talked a bit about triangles, but up to this point in the pipeline we have
just processed vertices. These could be used to represent points, lines, triangles, or
other objects. Vertices can be used to describe a curved surface, such as a ball. Such
surfaces can be specified by a set of patches, and each patch is made of a set of vertices.
The tessellation stage consists of a series of stages itself—hull shader, tessellator, and
domain shader—that converts these sets of patch vertices into (normally) larger sets
of vertices that are then used to make new sets of triangles. The camera for the scene
can be used to determine how many triangles are generated: many when the patch is
close, few when it is far away.

The next optional stage is the geometry shader. This shader predates the tessella-
tion shader and so is more commonly found on GPUs. It is like the tessellation shader
in that it takes in primitives of various sorts and can produce new vertices. It is a
much simpler stage in that this creation is limited in scope and the types of output
primitives are much more limited. Geometry shaders have several uses, with one of
the most popular being particle generation. Imagine simulating a fireworks explosion.

2.3. Geometry Processing 19

Each fireball could be represented by a point, a single vertex. The geometry shader
can take each point and turn it into a square (made of two triangles) that faces the
viewer and covers several pixels, so providing a more convincing primitive for us to
shade.

The last optional stage is called stream output. This stage lets us use the GPU
as a geometry engine. Instead of sending our processed vertices down the rest of the
pipeline to be rendered to the screen, at this point we can optionally output these to
an array for further processing. These data can be used by the CPU, or the GPU
itself, in a later pass. This stage is typically used for particle simulations, such as our
fireworks example.

These three stages are performed in this order—tessellation, geometry shading,
and stream output—and each is optional. Regardless of which (if any) options are
used, if we continue down the pipeline we have a set of vertices with homogeneous
coordinates that will be checked for whether the camera views them.

2.3.3 Clipping

Only the primitives wholly or partially inside the view volume need to be passed on
to the rasterization stage (and the subsequent pixel processing stage), which then
draws them on the screen. A primitive that lies fully inside the view volume will
be passed on to the next stage as is. Primitives entirely outside the view volume
are not passed on further, since they are not rendered. It is the primitives that are
partially inside the view volume that require clipping. For example, a line that has
one vertex outside and one inside the view volume should be clipped against the view
volume, so that the vertex that is outside is replaced by a new vertex that is located
at the intersection between the line and the view volume. The use of a projection
matrix means that the transformed primitives are clipped against the unit cube. The
advantage of performing the view transformation and projection before clipping is that
it makes the clipping problem consistent; primitives are always clipped against the
unit cube.

The clipping process is depicted in Figure 2.6. In addition to the six clipping
planes of the view volume, the user can define additional clipping planes to visibly
chop objects. An image showing this type of visualization, called sectioning, is shown
in Figure 19.1 on page 818.

The clipping step uses the 4-value homogeneous coordinates produced by projec-
tion to perform clipping. Values do not normally interpolate linearly across a triangle
in perspective space. The fourth coordinate is needed so that data are properly inter-
polated and clipped when a perspective projection is used. Finally, perspective division
is performed, which places the resulting triangles’ positions into three-dimensional
normalized device coordinates. As mentioned earlier, this view volume ranges from
(=1,—1,-1) to (1,1,1). The last step in the geometry stage is to convert from this
space to window coordinates.

20 2. The Graphics Rendering Pipeline

unit-cube
new vertices
2 o v
l
" X [> " X
new vertex J
z z

Figure 2.6. After the projection transform, only the primitives inside the unit cube (which correspond
to primitives inside the view frustum) are needed for continued processing. Therefore, the primitives
outside the unit cube are discarded, and primitives fully inside are kept. Primitives intersecting with
the unit cube are clipped against the unit cube, and thus new vertices are generated and old ones
are discarded.

2.3.4 Screen Mapping

Ouly the (clipped) primitives inside the view volume are passed on to the screen map-
ping stage, and the coordinates are still three-dimensional when entering this stage.
The z- and y-coordinates of each primitive are transformed to form screen coordinates.
Screen coordinates together with the z-coordinates are also called window coordinates.
Assume that the scene should be rendered into a window with the minimum corner
at (z1,y1) and the maximum corner at (z2,ys2), where 21 < 2 and y1 < y2. Then the
screen mapping is a translation followed by a scaling operation. The new z- and y-
coordinates are said to be screen coordinates. The z-coordinate ([—1, +1] for OpenGL
and [0, 1] for DirectX) is also mapped to [z1, 23], with z; = 0 and z3 = 1 as the default
values. These can be changed with the API, however. The window coordinates along
with this remapped z-value are passed on to the rasterizer stage. The screen mapping
process is depicted in Figure 2.7.

(X,,),)

unit-cube

Screen mapping

N

(-xpy])

Figure 2.7. The primitives lie in the unit cube after the projection transform, and the screen mapping
procedure takes care of finding the coordinates on the screen.

2.4. Rasterization 21

Next, we describe how integer and floating point values relate to pixels (and texture
coordinates). Given a horizontal array of pixels and using Cartesian coordinates, the
left edge of the leftmost pixel is 0.0 in floating point coordinates. OpenGL has always
used this scheme, and DirectX 10 and its successors use it. The center of this pixel is
at 0.5. So, a range of pixels [0,9] cover a span from [0.0,10.0). The conversions are
simply

d = floor(c), (2.1)
c=d+0.5,

where d is the discrete (integer) index of the pixel and c is the continuous (floating
point) value within the pixel.

While all APIs have pixel location values that increase going from left to right, the
location of zero for the top and bottom edges is inconsistent in some cases between
OpenGL and DirectX.? OpenGL favors the Cartesian system throughout, treating
the lower left corner as the lowest-valued element, while DirectX sometimes defines
the upper left corner as this element, depending on the context. There is a logic to
each, and no right answer exists where they differ. As an example, (0,0) is located at
the lower left corner of an image in OpenGL, while it is upper left for DirectX. This
difference is important to take into account when moving from one API to the other.

2.4 Rasterization

Given the transformed and projected vertices with their associated shading data (all
from geometry processing), the goal of the next stage is to find all pixels—short for
picture elements—that are inside the primitive, e.g., a triangle, being rendered. We
call this process rasterization, and it is split up into two functional substages: triangle
setup (also called primitive assembly) and triangle traversal. These are shown to the
left in Figure 2.8. Note that these can handle points and lines as well, but since trian-
gles are most common, the substages have “triangle” in their names. Rasterization,
also called scan conversion, is thus the conversion from two-dimensional vertices in
screen space—each with a z-value (depth value) and various shading information asso-
ciated with each vertex—into pixels on the screen. Rasterization can also be thought
of as a synchronization point between geometry processing and pixel processing, since
it is here that triangles are formed from three vertices and eventually sent down to
pixel processing.

Whether the triangle is considered to overlap the pixel depends on how you have
set up the GPU’s pipeline. For example, you may use point sampling to determine

2“Direct3D” is the three-dimensional graphics API component of DirectX. DirectX includes other
API elements, such an input and audio control. Rather than differentiate between writing “DirectX”
when specifying a particular release and “Direct3D” when discussing this particular API, we follow
common usage by writing “DirectX” throughout.

22 2. The Graphics Rendering Pipeline

Triangle J\ Triangle J\ Pixel J\ Merging
Setup —l/ Traversal —l/ Shading —l/
Rasterization Pixel Processing

Figure 2.8. Left: rasterization split into two functional stages, called triangle setup and triangle
traversal. Right: pixel processing split into two functional stages, namely, pixel processing and
merging.

“insideness.” The simplest case uses a single point sample in the center of each
pixel, and so if that center point is inside the triangle then the corresponding pixel is
considered inside the triangle as well. You may also use more than one sample per
pixel using supersampling or multisampling antialiasing techniques (Section 5.4.2).
Yet another way is to use conservative rasterization, where the definition is that a
pixel is “inside” the triangle if at least part of the pixel overlaps with the triangle
(Section 23.1.2).

2.4.1 Triangle Setup

In this stage the differentials, edge equations, and other data for the triangle are
computed. These data may be used for triangle traversal (Section 2.4.2), as well as
for interpolation of the various shading data produced by the geometry stage. Fixed-
function hardware is used for this task.

2.4.2 Triangle Traversal

Here is where each pixel that has its center (or a sample) covered by the triangle is
checked and a fragment generated for the part of the pixel that overlaps the trian-
gle. More elaborate sampling methods can be found in Section 5.4. Finding which
samples or pixels are inside a triangle is often called triangle traversal. Each triangle
fragment’s properties are generated using data interpolated among the three triangle
vertices (Chapter 5). These properties include the fragment’s depth, as well as any
shading data from the geometry stage. McCormack et al. [1162] offer more informa-
tion on triangle traversal. It is also here that perspective-correct interpolation over
the triangles is performed [694] (Section 23.1.1). All pixels or samples that are inside
a primitive are then sent to the pixel processing stage, described next.

2.5 Pixel Processing

At this point, all the pixels that are considered inside a triangle or other primitive
have been found as a consequence of the combination of all the previous stages. The

2.5. Pixel Processing 23

pixel processing stage is divided into pizel shading and merging, shown to the right in
Figure 2.8. Pixel processing is the stage where per-pixel or per-sample computations
and operations are performed on pixels or samples that are inside a primitive.

2.5.1 Pixel Shading

Any per-pixel shading computations are performed here, using the interpolated shad-
ing data as input. The end result is one or more colors to be passed on to the next
stage. Unlike the triangle setup and traversal stages, which are usually performed
by dedicated, hardwired silicon, the pixel shading stage is executed by programmable
GPU cores. To that end, the programmer supplies a program for the pixel shader (or
fragment shader, as it is known in OpenGL), which can contain any desired computa-
tions. A large variety of techniques can be employed here, one of the most important
of which is texturing. Texturing is treated in more detail in Chapter 6. Simply put,
texturing an object means “gluing” one or more images onto that object, for a variety
of purposes. A simple example of this process is depicted in Figure 2.9. The image
may be one-, two-, or three-dimensional, with two-dimensional images being the most
common. At its simplest, the end product is a color value for each fragment, and these
are passed on to the next substage.

Figure 2.9. A dragon model without textures is shown in the upper left. The pieces in the image
texture are “glued” onto the dragon, and the result is shown in the lower left.

24 2. The Graphics Rendering Pipeline

2.5.2 Merging

The information for each pixel is stored in the color buffer, which is a rectangular array
of colors (a red, a green, and a blue component for each color). It is the responsibility
of the merging stage to combine the fragment color produced by the pixel shading stage
with the color currently stored in the buffer. This stage is also called ROP, standing
for “raster operations (pipeline)” or “render output unit,” depending on who you ask.
Unlike the shading stage, the GPU subunit that performs this stage is typically not
fully programmable. However, it is highly configurable, enabling various effects.

This stage is also responsible for resolving visibility. This means that when the
whole scene has been rendered, the color buffer should contain the colors of the prim-
itives in the scene that are visible from the point of view of the camera. For most
or even all graphics hardware, this is done with the z-buffer (also called depth buffer)
algorithm [238]. A z-buffer is the same size and shape as the color buffer, and for
each pixel it stores the z-value to the currently closest primitive. This means that
when a primitive is being rendered to a certain pixel, the z-value on that primitive
at that pixel is being computed and compared to the contents of the z-buffer at the
same pixel. If the new z-value is smaller than the z-value in the z-buffer, then the
primitive that is being rendered is closer to the camera than the primitive that was
previously closest to the camera at that pixel. Therefore, the z-value and the color
of that pixel are updated with the z-value and color from the primitive that is being
drawn. If the computed z-value is greater than the z-value in the z-buffer, then the
color buffer and the z-buffer are left untouched. The z-buffer algorithm is simple, has
O(n) convergence (where n is the number of primitives being rendered), and works
for any drawing primitive for which a z-value can be computed for each (relevant)
pixel. Also note that this algorithm allows most primitives to be rendered in any
order, which is another reason for its popularity. However, the z-buffer stores only a
single depth at each point on the screen, so it cannot be used for partially transparent
primitives. These must be rendered after all opaque primitives, and in back-to-front
order, or using a separate order-independent algorithm (Section 5.5). Transparency is
one of the major weaknesses of the basic z-buffer.

We have mentioned that the color buffer is used to store colors and that the z-buffer
stores z-values for each pixel. However, there are other channels and buffers that can
be used to filter and capture fragment information. The alpha channel is associated
with the color buffer and stores a related opacity value for each pixel (Section 5.5).
In older APIs, the alpha channel was also used to discard pixels selectively via the
alpha test feature. Nowadays a discard operation can be inserted into the pixel shader
program and any type of computation can be used to trigger a discard. This type of
test can be used to ensure that fully transparent fragments do not affect the z-buffer
(Section 6.6).

The stencil buffer is an offscreen buffer used to record the locations of the rendered
primitive. It typically contains 8 bits per pixel. Primitives can be rendered into the
stencil buffer using various functions, and the buffer’s contents can then be used to

2.6. Through the Pipeline 25

control rendering into the color buffer and z-buffer. As an example, assume that a filled
circle has been drawn into the stencil buffer. This can be combined with an operator
that allows rendering of subsequent primitives into the color buffer only where the
circle is present. The stencil buffer can be a powerful tool for generating some special
effects. All these functions at the end of the pipeline are called raster operations
(ROP) or blend operations. It is possible to mix the color currently in the color buffer
with the color of the pixel being processed inside a triangle. This can enable effects
such as transparency or the accumulation of color samples. As mentioned, blending
is typically configurable using the API and not fully programmable. However, some
APIs have support for raster order views, also called pixel shader ordering, which
enable programmable blending capabilities.

The framebuffer generally consists of all the buffers on a system.

When the primitives have reached and passed the rasterizer stage, those that are
visible from the point of view of the camera are displayed on screen. The screen
displays the contents of the color buffer. To avoid allowing the human viewer to see
the primitives as they are being rasterized and sent to the screen, double buffering is
used. This means that the rendering of a scene takes place off screen, in a back buffer.
Once the scene has been rendered in the back buffer, the contents of the back buffer
are swapped with the contents of the front buffer that was previously displayed on
the screen. The swapping often occurs during vertical retrace, a time when it is safe
to do so.

For more information on different buffers and buffering methods, see Sections 5.4.2,
23.6, and 23.7.

2.6 Through the Pipeline

Points, lines, and triangles are the rendering primitives from which a model or an
object is built. Imagine that the application is an interactive computer aided design
(CAD) application, and that the user is examining a design for a waffle maker. Here
we will follow this model through the entire graphics rendering pipeline, consisting of
the four major stages: application, geometry, rasterization, and pixel processing. The
scene is rendered with perspective into a window on the screen. In this simple example,
the waffle maker model includes both lines (to show the edges of parts) and triangles
(to show the surfaces). The waffle maker has a lid that can be opened. Some of the
triangles are textured by a two-dimensional image with the manufacturer’s logo. For
this example, surface shading is computed completely in the geometry stage, except
for application of the texture, which occurs in the rasterization stage.

Application

CAD applications allow the user to select and move parts of the model. For example,
the user might select the lid and then move the mouse to open it. The application
stage must translate the mouse move to a corresponding rotation matrix, then see to

26 2. The Graphics Rendering Pipeline

it that this matrix is properly applied to the lid when it is rendered. Another example:
An animation is played that moves the camera along a predefined path to show the
waffle maker from different views. The camera parameters, such as position and view
direction, must then be updated by the application, dependent upon time. For each
frame to be rendered, the application stage feeds the camera position, lighting, and
primitives of the model to the next major stage in the pipeline—the geometry stage.

Geometry Processing

For perspective viewing, we assume here that the application has supplied a projection
matrix. Also, for each object, the application has computed a matrix that describes
both the view transform and the location and orientation of the object in itself. In
our example, the waffle maker’s base would have one matrix, the lid another. In
the geometry stage the vertices and normals of the object are transformed with this
matrix, putting the object into view space. Then shading or other calculations at
the vertices may be computed, using material and light source properties. Projection
is then performed using a separate user-supplied projection matrix, transforming the
object into a unit cube’s space that represents what the eye sees. All primitives outside
the cube are discarded. All primitives intersecting this unit cube are clipped against
the cube in order to obtain a set of primitives that lies entirely inside the unit cube.
The vertices then are mapped into the window on the screen. After all these per-
triangle and per-vertex operations have been performed, the resulting data are passed
on to the rasterization stage.

Rasterization

All the primitives that survive clipping in the previous stage are then rasterized, which
means that all pixels that are inside a primitive are found and sent further down the
pipeline to pixel processing.

Pixel Processing

The goal here is to compute the color of each pixel of each visible primitive. Those
triangles that have been associated with any textures (images) are rendered with these
images applied to them as desired. Visibility is resolved via the z-buffer algorithm,
along with optional discard and stencil tests. Each object is processed in turn, and
the final image is then displayed on the screen.

Conclusion

This pipeline resulted from decades of API and graphics hardware evolution targeted
to real-time rendering applications. It is important to note that this is not the only
possible rendering pipeline; offline rendering pipelines have undergone different evo-
lutionary paths. Rendering for film production was often done with micropolygon
pipelines [289, 1734], but ray tracing and path tracing have taken over lately. These

2.6. Through the Pipeline 27

techniques, covered in Section 11.2.2, may also be used in architectural and design
previsualization.

For many years, the only way for application developers to use the process described
here was through a fized-function pipeline defined by the graphics API in use. The
fixed-function pipeline is so named because the graphics hardware that implements it
consists of elements that cannot be programmed in a flexible way. The last example of
a major fixed-function machine is Nintendo’s Wii, introduced in 2006. Programmable
GPUs, on the other hand, make it possible to determine exactly what operations are
applied in various sub-stages throughout the pipeline. For the fourth edition of the
book, we assume that all development is done using programmable GPUs.

Further Reading and Resources

Blinn’s book A Trip Down the Graphics Pipeline [165] is an older book about writing
a software renderer from scratch. It is a good resource for learning about some of
the subtleties of implementing a rendering pipeline, explaining key algorithms such
as clipping and perspective interpolation. The venerable (yet frequently updated)
OpenGL Programming Guide (a.k.a. the “Red Book”) [885] provides a thorough de-
scription of the graphics pipeline and algorithms related to its use. Our book’s website,
realtimerendering.com, gives links to a variety of pipeline diagrams, rendering engine
implementations, and more.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 3
The Graphics

Processing Unit

“The display is the computer.”
—Jen-Hsun Huang

Historically, graphics acceleration started with interpolating colors on each pixel scan-
line overlapping a triangle and then displaying these values. Including the ability to
access image data allowed textures to be applied to surfaces. Adding hardware for
interpolating and testing z-depths provided built-in visibility checking. Because of
their frequent use, such processes were committed to dedicated hardware to increase
performance. More parts of the rendering pipeline, and much more functionality for
each, were added in successive generations. Dedicated graphics hardware’s only com-
putational advantage over the CPU is speed, but speed is critical.

Over the past two decades, graphics hardware has undergone an incredible trans-
formation. The first consumer graphics chip to include hardware vertex processing
(NVIDIA’s GeForce256) shipped in 1999. NVIDIA coined the term graphics processing
unit (GPU) to differentiate the GeForce 256 from the previously available rasterization-
only chips, and it stuck. During the next few years, the GPU evolved from configurable
implementations of a complex fixed-function pipeline to highly programmable blank
slates where developers could implement their own algorithms. Programmable shaders
of various kinds are the primary means by which the GPU is controlled. For efficiency,
some parts of the pipeline remain configurable, not programmable, but the trend is
toward programmability and flexibility [175].

GPUs gain their great speed from a focus on a narrow set of highly parallelizable
tasks. They have custom silicon dedicated to implementing the z-buffer, to rapidly
accessing texture images and other buffers, and to finding which pixels are covered
by a triangle, for example. How these elements perform their functions is covered in
Chapter 23. More important to know early on is how the GPU achieves parallelism
for its programmable shaders.

29

30 3. The Graphics Processing Unit

Section 3.3 explains how shaders function. For now, what you need to know is
that a shader core is a small processor that does some relatively isolated task, such
as transforming a vertex from its location in the world to a screen coordinate, or
computing the color of a pixel covered by a triangle. With thousands or millions of
triangles being sent to the screen each frame, every second there can be billions of
shader invocations, that is, separate instances where shader programs are run.

To begin with, latency is a concern that all processors face. Accessing data takes
some amount of time. A basic way to think about latency is that the farther away
the information is from the processor, the longer the wait. Section 23.3 covers latency
in more detail. Information stored in memory chips will take longer to access than
that in local registers. Section 18.4.1 discusses memory access in more depth. The
key point is that waiting for data to be retrieved means the processor is stalled, which
reduces performance.

3.1 Data-Parallel Architectures

Various strategies are used by different processor architectures to avoid stalls. A CPU
is optimized to handle a wide variety of data structures and large code bases. CPUs
can have multiple processors, but each runs code in a mostly serial fashion, limited
SIMD vector processing being the minor exception. To minimize the effect of latency,
much of a CPU’s chip consists of fast local caches, memory that is filled with data likely
to be needed next. CPUs also avoid stalls by using clever techniques such as branch
prediction, instruction reordering, register renaming, and cache prefetching [715]

GPUs take a different approach. Much of a GPU’s chip area is dedicated to a large
set of processors, called shader cores, often numbering in the thousands. The GPU is a
stream processor, in which ordered sets of similar data are processed in turn. Because
of this similarity—a set of vertices or pixels, for example—the GPU can process these
data in a massively parallel fashion. One other important element is that these invo-
cations are as independent as possible, such that they have no need for information
from neighboring invocations and do not share writable memory locations. This rule
is sometimes broken to allow new and useful functionality, but such exceptions come
at a price of potential delays, as one processor may wait on another processor to finish
its work.

The GPU is optimized for throughput, defined as the maximum rate at which data
can be processed. However, this rapid processing has a cost. With less chip area
dedicated to cache memory and control logic, latency for each shader core is generally
considerably higher than what a CPU processor encounters [462].

Say a mesh is rasterized and two thousand pixels have fragments to be processed;
a pixel shader program is to be invoked two thousand times. Imagine there is only
a single shader processor, the world’s weakest GPU. It starts to execute the shader
program for the first fragment of the two thousand. The shader processor performs
a few arithmetic operations on values in registers. Registers are local and quick to

3.1. Data-Parallel Architectures 31

access, so no stall occurs. The shader processor then comes to an instruction such as
a texture access; e.g., for a given surface location the program needs to know the pixel
color of the image applied to the mesh. A texture is an entirely separate resource,
not a part of the pixel program’s local memory, and texture access can be somewhat
involved. A memory fetch can take hundreds to thousands of clock cycles, during
which time the GPU processor is doing nothing. At this point the shader processor
would stall, waiting for the texture’s color value to be returned.

To make this terrible GPU into something considerably better, give each fragment
a little storage space for its local registers. Now, instead of stalling on a texture fetch,
the shader processor is allowed to switch and execute another fragment, number two
of two thousand. This switch is extremely fast, nothing in the first or second fragment
is affected other than noting which instruction was executing on the first. Now the
second fragment is executed. Same as with the first, a few arithmetic functions are
performed, then a texture fetch is again encountered. The shader core now switches to
another fragment, number three. Eventually all two thousand fragments are processed
in this way. At this point the shader processor returns to fragment number one. By this
time the texture color has been fetched and is available for use, so the shader program
can then continue executing. The processor proceeds in the same fashion until another
instruction that is known to stall execution is encountered, or the program completes.
A single fragment will take longer to execute than if the shader processor stayed
focused on it, but overall execution time for the fragments as a whole is dramatically
reduced.

In this architecture, latency is hidden by having the GPU stay busy by switch-
ing to another fragment. GPUs take this design a step further by separating the
instruction execution logic from the data. Called single instruction, multiple data
(SIMD), this arrangement executes the same command in lock-step on a fixed number
of shader programs. The advantage of SIMD is that considerably less silicon (and
power) needs to be dedicated to processing data and switching, compared to using an
individual logic and dispatch unit to run each program. Translating our two-thousand-
fragment example into modern GPU terms, each pixel shader invocation for a fragment
is called a thread. This type of thread is unlike a CPU thread. It consists of a bit
of memory for the input values to the shader, along with any register space needed
for the shader’s execution. Threads that use the same shader program are bundled
into groups, called warps by NVIDIA and wavefronts by AMD. A warp/wavefront is
scheduled for execution by some number GPU shader cores, anywhere from 8 to 64,
using SIMD-processing. Each thread is mapped to a SIMD lane.

Say we have two thousand threads to be executed. Warps on NVIDIA GPUs
contain 32 threads. This yields 2000/32 = 62.5 warps, which means that 63 warps are
allocated, one warp being half empty. A warp’s execution is similar to our single GPU
processor example. The shader program is executed in lock-step on all 32 processors.
When a memory fetch is encountered, all threads encounter it at the same time,
because the same instruction is executed for all. The fetch signals that this warp
of threads will stall, all waiting for their (different) results. Instead of stalling, the

32 3. The Graphics Processing Unit

warp is swapped out for a different warp of 32 threads, which is then executed by
the 32 cores. This swapping is just as fast as with our single processor system, as no
data within each thread is touched when a warp is swapped in or out. Each thread
has its own registers, and each warp keeps track of which instruction it is executing.
Swapping in a new warp is just a matter of pointing the set of cores at a different set
of threads to execute; there is no other overhead. Warps execute or swap out until all
are completed. See Figure 3.1.

In our simple example the latency of a memory fetch for a texture can cause a
warp to swap out. In reality warps could be swapped out for shorter delays, since
the cost of swapping is so low. There are several other techniques used to optimize
execution [945], but warp-swapping is the major latency-hiding mechanism used by
all GPUs. Several factors are involved in how efficiently this process works. For
example, if there are few threads, then few warps can be created, making latency
hiding problematic.

The shader program’s structure is an important characteristic that influences effi-
ciency. A major factor is the amount of register use for each thread. In our example
we assume that two thousand threads can all be resident on the GPU at one time. The
more registers needed by the shader program associated with each thread, the fewer
threads, and thus the fewer warps, can be resident in the GPU. A shortage of warps
can mean that a stall cannot be mitigated by swapping. Warps that are resident are
said to be “in flight,” and this number is called the occupancy. High occupancy means
that there are many warps available for processing, so that idle processors are less
likely. Low occupancy will often lead to poor performance. The frequency of memory
fetches also affects how much latency hiding is needed. Lauritzen [993] outlines how
occupancy is affected by the number of registers and the shared memory that a shader
uses. Wronski [1911, 1914] discusses how the ideal occupancy rate can vary depending
on the type of operations a shader performs.

Another factor affecting overall efficiency is dynamic branching, caused by “if”
statements and loops. Say an “if” statement is encountered in a shader program. If
all the threads evaluate and take the same branch, the warp can continue without any
concern about the other branch. However, if some threads, or even one thread, take
the alternate path, then the warp must execute both branches, throwing away the
results not needed by each particular thread [530, 945]. This problem is called thread
divergence, where a few threads may need to execute a loop iteration or perform an
“if” path that the other threads in the warp do not, leaving them idle during this
time.

All GPUs implement these architectural ideas, resulting in systems with strict
limitations but massive amounts of compute power per watt. Understanding how
this system operates will help you as a programmer make more efficient use of the
power it provides. In the sections that follow we discuss how the GPU implements
the rendering pipeline, how programmable shaders operate, and the evolution and
function of each GPU stage.

3.1. Data-Parallel Architectures 33

program: ([mad|mul | txr [cmp|emt

fragment/thread

warps

shader processors (AN (MR

mad|mad|mad|mad
D
o oo

stall & swap mad|ma
1

d|madfmad
mmm
oo

stall & swap mad|mad|mad|mad

ul | mul {mul |mul
EOEE

cmp|cmp|cmp|cmp stall & swap

ml

emt|emt|emt|emt

finish & swap

emt|emt|emt|emt

finish & swap cmplemp

mp|cm| p
SRS e

Figure 3.1. Simplified shader execution example. A triangle’s fragments, called threads, are gathered
into warps. Each warp is shown as four threads but have 32 threads in reality. The shader program
to be executed is five instructions long. The set of four GPU shader processors executes these
instructions for the first warp until a stall condition is detected on the “txr” command, which needs
time to fetch its data. The second warp is swapped in and the shader program’s first three instructions
are applied to it, until a stall is again detected. After the third warp is swapped in and stalls, execution
continues by swapping in the first warp and continuing execution. If its “txr” command’s data are
not yet returned at this point, execution truly stalls until these data are available. Each warp finishes
in turn.

p|cm

34 3. The Graphics Processing Unit

])\ Triangle :
Vertex Tessel- Geometry . Screen Pixel
. Clipping . Setup & Merger
Shader :) lation m Shader | Mapping Thmvesil Shader

Figure 3.2. GPU implementation of the rendering pipeline. The stages are color coded according
to the degree of user control over their operation. Green stages are fully programmable. Dashed
lines show optional stages. Yellow stages are configurable but not programmable, e.g., various blend
modes can be set for the merge stage. Blue stages are completely fixed in their function.

3.2 GPU Pipeline Overview

The GPU implements the conceptual geometry processing, rasterization, and pixel
processing pipeline stages described in Chapter 2. These are divided into several
hardware stages with varying degrees of configurability or programmability. Figure 3.2
shows the various stages color coded according to how programmable or configurable
they are. Note that these physical stages are split up somewhat differently than the
functional stages presented in Chapter 2.

We describe here the logical model of the GPU, the one that is exposed to you as
a programmer by an API. As Chapters 18 and 23 discuss, the implementation of this
logical pipeline, the physical model, is up to the hardware vendor. A stage that is
fixed-function in the logical model may be executed on the GPU by adding commands
to an adjacent programmable stage. A single program in the pipeline may be split into
elements executed by separate sub-units, or be executed by a separate pass entirely.
The logical model can help you reason about what affects performance, but it should
not be mistaken for the way the GPU actually implements the pipeline.

The vertex shader is a fully programmable stage that is used to implement the
geometry processing stage. The geometry shader is a fully programmable stage that
operates on the vertices of a primitive (point, line, or triangle). It can be used to
perform per-primitive shading operations, to destroy primitives, or to create new ones.
The tessellation stage and geometry shader are both optional, and not all GPUs
support them, especially on mobile devices.

The clipping, triangle setup, and triangle traversal stages are implemented by
fixed-function hardware. Screen mapping is affected by window and viewport set-
tings, internally forming a simple scale and repositioning. The pixel shader stage is
fully programmable. Although the merger stage is not programmable, it is highly con-
figurable and can be set to perform a wide variety of operations. It implements the
“merging” functional stage, in charge of modifying the color, z-buffer, blend, stencil,
and any other output-related buffers. The pixel shader execution together with the
merger stage form the conceptual pixel processing stage presented in Chapter 2.

Over time, the GPU pipeline has evolved away from hard-coded operation and
toward increasing flexibility and control. The introduction of programmable shader
stages was the most important step in this evolution. The next section describes the
features common to the various programmable stages.

3.3. The Programmable Shader Stage 35

3.3 The Programmable Shader Stage

Modern shader programs use a unified shader design. This means that the vertex,
pixel, geometry, and tessellation-related shaders share a common programming model.
Internally they have the same instruction set architecture (ISA). A processor that
implements this model is called a common-shader core in DirectX, and a GPU with
such cores is said to have a unified shader architecture. The idea behind this type of
architecture is that shader processors are usable in a variety of roles, and the GPU
can allocate these as it sees fit. For example, a set of meshes with tiny triangles will
need more vertex shader processing than large squares each made of two triangles. A
GPU with separate pools of vertex and pixel shader cores means that the ideal work
distribution to keep all the cores busy is rigidly predetermined. With unified shader
cores, the GPU can decide how to balance this load.

Describing the entire shader programming model is well beyond the scope of this
book, and there are many documents, books, and websites that already do so. Shaders
are programmed using C-like shading languages such as DirectX’s High-Level Shading
Language (HLSL) and the OpenGL Shading Language (GLSL). DirectX’s HLSL can
be compiled to virtual machine bytecode, also called the intermediate language (IL or
DXIL), to provide hardware independence. An intermediate representation can also
allow shader programs to be compiled and stored offline. This intermediate language
is converted to the ISA of the specific GPU by the driver. Console programming
usually avoids the intermediate language step, since there is then only one ISA for the
system.

The basic data types are 32-bit single-precision floating point scalars and vectors,
though vectors are only part of the shader code and are not supported in hardware as
outlined above. On modern GPUs 32-bit integers and 64-bit floats are also supported
natively. Floating point vectors typically contain data such as positions (zyzw), nor-
mals, matrix rows, colors (rgba), or texture coordinates (uvwgq). Integers are most
often used to represent counters, indices, or bitmasks. Aggregate data types such as
structures, arrays, and matrices are also supported.

A draw call invokes the graphics API to draw a group of primitives, so causing the
graphics pipeline to execute and run its shaders. Each programmable shader stage
has two types of inputs: uniform inputs, with values that remain constant throughout
a draw call (but can be changed between draw calls), and varying inputs, data that
come from the triangle’s vertices or from rasterization. For example, a pixel shader
may provide the color of a light source as a uniform value, and the triangle surface’s
location changes per pixel and so is varying. A texture is a special kind of uniform
input that once was always a color image applied to a surface, but that now can be
thought of as any large array of data.

The underlying virtual machine provides special registers for the different types of
inputs and outputs. The number of available constant registers for uniforms is much
larger than those registers available for varying inputs or outputs. This happens
because the varying inputs and outputs need to be stored separately for each vertex

36 3. The Graphics Processing Unit

4096 registers

Temporary
Registers

A

16 /16 / 32 registers Y 16/ 32 / 8 registers

Varying Input Shader Output
Registers Virtual Machine Registers

A A

Constant

Registers e

16 buffers of 128 arrays of
4096 registers 512 textures

Figure 3.3. Unified virtual machine architecture and register layout, under Shader Model 4.0. The
maximum available number is indicated next to each resource. Three numbers separated by slashes
refer to the limits for vertex, geometry, and pixel shaders (from left to right).

or pixel, so there is a natural limit as to how many are needed. The uniform inputs are
stored once and reused across all the vertices or pixels in the draw call. The virtual
machine also has general-purpose temporary registers, which are used for scratch space.
All types of registers can be array-indexed using integer values in temporary registers.
The inputs and outputs of the shader virtual machine can be seen in Figure 3.3.

Operations that are common in graphics computations are efficiently executed on
modern GPUs. Shading languages expose the most common of these operations (such
as additions and multiplications) via operators such as * and +. The rest are exposed
through intrinsic functions, e.g., atan(), sqrt (), log(), and many others, optimized
for the GPU. Functions also exist for more complex operations, such as vector nor-
malization and reflection, the cross product, and matrix transpose and determinant
computations.

The term flow control refers to the use of branching instructions to change the
flow of code execution. Instructions related to flow control are used to implement
high-level language constructs such as “if” and “case” statements, as well as various
types of loops. Shaders support two types of flow control. Static flow control branches
are based on the values of uniform inputs. This means that the flow of the code is
constant over the draw call. The primary benefit of static flow control is to allow the
same shader to be used in a variety of different situations (e.g., a varying numbers of
lights). There is no thread divergence, since all invocations take the same code path.
Dynamic flow control is based on the values of varying inputs, meaning that each

3.4. The Evolution of Programmable Shading and APls 37

fragment can execute the code differently. This is much more powerful than static
flow control but can cost performance, especially if the code flow changes erratically
between shader invocations.

3.4 The Evolution of Programmable Shading and APls

The idea of a framework for programmable shading dates back to 1984 with Cook’s
shade trees [287]. A simple shader and its corresponding shade tree are shown in
Figure 3.4. The RenderMan Shading Language [63, 1804] was developed from this
idea in the late 1980s. It is still used today for film production rendering, along with
other evolving specifications, such as the Open Shading Language (OSL) project [608].

Consumer-level graphics hardware was first successfully introduced by 3dfx In-
teractive on October 1, 1996. See Figure 3.5 for a timeline from this year. Their
Voodoo graphics card’s ability to render the game Quake with high quality and perfor-
mance led to its quick adoption. This hardware implemented a fixed-function pipeline
throughout. Before GPUs supported programmable shaders natively, there were sev-
eral attempts to implement programmable shading operations in real time via multiple
rendering passes. The Quake III: Arena scripting language was the first widespread

float ka=0.5, ks=0.5;
final color
float roughness 0.1;
T float intensity;
color copper=(0.8,0.3,0.1);

* intensity = ka*ambient() +
\ ks*specular (normal,view, roughness) ;
final color = intensity*copper;

copper

S : ~_ *
AN

. . weight of .
weight of ambient & function
. specular
ambient
component
component

normal view surface
roughness

Figure 3.4. Shade tree for a simple copper shader, and its corresponding shader language program.
(After Cook [287].)

38 3. The Graphics Processing Unit

OpenGL OpenGL OpenGL ES 2.0 OpenGL Vulkan
ES 3.0

PLAYSTATION 2

1996 2018

3dfx DirectX b
0X
voodoo »0 360 SM 3.0 PS 4,
Xbox One
GeForce256 DX 9.0 DX 10.0 * WebGL 2
“GPU” SM 2.0 SM 4.0 WebGL DX 12.0

Figure 3.5. A timeline of some API and graphics hardware releases.

commercial success in this area in 1999. As mentioned at the beginning of the chap-
ter, NVIDIA’s GeForce256 was the first hardware to be called a GPU, but it was not
programmable. However, it was configurable.

In early 2001, NVIDIA’s GeForce 3 was the first GPU to support programmable
vertex shaders [1049], exposed through DirectX 8.0 and extensions to OpenGL. These
shaders were programmed in an assembly-like language that was converted by the
drivers into microcode on the fly. Pixel shaders were also included in DirectX 8.0, but
pixel shaders fell short of actual programmability—the limited “programs” supported
were converted into texture blending states by the driver, which in turn wired together
hardware “register combiners.” These “programs” were not only limited in length
(12 instructions or less) but also lacked important functionality. Dependent texture
reads and floating point data were identified by Peercy et al. [1363] as crucial to true
programmability, from their study of RenderMan.

Shaders at this time did not allow for flow control (branching), so conditionals
had to be emulated by computing both terms and selecting or interpolating between
the results. DirectX defined the concept of a Shader Model (SM) to distinguish hard-
ware with different shader capabilities. The year 2002 saw the release of DirectX
9.0 including Shader Model 2.0, which featured truly programmable vertex and pixel
shaders. Similar functionality was also exposed under OpenGL using various exten-
sions. Support for arbitrary dependent texture reads and storage of 16-bit float-
ing point values was added, finally completing the set of requirements identified by
Peercy et al. Limits on shader resources such as instructions, textures, and regis-
ters were increased, so shaders became capable of more complex effects. Support for
flow control was also added. The growing length and complexity of shaders made
the assembly programming model increasingly cumbersome. Fortunately, DirectX 9.0

3.4. The Evolution of Programmable Shading and APls 39

also included HLSL. This shading language was developed by Microsoft in collabora-
tion with NVIDIA. Around the same time, the OpenGL ARB (Architecture Review
Board) released GLSL, a fairly similar language for OpenGL [885]. These languages
were heavily influenced by the syntax and design philosophy of the C programming
language and included elements from the RenderMan Shading Language.

Shader Model 3.0 was introduced in 2004 and added dynamic flow control, making
shaders considerably more powerful. It also turned optional features into requirements,
further increased resource limits and added limited support for texture reads in vertex
shaders. When a new generation of game consoles was introduced in late 2005 (Mi-
crosoft’s Xbox 360) and late 2006 (Sony Computer Entertainment’s PLAYSTATION 3
system), they were equipped with Shader Model 3.0-level GPUs. Nintendo’s Wii con-
sole was one of the last notable fixed-function GPUs, which initially shipped in late
2006. The purely fixed-function pipeline is long gone at this point. Shader languages
have evolved to a point where a variety of tools are used to create and manage them.
A screenshot of one such tool, using Cook’s shade tree concept, is shown in Figure 3.6.

The next large step in programmability also came near the end of 2006. Shader
Model 4.0, included in DirectX 10.0 [175], introduced several major features, such
as the geometry shader and stream output. Shader Model 4.0 included a uniform

Figure 3.6. A visual shader graph system for shader design. Various operations are encapsulated in
function boxes, selectable on the left. When selected, each function box has adjustable parameters,
shown on the right. Inputs and outputs for each function box are linked to each other to form the
final result, shown in the lower right of the center frame. (Screenshot from “mental mill,” mental
images inc.)

40 3. The Graphics Processing Unit

programming model for all shaders (vertex, pixel, and geometry), the unified shader
design described earlier. Resource limits were further increased, and support for inte-
ger data types (including bitwise operations) was added. The introduction of GLSL
3.30 in OpenGL 3.3 provided a similar shader model.

In 2009 DirectX 11 and Shader Model 5.0 were released, adding the tessellation
stage shaders and the compute shader, also called DirectCompute. The release also
focused on supporting CPU multiprocessing more effectively, a topic discussed in Sec-
tion 18.5. OpenGL added tessellation in version 4.0 and compute shaders in 4.3.
DirectX and OpenGL evolve differently. Both set a certain level of hardware support
needed for a particular version release. Microsoft controls the DirectX API and so
works directly with independent hardware vendors (IHVs) such as AMD, NVIDIA,
and Intel, as well as game developers and computer-aided design software firms, to
determine what features to expose. OpenGL is developed by a consortium of hard-
ware and software vendors, managed by the nonprofit Khronos Group. Because of the
number of companies involved, the API features often appear in a release of OpenGL
some time after their introduction in DirectX. However, OpenGL allows eztensions,
vendor-specific or more general, that allow the latest GPU functions to be used before
official support in a release.

The next significant change in APIs was led by AMD’s introduction of the Mantle
APT in 2013. Developed in partnership with video game developer DICE, the idea of
Mantle was to strip out much of the graphics driver’s overhead and give this control
directly to the developer. Alongside this refactoring was further support for effective
CPU multiprocessing. This new class of APIs focuses on vastly reducing the time
the CPU spends in the driver, along with more efficient CPU multiprocessor support
(Chapter 18). The ideas pioneered in Mantle were picked up by Microsoft and released
as DirectX 12 in 2015. Note that DirectX 12 is not focused on exposing new GPU
functionality—DirectX 11.3 exposed the same hardware features. Both APIs can be
used to send graphics to virtual reality systems such as the Oculus Rift and HTC
Vive. However, DirectX 12 is a radical redesign of the API, one that better maps to
modern GPU architectures. Low-overhead drivers are useful for applications where
the CPU driver cost is causing a bottleneck, or where using more CPU processors for
graphics could benefit performance [946]. Porting from earlier APIs can be difficult,
and a naive implementation can result in lower performance [249, 699, 1438].

Apple released its own low-overhead API called Metal in 2014. Metal was first
available on mobile devices such as the iPhone 5S and iPad Air, with newer Macin-
toshes given access a year later through OS X El Capitan. Beyond efficiency, reducing
CPU usage saves power, an important factor on mobile devices. This API has its own
shading language, meant for both graphics and GPU compute programs.

AMD donated its Mantle work to the Khronos Group, which released its own
new API in early 2016, called Vulkan. As with OpenGL, Vulkan works on multiple
operating systems. Vulkan uses a new high-level intermediate language called SPIR-
V, which is used for both shader representation and for general GPU computing.
Precompiled shaders are portable and so can be used on any GPU supporting the

3.4. The Evolution of Programmable Shading and APls 41

capabilities needed [885]. Vulkan can also be used for non-graphical GPU computation,
as it does not need a display window [946]. One notable difference of Vulkan from
other low-overhead drivers is that it is meant to work with a wide range of systems,
from workstations to mobile devices.

On mobile devices the norm has been to use OpenGL ES. “ES” stands for Em-
bedded Systems, as this API was developed with mobile devices in mind. Standard
OpenGL at the time was rather bulky and slow in some of its call structures, as well as
requiring support for rarely used functionality. Released in 2003, OpenGL ES 1.0 was
a stripped-down version of OpenGL 1.3, describing a fixed-function pipeline. While
releases of DirectX are timed with those of graphics hardware that support them,
developing graphics support for mobile devices did not proceed in the same fashion.
For example, the first iPad, released in 2010, implemented OpenGL ES 1.1. In 2007
the OpenGL ES 2.0 specification was released, providing programmable shading. It
was based on OpenGL 2.0, but without the fixed-function component, and so was not
backward-compatible with OpenGL ES 1.1. OpenGL ES 3.0 was released in 2012, pro-
viding functionality such as multiple render targets, texture compression, transform
feedback, instancing, and a much wider range of texture formats and modes, as well
as shader language improvements. OpenGL ES 3.1 adds compute shaders, and 3.2
adds geometry and tessellation shaders, among other features. Chapter 23 discusses
mobile device architectures in more detail.

An offshoot of OpenGL ES is the browser-based API WebGL, called through
JavaScript. Released in 2011, the first version of this API is usable on most mo-
bile devices, as it is equivalent to OpenGL ES 2.0 in functionality. As with OpenGL,
extensions give access to more advanced GPU features. WebGL 2 assumes OpenGL
ES 3.0 support.

WebGL is particularly well suited for experimenting with features or use in the
classroom:

e It is cross-platform, working on all personal computers and almost all mobile
devices.

e Driver approval is handled by the browsers. Even if one browser does not support
a particular GPU or extension, often another browser does.

e Code is interpreted, not compiled, and only a text editor is needed for develop-
ment.

e A debugger is built in to most browsers, and code running at any website can
be examined.

e Programs can be deployed by uploading them to a website or Github, for
example.

Higher-level scene-graph and effects libraries such as three.js [218] give easy access to
code for a variety of more involved effects such as shadow algorithms, post-processing
effects, physically based shading, and deferred rendering.

42 3. The Graphics Processing Unit

3.5 The Vertex Shader

The vertex shader is the first stage in the functional pipeline shown in Figure 3.2.
While this is the first stage directly under programmer control, it is worth noting that
some data manipulation happens before this stage. In what DirectX calls the input
assembler [175, 530, 1208], several streams of data can be woven together to form
the sets of vertices and primitives sent down the pipeline. For example, an object
could be represented by one array of positions and one array of colors. The input
assembler would create this object’s triangles (or lines or points) by creating vertices
with positions and colors. A second object could use the same array of positions
(along with a different model transform matrix) and a different array of colors for its
representation. Data representation is discussed in detail in Section 16.4.5. There is
also support in the input assembler to perform instancing. This allows an object to
be drawn several times with some varying data per instance, all with a single draw
call. The use of instancing is covered in Section 18.4.2.

A triangle mesh is represented by a set of vertices, each associated with a specific
position on the model surface. Besides position, there are other optional properties
associated with each vertex, such as a color or texture coordinates. Surface normals are
defined at mesh vertices as well, which may seem like an odd choice. Mathematically,
each triangle has a well-defined surface normal, and it may seem to make more sense
to use the triangle’s normal directly for shading. However, when rendering, triangle
meshes are often used to represent an underlying curved surface, and vertex normals
are used to represent the orientation of this surface, rather than that of the triangle
mesh itself. Section 16.3.4 will discuss methods to compute vertex normals. Figure 3.7
shows side views of two triangle meshes that represent curved surfaces, one smooth
and one with a sharp crease.

The vertex shader is the first stage to process the triangle mesh. The data describ-
ing what triangles are formed is unavailable to the vertex shader. As its name implies,
it deals exclusively with the incoming vertices. The vertex shader provides a way

Figure 3.7. Side views of triangle meshes (in black, with vertex normals) representing curved surfaces
(in red). On the left smoothed vertex normals are used to represent a smooth surface. On the right
the middle vertex has been duplicated and given two normals, representing a crease.

3.5. The Vertex Shader 43

to modify, create, or ignore values associated with each triangle’s vertex, such as its
color, normal, texture coordinates, and position. Normally the vertex shader program
transforms vertices from model space to homogeneous clip space (Section 4.7). At a
minimum, a vertex shader must always output this location.

A vertex shader is much the same as the unified shader described earlier. Every
vertex passed in is processed by the vertex shader program, which then outputs a
number of values that are interpolated across a triangle or line. The vertex shader
can neither create nor destroy vertices, and results generated by one vertex cannot be
passed on to another vertex. Since each vertex is treated independently, any number
of shader processors on the GPU can be applied in parallel to the incoming stream of
vertices.

Input assembly is usually presented as a process that happens before the vertex
shader is executed. This is an example where the physical model often differs from
the logical. Physically, the fetching of data to create a vertex might happen in the
vertex shader and the driver will quietly prepend every shader with the appropriate
instructions, invisible to the programmer.

Chapters that follow explain several vertex shader effects, such as vertex blend-
ing for animating joints, and silhouette rendering. Other uses for the vertex shader
include:

e Object generation, by creating a mesh only once and having it be deformed by
the vertex shader.

e Animating character’s bodies and faces using skinning and morphing techniques.

e Procedural deformations, such as the movement of flags, cloth, or water [802,
943].

e Particle creation, by sending degenerate (no area) meshes down the pipeline and
having these be given an area as needed.

e Lens distortion, heat haze, water ripples, page curls, and other effects, by using
the entire framebuffer’s contents as a texture on a screen-aligned mesh undergo-
ing procedural deformation.

e Applying terrain height fields by using vertex texture fetch [40, 1227].

Some deformations done using a vertex shader are shown in Figure 3.8.

The output of the vertex shader can be consumed in several different ways. The
usual path is for each instance’s primitives, e.g., triangles, to then be generated and
rasterized, and the individual pixel fragments produced to be sent to the pixel shader
program for continued processing. On some GPUs the data can also be sent to the
tessellation stage or the geometry shader or be stored in memory. These optional
stages are discussed in the following sections.

44 3. The Graphics Processing Unit

Figure 3.8. On the left, a normal teapot. A simple shear operation performed by a vertex shader
program produces the middle image. On the right, a noise function creates a field that distorts the
model. (Images produced by FX Composer 2, courtesy of NVIDIA Corporation.)

3.6 The Tessellation Stage

The tessellation stage allows us to render curved surfaces. The GPU’s task is to take
each surface description and turn it into a representative set of triangles. This stage
is an optional GPU feature that first became available in (and is required by) DirectX
11. It is also supported in OpenGL 4.0 and OpenGL ES 3.2.

There are several advantages to using the tessellation stage. The curved surface de-
scription is often more compact than providing the corresponding triangles themselves.
Beyond memory savings, this feature can keep the bus between CPU and GPU from
becoming the bottleneck for an animated character or object whose shape is changing
each frame. The surfaces can be rendered efficiently by having an appropriate number
of triangles generated for the given view. For example, if a ball is far from the camera,
only a few triangles are needed. Up close, it may look best represented with thousands
of triangles. This ability to control the level of detail can also allow an application to
control its performance, e.g., using a lower-quality mesh on weaker GPUs in order to
maintain frame rate. Models normally represented by flat surfaces can be converted to
fine meshes of triangles and then warped as desired [1493], or they can be tessellated
in order to perform expensive shading computations less frequently [225].

The tessellation stage always consists of three elements. Using DirectX’s termi-
nology, these are the hull shader, tessellator, and domain shader. In OpenGL the hull
shader is the tessellation control shader and the domain shader the tessellation eval-
uation shader, which are a bit more descriptive, though verbose. The fixed-function
tessellator is called the primitive generator in OpenGL, and as will be seen, that is
indeed what it does.

How to specify and tessellate curves and surfaces is discussed at length in Chap-
ter 17. Here we give a brief summary of each tessellation stage’s purpose. To begin,
the input to the hull shader is a special patch primitive. This consists of several control
points defining a subdivision surface, Bézier patch, or other type of curved element.
The hull shader has two functions. First, it tells the tessellator how many triangles
should be generated, and in what configuration. Second, it performs processing on
each of the control points. Also, optionally, the hull shader can modify the incoming

3.6. The Tessellation Stage 45

input tessellator
patch generated
points
TFs &
\ type
hull shader transformed

patch

control points,
TFs, & constants

domain shader)

output
mesh

Figure 3.9. The tessellation stage. The hull shader takes in a patch defined by control points. It
sends the tessellation factors (TFs) and type to the fixed-function tessellator. The control point
set is transformed as desired by the hull shader and sent on to the domain shader, along with TFs
and related patch constants. The tessellator creates the set of vertices along with their barycentric
coordinates. These are then processed by the domain shader, producing the triangle mesh (control
points shown for reference).

patch description, adding or removing control points as desired. The hull shader out-
puts its set of control points, along with the tessellation control data, to the domain
shader. See Figure 3.9.

The tessellator is a fixed-function stage in the pipeline, only used with tessellation
shaders. It has the task of adding several new vertices for the domain shader to pro-
cess. The hull shader sends the tessellator information about what type of tessellation
surface is desired: triangle, quadrilateral, or isoline. Isolines are sets of line strips,
sometimes used for hair rendering [1954]. The other important values sent by the hull
shader are the tessellation factors (tessellation levels in OpenGL). These are of two
types: inner and outer edge. The two inner factors determine how much tessellation
occurs inside the triangle or quadrilateral. The outer factors determine how much
each exterior edge is split (Section 17.6). An example of increasing tessellation factors
is shown in Figure 3.10. By allowing separate controls, we can have adjacent curved
surfaces’ edges match in tessellation, regardless of how the interiors are tessellated.
Matching edges avoids cracks or other shading artifacts where patches meet. The ver-
tices are assigned barycentric coordinates (Section 22.8), which are values that specify
a relative location for each point on the desired surface.

The hull shader always outputs a patch, a set of control point locations. However, it
can signal that a patch is to be discarded by sending the tessellator an outer tessellation
level of zero or less (or not-a-number, NaN). Otherwise, the tessellator generates a
mesh and sends it to the domain shader. The control points for the curved surface
from the hull shader are used by each invocation of the domain shader to compute the

46 3. The Graphics Processing Unit

WO U@

Figure 3.10. The effect of varying the tessellation factors. The Utah teapot is made of 32 patches.
Inner and outer tessellation factors, from left to right, are 1, 2, 4, and 8. (Images generated by demo
from Rideout and Van Gelder [1493].)

output values for each vertex. The domain shader has a data flow pattern like that
of a vertex shader, with each input vertex from the tessellator being processed and
generating a corresponding output vertex. The triangles formed are then passed on
down the pipeline.

While this system sounds complex, it is structured this way for efficiency, and each
shader can be fairly simple. The patch passed into a hull shader will often undergo
little or no modification. This shader may also use the patch’s estimated distance or
screen size to compute tessellation factors on the fly, as for terrain rendering [466].
Alternately, the hull shader may simply pass on a fixed set of values for all patches
that the application computes and provides. The tessellator performs an involved but
fixed-function process of generating the vertices, giving them positions, and specifying
what triangles or lines they form. This data amplification step is performed outside of
a shader for computational efficiency [530]. The domain shader takes the barycentric
coordinates generated for each point and uses these in the patch’s evaluation equation
to generate the position, normal, texture coordinates, and other vertex information
desired. See Figure 3.11 for an example.

Figure 3.11. On the left is the underlying mesh of about 6000 triangles. On the right, each triangle
is tessellated and displaced using PN triangle subdivision. (Images from NVIDIA SDK 11 [1301]
samples, courtesy of NVIDIA Corporation, model from Metro 2033 by 4A Games.)

3.7. The Geometry Shader 47

N A

Figure 3.12. Geometry shader input for a geometry shader program is of some single type: point,
line segment, triangle. The two rightmost primitives include vertices adjacent to the line and triangle
objects. More elaborate patch types are possible.

3.7 The Geometry Shader

The geometry shader can turn primitives into other primitives, something the tes-
sellation stage cannot do. For example, a triangle mesh could be transformed to a
wireframe view by having each triangle create line edges. Alternately, the lines could
be replaced by quadrilaterals facing the viewer, so making a wireframe rendering with
thicker edges [1492]. The geometry shader was added to the hardware-accelerated
graphics pipeline with the release of DirectX 10, in late 2006. It is located after the
tessellation shader in the pipeline, and its use is optional. While a required part of
Shader Model 4.0, it is not used in earlier shader models. OpenGL 3.2 and OpenGL
ES 3.2 support this type of shader as well.

The input to the geometry shader is a single object and its associated vertices. The
object typically consists of triangles in a strip, a line segment, or simply a point. Ex-
tended primitives can be defined and processed by the geometry shader. In particular,
three additional vertices outside of a triangle can be passed in, and the two adjacent
vertices on a polyline can be used. See Figure 3.12. With DirectX 11 and Shader
Model 5.0, you can pass in more elaborate patches, with up to 32 control points. That
said, the tessellation stage is more efficient for patch generation [175].

The geometry shader processes this primitive and outputs zero or more vertices,
which are treated as points, polylines, or strips of triangles. Note that no output at
all can be generated by the geometry shader. In this way, a mesh can be selectively
modified by editing vertices, adding new primitives, and removing others.

The geometry shader is designed for modifying incoming data or making a limited
number of copies. For example, one use is to generate six transformed copies of data
to simultaneously render the six faces of a cube map; see Section 10.4.3. It can also be
used to efficiently create cascaded shadow maps for high-quality shadow generation.
Other algorithms that take advantage of the geometry shader include creating variable-
sized particles from point data, extruding fins along silhouettes for fur rendering, and
finding object edges for shadow algorithms. See Figure 3.13 for more examples. These
and other uses are discussed throughout the rest of the book.

DirectX 11 added the ability for the geometry shader to use instancing, where the
geometry shader can be run a set number of times on any given primitive [530, 1971]. In

48 3. The Graphics Processing Unit

Figure 3.13. Some uses of the geometry shader (GS). On the left, metaball isosurface tessellation is
performed on the fly using the GS. In the middle, fractal subdivision of line segments is done using
the GS and stream out, and billboards are generated by the GS for display of the lightning. On
the right, cloth simulation is performed by using the vertex and geometry shader with stream out.
(Images from NVIDIA SDK 10 [1800] samples, courtesy of NVIDIA Corporation.)

OpenGL 4.0 this is specified with an invocation count. The geometry shader can also
output up to four streams. One stream can be sent on down the rendering pipeline for
further processing. All these streams can optionally be sent to stream output render
targets.

The geometry shader is guaranteed to output results from primitives in the same
order that they are input. This affects performance, because if several shader cores
run in parallel, results must be saved and ordered. This and other factors work against
the geometry shader being used to replicate or create a large amount of geometry in
a single call [175, 530].

After a draw call is issued, there are only three places in the pipeline where work can
be created on the GPU: rasterization, the tessellation stage, and the geometry shader.
Of these, the geometry shader’s behavior is the least predictable when considering
resources and memory needed, since it is fully programmable. In practice the geometry
shader usually sees little use, as it does not map well to the GPU’s strengths. On
some mobile devices it is implemented in software, so its use is actively discouraged
there [69].

3.7.1 Stream Output

The standard use of the GPU’s pipeline is to send data through the vertex shader,
then rasterize the resulting triangles and process these in the pixel shader. It used to
be that the data always passed through the pipeline and intermediate results could
not be accessed. The idea of stream output was introduced in Shader Model 4.0.
After vertices are processed by the vertex shader (and, optionally, the tessellation and
geometry shaders), these can be output in a stream, i.e., an ordered array, in addition
to being sent on to the rasterization stage. Rasterization could, in fact, be turned off
entirely and the pipeline then used purely as a non-graphical stream processor. Data

3.8. The Pixel Shader 49

processed in this way can be sent back through the pipeline, thus allowing iterative
processing. This type of operation can be useful for simulating flowing water or other
particle effects, as discussed in Section 13.8. It could also be used to skin a model and
then have these vertices available for reuse (Section 4.4).

Stream output returns data only in the form of floating point numbers, so it can
have a noticeable memory cost. Stream output works on primitives, not directly on
vertices. If meshes are sent down the pipeline, each triangle generates its own set
of three output vertices. Any vertex sharing in the original mesh is lost. For this
reason a more typical use is to send just the vertices through the pipeline as a point
set primitive. In OpenGL the stream output stage is called transform feedback, since
the focus of much of its use is transforming vertices and returning them for further
processing. Primitives are guaranteed to be sent to the stream output target in the
order that they were input, meaning the vertex order will be maintained [530].

3.8 The Pixel Shader

After the vertex, tessellation, and geometry shaders perform their operations, the
primitive is clipped and set up for rasterization, as explained in the previous chapter.
This section of the pipeline is relatively fixed in its processing steps, i.e., not pro-
grammable but somewhat configurable. Each triangle is traversed to determine which
pixels it covers. The rasterizer may also roughly calculate how much the triangle
covers each pixel’s cell area (Section 5.4.2). This piece of a triangle partially or fully
overlapping the pixel is called a fragment.

The values at the triangle’s vertices, including the z-value used in the z-buffer, are
interpolated across the triangle’s surface for each pixel. These values are passed to
the pizel shader, which then processes the fragment. In OpenGL the pixel shader is
known as the fragment shader, which is perhaps a better name. We use “pixel shader”
throughout this book for consistency. Point and line primitives sent down the pipeline
also create fragments for the pixels covered.

The type of interpolation performed across the triangle is specified by the pixel
shader program. Normally we use perspective-correct interpolation, so that the world-
space distances between pixel surface locations increase as an object recedes in the
distance. An example is rendering railroad tracks extending to the horizon. Railroad
ties are more closely spaced where the rails are farther away, as more distance is
traveled for each successive pixel approaching the horizon. Other interpolation options
are available, such as screen-space interpolation, where perspective projection is not
taken into account. DirectX 11 gives further control over when and how interpolation
is performed [530].

In programming terms, the vertex shader program’s outputs, interpolated across
the triangle (or line), effectively become the pixel shader program’s inputs. As the
GPU has evolved, other inputs have been exposed. For example, the screen position
of the fragment is available to the pixel shader in Shader Model 3.0 and beyond. Also,

50 3. The Graphics Processing Unit

Figure 3.14. User-defined clipping planes. On the left, a single horizontal clipping plane slices the ob-
ject. In the middle, the nested spheres are clipped by three planes. On the right, the spheres’ surfaces
are clipped only if they are outside all three clip planes. (From the three.js examples webgl_clipping
and webgl_clipping_intersection [218].)

which side of a triangle is visible is an input flag. This knowledge is important for
rendering a different material on the front versus back of each triangle in a single pass.

With inputs in hand, typically the pixel shader computes and outputs a fragment’s
color. It can also possibly produce an opacity value and optionally modify its z-depth.
During merging, these values are used to modify what is stored at the pixel. The depth
value generated in the rasterization stage can also be modified by the pixel shader.
The stencil buffer value is usually not modifiable, but rather it is passed through to
the merge stage. DirectX 11.3 allows the shader to change this value. Operations
such as fog computation and alpha testing have moved from being merge operations
to being pixel shader computations in SM 4.0 [175].

A pixel shader also has the unique ability to discard an incoming fragment, i.e.,
generate no output. One example of how fragment discard can be used is shown in
Figure 3.14. Clip plane functionality used to be a configurable element in the fixed-
function pipeline and was later specified in the vertex shader. With fragment discard
available, this functionality could then be implemented in any way desired in the
pixel shader, such as deciding whether clipping volumes should be AND’ed or OR’ed
together.

Initially the pixel shader could output to only the merging stage, for eventual
display. The number of instructions a pixel shader can execute has grown considerably
over time. This increase gave rise to the idea of multiple render targets (MRT). Instead
of sending results of a pixel shader’s program to just the color and z-buffer, multiple
sets of values could be generated for each fragment and saved to different buffers, each
called a render target. Render targets generally have the same z- and y-dimensions;
some APIs allow different sizes, but the rendered area will be the smallest of these.
Some architectures require render targets to each have the same bit depth, and possibly
even identical data formats. Depending on the GPU, the number of render targets
available is four or eight.

3.8. The Pixel Shader 51

Even with these limitations, MRT functionality is a powerful aid in performing
rendering algorithms more efficiently. A single rendering pass could generate a color
image in one target, object identifiers in another, and world-space distances in a third.
This ability has also given rise to a different type of rendering pipeline, called deferred
shading, where visibility and shading are done in separate passes. The first pass stores
data about an object’s location and material at each pixel. Successive passes can then
efficiently apply illumination and other effects. This class of rendering methods is
described in Section 20.1.

The pixel shader’s limitation is that it can normally write to a render target at only
the fragment location handed to it, and cannot read current results from neighboring
pixels. That is, when a pixel shader program executes, it cannot send its output
directly to neighboring pixels, nor can it access others’ recent changes. Rather, it
computes results that affect only its own pixel. However, this limitation is not as
severe as it sounds. An output image created in one pass can have any of its data
accessed by a pixel shader in a later pass. Neighboring pixels can be processed using
image processing techniques, described in Section 12.1.

There are exceptions to the rule that a pixel shader cannot know or affect neighbor-
ing pixels’ results. One is that the pixel shader can immediately access information for
adjacent fragments (albeit indirectly) during the computation of gradient or derivative
information. The pixel shader is provided with the amounts by which any interpo-
lated value changes per pixel along the x and y screen axes. Such values are useful
for various computations and texture addressing. These gradients are particularly
important for operations such as texture filtering (Section 6.2.2), where we want to
know how much of an image covers a pixel. All modern GPUs implement this feature
by processing fragments in groups of 2 x 2, called a quad. When the pixel shader
requests a gradient value, the difference between adjacent fragments is returned. See
Figure 3.15. A unified core has this capability to access neighboring data—kept in
different threads on the same warp—and so can compute gradients for use in the pixel
shader. One consequence of this implementation is that gradient information can-
not be accessed in parts of the shader affected by dynamic flow control, i.e., an “if”
statement or loop with a variable number of iterations. All the fragments in a group
must be processed using the same set of instructions so that all four pixels’ results
are meaningful for computing gradients. This is a fundamental limitation that exists
even in offline rendering systems [64].

DirectX 11 introduced a buffer type that allows write access to any location, the
unordered access view (UAV). Originally for only pixel and compute shaders, access
to UAVs was extended to all shaders in DirectX 11.1 [146]. OpenGL 4.3 calls this
a shader storage buffer object (SSBO). Both names are descriptive in their own way.
Pixel shaders are run in parallel, in an arbitrary order, and this storage buffer is shared
among them.

Often some mechanism is needed to avoid a data race condition (ak.a. a data
hazard), where both shader programs are “racing” to influence the same value, possibly

52 3. The Graphics Processing Unit

/'7 dv/dy = 19&7.8

19-17=2 £ /
N e
)V 17 6

advidx=6-17=-11

A\

Figure 3.15. On the left, a triangle is rasterized into quads, sets of 2 x 2 pixels. The gradient
computations for the pixel marked with a black dot is then shown on the right. The value for v is
shown for each of the four pixel locations in the quad. Note how three of the pixels are not covered
by the triangle, yet they are still processed by the GPU so that the gradients can be found. The
gradients in the x and y screen directions are computed for the lower left pixel by using its two quad
neighbors.

leading to arbitrary results. As an example, an error could occur if two invocations
of a pixel shader tried to, say, add to the same retrieved value at about the same
time. Both would retrieve the original value, both would modify it locally, but then
whichever invocation wrote its result last would wipe out the contribution of the
other invocation—only one addition would occur. GPUs avoid this problem by having
dedicated atomic units that the shader can access [530]. However, atomics mean
that some shaders may stall as they wait to access a memory location undergoing
read/modify /write by another shader.

While atomics avoid data hazards, many algorithms require a specific order of
execution. For example, you may want to draw a more distant transparent blue
triangle before overlaying it with a red transparent triangle, blending the red atop the
blue. It is possible for a pixel to have two pixel shader invocations for a pixel, one for
each triangle, executing in such a way that the red triangle’s shader completes before
the blue’s. In the standard pipeline, the fragment results are sorted in the merger stage
before being processed. Rasterizer order views (ROVs) were introduced in DirectX
11.3 to enforce an order of execution. These are like UAVs; they can be read and
written by shaders in the same fashion. The key difference is that ROVs guarantee
that the data are accessed in the proper order. This increases the usefulness of these
shader-accessible buffers considerably [327, 328]. For example, ROVs make it possible
for the pixel shader to write its own blending methods, since it can directly access and
write to any location in the ROV, and thus no merging stage is needed [176]. The
price is that, if an out-of-order access is detected, a pixel shader invocation may stall
until triangles drawn earlier are processed.

3.9. The Merging Stage 53

3.9 The Merging Stage

As discussed in Section 2.5.2, the merging stage is where the depths and colors of the
individual fragments (generated in the pixel shader) are combined with the frame-
buffer. DirectX calls this stage the output merger; OpenGL refers to it as per-sample
operations. On most traditional pipeline diagrams (including our own), this stage is
where stencil-buffer and z-buffer operations occur. If the fragment is visible, another
operation that takes place in this stage is color blending. For opaque surfaces there
is no real blending involved, as the fragment’s color simply replaces the previously
stored color. Actual blending of the fragment and stored color is commonly used for
transparency and compositing operations (Section 5.5).

Imagine that a fragment generated by rasterization is run through the pixel shader
and then is found to be hidden by some previously rendered fragment when the z-
buffer is applied. All the processing done in the pixel shader was then unnecessary.
To avoid this waste, many GPUs perform some merge testing before the pixel shader
is executed [530]. The fragment’s z-depth (and whatever else is in use, such as the
stencil buffer or scissoring) is used for testing visibility. The fragment is culled if
hidden. This functionality is called early-z [1220, 1542]. The pixel shader has the
ability to change the z-depth of the fragment or to discard the fragment entirely.
If either type of operation is found to exist in a pixel shader program, early-z then
generally cannot be used and is turned off, usually making the pipeline less efficient.
DirectX 11 and OpenGL 4.2 allow the pixel shader to force early-z testing to be on,
though with a number of limitations [530]. See Section 23.7 for more about early-z
and other z-buffer optimizations. Using early-z effectively can have a large effect on
performance, which is discussed in detail in Section 18.4.5.

The merging stage occupies the middle ground between fixed-function stages, such
as triangle setup, and the fully programmable shader stages. Although it is not pro-
grammable, its operation is highly configurable. Color blending in particular can be
set up to perform a large number of different operations. The most common are com-
binations of multiplication, addition, and subtraction involving the color and alpha
values, but other operations are possible, such as minimum and maximum, as well as
bitwise logic operations. DirectX 10 added the capability to blend two colors from
the pixel shader with the framebuffer color. This capability is called dual source-color
blending and cannot be used in conjunction with multiple render targets. MRT does
otherwise support blending, and DirectX 10.1 introduced the capability to perform
different blend operations on each separate buffer.

As mentioned at the end of the previous section, DirectX 11.3 provided a way to
make blending programmable through ROVs, though at a price in performance. ROVs
and the merging stage both guarantee draw order, a.k.a. output invariance. Regardless
of the order in which pixel shader results are generated, it is an API requirement that
results are sorted and sent to the merging stage in the order in which they are input,
object by object and triangle by triangle.

54 3. The Graphics Processing Unit

3.10 The Compute Shader

The GPU can be used for more than implementing the traditional graphics pipeline.
There are many non-graphical uses in fields as varied as computing the estimated
value of stock options and training neural nets for deep learning. Using hardware in
this way is called GPU computing. Platforms such as CUDA and OpenCL are used
to control the GPU as a massive parallel processor, with no real need or access to
graphics-specific functionality. These frameworks often use languages such as C or
C++ with extensions, along with libraries made for the GPU.

Introduced in DirectX 11, the compute shader is a form of GPU computing, in
that it is a shader that is not locked into a location in the graphics pipeline. It is
closely tied to the process of rendering in that it is invoked by the graphics API. It
is used alongside vertex, pixel, and other shaders. It draws upon the same pool of
unified shader processors as those used in the pipeline. It is a shader like the others,
in that it has some set of input data and can access buffers (such as textures) for input
and output. Warps and threads are more visible in a compute shader. For example,
each invocation gets a thread index that it can access. There is also the concept of a
thread group, which consists of 1 to 1024 threads in DirectX 11. These thread groups
are specified by z-, y-, and z-coordinates, mostly for simplicity of use in shader code.
Each thread group has a small amount of memory that is shared among threads. In
DirectX 11, this amounts to 32 kB. Compute shaders are executed by thread group,
so that all threads in the group are guaranteed to run concurrently [1971].

One important advantage of compute shaders is that they can access data gen-
erated on the GPU. Sending data from the GPU to the CPU incurs a delay, so
performance can be improved if processing and results can be kept resident on the
GPU [1403]. Post-processing, where a rendered image is modified in some way, is a
common use of compute shaders. The shared memory means that intermediate re-
sults from sampling image pixels can be shared with neighboring threads. Using a
compute shader to determine the distribution or average luminance of an image, for
example, has been found to run twice as fast as performing this operation on a pixel
shader [530].

Compute shaders are also useful for particle systems, mesh processing such as
facial animation [134], culling [1883, 1884], image filtering [1102, 1710], improving
depth precision [991], shadows [865], depth of field [764], and any other tasks where a
set of GPU processors can be brought to bear. Wihlidal [1884] discusses how compute
shaders can be more efficient than tessellation hull shaders. See Figure 3.16 for other
uses.

This ends our review of the GPU’s implementation of the rendering pipeline. There
are many ways in which the GPUs functions can be used and combined to perform
various rendering-related processes. Relevant theory and algorithms tuned to take
advantage of these capabilities are the central subjects of this book. Our focus now
moves on to transforms and shading.

3.10. The Compute Shader 55

Figure 3.16. Compute shader examples. On the left, a compute shader is used to simulate hair
affected by wind, with the hair itself rendered using the tessellation stage. In the middle, a compute
shader performs a rapid blur operation. On the right, ocean waves are simulated. (Images from
NVIDIA SDK 11 [1801] samples, courtesy of NVIDIA Corporation.)

Further Reading and Resources

Giesen’s tour of the graphics pipeline [530] discusses many facets of the GPU at
length, explaining why elements work the way they do. The course by Fatahalian and
Bryant [462] discusses GPU parallelism in a series of detailed lecture slide sets. While
focused on GPU computing using CUDA, the introductory part of Kirk and Hwa’s
book [903] discusses the evolution and design philosophy for the GPU.

To learn the formal aspects of shader programming takes some work. Books such
as the OpenGL Superbible [1606] and OpenGL Programming Guide [885] include ma-
terial on shader programming. The older book OpenGL Shading Language [1512] does
not cover more recent shader stages, such as the geometry and tessellation shaders,
but does focus specifically on shader-related algorithms. See this book’s website,
realtimerendering.com, for recent and recommended books.

Taylor & Francis
Taylor & Francis Group

http://taylorandfrancis.com

http://taylorandfrancis.com

Chapter 4

Transforms

“What if angry vectors veer
Round your sleeping head, and form.
There’s never need to fear
Violence of the poor world’s abstract storm.”
—Robert Penn Warren

A transform is an operation that takes entities such as points, vectors, or colors and
converts them in some way. For the computer graphics practitioner, it is extremely
important to master transforms. With them, you can position, reshape, and animate
objects, lights, and cameras. You can also ensure that all computations are carried
out in the same coordinate system, and project objects onto a plane in different ways.
These are only a few of the operations that can be performed with transforms, but
they are sufficient to demonstrate the importance of the transform’s role in real-time
graphics, or, for that matter, in any kind of computer graphics.

A linear transform is one that preserves vector addition and scalar multiplication.
Specifically,

f(x) +£(y)
kf(x)

=f(x+y), (4.1)
= f(kx). (4.2)
As an example, f(x) = 5x is a transform that takes a vector and multiplies each
element by five. To prove that this is linear, the two conditions (Equations 4.1 and 4.2)
need to be fulfilled. The first condition holds since any two vectors multiplied by five
and then added will be the same as adding the vectors and then multiplying. The
scalar multiplication condition (Equation 4.2) is clearly fulfilled. This function is
called a scaling transform, as it changes the scale (size) of an object. The rotation
transform is another linear transform that rotates a vector about the origin. Scaling
and rotation transforms, in fact all linear transforms for three-element vectors, can be
represented using a 3 X 3 matrix.

However, this size of matrix is usually not large enough. A function for a three-
element vector x such as f(x) = x+ (7, 3,2) is not linear. Performing this function on
two separate vectors will add each value of (7, 3,2) twice to form the result. Adding
a fixed vector to another vector performs a translation, e.g., it moves all locations by

57

58 4. Transforms

the same amount. This is a useful type of transform, and we would like to combine
various transforms, e.g., scale an object to be half as large, then move it to a different
location. Keeping functions in the simple forms used so far makes it difficult to easily
combine them.

Combining linear transforms and translations can be done using an affine trans-
form, typically stored as a 4 x 4 matrix. An affine transform is one that performs
a linear transform and then a translation. To represent four-element vectors we use
homogeneous notation, denoting points and directions in the same way (using bold
lowercase letters). A direction vector is represented as v = (v, v, v, 0)T and
a point as v = (v; v, v, 1)T. Throughout the chapter, we will make extensive
use of the terminology and operations explained in the downloadable linear algebra
appendix, found on realtimerendering.com.

All translation, rotation, scaling, reflection, and shearing matrices are affine. The
main characteristic of an affine matrix is that it preserves the parallelism of lines, but
not necessarily lengths and angles. An affine transform may also be any sequence of
concatenations of individual affine transforms.

This chapter will begin with the most essential, basic affine transforms. This
section can be seen as a “reference manual” for simple transforms. More specialized
matrices are then described, followed by a discussion and description of quaternions,
a powerful transform tool. Then follows vertex blending and morphing, which are
two simple but effective ways of expressing animations of meshes. Finally, projection
matrices are described. Most of these transforms, their notations, functions, and
properties are summarized in Table 4.1, where an orthogonal matrix is one whose
inverse is the transpose.

Transforms are a basic tool for manipulating geometry. Most graphics application
programming interfaces let the user set arbitrary matrices, and sometimes a library
may be used with matrix operations that implement many of the transforms discussed
in this chapter. However, it is still worthwhile to understand the real matrices and
their interaction behind the function calls. Knowing what the matrix does after such
a function call is a start, but understanding the properties of the matrix itself will
take you further. For example, such an understanding enables you to discern when
you are dealing with an orthogonal matrix, whose inverse is its transpose, making for
faster matrix inversions. Knowledge like this can lead to accelerated code.

4.1 Basic Transforms

This section describes the most basic transforms, such as translation, rotation, scaling,
shearing, transform concatenation, the rigid-body transform, normal transform (which
is not so normal), and computation of inverses. For the experienced reader, this can
be used as a reference manual for simple transforms, and for the novice, it can serve
as an introduction to the subject. This material is necessary background for the rest
of this chapter and for other chapters in this book. We start with the simplest of
transforms—the translation.

4.1. Basic Transforms

Notation

Name

Characteristics

T(t)

translation matrix

Moves a point. Affine.

R (p)

rotation matrix

Rotates p radians around
the z-axis. Similar notation
for the y- and z-axes.
Orthogonal & affine.

rotation matrix

Any rotation matrix.
Orthogonal & affine.

scaling matrix

Scales along all z-, y-, and

z-axes according to s. Affine.

shear matrix

Shears component i by a
factor s, with respect to
component j.

i,7 € {z,y,z}. Affine.

Euler transform

Orientation matrix given
by the Euler angles

head (yaw), pitch, roll.
Orthogonal & affine.

orthographic projection

Parallel projects onto some

plane or to a volume. Affine.

perspective projection

Projects with perspective
onto a plane or to a volume.

slerp transform

Creates an interpolated
quaternion with respect to
the quaternions q and r,
and the parameter ¢.

Table 4.1. Summary of most of the transforms discussed in this chapter.

4.1.1 Translation

A change from one location to another is represented by a translation matrix, T.

This matrix translates an entity by a vector t = (t;,%,,t,). T is given below by

Equation 4.3:

An example of the effect of the translation transform is shown in Figure 4.1. It is
easily shown that the multiplication of a point p = (pg, py, -, 1) with T(t) yields a
new point p’ = (py +t, py +ty, p.+t.,1), which is clearly a translation. Notice that a
vector v = (Vg, Uy, Uz, 0) is left unaffected by a multiplication by T, because a direction
vector cannot be translated. In contrast, both points and vectors are affected by the

T(t) = T(tm7ty7tz) =

OO =

o

0 0 t
10 ¢,
0 1 t
0 0

59

(4.3)

rest of the affine transforms. The inverse of a translation matrix is T~1(t) = T(—t),
that is, the vector t is negated.

60 4. Transforms

T(5,2,0)

Figure 4.1. The square on the left is transformed with a translation matrix T(5,2,0), whereby the
square is moved 5 distance units to the right and 2 upward.

We should mention at this point that another valid notational scheme sometimes
seen in computer graphics uses matrices with translation vectors in the bottom row.
For example, DirectX uses this form. In this scheme, the order of matrices would
be reversed, i.e., the order of application would read from left to right. Vectors and
matrices in this notation are said to be in row-major form since the vectors are rows.
In this book, we use column-major form. Whichever is used, this is purely a notational
difference. When the matrix is stored in memory, the last four values of the sixteen
are the three translation values followed by a one.

4.1.2 Rotation

A rotation transform rotates a vector (position or direction) by a given angle around
a given axis passing through the origin. Like a translation matrix, it is a rigid-body
transform, i.e., it preserves the distances between points transformed, and preserves
handedness (i.e., it never causes left and right to swap sides). These two types of
transforms are clearly useful in computer graphics for positioning and orienting ob-
jects. An orientation matriz is a rotation matrix associated with a camera view or
object that defines its orientation in space, i.e., its directions for up and forward.

In two dimensions, the rotation matrix is simple to derive. Assume that we have
a vector, v = (vg,vy), which we parameterize as v = (vg,vy) = (rcosd,rsinf). If
we were to rotate that vector by ¢ radians (counterclockwise), then we would get
u = (rcos(0 + ¢),rsin(6 + ¢)). This can be rewritten as

_ (r cos(f + gb)) -~ (r(cos 6 cos ¢ — sin 0 sin QS))

rsin(0 + ¢) 7(sin 6 cos ¢ + cos 0 sin @)
[cos¢p —sing rcosf\ (4.4)
- (sing cos¢) (rsin@) =R({¢)v,
—_——
R(¢) v

where we used the angle sum relation to expand cos(d + ¢) and sin(f + ¢). In three
dimensions, commonly used rotation matrices are R, (¢), Ry(¢), and R(¢), which

4.1. Basic Transforms 61

rotate an entity ¢ radians around the x-, y-, and z-axes, respectively. They are given
by Equations 4.5—4.7:

1 0 0 0
| 0 cos¢ —sing O

R.(¢) = 0 sing cos¢ 0 |’ (4.5)
0 0 0 1
cos¢p 0 sing 0
0 1 0 0

R,(¢) = —sing 0 cos¢p 0 |’ (4.6)
0 0 0 1
cos¢ —sing 0 O
sin cos 0 0

R.(¢) = 0 ¢ 0 ¢ 10 (4.7)
0 0 0 1

If the bottom row and rightmost column are deleted from a 4 x 4 matrix, a 3 x 3
matrix is obtained. For every 3 x 3 rotation matrix, R, that rotates ¢ radians around
any axis, the trace (which is the sum of the diagonal elements in a matrix) is constant
independent of the axis, and is computed as [997]:

tr(R) =1+ 2cos¢. (4.8)

The effect of a rotation matrix may be seen in Figure 4.4 on page 65. What char-
acterizes a rotation matrix, R;(¢), besides the fact that it rotates ¢ radians around
axis 1, is that it leaves all points on the rotation axis, ¢, unchanged. Note that R will
also be used to denote a rotation matrix around any axis. The axis rotation matrices
given above can be used in a series of three transforms to perform any arbitrary axis
rotation. This procedure is discussed in Section 4.2.1. Performing a rotation around
an arbitrary axis directly is covered in Section 4.2.4.

All rotation matrices have a determinant of one and are orthogonal. This also
holds for concatenations of any number of these transforms. There is another way to
obtain the inverse: R;l(gzﬁ) = R;(—¢), i.e., rotate in the opposite direction around
the same axis.

ExamMpPLE: ROTATION AROUND A POINT. Assume that we want to rotate an object
by ¢ radians around the z-axis, with the center of rotation being a certain point,
p. What is the transform? This scenario is depicted in Figure 4.2. Since a rotation
around a point is characterized by the fact that the point itself is unaffected by the
rotation, the transform starts by translating the object so that p coincides with the
origin, which is done with T(—p). Thereafter follows the actual rotation: R,(¢).
Finally, the object has to be translated back to its original position using T(p). The
resulting transform, X, is then given by

X =T(p)R:(¢)T(—p). (4.9)

Note the order of the matrices above. O

62 4. Transforms

T(-p) R (n/4) T(p)

@
e © x

Figure 4.2. Example of rotation around a specific point p.

4.1.3 Scaling

A scaling matrix, S(s) = S(sy, Sy,), scales an entity with factors s, sy, and s,
along the z-, y-, and z-directions, respectively. This means that a scaling matrix can
be used to enlarge or diminish an object. The larger the s;, ¢ € {x,y, z}, the larger the
scaled entity gets in that direction. Setting any of the components of s to 1 naturally
avoids a change in scaling in that direction. Equation 4.10 shows S:

sz 0 0 0
0 s, 0 O

S(s) = 0 6’ s, 0 (4.10)
0 0 0 1

Figure 4.4 on page 65 illustrates the effect of a scaling matrix. The scaling operation
is called uniform if s, = s, = s, and nonuniform otherwise. Sometimes the terms
isotropic and anisotropic scaling are used instead of uniform and nonuniform. The
inverse is S71(s) = S(1/s4,1/sy,1/52).

Using homogeneous coordinates, another valid way to create a uniform scaling
matrix is by manipulating matrix element at position (3,3), i.e., the element at the
lower right corner. This value affects the w-component of the homogeneous coordinate,
and so scales every coordinate of a point (not direction vectors) transformed by the
matrix. For example, to scale uniformly by a factor of 5, the elements at (0,0), (1,1),
and (2,2) in the scaling matrix can be set to 5, or the element at (3,3) can be set to
1/5. The two different matrices for performing this are shown below:

500 0 100 0

o 5 0 0 , o1 0 o

5=10 0 5 o] S=1lo01 o (4.11)
000 1 00 0 1/5

In contrast to using S for uniform scaling, using S’ must always be followed by ho-
mogenization. This may be inefficient, since it involves divides in the homogenization

4.1. Basic Transforms 63

process; if the element at the lower right (position (3, 3)) is 1, no divides are necessary.
Of course, if the system always does this division without testing for 1, then there is
no extra cost.

A negative value on one or three of the components of s gives a type of reflection
matriz, also called a mirror matriz. If only two scale factors are —1, then we will rotate
7 radians. It should be noted that a rotation matrix concatenated with a reflection
matrix is also a reflection matrix. Hence, the following is a reflection matrix:

(i) 2)=(h o) e
—_—

rotation reflection

Reflection matrices usually require special treatment when detected. For example,
a triangle with vertices in a counterclockwise order will get a clockwise order when
transformed by a reflection matrix. This order change can cause incorrect lighting and
backface culling to occur. To detect whether a given matrix reflects in some manner,
compute the determinant of the upper left 3 x 3 elements of the matrix. If the value
is negative, the matrix is reflective. For example, the determinant of the matrix in
Equation 4.12is 0-0 — (-1) - (1) = —1.

EXAMPLE: SCALING IN A CERTAIN DIRECTION. The scaling matrix S scales along
only the z-, y-, and z-axes. If scaling should be performed in other directions, a
compound transform is needed. Assume that scaling should be done along the axes
of the orthonormal, right-oriented vectors £, f¥, and f?. First, construct the matrix
F, to change the basis, as below:

£2 fY f2 0
F:<0 0 0 1). (4.13)

The idea is to make the coordinate system given by the three axes coincide with the
standard axes, then use the standard scaling matrix, and then transform back. The
first step is carried out by multiplying with the transpose, i.e., the inverse, of F. Then
the actual scaling is done, followed by a transform back. The transform is shown in
Equation 4.14:

X = FS(s)F’. (4.14)

O

4.1.4 Shearing

Another class of transforms is the set of shearing matrices. These can, for example, be
used in games to distort an entire scene to create a psychedelic effect or otherwise warp
a model’s appearance. There are six basic shearing matrices, and they are denoted
H,,(s), Hy.(s), Hy(s), Hy.(s), H.;(s), and H,,(s). The first subscript is used
to denote which coordinate is being changed by the shear matrix, while the second

64 4. Transforms

H..(5)

1 1

Figure 4.3. The effect of shearing the unit square with H (s). Both the y- and z-values are unaffected
by the transform, while the z-value is the sum of the old z-value and s multiplied by the z-value,
causing the square to become slanted. This transform is area-preserving, which can be seen in that
the dashed areas are the same.

subscript indicates the coordinate which does the shearing. An example of a shear
matrix, H,,(s), is shown in Equation 4.15. Observe that the subscript can be used to
find the position of the parameter s in the matrix below; the z (whose numeric index
is 0) identifies row zero, and the z (whose numeric index is 2) identifies column two,
and so the s is located there:

H,.(s) = (4.15)

SO O
o o= O
SO~ O W
_ o o o

The effect of multiplying this matrix with a point p yields a point: (p,+sp. py p)"
Graphically, this is shown for the unit square in Figure 4.3. The inverse of H,;(s)
(shearing the ith coordinate with respect to the jth coordinate, where ¢ # j), is
generated by shearing in the opposite direction, that is, Hz_jl(s) =H,;;(—s).

You can also use a slightly different kind of shear matrix:

H,,(s,t) = (4.16)

co o~
co~o
O~ ~+~ O
— o oo

Here, however, both subscripts are used to denote that these coordinates are to be
sheared by the third coordinate. The connection between these two different kinds
of descriptions is Hj;(s,t) = Hix(s)H,x(t), where k is used as an index to the third
coordinate. The right matrix to use is a matter of taste. Finally, it should be noted
that since the determinant of any shear matrix |H| = 1, this is a volume-preserving
transformation, which also is illustrated in Figure 4.3.

4.1. Basic Transforms 65

S(s) R.(7/6)

. XO/X

Figure 4.4. This illustrates the order dependency when multiplying matrices. In the top row, the
rotation matrix R (7/6) is applied followed by a scaling, S(s), where s = (2,0.5,1). The composite
matrix is then S(s)R.(7/6). In the bottom row, the matrices are applied in the reverse order, yielding
R.(7/6)S(s). The results are clearly different. It generally holds that MIN # NM, for arbitrary
matrices M and N.

4.1.5 Concatenation of Transforms

Due to the noncommutativity of the multiplication operation on matrices, the order
in which the matrices occur matters. Concatenation of transforms is therefore said to
be order-dependent.

As an example of order dependency, consider two matrices, S and R. S(2,0.5,1)
scales the z-component by a factor two and the y-component by a factor 0.5. R, (7/6)
rotates /6 radians counterclockwise around the z-axis (which points outward from
page of this book in a right-handed coordinate system). These matrices can be mul-
tiplied in two ways, with the results being entirely different. The two cases are shown
in Figure 4.4.

The obvious reason to concatenate a sequence of matrices into a single one is to
gain efficiency. For example, imagine that you have a game scene that has several
million vertices, and that all objects in the scene must be scaled, rotated, and finally
translated. Now, instead of multiplying all vertices with each of the three matrices,
the three matrices are concatenated into a single matrix. This single matrix is then
applied to the vertices. This composite matrix is C = TRS. Note the order here.
The scaling matrix, S, should be applied to the vertices first, and therefore appears
to the right in the composition. This ordering implies that TRSp = (T(R(Sp))),
where p is a point to be transformed. Incidentally, TRS is the order commonly used
by scene graph systems.

66 4. Transforms

It is worth noting that while matrix concatenation is order-dependent, the matrices
can be grouped as desired. For example, say that with TRSp you would like to
compute the rigid-body motion transform TR once. It is valid to group these two
matrices together, (TR)(Sp), and replace with the intermediate result. Thus, matrix
concatenation is associative.

4.1.6 The Rigid-Body Transform

When a person grabs a solid object, say a pen from a table, and moves it to another
location, perhaps to a shirt pocket, only the object’s orientation and location change,
while the shape of the object generally is not affected. Such a transform, consisting
of concatenations of only translations and rotations, is called a rigid-body transform.
It has the characteristic of preserving lengths, angles, and handedness.

Any rigid-body matrix, X, can be written as the concatenation of a translation
matrix, T(t), and a rotation matrix, R. Thus, X has the appearance of the matrix in
Equation 4.17:

Too Tol To2

r r r
T20 T21 T22

z
0 0 0 1

The inverse of X is computed as X! = (T(t)R)™! = R7IT(t)"! = RTT(-t).
Thus, to compute the inverse, the upper left 3 x 3 matrix of R is transposed, and the
translation values of T change sign. These two new matrices are multiplied together
in opposite order to obtain the inverse. Another way to compute the inverse of X is
to consider R (making R appear as 3 X 3 matrix) and X in the following notation
(notation described on page 6 with Equation 1.2):

xT

<

t
t
. (4.17)

r] (4.18)

R ¢
(o 1)

where r o means the first column of the rotation matrix (i.e., the comma indicates any
value from 0 to 2, while the second subscript is 0) and ra is the first row of the column
matrix. Note that 0 is a 3 x 1 column vector filled with zeros. Some calculations yield
the inverse in the expression shown in Equation 4.19:

_pT
x1<r87 ré’ FOQ’ Iit). (4.19)

4.1. Basic Transforms 67

Figure 4.5. The geometry involved in computing a transform that orients the camera at c, with up
vector u’, to look at the point 1. For that purpose, we need to compute r, u, and v.

EXAMPLE: ORIENTING THE CAMERA. A common task in graphics is to orient the
camera so that it looks at a certain position. Here we will present what gluLookAt ()
(from the OpenGL Utility Library, GLU for short) does. Even though this function
call itself is not used much nowadays, the task remains common. Assume that the
camera is located at c, that we want the camera to look at a target 1, and that a given
up direction of the camera is u’, as illustrated in Figure 4.5. We want to compute a
basis consisting of three vectors, {r,u,v}. We start by computing the view vector as
v = (c—1)/||c—1||, i.e., the normalized vector from the target to the camera position.
A vector looking to the “right” can then be computed as r = —(v x u’)/||v x u/||.
The u’ vector is often not guaranteed to be pointing precisely up, so the final up
vector is another cross product, u = v X r, which is guaranteed to be normalized
since both v and r are normalized and perpendicular by construction. In the camera
transform matrix, M, that we will construct, the idea is to first translate everything
so the camera position is at the origin, (0,0,0), and then change the basis so that r is
aligned with (1,0,0), u with (0,1,0), and v with (0,0, 1). This is done by

ry Ty T, 0 1 0 0 —t, Ty Ty T, —t-r
| ur uy wuy O 01 0 —ty]| |uz uy u, —t-u
M = vy vy v, O 00 1 —t.f| |va vy v —t-v]’ (4.20)
0O 0 o0 1 0 0 O 1 0 0 O 1
change of basis translation

Note that when concatenating the translation matrix with the change of basis matrix,
the translation —t is to the right since it should be applied first. One way to remember
where to put the components of r, u, and v is the following. We want r to become
(1,0,0), so when multiplying a change of basis matrix with (1,0,0), we can see that
the first row in the matrix must be the elements of r, since r-r = 1. Furthermore, the
second row and the third row must consist of vectors that are perpendicular to r, i.e.,
r-x = (0. When applying the same thinking also to u and v, we arrive at the change
of basis matrix above. O

68 4. Transforms

y \ incorrect \ correct
A A

triangle

normal

e
scaled by 0.5 along the x dimension

\

Y
=

Figure 4.6. On the left is the original geometry, a triangle and its normal shown from the side. The
middle illustration shows what happens if the model is scaled along the z- axis by 0.5 and the normal
uses the same matrix. The right figure shows the proper transform of the normal.

4.1.7 Normal Transform

A single matrix can be used to consistently transform points, lines, triangles, and
other geometry. The same matrix can also transform tangent vectors following along
these lines or on the surfaces of triangles. However, this matrix cannot always be used
to transform one important geometric property, the surface normal (and the vertex
lighting normal). Figure 4.6 shows what can happen if this same matrix is used.

Instead of multiplying by the matrix itself, the proper method is to use the trans-
pose of the matrix’s adjoint [227]. Computation of the adjoint is described in our
online linear algebra appendix. The adjoint is always guaranteed to exist. The nor-
mal is not guaranteed to be of unit length after being transformed, so typically needs
to be normalized.

The traditional answer for transforming the normal is that the transpose of the
inverse is computed [1794]. This method normally works. The full inverse is not
necessary, however, and occasionally cannot be created. The inverse is the adjoint
divided by the original matrix’s determinant. If this determinant is zero, the matrix
is singular, and the inverse does not exist.

Even computing just the adjoint for a full 4 x 4 matrix can be expensive, and is
usually not necessary. Since the normal is a vector, translation will not affect it. Fur-
thermore, most modeling transforms are affine. They do not change the w-component
of the homogeneous coordinate passed in, i.e., they do not perform projection. Un-
der these (common) circumstances, all that is needed for normal transformation is to
compute the adjoint of the upper left 3 x 3 components.

Often even this adjoint computation is not needed. Say we know the transform
matrix is composed entirely of a concatenation of translations, rotations, and uniform
scaling operations (no stretching or squashing). Translations do not affect the normal.
The uniform scaling factors simply change the length of the normal. What is left is
a series of rotations, which always yields a net rotation of some sort, nothing more.

4.1. Basic Transforms 69

The transpose of the inverse can be used to transform normals. A rotation matrix is
defined by the fact that its transpose is its inverse. Substituting to get the normal
transform, two transposes (or two inverses) give the original rotation matrix. Putting
it all together, the original transform itself can also be used directly to transform
normals under these circumstances.

Finally, fully renormalizing the normal produced is not always necessary. If only
translations and rotations are concatenated together, the normal will not change length
when transformed by the matrix, so no renormalizing is needed. If uniform scalings
are also concatenated, the overall scale factor (if known, or extracted—Section 4.2.3)
can be used to directly normalize the normals produced. For example, if we know
that a series of scalings were applied that makes the object 5.2 times larger, then
normals transformed directly by this matrix are renormalized by dividing them by
5.2. Alternately, to create a normal transform matrix that would produce normalized
results, the original matrix’s 3 x 3 upper left could be divided by this scale factor once.

Note that normal transforms are not an issue in systems where, after transforma-
tion, the surface normal is derived from the triangle (e.g., using the cross product of
the triangle’s edges). Tangent vectors are different than normals in nature, and are
always directly transformed by the original matrix.

4.1.8 Computation of Inverses

Inverses are needed in many cases, for example, when changing back and forth between
coordinate systems. Depending on the available information about a transform, one
of the following three methods of computing the inverse of a matrix can be used:

e If the matrix is a single transform or a sequence of simple transforms with
given parameters, then the matrix can be computed easily by “inverting the
parameters” and the matrix order. For example, if M = T(t)R.(¢), then M1 =
R(—¢)T(—t). This is simple and preserves the accuracy of the transform, which
is important when rendering huge worlds [1381].

e If the matrix is known to be orthogonal, then M~ = M| i.e., the transpose is
the inverse. Any sequence of rotations is a rotation, and so is orthogonal.

e If nothing is known, then the adjoint method, Cramer’s rule, LU decomposition,
or Gaussian elimination could be used to compute the inverse. Cramer’s rule
and the adjoint method are generally preferable, as they have fewer branch op-
erations; “if” tests are good to avoid on modern architectures. See Section 4.1.7
on how to use the adjoint to invert transform normals.

The purpose of the inverse computation can also be taken into account when optimiz-
ing. For example, if the inverse is to be used for transforming vectors, then only the
3 x 3 upper left part of the matrix normally needs to be inverted (see the previous
section).

70 4. Transforms

4.2 Special Matrix Transforms and Operations

In this section, several matrix transforms and operations that are essential to real-time
graphics will be introduced and derived. First, we present the Euler transform (along
with its extraction of parameters), which is an intuitive way to describe orientations.
Then we touch upon retrieving a set of basic transforms from a single matrix. Finally,
a method is derived that rotates an entity around an arbitrary axis.

4.2.1 The Euler Transform

This transform is an intuitive way to construct a matrix to orient yourself (i.e., the
camera) or any other entity in a certain direction. Its name comes from the great
Swiss mathematician Leonhard Euler (1707-1783).

First, some kind of default view direction must be established. Most often it
lies along the negative z-axis with the head oriented along the y-axis, as depicted in
Figure 4.7. The Euler transform is the multiplication of three matrices, namely the
rotations shown in the figure. More formally, the transform, denoted E, is given by
Equation 4.21:

E(h,p,r) = RZ(T)Rm(p)Ry(h) (4.21)

The order of the matrices can be chosen in 24 different ways [1636]; we present this one
because it is commonly used. Since E is a concatenation of rotations, it is also clearly
orthogonal. Therefore its inverse can be expressed as E71 = ET = (R, R,R,)T =
RSRIRZT, although it is, of course, easier to use the transpose of E directly.

The Euler angles h, p, and r represent in which order and how much the head,
pitch, and roll should rotate around their respective axes. Sometimes the angles are
all called “rolls,” e.g., our “head” is the “y-roll” and our “pitch” is the “z-roll.” Also,
“head” is sometimes known as “yaw,” such as in flight simulation.

This transform is intuitive and therefore easy to discuss in layperson’s language.
For example, changing the head angle makes the viewer shake their head “no,” chang-
ing the pitch makes them nod, and rolling makes them tilt their head sideways. Rather
than talking about rotations around the z-, y-, and z-axes, we talk about altering the
head, pitch, and roll. Note that this transform can orient not only the camera, but
also any object or entity as well. These transforms can be performed using the global
axes of the world space or relative to a local frame of reference.

It is important to note that some presentations of Euler angles give the z-axis
as the initial up direction. This difference is purely a notational change, though a
potentially confusing one. In computer graphics there is a division in how the world is
regarded and thus how content is formed: y-up or z-up. Most manufacturing processes,
including 3D printing, consider the z-direction to be up in world space; aviation and
sea vehicles consider —z to be up. Architecture and GIS normally use z-up, as a
building plan or map is two-dimensional, z and y. Media-related modeling systems
often consider the y-direction as up in world coordinates, matching how we always
describe a camera’s screen up direction in computer graphics. The difference between

4.2. Special Matrix Transforms and Operations 71

y
head

pitch _ ;-*' "f roll

Figure 4.7. The Euler transform and how it relates to the way you change the head, pitch, and roll
angles. The default view direction is shown, looking along the negative z-axis with the up direction
along the y-axis.

these two world up vector choices is just a 90° rotation (and possibly a reflection)
away, but not knowing which is assumed can lead to problems. In this volume we use
a world direction of y-up unless otherwise noted.

We also want to point out that the camera’s up direction in its view space has
nothing in particular to do with the world’s up direction. Roll your head and the
view is tilted, with its world-space up direction differing from the world’s. As another
example, say the world uses y-up and our camera looks straight down at the terrain
below, a bird’s eye view. This orientation means the camera has pitched 90° forward,
so that its up direction in world space is (0,0,—1). In this orientation the camera
has no y-component and instead considers —z to be up in world space, but “y is up”
remains true in view space, by definition.

While useful for small angle changes or viewer orientation, Euler angles have some
other serious limitations. It is difficult to work with two sets of Euler angles in combi-

72 4. Transforms

nation. For example, interpolation between one set and another is not a simple matter
of interpolating each angle. In fact, two different sets of Euler angles can give the same
orientation, so any interpolation should not rotate the object at all. These are some
of the reasons that using alternate orientation representations such as quaternions,
discussed later in this chapter, are worth pursuing. With Euler angles, you can also
get something called gimbal lock, which will be explained next in Section 4.2.2.

4.2.2 Extracting Parameters from the Euler Transform

In some situations, it is useful to have a procedure that extracts the Euler parameters,
h, p, and r, from an orthogonal matrix. This procedure is shown in Equation 4.22:

€00 €01 €02
E(h,p,1) = el €11 €12 =R.(r)Rz(p)Ry(h). (4.22)
€20 €21 €22

Here we abandoned the 4 x 4 matrices for 3 x 3 matrices, since the latter provide all

the necessary information for a rotation matrix. That is, the rest of the equivalent

4 x 4 matrix always contains zeros and a one in the lower right position.
Concatenating the three rotation matrices in Equation 4.22 yields

sinrcosh+cosrsinpsinh cosrcosp sinrsinh—cosrsinpcosh

cosrcosh—sinrsinpsinh —sinrcosp cosrsinh+sinrsinpcosh
E= o (4.23)
—cospsinh sinp cospcosh

From this it is apparent that the pitch parameter is given by sinp = ep;. Also, dividing
eo1 by e11, and similarly dividing esg by ego, gives rise to the following extraction
equations for the head and roll parameters:

€01 —sinr €20 —sinh

= =—tanr and — = = —tanh. (4.24)
€11 cosT €22 cosh

Thus, the Euler parameters h (head), p (pitch), and r (roll) are extracted from a matrix
E using the function atan2(y,x) (see page 8 in Chapter 1) as in Equation 4.25:

h = atan2(—620, 622),
p = arcsin(es1), (4.25)
r = atan2(—eq1, €11)-

However, there is a special case we need to handle. If cosp = 0, we have gimbal lock
(Section 4.2.2) and rotation angles r and h will rotate around the same axis (though
possibly in different directions, depending on whether the p rotation angle was —m /2
or m/2), so only one angle needs to be derived. If we arbitrarily set h = 0 [1769],
we get
cosrT sinrcosp sinrsinp
E = |sinr cosrcosp —cosrsinp |. (4.26)
0 sinp cosp

4.2. Special Matrix Transforms and Operations 73

Since p does not affect the values in the first column, when cosp = 0 we can use
sinr/cosr = tanr = e1g/egp, which gives r = atan2(eyo, eqo)-

Note that from the definition of arcsin, —7/2 < p < 7/2, which means that if
E was created with a value of p outside this interval, the original parameter cannot
be extracted. That h, p, and r are not unique means that more than one set of
the Euler parameters can be used to yield the same transform. More about Euler
angle conversion can be found in Shoemake’s 1994 article [1636]. The simple method
outlined above can result in problems with numerical instability, which is avoidable
at some cost in speed [1362].

When you use Euler transforms, something called gimbal lock may occur [499, 1633].
This happens when rotations are made so that one degree of freedom is lost. For
example, say the order of transforms is x/y/z. Consider a rotation of 7/2 around
just the y-axis, the second rotation performed. Doing so rotates the local z-axis to be
aligned with the original z-axis, so that the final rotation around z is redundant.

Mathematically, we have already seen gimbal lock in Equation 4.26, where we
assumed cosp = 0, i.e., p = £7/2 + 27k, where k is an integer. With such a value
of p, we have lost one degree of freedom since the matrix only depends on one angle,
r 4+ h or r — h (but not both at the same time).

While Euler angles are commonly presented as being in z/y/z order in modeling
systems, a rotation around each local axis, other orderings are feasible. For example,
z/x/y is used in animation and z/x/z in both animation and physics. All are valid
ways of specifying three separate rotations. This last ordering, z/x/z, can be superior
for some applications, as only when rotating 7 radians around z (a half-rotation)
does gimbal lock occur. There is no perfect sequence that avoids gimbal lock. Euler
angles nonetheless are commonly used, as animators prefer curve editors to specify
how angles change over time [499].

ExAMPLE: CONSTRAINING A TRANSFORM. Imagine you are holding a (virtual)
wrench that is gripping a bolt. To get the bolt into place, you have to rotate the
wrench around the z-axis. Now assume that your input device (mouse, VR gloves,
space-ball, etc.) gives you a rotation matrix, i.e., a rotation, for the movement of the
wrench. The problem is that it is likely to be wrong to apply this transform to the
wrench, which should rotate around only the z-axis. To restrict the input transform,
called P, to be a rotation around the z-axis, simply extract the Euler angles, h, p, and
r, using the method described in this section, and then create a new matrix R (p).
This is then the sought-after transform that will rotate the wrench around the z-axis
(if P now contains such a movement). O

4.2.3 Matrix Decomposition

Up to this point we have been working under the assumption that we know the origin
and history of the transformation matrix we are using. This is often not the case.

74 4. Transforms

For example, nothing more than a concatenated matrix may be associated with some
transformed object. The task of retrieving various transforms from a concatenated
matrix is called matriz decomposition.

There are many reasons to retrieve a set of transformations. Uses include:

e Extracting just the scaling factors for an object.

e Finding transforms needed by a particular system. (For example, some systems
may not allow the use of an arbitrary 4 x 4 matrix.)

e Determining whether a model has undergone only rigid-body transforms.

e Interpolating between keyframes in an animation where only the matrix for the
object is available.

e Removing shears from a rotation matrix.

We have already presented two decompositions, those of deriving the translation
and rotation matrix for a rigid-body transformation (Section 4.1.6) and deriving the
Euler angles from an orthogonal matrix (Section 4.2.2).

As we have seen, it is trivial to retrieve the translation matrix, as we simply need
the elements in the last column of the 4 x 4 matrix. We can also determine if a
reflection has occurred by checking whether the determinant of the matrix is negative.
To separate out the rotation, scaling, and shears takes more determined effort.

Fortunately, there are several articles on this topic, as well as code available online.
Thomas [1769] and Goldman [552, 553] each present somewhat different methods for
various classes of transformations. Shoemake [1635] improves upon their techniques
for affine matrices, as his algorithm is independent of frame of reference and attempts
to decompose the matrix to obtain rigid-body transforms.

4.2.4 Rotation about an Arbitrary Axis

Sometimes it is convenient to have a procedure that rotates an entity by some angle
around an arbitrary axis. Assume that the rotation axis, r, is normalized and that a
transform should be created that rotates a radians around r.

To do this, we first transform to a space where the axis around which we want to
rotate is the x-axis. This is done with a rotation matrix, called M. Then the actual
rotation is performed, and we transform back using M1 [314]. This procedure is
illustrated in Figure 4.8.

To compute M, we need to find two axes that are orthonormal both to r and to
each other. We concentrate on finding the second axis, s, knowing that the third axis,
t, will be the cross product of the first and the second axis, t = r x s. A numerically
stable way to do this is to find the smallest component (in absolute value) of r, and
set it to 0. Swap the two remaining components, and then negate the first of them

4.2. Special Matrix Transforms and Operations 75

Yy y y
S
r M M7’ r
S V" r ' S
X — X X
t
4 t z RY(0[) z t

Figure 4.8. Rotation about an arbitrary axis, r, is accomplished by finding an orthonormal basis
formed by r, s, and t. We then align this basis with the standard basis so that r is aligned with the
z-axis. The rotation around the x-axis is performed there, and finally we transform back.

(in fact, either of the nonzero components could be negated). Mathematically, this is
expressed as [784]:

(0, =7z, my), Af |ra| <fry| and |re| < |rs],

s=9 (=7z,0,72), if [ry| <l|rz| and |ry[<|r],

(—Ty,Tm,0)7 lf |TZ| S |TI| and |TZ| S |Ty‘v (427)
s =s/|lsl],
t=rxs.

This guarantees that s is orthogonal (perpendicular) to r, and that (r,s,t) is an
orthonormal basis. Frisvad [496] presents a method without any branches in the code,
which is faster but has lower accuracy. Max [1147] and Duff et al. [388] improve the
accuracy of Frisvad’s method. Whichever technique is employed, these three vectors
are used to create a rotation matrix:

M=|[sT]|. (4.28)

This matrix transforms the vector r into the z-axis, s into the y-axis, and t into the
z-axis. So, the final transform for rotating o radians around the normalized vector r
is then
X = M"R, (a)M. (4.29)

In words, this means that first we transform so that r is the z-axis (using M), then
we rotate « radians around this z-axis (using R, («)), and then we transform back
using the inverse of M, which in this case is M” because M is orthogonal.

Another method for rotating around an arbitrary, normalized axis r by ¢ radians
has been presented by Goldman [550]. Here, we simply present his transform:

R =

cos ¢ + (1—cos ¢)r2 (1—cos @)rery—rosing (1—cos@)ryr.+rysing (4.30)
(1—cos ¢)rary+7r28ind cos¢ + (1—cos¢)ry (1—cos @)ryr. —ry sin ¢
(1—cos @)rars—rysing (1—cos@)ryr.+resing cos ¢+ (1—cos ¢)r?

76 4. Transforms

In Section 4.3.2, we present yet another method for solving this problem, using quater-
nions. Also in that section are more efficient algorithms for related problems, such as
rotation from one vector to another.

4.3 Quaternions

Although quaternions were invented back in 1843 by Sir William Rowan Hamilton
as an extension to the complex numbers, it was not until 1985 that Shoemake [1633]
introduced them to the field of computer graphics.! Quaternions are used to represent
rotations and orientations. They are superior to both Euler angles and matrices in
several ways. Any three-dimensional orientation can be expressed as a single rota-
tion around a particular axis. Given this axis & angle representation, translating to
or from a quaternion is straightforward, while Euler angle conversion in either direc-
tion is challenging. Quaternions can be used for stable and constant interpolation of
orientations, something that cannot be done well with Euler angles.

A complex number has a real and an imaginary part. Each is represented by two
real numbers, the second real number being multiplied by +/—1. Similarly, quater-
nions have four parts. The first three values are closely related to axis of rotation,
with the angle of rotation affecting all four parts (more about this in Section 4.3.2).
Each quaternion is represented by four real numbers, each associated with a differ-
ent part. Since quaternions have four components, we choose to represent them as
vectors, but to differentiate them, we put a hat on them: q. We begin with some
mathematical background on quaternions, which is then used to construct a variety
of useful transforms.

4.3.1 Mathematical Background

We start with the definition of a quaternion.

Definition. A quaternion q can be defined in the following ways, all equivalent.

4= (Qu, qw) = iqx + jay + k¢ + qw = Qv + qu,

AQv = iqz + jqy + kq. = (qma Gy, CIZ)a (4'31)
-2

P?=72=k>=—1, jk=—kj=1i, ki=—ik=3j, ij=—ji=k.
The variable ¢, is called the real part of a quaternion, q. The imaginary part is gy,
and 4, j, and k are called imaginary units. |

For the imaginary part, q,, we can use all the normal vector operations, such as
addition, scaling, dot product, cross product, and more. Using the definition of the
quaternion, the multiplication operation between two quaternions, q and r, is derived

'In fairness, Robinson [1502] used quaternions in 1958 for rigid-body simulations.

4.3. Quaternions 77

as shown below. Note that the multiplication of the imaginary units is noncommuta-
tive.

Multiplication: §f = (ig, + jgy + kq. + qu) (iry + jry + kr, +ry)

i(qyrs — @7y + Twls + quTz)

+ 3(2re = qurz + Ty + qury) (4.32)
+ E(qury — @7z + Twq: + quT:)

+ QuTw — @aTz — QyTy — @272

= (qv X Ty + Ty + Qulv, QuwTw — dov - rv)~

As can be seen in this equation, we use both the cross product and the dot product
to compute the multiplication of two quaternions.

Along with the definition of the quaternion, the definitions of addition, conjugate,
norm, and an identity are needed:

Addition: qQ+71 = (dv, qw) + (o, 7w) = (Qp + Tv, Qu + Tw)-
ConjUgate: éf'< = (qu%u)* = (7qv7Qw)-

Norm: n(q) = /aqq* = \/ﬂ =y - Qv + ¢, (4.33)

:\/q%+q§+q3+qﬁ,~

Identity: i=(0,1).

When n(q) = v/aq* is simplified (result shown above), the imaginary parts cancel
out and only a real part remains. The norm is sometimes denoted ||g|| = n(q) [1105].
A consequence of the above is that a multiplicative inverse, denoted by ¢!, can be
derived. The equation ¢ '¢q = g ! = 1 must hold for the inverse (as is common for
a multiplicative inverse). We derive a formula from the definition of the norm:

A Ak

AN2 Ak qq
n(q)” =qq" <= —— = 1. 4.34
(@ o (434)
This gives the multiplicative inverse as shown below:
1
Inverse: qgl=—q". 4.35
n(@)? 439

The formula for the inverse uses scalar multiplication, which is an operation derived
from the multiplication seen in Equation 4.3.1: sq = (0, s)(qv, quw) = (5Quv, Sqw),
and qs = (qu, Gw)(0, 8) = (8Qy, S$¢u), which means that scalar multiplication is
commutative: sq = qs = (5Qu, SqGuw)-

78 4. Transforms

The following collection of rules are simple to derive from the definitions:

Conjugate rules: (@) =q,
(@+1)" =q" +17, (4.36)
(qr)* =1*q".
Norm rules: n(q*) = n(q),
. o (4.37)
n(qr) = n(q)n(r)
Laws of Multiplication:
Linearity: p(sq + t1) = spq + tpt,
(4.38)

(sp +tq)f = spt + tqr.

Associativity: p(ar) = (pa)r.
A unit quaternion, q = (qy, qw), is such that n(q) = 1. From this it follows that
q may be written as
g = (sin puy, cos @) = sin gu, + cos ¢, (4.39)
for some three-dimensional vector ug, such that ||uy|| = 1, because

n(q) = n(sin pu,, cos¢) = \/sin2 d(u, - ug) + cos? ¢

=/sin® ¢+ cos2 ¢ =1 (4.40)

if and only if u,-u, = 1 = [|uy||?>. As will be seen in the next section, unit quaternions
are perfectly suited for creating rotations and orientations in a most efficient way. But
before that, some extra operations will be introduced for unit quaternions.

For complex numbers, a two-dimensional unit vector can be written as cos¢ +
isin ¢ = e'?. The equivalent for quaternions is

q = singuy + cos ¢ = ePla, (4.41)
The log and the power functions for unit quaternions follow from Equation 4.41:

Logarithm: log(q) = log(e¢“q) = ¢uy,
(4.42)
Power: q' = (singu, + cos @) = e?™ = sin(¢t)u, + cos(¢t).

4.3. Quaternions 79

Uq
'
Figure 4.9. Tllustration of the rotation transform represented by a unit quaternion, q =

(sin pug, cos¢). The transform rotates 2¢ radians around the axis ug.

4.3.2 Quaternion Transforms

We will now study a subclass of the quaternion set, namely those of unit length, called
unit quaternions. The most important fact about unit quaternions is that they can
represent any three-dimensional rotation, and that this representation is extremely
compact and simple.

Now we will describe what makes unit quaternions so useful for rotations and
orientations. First, put the four coordinates of a point or vector p = (px py P> Pw)’
into the components of a quaternion p, and assume that we have a unit quaternion
g = (singuy, cos¢). One can prove that

apq (4.43)

rotates p (and thus the point p) around the axis u, by an angle 2¢. Note that since
q is a unit quaternion, §~! = q*. See Figure 4.9.

Any nonzero real multiple of q also represents the same transform, which means
that q and —q represent the same rotation. That is, negating the axis, u,, and the
real part, q,,, creates a quaternion that rotates exactly as the original quaternion does.
It also means that the extraction of a quaternion from a matrix can return either q
or —q.

Given two unit quaternions, q and r, the concatenation of first applying q and then
I to a quaternion, p (which can be interpreted as a point p), is given by Equation 4.44:

Hapa")i = (FQ)p(Fa)” = epe. (4.44)

Here, ¢ = 1q is the unit quaternion representing the concatenation of the unit quater-
nions q and r.

Matrix Conversion
Since one often needs to combine several different transforms, and most of them are in
matrix form, a method is needed to convert Equation 4.43 into a matrix. A quaternion,

80 4. Transforms

4, can be converted into a matrix MY, as expressed in Equation 4.45 [1633, 1634]:
1—s(gy +a2) s(qwty — qwz) 5(qwq + quway)

_ 2 2
Mo = | 50ty +awez) 1= s(a; +a2) @quwm (4.45)
S(QzQZ - Qwa) S(QyQZ + QwQI) 1-s Qz + qy
0 0

Here, the scalar is s = 2/(n(q))?. For unit quaternions, this simplifies to

)
1- Q(Qy + qZ) 2(%(1@/ - Qsz) Q(qu,z + Qwa

oy + qwq:) 1—2(2+¢2) 2(qyq: — quds)

Mq — (q qy x z Yy 4 46

%%%—%%)%%%+%%)1—2%+%)
0 0

Once the quaternion is constructed, no trigonometric functions need to be computed,
so the conversion process is efficient in practice.

The reverse conversion, from an orthogonal matrix, M9, into a unit quaternion,
q, is a bit more involved. Key to this process are the following differences made from
the matrix in Equation 4.46:

mgl - m(112 = 4qu Yz,
Mgy — M3y = 4wy, (4.47)
miy — mgy; = 4qu -
The implication of these equations is that if ¢,, is known, the values of the vector v,
can be computed, and thus q derived. The trace of MY is calculated by

GC+a+aq
@Z+a+ai+g

tr(MY) = 4 — 2s(q2 + qj +q¢2) =4 (1 -

(4.48)
_ 4q721) _ 4q12“
C+aE+id+q (n(q)?
This result yields the following conversion for a unit quaternion:
1 ma, —mi
= —./tr(M4 721 M2
G = 5/ tr(M), G PP
(4.49)
q :mgQ_mgO q :m(fo—mgl_
Y 4gy : Aqu

To have a numerically stable routine [1634], divisions by small numbers should be
avoided. Therefore, first set t = ¢2 — ¢2 — qz — ¢2, from which it follows that

mog =t + 2q§,,
mi1 = t + 2(];,

_) (4.50)
ma =t + 2q3,

u = Mmoo + My +mas =t + 242,

4.3. Quaternions 81

which in turn implies that the largest of mgg, m11, maos, and u determine which of
dzs Qy, 4=, and gy, is largest. If q,, is largest, then Equation 4.49 is used to derive the
quaternion. Otherwise, we note that the following holds:

2 _
4q; = +moo — m11 — Moz + m33,

4q = —moo + m11 — Mg + M3, (4.51)
4¢% = —moo — ma1 + Moz + mas, '

4q2 = tr(M?9).

The appropriate equation of the ones above is then used to compute the largest of g,
gy, and g, after which Equation 4.47 is used to calculate the remaining components
of . Schiiler [1588] presents a variant that is branchless but uses four square roots
instead.

Spherical Linear Interpolation
Spherical linear interpolation is an operation that, given two unit quaternions, q
and ¥, and a parameter ¢t € [0,1], computes an interpolated quaternion. This is
useful for animating objects, for example. It is not as useful for interpolating camera
orientations, as the camera’s “up” vector can become tilted during the interpolation,
usually a disturbing effect.

The algebraic form of this operation is expressed by the composite quaternion, §,
below:

8(q,5,t) = (]471)'G. (4.52)

However, for software implementations, the following form, where slerp stands for
spherical linear interpolation, is much more appropriate:

sin(¢(1 —t)) q sin(¢t) ;

sin ¢ sing

§(q,t,t) = slerp(q,t,t) = (4.53)
To compute ¢, which is needed in this equation, the following fact can be used:
COSP = quTz + qyry + @72 + qurw [325]. For t € [0,1], the slerp function com-
putes (unique?) interpolated quaternions that together constitute the shortest arc on
a four-dimensional unit sphere from g (¢t = 0) to (¢t = 1). The arc is located on the
circle that is formed from the intersection between the plane given by q, t, and the
origin, and the four-dimensional unit sphere. This is illustrated in Figure 4.10. The
computed rotation quaternion rotates around a fixed axis at constant speed. A curve
such as this, that has constant speed and thus zero acceleration, is called a geodesic
curve [229]. A great circle on the sphere is generated as the intersection of a plane
through the origin and the sphere, and part of such a circle is called a great arc.

The slerp function is perfectly suited for interpolating between two orientations
and it behaves well (fixed axis, constant speed). This is not the case with when

2If and only if § and # are not opposite.

82 4. Transforms

Figure 4.10. Unit quaternions are represented as points on the unit sphere. The function slerp is
used to interpolate between the quaternions, and the interpolated path is a great arc on the sphere.
Note that interpolating from §; to g2 and interpolating from q; to g3 to g2 are not the same thing,
even though they arrive at the same orientation.

interpolating using several Euler angles. In practice, computing a slerp directly is
an expensive operation involving calling trigonometric functions. Malyshau [1114]
discusses integrating quaternions into the rendering pipeline. He notes that the error
in the orientation of a triangle is a maximum of 4 degrees for a 90 degree angle
when, instead of using slerp, simply normalizing the quaternion in the pixel shader.
This error rate can be acceptable when rasterizing a triangle. Li [1039, 1040] provides
much faster incremental methods to compute slerps that do not sacrifice any accuracy.
Eberly [406] presents a fast technique for computing slerps using just additions and
multiplications.

When more than two orientations, say qo,q1,- - -,qn—1, are available, and we want
to interpolate from g to q; to q2, and so on until q,_1, slerp could be used in a
straightforward fashion. Now, when we approach, say, q;, we would use q;_1 and
q; as arguments to slerp. After passing through §;, we would then use q; and ;1
as arguments to slerp. This will cause sudden jerks to appear in the orientation
interpolation, which can be seen in Figure 4.10. This is similar to what happens when
points are linearly interpolated; see the upper right part of Figure 17.3 on page 720.
Some readers may wish to revisit the following paragraph after reading about splines
in Chapter 17.

A better way to interpolate is to use some sort of spline. We introduce quaternions
a; and a;41 between q; and q;41. Spherical cubic interpolation can be defined within
the set of quaternions q;, a;, a;41, and q;+1. Surprisingly, these extra quaternions are
computed as shown below [404]3:

log(d; ' @;—1) + log(&; '@is1)
4

éi = (A]l exp [— (454)

3Shoemake [1633] gives another derivation.

4.3. Quaternions 83

The q;, and a; will be used to spherically interpolate the quaternions using a smooth
cubic spline, as shown in Equation 4.55:

squad(q;, Qi+1, &, &i41,1) = (4.55)
slerp(slerp(q;, Qit+1,t), slerp(a;, a;41,t),2t(1 —t)). '

As can be seen above, the squad function is constructed from repeated spherical
interpolation using slerp (Section 17.1.1 for information on repeated linear interpo-
lation for points). The interpolation will pass through the initial orientations q;,
i €10,...,n—1], but not through &;—these are used to indicate the tangent orienta-
tions at the initial orientations.

Rotation from One Vector to Another

A common operation is transforming from one direction s to another direction t via
the shortest path possible. The mathematics of quaternions simplifies this procedure
greatly, and shows the close relationship the quaternion has with this representation.
First, normalize s and t. Then compute the unit rotation axis, called u, which is
computed as u = (s x t)/||s x t||. Next, e =s-t = cos(2¢) and ||s x t|| = sin(2¢),
where 2¢ is the angle between s and t. The quaternion that represents the rotation
from s to t is then q = (sin ¢u, cos¢). In fact, simplifying q = (;g‘;; (s x t), cos),
using the half-angle relations and the trigonometric identity, gives [1197]

o B 1 21 +¢)
q= (%#Jw) = (2(]_—1—@)(5 X t)7 2) . (456)

Directly generating the quaternion in this fashion (versus normalizing the cross prod-
uct s X t) avoids numerical instability when s and t point in nearly the same di-
rection [1197]. Stability problems appear for both methods when s and t point in
opposite directions, as a division by zero occurs. When this special case is detected,
any axis of rotation perpendicular to s can be used to rotate to t.

Sometimes we need the matrix representation of a rotation from s to t. After
some algebraic and trigonometric simplification of Equation 4.46, the rotation matrix
becomes [1233]

e+ hvg hvgvy —v, hvgv, +vy 0
hvgvy + v, e+ th hvyv, —v, 0
0

1

R(s;t) = hvzv, —vy hvyv, 4+ v, e + hv? (4.57)
0 0 0
In this equation, we have used the following intermediate calculations:
v=sXt,
e =cos(2¢) =s - t, (4.58)

~ 1—cos(2¢) 1—-e 1
T osin?(2¢) vev o l+e

84 4. Transforms

As can be seen, all square roots and trigonometric functions have disappeared due to
the simplifications, and so this is an efficient way to create the matrix. Note that the
structure of Equation 4.57 is like that of Equation 4.30, and note how this latter form
does not need trigonometric functions.

Note that care must be taken when s and t are parallel or near parallel, because
then ||s x t|| = 0. If ¢ ~ 0, then we can return the identity matrix. However, if
2¢ ~ m, then we can rotate 7 radians around any axis. This axis can be found as the
cross product between s and any other vector that is not parallel to s (Section 4.2.4).
Moller and Hughes use Householder matrices to handle this special case in a different
way [1233].

4.4 \Vertex Blending

Imagine that an arm of a digital character is animated using two parts, a forearm and
an upper arm, as shown to the left in Figure 4.11. This model could be animated
using rigid-body transforms (Section 4.1.6). However, then the joint between these
two parts will not resemble a real elbow. This is because two separate objects are
used, and therefore, the joint consists of overlapping parts from these two separate
objects. Clearly, it would be better to use just one single object. However, static
model parts do not address the problem of making the joint flexible.

Vertex blending is one popular solution to this problem [1037, 1903]. This technique
has several other names, such as linear-blend skinning, enveloping, or skeleton-subspace

b foldi\ni 2/3,1/3
ones /(,1/3)

()

N(13,213)

rigid-body vertex blending

Figure 4.11. An arm consisting of a forearm and an upper arm is animated using rigid-body transforms
of two separate objects to the left. The elbow does not appear realistic. To the right, vertex blending
is used on one single object. The next-to-rightmost arm illustrates what happens when a simple skin
directly joins the two parts to cover the elbow. The rightmost arm illustrates what happens when
vertex blending is used, and some vertices are blended with different weights: (2/3,1/3) means that
the vertex weighs the transform from the upper arm by 2/3 and from the forearm by 1/3. This figure
also shows a drawback of vertex blending in the rightmost illustration. Here, folding in the inner
part of the elbow is visible. Better results can be achieved with more bones, and with more carefully
selected weights.

4.4. Vertex Blending 85

deformation. While the exact origin of the algorithm presented here is unclear, defining
bones and having skin react to changes is an old concept in computer animation [1100].
In its simplest form, the forearm and the upper arm are animated separately as before,
but at the joint, the two parts are connected through an elastic “skin.” So, this elastic
part will have one set of vertices that are transformed by the forearm matrix and
another set that are transformed by the matrix of the upper arm. This results in
triangles whose vertices may be transformed by different matrices, in contrast to using
a single matrix per triangle. See Figure 4.11.

By taking this one step further, one can allow a single vertex to be transformed
by several different matrices, with the resulting locations weighted and blended to-
gether. This is done by having a skeleton of bones for the animated object, where
each bone’s transform may influence each vertex by a user-defined weight. Since the
entire arm may be “elastic,” i.e., all vertices may be affected by more than one ma-
trix, the entire mesh is often called a skin (over the bones). See Figure 4.12. Many
commercial modeling systems have this same sort of skeleton-bone modeling feature.
Despite their name, bones do not need to necessarily be rigid. For example, Mohr
and Gleicher [1230] present the idea of adding additional joints to enable effects such
as muscle bulge. James and Twigg [813] discuss animation skinning using bones that
can squash and stretch.

Mathematically, this is expressed in Equation 4.59, where p is the original vertex,
and u(t) is the transformed vertex whose position depends on time ¢:

n—1 n—1
u(t) = Z w;B;(t)M; 'p, where Z w; =1, w; >0. (4.59)
i=0 i=0

There are n bones influencing the position of p, which is expressed in world coordi-
nates. The value w; is the weight of bone 7 for vertex p. The matrix M; transforms
from the initial bone’s coordinate system to world coordinates. Typically a bone has
its controlling joint at the origin of its coordinate system. For example, a forearm bone
would move its elbow joint to the origin, with an animated rotation matrix moving
this part of the arm around the joint. The B;(¢) matrix is the ith bone’s world trans-
form that changes with time to animate the object, and is typically a concatenation
of several matrices, such as the hierarchy of previous bone transforms and the local
animation matrix.

One method of maintaining and updating the B;(¢) matrix animation functions is
discussed in depth by Woodland [1903]. Each bone transforms a vertex to a location
with respect to its own frame of reference, and the final location is interpolated from
the set of computed points. The matrix M; is not explicitly shown in some discussions
of skinning, but rather is considered as being a part of B;(t). We present it here as it
is a useful matrix that is almost always a part of the matrix concatenation process.

In practice, the matrices B;(t) and M;l are concatenated for each bone for each
frame of animation, and each resulting matrix is used to transform the vertices.
The vertex p is transformed by the different bones’ concatenated matrices, and then

86 4. Transforms

Figure 4.12. A real example of vertex blending. The top left image shows the two bones of an arm,
in an extended position. On the top right, the mesh is shown, with color denoting which bone owns
each vertex. Bottom: the shaded mesh of the arm in a slightly different position. (Images courtesy
of Jeff Lander [968].)

blended using the weights w;—thus the name vertex blending. The weights are non-
negative and sum to one, so what is occurring is that the vertex is transformed to a
few positions and then interpolated among them. As such, the transformed point u
will lie in the convex hull of the set of points B;(t)M; 'p, for all i = 0...n — 1 (fixed
t). The normals usually can also be transformed using Equation 4.59. Depending on
the transforms used (e.g., if a bone is stretched or squished a considerable amount),

4.5. Morphing 87

the transpose of the inverse of the B;(t)M; ! may be needed instead, as discussed in
Section 4.1.7.

Vertex blending is well suited for use on the GPU. The set of vertices in the mesh
can be placed in a static buffer that is sent to the GPU one time and reused. In each
frame, only the bone matrices change, with a vertex shader computing their effect on
the stored mesh. In this way, the amount of data processed on and transferred from
the CPU is minimized, allowing the GPU to efficiently render the mesh. It is easiest
if the model’s whole set of bone matrices can be used together; otherwise the model
must be split up and some bones replicated. Alternately the bone transforms can be
stored in textures that the vertices access, which avoids hitting register storage limits.
Each transform can be stored in just two textures by using quaternions to represent
rotation [1639]. If available, unordered access view storage allows the reuse of skinning
results [146].

Tt is possible to specify sets of weights that are outside the range [0, 1] or do not
sum to one. However, this makes sense only if some other blending algorithm, such as
morph targets (Section 4.5), is being used.

One drawback of basic vertex blending is that unwanted folding, twisting, and self-
intersection can occur [1037]. See Figure 4.13. A better solution is to use dual quater-
nions [872, 873]. This technique to perform skinning helps to preserve the rigidity of
the original transforms, so avoiding “candy wrapper” twists in limbs. Computation
is less than 1.5x the cost for linear skin blending and the results are good, which
has led to rapid adoption of this technique. However, dual quaternion skinning can
lead to bulging effects, and Le and Hodgins [1001] present center-of-rotation skinning
as a better alternative. They rely on the assumptions that local transforms should
be rigid-body and that vertices with similar weights, w;, should have similar trans-
forms. Centers of rotation are precomputed for each vertex while orthogonal (rigid
body) constraints are imposed to prevent elbow collapse and candy wrapper twist
artifacts. At runtime, the algorithm is similar to linear blend skinning in that a GPU
implementation performs linear blend skinning on the centers of rotation followed by
a quaternion blending step.

4.5 Morphing

Morphing from one three-dimensional model to another can be useful when performing
animations [28, 883, 1000, 1005]. Imagine that one model is displayed at time ¢y and
we wish it to change into another model by time ¢;. For all times between ¢y and 1, a
continuous “mixed” model is obtained, using some kind of interpolation. An example
of morphing is shown in Figure 4.14.

Morphing involves solving two major problems, namely, the vertex correspondence
problem and the interpolation problem. Given two arbitrary models, which may have
different topologies, different number of vertices, and different mesh connectivity, one
usually has to begin by setting up these vertex correspondences. This is a difficult

38 4. Transforms

Figure 4.13. The left side shows problems at the joints when using linear blend skinning. On the
right, blending using dual quaternions improves the appearance. (Images courtesy of Ladislav Kavan
et al., model by Paul Steed [1693].)

problem, and there has been much research in this field. We refer the interested reader
to Alexa’s survey [28].

However, if there already is a one-to-one vertex correspondence between the two
models, then interpolation can be done on a per-vertex basis. That is, for each vertex
in the first model, there must exist only one vertex in the second model, and vice
versa. This makes interpolation an easy task. For example, linear interpolation can
be used directly on the vertices (Section 17.1 for other ways of doing interpolation). To

4.5. Morphing 89

Figure 4.14. Vertex morphing. Two locations and normals are defined for every vertex. In each
frame, the intermediate location and normal are linearly interpolated by the vertex shader. (Images
courtesy of NVIDIA Corporation.)

compute a morphed vertex for time ¢ € [to, t1], we first compute s = (¢t —t0)/(t1 — to),
and then the linear vertex blend,

m = (1 — s)po + sp1, (4.60)

where pg and p; correspond to the same vertex but at different times, to and ¢1.
A variant of morphing where the user has more intuitive control is referred to as
morph targets or blend shapes [907]. The basic idea can be explained using Figure 4.15.
We start out with a neutral model, which in this case is a face. Let us denote this
model by A. In addition, we also have a set of different face poses. In the example
illustration, there is only one pose, which is a smiling face. In general, we can allow
k > 1 different poses, which are denoted P;, i € [1,...,k]. As a preprocess, the

90 4. Transforms

= <= = <=

Y Y
e — X= =

neutral smiling difference vectors

Y
-0

Figure 4.15. Given two mouth poses, a set of difference vectors is computed to control interpolation,
or even extrapolation. In morph targets, the difference vectors are used to “add” movements onto the
neutral face. With positive weights for the difference vectors, we get a smiling mouth, while negative
weights can give the opposite effect.

“difference faces” are computed as: D; = P; — N, i.e., the neutral model is subtracted
from each pose.

At this point, we have a neutral model, N, and a set of difference poses, D;. A
morphed model M can then be obtained using the following formula:

k
M=N+> wD;. (4.61)
i=1
This is the neutral model, and on top of that we add the features of the different poses
as desired, using the weights, w;. For Figure 4.15, setting w; = 1 gives us exactly the
smiling face in the middle of the illustration. Using w; = 0.5 gives us a half-smiling
face, and so on. One can also use negative weights and weights greater than one.

For this simple face model, we could add another face having “sad” eyebrows.
Using a negative weight for the eyebrows could then create “happy” eyebrows. Since
displacements are additive, this eyebrow pose could be used in conjunction with the
pose for a smiling mouth.

Morph targets are a powerful technique that provides the animator with much
control, since different features of a model can be manipulated independently of the
others. Lewis et al. [1037] introduce pose-space deformation, which combines vertex
blending and morph targets. Senior [1608] uses precomputed vertex textures to store
and retrieve displacements between target poses. Hardware supporting stream-out
and the ID of each vertex allow many more targets to be used in a single model
and the effects to be computed exclusively on the GPU [841, 1074]. Using a low-
resolution mesh and then generating a high-resolution mesh via the tessellation stage
and displacement mapping avoids the cost of skinning every vertex in a highly detailed
model [1971].

4.5. Morphing 91

Figure 4.16. The Delsin character’s face, in inFAMOUS Second Son, is animated using blend shapes.
The same resting pose face is used for all of these shots, and then different weights are modified
to make the face appear differently. (Images provided courtesy of Naughty Dog LLC. inFAMOUS
Second Son © 2014 Sony Interactive Entertainment LLC. inFAMOUS Second Son is a trademark
of Sony Interactive Entertainment LLC. Developed by Sucker Punch Productions LLC.)

A real example of using both skinning and morphing is shown in Figure 4.16.
Weronko and Andreason [1872] used skinning and morphing in The Order: 1886.

92 4. Transforms

4.6 Geometry Cache Playback

In cut scenes, it may be desirable to use extremely high-quality animations, e.g.,
for movements that cannot be represented using any of the methods above. A naive
approach is to store all the vertices for all frames, reading them from disk and updating
the mesh. However, this can amount to 50 MB/s for a simple model of 30,000 vertices
used in a short animation. Gneiting [545] presents several ways to reduce memory
costs down to about 10%.

First, quantization is used. For example, positions and texture coordinates are
stored using 16-bit integers for each coordinate. This step is lossy in the sense that
one cannot recover the original data after compression is performed. To reduce data
further, spatial and temporal predictions are made and the differences encoded. For
spatial compression, parallelogram prediction can be used [800]. For a triangle strip,
the next vertex’s predicted position is simply the current triangle reflected in the
triangle’s plane around the current triangle edge, which forms a parallelogram. The
differences from this new position is then encoded. With good predictions, most values
will be close to zero, which is ideal for many commonly used compression schemes.
Similar to MPEG compression, prediction is also done in the temporal dimension.
That is, every n frames, spatial compression is performed. In between, predictions
are done in the temporal dimension, e.g., if a certain vertex moved by delta vector
from frame n — 1 to frame n, then it is likely to move by a similar amount to frame
n + 1. These techniques reduced storage sufficiently so this system could be used for
streaming data in real time.

4.7 Projections

Before one can actually render a scene, all relevant objects in the scene must be
projected onto some kind of plane or into some type of simple volume. After that,
clipping and rendering are performed (Section 2.3).

The transforms seen so far in this chapter have left the fourth coordinate, the
w-component, unaffected. That is, points and vectors have retained their types after
the transform. Also, the bottom row in the 4 x 4 matrices has always been (0 0 0 1).
Perspective projection matrices are exceptions to both of these properties: The bottom
row contains vector and point manipulating numbers, and the homogenization process
is often needed. That is, w is often not 1, so a division by w is needed to obtain
the nonhomogeneous point. Orthographic projection, which is dealt with first in this
section, is a simpler kind of projection that is also commonly used. It does not affect
the w-component.

In this section, it is assumed that the viewer is looking along the camera’s negative
z-axis, with the y-axis pointing up and the z-axis to the right. This is a right-handed
coordinate system. Some texts and software, e.g., DirectX, use a left-handed system
in which the viewer looks along the camera’s positive z-axis. Both systems are equally
valid, and in the end, the same effect is achieved.

4.7. Projections 93

y
y A
4
Z =
o I
éu % 7] > X y‘
\ T
projection plane, z=0 = m X
A : m]s]
z

Figure 4.17. Three different views of the simple orthographic projection generated by Equation 4.62.
This projection can be seen as the viewer is looking along the negative z-axis, which means that the
projection simply skips (or sets to zero) the z-coordinate while keeping the z- and y-coordinates.
Note that objects on both sides of z = 0 are projected onto the projection plane.

4.7.1 Orthographic Projection

A characteristic of an orthographic projection is that parallel lines remain parallel
after the projection. When orthographic projection is used for viewing a scene, objects
maintain the same size regardless of distance to the camera. Matrix P,, shown below,
is a simple orthographic projection matrix that leaves the z- and y-components of
a point unchanged, while setting the z-component to zero, i.e., it orthographically
projects onto the plane z = 0:

1000
0100

Po=| 00 0 o (4.62)
00 0 1

The effect of this projection is illustrated in Figure 4.17. Clearly, P, is non-invertible,
since its determinant |P,| = 0. In other words, the transform drops from three to two
dimensions, and there is no way to retrieve the dropped dimension. A problem with
using this kind of orthographic projection for viewing is that it projects both points
with positive and points with negative z-values onto the projection plane. It is usually
useful to restrict the z-values (and the z- and y-values) to a certain interval, from, say
n (near plane) to f (far plane).* This is the purpose of the next transformation.

A more common matrix for performing orthographic projection is expressed by
the six-tuple, (I,r,b,t,n, f), denoting the left, right, bottom, top, near, and far planes.
This matrix scales and translates the azis-aligned bounding box (AABB; see the defini-
tion in Section 22.2) formed by these planes into an axis-aligned cube centered around

4The near plane is also called the front plane or hither; the far plane is also the back plane or yon.

94 4. Transforms

r
y T(t) y S(s) y
o ‘ ~—~ 1 /\
nJ /
(> X X > X
b
VA Z/ Z

Figure 4.18. Transforming an axis-aligned box on the canonical view volume. The box on the left
is first translated, making its center coincide with the origin. Then it is scaled to get the size of the
canonical view volume, shown at the right.

the origin. The minimum corner of the AABB is (I,b,n) and the maximum corner
is (r,t, f). It is important to realize that n > f, because we are looking down the
negative z-axis at this volume of space. Our common sense says that the near value
should be a lower number than the far, so one may let the user supply them as such,
and then internally negate them.

In OpenGL the axis-aligned cube has a minimum corner of (—1,—1,—1) and a
maximum corner of (1,1,1); in DirectX the bounds are (—1,—1,0) to (1,1,1). This
cube is called the canonical view volume and the coordinates in this volume are called
normalized device coordinates. The transformation procedure is shown in Figure 4.18.
The reason for transforming into the canonical view volume is that clipping is more
efficiently performed there.

After the transformation into the canonical view volume, vertices of the geometry
to be rendered are clipped against this cube. The geometry not outside the cube is fi-
nally rendered by mapping the remaining unit square to the screen. This orthographic
transform is shown here:

2
= 0 0 o\ (100
2 t¥b
0 —~— 0 o0 _tFb
P, — S(s)T(t) — b 0 10 i1
n
0 0 0o 0 1 -
f—n 2
0 0 o 1/ \0o o0 o0 1
(4.63)
2
0 0 _r—l—l
by P
= R g _};b
n
0 0 -
f-n f-n
0 0 1

4.7. Projections 95

As suggested by this equation, P, can be written as the concatenation of a translation,
T(t), followed by a scaling matrix, S(s), where s = (2/(r —1),2/(t — b),2/(f — n)),
and t = (—(r +1)/2,—(t + b)/2, —(f +n)/2). This matrix is invertible,® i.e., P, ! =
T(~)S((r — 1)/2. (¢ — b)/2,(f — n)/2).

In computer graphics, a left-hand coordinate system is most often used after
projection—i.e., for the viewport, the z-axis goes to the right, y-axis goes up, and
the z-axis goes into the viewport. Because the far value is less than the near value
for the way we defined our AABB, the orthographic transform will always include a
mirroring transform. To see this, say the original AABBs is the same size as the goal,
the canonical view volume. Then the AABB’s coordinates are (—1,—1,1) for (I,b,n)
and (1,1, —1) for (r,¢t, f). Applying that to Equation 4.63 gives us

10 0 0
01 0 0

Po=1 00 -1 0| (4.64)
00 0 1

which is a mirroring matrix. It is this mirroring that converts from the right-handed
viewing coordinate system (looking down the negative z-axis) to left-handed normal-
ized device coordinates.

DirectX maps the z-depths to the range [0, 1] instead of OpenGL’s [—1,1]. This
can be accomplished by applying a simple scaling and translation matrix applied after
the orthographic matrix, that is,

10 0 O
01 0 O
Ma=110 0 05 05 (4.65)
0 0 O 1
So, the orthographic matrix used in DirectX is
2 r+1
0 0 —
by, [
0 = 0 _t+o
Poo,1 = t—>b . t—b |- (4.66)
n
0 0 —
f—n f—n
0 0 0 1

which is normally presented in transposed form, as DirectX uses a row-major form for
writing matrices.

5If and only if n # f, I # r, and t # b; otherwise, no inverse exists.

96 4. Transforms

projection plane, z = —d

};’" //q pz ——————————————————— p
/ q
z=—d-|

z

Figure 4.19. The notation used for deriving a perspective projection matrix. The point p is projected
onto the plane z = —d, d > 0, which yields the projected point q. The projection is performed from
the perspective of the camera’s location, which in this case is the origin. The similar triangle used in
the derivation is shown for the x-component at the right.

4.7.2 Perspective Projection

A more complex transform than orthographic projection is perspective projection,
which is commonly used in most computer graphics applications. Here, parallel lines
are generally not parallel after projection; rather, they may converge to a single point
at their extreme. Perspective more closely matches how we perceive the world, i.e.,
objects farther away are smaller.

First, we shall present an instructive derivation for a perspective projection matrix
that projects onto a plane z = —d, d > 0. We derive from world space to simplify un-
derstanding of how the world-to-view conversion proceeds. This derivation is followed
by the more conventional matrices used in, for example, OpenGL [885].

Assume that the camera (viewpoint) is located at the origin, and that we want to
project a point, p, onto the plane z = —d, d > 0, yielding a new point q = (¢z, ¢, —d).
This scenario is depicted in Figure 4.19. From the similar triangles shown in this figure,
the following derivation, for the z-component of q, is obtained:

: —d z
& _ 0 L g =i (4.67)
Px Y2 Pz
The expressions for the other components of q are g, = —dp, /p. (obtained similarly
to ¢.), and ¢, = —d. Together with the above formula, these give us the perspective
projection matrix, P, as shown here:
1 0 0 0
0 1 0 0
P, = 0 0 1 0 (4.68)
0 0 —-1/d 0

4.7. Projections 97

Figure 4.20. The matrix P, transforms the view frustum into the unit cube, which is called the
canonical view volume.

That this matrix yields the correct perspective projection is confirmed by

10 0 0 P P —dps/p-
- [01 0 0 Py | Dy —dpy/p-
a=Pwp=| o0 1 ollsl=| 3 [=]| 7| @
0 0 —1/d 0 1 —p./d 1

The last step comes from the fact that the whole vector is divided by the w-component
(in this case —p,/d), to get a 1 in the last position. The resulting z value is always
—d since we are projecting onto this plane.

Intuitively, it is easy to understand why homogeneous coordinates allow for projec-
tion. One geometrical interpretation of the homogenization process is that it projects
the point (pg, py,p-) onto the plane w = 1.

As with the orthographic transformation, there is also a perspective transform
that, rather than actually projecting onto a plane (which is noninvertible), transforms
the view frustum into the canonical view volume described previously. Here the view
frustum is assumed to start at z = n and end at z = f, with 0 > n > f. The rectangle
at z = n has the minimum corner at (I, b, n) and the maximum corner at (r,¢,n). This
is shown in Figure 4.20.

The parameters (I,7,b,t,n, f) determine the view frustum of the camera. The
horizontal field of view is determined by the angle between the left and the right
planes (determined by [and r) of the frustum. In the same manner, the vertical field
of view is determined by the angle between the top and the bottom planes (determined
by t and b). The greater the field of view, the more the camera “sees.” Asymmetric
frusta can be created by r # —[or t # —b. Asymmetric frusta are, for example, used
for stereo viewing and for virtual reality (Section 21.2.3).

The field of view is an important factor in providing a sense of the scene. The eye
itself has a physical field of view compared to the computer screen. This relationship is

¢ = 2arctan(w/(2d)), (4.70)

98 4. Transforms

where ¢ is the field of view, w is the width of the object perpendicular to the line of
sight, and d is the distance to the object. For example, a 25-inch monitor is about 22
inches wide. At 12 inches away, the horizontal field of view is 85 degrees; at 20 inches,
it is 58 degrees; at 30 inches, 40 degrees. This same formula can be used to convert
from camera lens size to field of view, e.g., a standard 50mm lens for a 35mm camera
(which has a 36mm wide frame size) gives ¢ = 2arctan(36/(2 - 50)) = 39.6 degrees.

Using a narrower field of view compared to the physical setup will lessen the
perspective effect, as the viewer will be zoomed in on the scene. Setting a wider
field of view will make objects appear distorted (like using a wide angle camera lens),
especially near the screen’s edges, and will exaggerate the scale of nearby objects.
However, a wider field of view gives the viewer a sense that objects are larger and
more impressive, and has the advantage of giving the user more information about
the surroundings.

The perspective transform matrix that transforms the frustum into a unit cube is
given by Equation 4.71:

2
n _r—!—l 0
by P
n
P, = L S 0 : (4.71)
0 f+n 72fn
f-n f-n
0 0 1 0

After applying this transform to a point, we will get another point q = (., ¢y, ¢z, quw)” -
The w-component, ¢, of this point will (most often) be nonzero and not equal to one.

To get the projected point, p, we need to divide by q.,, i.e.,

P = (¢2/ 0w @y/ Qw> 4=/ qw> 1)- (4.72)

The matrix P, always sees to it that z = f maps to +1 and z = n maps to —1.

Objects beyond the far plane will be clipped and so will not appear in the scene.
The perspective projection can handle a far plane taken to infinity, which makes
Equation 4.71 become

2n 0 _T—i—l 0
=t P
n
= 0 _— - 0
P, o Po— . (4.73)
0 0 1 —2n
0 0 1 0

To sum up, the perspective transform (in any form), P,, is applied, followed by
clipping and homogenization (division by w), which results in normalized device co-
ordinates.

4.7. Projections 99

To get the perspective transform used in OpenGL, first multiply with S(1,1, —1,1),
for the same reasons as for the orthographic transform. This simply negates the values
in the third column of Equation 4.71. After this mirroring transform has been applied,
the near and far values are entered as positive values, with 0 < n’ < f’, as they would
traditionally be presented to the user. However, they still represent distances along
the world’s negative z-axis, which is the direction of view. For reference purposes,
here is the OpenGL equation:

2n’ r+1
r—1 r—1 0
0 2n' t+b 0
PopencrL = t—b t—b . (4.74)
f/ +n/ 2f/n/
0 _f/ —n _f/ —n
0 0 -1 0

A simpler setup is to provide just the vertical field of view, ¢, the aspect ratio a = w/h
(where w X h is the screen resolution), n’, and f’. This results in

c/a 0 0 0
0 ¢ 0 0
1)OpenGL = 0 0 — f/ + n’ _ 2f/TL/ 3 (475)
f/ Y f/ Y
0 0 -1 0

where ¢ = 1.0/ tan(¢/2). This matrix does exactly what the old gluPerspective()
did, which is part of the OpenGL Utility Library (GLU).

Some APIs (e.g., DirectX) map the near plane to z = 0 (instead of z = —1) and
the far plane to z = 1. In addition, DirectX uses a left-handed coordinate system to
define its projection matrix. This means DirectX looks along the positive z-axis and
presents the near and far values as positive numbers. Here is the DirectX equation:

2n' 0 _TJrl 0
r—1 r—1
0 2n’ _t+b 0
Py = t—b t—b (4.76)
[] f/ f/n/
0 0

fr—n _flin/
0 0 1 0

DirectX uses row-major form in its documentation, so this matrix is normally pre-
sented in transposed form.

One effect of using a perspective transformation is that the computed depth value
does not vary linearly with the input p, value. Using any of Equations 4.74-4.76 to

100 4. Transforms

-1 I I I I
0 20 40 60 80 100

distance from near plane

Figure 4.21. The effect of varying the distance of the near plane from the origin. The distance f’ —n’
is kept constant at 100. As the near plane becomes closer to the origin, points nearer the far plane
use a smaller range of the normalized device coordinate (NDC) depth space. This has the effect of
making the z-buffer less accurate at greater distances.

multiply with a point p, we can see that

(4.77)

where the details of v, and v, have been omitted, and the constants d and f depend on
the chosen matrix. If we use Equation 4.74, for example, then d = —(f'+n’)/(f' —n'),
e = =2f'n'/(f —n'), and v, = —p,. To obtain the depth in normalized device
coordinates (NDC), we need to divide by the w-component, which results in

2NDC = ——— =d — —, (4.78)

where zxpe € [—1, +1] for the OpenGL projection. As can be seen, the output depth
zNDC 1s inversely proportional to the input depth, p,.

For example, if n’ = 10 and f’ = 110 (using the OpenGL terminology), when p,
is 60 units down the negative z-axis (i.e., the halfway point) the normalized device
coordinate depth value is 0.833, not 0. Figure 4.21 shows the effect of varying the
distance of the near plane from the origin. Placement of the near and far planes
affects the precision of the z-buffer. This effect is discussed further in Section 23.7.

There are several ways to increase the depth precision. A common method, which
we call reversed z, is to store 1.0 — zypc [978] either with floating point depth or with
integers. A comparison is shown in Figure 4.22. Reed [1472] shows with simulations

4.7. Projections 101

near D, far=00

ne—gwmw T T p; T fér névd\ruwuuuwwHH\\\I\’Z\HH\\\\\\\\\\ ‘fél’

Figure 4.22. Different ways to set up the depth buffer with the DirectX transform, i.e., zxpc € [0, +1].
Top left: standard integer depth buffer, shown here with 4 bits of precision (hence the 16 marks on
the y-axis). Top right: the far plane set to co, the small shifts on both axes showing that one does not
lose much precision by doing so. Bottom left: with 3 exponent bits and 3 mantissa bits for floating
point depth. Notice how the distribution is nonlinear on the y-axis, which makes it even worse on the
z-axis. Bottom right: reversed floating point depth, i.e., 1 — zxpc, with a much better distribution
as a result. (Illustrations courtesy of Nathan Reed.)

that using a floating point buffer with reversed z provides the best accuracy, and this
is also the preferred method for integer depth buffers (which usually have 24 bits per
depth). For the standard mapping (i.e., non-reversed z), separating the projection
matrix in the transform decreases the error rate, as suggested by Upchurch and Des-
brun [1803]. For example, it can be better to use P(Mp) than Tp, where T = PM.
Also, in the range of [0.5,1.0], {p32 and int24 are quite similar in accuracy, since fp32
has a 23-bit mantissa. The reason for having znypc proportional to 1/p, is that it
makes hardware simpler and compression of depth more successful, which is discussed
more in Section 23.7.

Lloyd [1063] proposed to use a logarithm of the depth values to improve precision
for shadow maps. Lauritzen et al. [991] use the previous frame’s z-buffer to determine
a maximum near plane and minimum far plane. For screen-space depth, Kemen [881]
proposes to use the following remapping per vertex:

z =w (logy (max(1075,1+ w)) fo — 1), [OpenGL]

z = wlogy (max(107%,1 +w)) f¢/2, [DirectX] (4.79)

where w is the w-value of the vertex after the projection matrix, and z is the output
z from the vertex shader. The constant f. is f. = 2/logs(f + 1), where f is the
far plane. When this transform is applied in the vertex shader only, depth will still
be interpolated linearly over the triangle by the GPU in between the nonlinearly
transformed depths at vertices (Equation 4.79). Since the logarithm is a monotonic

102 4. Transforms

function, occlusion culling hardware and depth compression techniques will still work
as long as the difference between the piecewise linear interpolation and the accurate
nonlinearly transformed depth value is small. That’s true for most cases with sufficient
geometry tessellation. However, it is also possible to apply the transform per fragment.
This is done by outputting a per-vertex value of e = 1+ w, which is then interpolated
by the GPU over the triangle. The pixel shader then modifies the fragment depth as
log,(e;) fo/2, where e; is the interpolated value of e. This method is a good alternative
when there is no floating point depth in the GPU and when rendering using large
distances in depth.

Cozzi [1605] proposes to use multiple frusta, which can improve accuracy to ef-
fectively any desired rate. The view frustum is divided in the depth direction into
several non-overlapping smaller sub-frusta whose union is exactly the frustum. The
sub-frusta are rendered to in back-to-front order. First, both the color and depth
buffers are cleared, and all objects to be rendered are sorted into each sub-frusta that
they overlap. For each sub-frusta, its projection matrix is set up, the depth buffer is
cleared, and then the objects that overlap the sub-frusta are rendered.

Further Reading and Resources

The immersive linear algebra site [1718] provides an interactive book about the ba-
sics of this subject, helping build intuition by encouraging you to manipulate the
figures. Other interactive learning tools and transform code libraries are linked from
realtimerendering.com.

One of the best books for building up one’s intuition about matrices in a painless
fashion is Farin and Hansford’s The Geometry Toolbox [461]. Another useful work is
Lengyel’s Mathematics for 3D Game Programming and Computer Graphics [1025]. For
a different perspective, many computer graphics texts, such as Hearn and Baker [689],
Marschner and Shirley [1129], and Hughes et al. [785] also cover matrix basics. The
course by Ochiai et al. [1310] introduces the matrix foundations as well as the ex-
ponential and logarithm of matrices, with uses for computer graphics. The Graphics
Gems series [72, 540, 695, 902, 1344] presents various transform-related algorithms
and has code available online for many of these. Golub and Van Loan’s Matriz Com-
putations [556] is the place to start for a serious study of matrix techniques in general.
More on skeleton-subspace deformation/vertex blending and shape interpolation can
be read in Lewis et al.’s SIGGRAPH paper [1037].

Hart et al. [674] and Hanson [663] provide visualizations of quaternions. Plet-
inckx [1421] and Schlag [1566] present different ways of interpolating smoothly between
a set of quaternions. Vlachos and Isidoro [1820] derive formulae for C? interpolation
of quaternions. Related to quaternion interpolation is the problem of computing a
consistent coordinate system along a curve. This is treated by Dougan [374].

Alexa [28] and Lazarus and Verroust [1000] present surveys on many different
morphing techniques. Parent’s book [1354] is an excellent source for techniques about
computer animation.

Chapter 5
Shading Basics

“A good picture is equivalent to a good deed.”
—Vincent Van Gogh

When you render images of three-dimensional objects, the models should not only
have the proper geometrical shape, they should also have the desired visual appear-
ance. Depending on the application, this can range from photorealism—an appearance
nearly identical to photographs of real objects—to various types of stylized appearance
chosen for creative reasons. See Figure 5.1 for examples of both.

This chapter will discuss those aspects of shading that are equally applicable to
photorealistic and stylized rendering. Chapter 15 is dedicated specifically to stylized
rendering, and a significant part of the book, Chapters 9 through 14, focuses on
physically based approaches commonly used for photorealistic rendering.

5.1 Shading Models

The first step in determining the appearance of a rendered object is to choose a shading
model to describe how the object’s color should vary based on factors such as surface
orientation, view direction, and lighting.

As an example, we will use a variation on the Gooch shading model [561]. This is a
form of non-photorealistic rendering, the subject of Chapter 15. The Gooch shading
model was designed to increase legibility of details in technical illustrations.

The basic idea behind Gooch shading is to compare the surface normal to the light’s
location. If the normal points toward the light, a warmer tone is used to color the
surface; if it points away, a cooler tone is used. Angles in between interpolate between
these tones, which are based on a user-supplied surface color. In this example, we
add a stylized “highlight” effect to the model to give the surface a shiny appearance.
Figure 5.2 shows the shading model in action.

Shading models often have properties used to control appearance variation. Setting
the values of these properties is the next step in determining object appearance. Our
example model has just one property, surface color, as shown in the bottom image of
Figure 5.2.

103

104 5. Shading Basics

Figure 5.1. The top image is from a realistic landscape scene rendered using the Unreal Engine. The
bottom image is from the game Firewatch by Campo Santo, which was designed with a illustrative
art style. (Upper image courtesy of Gokhan Karadayi, lower image courtesy of Campo Santo.)

Like most shading models, this example is affected by the surface orientation rel-
ative to the view and lighting directions. For shading purposes, these directions are
commonly expressed as normalized (unit-length) vectors, as illustrated in Figure 5.3.

Now that we have defined all the inputs to our shading model, we can look at the
mathematical definition of the model itself:

Cshaded = S Chighlight + (1 - S) (t Cwarm 1 (1 - t) Ccool)- (51)

5.1. Shading Models 105

Figure 5.2. A stylized shading model combining Gooch shading with a highlight effect. The top
image shows a complex object with a neutral surface color. The bottom image shows spheres with
various different surface colors. (Chinese Dragon mesh from Computer Graphics Archive [1172],

original model from Stanford 3D Scanning Repository.)

Figure 5.3. Unit-length vector inputs to the example shading model (and most others): surface

normal n, view vector v, and light direction 1.

106 5. Shading Basics

In this equation, we have used the following intermediate calculations:

Ccool = (0,0,0.55) + 0.25 Csurface;
Cwarm = (0.3,0.3,0) 4 0.25 Csurfaces
Chighlight = (1,1, 1),
_ (@41 (5.2)

t
2)
r=2mn-n-1

5= (100 (r-v) — 97)+.

Several of the mathematical expressions in this definition are often found in other
shading models as well. Clamping operations, typically clamping to 0 or clamping
between 0 and 1, are common in shading. Here we use the 2t notation, introduced in
Section 1.2, for the clamp between 0 and 1 used in the computation of the highlight
blend factor s. The dot product operator appears three times, in each case between
two unit-length vectors; this is an extremely common pattern. The dot product of
two vectors is the product of their lengths and the cosine of the angle between them.
So, the dot product of two unit-length vectors is simply the cosine, which is a useful
measure of the degree to which two vectors are aligned with each other. Simple
functions composed of cosines are often the most pleasing and accurate mathematical
expressions to account for the relationship between two directions, e.g., light direction
and surface normal, in a shading model.

Another common shading operation is to interpolate linearly between two colors
based on a scalar value between 0 and 1. This operation takes the form tc, + (1 — t)cp,
that interpolates between c, and cy, as the value of ¢ moves between 1 and 0, respec-
tively. This pattern appears twice in this shading model, first to interpolate between
Cwarm and Ccoo1 and second to interpolate between the result of the previous inter-
polation and Cpighiight- Linear interpolation appears so often in shaders that it is a
built-in function, called lerp or mix, in every shading language we have seen.

The line “r =2 (n-1)n — I” computes the reflected light vector, reflecting 1 about
n. While not quite as common as the previous two operations, this is common enough
for most shading languages to have a built-in reflect function as well.

By combining such operations in different ways with various mathematical expres-
sions and shading parameters, shading models can be defined for a huge variety of
stylized and realistic appearances.

5.2 Light Sources

The impact of lighting on our example shading model was quite simple; it provided
a dominant direction for shading. Of course, lighting in the real world can be quite
complex. There can be multiple light sources each with its own size, shape, color,

5.2. Light Sources 107

and intensity; indirect lighting adds even more variation. As we will see in Chapter 9,
physically based, photorealistic shading models need to take all these parameters into
account.

In contrast, stylized shading models may use lighting in many different ways, de-
pending on the needs of the application and visual style. Some highly stylized models
may have no concept of lighting at all, or (like our Gooch shading example) may only
use it to provide some simple directionality.

The next step in lighting complexity is for the shading model to react to the
presence or absence of light in a binary way. A surface shaded with such a model
would have one appearance when lit and a different appearance when unaffected by
light. This implies some criteria for distinguishing the two cases: distance from light
sources, shadowing (which will be discussed in Chapter 7), whether the surface is
facing away from the light source (i.e., the angle between the surface normal n and
the light vector 1is greater than 90°), or some combination of these factors.

It is a small step from the binary presence or absence of light to a continuous scale
of light intensities. This could be expressed as a simple interpolation between absence
and full presence, which implies a bounded range for the intensity, perhaps 0 to 1,
or as an unbounded quantity that affects the shading in some other way. A common
option for the latter is to factor the shading model into lit and unlit parts, with the
light intensity kijghe linearly scaling the lit part:

Cshaded = funlit(1, V) + Kiigne fiie (1,0, v). (5.3)
This easily extends to an RGB light color ciighs,
Cshaded = funlit(D, V) + Ciignt fiit (1, 0, v), (5.4)

and to multiple light sources,

n

Cshaded = funlit (1, V) + Z Clignt, fiit (I, 1, v). (5.5)
i=1

The unlit part fuuit(n,v) corresponds to the “appearance when unaffected by
light” of shading models that treat light as a binary. It can have various forms,
depending on the desired visual style and the needs of the application. For example,
Sfumit() = (0,0,0) will cause any surface unaffected by a light source to be colored
pure black. Alternately, the unlit part could express some form of stylized appearance
for unlit objects, similar to the Gooch model’s cool color for surfaces facing away
from light. Often, this part of the shading model expresses some form of lighting that
does not come directly from explicitly placed light sources, such as light from the
sky or light bounced from surrounding objects. These other forms of lighting will be
discussed in Chapters 10 and 11.

We mentioned earlier that a light source does not affect a surface point if the
light direction 1 is more than 90° from the surface normal n, in effect coming from

108 5. Shading Basics

n

‘4

M Cocée (n-1) =cosf

Figure 5.4. The upper row of drawings shows a cross-section view of light on a surface. On the left
the light rays hit the surface straight on, in the center they hit the surface at an angle, and on the
right we see the use of vector dot products to compute the angle cosine. The bottom drawing shows
the cross-section plane (which includes the light and view vectors) in relation to the full surface.

underneath the surface. This can be thought of as a special case of a more general
relationship between the light’s direction, relative to the surface, and its effect on
shading. Although physically based, this relationship can be derived from simple
geometrical principles and is useful for many types of non-physically based, stylized
shading models as well.

The effect of light on a surface can be visualized as a set of rays, with the density
of rays hitting the surface corresponding to the light intensity for surface shading
purposes. See Figure 5.4, which shows a cross section of a lit surface. The spacing
between light rays hitting the surface along that cross section is inversely proportional
to the cosine of the angle between 1 and n. So, the overall density of light rays hitting
the surface is proportional to the cosine of the angle between 1 and n, which, as we
have seen earlier, is equal to the dot product between those two unit-length vectors.
Here we see why it is convenient to define the light vector 1 opposite to the light’s
direction of travel; otherwise we would have to negate it before performing the dot
product.

More precisely, the ray density (and thus the light’s contribution to shading) is
proportional to the dot product when it is positive. Negative values correspond to
light rays coming from behind the surface, which have no effect. So, before multiplying
the light’s shading by the lighting dot product, we need to first clamp the dot product

5.2. Light Sources 109

to 0. Using the 2" notation introduced in Section 1.2, which means clamping negative
values to zero, we have

n

Cshaded = funlit(R, V) + Z(lz -n) " cligne, fiie(li;m, v). (5.6)

i=1

Shading models that support multiple light sources will typically use one of the
structures from Equation 5.5, which is more general, or Equation 5.6, which is required
for physically based models. It can be advantageous for stylized models as well, since
it helps ensure an overall consistency to the lighting, especially for surfaces that are
facing away from the light or are shadowed. However, some models are not a good fit
for that structure; such models would use the structure in Equation 5.5.

The simplest possible choice for the function fi;;() is to make it a constant color,

flit () = Csurface) (57)

which results in the following shading model:

n

Cshaded = funlit(na V) + Z(lz . n)+clighticsurface~ (58)
=1

The lit part of this model corresponds to the Lambertian shading model, after
Johann Heinrich Lambert [967], who published it in 1760! This model works in the
context of ideal diffusely reflecting surfaces, i.e., surfaces that are perfectly matte. We
present here a somewhat simplified explanation of Lambert’s model, which will be
covered with more rigor in Chapter 9. The Lambertian model can be used by itself
for simple shading, and it is a key building block in many shading models.

We can see from Equations 5.3-5.6 that a light source interacts with the shading
model via two parameters: the vector 1 pointing toward the light and the light color
Clight- Lhere are various different types of light sources, which differ primarily in how
these two parameters vary over the scene.

We will next discuss several popular types of light sources, which have one thing
in common: At a given surface location, each light source illuminates the surface from
only one direction 1. In other words, the light source, as seen from the shaded surface
location, is an infinitesimally small point. This is not strictly true for real-world lights,
but most light sources are small relative to their distance from illuminated surfaces,
making this a reasonable approximation. In Sections 7.1.2 and 10.1, we will discuss
light sources that illuminate a surface location from a range of directions, i.e., “area
lights.”

5.2.1 Directional Lights

Directional light is the simplest model of a light source. Both 1 and cjjgns are constant
over the scene, except that cjzne may be attenuated by shadowing. Directional lights

110 5. Shading Basics

have no location. Of course, actual light sources do have specific locations in space.
Directional lights are abstractions, which work well when the distance to the light is
large relative to the scene size. For example, a floodlight 20 feet away illuminating a
small tabletop diorama could be represented as a directional light. Another example
is pretty much any scene lit by the sun, unless the scene in question is something such
as the inner planets of the solar system.

The concept of a directional light can be somewhat extended to allow varying the
value of cjjgny while the light direction 1 remains constant. This is most often done
to bound the effect of the light to a particular part of the scene for performance or
creative reasons. For example, a region could be defined with two nested (one inside
the other) box-shaped volumes, where ciignt is equal to (0,0,0) (pure black) outside
the outer box, is equal to some constant value inside the inner box, and smoothly
interpolates between those extremes in the region between the two boxes.

5.2.2 Punctual Lights

A punctual light is not one that is on time for its appointments, but rather a light that
has a location, unlike directional lights. Such lights also have no dimensions to them,
no shape or size, unlike real-world light sources. We use the term “punctual,” from the
Latin punctus meaning “point,” for the class consisting of all sources of illumination
that originate from a single, local position. We use the term “point light” to mean
a specific kind of emitter, one that shines light equally in all directions. So, point
and spotlight are two different forms of punctual lights. The light direction vector 1
varies depending on the location of the currently shaded surface point pg relative to
the punctual light’s position piignt:

— Plight — Po) (59)
[Plight — Pol|

This equation is an example of vector normalization: dividing a vector by its length
to produce a unit-length vector pointing in the same direction. This is another common
shading operation, and, like the shading operations we have seen in the previous
section, it is a built-in function in most shading languages. However, sometimes
an intermediate result from this operation is needed, which requires performing the
normalization explicitly, in multiple steps, using more basic operations. Applying this
to the punctual light direction computation gives us the following;:

d = piight — Po,

T =

(5.10)

<A
: =R
=

1:

Since the dot product of two vectors is equal to the product of the two vector’s lengths
with the cosine of the angle between them, and the cosine of 0° is 1.0, the dot product

5.2. Light Sources 111

of a vector with itself is the square of its length. So, to find the length of any vector,
we just dot it with itself and take the square root of the result.

The intermediate value that we need is 7, the distance between the punctual light
source and the currently shaded point. Besides its use in normalizing the light vector,
the value of r is also needed to compute the attenuation (darkening) of the light color
ciight as a function of distance. This will be discussed further in the following section.

Point/Omni Lights

Punctual lights that emit light uniformly in all directions are known as point lights or
omni lights. For point lights, ciigne varies as a function of the distance r, with the only
source of variation being the distance attenuation mentioned above. Figure 5.5 shows
why this darkening occurs, using similar geometric reasoning as the demonstration of
the cosine factor in Figure 5.4. At a given surface, the spacing between rays from a
point light is proportional to the distance from the surface to the light. Unlike the
cosine factor in Figure 5.4, this spacing increase happens along both dimensions of
the surface, so the ray density (and thus the light color ciight) is proportional to the
inverse square distance 1/r2. This enables us to specify the spatial variation in Clight
with a single light property, cignt,, which is defined as the value of cjigny at a fixed

reference distance rg:
To

2
Clight (7)) = Clight, (7) . (5.11)

Equation 5.11 is often referred to as inverse-square light attenuation. Although
technically the correct distance attenuation for a point light, there are some issues
that make this equation less than ideal for practical shading use.

The first issue occurs at relatively small distances. As the value of r tends to 0,
the value of cjjgne Will increase in an unbounded manner. When r reaches 0, we will
have a divide-by-zero singularity. To address this, one common modification is to add
a small value € to the denominator [861]:

7ﬁ2

Clight (7)) = Clight, 7”273-6. (5.12)

The exact value used for € depends on the application; for example, the Unreal game
engine uses € = 1 cm [861].

An alternative modification, used in the CryEngine [1591] and Frostbite [960] game
engines, is to clamp r to a minimum value rpyj,:

2
To
Clight(T) = €} —_— . 5.13
1) = i, () (5.13)

Unlike the somewhat arbitrary e value used in the previous method, the value of
min has a physical interpretation: the radius of the physical object emitting the light.
Values of r smaller than r;, correspond to the shaded surface penetrating inside the
physical light source, which is impossible.

112 5. Shading Basics

T1
T2
di doy ds dy
T3 — T — T e— T —
r1 Tro r3 T4
T4) ﬁl ap
"Wl_'; dl
dg
| dp_~
7 T
2
6{3

FT
y

\
\
‘g\w

dy

Figure 5.5. The spacing between light rays from a point light increases proportionally to the dis-
tance r. Since the spacing increase occurs in two dimensions, the density of rays (and thus the light
intensity) decreases proportionally to 1/r2.

In contrast, the second issue with inverse-square attenuation occurs at relatively
large distances. The problem is not with visuals but with performance. Although light
intensity keeps decreasing with distance it never goes to 0. For efficient rendering, it
is desirable for lights to reach 0 intensity at some finite distance (Chapter 20). There
are many different ways in which the inverse-square equation could be modified to
achieve this. Ideally the modification should introduce as little change as possible. To
avoid a sharp cutoff at the boundary of the light’s influence, it is also preferable for
the derivative and value of the modified function to reach 0 at the same distance. One
solution is to multiply the inverse-square equation by a windowing function with the

5.2. Light Sources 113

1.0 . .
— 2/(r+e

— f\\'iu(r)
Fa(r)rg/(r? +€)

0.6

041

0.0

distance r

Figure 5.6. This graph shows an inverse-square curve (using the ¢ method to avoid singularities, with
an € value of 1), the windowing function described in Equation 5.14 (with rmax set to 3), and the
windowed curve.

desired properties. One such function [860] is used by both the Unreal Engine [861]
and Frostbite [960] game engines:

fwin(r) = (1 - (r;x>4>+2' (5.14)

The 42 means to clamp the value, if negative, to 0 before squaring it. Figure 5.6
shows an example inverse-square curve, the windowing function from Equation 5.14,
and the result of multiplying the two.

Application requirements will affect the choice of method used. For example,
having the derivative equal to 0 at ryax is particularly important when the distance
attenuation function is sampled at a relatively low spatial frequency (e.g., in light
maps or per-vertex). CryEngine does not use light maps or vertex lighting, so it
employs a simpler adjustment, switching to linear falloff in the range between 0.87 .
and 7max [1591].

114 5. Shading Basics

For some applications, matching the inverse-square curve is not a priority, so some
other function entirely is used. This effectively generalizes Equations 5.11-5.14 to the
following:

Clight () = Clight, fdist (7)), (5.15)

where fqist(r) is some function of distance. Such functions are called distance falloff
functions. In some cases, the use of non-inverse-square falloff functions is driven by
performance constraints. For example, the game Just Cause 2 needed lights that were
extremely inexpensive to compute. This dictated a falloff function that was simple to
compute, while also being smooth enough to avoid per-vertex lighting artifacts [1379]:

Jaist (r) = (1 - (r;x)Q)H. (5.16)

In other cases, the choice of falloff function may be driven by creative consider-
ations. For example, the Unreal Engine, used for both realistic and stylized games,
has two modes for light falloff: an inverse-square mode, as described in Equation 5.12,
and an exponential falloff mode that can be tweaked to create a variety of attenuation
curves [1802]. The developers of the game Tomb Raider (2013) used spline-editing
tools to author falloff curves [953], allowing for even greater control over the curve
shape.

Spotlights

Unlike point lights, illumination from nearly all real-world light sources varies by
direction as well as distance. This variation can be expressed as a directional falloff
function fg;;(1), which combines with the distance falloff function to define the overall
spatial variation in light intensity:

Clight = Clight, fdist (") fair (1)- (5.17)

Different choices of fq;r(1) can produce various lighting effects. One important type
of effect is the spotlight, which projects light in a circular cone. A spotlight’s directional
falloff function has rotational symmetry around a spotlight direction vector s, and thus
can be expressed as a function of the angle 6 between s and the reversed light vector
—1 to the surface. The light vector needs to be reversed because we define 1 at the
surface as pointing toward the light, and here we need the vector pointing away from
the light.

Most spotlight functions use expressions composed of the cosine of 65, which (as we
have seen earlier) is the most common form for angles in shading. Spotlights typically
have an umbra angle 6,,, which bounds the light such that fq;,(1) = 0 for all 85 > 6,,.
This angle can be used for culling in a similar manner to the maximum falloff distance
Tmax seen earlier. It is also common for spotlights to have a penumbra angle 0,,, which
defines an inner cone where the light is at its full intensity. See Figure 5.7.

5.2. Light Sources 115

Figure 5.7. A spotlight: 6 is the angle from the light’s defined direction s to the vector —1, the
direction to the surface; 6, shows the penumbra; and 6, shows the umbra angles defined for the light.

Various directional falloff functions are used for spotlights, but they tend to be
roughly similar. For example, the function fgi(1) is used in the Frostbite game
engine [960], and the function fgi.r(1) is used in the three.js browser graphics li-
brary [218]:

_ [costy —cosb, +
~ \cos 0 —cosfy,) ’
fdirF (1 = 2
faier (1) = smoothstep(t) =12(3 — 2t).

(5.18)

Recall that z™ is our notation for clamping = between 0 and 1, as introduced in

Section 1.2. The smoothstep function is a cubic polynomial that is often used for

smooth interpolation in shading. It is a built-in function in most shading languages.
Figure 5.8 shows some of the light types we have discussed so far.

Figure 5.8. Some types of lights. From left to right: directional, point light with no falloff, and
spotlight with a smooth transition. Note that the point light dims toward the edges due to the
changing angle between the light and the surface.

116 5. Shading Basics

Other Punctual Lights
There are many other ways in which the cjigne value of a punctual light can vary.

The fgir (1) function is not limited to the simple spotlight falloff functions discussed
above; it can represent any type of directional variation, including complex tabulated
patterns measured from real-world light sources. The Illuminating Engineering Society
(IES) have defined a standard file format for such measurements. IES profiles are
available from many lighting manufacturers and have been used in the game Killzone:
Shadow Fall [379, 380], as well as the Unreal [861] and Frostbite [960] game engines,
among others. Lagarde gives a good summary [961] of issues relating to parsing and
using this file format.

The game Tomb Raider (2013) [953] has a type of punctual light that applies
independent falloff functions for distance along the x, y, and z world axes. In Tomb
Raider curves can also be applied to vary light intensity over time, e.g., to produce a
flickering torch.

In Section 6.9 we will discuss how light intensity and color can be varied via the
use of textures.

5.2.3 Other Light Types

Directional and punctual lights are primarily characterized by how the light direction
1 is computed. Different types of lights can be defined by using other methods to
compute the light direction. For example, in addition to the light types mentioned
earlier, Tomb Raider also has capsule lights that use a line segment as the source
instead of a point [953]. For each shaded pixel, the direction to the closest point on
the line segment is used as the light direction 1.

As long as the shader has 1 and cjjgn values for use in evaluating the shading
equation, any method can be used to compute those values.

The types of light discussed so far are abstractions. In reality, light sources
have size and shape, and they illuminate surface points from multiple directions.
In rendering, such lights are called area lights, and their use in real-time appli-
cations is steadily increasing. Area-light rendering techniques fall into two cate-
gories: those that simulate the softening of shadow edges that results from the
area light being partially occluded (Section 7.1.2) and those that simulate the ef-
fect of the area light on surface shading (Section 10.1). This second category
of lighting is most noticeable for smooth, mirror-like surfaces, where the light’s
shape and size can be clearly discerned in its reflection. Directional and punc-
tual lights are unlikely to fall into disuse, though they are no longer as ubig-
uitous as in the past. Approximations accounting for a light’s area have been
developed that are relatively inexpensive to implement, and so are seeing wider
use. Increased GPU performance also allows for more elaborate techniques than in
the past.

5.3. Implementing Shading Models 117

5.3 Implementing Shading Models

To be useful, these shading and lighting equations must of course be implemented in
code. In this section we will go over some key considerations for designing and writing
such implementations. We will also walk through a simple implementation example.

5.3.1 Frequency of Evaluation

When designing a shading implementation, the computations need to be divided ac-
cording to their frequency of evaluation. First, determine whether the result of a given
computation is always constant over an entire draw call. In this case, the computation
can be performed by the application, typically on the CPU, though a GPU compute
shader could be used for especially costly computations. The results are passed to the
graphics API via uniform shader inputs.

Even within this category, there is a broad range of possible frequencies of evalu-
ation, starting from “once ever.” The simplest such case would be a constant subex-
pression in the shading equation, but this could apply to any computation based on
rarely changing factors such as the hardware configuration and installation options.
Such shading computations might be resolved when the shader is compiled, in which
case there is no need to even set a uniform shader input. Alternatively, the compu-
tation might be performed in an offline precomputation pass, at installation time, or
when the application is loaded.

Another case is when the result of a shading computation changes over an appli-
cation run, but so slowly that updating it every frame is not necessary. For example,
lighting factors that depend on the time of day in a virtual game world. If the com-
putation is costly, it may be worthwhile to amortize it over multiple frames.

Other cases include computations that are performed once per frame, such as con-
catenating the view and perspective matrices; or once per model, such as updating
model lighting parameters that depend on location; or once per draw call, e.g., up-
dating parameters for each material within a model. Grouping uniform shader inputs
by frequency of evaluation is useful for application efficiency, and can also help GPU
performance by minimizing constant updates [1165].

If the result of a shading computation changes within a draw call, it cannot be
passed to the shader through a uniform shader input. Instead, it must be computed by
one of the programmable shader stages described in Chapter 3 and, if needed, passed
to other stages via varying shader inputs. In theory, shading computations can be
performed on any of the programmable stages, each one corresponding to a different
evaluation frequency:

e Vertex shader—Evaluation per pre-tessellation vertex.
e Hull shader—Evaluation per surface patch.

e Domain shader—Evaluation per post-tessellation vertex.

118 5. Shading Basics

Figure 5.9. A comparison of per-pixel and per-vertex evaluations for the example shading model from
Equation 5.19, shown on three models of varying vertex density. The left column shows the results of
per-pixel evaluation, the middle column shows per-vertex evaluation, and the right column presents
wireframe renderings of each model to show vertex density. (Chinese Dragon mesh from Computer
Graphics Archive [1172], original model from Stanford 3D Scanning Repository.)

e Geometry shader—Evaluation per primitive.

e Pixel shader—Evaluation per pixel.

In practice most shading computations are performed per pixel. While these are
typically implemented in the pixel shader, compute shader implementations are in-
creasingly common; several examples will be discussed in Chapter 20. The other stages
are primarily used for geometric operations such as transformation and deformation.
To understand why this is the case, we will compare the results of per-vertex and per-
pixel shading evaluations. In older texts, these are sometimes referred to as Gouraud
shading [578] and Phong shading [1414], respectively, though those terms are not often
used today. This comparison uses a shading model somewhat similar to the one in
Equation 5.1, but modified to work with multiple light sources. The full model will
be given a bit later, when we cover an example implementation in detail.

Figure 5.9 shows the results of per-pixel and per-vertex shading on models with a
wide range of vertex densities. For the dragon, an extremely dense mesh, the difference
between the two is small. But on the teapot, vertex shading evaluation causes visible
errors such as angularly shaped highlights, and on the two-triangle plane the vertex-
shaded version is clearly incorrect. The cause of these errors is that parts of the
shading equation, the highlight in particular, have values that vary nonlinearly over

5.3. Implementing Shading Models 119

Figure 5.10. On the left, we see that linear interpolation of unit normals across a surface results
in interpolated vectors with lengths less than one. On the right, we see that linear interpolation of
normals with significantly different lengths results in interpolated directions that are skewed toward
the longer of the two normals.

the mesh surface. This makes them a poor fit for the vertex shader, the results of
which are interpolated linearly over the triangle before being fed to the pixel shader.

In principle, it would be possible to compute only the specular highlight part of the
shading model in the pixel shader, and calculate the rest in the vertex shader. This
would likely not result in visual artifacts and in theory would save some computation.
In practice, this kind of hybrid implementation is often not optimal. The linearly
varying parts of the shading model tend to be the least computationally costly, and
splitting up the shading computation in this way tends to add enough overhead, such
as duplicated computations and additional varying inputs, to outweigh any benefit.

As we mentioned earlier, in most implementations the vertex shader is responsible
for non-shading operations such as geometry transformation and deformation. The
resulting geometric surface properties, transformed into the appropriate coordinate
system, are written out by the vertex shader, linearly interpolated over the triangle,
and passed into the pixel shader as varying shader inputs. These properties typically
include the position of the surface, the surface normal, and optionally surface tangent
vectors, if needed for normal mapping.

Note that even if the vertex shader always generates unit-length surface normals,
interpolation can change their length. See the left side of Figure 5.10. For this reason
the normals need to be renormalized (scaled to length 1) in the pixel shader. However,
the length of the normals generated by the vertex shader still matters. If the normal
length varies significantly between vertices, e.g., as a side effect of vertex blending,
this will skew the interpolation. This can be seen in the right side of Figure 5.10. Due
to these two effects, implementations often normalize interpolated vectors before and
after interpolation, i.e., in both the vertex and pixel shaders.

Unlike the surface normals, vectors that point toward specific locations, such as
the view vector and the light vector for punctual lights, are typically not interpolated.
Instead, the interpolated surface position is used to compute these vectors in the pixel
shader. Other than the normalization, which as we have seen needs to be performed
in the pixel shader in any case, each of these vectors is computed with a vector
subtraction, which is quick. If for some reason it is necessary to interpolate these

120 5. Shading Basics

Figure 5.11. Interpolation between two light vectors. On the left, normalizing them before inter-
polation causes the direction to be incorrect after interpolation. On the right, interpolating the
non-normalized vectors yields correct results.

vectors, do not normalize them beforehand. This will yield incorrect results, as shown
in Figure 5.11.

Earlier we mentioned that the vertex shader transforms the surface geometry into
“the appropriate coordinate system.” The camera and light positions, passed to the
pixel shader through uniform variables, are typically transformed by the application
into the same coordinate system. This minimizes work done by the pixel shader to
bring all the shading model vectors into the same coordinate space. But which coor-
dinate system is the “appropriate” one? Possibilities include the global world space as
well as the local coordinate system of the camera or, more rarely, that of the currently
rendered model. The choice is typically made for the rendering system as a whole,
based on systemic considerations such as performance, flexibility, and simplicity. For
example, if rendered scenes are expected to include huge numbers of lights, world
space might be chosen to avoid transforming the light positions. Alternately, camera
space might be preferred, to better optimize pixel shader operations relating to the
view vector and to possibly improve precision (Section 16.6).

Although most shader implementations, including the example implementation we
are about to discuss, follow the general outline described above, there are certainly
exceptions. For example, some applications choose the faceted appearance of per-
primitive shading evaluation for stylistic reasons. This style is often referred to as flat
shading. Two examples are shown in Figure 5.12.

In principle, flat shading could be performed in the geometry shader, but recent
implementations typically use the vertex shader. This is done by associating each
primitive’s properties with its first vertex and disabling vertex value interpolation.
Disabling interpolation (which can be done for each vertex value separately) causes
the value from the first vertex to be passed to all pixels in the primitive.

5.3.2 Implementation Example

We will now present an example shading model implementation. As mentioned earlier,
the shading model we are implementing is similar to the extended Gooch model from

5.3. Implementing Shading Models 121

Figure 5.12. Two games that use flat shading as a stylistic choice: Kentucky Route Zero, top, and
That Dragon, Cancer, bottom. (Upper image courtesy of Cardboard Computer, lower courtesy of
Numinous Games.)

Equation 5.1, but modified to work with multiple light sources. It is described by

1 n
Cshaded = 5 Ceool + Z(li - 1) Clignt, (i Chighlight + (1 — $i) Cwarm) (5.19)

=1

122 5. Shading Basics

with the following intermediate calculations:

Ceool = (0,0,0.55) + 0.25 Csurfaces
Cwarm = (035 037 0) +0.25 Csurface

Chighlight = (2,2,2), (5.20)
r,=2(mn-1)n-1,

s; = (100 (r; - v) — 97)".

This formulation fits the multi-light structure in Equation 5.6, repeated here for
convenience:
n

Conaded = funtit (0, V) + Y (L -)" Crigne, fiie (1i, 1, V).

i=1
The lit and unlit terms in this case are

1
funlit(n7 V) - §CCOOI’ (521)

fiis(1i, 0, V) = 8 Chighlight + (1 — i) Cwarm,

with the cool color’s unlit contribution adjusted to make results look more like the
original equation.

In most typical rendering applications, varying values for material properties such
as Csurface Would be stored in vertex data or, more commonly, in textures (Chapter 6).
However, to keep this example implementation simple, we will assume that csyrface iS
constant across the model.

This implementation will use the shader’s dynamic branching capabilities to loop
over all light sources. While this straightforward approach can work well for reasonably
simple scenes, it does not scale well to large and geometrically complex scenes with
many light sources. Rendering techniques to efficiently handle large light counts will
be covered in Chapter 20. Also, in the interest of simplicity, we will only support one
type of light source: point lights. Although the implementation is quite simple, it
follows the best practices covered earlier.

Shading models are not implemented in isolation, but in the context of a larger ren-
dering framework. This example is implemented inside a simple WebGL 2 application,
modified from the “Phong-shaded Cube” WebGL 2 sample by Tarek Sherif [1623], but
the same principles apply to more complex frameworks as well.

We will be discussing some samples of GLSL shader code and JavaScript WebGL
calls from the application. The intent is not to teach the specifics of the WebGL API
but to show general implementation principles. We will go through the implementation
in “inside out” order, starting with the pixel shader, then the vertex shader, and finally
the application-side graphics API calls.

Before the shader code proper, the shader source includes definitions of the shader
inputs and outputs. As discussed earlier in Section 3.3, using GLSL terminology,

5.3. Implementing Shading Models 123

shader inputs fall into two categories. One is the set of uniform inputs, which have
values set by the application and which remain constant over a draw call. The second
type consists of varying inputs, which have values that can change between shader
invocations (pixels or vertices). Here we see the definitions of the pixel shader’s varying
inputs, which in GLSL are marked in, as well as its outputs:

in vec3 vPos;

in vec3 vNormal;
out vec4 outColor;

This pixel shader has a single output, which is the final shaded color. The pixel
shader inputs match the vertex shader outputs, which are interpolated over the triangle
before being fed into the pixel shader. This pixel shader has two varying inputs:
surface position and surface normal, both in the application’s world-space coordinate
system. The number of uniform inputs is much larger, so for brevity we will only show
the definitions of two, both related to light sources:
struct Light {

vec4 position;

vec4 color;
};
uniform LightUBlock {

Light uLights [MAXLIGHTS];
};

uniform uint uLightCount;

Since these are point lights, the definition for each one includes a position and a
color. These are defined as vec4 instead of vec3 to conform to the restrictions of the
GLSL std140 data layout standard. Although, as in this case, the std140 layout can
lead to some wasted space, it simplifies the task of ensuring consistent data layout
between CPU and GPU, which is why we use it in this sample. The array of Light
structs is defined inside a named uniform block, which is a GLSL feature for binding a
group of uniform variables to a buffer object for faster data transfer. The array length
is defined to be equal to the maximum number of lights that the application allows in
a single draw call. As we will see later, the application replaces the MAXLIGHTS string
in the shader source with the correct value (10 in this case) before shader compilation.
The uniform integer uLightCount is the actual number of active lights in the draw
call.

Next, we will take a look at the pixel shader code:
vec3 lit(vec3 1, vec3 n, vec3 v) {

vec3 r_1 = reflect(-1, n);
float s = clamp(100.0 * dot(r_1, v) - 97.0, 0.0, 1.0);
vec3 highlightColor = vec3(2,2,2);

return mix (uWarmColor, highlightColor, s);

}

void main() {
vec3 n = normalize(vNormal);
vec3 v = normalize(uEyePosition.xyz - vPos);

124 5. Shading Basics

outColor = vec4(uFUnlit, 1.0);

for (uint i = Ou; i < uLightCount; i++) {
vec3 1 = normalize(ulLights[i].position.xyz - vPos);
float NAL = clamp(dot(n, 1), 0.0, 1.0);
outColor.rgb += NdL * ulLights[i].color.rgb * 1it(l,n,v);

We have a function definition for the 1it term, which is called by the main()
function. Overall, this is a straightforward GLSL implementation of Equations 5.20
and 5.21. Note that the values of funit() and Cywarm are passed in as uniform variables.
Since these are constant over the entire draw call, the application can compute these
values, saving some GPU cycles.

This pixel shader uses several built-in GLSL functions. The reflect() function
reflects one vector, in this case the light vector, in the plane defined by a second vector,
in this case the surface normal. Since we want both the light vector and reflected vector
to point away from the surface, we need to negate the former before passing it into
reflect(). The clamp() function has three inputs. Two of them define a range to
which the third input is clamped. The special case of clamping to the range between 0
and 1 (which corresponds to the HLSL saturate () function) is quick, often effectively
free, on most GPUs. This is why we use it here, although we only need to clamp the
value to 0, as we know it will not exceed 1. The function mix () also has three inputs
and linearly interpolates between two of them, the warm color and the highlight color
in this case, based on the value of the third, a mixing parameter between 0 and 1. In
HLSL this function is called lerp(), for “linear interpolation.” Finally, normalize ()
divides a vector by its length, scaling it to a length of 1.

Now let us look at the vertex shader. We will not show any of its uniform definitions
since we already saw some example uniform definitions for the pixel shader, but the
varying input and output definitions are worth examining;:
layout (location=0) in vec4 position;
layout (location=1) in vec4 normal;

out vec3 vPos;
out vec3 vNormal;

Note that, as mentioned earlier, the vertex shader outputs match the pixel shader
varying inputs. The inputs include directives that specify how the data are laid out
in the vertex array. The vertex shader code comes next:
void main() {

vec4 worldPosition = uModel * position;
vPos = worldPosition.xyz;

vNormal = (uModel * normal).xyz;
gl_Position = viewProj * worldPosition;

These are common operations for a vertex shader. The shader transforms the
surface position and normal into world space and passes them to the pixel shader

5.3. Implementing Shading Models 125

for use in shading. Finally, the surface position is transformed into clip space and
passed into gl Position, a special system-defined variable used by the rasterizer.
The gl Position variable is the one required output from any vertex shader.

Note that the normal vectors are not normalized in the vertex shader. They do not
need to be normalized since they have a length of 1 in the original mesh data and this
application does not perform any operations, such as vertex blending or nonuniform
scaling, that could change their length unevenly. The model matrix could have a
uniform scale factor, but that would change the length of all normals proportionally
and thus not result in the problem shown on the right side of Figure 5.10.

The application uses the WebGL API for various rendering and shader setup. Each
of the programmable shader stages are set up individually, and then they are all bound
to a program object. Here is the pixel shader setup code:

var fSource = document.getElementById("fragment").text.trim();

var maxLights = 10;
fSource = fSource.replace(/MAXLIGHTS/g, maxLights.toString());

var fragmentShader = gl.createShader (gl.FRAGMENT_SHADER) ;
gl.shaderSource (fragmentShader, fSource);
gl.compileShader (fragmentShader) ;

Note the “fragment shader” references. This term is used by WebGL (and OpenGL,
on which it is based). As noted earlier in this book, although “pixel shader” is less
precise in some ways, it is the more common usage, which we follow in this book. This
code is also where the MAXLIGHTS string is replaced with the appropriate numerical
value. Most rendering frameworks perform similar pre-compilation shader manipula-
tions.

There is more application-side code for setting uniforms, initializing vertex arrays,
clearing, drawing, and so on, which you can view in the program [1623] and which are
explained by numerous API guides. Our goal here is to give a sense of how shaders are
treated as separate processors, with their own programming environment. We thus
end our walkthrough at this point.

5.3.3 Material Systems

Rendering frameworks rarely implement just a single shader, as in our simple example.
Typically, a dedicated system is needed to handle the variety of materials, shading
models, and shaders used by the application.

As explained in earlier chapters, a shader is a program for one of the GPU’s
programmable shader stages. As such, it is a low-level graphics API resource and not
something with which artists would interact directly. In contrast, a material is an
artist-facing encapsulation of the visual appearance of a surface. Materials sometimes
also describe non-visual aspects, such as collision properties, which we will not discuss
further because they are outside the scope of this book.

126 5. Shading Basics

While materials are implemented via shaders, this is not a simple one-to-one cor-
respondence. In different rendering situations, the same material may use different
shaders. A shader can also be shared by multiple materials. The most common case is
parameterized materials. In its simplest form, material parameterization requires two
types of material entities: material templates and material instances. Each material
template describes a class of materials and has a set of parameters that can be assigned
numerical, color, or texture values depending on the parameter type. Each material
instance corresponds to a material template plus a specific set of values for all of its
parameters. Some rendering frameworks such as the Unreal Engine [1802] allow for
a more complex, hierarchical structure, with material templates deriving from other
templates at multiple levels.

Parameters may be resolved at runtime, by passing uniform inputs to the shader
program, or at compile time, by substituting values before the shader is compiled. A
common type of compile-time parameter is a boolean switch that controls the acti-
vation of a given material feature. This can be set by artists via a checkbox in the
material user interface or procedurally by the material system, e.g., to reduce shader
cost for distant objects where the visual effect of the feature is negligible.

While the material parameters may correspond one-to-one with the parameters
of the shading model, this is not always the case. A material may fix the value
of a given shading model parameter, such as the surface color, to a constant value.
Alternately, a shading model parameter may be computed as the result of a com-
plex series of operations taking multiple material parameters, as well as interpolated
vertex or texture values, as inputs. In some cases, parameters such as surface posi-
tion, surface orientation, and even time may also factor into the calculation. Shading
based on surface position and orientation is especially common in terrain materials.
For example, the height and surface normal can be used to control a snow effect,
blending in a white surface color on high-altitude horizontal and almost-horizontal
surfaces. Time-based shading is common in animated materials, such as a flickering
neon sign.

One of the most important tasks of a material system is dividing various shader
functions into separate elements and controlling how these are combined. There are
many cases where this type of composition is useful, including the following:

e Composing surface shading with geometric processing, such as rigid transforms,
vertex blending, morphing, tessellation, instancing, and clipping. These bits of
functionality vary independently: Surface shading depends on the material, and
geometry processing depends on the mesh. So, it is convenient to author them
separately and have the material system compose them as needed.

e Composing surface shading with compositing operations such as pixel discard
and blending. This is particularly relevant to mobile GPUs, where blending
is typically performed in the pixel shader. It is often desirable to select these
operations independently of the material used for surface shading.

5.3. Implementing Shading Models 127

e Composing the operations used to compute the shading model parameters with
the computation of the shading model itself. This allows authoring the shading
model implementation once and reusing it in combination with various different
methods for computing the shading model parameters.

e Composing individually selectable material features with each other, the selec-
tion logic, and the rest of the shader. This enables writing the implementation
of each feature separately.

e Composing the shading model and computation of its parameters with light
source evaluation: computing the values of ciigne and 1 at the shaded point for
each light source. Techniques such as deferred rendering (discussed in Chap-
ter 20) change the structure of this composition. In rendering frameworks that
support multiple such techniques, this adds an additional layer of complexity.

It would be convenient if the graphics API provided this type of shader code mod-
ularity as a core feature. Sadly, unlike CPU code, GPU shaders do not allow for
post-compilation linking of code fragments. The program for each shader stage is
compiled as a unit. The separation between shader stages does offer some limited
modularity, which somewhat fits the first item on our list: composing surface shading
(typically performed in the pixel shader) with geometric processing (typically per-
formed in other shader stages). But the fit is not perfect, since each shader performs
other operations as well, and the other types of composition still need to be han-
dled. Given these limitations, the only way that the material system can implement
all these types of composition is at the source-code level. This primarily involves
string operations such as concatenation and replacement, often performed via C-style
preprocessing directives such as #include, #if, and #define.

Early rendering systems had a relatively small number of shader variants, and
often each one was written manually. This has some benefits. For example, each
variant can be optimized with full knowledge of the final shader program. However,
this approach quickly becomes impractical as the number of variants grows. When
taking all the different parts and options into account, the number of possible different
shader variants is huge. This is why modularity and composability are so crucial.

The first question to be resolved when designing a system for handling shader
variants is whether selection between different options is performed at runtime via
dynamic branching, or at compile time via conditional preprocessing. On older hard-
ware, dynamic branching was often impossible or extremely slow, so runtime selection
was not an option. Variants were then all handled at compile time, including all
possible combinations of counts of the different light types [1193].

In contrast, current GPUs handle dynamic branching quite well, especially when
the branch behaves the same for all pixels in a draw call. Today much of the function-
ality variation, such as the number of lights, is handled at runtime. However, adding
a large amount of functional variation to a shader incurs a different cost: an increase
in register count and a corresponding reduction in occupancy, and thus performance.

128 5. Shading Basics

See Section 18.4.5 for more details. So, compile-time variation is still valuable. It
avoids including complex logic that will never be executed.

As an example, let us imagine an application that supports three different types
of lights. Two light types are simple: point and directional. The third type is a
generalized spotlight that supports tabulated illumination patterns and other complex
features, requiring a significant amount of shader code to implement. However, say
the generalized spotlight is used relatively rarely, with less than 5% of the lights in the
application being this type. In the past, a separate shader variant would be compiled
for each possible combination of counts of the three light types, to avoid dynamic
branching. While this would not be needed today, it may still be beneficial to compile
two separate variants, one for the case when the count of generalized spotlights is equal
to or greater than 1, and one for the case where the count of such lights is exactly 0.
Due to its simpler code, the second variant (which is most commonly used) is likely
to have lower register occupancy and thus higher performance.

Modern material systems employ both runtime and compile-time shader variation.
Even though the full burden is no longer handled only at compile time, the overall
complexity and number of variations keep increasing, so a large number of shader vari-
ants still need to be compiled. For example, in some areas of the game Destiny: The
Taken King, over 9000 compiled shader variations were used in a single frame [1750].
The number of possible variations can be much larger, e.g., the Unity rendering sys-
tem has shaders with close to 100 billion possible variants. Only the variants that are
actually used are compiled, but the shader compilation system had to be redesigned
to handle the huge number of possible variants [1439].

Material-system designers employ different strategies to address these design
goals. Although these are sometimes presented as mutually exclusive system architec-
tures [342], these strategies can be—and usually are—combined in the same system.
These strategies include the following;:

e Code reuse—Implementing functions in shared files, using #include preproces-
sor directives to access those functions from any shader that needs them.

e Subtractive—A shader, often referred to as an dbershader or supershader [1170,
1784], that aggregates a large set of functionality, using a combination of compile-
time preprocessor conditionals and dynamic branching to remove unused parts
and to switch between mutually exclusive alternatives.

e Additive—Various bits of functionality are defined as nodes with input and
output connectors, and these are composed together. This is similar to the
code reuse strategy but is more structured. The composition of nodes can be
done via text [342] or a visual graph editor. The latter is intended to make
it easier for non-engineers, such as technical artists, to author new material
templates [1750, 1802]. Typically only part of the shader is accessible to visual
graph authoring. For example, in the Unreal Engine the graph editor can only
affect the computation of shading model inputs [1802]. See Figure 5.13.

5.3. Implementing Shading Models 129

Figure 5.13. The Unreal Engine material editor. Note the tall node on the right side of the node
graph. The input connectors of this node correspond to various shading inputs used by the rendering
engine, including all the shading model parameters. (Material sample courtesy of Epic Games.)

e Template-based—An interface is defined, into which different implementations
can be plugged as long as they conform to that interface. This is a bit more
formal than the additive strategy and is typically used for larger chunks of func-
tionality. A common example for such an interface is the separation between
the calculation of shading model parameters and the computation of the shading
model itself. The Unreal Engine [1802] has different “material domains,” includ-
ing the Surface domain for computing shading model parameters and the Light
Function domain for computing a scalar value that modulates cjignt for a given
light source. A similar “surface shader” structure also exists in Unity [1437].
Note that deferred shading techniques (discussed in Chapter 20) enforce a simi-
lar structure, with the G-buffer serving as the interface.

For more specific examples, several chapters in the (now free) book WebGL In-
sights [301] discuss how a variety of engines control their shader pipelines. Besides
composition, there are several other important design considerations for modern mate-
rial systems, such as the need to support multiple platforms with minimal duplication
of shader code. This includes variations in functionality to account for performance
and capability differences among platforms, shading languages, and APIs. The Des-
tiny shader system [1750] is a representative solution to this type of problem. It uses a
proprietary preprocessor layer that takes shaders written in a custom shading language
dialect. This allows writing platform-independent materials with automatic transla-
tion to different shading languages and implementations. The Unreal Engine [1802]
and Unity [1436] have similar systems.

130 5. Shading Basics

The material system also needs to ensure good performance. Besides specialized
compilation of shading variants, there are a few other common optimizations the
material system can perform. The Destiny shader system and the Unreal Engine
automatically detect computations that are constant across a draw call (such as the
warm and cool color computation in the earlier implementation example) and move
it outside of the shader. Another example is the scoping system used in Destiny to
differentiate between constants that are updated at different frequencies (e.g., once
per frame, once per light, once per object) and update each set of constants at the
appropriate times to reduce API overhead.

As we have seen, implementing a shading equation is a matter of deciding what
parts can be simplified, how frequently to compute various expressions, and how the
user is able to modify and control the appearance. The ultimate output of the ren-
dering pipeline is a color and blend value. The remaining sections on antialiasing,
transparency, and image display detail how these values are combined and modified
for display.

5.4 Aliasing and Antialiasing

Imagine a large black triangle moving slowly across a white background. As a screen
grid cell is covered by the triangle, the pixel value representing this cell should
smoothly drop in intensity. What typically happens in basic renderers of all sorts
is that the moment the grid cell’s center is covered, the pixel color immediately goes
from white to black. Standard GPU rendering is no exception. See the leftmost
column of Figure 5.14.

Triangles show up in pixels as either there or not there. Lines drawn have a similar
problem. The edges have a jagged look because of this, and so this visual artifact is
called “the jaggies,” which turn into “the crawlies” when animated. More formally,
this problem is called aliasing, and efforts to avoid it are called antialiasing techniques.

The subject of sampling theory and digital filtering is large enough to fill its own
book [559, 1447, 1729]. As this is a key area of rendering, the basic theory of sampling
and filtering will be presented. We will then focus on what currently can be done in
real time to alleviate aliasing artifacts.

5.4.1 Sampling and Filtering Theory

The process of rendering images is inherently a sampling task. This is so since the
generation of an image is the process of sampling a three-dimensional scene in order
to obtain color values for each pixel in the image (an array of discrete pixels). To use
texture mapping (Chapter 6), texels have to be resampled to get good results under
varying conditions. To generate a sequence of images in an animation, the animation
is often sampled at uniform time intervals. This section is an introduction to the
topic of sampling, reconstruction, and filtering. For simplicity, most material will be

5.4. Aliasing and Antialiasing 131

Figure 5.14. The upper row shows three images with different levels of antialiasing of a triangle,
a line, and some points. The lower row images are magnifications of the upper row. The leftmost
column uses only one sample per pixel, which means that no antialiasing is used. The middle column
images were rendered with four samples per pixel (in a grid pattern), and the right column used eight
samples per pixel (in a 4 x 4 checkerboard, half the squares sampled).

presented in one dimension. These concepts extend naturally to two dimensions as
well, and can thus be used when handling two-dimensional images.

Figure 5.15 shows how a continuous signal is being sampled at uniformly spaced
intervals, that is, discretized. The goal of this sampling process is

to represent information digitally. In doing so, the amount of information is re-
duced. However, the sampled signal needs to be reconstructed to recover the original
signal. This is done by filtering the sampled signal.

Whenever sampling is done, aliasing may occur. This is an unwanted artifact, and
we need to battle aliasing to generate pleasing images. A classic example of aliasing
seen in old Westerns is a spinning wagon wheel filmed by a movie camera. Because

sampling reconstruction

continuous signal sampled signal reconstructed signal

Figure 5.15. A continuous signal (left) is sampled (middle), and then the original signal is recovered
by reconstruction (right).

132 5. Shading Basics

OOCOLOOOOOCHYVLOU
QOO
OOOOO-
OO0

Figure 5.16. The top row shows a spinning wheel (original signal). This is inadequately sampled in
second row, making it appear to move in the opposite direction. This is an example of aliasing due
to a too low sampling rate. In the third row, the sampling rate is exactly two samples per revolution,
and we cannot determine in which direction the wheel is spinning. This is the Nyquist limit. In the
fourth row, the sampling rate is higher than two samples per revolution, and we suddenly can see
that the wheel spins in the right direction.

the spokes move much faster than the camera records images, the wheel may appear
to be spinning slowly (backward or forward), or may even look like it is not rotating
at all. This can be seen in Figure 5.16. The effect occurs because the images of the
wheel are taken in a series of time steps, and is called temporal aliasing.

Common examples of aliasing in computer graphics are the “jaggies” of a rasterized
line or triangle edge, flickering highlights known as “fireflies”, and when a texture with
a checker pattern is minified (Section 6.2.2).

Aliasing occurs when a signal is being sampled at too low a frequency. The sam-
pled signal then appears to be a signal of lower frequency than the original. This
is illustrated in Figure 5.17. For a signal to be sampled properly (i.e., so that it is
possible to reconstruct the original signal from the samples), the sampling frequency

Figure 5.17. The solid blue line is the original signal, the red circles indicate uniformly spaced sample
points, and the green dashed line is the reconstructed signal. The top figure shows a too low sample
rate. Therefore, the reconstructed signal appears to be of lower frequency, i.e., an alias of the original
signal. The bottom shows a sampling rate of exactly twice the frequency of the original signal, and the
reconstructed signal is here a horizontal line. It can be proven that if the sampling rate is increased
ever so slightly, perfect reconstruction is possible.

5.4. Aliasing and Antialiasing 133

has to be more than twice the maximum frequency of the signal to be sampled. This
is often called the sampling theorem, and the sampling frequency is called the Nyquist
rate [1447] or Nyquist limit, after Harry Nyquist (1889-1976), a Swedish scientist who
discovered this in 1928. The Nyquist limit is also illustrated in Figure 5.16. The fact
that the theorem uses the term “maximum frequency” implies that the signal has to
be band-limited, which just means that there are not any frequencies above a certain
limit. Put another way, the signal has to be smooth enough relative to the spacing
between neighboring samples.

A three-dimensional scene is normally never band-limited when rendered with point
samples. FEdges of triangles, shadow boundaries, and other phenomena produce a
signal that changes discontinuously and so produces frequencies that are infinite [252].
Also, no matter how closely packed the samples are, objects can still be small enough
that they do not get sampled at all. Thus, it is impossible to entirely avoid aliasing
problems when using point samples to render a scene, and we almost always use point
sampling. However, at times it is possible to know when a signal is band-limited.
One example is when a texture is applied to a surface. It is possible to compute the
frequency of the texture samples compared to the sampling rate of the pixel. If this
frequency is lower than the Nyquist limit, then no special action is needed to properly
sample the texture. If the frequency is too high, then a variety of algorithms are used
to band-limit the texture (Section 6.2.2).

Reconstruction

Given a band-limited sampled signal, we will now discuss how the original signal can
be reconstructed from the sampled signal. To do this, a filter must be used. Three
commonly used filters are shown in Figure 5.18. Note that the area of the filter should
always be one, otherwise the reconstructed signal can appear to grow or shrink.

Figure 5.18. The top left shows the box filter, and the top right the tent filter. The bottom shows
the sinc filter (which has been clamped on the z-axis here).

134 5. Shading Basics

|
|
l
F
[
|
|

Figure 5.19. The sampled signal (left) is reconstructed using the box filter. This is done by placing
the box filter over each sample point, and scaling it in the y-direction so that the height of the filter
is the same as the sample point. The sum is the reconstruction signal (right).

In Figure 5.19, the box filter (nearest neighbor) is used to reconstruct a sampled
signal. This is the worst filter to use, as the resulting signal is a noncontinuous stair
case. Still, it is often used in computer graphics because of its simplicity. As can be
seen in the illustration, the box filter is placed over each sample point, and then scaled
so that the topmost point of the filter coincides with the sample point. The sum of
all these scaled and translated box functions is the reconstructed signal shown to the
right.

The box filter can be replaced with any other filter. In Figure 5.20, the tent filter,
also called the triangle filter, is used to reconstruct a sampled signal. Note that this

|
|
|
|
f
|
|

Figure 5.20. The sampled signal (left) is reconstructed using the tent filter. The reconstructed signal
is shown to the right.

5.4. Aliasing and Antialiasing 135

Figure 5.21. Here, the sinc filter is used to reconstruct the signal. The sinc filter is the ideal low-pass
filter.

filter implements linear interpolation between neighboring sample points, and so it is
better than the box filter, as the reconstructed signal now is continuous.

However, the smoothness of the reconstructed signal using a tent filter is poor;
there are sudden slope changes at the sample points. This has to do with the fact that
the tent filter is not a perfect reconstruction filter. To get perfect reconstruction the
ideal low-pass filter has to be used. A frequency component of a signal is a sine wave:
sin(27f), where f is the frequency of that component. Given this, a low-pass filter
removes all frequency components with frequencies higher than a certain frequency
defined by the filter. Intuitively, the low-pass filter removes sharp features of the
signal, i.e., the filter blurs it. The ideal low-pass filter is the sinc filter (Figure 5.18
bottom):

sinc(x) = sin(r) .

o (5.22)

The theory of Fourier analysis [1447] explains why the sinc filter is the ideal low-
pass filter. Briefly, the reasoning is as follows. The ideal low-pass filter is a box filter
in the frequency domain, which removes all frequencies above the filter width when it
is multiplied with the signal. Transforming the box filter from the frequency domain
to the spatial domain gives a sinc function. At the same time, the multiplication
operation is transformed into the conwvolution function, which is what we have been
using in this section, without actually describing the term.

Using the sinc filter to reconstruct the signal gives a smoother result, as shown
in Figure 5.21. The sampling process introduces high-frequency components (abrupt
changes) in the signal, and the task of the low-pass filter is to remove these. In fact,
the sinc filter eliminates all sine waves with frequencies higher than 1/2 the sampling
rate. The sinc function, as presented in Equation 5.22, is the perfect reconstruction
filter when the sampling frequency is 1.0 (i.e., the maximum frequency of the sampled

136 5. Shading Basics

signal must be smaller than 1/2). More generally, assume the sampling frequency is
fs, that is, the interval between neighboring samples is 1/f;. For such a case, the
perfect reconstruction filter is sinc(fsz), and it eliminates all frequencies higher than
fs/2. This is useful when resampling the signal (next section). However, the filter
width of the sinc is infinite and is negative in some areas, so it is rarely useful in
practice.

There is a useful middle ground between the low-quality box and tent filters on
one hand, and the impractical sinc filter on the other. Most widely used filter func-
tions [1214, 1289, 1413, 1793] are between these extremes. All these filter functions
have some approximation to the sinc function, but with a limit on how many pixels
they influence. The filters that most closely approximate the sinc function have nega-
tive values over part of their domain. For applications where negative filter values are
undesirable or impractical, filters with no negative lobes (often referred to generically
as Gaussian filters, since they either derive from or resemble a Gaussian curve) are
typically used [1402]. Section 12.1 discusses filter functions and their use in more
detail.

After using any filter, a continuous signal is obtained. However, in computer graph-
ics we cannot display continuous signals directly, but we can use them to resample
the continuous signal to another size, i.e., either enlarging the signal, or diminishing
it. This topic is discussed next.

Resampling

Resampling is used to magnify or minify a sampled signal. Assume that the original
sample points are located at integer coordinates (0,1,2,...), that is, with unit inter-
vals between samples. Furthermore, assume that after resampling we want the new
sample points to be located uniformly with an interval a between samples. For a > 1,
minification (downsampling) takes place, and for a < 1, magnification (upsampling)
occurs.

Magnification is the simpler case of the two, so let us start with that. Assume
the sampled signal is reconstructed as shown in the previous section. Intuitively,
since the signal now is perfectly reconstructed and continuous, all that is needed is to
resample the reconstructed signal at the desired intervals. This process can be seen
in Figure 5.22.

However, this technique does not work when minification occurs. The frequency
of the original signal is too high for the sampling rate to avoid aliasing. Instead it has
been shown that a filter using sinc(z/a) should be used to create a continuous signal
from the sampled one [1447, 1661]. After that, resampling at the desired intervals can
take place. This can be seen in Figure 5.23. Said another way, by using sinc(z/a) as
a filter here, the width of the low-pass filter is increased, so that more of the signal’s
higher frequency content is removed. As shown in the figure, the filter width (of
the individual sinc’s) is doubled to decrease the resampling rate to half the original
sampling rate. Relating this to a digital image, this is similar to first blurring it (to
remove high frequencies) and then resampling the image at a lower resolution.

5.4. Aliasing and Antialiasing 137

0.8 0.8
0.6¢ 0.6¢

0.4 0.4

-0.2 -0.2

0.5 1 1.5 2 25 3 35 4 0.5 1 1.5 2 25 3 35 4

Figure 5.22. On the left is the sampled signal, and the reconstructed signal. On the right, the
reconstructed signal has been resampled at double the sample rate, that is, magnification has taken
place.

-0.2 -0.2

Figure 5.23. On the left is the sampled signal, and the reconstructed signal. On the right, the filter
width has doubled in order to double the interval between the samples, that is, minification has taken
place.

With the theory of sampling and filtering available as a framework, the various
algorithms used in real-time rendering to reduce aliasing are now discussed.

5.4.2 Screen-Based Antialiasing

Edges of triangles produce noticeable artifacts if not sampled and filtered well. Shadow
boundaries, specular highlights, and other phenomena where the color is changing
rapidly can cause similar problems. The algorithms discussed in this section help
improve the rendering quality for these cases. They have the common thread that they
are screen based, i.e., that they operate only on the output samples of the pipeline.
There is no one best antialiasing technique, as each has different advantages in terms
of quality, ability to capture sharp details or other phenomena, appearance during
movement, memory cost, GPU requirements, and speed.

In the black triangle example in Figure 5.14, one problem is the low sampling rate.
A single sample is taken at the center of each pixel’s grid cell, so the most that is

138 5. Shading Basics

Figure 5.24. On the left, a red triangle is rendered with one sample at the center of the pixel. Since
the triangle does not cover the sample, the pixel will be white, even though a substantial part of the
pixel is covered by the red triangle. On the right, four samples are used per pixel, and as can be seen,
two of these are covered by the red triangle, which results in a pink pixel color.

known about the cell is whether or not the center is covered by the triangle. By using
more samples per screen grid cell and blending these in some fashion, a better pixel
color can be computed. This is illustrated in Figure 5.24.

The general strategy of screen-based antialiasing schemes is to use a sampling
pattern for the screen and then weight and sum the samples to produce a pixel color, p:

p(w,y) = Zwic(iaxay)v (523)
i=1

where n is the number of samples taken for a pixel. The function c(i,z,y) is a
sample color and w; is a weight, in the range [0, 1], that the sample will contribute
to the overall pixel color. The sample position is taken based on which sample it is
in the series 1,...,n, and the function optionally also uses the integer part of the
pixel location (z,y). In other words, where the sample is taken on the screen grid is
different for each sample, and optionally the sampling pattern can vary from pixel to
pixel. Samples are normally point samples in real-time rendering systems (and most
other rendering systems, for that matter). So, the function ¢ can be thought of as two
functions. First, a function f(i, n) retrieves the floating point (x¢,ys) location on the
screen where a sample is needed. This location on the screen is then sampled, i.e.,
the color at that precise point is retrieved. The sampling scheme is chosen and the
rendering pipeline configured to compute the samples at particular subpixel locations,
typically based on a per-frame (or per-application) setting.

The other variable in antialiasing is w;, the weight of each sample. These weights
sum to one. Most methods used in real-time rendering systems give a uniform weight
to their samples, i.e., w; = % The default mode for graphics hardware, a single sample
at the center of the pixel, is the simplest case of the antialiasing equation above. There
is only one term, the weight of this term is one, and the sampling function f always
returns the center of the pixel being sampled.

Antialiasing algorithms that compute more than one full sample per pixel are
called supersampling (or oversampling) methods. Conceptually simplest, full-scene
antialiasing (FSAA), also known as “supersampling antialiasing” (SSAA), renders the

5.4. Aliasing and Antialiasing 139

scene at a higher resolution and then filters neighboring samples to create an image.
For example, say an image of 1280 x 1024 pixels is desired. If you render an image of
2560 x 2048 offscreen and then average each 2 x 2 pixel area on the screen, the desired
image is generated with four samples per pixel, filtered using a box filter. Note that
this corresponds to 2 x 2 grid sampling in Figure 5.25. This method is costly, as all
subsamples must be fully shaded and filled, with a z-buffer depth per sample. FSAA’s
main advantage is simplicity. Other, lower-quality versions of this method sample at
twice the rate on only one screen axis, and so are called 1 x 2 or 2 x 1 supersampling.
Typically, powers-of-two resolution and a box filter are used for simplicity. NVIDIA’s
dynamic super resolution feature is a more elaborate form of supersampling, where
the scene is rendered at some higher resolution and a 13-sample Gaussian filter is used
to generate the displayed image [1848].

A sampling method related to supersampling is based on the idea of the accu-
mulation buffer [637, 1115]. Instead of one large offscreen buffer, this method uses a
buffer that has the same resolution as the desired image, but with more bits of color
per channel. To obtain a 2 x 2 sampling of a scene, four images are generated, with
the view moved half a pixel in the screen z- or y-direction as needed. Each image
generated is based on a different sample position within the grid cell. The additional
costs of having to re-render the scene a few times per frame and copy the result to
the screen makes this algorithm costly for real-time rendering systems. It is useful for
generating higher-quality images when performance is not critical, since any number
of samples, placed anywhere, can be used per pixel [1679]. The accumulation buffer
used to be a separate piece of hardware. It was supported directly in the OpenGL
API, but was deprecated in version 3.0. On modern GPUs the accumulation buffer
concept can be implemented in a pixel shader by using a higher-precision color format
for the output buffer.

Additional samples are needed when phenomena such as object edges, specular
highlights, and sharp shadows cause abrupt color changes. Shadows can often be
made softer and highlights smoother to avoid aliasing. Particular object types can
be increased in size, such as electrical wires, so that they are guaranteed to cover at
least one pixel at each location along their length [1384]. Aliasing of object edges
still remains as a major sampling problem. It is possible to use analytical methods,
where object edges are detected during rendering and their influence is factored in,
but these are often more expensive and less robust than simply taking more samples.
However, GPU features such as conservative rasterization and rasterizer order views
have opened up new possibilities [327].

Techniques such as supersampling and accumulation buffering work by generating
samples that are fully specified with individually computed shades and depths. The
overall gains are relatively low and the cost is high, as each sample has to run through
a pixel shader.

Multisampling antialiasing (MSAA) lessens the high computational costs by com-
puting the surface’s shade once per pixel and sharing this result among the samples.
Pixels may have, say, four (z,y) sample locations per fragment, each with their own

140

1 sample

1 x2 sample

2 x 1 sample

Quincunx

2 x 2 grid

2 x 2 RGSS

4 x 4 checker

& rooks

4 x 4 grid

8 x 8 checker

8 x 8 grid

5. Shading Basics

dddidddiL
il

Figure 5.25. A comparison of some pixel sampling schemes, ranging from least to most samples per
pixel. Quincunx shares the corner samples and weights its center sample to be worth half of the
pixel’s final color. The 2 X 2 rotated grid captures more gray levels for the nearly horizontal edge
than a straight 2 x 2 grid. Similarly, the 8 rooks pattern captures more gray levels for such lines than

a 4 x 4 grid, despite using fewer samples.

5.4. Aliasing and Antialiasing 141

MSAA: EQAA:

| color&z @ # |ID| |ID| color& z
0 @ 0B

! e © NNRE

2 @ 2 (B

3 \ 31B

Figure 5.26. In the middle, a pixel with two objects overlapping it. The red object covers three
samples, the blue just one. Pixel shader evaluation locations are shown in green. Since the red
triangle covers the center of the pixel, this location is used for shader evaluation. The pixel shader
for the blue object is evaluated at the sample’s location. For MSAA, a separate color and depth is
stored at all four locations. On the right the 2f4x mode for EQAA is shown. The four samples now
have four ID values, which index a table of the two colors and depths stored.

color and z-depth, but the pixel shader is evaluated only once for each object fragment
applied to the pixel. If all MSA A positional samples are covered by the fragment, the
shading sample is evaluated at the center of the pixel. If instead the fragment cov-
ers fewer positional samples, the shading sample’s position can be shifted to better
represent the positions covered. Doing so avoids shade sampling off the edge of a
texture, for example. This position adjustment is called centroid sampling or centroid
interpolation and is done automatically by the GPU, if enabled. Centroid sampling
avoids off-triangle problems but can cause derivative computations to return incorrect
values [530, 1041]. See Figure 5.26.

MSAA is faster than a pure supersampling scheme because the fragment is shaded
only once. It focuses effort on sampling the fragment’s pixel coverage at a higher rate
and sharing the computed shade. It is possible to save more memory by further de-
coupling sampling and coverage, which in turn can make antialiasing faster still—the
less memory touched, the quicker the render. NVIDIA introduced coverage sampling
antialiasing (CSAA) in 2006, and AMD followed suit with enhanced quality antialias-
ing (EQAA). These techniques work by storing only the coverage for the fragment at a
higher sampling rate. For example, EQAA’s “2f4x” mode stores two color and depth
values, shared among four sample locations. The colors and depths are no longer
stored for particular locations but rather saved in a table. Each of the four samples
then needs just one bit to specify which of the two stored values is associated with its
location. See Figure 5.26. The coverage samples specify the contribution of each frag-
ment to the final pixel color. If the number of colors stored is exceeded, a stored color
is evicted and its samples are marked as unknown. These samples do not contribute
to the final color [382, 383]. For most scenes there are relatively few pixels containing
three or more visible opaque fragments that are radically different in shade, so this
scheme performs well in practice [1405]. However, for highest quality, the game Forza
Horizon 2 went with 4x MSAA, though EQAA had a performance benefit [1002].

142 5. Shading Basics

Once all geometry has been rendered to a multiple-sample buffer, a resolve op-
eration is then performed. This procedure averages the sample colors together to
determine the color for the pixel. It is worth noting that a problem can arise when
using multisampling with high dynamic range color values. In such cases, to avoid
artifacts you normally need to tone-map the values before the resolve [1375]. This can
be expensive, so a simpler approximation to the tone map function or other methods
can be used [862, 1405].

By default, MSAA is resolved with a box filter. In 2007 ATI introduced custom
filter antialiasing (CFAA) [1625], with the capabilities of using narrow and wide tent
filters that extend slightly into other pixel cells. This mode has since been supplanted
by EQAA support. On modern GPUs pixel or compute shaders can access the MSAA
samples and use whatever reconstruction filter is desired, including one that samples
from the surrounding pixels’ samples. A wider filter can reduce aliasing, though at
the loss of sharp details. Pettineo [1402, 1405] found that the cubic smoothstep and
B-spline filters with a filter width of 2 or 3 pixels gave the best results overall. There
is also a performance cost, as even emulating the default box filter resolve will take
longer with a custom shader, and a wider filter kernel means increased sample access
costs.

NVIDIA’s built-in TXAA support similarly uses a better reconstruction filter over
a wider area than a single pixel to give a better result. It and the newer MFAA (multi-
frame antialiasing) scheme both also use temporal antialiasing (TAA), a general class
of techniques that use results from previous frames to improve the image. In part
such techniques are made possible due to functionality that lets the programmer set
the MSAA sampling pattern per frame [1406]. Such techniques can attack aliasing
problems such as the spinning wagon wheel and can also improve edge rendering
quality.

Imagine performing a sampling pattern “manually” by generating a series of images
where each render uses a different location within the pixel for where the sample is
taken. This offsetting is done by appending a tiny translation on to the projection
matrix [1938]. The more images that are generated and averaged together, the better
the result. This concept of using multiple offset images is used in temporal antialiasing
algorithms. A single image is generated, possibly with MSAA or another method, and
the previous images are blended in. Usually just two to four frames are used [382,
836, 1405]. Older images may be given exponentially less weight [862], though this
can have the effect of the frame shimmering if the viewer and scene do not move, so
often equal weighting of just the last and current frame is done. With each frame’s
samples in a different subpixel location, the weighted sum of these samples gives a
better coverage estimate of the edge than a single frame does. So, a system using the
latest two frames averaged together can give a better result. No additional samples are
needed for each frame, which is what makes this type of approach so appealing. It is
even possible to use temporal sampling to allow generation of a lower-resolution image
that is upscaled to the display’s resolution [1110]. In addition, illumination methods
or other techniques that require many samples for a good result can instead use fewer
samples each frame, since the results will be blended over several frames [1938].

5.4. Aliasing and Antialiasing 143

While providing antialiasing for static scenes at no additional sampling cost, this
type of algorithm has a few problems when used for temporal antialiasing. If the
frames are not weighted equally, objects in a static scene can exhibit a shimmer.
Rapidly moving objects or quick camera moves can cause ghosting, i.e., trails left be-
hind the object due to the contributions of previous frames. One solution to ghosting
is to perform such antialiasing on only slow-moving objects [1110]. Another important
approach is to use reprojection (Section 12.2) to better correlate the previous and cur-
rent frames’ objects. In such schemes, objects generate motion vectors that are stored
in a separate “velocity buffer” (Section 12.5). These vectors are used to correlate the
previous frame with the current one, i.e., the vector is subtracted from the current
pixel location to find the previous frame’s color pixel for that object’s surface location.
Samples unlikely to be part of the surface in the current frame are discarded [1912].
Because no extra samples, and so relatively little extra work, are needed for tempo-
ral antialiasing, there has been a strong interest and wider adoption of this type of
algorithm in recent years. Some of this attention has been because deferred shading
techniques (Section 20.1) are not compatible with MSAA and other multisampling
support [1486]. Approaches vary and, depending on the application’s content and
goals, a range of techniques for avoiding artifacts and improving quality have been
developed [836, 1154, 1405, 1533, 1938]. Wihlidal’s presentation [1885], for example,
shows how EQAA, temporal antialiasing, and various filtering techniques applied to
a checkerboard sampling pattern can combine to maintain quality while lowering the
number of pixel shader invocations. Iglesias-Guitian et al. [796] summarize previous
work and present their scheme to use pixel history and prediction to minimize fil-
tering artifacts. Patney et al. [1357] extend TAA work by Karis and Lottes on the
Unreal Engine 4 implementation [862] for use in virtual reality applications, adding
variable-sized sampling along with compensation for eye movement (Section 21.3.2).

Sampling Patterns

Effective sampling patterns are a key element in reducing aliasing, temporal and oth-
erwise. Naiman [1257] shows that humans are most disturbed by aliasing on near-
horizontal and near-vertical edges. Edges with near 45 degrees slope are next most
disturbing. Rotated grid supersampling (RGSS) uses a rotated square pattern to give
more vertical and horizontal resolution within the pixel. Figure 5.25 shows an example
of this pattern.

The RGSS pattern is a form of Latin hypercube or N-rooks sampling, in which n
samples are placed in an n x n grid, with one sample per row and column [1626]. With
RGSS, the four samples are each in a separate row and column of the 4 x 4 subpixel
grid. Such patterns are particularly good for capturing nearly horizontal and vertical
edges compared to a regular 2 x 2 sampling pattern, where such edges are likely to
cover an even number of samples, so giving fewer effective levels.

N-rooks is a start at creating a good sampling pattern, but it is not sufficient. For
example, the samples could all be places along the diagonal of a subpixel grid and so
give a poor result for edges that are nearly parallel to this diagonal. See Figure 5.27.

144 5. Shading Basics

N N
O\ Ol
Oh AN (@)
ON 1
O AN (@)
O\ (@) AN
O\ Ol '\
ON ON
O\ (@) \\

Figure 5.27. N-rooks sampling. On the left is a legal N-rooks pattern, but it performs poorly in
capturing triangle edges that are diagonal along its line, as all sample locations will be either inside
or outside the triangle as this triangle shifts. On the right is a pattern that will capture this and
other edges more effectively.

For better sampling we want to avoid putting two samples near each other. We
also want a uniform distribution, spreading samples evenly over the area. To form
such patterns, stratified sampling techniques such as Latin hypercube sampling are
combined with other methods such as jittering, Halton sequences, and Poisson disk
sampling [1413, 1758].

In practice GPU manufacturers usually hard-wire such sampling patterns into their
hardware for multisampling antialiasing. Figure 5.28 shows some MSAA patterns
used in practice. For temporal antialiasing, the coverage pattern is whatever the
programmer wants, as the sample locations can be varied frame to frame. For example,
Karis [862] finds that a basic Halton sequence works better than any MSAA pattern
provided by the GPU. A Halton sequence generates samples in space that appear
random but have low discrepancy, that is, they are well distributed over the space and
none are clustered [1413, 1938].

While a subpixel grid pattern results in a better approximation of how each triangle
covers a grid cell, it is not ideal. A scene can be made of objects that are arbitrarily

Figure 5.28. MSAA sampling patterns for AMD and NVIDIA graphics accelerators. The green square
is the location of the shading sample, and the red squares are the positional samples computed and
saved. From left to right: 2x, 4x, 6x (AMD), and 8x (NVIDIA) sampling. (Generated by the D3D
FSAA Viewer.)

5.4. Aliasing and Antialiasing 145

small on the screen, meaning that no sampling rate can ever perfectly capture them.
If these tiny objects or features form a pattern, sampling at constant intervals can
result in Moiré fringes and other interference patterns. The grid pattern used in
supersampling is particularly likely to alias.

One solution is to use stochastic sampling, which gives a more randomized pat-
tern. Patterns such as those in Figure 5.28 certainly qualify. Imagine a fine-toothed
comb at a distance, with a few teeth covering each pixel. A regular pattern can give
severe artifacts as the sampling pattern goes in and out of phase with the tooth fre-
quency. Having a less ordered sampling pattern can break up these patterns. The
randomization tends to replace repetitive aliasing effects with noise, to which the hu-
man visual system is much more forgiving [1413]. A pattern with less structure helps,
but it can still exhibit aliasing when repeated pixel to pixel. One solution is use a
different sampling pattern at each pixel, or to change each sampling location over
time. Interleaved samplingindexsamplinglinterleaved, where each pixel of a set has a
different sampling pattern, has occasionally been supported in hardware over the past
decades. For example, ATI’s SMOOTHVISION allowed up to 16 samples per pixel
and up to 16 different user-defined sampling patterns that could be intermingled in
a repeating pattern (e.g., in a 4 x 4 pixel tile). Molnar [1234], as well as Keller and
Heidrich [880], found that using interleaved stochastic sampling minimizes the aliasing
artifacts formed when using the same pattern for every pixel.

A few other GPU-supported algorithms are worth noting. One real-time antialias-
ing scheme that lets samples affect more than one pixel is NVIDIA’s older Quincunx
method [365]. “Quincunx” means an arrangement of five objects, four in a square and
the fifth in the center, such as the pattern of five dots on a six-sided die. Quincunx
multisampling antialiasing uses this pattern, putting the four outer samples at the cor-
ners of the pixel. See Figure 5.25. Each corner sample value is distributed to its four
neighboring pixels. Instead of weighting each sample equally (as most other real-time
schemes do), the center sample is given a weight of %, and each corner sample has a
weight of %. Because of this sharing, an average of only two samples are needed per
pixel, and the results are considerably better than two-sample FSAA methods [1678].
This pattern approximates a two-dimensional tent filter, which, as discussed in the
previous section, is superior to the box filter.

Quincunx sampling can also be applied to temporal antialiasing by using a single
sample per pixel [836, 1677]. Each frame is offset half a pixel in each axis from
the frame before, with the offset direction alternating between frames. The previous
frame provides the pixel corner samples, and bilinear interpolation is used to rapidly
compute the contribution per pixel. The result is averaged with the current frame.
Equal weighting of each frame means there are no shimmer artifacts for a static view.
The issue of aligning moving objects is still present, but the scheme itself is simple to
code and gives a much better look while using only one sample per pixel per frame.

When used in a single frame, Quincunx has a low cost of only two samples by
sharing samples at the pixel boundaries. The RGSS pattern is better at capturing
more gradations of nearly horizontal and vertical edges. First developed for mobile

146 5. Shading Basics

Figure 5.29. To the left, the RGSS sampling pattern is shown. This costs four samples per pixel. By
moving these locations out to the pixel edges, sample sharing can occur across edges. However, for
this to work out, every other pixel must have a reflected sample pattern, as shown on the right. The
resulting sample pattern is called FLIPQUAD and costs two samples per pixel.

graphics, the FLIPQUAD pattern combines both of these desirable features [22]. Tts
advantages are that the cost is only two samples per pixel, and the quality is similar
to RGSS (which costs four samples per pixel). This sampling pattern is shown in
Figure 5.29. Other inexpensive sampling patterns that exploit sample sharing are
explored by Hasselgren et al. [677].

Like Quincunx, the two-sample FLIPQUAD pattern can also be used with tem-
poral antialiasing and spread over two frames. Drobot [382, 383, 1154] tackles the
question of which two-sample pattern is best in his hybrid reconstruction antialiasing
(HRAA) work. He explores different sampling patterns for temporal antialiasing, find-
ing the FLIPQUAD pattern to be the best of the five tested. A checkerboard pattern
has also seen use with temporal antialiasing. El Mansouri [415] discusses using two-
sample MSAA to create a checkerboard render to reduce shader costs while addressing
aliasing issues. Jimenez [836] uses SMAA, temporal antialiasing, and a variety of other
techniques to provide a solution where antialiasing quality can be changed in response
to rendering engine load. Carpentier and Ishiyama [231] sample on edges, rotating the
sampling grid by 45°. They combine this temporal antialiasing scheme with FXAA
(discussed later) to efficiently render on higher-resolution displays.

Morphological Methods
Aliasing often results from edges, such as those formed by geometry, sharp shadows, or
bright highlights. The knowledge that aliasing has a structure associated with it can
be exploited to give a better antialiased result. In 2009 Reshetov [1483] presented an
algorithm along these lines, calling it morphological antialiasing (MLAA). “Morpho-
logical” means “relating to structure or shape.” Earlier work had been done in this
area [830], as far back as 1983 by Bloomenthal [170]. Reshetov’s paper reinvigorated
research into alternatives to multisampling approaches, emphasizing searching for and
reconstructing edges [1486].

This form of antialiasing is performed as a post-process. That is, rendering is
done in the usual fashion, then the results are fed to a process that generates the

5.4. Aliasing and Antialiasing 147

/I
° ° ° ° ° "4 ° ° o
//” /
‘/—
° ° ° e ° ° ° °
/’ I// /
/, /'
° ° ° 1 @ ° ° ° ° °

Figure 5.30. Morphological antialiasing. On the left is the aliased image. The goal is to determine
the likely orientation of the edge that formed it. In the middle, the algorithm notes the likelihood of
an edge by examining neighbors. Given the samples, two possible edge locations are shown. On the
right, a best-guess edge is used to blend neighboring colors into the center pixel in proportion to the
estimated coverage. This process is repeated for every pixel in the image.

antialiased result. A wide range of techniques have been developed since 2009. Those
that rely on additional buffers such as depths and normals can provide better results,
such as subpizel reconstruction antialiasing (SRAA) [43, 829], but are then applicable
for antialiasing only geometric edges. Analytical approaches, such as geometry buffer
antialiasing (GBAA) and distance-to-edge antialiasing (DEAA), have the renderer
compute additional information about where triangle edges are located, e.g., how far
the edge is from the center of the pixel [829].

The most general schemes need only the color buffer, meaning they can also im-
prove edges from shadows, highlights, or various previously applied post-processing
techniques, such as silhouette edge rendering (Section 15.2.3). For example, direction-
ally localized antialiasing (DLAA) [52, 829] is based on the observation that an edge
which is nearly vertical should be blurred horizontally, and likewise nearly horizontal
edges should be blurred vertically with their neighbors.

More elaborate forms of edge detection attempt to find pixels likely to contain an
edge at any angle and determine its coverage. The neighborhoods around potential
edges are examined, with the goal of reconstructing as possible where the original edge
was located. The edge’s effect on the pixel can then be used to blend in neighboring
pixels’ colors. See Figure 5.30 for a conceptual view of the process.

Tourcha et al. [798] improve edge-finding by examine the MSAA samples in pixels
to compute a better result. Note that edge prediction and blending can give a higher-
precision result than sample-based algorithms. For example, a technique that uses
four samples per pixel can give only five levels of blending for an object’s edge: no
samples covered, one covered, two, three, and four. The estimated edge location can
have more locations and so provide better results.

There are several ways image-based algorithms can go astray. First, the edge may
not be detected if the color difference between two objects is lower than the algorithm’s
threshold. Pixels where there are three or more distinct surfaces overlapping are dif-
ficult to interpret. Surfaces with high-contrast or high-frequency elements, where the

148 5. Shading Basics

color is changing rapidly from pixel to pixel, can cause algorithms to miss edges. In
particular, text quality usually suffers when morphological antialiasing is applied to it.
Object corners can be a challenge, with some algorithms giving them a rounded ap-
pearance. Curved lines can also be adversely affected by the assumption that edges are
straight. A single pixel change can cause a large shift in how the edge is reconstructed,
which can create noticeable artifacts frame to frame. One approach to ameliorate this
problem is to use MSAA coverage masks to improve edge determination [1484].

Morphological antialiasing schemes use only the information that is provided. For
example, an object thinner than a pixel in width, such as an electrical wire or rope,
will have gaps on the screen wherever it does not happen to cover the center location of
a pixel. Taking more samples can improve the quality in such situations; image-based
antialiasing alone cannot. In addition, execution time can be variable depending on
what content is viewed. For example, a view of a field of grass can take three times
as long to antialias as a view of the sky [231].

All this said, image-based methods can provide antialiasing support for modest
memory and processing costs, so they are used in many applications. The color-only
versions are also decoupled from the rendering pipeline, making them easy to modify
or disable, and can even be exposed as GPU driver options. The two most popular
algorithms are fast approzimate antialiasing (FXAA) [1079, 1080, 1084], and subpizel
morphological antialiasing (SMAA) [828, 830, 834], in part because both provide solid
(and free) source code implementations for a variety of machines. Both algorithms
use color-only input, with SMAA having the advantage of being able to access MSAA
samples. Each has its own variety of settings available, trading off between speed
and quality. Costs are generally in the range of 1 to 2 milliseconds per frame, mainly
because that is what video games are willing to spend. Finally, both algorithms
can also take advantage of temporal antialiasing [1812]. Jimenez [836] presents an
improved SMAA implementation, faster than FXAA, and describes a temporal anti-
aliasing scheme. To conclude, we recommend the reader to the wide-ranging review
by Reshetov and Jimenez [1486] of morphological techniques and their use in video
games.

5.5 Transparency, Alpha, and Compositing

There are many different ways in which semitransparent objects can allow light to pass
through them. For rendering algorithms, these can be roughly divided into light-based
and view-based effects. Light-based effects are those in which the object causes light
to be attenuated or diverted, causing other objects in the scene to be lit and rendered
differently. View-based effects are those in which the semitransparent object itself is
being rendered.

In this section we will deal with the simplest form of view-based transparency, in
which the semitransparent object acts as an attenuator of the colors of the objects be-
hind it. More elaborate view- and light-based effects such as frosted glass, the bending

5.5. Transparency, Alpha, and Compositing 149

of light (refraction), attenuation of light due to the thickness of the transparent object,
and reflectivity and transmission changes due to the viewing angle are discussed in
later chapters.

One method for giving the illusion of transparency is called screen-door trans-
parency [1244]. The idea is to render the transparent triangle with a pixel-aligned
checkerboard fill pattern. That is, every other pixel of the triangle is rendered, thereby
leaving the object behind it partially visible. Usually the pixels on the screen are close
enough together that the checkerboard pattern itself is not visible. A major drawback
of this method is that often only one transparent object can be convincingly rendered
on one area of the screen. For example, if a transparent red object and transparent
green object are rendered atop a blue object, only two of the three colors can appear on
the checkerboard pattern. Also, the 50% checkerboard is limiting. Other larger pixel
masks could be used to give other percentages, but these tend to create detectable
patterns [1245].

That said, one advantage of this technique is its simplicity. Transparent objects
can be rendered at any time, in any order, and no special hardware is needed. The
transparency problem goes away by making all objects opaque at the pixels they cover.
This same idea is used for antialiasing edges of cutout textures, but at a subpixel level,
using a feature called alpha to coverage (Section 6.6).

Introduced by Enderton et al. [423], stochastic transparency uses subpixel screen-
door masks combined with stochastic sampling. A reasonable, though noisy, image
is created by using random stipple patterns to represent the alpha coverage of the
fragment. See Figure 5.31. A large number of samples per pixel is needed for the result
to look reasonable, as well as a sizable amount of memory for all the subpixel samples.
What is appealing is that no blending is needed, and antialiasing, transparency, and
any other phenomena that creates partially covered pixels are covered by a single
mechanism.

Most transparency algorithms blend the transparent object’s color with the color of
the object behind it. For this, the concept of alpha blending is needed [199, 387, 1429).
When an object is rendered on the screen, an RGB color and a z-buffer depth are
associated with each pixel. Another component, called alpha («), can also be defined
for each pixel the object covers. Alpha is a value describing the degree of opacity and
coverage of an object fragment for a given pixel. An alpha of 1.0 means the object
is opaque and entirely covers the pixel’s area of interest; 0.0 means the pixel is not
obscured at all, i.e., the fragment is entirely transparent.

A pixel’s alpha can represent either opacity, coverage, or both, depending on the
circumstances. For example, the edge of a soap bubble may cover three-quarters of
the pixel, 0.75, and may be nearly transparent, letting nine-tenths of the light through
to the eye, so it is one-tenth opaque, 0.1. Its alpha would then be 0.75 x 0.1 = 0.075.
However, if we were using MSAA or similar antialiasing schemes, the coverage would
be taken into account by the samples themselves. Three-quarters of the samples would
be affected by the soap bubble. At each of these samples we would then use the 0.1
opacity value as the alpha.

150 5. Shading Basics

Figure 5.31. Stochastic transparency. The noise produced is displayed in the magnified area. (Images
from NVIDIA SDK 11 [1801] samples, courtesy of NVIDIA Corporation.)

5.5.1 Blending Order

To make an object appear transparent, it is rendered on top of the existing scene with
an alpha of less than 1.0. Each pixel covered by the object will receive a resulting
RGBa (also called RGBA) from the pixel shader. Blending this fragment’s value with
the original pixel color is usually done using the over operator, as follows:

¢, = ascs + (1 — as)cqy [over operator], (5.24)

where c; is the color of the transparent object (called the source), ay is the object’s
alpha, ¢, is the pixel color before blending (called the destination), and c, is the
resulting color due to placing the transparent object over the existing scene. In the
case of the rendering pipeline sending in ¢s and «g, the pixel’s original color ¢, gets
replaced by the result c,. If the incoming RGBa is, in fact, opaque (as = 1.0), the
equation simplifies to the full replacement of the pixel’s color by the object’s color.

ExaMPLE: BLENDING. A red semitransparent object is rendered onto a blue back-
ground. Say that at some pixel the RGB shade of the object is (0.9,0.2,0.1), the
background is (0.1,0.1,0.9), and the object’s opacity is set at 0.6. The blend of these
two colors is then

0.6(0.9,0.2,0.1) 4 (1 — 0.6)(0.1,0.1,0.9),

which gives a color of (0.58,0.16,0.42). O

The over operator gives a semitransparent look to the object being rendered.
Transparency done this way works, in the sense that we perceive something as trans-
parent whenever the objects behind can be seen through it [754]. Using over simulates

5.5. Transparency, Alpha, and Compositing 151

Figure 5.32. A red gauzy square of fabric and a red plastic filter, giving different transparency effects.
Note how the shadows also differ. (Photograph courtesy of Morgan McGuire.)

the real-world effect of a gauzy fabric. The view of the objects behind the fabric are
partially obscured—the fabric’s threads are opaque. In practice, loose fabric has an
alpha coverage that varies with angle [386]. Our point here is that alpha simulates
how much the material covers the pixel.

The over operator is less convincing simulating other transparent effects, most
notably viewing through colored glass or plastic. A red filter held in front of a blue
object in the real world usually makes the blue object look dark, as this object reflects
little light that can pass through the red filter. See Figure 5.32. When over is used
for blending, the result is a portion of the red and the blue added together. It would
be better to multiply the two colors together, as well as adding in any reflection
off the transparent object itself. This type of physical transmittance is discussed in
Sections 14.5.1 and 14.5.2.

Of the basic blend stage operators, over is the one commonly used for a trans-
parency effect [199, 1429]. Another operation that sees some use is additive blending,
where pixel values are simply summed. That is,

Co = 0sCy + C4. (5.25)

This blending mode can work well for glowing effects such as lightning or sparks that do
not attenuate the pixels behind but instead only brighten them [1813]. However, this
mode does not look correct for transparency, as the opaque surfaces do not appear

152 5. Shading Basics

Figure 5.33. On the left the model is rendered with transparency using the z-buffer. Rendering the
mesh in an arbitrary order creates serious errors. On the right, depth peeling provides the correct
appearance, at the cost of additional passes. (Images courtesy of NVIDIA Corporation.)

filtered [1192]. For several layered semitransparent surfaces, such as smoke or fire,
additive blending has the effect of saturating the colors of the phenomenon [1273].

To render transparent objects properly, we need to draw them after the opaque
objects. This is done by rendering all opaque objects first with blending off, then
rendering the transparent objects with over turned on. In theory we could always
have over on, since an opaque alpha of 1.0 would give the source color and hide the
destination color, but doing so is more expensive, for no real gain.

A limitation of the z-buffer is that only one object is stored per pixel. If several
transparent objects overlap the same pixel, the z-buffer alone cannot hold and later
resolve the effect of all the visible objects. When using over the transparent surfaces
at any given pixel generally need to be rendered in back-to-front order. Not doing
so can give incorrect perceptual cues. One way to achieve this ordering is to sort
individual objects by, say, the distance of their centroids along the view direction. This
rough sorting can work reasonably well, but has a number of problems under various
circumstances. First, the order is just an approximation, so objects classified as more
distant may be in front of objects considered nearer. Objects that interpenetrate are
impossible to resolve on a per-mesh basis for all view angles, short of breaking each
mesh into separate pieces. See the left image in Figure 5.33 for an example. Even a
single mesh with concavities can exhibit sorting problems for view directions where it
overlaps itself on the screen.

Nonetheless, because of its simplicity and speed, as well as needing no additional
memory or special GPU support, performing a rough sort for transparency is still
commonly used. If implemented, it is usually best to turn off z-depth replacement

5.5. Transparency, Alpha, and Compositing 153

when performing transparency. That is, the z-buffer is still tested normally, but
surviving surfaces do not change the z-depth stored; the closest opaque surface’s depth
is left intact. In this way, all transparent objects will at least appear in some form,
versus suddenly appearing or disappearing when a camera rotation changes the sort
order. Other techniques can also help improve the appearance, such as drawing each
transparent mesh twice as you go, first rendering backfaces and then frontfaces [1192,
1255].

The over equation can also be modified so that blending front to back gives the
same result. This blending mode is called the under operator:

Co = agcqg + (1 — ag)ascs [under operator], (5.26)
a, = as(1 — ag) + ag = as — asag + aq. '

Note that under requires the destination to maintain an alpha value, which over does
not. In other words, the destination—the closer transparent surface being blended
under—is not opaque and so needs to have an alpha value. The under formulation
is like over, but with source and destination swapped. Also, notice that the formula
for computing alpha is order-independent, in that the source and destination alphas
can be swapped, with the same final alpha being the result.

The equation for alpha comes from considering the fragment’s alphas as coverages.
Porter and Duff [1429] note that since we do not know the shape of the coverage area
for either fragment, we assume that each fragment covers the other in proportion to
its alpha. For example, if oy = 0.7, the pixel is somehow divided into two areas, with
0.7 covered by the source fragment and 0.3 not. Barring any other knowledge, the
destination fragment covering, say, ag = 0.6 will be proportionally overlapped by the
source fragment. This formula has a geometric interpretation, shown in Figure 5.34.

fragment d

area = 0.6
fragment s area =)
area = 0.7 07-0.6 Given two fragments of
areas (alphas) 0.7 and 0.6,
total area covered =
0.7-0.7-0.6 + 0.6 =0.88

Figure 5.34. A pixel and two fragments, s and d. By aligning the two fragments along different
axes, each fragment covers a proportional amount of the other, i.e., they are uncorrelated. The area
covered by the two fragments is equivalent to the under output alpha value as — asag + ag. This
translates to adding the two areas, then subtracting the area where they overlap.

154 5. Shading Basics

Figure 5.35. Each depth peel pass draws one of the transparent layers. On the left is the first pass,
showing the layer directly visible to the eye. The second layer, shown in the middle, displays the
second-closest transparent surface at each pixel, in this case the backfaces of objects. The third layer,
on the right, is the set of third-closest transparent surfaces. Final results can be found in Figure 14.33
on page 624. (Images courtesy of Louis Bavoil.)

5.5.2 Order-Independent Transparency

The under equations are used by drawing all transparent objects to a separate color
buffer, then merging this color buffer atop the opaque view of the scene using over.
Another use of the under operator is for performing an order-independent trans-
parency (OIT) algorithm known as depth peeling [449, 1115]. Order-independent means
that the application does not need to perform sorting. The idea behind depth peeling
is to use two z-buffers and multiple passes. First, a rendering pass is made so that
all surfaces’ z-depths, including transparent surfaces, are in the first z-buffer. In the
second pass all transparent objects are rendered. If the z-depth of an object matches
the value in the first z-buffer, we know this is the closest transparent object and save
its RGBa to a separate color buffer. We also “peel” this layer away by saving the
z-depth of whichever transparent object, if any, is beyond the first z-depth and is clos-
est. This z-depth is the distance of the second-closest transparent object. Successive
passes continue to peel and add transparent layers using under. We stop after some
number of passes and then blend the transparent image atop the opaque image. See
Figure 5.35.

Several variants on this scheme have been developed. For example, Thibieroz [1763]
gives an algorithm that works back to front, which has the advantage of being able to
blend the transparent values immediately, meaning that no separate alpha channel is
needed. One problem with depth peeling is knowing how many passes are sufficient to
capture all the transparent layers. One hardware solution is to provide a pixel draw
counter, which tells how many pixels were written during rendering; when no pixels
are rendered by a pass, rendering is done. The advantage of using under is that the
most important transparent layers—those the eye first sees—are rendered early on.
Each transparent surface always increases the alpha value of the pixel it covers. If the

5.5. Transparency, Alpha, and Compositing 155

alpha value for a pixel nears 1.0, the blended contributions have made the pixel almost
opaque, and so more distant objects will have a negligible effect [394]. Front-to-back
peeling can be cut short when the number of pixels rendered by a pass falls below
some minimum, or a fixed number of passes can be specified. This does not work as
well with back-to-front peeling, as the closest (and usually most important) layers are
drawn last and so may be lost by early termination.

While depth peeling is effective, it can be slow, as each layer peeled is a separate
rendering pass of all transparent objects. Bavoil and Myers [118] presented dual
depth peeling, where two depth peel layers, the closest and the farthest remaining, are
stripped off in each pass, thus cutting the number of rendering passes in half. Liu et
al. [1056] explore a bucket sort method that captures up to 32 layers in a single pass.
One drawback of this type of approach is that it needs considerable memory to keep a
sorted order for all layers. Antialiasing via MSAA or similar would increase the costs
astronomically.

The problem of blending transparent objects together properly at interactive rates
is not one in which we are lacking algorithms, it is one of efficiently mapping those
algorithms to the GPU. In 1984 Carpenter presented the A-buffer [230], another form
of multisampling. In the A-buffer, each triangle rendered creates a coverage mask
for each screen grid cell it fully or partially covers. Each pixel stores a list of all
relevant fragments. Opaque fragments can cull out fragments behind them, similar
to the z-buffer. All the fragments are stored for transparent surfaces. Once all lists
are formed, a final result is produced by walking through the fragments and resolving
each sample.

The idea of creating linked lists of fragments on the GPU was made possible
through new functionality exposed in DirectX 11 [611, 1765]. The features used in-
clude unordered access views (UAVs) and atomic operations, described in Section 3.8.
Antialiasing via MSAA is enabled by the ability to access the coverage mask and to
evaluate the pixel shader at every sample. This algorithm works by rasterizing each
transparent surface and inserting the fragments generated in a long array. Along with
the colors and depths, a separate pointer structure is generated that links each frag-
ment to the previous fragment stored for the pixel. A separate pass is then performed,
where a screen-filling quadrilateral is rendered so that a pixel shader is evaluated at ev-
ery pixel. This shader retrieves all the transparent fragments at each pixel by following
the links. Each fragment retrieved is sorted in turn with the previous fragments. This
sorted list is then blended back to front to give the final pixel color. Because blending
is performed by the pixel shader, different blend modes can be specified per pixel, if
desired. Continuing evolution of the GPU and APIs have improved performance by
reducing the cost of using atomic operators [914].

The A-buffer has the advantage that only the fragments needed for each pixel
are allocated, as does the linked list implementation on the GPU. This in a sense
can also be a disadvantage, as the amount of storage required is not known before
rendering of a frame begins. A scene with hair, smoke, or other objects with a potential
for many overlapping transparent surfaces can produce a huge number of fragments.

156 5. Shading Basics

Figure 5.36. In the upper left, traditional back-to-front alpha blending is performed, leading to
rendering errors due to incorrect sort order. In the upper right, the A-buffer is used to give a perfect,
non-interactive result. The lower left presents the rendering with multi-layer alpha blending. The
lower right shows the differences between the A-buffer and multi-layer images, multiplied by 4 for
visibility [1532]. (Images courtesy of Marco Salvi and Karthik Vaidyanathan, Intel Corporation.)

Andersson [46] notes that, for complex game scenes, up to 50 transparent meshes of
objects such as foliage and up to 200 semitransparent particles may overlap.

GPUs normally have memory resources such as buffers and arrays allocated in
advance, and linked-list approaches are no exception. Users need to decide how much
memory is enough, and running out of memory causes noticeable artifacts. Salvi
and Vaidyanathan [1532] present an approach tackling this problem, multi-layer alpha
blending, using a GPU feature introduced by Intel called pixel synchronization. See
Figure 5.36. This capability provides programmable blending with less overhead than
atomics. Their approach reformulates storage and blending so that it gracefully de-
grades if memory runs out. A rough sort order can benefit their scheme. DirectX 11.3
introduced rasterizer order views (Section 3.8), a type of buffer that allows this trans-
parency method to be implemented on any GPU supporting this feature [327, 328].
Mobile devices have a similar technology called tile local storage that permits them
to implement multi-layer alpha blending [153]. Such mechanisms have a performance
cost, however, so this type of algorithm can be expensive [1931].

This approach builds on the idea of the k-buffer, introduced by Bavoil et al. [115],
where the first few visible layers are saved and sorted as possible, with deeper layers
discarded and merged as possible. Maule et al. [1142] use a k-buffer and account for
these more distant deep layers by using weighted averaging. Weighted sum [1202] and

5.5. Transparency, Alpha, and Compositing 157

10% 40% 70% 100%

Figure 5.37. The object order becomes more important as opacity increases. (Images after

Dunn [394].)

weighted average [118] transparency techniques are order-independent, are single-pass,
and run on almost every GPU. The problem is that they do not take into account
the ordering of the objects. So, for example, using alpha to represent coverage, a
gauzy red scarf atop a gauzy blue scarf gives a violet color, versus properly seeing a
red scarf with a little blue showing through. While nearly opaque objects give poor
results, this class of algorithms is useful for visualization and works well for highly
transparent surfaces and particles. See Figure 5.37.
In weighted sum transparency the formula is

n

Co = Z(%‘Ci) +eca(l — Zai)’ (5.27)

=1 i=1

where n is the number of transparent surfaces, c; and «; represent the set of trans-
parency values, and cg is the color of the opaque portion of the scene. The two sums
are accumulated and stored separately as transparent surfaces are rendered, and at
the end of the transparency pass, the equation is evaluated at each pixel. Problems
with this method are that the first sum saturates, i.e., generates color values greater
than (1.0,1.0,1.0), and that the background color can have a negative effect, since the
sum of the alphas can surpass 1.0.

The weighted average equation is usually preferred because it avoids these prob-
lems:

n

n
Csum — § (OZZ‘CZ‘), Qsum = § Qg
=1

=1
Csum Qsum
Cwavg = Ot_7 Qavg = n’ (528)
sum

u=(1—)",
co = (1 — u)Cyavg + ucq.

The first line represents the results in the two separate buffers generated during trans-
parency rendering. Fach surface contributing to cguy, is given an influence weighted by

158 5. Shading Basics

Figure 5.38. Two different camera locations viewing the same engine model, both rendered with
weighted blended order-independent transparency. Weighting by distance helps clarify which surfaces
are closer to the viewer [1185]. (Images courtesy of Morgan McGuire.)

its alpha; nearly opaque surfaces contribute more of their color, and nearly transpar-
ent surfaces have little influence. By dividing csum by qsum We get a weighted average
transparency color. The value a,yg is the average of all alpha values. The value u is
the estimated visibility of the destination (the opaque scene) after this average alpha
is applied n times, for n transparent surfaces. The final line is effectively the over
operator, with (1 — u) representing the source’s alpha.

One limitation with weighted average is that, for identical alphas, it blends all col-
ors equally, regardless of order. McGuire and Bavoil [1176, 1180] introduced weighted
blended order-independent transparency to give a more convincing result. In their for-
mulation, the distance to the surface also affects the weight, with closer surfaces given
more influence. Also, rather than averaging the alphas, u is computed by multiplying
the terms (1 — «;) together and subtracting from one, giving the true alpha coverage
of the set of surfaces. This method produces more visually convincing results, as seen
in Figure 5.38.

A drawback is that objects close to one another in a large environment can have
nearly equal weightings from distance, making the result little different than the
weighted average. Also, as the camera’s distance to the transparent objects changes,
the depth weightings may then vary in effect, but this change is gradual.

McGuire and Mara [1181, 1185] extend this method to include a plausible trans-
mission color effect. As noted earlier, all the transparency algorithms discussed in
this section blend various colors instead of filtering them, mimicking pixel coverage.
To give a color filter effect, the opaque scene is read by the pixel shader and each
transparent surface multiplies the pixels it covers in this scene by its color, saving the
result to a third buffer. This buffer, in which the opaque objects are now tinted by the
transparent ones, is then used in place of the opaque scene when resolving the trans-

5.5. Transparency, Alpha, and Compositing 159

parency buffers. This method works because, unlike transparency due to coverage,
colored transmission is order-independent.

There are yet other algorithms that use elements from several of the techniques
presented here. For example, Wyman [1931] categorizes previous work by memory
requirements, insertion and merge methods, whether alpha or geometric coverage is
used, and how discarded fragments are treated. He presents two new methods found
by looking for gaps in previous research. His stochastic layered alpha blending method
uses k-buffers, weighted average, and stochastic transparency. His other algorithm is
a variant on Salvi and Vaidyanathan’s method, using coverage masks instead of alpha.

Given the wide variety of types of transparent content, rendering methods, and
GPU capabilities, there is no perfect solution for rendering transparent objects. We
refer the interested reader to Wyman’s paper [1931] and Maule et al.’s more detailed
survey [1141] of algorithms for interactive transparency. McGuire’s presentation [1182]
gives a wider view of the field, running through other related phenomena such as vol-
umetric lighting, colored transmission, and refraction, which are discussed in greater
depth later in this book.

5.5.3 Premultiplied Alphas and Compositing

The over operator is also used for blending together photographs or synthetic render-
ings of objects. This process is called compositing [199, 1662]. In such cases, the alpha
value at each pixel is stored along with the RGB color value for the object. The image
formed by the alpha channel is sometimes called the matte. It shows the silhouette
shape of the object. See Figure 6.27 on page 203 for an example. This RGBa image
can then be used to blend it with other such elements or against a background.

One way to use synthetic RGBa data is with premultiplied alphas (also known as
associated alphas). That is, the RGB values are multiplied by the alpha value before
being used. This makes the compositing over equation more efficient:

co=c,+ (1 —as)cy, (5.29)

where ¢/, is the premultiplied source channel, replacing ascs in Equation 5.25. Pre-
multiplied alpha also makes it possible to use over and additive blending without
changing the blend state, since the source color is now added in during blending [394].
Note that with premultiplied RGBa values, the RGB components are normally not
greater than the alpha value, though they can be made so to create a particularly
bright semitransparent value.

Rendering synthetic images dovetails naturally with premultiplied alphas. An
antialiased opaque object rendered over a black background provides premultiplied
values by default. Say a white (1,1,1) triangle covers 40% of some pixel along its
edge. With (extremely precise) antialiasing, the pixel value would be set to a gray
of 0.4, i.e., we would save the color (0.4,0.4,0.4) for this pixel. The alpha value, if

160 5. Shading Basics

stored, would also be 0.4, since this is the area the triangle covered. The RGBa« value
would be (0.4,0.4,0.4,0.4), which is a premultiplied value.

Another way images are stored is with unmultiplied alphas, also known as unas-
sociated alphas or even as the mind-bending term nonpremultiplied alphas. An un-
multiplied alpha is just what it says: The RGB value is not multiplied by the alpha
value. For the white triangle example, the unmultiplied color would be (1,1,1,0.4).
This representation has the advantage of storing the triangle’s original color, but this
color always needs to be multiplied by the stored alpha before being display. It is best
to use premultiplied data whenever filtering and blending is performed, as operations
such as linear interpolation do not work correctly using unmultiplied alphas [108, 164].
Artifacts such as black fringes around the edges of objects can result [295, 648]. See
the end of Section 6.6 for further discussion. Premultiplied alphas also allow cleaner
theoretical treatment [1662].

For image-manipulation applications, an unassociated alpha is useful to mask a
photograph without affecting the underlying image’s original data. Also, an unassoci-
ated alpha means that the full precision range of the color channels can be used. That
said, care must be taken to properly convert unmultiplied RGBa values to and from
the linear space used for computer graphics computations. For example, no browsers
do this properly, nor are they ever likely to do so, since the incorrect behavior is now
expected [649]. Image file formats that support alpha include PNG (unassociated
alpha only), OpenEXR (associated only), and TIFF (both types of alpha).

A concept related to the alpha channel is chroma-keying [199]. This is a term from
video production, in which actors are filmed against a green or blue screen and blended
with a background. In the film industry this process is called green-screening or blue-
screening. The idea here is that a particular color hue (for film work) or precise value
(for computer graphics) is designated to be considered transparent; the background
is displayed whenever it is detected. This allows images to be given an outline shape
by using just RGB colors; no alpha needs to be stored. One drawback of this scheme
is that the object is either entirely opaque or transparent at any pixel, i.e., alpha is
effectively only 1.0 or 0.0. As an example, the GIF format allows one color to be
designated as transparent.

5.6 Display Encoding

When we calculate the effect of lighting, texturing, or other operations, the values used
are assumed to be linear. Informally, this means that addition and multiplication work
as expected. However, to avoid a variety of visual artifacts, display buffers and textures
use nonlinear encodings that we must take into account. The short and sloppy answer
is as follows: Take shader output colors in the range [0, 1] and raise them by a power
of 1/2.2, performing what is called gamma correction. Do the opposite for incoming
textures and colors. In most cases you can tell the GPU to do these things for you.
This section explains the how and why of that quick summary.

5.6. Display Encoding 161

We begin with the cathode-ray tube (CRT). In the early years of digital imaging,
CRT displays were the norm. These devices exhibit a power law relationship between
input voltage and display radiance. As the energy level applied to a pixel is increased,
the radiance emitted does not grow linearly but (surprisingly) rises proportional to
that level raised to a power greater than one. For example, imagine the power is 2. A
pixel set to 50% will emit a quarter the amount of light, 0.5% = 0.25, as a pixel that is
set to 1.0 [607]. Although LCDs and other display technologies have different intrinsic
tone response curves than CRT's, they are manufactured with conversion circuitry that
causes them to mimic the CRT response.

This power function nearly matches the inverse of the lightness sensitivity of hu-
man vision [1431]. The consequence of this fortunate coincidence is that the encoding
is roughly perceptually uniform. That is, the perceived difference between a pair of
encoded values N and N +1 is roughly constant over the displayable range. Measured
as threshold contrast, we can detect a difference in lightness of about 1% over a wide
range of conditions. This near-optimal distribution of values minimizes banding arti-
facts when colors are stored in limited-precision display buffers (Section 23.6). The
same benefit also applies to textures, which commonly use the same encoding.

The display transfer function describes the relationship between the digital values
in the display buffer and the radiance levels emitted from the display. For this reason
it is also called the electrical optical transfer function (EOTF). The display transfer
function is part of the hardware, and there are different standards for computer moni-
tors, televisions, and film projectors. There is also a standard transfer function for the
other end of the process, image and video capture devices, called the optical electric
transfer function (OETF) [672].

When encoding linear color values for display, our goal is to cancel out the effect
of the display transfer function, so that whatever value we compute will emit a corre-
sponding radiance level. For example, if our computed value is doubled, we want the
output radiance to be doubled. To maintain this connection, we apply the inverse of
the display transfer function to cancel out its nonlinear effect. This process of nullify-
ing the display’s response curve is also called gamma correction, for reasons that will
become clear shortly. When decoding texture values, we need to apply the display
transfer function to generate a linear value for use in shading. Figure 5.39 shows the
use of decoding and encoding in the display process.

The standard transfer function for personal computer displays is defined by a
color-space specification called sRGB. Most APIs controlling GPUs can be set to
automatically apply the proper sSRGB conversion when values are read from textures
or written to the color buffer [491]. As discussed in Section 6.2.2, mipmap generation
will also take sSRGB encoding into account. Bilinear interpolation among texture
values will work correctly, by first converting to linear values and then performing the
interpolation. Alpha blending is done correctly by decoding the stored value back into
linear values, blending in the new value, and then encoding the result.

It is important to apply the conversion at the final stage of rendering, when the
values are written to the framebuffer for the display. If post-processing is applied after

162 5. Shading Basics

decode encode
display
transfer
linear function
values
texture _E
shading and framebuffer display

tone mapping

Figure 5.39. On the left, a PNG color texture is accessed by a GPU shader, and its nonlinearly
encoded value is converted (blue) to a linear value. After shading and tone mapping (Section 8.2.2),
the final computed value is encoded (green) and stored in the framebuffer. This value and the display
transfer function determine the amount of radiance emitted (red). The green and red functions
combined cancel out, so that the radiance emitted is proportional to the linear computed value.

display encoding, such effects will be computed on nonlinear values, which is usually
incorrect and will often cause artifacts. Display encoding can be thought of as a form
of compression, one that best preserves the value’s perceptual effect [491]. A good
way to think about this area is that there are linear values that we use to perform
physical computations, and whenever we want to display results or access displayable
images such as color textures, we need to move data to or from its display-encoded
form, using the proper encode or decode transform.

If you do need to apply sRGB manually, there is a standard conversion equation or
a few simplified versions that can be used. In practical terms the display is controlled
by a number of bits per color channel, e.g., 8 for consumer-level monitors, giving a
set of levels in the range [0,255]. Here we express the display-encoded levels as a
range [0.0,1.0], ignoring the number of bits. The linear values are also in the range
[0.0, 1.0], representing floating point numbers. We denote these linear values by x and
the nonlinearly encoded values stored in the framebuffer by y. To convert linear values
to sSRGB nonlinear encoded values, we apply the inverse of the sRGB display transfer
function:

1.0552/%4 — 0.055 hy 0.0031308
-1 (z) :{ €z , Where r > , (5.30)

Y= firaB 12.92z, where z < 0.0031308,

with = representing a channel of the linear RGB triplet. The equation is applied to
each channel, and these three generated values drive the display. Be careful if you

5.6. Display Encoding 163

apply conversion functions manually. One source of error is using an encoded color
instead of its linear form, and another is decoding or encoding a color twice.

The bottom of the two transform expressions is a simple multiply, which arises from
a need by digital hardware to make the transform perfectly invertible [1431]. The top
expression, involving raising the value to a power, applies to almost the whole range
[0.0, 1.0] of input values z. With the offset and scale taken into account, this function
closely approximates a simpler formula [491]:

Y= f(gslplay(x) =g/, (5.31)

with v = 2.2. The Greek letter «y is the basis for the name “gamma correction.”

Just as computed values must be encoded for display, images captured by still or
video cameras must be converted to linear values before being used in calculations.
Any color you see on a monitor or television has some display-encoded RGB triplet
that you can obtain from a screen capture or color picker. These values are what
are stored in file formats such as PNG, JPEG, and GIF, formats that can be directly
sent to a framebuffer for display on the screen without conversion. In other words,
whatever you see on the screen is by definition display-encoded data. Before using
these colors in shading calculations, we must convert from this encoded form back
to linear values. The sRGB transformation we need from display encoding to linear
values is

2.4
0.055
(yTO%) . where y > 0.04045,
z = fsreB(Y) = ’ (5.32)
ﬁ7 where y < 0.04045,

with y representing a normalized displayed channel value, i.e., what is stored in an
image or framebuffer, expressed as a value in the range [0.0, 1.0]. This decode function
is the inverse of our previous SRGB formula. This means that if a texture is accessed by
a shader and output without change, it will appear the same as before being processed,
as expected. The decode function is the same as the display transfer function because
the values stored in a texture have been encoded to display correctly. Instead of
converting to give a linear-response display, we are converting to give linear values.
The simpler gamma display transfer function is the inverse of Equation 5.31:

T = faisplay(y) =¥ (5.33)

Sometimes you will see a conversion pair that is simpler still, particularly on mobile

and browser apps [1666]:
y = fs?x;pl(‘r) = \/'Ea (5 34)
= faimpl(y) = %

that is, take the square root of the linear value for conversion for display, and just mul-
tiply the value by itself for the inverse. While a rough approximation, this conversion
is better than ignoring the problem altogether.

164 5. Shading Basics

Figure 5.40. Two overlapping spotlights illuminating a plane. In the left image, gamma correction is
not performed after adding the light values of 0.6 and 0.4. The addition is effectively performed on
nonlinear values, causing errors. Note how the left light looks considerably brighter than the right,
and the overlap appears unrealistically bright. In the right image, the values are gamma corrected
after addition. The lights themselves are proportionally brighter, and they combine properly where
they overlap.

If we do not pay attention to gamma, lower linear values will appear too dim on the
screen. A related error is that the hue of some colors can shift if no gamma correction
is performed. Say our v = 2.2. We want to emit a radiance from the displayed pixel
proportional to the linear, computed value, which means that we must raise the linear
value to the (1/2.2) power. A linear value of 0.1 gives 0.351, 0.2 gives 0.481, and 0.5
gives 0.730. If not encoded, these values used as is will cause the display to emit less
radiance than needed. Note that 0.0 and 1.0 are always unchanged by any of these
transforms. Before gamma correction was used, dark surface colors would often be
artificially boosted by the person modeling the scene, folding in the inverse display
transform.

Another problem with neglecting gamma correction is that shading computations
that are correct for physically linear radiance values are performed on nonlinear values.
An example of this can be seen in Figure 5.40.

Ignoring gamma correction also affects the quality of antialiased edges. For ex-
ample, say a triangle edge covers four screen grid cells (Figure 5.41). The triangle’s

Figure 5.41. On the left, four pixels covered by the edge of a white triangle on a black (shown as gray)
background, with true area coverage shown. If gamma correction is not performed, the darkening of
midtones will cause the perception of the edge to be distorted, as seen on the right.

5.6. Display Encoding 165

Figure 5.42. On the left, the set of antialiased lines are gamma-corrected; in the middle, the set is
partially corrected; on the right, there is no gamma correction. (Immages courtesy of Scott R. Nelson.)

normalized radiance is 1 (white); the background’s is 0 (black). Left to right, the cells
are covered %, %7 g, and g. So, if we are using a box filter, we want to represent the
normalized linear radiance of the pixels as 0.125, 0.375, 0.625, and 0.875. The correct
approach is to perform antialiasing on linear values, applying the encoding function
to the four resulting values. If this is not done, the represented radiance for the pixels
will be too dark, resulting in a perceived deformation of the edge as seen in the right
side of the figure. This artifact is called roping, because the edge looks somewhat like
a twisted rope [167, 1265]. Figure 5.42 shows this effect.

The sRGB standard was created in 1996 and has become the norm for most com-
puter monitors. However, display technology has evolved since that time. Monitors
that are brighter and that can display a wider range of colors have been developed.
Color display and brightness are discussed in Section 8.1.3, and display encoding for
high dynamic range displays is presented in Section 8.2.1. Hart’s article [672] is a
particularly thorough source for more information about advanced displays.

Further Reading and Resources

Pharr et al. [1413] discuss sampling patterns and antialiasing in more depth.
Teschner’s course notes [1758] show various sampling pattern generation methods.
Drobot [382, 383] runs through previous research on real-time antialiasing, explaining
the attributes and performance of a variety of techniques. Information on a wide
variety of morphological antialiasing methods can be found in the notes for the re-
lated SIGGRAPH course [829]. Reshetov and Jimenez [1486] provide an updated
retrospective of morphological and related temporal antialiasing work used in games.

For transparency research we again refer the interested reader to McGuire’s pre-
sentation [1182] and Wyman’s work [1931]. Blinn’s article “What Is a Pixel?” [169]
provides an excellent tour of several areas of computer graphics while discussing differ-
ent definitions. Blinn’s Dirty Pizels and Notation, Notation, Notation books [166, 168]
include some introductory articles on filtering and antialiasing, as well as articles on

166 5. Shading Basics

alpha, compositing, and gamma correction. Jimenez’s presentation [836] gives a de-
tailed treatment of state-of-the-art techniques used for antialiasing.

Gritz and d’Eon [607] have an excellent summary of gamma correction issues.
Poynton’s book [1431] gives solid coverage of gamma correction in various media,
as well as other color-related topics. Selan’s white paper [1602] is a newer source,
explaining display encoding and its use in the film industry, along with much other
related information.

Chapter 6
Texturing

“All it takes is for the rendered image to look right.”
—Jim Blinn

A surface’s texture is its look and feel—just think of the texture of an oil painting.
In computer graphics, texturing is a process that takes a surface and modifies its
appearance at each location using some image, function, or other data source. As
an example, instead of precisely representing the geometry of a brick wall, a color
image of a brick wall is applied to a rectangle, consisting of two triangles. When the
rectangle is viewed, the color image appears where the rectangle is located. Unless
the viewer gets close to the wall, the lack of geometric detail will not be noticeable.

However, some textured brick walls can be unconvincing for reasons other than lack
of geometry. For example, if the mortar is supposed to be matte, whereas the bricks
are glossy, the viewer will notice that the roughness is the same for both materials.
To produce a more convincing experience, a second image texture can be applied to
the surface. Instead of changing the surface’s color, this texture changes the wall’s
roughness, depending on location on the surface. Now the bricks and mortar have a
color from the image texture and a roughness value from this new texture.

The viewer may see that now all the bricks are glossy and the mortar is not, but
notice that each brick face appears to be perfectly flat. This does not look right, as
bricks normally have some irregularity to their surfaces. By applying bump mapping,
the shading normals of the bricks may be varied so that when they are rendered, they
do not appear to be perfectly smooth. This sort of texture wobbles the direction of
the rectangle’s original surface normal for purposes of computing lighting.

From a shallow viewing angle, this illusion of bumpiness can break down. The
bricks should stick out above the mortar, obscuring it from view. Even from a straight-
on view, the bricks should cast shadows onto the mortar. Parallax mapping uses a
texture to appear to deform a flat surface when rendering it, and parallaz occlusion
mapping casts rays against a heightfield texture for improved realism. Displacement
mapping truly displaces the surface by modifying triangle heights forming the model.
Figure 6.1 shows an example with color texturing and bump mapping.

167

168 6. Texturing

Figure 6.1. Texturing. Color and bump maps were applied to this fish to increase its visual level of
detail. (Image courtesy of Elinor Quittner.)

These are examples of the types of problems that can be solved with textures,
using more and more elaborate algorithms. In this chapter, texturing techniques are
covered in detail. First, a general framework of the texturing process is presented.
Next, we focus on using images to texture surfaces, since this is the most popular
form of texturing used in real-time work. Procedural textures are briefly discussed,
and then some common methods of having textures affect the surface are explained.

6.1. The Texturing Pipeline 169

6.1 The Texturing Pipeline

Texturing is a technique for efficiently modeling variations in a surface’s material and
finish. One way to think about texturing is to consider what happens for a single
shaded pixel. As seen in the previous chapter, the shade is computed by taking into
account the color of the material and the lights, among other factors. If present,
transparency also affects the sample. Texturing works by modifying the values used
in the shading equation. The way these values are changed is normally based on the
position on the surface. So, for the brick wall example, the color at any point on
the surface is replaced by a corresponding color in the image of a brick wall, based
on the surface location. The pixels in the image texture are often called tezels, to
differentiate them from the pixels on the screen. The roughness texture modifies the
roughness value, and the bump texture changes the direction of the shading normal,
so each of these change the result of the shading equation.

Texturing can be described by a generalized texture pipeline. Much terminology
will be introduced in a moment, but take heart: Each piece of the pipeline will be
described in detail.

A location in space is the starting point for the texturing process. This location can
be in world space, but is more often in the model’s frame of reference, so that as the
model moves, the texture moves along with it. Using Kershaw’s terminology [884], this
point in space then has a projector function applied to it to obtain a set of numbers,
called texture coordinates, that will be used for accessing the texture. This process is
called mapping, which leads to the phrase terture mapping. Sometimes the texture
image itself is called the texture map, though this is not strictly correct.

Before these new values may be used to access the texture, one or more corre-
sponder functions can be used to transform the texture coordinates to texture space.
These texture-space locations are used to obtain values from the texture, e.g., they
may be array indices into an image texture to retrieve a pixel. The retrieved values are
then potentially transformed yet again by a value transform function, and finally these
new values are used to modify some property of the surface, such as the material or
shading normal. Figure 6.2 shows this process in detail for the application of a single
texture. The reason for the complexity of the pipeline is that each step provides the
user with a useful control. It should be noted that not all steps need to be activated
at all times.

object parameter texture transformed
space Space Space texture texture
location coordinates location value value
B . » B . = value >
projector corresponder obtain
. . transform
function function(s) value .
function

Figure 6.2. The generalized texture pipeline for a single texture.

170 6. Texturing

A brick wall
RO
— (xaysz)
object space
(-2.3,7.1,88.2)

(u,v) texture
parameter space —» image space —> texel color
(0.32,0.29) (81,74) (0.9,0.8,0.7)

Figure 6.3. Pipeline for a brick wall.

Using this pipeline, this is what happens when a triangle has a brick wall texture
and a sample is generated on its surface (see Figure 6.3). The (z,y,z) position in
the object’s local frame of reference is found; say it is (—2.3,7.1,88.2). A projector
function is then applied to this position. Just as a map of the world is a projection of
a three-dimensional object into two dimensions, the projector function here typically
changes the (x,y, z) vector into a two-element vector (u,v). The projector function
used for this example is equivalent to an orthographic projection (Section 2.3.1), acting
something like a slide projector shining the brick wall image onto the triangle’s surface.
To return to the wall, a point on its surface could be transformed into a pair of values
ranging from 0 to 1. Say the values obtained are (0.32,0.29). These texture coordinates
are to be used to find what the color of the image is at this location. The resolution of
our brick texture is, say, 256 x 256, so the corresponder function multiplies the (u,v)
by 256 each, giving (81.92,74.24). Dropping the fractions, pixel (81,74) is found in
the brick wall image, and is of color (0.9,0.8,0.7). The texture color is in SRGB color
space, so if the color is to be used in shading equations, it is converted to linear space,
giving (0.787,0.604, 0.448) (Section 5.6).

6.1.1 The Projector Function

The first step in the texture process is obtaining the surface’s location and project-
ing it into texture coordinate space, usually two-dimensional (u,v) space. Modeling
packages typically allow artists to define (u,v)-coordinates per vertex. These may be
initialized from projector functions or from mesh unwrapping algorithms. Artists can
edit (u,v)-coordinates in the same way they edit vertex positions. Projector functions
typically work by converting a three-dimensional point in space into texture coordi-
nates. Functions commonly used in modeling programs include spherical, cylindrical,
and planar projections [141, 884, 970].

6.1. The Texturing Pipeline 171

Figure 6.4. Different texture projections. Spherical, cylindrical, planar, and natural (u,v) projections
are shown, left to right. The bottom row shows each of these projections applied to a single object
(which has no natural projection).

Other inputs can be used to a projector function. For example, the surface normal
can be used to choose which of six planar projection directions is used for the surface.
Problems in matching textures occur at the seams where the faces meet; Geiss [521,
522] discusses a technique of blending among them. Tarini et al. [1740] describe
polycube maps, where a model is mapped to a set of cube projections, with different
volumes of space mapping to different cubes.

Other projector functions are not projections at all, but are an implicit part of
surface creation and tessellation. For example, parametric curved surfaces have a
natural set of (u,v) values as part of their definition. See Figure 6.4. The texture
coordinates could also be generated from all sorts of different parameters, such as the
view direction, temperature of the surface, or anything else imaginable. The goal of
the projector function is to generate texture coordinates. Deriving these as a function
of position is just one way to do it.

Non-interactive renderers often call these projector functions as part of the ren-
dering process itself. A single projector function may suffice for the whole model, but
often the artist has to use tools to subdivide the model and apply various projector
functions separately [1345]. See Figure 6.5.

In real-time work, projector functions are usually applied at the modeling stage,
and the results of the projection are stored at the vertices. This is not always the case;
sometimes it is advantageous to apply the projection function in the vertex or pixel
shader. Doing so can increase precision, and helps enable various effects, including
animation (Section 6.4). Some rendering methods, such as environment mapping

172 6. Texturing

box

mapping)

cylindrical
mapping

planar /

mapping

Figure 6.5. How various texture projections are used on a single model. Box mapping consists of six
planar mappings, one for each box face. (Images courtesy of Tito Pagdn.)

(Section 10.4), have specialized projector functions of their own that are evaluated
per pixel.

The spherical projection (on the left in Figure 6.4) casts points onto an imaginary
sphere centered around some point. This projection is the same as used in Blinn and
Newell’s environment mapping scheme (Section 10.4.1), so Equation 10.30 on page 407
describes this function. This projection method suffers from the same problems of
vertex interpolation described in that section.

Cylindrical projection computes the u texture coordinate the same as spherical
projection, with the v texture coordinate computed as the distance along the cylinder’s
axis. This projection is useful for objects that have a natural axis, such as surfaces of
revolution. Distortion occurs when surfaces are near-perpendicular to the cylinder’s
axis.

The planar projection is like an x-ray beam, projecting in parallel along a direction
and applying the texture to all surfaces. It uses orthographic projection (Section 4.7.1).
This type of projection is useful for applying decals, for example (Section 20.2).

As there is severe distortion for surfaces that are edge-on to the projection direc-
tion, the artist often must manually decompose the model into near-planar pieces.
There are also tools that help minimize distortion by unwrapping the mesh, or creat-
ing a near-optimal set of planar projections, or that otherwise aid this process. The
goal is to have each polygon be given a fairer share of a texture’s area, while also
maintaining as much mesh connectivity as possible. Connectivity is important in that
sampling artifacts can appear along edges where separate parts of a texture meet. A

6.1. The Texturing Pipeline 173

Figure 6.6. Several smaller textures for the statue model, saved in two larger textures. The right
figure shows how the triangle mesh is unwrapped and displayed on the texture to aid in its creation.
(Images courtesy of Tito Pagdn.)

mesh with a good unwrapping also eases the artist’s work [970, 1345]. Section 16.2.1
discusses how texture distortion can adversely affect rendering. Figure 6.6 shows the
workspace used to create the statue in Figure 6.5. This unwrapping process is one
facet of a larger field of study, mesh parameterization. The interested reader is referred
to the SIGGRAPH course notes by Hormann et al. [774].

The texture coordinate space is not always a two-dimensional plane; sometimes it
is a three-dimensional volume. In this case, the texture coordinates are presented as
a three-element vector, (u,v,w), with w being depth along the projection direction.
Other systems use up to four coordinates, often designated (s,t,r,q) [885]; ¢ is used as
the fourth value in a homogeneous coordinate. It acts like a movie or slide projector,
with the size of the projected texture increasing with distance. As an example, it is
useful for projecting a decorative spotlight pattern, called a gobo, onto a stage or other
surface [1597].

Another important type of texture coordinate space is directional, where each point
in the space is accessed by an input direction. One way to visualize such a space is
as points on a unit sphere, the normal at each point representing the direction used
to access the texture at that location. The most common type of texture using a
directional parameterization is the cube map (Section 6.2.4).

It is also worth noting that one-dimensional texture images and functions have
their uses. For example, on a terrain model the coloration can be determined by
altitude, e.g., the lowlands are green; the mountain peaks are white. Lines can also
be textured; one use of this is to render rain as a set of long lines textured with a
semitransparent image. Such textures are also useful for converting from one value to
another, i.e., as a lookup table.

174 6. Texturing

Since multiple textures can be applied to a surface, multiple sets of texture coor-
dinates may need to be defined. However the coordinate values are applied, the idea
is the same: These texture coordinates are interpolated across the surface and used to
retrieve texture values. Before being interpolated, however, these texture coordinates
are transformed by corresponder functions.

6.1.2 The Corresponder Function

Corresponder functions convert texture coordinates to texture-space locations. They
provide flexibility in applying textures to surfaces. One example of a corresponder
function is to use the API to select a portion of an existing texture for display; only
this subimage will be used in subsequent operations.

Another type of corresponder is a matrix transformation, which can be applied
in the vertex or pixel shader. This enables to translating, rotating, scaling, shearing,
or projecting the texture on the surface. As discussed in Section 4.1.5, the order of
transforms matters. Surprisingly, the order of transforms for textures must be the
reverse of the order one would expect. This is because texture transforms actually
affect the space that determines where the image is seen. The image itself is not an
object being transformed; the space defining the image’s location is being changed.

Another class of corresponder functions controls the way an image is applied. We
know that an image will appear on the surface where (u,v) are in the [0, 1] range. But
what happens outside of this range? Corresponder functions determine the behavior.
In OpenGL, this type of corresponder function is called the “wrapping mode”; in
DirectX, it is called the “texture addressing mode.” Common corresponder functions
of this type are:

e wrap (DirectX), repeat (OpenGL), or tile—The image repeats itself across the
surface; algorithmically, the integer part of the texture coordinates is dropped.
This function is useful for having an image of a material repeatedly cover a
surface, and is often the default.

e mirror—The image repeats itself across the surface, but is mirrored (flipped)
on every other repetition. For example, the image appears normally going from
0 to 1, then is reversed between 1 and 2, then is normal between 2 and 3, then
is reversed, and so on. This provides some continuity along the edges of the
texture.

e clamp (DirectX) or clamp to edge (OpenGL)—Values outside the range [0, 1]
are clamped to this range. This results in the repetition of the edges of the
image texture. This function is useful for avoiding accidentally taking samples
from the opposite edge of a texture when bilinear interpolation happens near a
texture’s edge [885].

e border (DirectX) or clamp to border (OpenGL)—Texture coordinates out-
side [0, 1] are rendered with a separately defined border color. This function can

6.1. The Texturing Pipeline 175

O

|

Figure 6.7. Image texture repeat, mirror, clamp, and border functions in action.

be good for rendering decals onto single-color surfaces, for example, as the edge
of the texture will blend smoothly with the border color.

See Figure 6.7. These corresponder functions can be assigned differently for each
texture axis, e.g., the texture could repeat along the w-axis and be clamped on the
v-axis. In DirectX there is also a mirror once mode that mirrors a texture once along
the zero value for the texture coordinate, then clamps, which is useful for symmetric
decals.

Repeated tiling of a texture is an inexpensive way of adding more visual detail to a
scene. However, this technique often looks unconvincing after about three repetitions
of the texture, as the eye picks out the pattern. A common solution to avoid such
periodicity problems is to combine the texture values with another, non-tiled, tex-
ture. This approach can be considerably extended, as seen in the commercial terrain
rendering system described by Andersson [40]. In this system, multiple textures are
combined based on terrain type, altitude, slope, and other factors. Texture images
are also tied to where geometric models, such as bushes and rocks, are placed within
the scene.

Another option to avoid periodicity is to use shader programs to implement special-
ized corresponder functions that randomly recombine texture patterns or tiles. Wang
tiles are one example of this approach. A Wang tile set is a small set of square tiles
with matching edges. Tiles are selected randomly during the texturing process [1860].
Lefebvre and Neyret [1016] implement a similar type of corresponder function using
dependent texture reads and tables to avoid pattern repetition.

The last corresponder function applied is implicit, and is derived from the image’s
size. A texture is normally applied within the range [0, 1] for v and v. As shown in the
brick wall example, by multiplying texture coordinates in this range by the resolution
of the image, one may obtain the pixel location. The advantage of being able to specify
(u,v) values in a range of [0, 1] is that image textures with different resolutions can be
swapped in without having to change the values stored at the vertices of the model.

6.1.3 Texture Values

After the corresponder functions are used to produce texture-space coordinates, the
coordinates are used to obtain texture values. For image textures, this is done by

176 6. Texturing

accessing the texture to retrieve texel information from the image. This process is
dealt with extensively in Section 6.2. Image texturing constitutes the vast majority of
texture use in real-time work, but procedural functions can also be used. In the case
of procedural texturing, the process of obtaining a texture value from a texture-space
location does not involve a memory lookup, but rather the computation of a function.
Procedural texturing is further described in Section 6.3.

The most straightforward texture value is an RGB triplet that is used to replace
or modify the surface colors; similarly, a single grayscale value could be returned.
Another type of data to return is RGBa, as described in Section 5.5. The « (alpha)
value is normally the opacity of the color, which determines the extent to which the
color may affect the pixel. That said, any other value could be stored, such as surface
roughness. There are many other types of data that can be stored in image textures,
as will be seen when bump mapping is discussed in detail (Section 6.7).

The values returned from the texture are optionally transformed before use. These
transformations may be performed in the shader program. One common example is
the remapping of data from an unsigned range (0.0 to 1.0) to a signed range (—1.0 to
1.0), which is used for shading normals stored in a color texture.

6.2 Image Texturing

In image texturing, a two-dimensional image is effectively glued onto the surface of
one or more triangles. We have walked through the process of computing a texture-
space location; now we will address the issues and algorithms for obtaining a texture
value from the image texture, given that location. For the rest of this chapter, the
image texture will be referred to simply as the texture. In addition, when we refer to
a pixel’s cell here, we mean the screen grid cell surrounding that pixel. As discussed
in Section 5.4.1, a pizel is actually a displayed color value that can (and should, for
better quality) be affected by samples outside of its associated grid cell.

In this section we particularly focus on methods to rapidly sample and filter tex-
tured images. Section 5.4.2 discussed the problem of aliasing, especially with respect
to rendering edges of objects. Textures can also have sampling problems, but they
occur within the interiors of the triangles being rendered.

The pixel shader accesses textures by passing in texture coordinate values to a
call such as texture2D. These values are in (u,v) texture coordinates, mapped by a
corresponder function to a range [0.0,1.0]. The GPU takes care of converting this
value to texel coordinates. There are two main differences among texture coordinate
systems in different APIs. In DirectX the upper left corner of the texture is (0,0) and
the lower right is (1,1). This matches how many image types store their data, the top
row being the first one in the file. In OpenGL the texel (0, 0) is located in the lower left,
a y-axis flip from DirectX. Texels have integer coordinates, but we often want to access
a location between texels and blend among them. This brings up the question of what
the floating point coordinates of the center of a pixel are. Heckbert [692] discusses

6.2. Image Texturing 177

how there are two systems possible: truncating and rounding. DirectX 9 defined
each center at (0.0,0.0)—this uses rounding. This system was somewhat confusing,
as the upper left corner of the upper left pixel, at DirectX’s origin, then had the value
(—0.5,—0.5). DirectX 10 onward changes to OpenGL’s system, where the center of
a texel has the fractional values (0.5,0.5)—truncation, or more accurately, flooring,
where the fraction is dropped. Flooring is a more natural system that maps well to
language, in that pixel (5,9), for example, defines a range from 5.0 to 6.0 for the
u-coordinate and 9.0 to 10.0 for the v.

One term worth explaining at this point is dependent texture read, which has two
definitions. The first applies to mobile devices in particular. When accessing a texture
via texture2D or similar, a dependent texture read occurs whenever the pixel shader
calculates texture coordinates instead of using the unmodified texture coordinates
passed in from the vertex shader [66]. Note that this means any change at all to
the incoming texture coordinates, even such simple actions as swapping the v and v
values. Older mobile GPUs, those that do not support OpenGL ES 3.0, run more
efficiently when the shader has no dependent texture reads, as the texel data can then
be prefetched. The other, older, definition of this term was particularly important
for early desktop GPUs. In this context a dependent texture read occurs when one
texture’s coordinates are dependent on the result of some previous texture’s values.
For example, one texture might change the shading normal, which in turn changes
the coordinates used to access a cube map. Such functionality was limited or even
non-existent on early GPUs. Today such reads can have an impact on performance,
depending on the number of pixels being computed in a batch, among other factors.
See Section 23.8 for more information.

The texture image size used in GPUs is usually 2" x 2" texels, where m and n are
non-negative integers. These are referred to as power-of-two (POT) textures. Modern
GPUs can handle non-power-of-two (NPOT) textures of arbitrary size, which allows
a generated image to be treated as a texture. However, some older mobile GPUs may
not support mipmapping (Section 6.2.2) for NPOT textures. Graphics accelerators
have different upper limits on texture size. DirectX 12 allows a maximum of 163842
texels, for example.

Assume that we have a texture of size 256 x 256 texels and that we want to use
it as a texture on a square. As long as the projected square on the screen is roughly
the same size as the texture, the texture on the square looks almost like the original
image. But what happens if the projected square covers ten times as many pixels as
the original image contains (called magnification), or if the projected square covers
only a small part of the screen (minification)? The answer is that it depends on what
kind of sampling and filtering methods you decide to use for these two separate cases.

The image sampling and filtering methods discussed in this chapter are applied to
the values read from each texture. However, the desired result is to prevent aliasing in
the final rendered image, which in theory requires sampling and filtering the final pixel
colors. The distinction here is between filtering the inputs to the shading equation, or
filtering its output. As long as the inputs and output are linearly related (which is true

178 6. Texturing

for inputs such as colors), then filtering the individual texture values is equivalent to
filtering the final colors. However, many shader input values stored in textures, such
as surface normals and roughness values, have a nonlinear relationship to the output.
Standard texture filtering methods may not work well for these textures, resulting in
aliasing. Improved methods for filtering such textures are discussed in Section 9.13.

6.2.1 Magnification

In Figure 6.8, a texture of size 48 x 48 texels is textured onto a square, and the
square is viewed rather closely with respect to the texture size, so the underlying
graphics system has to magnify the texture. The most common filtering techniques
for magnification are nearest neighbor (the actual filter is called a box filter—see
Section 5.4.1) and bilinear interpolation. There is also cubic convolution, which uses
the weighted sum of a 4 x 4 or 5 x 5 array of texels. This enables much higher
magnification quality. Although native hardware support for cubic convolution (also
called bicubic interpolation) is currently not commonly available, it can be performed
in a shader program.

In the left part of Figure 6.8, the nearest neighbor method is used. One character-
istic of this magnification technique is that the individual texels may become apparent.
This effect is called pizelation and occurs because the method takes the value of the
nearest texel to each pixel center when magnifying, resulting in a blocky appearance.
While the quality of this method is sometimes poor, it requires only one texel to be
fetched per pixel.

In the middle image of the same figure, bilinear interpolation (sometimes called
linear interpolation) is used. For each pixel, this kind of filtering finds the four neigh-
boring texels and linearly interpolates in two dimensions to find a blended value for
the pixel. The result is blurrier, and much of the jaggedness from using the nearest
neighbor method has disappeared. As an experiment, try looking at the left image

D W Al A

Figure 6.8. Texture magnification of a 48 x 48 image onto 320 x 320 pixels. Left: nearest neighbor
filtering, where the nearest texel is chosen per pixel. Middle: bilinear filtering using a weighted
average of the four nearest texels. Right: cubic filtering using a weighted average of the 5 x 5 nearest
texels.

6.2. Image Texturing 179

(82,74)
(1) (cH1y+1)
’ i ® 1.0
: (81.92,74.24)
‘\\\ converts to
E : (puapv) 00 (u’,V’):
(x,y)G (x+1ly) ' T - (0.42,0.74)
(81,73) © :

Figure 6.9. Bilinear interpolation. The four texels involved are illustrated by the four squares on the
left, texel centers in blue. On the right is the coordinate system formed by the centers of the four
texels.

while squinting, as this has approximately the same effect as a low-pass filter and
reveals the face a bit more.

Returning to the brick texture example on page 170: Without dropping the frac-
tions, we obtained (p,,p,) = (81.92,74.24). We use OpenGL’s lower left origin texel
coordinate system here, since it matches the standard Cartesian system. Our goal is to
interpolate among the four closest texels, defining a texel-sized coordinate system using
their texel centers. See Figure 6.9. To find the four nearest pixels, we subtract the pixel
center fraction (0.5, 0.5) from our sample location, giving (81.42,73.74). Dropping the
fractions, the four closest pixels range from (z,y) = (81,73) to (z+1,y+1) = (82,74).
The fractional part, (0.42,0.74) for our example, is the location of the sample relative
to the coordinate system formed by the four texel centers. We denote this location as
(', v").

Define the texture access function as t(x,y), where z and y are integers and the
color of the texel is returned. The bilinearly interpolated color for any location (u’,v")
can be computed as a two-step process. First, the bottom texels, t(z,y) and t(z+1,y),
are interpolated horizontally (using u'), and similarly for the topmost two texels,
t(z,y + 1) and t(x + 1,y + 1). For the bottom texels, we obtain (1 — u’)t(z,y) +
u't(x+1,y) (bottom green circle in Figure 6.9), and for the top, (1 —u')t(x,y+1) +
u't(x+ 1,y + 1) (top green circle). These two values are then interpolated vertically
(using v'), so the bilinearly interpolated color b at (p.,p,) is

b(pu,po) = (1 =) (1 —u)t(z,y) + u't(z +1,9))
+ ' (1 =u)t(z,y+ 1) +u't(z+ 1,y +1))
= (1—u)(1—v)t(x,y) +u' (1 —v)t(x+1,y)
+ (1 =u)t(r,y+ 1) +uvt(x+ 1,y +1).

(6.1)

Intuitively, a texel closer to our sample location will influence its final value more.
This is indeed what we see in this equation. The upper right texel at (z+1,y+1) has

180 6. Texturing

Figure 6.10. Nearest neighbor, bilinear interpolation, and part way in between by remapping, using
the same 2 x 2 checkerboard texture. Note how nearest neighbor sampling gives slightly different
square sizes, since the texture and the image grid do not match perfectly.

an influence of u'v’. Note the symmetry: The upper right’s influence is equal to the
area of the rectangle formed by the lower left corner and the sample point. Returning
to our example, this means that the value retrieved from this texel will be multiplied
by 0.42 x 0.74, specifically 0.3108. Clockwise from this texel the other multipliers are
0.42 x 0.26, 0.58 x 0.26, and 0.58 x 0.74, all four of these weights summing to 1.0.

A common solution to the blurriness that accompanies magnification is to use
detail textures. These are textures that represent fine surface details, from scratches
on a cellphone to bushes on terrain. Such detail is overlaid onto the magnified texture
as a separate texture, at a different scale. The high-frequency repetitive pattern of
the detail texture, combined with the low-frequency magnified texture, has a visual
effect similar to the use of a single high-resolution texture.

Bilinear interpolation interpolates linearly in two directions. However, a linear
interpolation is not required. Say a texture consists of black and white pixels in a
checkerboard pattern. Using bilinear interpolation gives varying grayscale samples
across the texture. By remapping so that, say, all grays lower than 0.4 are black, all
grays higher than 0.6 are white, and those in between are stretched to fill the gap, the
texture looks more like a checkerboard again, while also giving some blend between
texels. See Figure 6.10.

Using a higher-resolution texture would have a similar effect. For example, imagine
each checker square consists of 4 x 4 texels instead of being 1 x 1. Around the center
of each checker, the interpolated color would be fully black or white.

To the right in Figure 6.8, a bicubic filter has been used, and the remaining block-
iness is largely removed. It should be noted that bicubic filters are more expensive
than bilinear filters. However, many higher-order filters can be expressed as repeated
linear interpolations [1518] (see also Section 17.1.1). As a result, the GPU hardware
for linear interpolation in the texture unit can be exploited with several lookups.

If bicubic filters are considered too expensive, Quilez [1451] proposes a simple
technique using a smooth curve to interpolate in between a set of 2 x 2 texels. We
first describe the curves and then the technique. Two commonly used curves are the

6.2. Image Texturing 181

smoothstep s(x)

quintic g(x)

Figure 6.11. The smoothstep curve s(z) (left) and a quintic curve g(z) (right).

smoothstep curve and the quintic curve [1372]:

s(z) =2%(3—2x) and q(z) = 2*(62% — 15z + 10). (6.2)

smoothstep quintic

These are useful for many other situations where you want to smoothly interpolate
from one value to another. The smoothstep curve has the property that s'(0) = s'(1) =
0, and it is smooth between 0 and 1. The quintic curve has the same properties, but
also ¢’ (0) = ¢’ (1) = 0, i.e., the second derivatives are also 0 at the start and end of
the curve. The two curves are shown in Figure 6.11.

The technique starts by computing (u’,v") (same as used in Equation 6.1 and in
Figure 6.9) by first multiplying the sample by the texture dimensions and adding 0.5.
The integer parts are kept for later, and the fractions are stored in v’ and v’, which are
in the range of [0,1]. The (u/,v") are then transformed as (t,,t,) = (g(u'), ¢(v")), still
in the range of [0,1]. Finally, 0.5 is subtracted and the integer parts are added back
in; the resulting u-coordinate is then divided by the texture width, and similarly for
v. At this point, the new texture coordinates are used with the bilinear interpolation
lookup provided by the GPU. Note that this method will give plateaus at each texel,
which means that if the texels are located on a plane in RGB space, for example, then
this type of interpolation will give a smooth, but still staircased, look, which may not
always be desired. See Figure 6.12.

IR

Figure 6.12. Four different ways to magnify a one-dimensional texture. The orange circles indicate
the centers of the texels as well as the texel values (height). From left to right: nearest neighbor,
linear, using a quintic curve between each pair of neighboring texels, and using cubic interpolation.

182 6. Texturing

= "

Figure 6.13. Minification: A view of a checkerboard-textured square through a row of pixel cells,
showing roughly how a number of texels affect each pixel.

6.2.2 Minification

When a texture is minimized, several texels may cover a pixel’s cell, as shown in
Figure 6.13. To get a correct color value for each pixel, you should integrate the effect
of the texels influencing the pixel. However, it is difficult to determine precisely the
exact influence of all texels near a particular pixel, and it is effectively impossible to
do so perfectly in real time.

Because of this limitation, several different methods are used on GPUs. One
method is to use the nearest neighbor, which works exactly as the corresponding
magnification filter does, i.e., it selects the texel that is visible at the center of the
pixel’s cell. This filter may cause severe aliasing problems. In Figure 6.14, nearest
neighbor is used in the top figure. Toward the horizon, artifacts appear because only
one of the many texels influencing a pixel is chosen to represent the surface. Such
artifacts are even more noticeable as the surface moves with respect to the viewer,
and are one manifestation of what is called temporal aliasing.

Another filter often available is bilinear interpolation, again working exactly as in
the magnification filter. This filter is only slightly better than the nearest neighbor
approach for minification. It blends four texels instead of using just one, but when a
pixel is influenced by more than four texels, the filter soon fails and produces aliasing.

Better solutions are possible. As discussed in Section 5.4.1, the problem of aliasing
can be addressed by sampling and filtering techniques. The signal frequency of a
texture depends upon how closely spaced its texels are on the screen. Due to the
Nyquist limit, we need to make sure that the texture’s signal frequency is no greater
than half the sample frequency. For example, say an image is composed of alternating
black and white lines, a texel apart. The wavelength is then two texels wide (from
black line to black line), so the frequency is % To properly display this texture on a
screen, the frequency must then be at least 2 x %, i.e., at least one pixel per texel. So,
for textures in general, there should be at most one texel per pixel to avoid aliasing.

To achieve this goal, either the pixel’s sampling frequency has to increase or the
texture frequency has to decrease. The antialiasing methods discussed in the previous

6.2. Image Texturing 183

Figure 6.14. The top image was rendered with point sampling (nearest neighbor), the center with
mipmapping, and the bottom with summed area tables.

chapter give ways to increase the pixel sampling rate. However, these give only a
limited increase in sampling frequency. To more fully address this problem, various
texture minification algorithms have been developed.

The basic idea behind all texture antialiasing algorithms is the same: to preprocess
the texture and create data structures that will help compute a quick approximation
of the effect of a set of texels on a pixel. For real-time work, these algorithms have the
characteristic of using a fixed amount of time and resources for execution. In this way,
a fixed number of samples are taken per pixel and combined to compute the effect of
a (potentially huge) number of texels.

Mipmapping

The most popular method of antialiasing for textures is called mipmapping [1889]. It

is implemented in some form on all graphics accelerators now produced. “Mip” stands

for multum in parvo, Latin for “many things in a small place”—a good name for a

process in which the original texture is filtered down repeatedly into smaller images.
When the mipmapping minimization filter is used, the original texture is aug-

mented with a set of smaller versions of the texture before the actual rendering takes

184 6. Texturing

Figure 6.15. A mipmap is formed by taking the original image (level 0), at the base of the pyramid,
and averaging each 2 X 2 area into a texel value on the next level up. The vertical axis is the third
texture coordinate, d. In this figure, d is not linear; it is a measure of which two texture levels a
sample uses for interpolation.

place. The texture (at level zero) is downsampled to a quarter of the original area,
with each new texel value often computed as the average of four neighbor texels in
the original texture. The new, level-one texture is sometimes called a subtexture of
the original texture. The reduction is performed recursively until one or both of the
dimensions of the texture equals one texel. This process is illustrated in Figure 6.15.
The set of images as a whole is often called a mipmap chain.

Two important elements in forming high-quality mipmaps are good filtering and
gamma correction. The common way to form a mipmap level is to take each 2 x 2 set
of texels and average them to get the mip texel value. The filter used is then a box
filter, one of the worst filters possible. This can result in poor quality, as it has the
effect of blurring low frequencies unnecessarily, while keeping some high frequencies
that cause aliasing [172]. Tt is better to use a Gaussian, Lanczos, Kaiser, or similar
filter; fast, free source code exists for the task [172, 1592], and some APIs support
better filtering on the GPU itself. Near the edges of textures, care must be taken
during filtering as to whether the texture repeats or is a single copy.

For textures encoded in a nonlinear space (such as most color textures), ignoring
gamma correction when filtering will modify the perceived brightness of the mipmap
levels [173, 607]. As you get farther away from the object and the uncorrected mipmaps
get used, the object can look darker overall, and contrast and details can also be
affected. For this reason, it is important to convert such textures from sRGB to linear
space (Section 5.6), perform all mipmap filtering in that space, and convert the final

6.2. Image Texturing 185

pixel space texture space

pixel's
cell

pixel corner's
translation

Figure 6.16. On the left is a square pixel cell and its view of a texture. On the right is the projection
of the pixel cell onto the texture itself.

results back into sSRGB color space for storage. Most APIs have support for sSRGB
textures, and so will generate mipmaps correctly in linear space and store the results
in sSRGB. When sRGB textures are accessed, their values are first converted to linear
space so that magnification and minification are performed properly.

As mentioned earlier, some textures have a fundamentally nonlinear relationship to
the final shaded color. Although this poses a problem for filtering in general, mipmap
generation is particularly sensitive to this issue, since many hundred or thousands of
pixels are being filtered. Specialized mipmap generation methods are often needed for
the best results. Such methods are detailed in Section 9.13.

The basic process of accessing this structure while texturing is straightforward. A
screen pixel encloses an area on the texture itself. When the pixel’s area is projected
onto the texture (Figure 6.16), it includes one or more texels. Using the pixel’s
cell boundaries is not strictly correct, but is used here to simplify the presentation.
Texels outside of the cell can influence the pixel’s color; see Section 5.4.1. The goal
is to determine roughly how much of the texture influences the pixel. There are
two common measures used to compute d (which OpenGL calls A, and which is also
known as the texture level of detail). One is to use the longer edge of the quadrilateral
formed by the pixel’s cell to approximate the pixel’s coverage [1889]; another is to
use as a measure the largest absolute value of the four differentials du/dx, dv/dz,
Ou/dy, and dv/dy [901, 1411]. Each differential is a measure of the amount of change
in the texture coordinate with respect to a screen axis. For example, du/dz is the
amount of change in the u texture value along the z-screen-axis for one pixel. See
Williams’s original article [1889] or the articles by Flavell [473] or Pharr [1411] for more
about these equations. McCormack et al. [1160] discuss the introduction of aliasing
by the largest absolute value method, and they present an alternate formula. Ewins
et al. [454] analyze the hardware costs of several algorithms of comparable quality.

These gradient values are available to pixel shader programs using Shader Model
3.0 or newer. Since they are based on the differences between values in adjacent pixels,

186 6. Texturing

they are not accessible in sections of the pixel shader affected by dynamic flow control
(Section 3.8). For texture reads to be performed in such a section (e.g., inside a loop),
the derivatives must be computed earlier. Note that since vertex shaders cannot access
gradient information, the gradients or the level of detail need to be computed in the
vertex shader itself and supplied to the GPU when using vertex texturing.

The intent of computing the coordinate d is to determine where to sample along
the mipmap’s pyramid axis. See Figure 6.15. The goal is a pixel-to-texel ratio of at
least 1 : 1 to achieve the Nyquist rate. The important principle here is that as the
pixel cell comes to include more texels and d increases, a smaller, blurrier version of
the texture is accessed. The (u,v,d) triplet is used to access the mipmap. The value
d is analogous to a texture level, but instead of an integer value, d has the fractional
value of the distance between levels. The texture level above and the level below the
d location is sampled. The (u,v) location is used to retrieve a bilinearly interpolated
sample from each of these two texture levels. The resulting sample is then linearly
interpolated, depending on the distance from each texture level to d. This entire
process is called trilinear interpolation and is performed per pixel.

One user control on the d-coordinate is the level of detail bias (LOD bias). This is
a value added to d, and so it affects the relative perceived sharpness of a texture. If
we move further up the pyramid to start (increasing d), the texture will look blurrier.
A good LOD bias for any given texture will vary with the image type and with the
way it is used. For example, images that are somewhat blurry to begin with could
use a negative bias, while poorly filtered (aliased) synthetic images used for texturing
could use a positive bias. The bias can be specified for the texture as a whole, or
per-pixel in the pixel shader. For finer control, the d-coordinate or the derivatives
used to compute it can be supplied by the user.

The benefit of mipmapping is that, instead of trying to sum all the texels that
affect a pixel individually, precombined sets of texels are accessed and interpolated.
This process takes a fixed amount of time, no matter what the amount of minification.
However, mipmapping has several flaws [473]. A major one is overblurring. Imagine a
pixel cell that covers a large number of texels in the u-direction and only a few in the
v-direction. This case commonly occurs when a viewer looks along a textured surface
nearly edge-on. In fact, it is possible to need minification along one axis of the texture
and magnification along the other. The effect of accessing the mipmap is that square
areas on the texture are retrieved; retrieving rectangular areas is not possible. To
avoid aliasing, we choose the largest measure of the approximate coverage of the pixel
cell on the texture. This results in the retrieved sample often being relatively blurry.
This effect can be seen in the mipmap image in Figure 6.14. The lines moving into
the distance on the right show overblurring.

Summed-Area Table

Another method to avoid overblurring is the summed-area table (SAT) [312]. To use
this method, one first creates an array that is the size of the texture but contains more
bits of precision for the color stored (e.g., 16 bits or more for each of red, green, and

6.2. Image Texturing 187

pixel space texture space
bounding
) box
Yur
A
Y ?
vy C B |
xX— ‘ ‘
Xy Xur

Figure 6.17. The pixel cell is back-projected onto the texture, bound by a rectangle; the four corners
of the rectangle are used to access the summed-area table.

blue). At each location in this array, one must compute and store the sum of all the
corresponding texture’s texels in the rectangle formed by this location and texel (0, 0)
(the origin). During texturing, the pixel cell’s projection onto the texture is bound by
a rectangle. The summed-area table is then accessed to determine the average color
of this rectangle, which is passed back as the texture’s color for the pixel. The average
is computed using the texture coordinates of the rectangle shown in Figure 6.17. This
is done using the formula given in Equation 6.3:

_ S[:L'ura yur] - S[(Eura yll] - S[xlla yur] + S[(,Cll, yll]

(@ur — 200) (Yur — Yu1) (6.3)

Here, x and y are the texel coordinates of the rectangle and s|x, y] is the summed-area
value for that texel. This equation works by taking the sum of the entire area from the
upper right corner to the origin, then subtracting off areas A and B by subtracting the
neighboring corners’ contributions. Area C' has been subtracted twice, so it is added
back in by the lower left corner. Note that (zy;,y;) is the upper right corner of area
C,ie., (zy+1,yy + 1) is the lower left corner of the bounding box.

The results of using a summed-area table are shown in Figure 6.14. The lines
going to the horizon are sharper near the right edge, but the diagonally crossing lines
in the middle are still overblurred. The problem is that when a texture is viewed
along its diagonal, a large rectangle is generated, with many of the texels situated
nowhere near the pixel being computed. For example, imagine a long, thin rectangle
representing the pixel cell’s back-projection lying diagonally across the entire texture
in Figure 6.17. The whole texture rectangle’s average will be returned, rather than
just the average within the pixel cell.

The summed-area table is an example of what are called anisotropic filtering al-
gorithms [691]. Such algorithms retrieve texel values over areas that are not square.
However, SAT is able to do this most effectively in primarily horizontal and vertical

188 6. Texturing

pixel space texture space

mipmap //_

samples

pixel's
cell

texture

line of
anisotropy

Figure 6.18. Anisotropic filtering. The back-projection of the pixel cell creates a quadrilateral. A
line of anisotropy is formed between the longer sides.

directions. Note also that summed-area tables take at least two times as much memory
for textures of size 16 x 16 or less, with more precision needed for larger textures.
Summed area tables, which give higher quality at a reasonable overall memory
cost, can be implemented on modern GPUs [585]. Improved filtering can be critical to
the quality of advanced rendering techniques. For example, Hensley et al. [718, 719]
provide an efficient implementation and show how summed area sampling improves
glossy reflections. Other algorithms in which area sampling is used can be improved by
SAT, such as depth of field [585, 719], shadow maps [988], and blurry reflections [718].

Unconstrained Anisotropic Filtering

For current graphics hardware, the most common method to further improve texture
filtering is to reuse existing mipmap hardware. The basic idea is that the pixel cell
is back-projected, this quadrilateral (quad) on the texture is then sampled several
times, and the samples are combined. As outlined above, each mipmap sample has
a location and a squarish area associated with it. Instead of using a single mipmap
sample to approximate this quad’s coverage, the algorithm uses several squares to
cover the quad. The shorter side of the quad can be used to determine d (unlike
in mipmapping, where the longer side is often used); this makes the averaged area
smaller (and so less blurred) for each mipmap sample. The quad’s longer side is used
to create a line of anisotropy parallel to the longer side and through the middle of the
quad. When the amount of anisotropy is between 1 : 1 and 2 : 1, two samples are
taken along this line (see Figure 6.18). At higher ratios of anisotropy, more samples
are taken along the axis.

This scheme allows the line of anisotropy to run in any direction, and so does not
have the limitations of summed-area tables. It also requires no more texture memory
than mipmaps do, since it uses the mipmap algorithm to do its sampling. An example
of anisotropic filtering is shown in Figure 6.19.

6.2. Image Texturing 189

Figure 6.19. Mipmap versus anisotropic filtering. Trilinear mipmapping has been done on the left, and
16 : 1 anisotropic filtering on the right. Toward the horizon, anisotropic filtering provides a sharper re-
sult, with minimal aliasing. (Image from three.js example webgl_materials_texture_anisotropy [218].)

This idea of sampling along an axis was first introduced by Schilling et al. with
their Texram dynamic memory device [1564]. Barkans describes the algorithm’s use in
the Talisman system [103]. A similar system called Feline is presented by McCormack
et al. [1161]. Texram’s original formulation has the samples along the anisotropic axis
(also known as probes) given equal weights. Talisman gives half weight to the two
probes at opposite ends of the axis. Feline uses a Gaussian filter kernel to weight
the set of probes. These algorithms approach the high quality of software sampling
algorithms such as the Elliptical Weighted Average (EWA) filter, which transforms the
pixel’s area of influence into an ellipse on the texture and weights the texels inside the
ellipse by a filter kernel [691]. Mavridis and Papaioannou present several methods to
implement EWA filtering with shader code on the GPU [1143].

6.2.3 Volume Textures

A direct extension of image textures is three-dimensional image data that is accessed
by (u,v,w) (or (s,t,r) values). For example, medical imaging data can be generated
as a three-dimensional grid; by moving a polygon through this grid, one may view
two-dimensional slices of these data. A related idea is to represent volumetric lights
in this form. The illumination on a point on a surface is found by finding the value
for its location inside this volume, combined with a direction for the light.

Most GPUs support mipmapping for volume textures. Since filtering inside a single
mipmap level of a volume texture involves trilinear interpolation, filtering between
mipmap levels requires quadrilinear interpolation. Since this involves averaging the
results from 16 texels, precision problems may result, which can be solved by using
a higher-precision volume texture. Sigg and Hadwiger [1638] discuss this and other
problems relevant to volume textures and provide efficient methods to perform filtering
and other operations.

190 6. Texturing

Although volume textures have significantly higher storage requirements and are
more expensive to filter, they do have some unique advantages. The complex process
of finding a good two-dimensional parameterization for the three-dimensional mesh
can be skipped, since three-dimensional locations can be used directly as texture
coordinates. This avoids the distortion and seam problems that commonly occur with
two-dimensional parameterizations. A volume texture can also be used to represent
the volumetric structure of a material such as wood or marble. A model textured with
such a texture will appear to be carved from this material.

Using volume textures for surface texturing is extremely inefficient, since the vast
majority of samples are not used. Benson and Davis [133] and DeBry et al. [334]
discuss storing texture data in a sparse octree structure. This scheme fits well with
interactive three-dimensional painting systems, as the surface does not need explicit
texture coordinates assigned to it at the time of creation, and the octree can hold
texture detail down to any level desired. Lefebvre et al. [1017] discuss the details of
implementing octree textures on the modern GPU. Lefebvre and Hoppe [1018] discuss
a method of packing sparse volume data into a significantly smaller texture.

6.2.4 Cube Maps

Another type of texture is the cube texture or cube map, which has six square tex-
tures, each of which is associated with one face of a cube. A cube map is accessed
with a three-component texture coordinate vector that specifies the direction of a ray
pointing from the center of the cube outward. The point where the ray intersects the
cube is found as follows. The texture coordinate with the largest magnitude selects
the corresponding face (e.g., the vector (—3.2,5.1, —8.4) selects the —z face). The
remaining two coordinates are divided by the absolute value of the largest magnitude
coordinate, i.e., 8.4. They now range from —1 to 1, and are simply remapped to [0, 1]
in order to compute the texture coordinates. For example, the coordinates (—3.2,5.1)
are mapped to ((—3.2/8.4+1)/2, (5.1/8.4+1)/2) ~ (0.31,0.80). Cube maps are use-
ful for representing values which are a function of direction; they are most commonly
used for environment mapping (Section 10.4.3).

6.2.5 Texture Representation

There are several ways to improve performance when handling many textures in an
application. Texture compression is described in Section 6.2.6, while the focus of this
section is on texture atlases, texture arrays, and bindless textures, all of which aim to
avoid the costs of changing textures while rendering. In Sections 19.10.1 and 19.10.2,
texture streaming and transcoding are described.

To be able to batch up as much work as possible for the GPU, it is generally pre-
ferred to change state as little as possible (Section 18.4.2). To that end, one may put
several images into a single larger texture, called a texture atlas. This is illustrated
to the left in Figure 6.20. Note that the shapes of the subtextures can be arbitrary,

6.2. Image Texturing 191

Figure 6.20. Left: a texture atlas where nine smaller images have been composited into a single large
texture. Right: a more modern approach is to set up the smaller images as an array of textures,
which is a concept found in most APIs.

as shown in Figure 6.6. Optimization of subtexture placement atlases is described by
Noll and Stricker [1286]. Care also needs to be taken with mipmap generation and
access, since the upper levels of the mipmap may encompass several separate, unre-
lated shapes. Manson and Schaefer [1119] presented a method to optimize mipmap
creation by taking into account the parameterization of the surface, which can gener-
ate substantially better results. Burley and Lacewell [213] presented a system called
Ptex, where each quad in a subdivision surface had its own small texture. The ad-
vantages are that this avoids assignment of unique texture coordinates over a mesh
and that there are no artifacts over seams of disconnected parts of a texture atlas.
To be able to filter across quads, Ptex uses an adjacency data structure. While the
initial target was production rendering, Hillesland [746] presents packed Ptex, which
puts the subtexture of each face into a texture atlas and uses padding from adjacent
faces to avoid indirection when filtering. Yuksel [1955] presents mesh color textures,
which improve upon Ptex. Toth [1780] provides high-quality filtering across faces for
Ptex-like systems by implementing a method where filter taps are discarded if they
are outside the range of [0, 1]2.

One difficulty with using an atlas is wrapping/repeat and mirror modes, which will
not properly affect a subtexture but only the texture as a whole. Another problem
can occur when generating mipmaps for an atlas, where one subtexture can bleed
into another. However, this can be avoided by generating the mipmap hierarchy for
each subtexture separately before placing them into a large texture atlas and using
power-of-two resolutions for the subtextures [1293].

A simpler solution to these issues is to use an API construction called texture ar-
rays, which completely avoids any problems with mipmapping and repeat modes [452].
See the right part of Figure 6.20. All subtextures in a texture array need to have the

192 6. Texturing

same dimensions, format, mipmap hierarchy, and MSAA settings. Like a texture
atlas, setup is only done once for a texture array, and then any array element can
be accessed using an index in the shader. This can be 5x faster than binding each
subtexture [452].

A feature that can also help avoid state change costs is API support for bindless
textures [1407]). Without bindless textures, a texture is bound to a specific texture unit
using the API. One problem is the upper limit on the number of texture units, which
complicates matters for the programmer. The driver makes sure that the texture
is resident on the GPU side. With bindless textures, there is no upper bound on
the number of textures, because each texture is associated by just a 64-bit pointer,
sometimes called a handle, to its data structure. These handles can be accessed
in many different ways, e.g., through uniforms, through varying data, from other
textures, or from a shader storage buffer object (SSBO). The application needs to
ensure that the textures are resident on the GPU side. Bindless textures avoid any
type of binding cost in the driver, which makes rendering faster.

6.2.6 Texture Compression

One solution that directly attacks memory and bandwidth problems and caching con-
cerns is fixed-rate texture compression [127]. By having the GPU decode compressed
textures on the fly, a texture can require less texture memory and so increase the effec-
tive cache size. At least as significant, such textures are more efficient to use, as they
consume less memory bandwidth when accessed. A related but different use case is
to add compression in order to afford larger textures. For example, a non-compressed
texture using 3 bytes per texel at 5122 resolution would occupy 768 kB. Using texture
compression, with a compression ratio of 6 : 1, a 10242 texture would occupy only
512 kB.

There are a variety of image compression methods used in image file formats such as
JPEG and PNG, but it is costly to implement decoding for these in hardware (though
see Section 19.10.1 for information about texture transcoding). S3 developed a scheme
called S8 Texture Compression (S3TC) [1524], which was chosen as a standard for
DirectX and called DXTC—in DirectX 10 it is called BC (for Block Compression).
Furthermore, it is the de facto standard in OpenGL, since almost all GPUs support
it. It has the advantages of creating a compressed image that is fixed in size, has
independently encoded pieces, and is simple (and therefore fast) to decode. Each
compressed part of the image can be dealt with independently from the others. There
are no shared lookup tables or other dependencies, which simplifies decoding.

There are seven variants of the DXTC/BC compression scheme, and they share
some common properties. Encoding is done on 4 x 4 texel blocks, also called tiles.
Each block is encoded separately. The encoding is based on interpolation. For each
encoded quantity, two reference values (e.g., colors) are stored. An interpolation factor
is saved for each of the 16 texels in the block. It selects a value along the line between
the two reference values, e.g., a color equal to or interpolated from the two stored

6.2. Image Texturing 193
Name(s) Storage Ref colors | Indices Alpha Comment
BC1/DXT1 8 B/4 bpt | RGB565x2 2 bpt - 1 line
BC2/DXT3 | 16 B/8 bpt | RGB565x2 2 bpt 4 bpt raw color same as BC1
BC3/DXT5 | 16 B/8 bpt | RGB565x2 2 bpt 3 bpt interp. | color same as BC1
BC4 8 B/4 bpt R8x2 3 bpt - 1 channel
BC5 16 B/8 bpt | RG8Sx2 | 2 x 3 bpt - 2x BC4
BC6H 16 B/8 bpt see text see text - For HDR; 1-2 lines
BC7 8 B/4 bpt see text see text optional 1-3 lines

Table 6.1. Texture compression formats. All of these compress blocks of 4 x 4 texels. The storage
column show the number of bytes (B) per block and the number of bits per texel (bpt). The notation
for the reference colors is first the channels and then the number of bits for each channel. For example,
RGB565 means 5 bits for red and blue while the green channel has 6 bits.

colors. The compression comes from storing only two colors along with a short index
value per pixel.

The exact encoding varies between the seven variants, which are summarized in
Table 6.1. Note that “DXT” indicates the names in DirectX 9 and “BC” the names
in DirectX 10 and beyond. As can be read in the table, BC1 has two 16-bit reference
RGB values (5 bits red, 6 green, 5 blue), and each texel has a 2-bit interpolation
factor to select from one of the reference values or two intermediate values.! This
represents a 6 : 1 texture compression ratio, compared to an uncompressed 24-bit
RGB texture. BC2 encodes colors in the same way as BC1, but adds 4 bits per texel
(bpt) for quantized (raw) alpha. For BC3, each block has RGB data encoded in the
same way as a DXT1 block. In addition, alpha data are encoded using two 8-bit
reference values and a per-texel 3-bit interpolation factor. Each texel can select either
one of the reference alpha values or one of six intermediate values. BC4 has a single
channel, encoded as alpha in BC3. BC5 contains two channels, where each is encoded
as in BC3.

BC6H is for high dynamic range (HDR) textures, where each texel initially has
16-bit floating point value per R, G, and B channel. This mode uses 16 bytes, which
results in 8 bpt. It has one mode for a single line (similar to the techniques above)
and another for two lines where each block can select from a small set of partitions.
Two reference colors can also be delta-encoded for better precision and can also have
different accuracy depending on which mode is being used. In BC7, each block can
have between one and three lines and stores 8 bpt. The target is high-quality texture
compression of 8-bit RGB and RGBA textures. It shares many properties with BC6H,
but is a format for LDR textures, while BC6H is for HDR. Note that BC6H and
BC7 are called BPTC_FLOAT and BPTC, respectively, in OpenGL. These compression
techniques can be applied to cube or volume textures, as well as two-dimensional
textures.

L An alternate DXT1 mode reserves one of the four possible interpolation factors for transparent
pixels, restricting the number of interpolated values to three—the two reference values and their
average.

194 6. Texturing

base color luminance decompressed original

Figure 6.21. ETC (Ericsson texture compression) encodes the color of a block of pixels and then
modifies the luminance per pixel to create the final texel color. (Images compressed by Jacob Strém.)

The main drawback of these compression schemes is that they are lossy. That is,
the original image usually cannot be retrieved from the compressed version. In the
case of BC1-BC5, only four or eight interpolated values are used to represent 16 pixels.
If a tile has a larger number of distinct values in it, there will be some loss. In practice,
these compression schemes generally give acceptable image fidelity if correctly used.

One of the problems with BC1-BC5 is that all the colors used for a block lie on
a straight line in RGB space. For example, the colors red, green, and blue cannot be
represented in a single block. BC6H and BC7 support more lines and so can provide
higher quality.

For OpenGL ES, another compression algorithm, called Ericsson texture compres-
sion (ETC) [1714] was chosen for inclusion in the API. This scheme has the same
features as S3TC, namely, fast decoding, random access, no indirect lookups, and
fixed rate. It encodes a block of 4 x 4 texels into 64 bits, i.e., 4 bits per texel are used.
The basic idea is illustrated in Figure 6.21. Each 2 x 4 block (or 4 x 2, depending
on which gives best quality) stores a base color. Each block also selects a set of four
constants from a small static lookup table, and each texel in a block can select to add
one of the values in this table. This modifies the luminance per pixel. The image
quality is on par with DXTC.

In ETC2 [1715], included in OpenGL ES 3.0, unused bit combinations were used
to add more modes to the original ETC algorithm. An unused bit combination is
the compressed representation (e.g., 64 bits) that decompresses to the same image
as another compressed representation. For example, in BC1 it is useless to set both
reference colors to be identical, since this will indicate a constant color block, which
in turn can be obtained as long as one reference color contains that constant color. In
ETC, one color can also be delta encoded from a first color with a signed number, and
hence that computation can overflow or underflow. Such cases were used to signal other
compression modes. ETC2 added two new modes with four colors, derived differently,
per block, and a final mode that is a plane in RGB space intended to handle smooth
transitions. Ericsson alpha compression (EAC) [1868] compresses an image with one
component (e.g, alpha). This compression is like basic ETC compression but for only
one component, and the resulting image stores 4 bits per texel. It can optionally be

6.2. Image Texturing 195

X
\—/‘%w

Figure 6.22. Left: the unit normal on a sphere only needs to encode the z- and y-components. Right:
for BC4/3Dc, a box in the zy-plane encloses the normals, and 8 x 8 normals inside this box can be
used per 4 x 4 block of normals (for clarity, only 4 X 4 normals are shown here).

combined with ETC2, and in addition two EAC channels can be used to compress
normals (more on this topic below). All of ETC1, ETC2, and EAC are part of the
OpenGL 4.0 core profile, OpenGL ES 3.0, Vulkan, and Metal.

Compression of normal maps (discussed in Section 6.7.2) requires some care. Com-
pressed formats that were designed for RGB colors usually do not work well for normal
zyz data. Most approaches take advantage of the fact that the normal is known to be
unit length, and further assume that its z-component is positive (a reasonable assump-
tion for tangent-space normals). This allows for only storing the z- and y-components
of a normal. The z-component is derived on the fly as

n, =4/1-nZ—n2. (6.4)

This in itself results in a modest amount of compression, since only two components are
stored, instead of three. Since most GPUs do not natively support three-component
textures, this also avoids the possibility of wasting a component (or having to pack
another quantity in the fourth component). Further compression is usually achieved
by storing the z- and y-components in a BC5/3Dc-format texture. See Figure 6.22.
Since the reference values for each block demarcate the minimum and maximum x-
and y-component values, they can be seen as defining a bounding box on the zy-plane.
The three-bit interpolation factors allow for the selection of eight values on each axis,
so the bounding box is divided into an 8 x 8 grid of possible normals. Alternatively,
two channels of EAC (for « and y) can be used, followed by computation of z as
defined above.

On hardware that does not support the BC5/3Dc or the EAC format, a common
fallback [1227] is to use a DXT5-format texture and store the two components in the
green and alpha components (since those are stored with the highest precision). The
other two components are unused.

196 6. Texturing

PVRTC [465] is a texture compression format available on Imagination Technolo-
gies” hardware called Power VR, and its most widespread use is for iPhones and iPads.
It provides a scheme for both 2 and 4 bits per texel and compresses blocks of 4 x 4
texels. The key idea is to provide two low-frequency (smooth) signals of the image,
which are obtained using neighboring blocks of texel data and interpolation. Then 1
or 2 bits per texel are used in interpolate between the two signals over the image.

Adaptive scalable texture compression (ASTC) [1302] is different in that it com-
presses a block of n x m texels into 128 bits. The block size ranges from 4 x 4 up
to 12 x 12, which results in different bit rates, starting as low as 0.89 bits per texel
and going up to 8 bits per texel. ASTC uses a wide range of tricks for compact index
representation, and the numbers of lines and endpoint encoding can be chosen per
block. In addition, ASTC can handle anything from 1-4 channels per texture and
both LDR and HDR textures. ASTC is part of OpenGL ES 3.2 and beyond.

All the texture compression schemes presented above are lossy, and when com-
pressing a texture, one can spend different amounts of time on this process. Spending
seconds or even minutes on compression, one can obtain substantially higher quality;
therefore, this is often done as an offline preprocess and is stored for later use. Al-
ternatively, one can spend only a few milliseconds, with lower quality as a result,
but the texture can be compressed in near real-time and used immediately. An
example is a skybox (Section 13.3) that is regenerated every other second or so,
when the clouds may have moved slightly. Decompression is extremely fast since
it is done using fixed-function hardware. This difference is called data compression
asymmetry, where compression can and does take a considerably longer time than
decompression.

Kaplanyan [856] presents several methods that can improve the quality of the
compressed textures. For both textures containing colors and normal maps, it is rec-
ommended that the maps are authored with 16 bits per component. For color textures,
one then performs a histogram renormalization (on these 16 bits), the effect of which
is then inverted using a scale and bias constant (per texture) in the shader. Histogram
normalization is a technique that spreads out the values used in an image to span the
entire range, which effectively is a type of contrast enhancement. Using 16 bits per
component makes sure that there are no unused slots in the histogram after renor-
malization, which reduces banding artifacts that many texture compression schemes
may introduce. This is shown in Figure 6.23. In addition, Kaplanyan recommends
using a linear color space for the texture if 75% of the pixels are above 116/255, and
otherwise storing the texture in SRGB. For normal maps, he also notes that BC5/3Dc
often compresses = independently from y, which means that the best normal is not
always found. Instead, he proposes to use the following error metric for normals:

n-ng

e = arceos (IR, (6.5)

]|]|

where n is the original normal and n, is the same normal compressed, and then
decompressed.

6.2. Image Texturing 197

Figure 6.23. The effect of using 16 bits per component versus 8 bits during texture compression. From
left to right: original texture, DXT1 compressed from 8 bits per component, and DXT1 compressed
from 16 bits per component with renormalization done in the shader. The texture has been rendered
with strong lighting in order to more clearly show the effect. (Images appear courtesy of Anton
Kaplanyan.)

It should be noted that it is also possible to compress textures in a different color
space, which can be used to speed up texture compression. A commonly used trans-
form is RGB—YCoCg [1112]:

Y 1/4 1/2 1/4\ (R
C, | = 12 0 -1/2 | |G|, (6.6)
c, ~1/4 1/2 -1/4) \B

where Y is a luminance term and C, and C, are chrominance terms. The inverse
transform is also inexpensive:

G=(Y+C,), t=(Y—-0C,), R=t+C,, B=t—C,, (6.7)

which amounts to a handful of additions. These two transforms are linear, which can
be seen in that Equation 6.6 is a matrix-vector multiplication, which is linear (see
Equations 4.1 and 4.2) in itself. This is of importance since, instead of storing RGB
in a texture, it is possible to store YCoCg; the texturing hardware can still perform
filtering in the YCoCg space, and then the pixel shader can convert back to RGB as
needed. It should be noted that this transform is lossy in itself, which may or may
not matter.
There is another reversible RGB—YCoCg transform, which is summarized as

C,=R-B t=Y —(Cy>1)
t=B+(C,>1) G=Cy+t

<= , 6.8
Co=G—t B=t—(C,>1) (6.8)
Y=t+(Cy>1) R=B+C,

where > shifts right. This means that it is possible to transform back and forth
between, say, a 24-bit RGB color and the corresponding Y CoCg representation without

198 6. Texturing

any loss. It should be noted that if each component in RGB has n bits then both C,
and Cy have n 4 1 bits each to guarantee a reversible transform; Y needs only n
bits though. Van Waveren and Castano [1852] use the lossy YCoCg transform to
implement fast compression to DXT5/BC3 on either the CPU or the GPU. They
store Y in the alpha channel (since it has the highest accuracy), while C, and C|,
are stored in the first two components of RGB. Compression becomes fast since Y is
stored and compressed separately. For the C,- and Cy-components, they find a two-
dimensional bounding box and select the box diagonal that produces the best results.
Note that for textures that are dynamically created on the CPU, it may be better
to compress the textures on the CPU as well. When textures are created through
rendering on the GPU, it is usually best to compress the textures on the GPU as well.
The YCoCg transform and other luminance-chrominance transforms are often used
for image compression, where the chrominance components are averaged over 2 X 2
pixels. This reduces storage by 50% and often works fine since chrominance tends to
vary slowly. Lee-Steere and Harmon [1015] take this a step further by converting to
hue-saturation-value (HSV), downsampling both hue and saturation by a factor of 4
in z and y, and storing value as a single channel DXT1 texture. Van Waveren and
Castartio also describe fast methods for compression of normal maps [1853].

A study by Griffin and Olano [601] shows that when several textures are applied to
a geometrical model with a complex shading model, the quality of textures can often
be low without any perceivable differences. So, depending on the use case, a reduction
in quality may be acceptable. Fauconneau [463] presents a SIMD implementation of
DirectX 11 texture compression formats.

6.3 Procedural Texturing

Given a texture-space location, performing an image lookup is one way of generating
texture values. Another is to evaluate a function, thus defining a procedural texture.

Although procedural textures are commonly used in offline rendering applications,
image textures are far more common in real-time rendering. This is due to the ex-
tremely high efficiency of the image texturing hardware in modern GPUs, which can
perform many billions of texture accesses in a second. However, GPU architectures
are evolving toward less expensive computation and (relatively) more costly mem-
ory access. These trends have made procedural textures find greater use in real-time
applications.

Volume textures are a particularly attractive application for procedural texturing,
given the high storage costs of volume image textures. Such textures can be synthe-
sized by a variety of techniques. One of the most common is using one or more noise
functions to generate values [407, 1370, 1371, 1372]. See Figure 6.24. A noise function
is often sampled at successive powers-of-two frequencies, called octaves. Each octave
is given a weight, usually falling as the frequency increases, and the sum of these
weighted samples is called a turbulence function.

6.3. Procedural Texturing 199

Figure 6.24. Two examples of real-time procedural texturing using a volume texture. The marble on
the left is a semitransparent volume texture rendered using ray marching. On the right, the object
is a synthetic image generated with a complex procedural wood shader [1054] and composited atop
a real-world environment. (Left image from the shadertoy “Playing marble,” courtesy of Stéphane
Guillitte. Right image courtesy of Nicolas Savva, Autodesk, Inc.)

Because of the cost of evaluating the noise function, the lattice points in the
three-dimensional array are often precomputed and used to interpolate texture values.
There are various methods that use color buffer blending to rapidly generate these ar-
rays [1192]. Perlin [1373] presents a rapid, practical method for sampling this noise
function and shows some uses. Olano [1319] provides noise generation algorithms that
permit trade-offs between storing textures and performing computations. McEwan
et al. [1168] develop methods for computing classic noise as well as simplex noise in
the shader without any lookups, and source code is available. Parberry [1353] uses
dynamic programming to amortize computations over several pixels to speed up noise
computations. Green [587] gives a higher-quality method, but one that is meant more
for near-interactive applications, as it uses 50 pixel shader instructions for a single
lookup. The original noise function presented by Perlin [1370, 1371, 1372] can be
improved upon. Cook and DeRose [290] present an alternate representation, called
wavelet noise, which avoids aliasing problems with only a small increase in evaluation
cost. Liu et al. [1054] use a variety of noise functions to simulate different wood tex-
tures and surface finishes. We also recommend the state-of-the-art report by Lagae et
al. [956] on this topic.

Other procedural methods are possible. For example, a cellular texture is formed by
measuring distances from each location to a set of “feature points” scattered through
space. Mapping the resulting closest distances in various ways, e.g., changing the
color or shading normal, creates patterns that look like cells, flagstones, lizard skin,
and other natural textures. Griffiths [602] discusses how to efficiently find the closest
neighbors and generate cellular textures on the GPU.

200 6. Texturing

Another type of procedural texture is the result of a physical simulation or some
other interactive process, such as water ripples or spreading cracks. In such cases,
procedural textures can produce effectively infinite variability in reaction to dynamic
conditions.

When generating a procedural two-dimensional texture, parameterization issues
can pose even more difficulties than for authored textures, where stretching or seam
artifacts can be manually touched up or worked around. One solution is to avoid
parameterization completely by synthesizing textures directly onto the surface. Per-
forming this operation on complex surfaces is technically challenging and is an active
area of research. See Wei et al. [1861] for an overview of this field.

Antialiasing procedural textures is both harder and easier than antialiasing im-
age textures. On one hand, precomputation methods such as mipmapping are not
available, putting the burden on the programmer. On the other, the procedural tex-
ture author has “inside information” about the texture content and so can tailor it to
avoid aliasing. This is particularly true for procedural textures created by summing
multiple noise functions. The frequency of each noise function is known, so any fre-
quencies that would cause aliasing can be discarded, actually making the computation
less costly. There are a variety of techniques for antialiasing other types of procedural
textures [407, 605, 1392, 1512]. Dorn et al. [371] discuss previous work and present
some processes for reformulating texture functions to avoid high frequencies, i.e., to
be band-limited.

6.4 Texture Animation

The image applied to a surface does not have to be static. For example, a video source
can be used as a texture that changes from frame to frame.

The texture coordinates need not be static, either. The application designer can
explicitly change the texture coordinates from frame to frame, either in the mesh’s
data itself or via functions applied in the vertex or pixel shader. Imagine that a
waterfall has been modeled and that it has been textured with an image that looks
like falling water. Say the v-coordinate is the direction of flow. To make the water
move, one must subtract an amount from the v-coordinates on each successive frame.
Subtraction from the texture coordinates has the effect of making the texture itself
appear to move forward.

More elaborate effects can be created by applying a matrix to the texture coordi-
nates. In addition to translation, this allows for linear transformations such as zoom,
rotation, and shearing [1192, 1904], image warping and morphing transforms [1729],
and generalized projections [638]. Many more elaborate effects can be created by
applying functions on the CPU or in shaders.

By using texture blending techniques, one can realize other animated effects. For
example, by starting with a marble texture and fading in a flesh texture, one can make
a statue come to life [1215].

6.5. Material Mapping 201

albedo roughness heightfield
texture texture texture

Figure 6.25. Metallic bricks and mortar. On the right are the textures for surface color, rough-
ness (lighter is rougher), and bump map height (lighter is higher). (Image from three.js example
webgl_tonemapping [218].)

6.5 Material Mapping

A common use of a texture is to modify a material property affecting the shading
equation. Real-world objects usually have material properties that vary over their
surface. To simulate such objects, the pixel shader can read values from textures and
use them to modify the material parameters before evaluating the shading equation.
The parameter that is most often modified by a texture is the surface color. This
texture is known as an albedo color map or diffuse color map. However, any parameter
can be modified by a texture: replacing it, multiplying it, or changing it in some other
way. For example, in Figure 6.25 three different textures are applied to a surface,
replacing the constant values.

The use of textures in materials can be taken further. Instead of modifying a
parameter in an equation, a texture can be used to control the flow and function
of the pixel shader itself. Two or more materials with different shading equations
and parameters could be applied to a surface by having one texture specify which
areas of the surface have which material, causing different code to be executed for
each. As an example, a metallic surface with some rusty regions can use a tex-
ture to indicate where the rust is located, conditionally executing the rusty part of
the shader based on that texture lookup and otherwise executing the shiny metal
shader (Section 9.5.2).

Shading model inputs such as surface color have a linear relationship to the fi-
nal color output from the shader. Thus, textures containing such inputs can be fil-
tered with standard techniques, and aliasing is avoided. Textures containing nonlin-
ear shading inputs, such as roughness or bump mapping (Section 6.7), require a bit
more care to avoid aliasing. Filtering techniques that take account of the shading
equation can improve results for such textures. These techniques are discussed in
Section 9.13.

202 6. Texturing

decal box

backfacing or
occluded

framebuffer
content

Figure 6.26. One way to implement decals. The framebuffer is first rendered with a scene, and then
a box is rendered and for all points that are inside the box, the decal texture is projected to the
framebuffer contents. The leftmost texel is fully transparent so it does not affect the framebuffer.
The yellow texel is not visible since it would be projected onto a hidden part of the surface.

6.6 Alpha Mapping

The alpha value can be employed for many effects using alpha blending or alpha
testing, such as efficiently rendering foliage, explosions, and distant objects, to name
but a few. This section discusses the use of textures with alphas, noting various
limitations and solutions along the way.

One texture-related effect is decaling. As an example, say you wish to put a picture
of a flower on a teapot. You do not want the whole picture, but just the parts where
the flower is present. By assigning an alpha of 0 to a texel, you make it transparent,
so that it has no effect. So, by properly setting the decal texture’s alpha, you can
replace or blend the underlying surface with the decal. Typically, a clamp corresponder
function is used with a transparent border to apply a single copy of the decal (versus a
repeating texture) to the surface. An example of how decaling can be implemented is
visualized in Figure 6.26. See Section 20.2 for more information about decals.

A similar application of alpha is in making cutouts. Say you make a decal image
of a bush and apply it to a rectangle in the scene. The principle is the same as for
decals, except that instead of being flush with an underlying surface, the bush will be
drawn on top of whatever geometry is behind it. In this way, using a single rectangle
you can render an object with a complex silhouette.

In the case of the bush, if you rotate the viewer around it, the illusion fails, since
the bush has no thickness. One answer is to copy this bush rectangle and rotate it 90
degrees along the trunk. The two rectangles form an inexpensive three-dimensional
bush, sometimes called a “cross tree” [1204], and the illusion is fairly effective when
viewed from ground level. See Figure 6.27. Pelzer [1367] discusses a similar configura-
tion using three cutouts to represent grass. In Section 13.6, we discuss a method called
billboarding, which is used to reduce such rendering to a single rectangle. If the viewer
moves above ground level, the illusion breaks down as the bush is seen from above to be

6.6. Alpha Mapping 203

Figure 6.27. On the left, the bush texture map and the 1-bit alpha channel map below it. On the
right, the bush rendered on a single rectangle; by adding a second copy of the rectangle rotated 90
degrees, we form an inexpensive three-dimensional bush.

two cutouts. See Figure 6.28. To combat this, more cutouts can be added in different
ways—slices, branches, layers—to provide a more convincing model. Section 13.6.5
discusses one approach for generating such models; Figure 19.31 on page 857 shows
another. See the images on pages 2 and 1049 for examples of final results.
Combining alpha maps and texture animation can produce convincing special ef-
fects, such as flickering torches, plant growth, explosions, and atmospheric effects.
There are several options for rendering objects with alpha maps. Alpha blending
(Section 5.5) allows for fractional transparency values, which enables antialiasing the
object edges, as well as partially transparent objects. However, alpha blending requires
rendering the blended triangles after the opaque ones, and in back-to-front order. A
simple cross-tree is an example of two cutout textures where no rendering order is
correct, since each quadrilateral is in front of a part of the other. Even when it is
theoretically possible to sort and get the correct order, it is usually inefficient to do
so. For example, a field may have tens of thousands of blades of grass represented by

Figure 6.28. Looking at the “cross-tree” bush from a bit off ground level, then further up, where the
illusion breaks down.

204 6. Texturing

cutouts. Each mesh object may be made of many individual blades. Explicitly sorting
each blade is wildly impractical.

This problem can be ameliorated in several different ways when rendering. One is
to use alpha testing, which is the process of conditionally discarding fragments with
alpha values below a given threshold in the pixel shader. This is done as

if (texture.a < alphaThreshold) discard; (6.9)

where texture.a is the alpha value from the texture lookup, and the parameter
alphaThreshold is a user-supplied threshold value that determines which fragments
will get discarded. This binary visibility test enables triangles to be rendered in any
order because transparent fragments are discarded. We normally want to do this for
any fragment with an alpha of 0.0. Discarding fully transparent fragments has the
additional benefit of saving further shader processing and costs for merging, as well
as avoiding incorrectly marking pixels in the z-buffer as visible [394]. For cutouts we
often set the threshold value higher than 0.0, say, 0.5 or higher, and take the further
step of then ignoring the alpha value altogether, not using it for blending. Doing so
avoids out-of-order artifacts. However, the quality is low because only two levels of
transparency (fully opaque and fully transparent) are available. Another solution is
to perform two passes for each model—one for solid cutouts, which are written to the
z-buffer, and the other for semitransparent samples, which are not.

There are two other problems with alpha testing, namely too much magnifica-
tion [1374] and too much minification [234, 557]. When alpha testing is used with
mipmapping, the effect can be unconvincing if not handled differently. An example
is shown in the top of Figure 6.29, where the leaves of the trees have become more
transparent than intended. This can be explained with an example. Assume we have
a one-dimensional texture with four alpha values, namely, (0.0,1.0,1.0,0.0). With
averaging, the next mipmap level becomes (0.5,0.5), and then the top level is (0.5).
Now, assume we use a; = 0.75. When accessing mipmap level 0, one can show that
1.5 texels out of 4 will survive the discard test. However, when accessing the next
two levels, everything will be discarded since 0.5 < 0.75. See Figure 6.30 for another
example.

Castafio [234] presents a simple solution done during mipmap creation that works
well. For mipmap level k, the coverage ¢, is defined as

= nik > (alk,i) > ay), (6.10)
3

where ny is the number of texels in mipmap level k, a(k,d) is the alpha value from
mipmap level k at pixel ¢, and oy is the user-supplied alpha threshold in Equation 6.9.
Here, we assume that the result of «(k,7) > «; is 1 if it is true, and 0 otherwise.
Note that £ = 0 indicates the lowest mipmap level, i.e., the original image. For each
mipmap level, we then find a new mipmap threshold value ay, instead of using «,
such that ¢ is equal to ¢y (or as close as possible). This can be done using a binary

6.6. Alpha Mapping 205

Figure 6.29. Top: alpha testing with mipmapping without any correction. Bottom: alpha testing
with alpha values rescaled according to coverage. (Images from “The Witness,” courtesy of Ignacio
Castartio.)

search. Finally, the alpha values of all texels in mipmap level k are scaled by ay/ay.
This method was used in the bottom part of Figure 6.29, and there is support for
this in NVIDIA’s texture tools. Golus [557] gives a variant where the mipmap is
not modified, but instead the alpha is scaled up in the shader as the mipmap level
increases.

206 6. Texturing

Figure 6.30. On the top are the different mipmap levels for a leaf pattern with blending, with the
higher levels zoomed for visibility. On the bottom the mipmap is displayed as it would be treated
with an alpha test of 0.5, showing how the object has fewer pixels as it recedes. (Images courtesy of
Ben Golus [557].)

Wyman and McGuire [1933] present a different solution, where the line of code in
Equation 6.9 is, in theory, replaced with

if (texture.a < random()) discard; (6.11)

The random function returns a uniform value in [0, 1], which means that on average
this will result in the correct result. For example, if the alpha value of the texture
lookup is 0.3, the fragment will be discarded with a 30% chance. This is a form of
stochastic transparency with a single sample per pixel [423]. In practice, the random
function is replaced with a hash function to avoid temporal and spatial high-frequency
noise:

float hash2D(x,y) { return fract(l.0ed4*sin(17.0*x+0.1*xy) *
(0.1+abs(sin(13.0*y+x)))); } (6.12)

A three-dimensional hash is formed by nested calls to the above function, i.e., float
hash3D(x,y,z) { return hash2D(hash2D(x,y),z); }, which returns a number in
[0,1). The input to the hash is object-space coordinates divided by the maximum
screen-space derivatives (z and y) of the object-space coordinates, followed by clamp-
ing. Further care is needed to obtain stability for movements in the z-direction, and
the method is best combined with temporal antialiasing techniques. This technique is
faded in with distance, so that close up we do not get any stochastic effect at all. The
advantage of this method is that every fragment is correct on average, while Castano’s
method [234] creates a single «y for each mipmap level. However, this value likely
varies over each mipmap level, which may reduce quality and require artist interven-
tion.

Alpha testing displays ripple artifacts under magnification, which can be avoided
by precomputing the alpha map as a distance field [580] (see also the discussion on
page 677).

6.6. Alpha Mapping 207

(4 5

Figure 6.31. Different rendering techniques of leaf textures with partial alpha coverage for the edges.
From left to right: alpha test, alpha blend, alpha to coverage, and alpha to coverage with sharpened
edges. (Images courtesy of Ben Golus [557].)

Alpha to coverage, and the similar feature transparency adaptive antialiasing, take
the transparency value of the fragment and convert this into how many samples inside
a pixel are covered [1250]. This idea is like screen-door transparency, described in
Section 5.5, but at a subpixel level. Imagine that each pixel has four sample locations,
and that a fragment covers a pixel, but is 25% transparent (75% opaque), due to
the cutout texture. The alpha to coverage mode makes the fragment become fully
opaque but has it cover only three of the four samples. This mode is useful for cutout
textures for overlapping grassy fronds, for example [887, 1876]. Since each sample
drawn is fully opaque, the closest frond will hide objects behind it in a consistent way
along its edges. No sorting is needed to correctly blend semitransparent edge pixels,
since alpha blending is turned off.

Alpha to coverage is good for antialiasing alpha testing, but can show artifacts
when alpha blending. For example, two alpha-blended fragments with the same alpha
coverage percentage will use the same subpixel pattern, meaning that one fragment
will entirely cover the other instead of blending with it. Golus [557] discusses using
the fwidth() shader instruction to give content a crisper edge. See Figure 6.31.

For any use of alpha mapping, it is important to understand how bilinear in-
terpolation affects the color values. Imagine two texels neighboring each other:
rgba = (255,0,0,255) is a solid red, and its neighbor, rgba = (0,0,0,2), is black
and almost entirely transparent. What is the rgba for a location exactly midway be-
tween the two texels? Simple interpolation gives (127,0,0,128), with the resulting rgb
value alone a “dimmer” red. However, this result is not actually dimmer, it is a full red
that has been premultiplied by its alpha. If you interpolate alpha values, for correct
interpolation you need to ensure that the colors being interpolated are already premul-
tiplied by alpha before interpolation. As an example, imagine the almost-transparent
neighbor is instead set to rgba = (0,255, 0,2), giving a minuscule tinge of green. This
color is not premultiplied by alpha and would give the result (127,127,0,128) when
interpolated—the tiny tinge of green suddenly shifts the result to be a (premultiplied)
yellow sample. The premultiplied version of this neighbor texel is (0,2,0,2), which
gives the proper premultiplied result of (127,1,0,128). This result makes more sense,
with the resulting premultiplied color being mostly red with an imperceptible tinge of
green.

208 6. Texturing

Ignoring that the result of bilinear interpolation gives a premultiplied result can
lead to black edges around decals and cutout objects. The “dimmer” red result gets
treated as an unmultiplied color by the rest of the pipeline and the fringes go to black.
This effect can also be visible even if using alpha testing. The best strategy is to
premultiply before bilinear interpolation is done [490, 648, 1166, 1813]. The WebGL
API supports this, since compositing is important for webpages. However, bilinear
interpolation is normally performed by the GPU, and operations on texel values cannot
be done by the shader before this operation is performed. Images are not premultiplied
in file formats such as PNG, as doing so would lose color precision. These two factors
combine to cause black fringing by default when using alpha mapping. One common
workaround is to preprocess cutout images, painting the transparent, “black” texels
with a color derived from nearby opaque texels [490, 685]. All transparent areas often
need to be repainted in this way, by hand or automatically, so that the mipmap levels
also avoid fringing problems [295]. It is also worth noting that premultiplied values
should be used when forming mipmaps with alpha values [1933].

6.7 Bump Mapping

This section describes a large family of small-scale detail representation techniques
that we collectively call bump mapping. All these methods are typically implemented
by modifying the per-pixel shading routine. They give a more three-dimensional ap-
pearance than texture mapping alone, but without adding any additional geometry.

Detail on an object can be classified into three scales: macro-features that cover
many pixels, meso-features that are a few pixels across, and micro-features that are
substantially smaller than a pixel. These categories are somewhat fluid, since the
viewer may observe the same object at many distances during an animation or inter-
active session.

Macrogeometry is represented by vertices and triangles, or other geometric primi-
tives. When creating a three-dimensional character, the limbs and head are typically
modeled at a macroscale. Microgeometry is encapsulated in the shading model, which
is commonly implemented in a pixel shader and uses texture maps as parameters.
The shading model used simulates the interaction of a surface’s microscopic geometry,
e.g., shiny objects are microscopically smooth, and diffuse surfaces are microscopically
rough. The skin and clothes of a character appear to have different materials because
they use different shaders, or at least different parameters in those shaders.

Meso-geometry describes everything between these two scales. It contains detail
that is too complex to efficiently render using individual triangles, but that is large
enough for the viewer to distinguish individual changes in surface curvature over a few
pixels. The wrinkles on a character’s face, musculature details, and folds and seams
in their clothing, are all mesoscale. A family of methods collectively known as bump
mapping techniques are commonly used for mesoscale modeling. These adjust the
shading parameters at the pixel level in such a way that the viewer perceives small

6.7. Bump Mapping 209

perturbations away from the base geometry, which actually remains flat. The main
distinctions between the different kinds of bump mapping are how they represent the
detail features. Variables include the level of realism and complexity of the detail
features. For example, it is common for a digital artist to carve details into a model,
then use software to convert these geometric elements into one or more textures, such
as a bump texture and perhaps a crevice-darkening texture.

Blinn introduced the idea of encoding mesoscale detail in a texture in 1978 [160].
He observed that a surface appears to have small-scale detail if, during shading, we
substitute a slightly perturbed surface normal for the true one. He stored the data
describing the perturbation to the surface normal in the array.

The key idea is that, instead of using a texture to change a color component in
the illumination equation, we access a texture to modify the surface normal. The
geometric normal of the surface remains the same; we merely modify the normal used
in the lighting equation. This operation has no physical equivalent; we perform changes
on the surface normal, but the surface itself remains smooth in the geometric sense.
Just as having a normal per vertex gives the illusion that the surface is smooth between
triangles, modifying the normal per pixel changes the perception of the triangle surface
itself, without modifying its geometry.

For bump mapping, the normal must change direction with respect to some frame
of reference. To do so, a tangent frame, also called a tangent-space basis, is stored
at each vertex. This frame of reference is used to transform the lights to a surface
location’s space (or vice versa) to compute the effect of perturbing the normal. With a
polygonal surface that has a normal map applied to it, in addition to a vertex normal,
we also store what are called the tangent and bitangent vectors. The bitangent vector
is also incorrectly referred to as the binormal vector [1025].

The tangent and bitangent vectors represent the axes of the normal map itself in
the object’s space, since the goal is to transform the light to be relative to the map.
See Figure 6.32.

These three vectors, normal n, tangent t, and bitangent b, form a basis matrix:

te ty, t. O

by b, b. O
0 (6.13)
1

Ng Ny Ny

0 0 O

This matrix, sometimes abbreviated as TBN, transforms a light’s direction (for
the given vertex) from world space to tangent space. These vectors do not have to be
truly perpendicular to each other, since the normal map itself may be distorted to fit
the surface. However, a non-orthogonal basis introduces skewing to the texture, which
can mean more storage is needed and also can have performance implications, i.e., the
matrix cannot then be inverted by a simple transpose [494]. One method of saving
memory is to store just the tangent and bitangent at the vertex and take their cross
product to compute the normal. However, this technique works only if the handedness

210 6. Texturing

Figure 6.32. A spherical triangle is shown, with its tangent frame shown at each corner. Shapes
like a sphere and torus have a natural tangent-space basis, as the latitude and longitude lines on the
torus show.

of the matrix is always the same [1226]. Frequently a model is symmetric: an airplane,
a human, a file cabinet, and many other objects. Because textures consume a large
amount of memory, they are often mirrored onto symmetric models. Thus, only one
side of an object’s texture is stored, but the texture mapping places it onto both sides
of the model. In this case, the handedness of the tangent space will be different on the
two sides, and cannot be assumed. It is still possible to avoid storing the normal in this
case if an extra bit of information is stored at each vertex to indicate the handedness.
If set, this bit is used to negate the cross product of the tangent and bitangent to
produce the correct normal. If the tangent frame is orthogonal, it is also possible to
store the basis as a quaternion (Section 4.3), which both is more space efficient and
can save some calculations per pixel [494, 1114, 1154, 1381, 1639]. A minor loss in
quality is possible, though in practice is rarely seen.

The idea of tangent space is important for other algorithms. As discussed in the
next chapter, many shading equations rely on only the surface’s normal direction.
However, materials such as brushed aluminum or velvet also need to know the relative
direction of the viewer and lighting compared to the surface. The tangent frame is use-
ful to define the orientation of the material on the surface. Articles by Lengyel [1025]
and Mittring [1226] provide extensive coverage of this area. Schiiler [1584] presents
a method of computing the tangent-space basis on the fly in the pixel shader, with
no need to store a precomputed tangent frame per vertex. Mikkelsen [1209] improves
upon this technique, and derives a method that does not need any parameterization
but instead uses the derivatives of the surface position and derivatives of a height field
to compute the perturbed normal. However, such techniques can lead to considerably
less displayed detail than using standard tangent-space mapping, as well as possibly
creating art workflow issues [1639].

6.7. Bump Mapping 211

bump
texture

\
\/

heightfield
texel values

Figure 6.33. On the left, a normal vector n is modified in the u- and v-directions by the (by, by)
values taken from the bump texture, giving n’ (which is unnormalized). On the right, a heightfield
and its effect on shading normals is shown. These normals could instead be interpolated between
heights for a smoother look.

6.7.1 Blinn's Methods

Blinn’s original bump mapping method stores two signed values, b, and b,, at each
texel in a texture. These two values correspond to the amount to vary the normal
along the u and v image axes. That is, these texture values, which typically are
bilinearly interpolated, are used to scale two vectors that are perpendicular to the
normal. These two vectors are added to the normal to change its direction. The two
values b, and b, describe which way the surface faces at the point. See Figure 6.33.
This type of bump map texture is called an offset vector bump map or offset map.

Another way to represent bumps is to use a heightfield to modify the surface
normal’s direction. Each monochrome texture value represents a height, so in the
texture, white is a high area and black a low one (or vice versa). See Figure 6.34
for an example. This is a common format used when first creating or scanning a
bump map, and it was also introduced by Blinn in 1978. The heightfield is used to
derive u and v signed values similar to those used in the first method. This is done
by taking the differences between neighboring columns to get the slopes for u, and
between neighboring rows for v [1567]. A variant is to use a Sobel filter, which gives
a greater weight to the directly adjacent neighbors [535].

6.7.2 Normal Mapping

A common method for bump mapping is to directly store a normal map. The algo-
rithms and results are mathematically identical to Blinn’s methods; only the storage
format and pixel shader computations change.

21 6. Texturing

N

Figure 6.34. A wavy heightfield bump image and its use on a sphere.

The normal map encodes (z,y,z) mapped to [—1,1], e.g., for an 8-bit texture
the z-axis value 0 represents —1.0 and 255 represents 1.0. An example is shown in
Figure 6.35. The color [128,128,255], a light blue, would represent a flat surface for
the color mapping shown, i.e., a normal of [0, 0, 1].

The normal map representation was originally introduced as a world-space normal
map [274, 891], which is rarely used in practice. For that type of mapping, the
perturbation is straightforward: At each pixel, retrieve the normal from the map and

Figure 6.35. Bump mapping with a normal map. Each color channel is actually a surface normal
coordinate. The red channel is the z deviation; the more red, the more the normal points to the
right. Green is the y deviation, and blue is z. At the right is an image produced using the normal
map. Note the flattened look on the top of the cube. (Images courtesy of Manuel M. Oliveira and
Fabio Policarpo.)

6.7. Bump Mapping 213

Figure 6.36. An example of normal map bump mapping used in a game-like scene. Top left: the two
normals maps to the right are not applied. Bottom left: normal maps applied. Right: the normal
maps. (3D model and normal maps courtesy of Dulce Isis Segarra Lépez.)

use it directly, along with a light’s direction, to compute the shade at that location
on the surface. Normal maps can also be defined in object space, so that the model
could be rotated and the normals would then still be valid. However, both world-
and object-space representations bind the texture to specific geometry in a particular
orientation, which limits texture reuse.

Instead, the perturbed normal is usually retrieved in tangent space, i.e., relative to
the surface itself. This allows for deformation of the surface, as well as maximal reuse
of the normal texture. Tangent-space normal maps also can compress nicely, since the
sign of the z-component (the one aligned with the unperturbed surface normal) can
usually be assumed to be positive.

Normal mapping can be used to good effect to increase realism—see Figure 6.36.

Filtering normal maps is a difficult problem, compared to filtering color textures.
In general, the relationship between the normal and the shaded color is not linear,
so standard filtering methods may result in objectionable aliasing. Imagine looking
at stairs made of blocks of shiny white marble. At some angles, the tops or sides of
the stairs catch the light and reflect a bright specular highlight. However, the average
normal for the stairs is at, say, a 45 degree angle; it will capture highlights from
entirely different directions than the original stairs. When bump maps with sharp
specular highlights are rendered without correct filtering, a distracting sparkle effect
can occur as highlights wink in and out by the luck of where samples fall.

214 6. Texturing

Lambertian surfaces are a special case where the normal map has an almost linear
effect on shading. Lambertian shading is almost entirely a dot product, which is a
linear operation. Averaging a group of normals and performing a dot product with
the result is equivalent to averaging individual dot products with the normals:

1. (Z?—l nj) _ Z?:1(l‘nj)

n n

. (6.14)

Note that the average vector is not normalized before use. Equation 6.14 shows
that standard filtering and mipmaps almost produce the right result for Lambertian
surfaces. The result is not quite correct because the Lambertian shading equation is
not a dot product; it is a clamped dot product—max(1-n,0). The clamping operation
makes it nonlinear. This will overly darken the surface for glancing light directions,
but in practice this is usually not objectionable [891]. One caveat is that some texture
compression methods typically used for normal maps (such as reconstructing the z-
component from the other two) do not support non-unit-length normals, so using
non-normalized normal maps may pose compression difficulties.

In the case of non-Lambertian surfaces, it is possible to produce better results by
filtering the inputs to the shading equation as a group, rather than filtering the normal
map in isolation. Techniques for doing so are discussed in Section 9.13.

Finally, it may be useful to derive a normal map from a height map, h(z,y).
This is done as follows [405]. First, approximations to derivatives in the z- and the
y-directions are computed using centered differences as

ho(sy) = h(x+1,y);h(x—1,y)’ (2) = h(m,y—&—l);h(x,y—l). (6.15)

The unnormalized normal at texel (z,y) is then

n(x,y) = (_hw(xvy)a _hw(mvy)’ 1) : (616)

Care has to be taken at the boundaries of the texture.

Horizon mapping [1027] can be used to further enhance normal maps by having the
bumps be able to cast shadows onto their own surfaces. This is done by precomputing
additional textures, with each texture associated with a direction along the surface’s
plane, and storing the angle of the horizon in that direction, for each texel. See
Section 11.4 for more information.

6.8 Parallax Mapping

A problem with bump and normal mapping is that the bumps never shift location
with the view angle, nor ever block each other. If you look along a real brick wall,
for example, at some angle you will not see the mortar between the bricks. A bump

6.8. Parallax Mapping 215

view heightfield

offset

h

5

[}

[}

[} }

[} [}

[} [}

polygon " i |
Pagj p

Pidca P

Figure 6.37. On the left is the goal: The actual position on the surface is found from where the
view vector pierces the heightfield. Parallax mapping does a first-order approximation by taking the
height at the location on the rectangle and using it to find a new location p,q;. (After Welsh [1866].)

map of the wall will never show this type of occlusion, as it merely varies the normal.
It would be better to have the bumps actually affect which location on the surface is
rendered at each pixel.

The idea of parallaz mapping was introduced in 2001 by Kaneko [851] and refined
and popularized by Welsh [1866]. Parallax refers to the idea that the positions of
objects move relative to one another as the observer moves. As the viewer moves, the
bumps should appear to have heights. The key idea of parallax mapping is to take an
educated guess of what should be seen in a pixel by examining the height of what was
found to be visible.

For parallax mapping, the bumps are stored in a heightfield texture. When viewing
the surface at a given pixel, the heightfield value is retrieved at that location and used
to shift the texture coordinates to retrieve a different part of the surface. The amount
to shift is based on the height retrieved and the angle of the eye to the surface. See
Figure 6.37. The heightfield values are either stored in a separate texture, or packed
in an unused color or alpha channel of some other texture (care must be taken when
packing unrelated textures together, since this can negatively impact compression
quality). The heightfield values are scaled and biased before being used to shift the
coordinates. The scale determines how high the heightfield is meant to extend above
or below the surface, and the bias gives the “sea-level” height at which no shift takes
place. Given a texture-coordinate location p, an adjusted heightfield height h, and a
normalized view vector v with a height value v, and horizontal component v, the
new parallax-adjusted texture coordinate pagq; is

Pagj = p & 1Yo (6.17)
Uy
Note that unlike most shading equations, here the space in which the computation is
performed matters—the view vector needs to be in tangent space.
Though a simple approximation, this shifting works fairly well in practice if the
bump heights change relatively slowly [1171]. Nearby neighboring texels then have
about the same heights, so the idea of using the original location’s height as an estimate

216 6. Texturing

Figure 6.38. In parallax offset limiting, the offset moves at most the amount of the height away from
the original location, shown as a dashed circular arc. The gray offset shows the original result, the
black the limited result. On the right is a wall rendered with the technique. (Image courtesy of Terry
Welsh.)

of the new location’s height is reasonable. However, this method falls apart at shallow
viewing angles. When the view vector is near the surface’s horizon, a small height
change results in a large texture coordinate shift. The approximation fails, as the new
location retrieved has little or no height correlation to the original surface location.
To ameliorate this problem, Welsh [1866] introduced the idea of offset limiting. The
idea is to limit the amount of shifting to never be larger than the retrieved height.
The equation is then
Phdgj =P+ I Vay. (6.18)

Note that this equation is faster to compute than the original. Geometrically, the
interpretation is that the height defines a radius beyond which the position cannot
shift. This is shown in Figure 6.38.

At steep (face-on) angles, this equation is almost the same as the original, since
v, is nearly 1. At shallow angles, the offset becomes limited in its effect. Visually,
this makes the bumpiness lessen at shallow angles, but this is much better than ran-
dom sampling of the texture. Problems also remain with texture swimming as the
view changes, or for stereo rendering, where the viewer simultaneously perceives two
viewpoints that must give consistent depth cues [1171]. Even with these drawbacks,
parallax mapping with offset limiting costs just a few additional pixel shader program
instructions and gives a considerable image quality improvement over basic normal
mapping. Shishkovtsov [1631] improves shadows for parallax occlusion by moving the
estimated position in the direction of the bump map normal.

6.8.1 Parallax Occlusion Mapping

Bump mapping does not modify texture coordinates based on the heightfield; it varies
only the shading normal at a location. Parallax mapping provides a simple approxi-
mation of the effect of the heightfield, working on the assumption that the height at
a pixel is about the same as the heights of its neighbors. This assumption can quickly

6.8. Parallax Mapping 217

Figure 6.39. The green eye ray is projected onto the surface plane, which is sampled at regular
intervals (the violet dots) and the heights are retrieved. The algorithm finds the first intersection of
the eye ray with the black line segments approximating the curved height field.

break down. Bumps can also never occlude one another, nor cast shadows. What
we want is what is visible at the pixel, i.e., where the view vector first intersects the
heightfield.

To solve this in a better way, several researchers have proposed to use ray marching
along the view vector until an (approximate) intersection point is found. This work
can be done in the pixel shader where height data can be accessed as textures. We
lump the research on these methods into a subset of parallax mapping techniques,
which exploit ray marching in one way or another [192, 1171, 1361, 1424, 1742, 1743].

These types of algorithms are called parallaz occlusion mapping (POM) or relief
mapping methods, among other names. The key idea is to first test a fixed number
of heightfield texture samples along the projected vector. More samples are usually
generated for view rays at grazing angles, so that the closest intersection point is
not missed [1742, 1743]. Each three-dimensional location along the ray is retrieved,
transformed into texture space, and processed to determine if it is above or below the
heightfield. Once a sample below the heightfield is found, the amount it is below, and
the amount the previous sample is above, are used to find an intersection location.
See Figure 6.39. The location is then used to shade the surface, using the attached
normal map, color map, and any other textures. Multiple layered heightfields can be
used to produce overhangs, independent overlapping surfaces, and two-sided relief-
mapped impostors; see Section 13.7. The heightfield tracing approach can also be
used to have the bumpy surface cast shadows onto itself, both hard [1171, 1424] and
soft [1742, 1743]. See Figure 6.40 for a comparison.

There is a wealth of literature on this topic. While all these methods march along
a ray, there are several differences. One can use a simple texture to retrieve heights,
but it is also possible to use a more advanced data structure and more advanced root-
finding methods. Some techniques may involve the shader discarding pixels or writing

218 6. Texturing

Figure 6.40. Parallax mapping without ray marching (left) compared to with ray marching (right).
On the top of the cube there is flattening when ray marching is not used. With ray marching, self-
shadowing effects are also generated. (Images courtesy of Manuel M. Oliveira and Fabio Policarpo.)

to the depth buffer, which can hurt performance. Below we summarize a large set of
methods, but remember that as GPUs evolve, so does the best method. This “best”
method depends on content and the number of steps done during ray marching.

The problem of determining the actual intersection point between the two regular
samples is a root-finding problem. In practice the heightfield is treated more as a
depthfield, with the rectangle’s plane defining the upper limit of the surface. In this
way, the initial point on the plane is above the heightfield. After finding the last point
above, and first point below, the heightfield’s surface, Tatarchuk [1742, 1743] uses a
single step of the secant method to find an approximate solution. Policarpo et al. [1424]
use a binary search between the two points found to hone in on a closer intersection.
Risser et al. [1497] speed convergence by iterating using a secant method. The trade-
off is that regular sampling can be done in parallel, while iterative methods need
fewer overall texture accesses but must wait for results and perform slower dependent
texture fetches. Brute-force methods seem to perform well overall [1911].

It is critical to sample the heightfield frequently enough. McGuire and
McGuire [1171] propose biasing the mipmap lookup and using anisotropic mipmaps
to ensure correct sampling for high-frequency heightfields, such as those representing
spikes or hair. One can also store the heightfield texture at higher resolution than
the normal map. Finally, some rendering systems do not even store a normal map,
preferring to derive the normal on the fly from the heightfield using a cross filter [40].
Equation 16.1 on page 696 shows the method.

Another approach to increasing both performance and sampling accuracy is to
not initially sample the heightfield at a regular interval, but instead to try to skip
intervening empty space. Donnelly [367] preprocesses the height field into a set of
voxels, storing in each voxel how far away it is from the heightfield surface. In this

6.8. Parallax Mapping 219

Figure 6.41. Normal mapping and relief mapping. No self-occlusion occurs with normal mapping.
Relief mapping has problems with silhouettes for repeating textures, as the rectangle is more of a
view into the heightfield than a true boundary definition. (Images courtesy of NVIDIA Corporation.)

way, intervening space can be rapidly skipped, at the cost of higher storage for each
heightfield. Wang et al. [1844] use a five-dimensional displacement mapping scheme
to hold distances to the surface from all directions and locations. This allows complex
curved surfaces, self-shadowing, and other effects, at the expense of considerably larger
amounts of memory. Mehra and Kumar [1195] use directional distance maps for similar
purposes. Dummer [393] introduces, and Policarpo and Oliveira [1426] improve upon,
the idea of cone step mapping. The concept here is to also store for each heightfield
location a cone radius. This radius defines an interval on the ray in which there
is at most one intersection with the heightfield. This property allows rapid skipping
along the ray without missing any possible intersections, though at the cost of needing

220 6. Texturing

dependent texture reads. Another drawback is the precomputation needed to create
the cone step map, making the method unusable for dynamically changing heightfields.
Schroders and Gulik [1581] present quadtree relief mapping, a hierarchical method
to skip over volumes during traversal. Tevs et al. [1760] use “maximum mipmaps”
to allow skipping while minimizing precomputation costs. Drobot [377] also uses
a quadtree-like structure stored in mipmaps to speed up traversal, and presents a
method to blend between different heightfields, where one terrain type transitions to
another.

One problem with all the methods above is that the illusion breaks down along the
silhouette edges of objects, which will show the original surface’s smooth outlines. See
Figure 6.41. The key idea is that the triangles rendered define which pixels should be
evaluated by the pixel shader program, not where the surface actually is located. In
addition, for curved surfaces, the problem of silhouettes becomes more involved. One
approach is described and developed by Oliveira and Policarpo [1325, 1850], which uses
a quadratic silhouette approximation technique. Jeschke et al. [824] and Dachsbacher
et al. [323] both give a more general and robust method (and review previous work) for
dealing with silhouettes and curved surfaces correctly. First explored by Hirche [750],
the general idea is to extrude each triangle in the mesh outward and form a prism.
Rendering this prism forces evaluation of all pixels in which the heightfield could
possibly appear. This type of approach is called shell mapping, as the expanded mesh
forms a separate shell over the original model. By preserving the nonlinear nature
of prisms when intersecting them with rays, artifact-free rendering of heightfields
becomes possible, though expensive to compute. An impressive use of this type of
technique is shown in Figure 6.42.

Figure 6.42. Parallax occlusion mapping, a.k.a. relief mapping, used on a path to make the stones
look more realistic. The ground is actually a simple set of triangles with a heightfield applied. (Image
from “Crysis,” courtesy of Crytek.)

6.9. Textured Lights 221

Figure 6.43. Projective textured light. The texture is projected onto the teapot and ground plane
and used to modulate the light’s contribution within the projection frustum (it is set to 0 outside the
frustum). (Image courtesy of NVIDIA Corporation.)

6.9 Textured Lights

Textures can also be used to add visual richness to light sources and allow for complex
intensity distribution or spotlight functions. For lights that have all their illumination
limited to a cone or frustum, projective textures can be used to modulate the light
intensity [1192, 1597, 1904]. This allows for shaped spotlights, patterned lights, and
even “slide projector” effects (Figure 6.43). These lights are often called gobo or cookie
lights, after the terms for the cutouts used in professional theater and film lighting.
See Section 7.2 for a discussion of projective mapping being used in a similar way to
cast shadows.

For lights that are not limited to a frustum but illuminate in all directions, a cube
map can be used to modulate the intensity, instead of a two-dimensional projective
texture. One-dimensional textures can be used to define arbitrary distance falloff
functions. Combined with a two-dimensional angular attenuation map, this can allow
for complex volumetric lighting patterns [353]. A more general possibility is to use
three-dimensional (volume) textures to control the light’s falloff [353, 535, 1192]. This
allows for arbitrary volumes of effect, including light beams. This technique is memory
intensive (as are all volume textures). If the light’s volume of effect is symmetrical
along the three axes, the memory footprint can be reduced eightfold by mirroring the
data into each octant.

Textures can be added to any light type to enable additional visual effects. Tex-
tured lights allow for easy control of the illumination by artists, who can simply edit
the texture used.

222 6. Texturing

Further Reading and Resources

Heckbert has written a good survey of the theory of texture mapping [690] and a more
in-depth report on the topic [691]. Szirmay-Kalos and Umenhoffer [1731] have an
excellent, thorough survey of parallax occlusion mapping and displacement methods.
More information about normal representation can be found in the work by Cigolle et
al. [269] and by Meyer et al. [1205].

The book Advanced Graphics Programming Using OpenGL [1192] has extensive
coverage of various visualization techniques using texturing algorithms. For extensive
coverage of three-dimensional procedural textures, see Texturing and Modeling: A Pro-
cedural Approach [407]. The book Advanced Game Development with Programmable
Graphics Hardware [1850] has many details about implementing parallax occlusion
mapping techniques, as do Tatarchuk’s presentations [1742, 1743] and Szirmay-Kalos
and Umenhoffer’s survey [1731].

For procedural texturing (and modeling), our favorite site on the Internet is Shader-
toy. There are many worthwhile and fascinating procedural texturing functions on
display, and you can easily modify any example and see the results.

Visit this book’s website, realtimerendering.com, for many other resources.

Chapter 7
Shadows

“All the variety, all the charm, all the beauty
of life is made up of light and shadow.”
—Tolstoy

Shadows are important for creating realistic images and in providing the user with
visual cues about object placement. This chapter focuses on the basic principles of
computing shadows, and describes the most important and popular real-time algo-
rithms for doing so. We also briefly discuss approaches that are less popular but
embody important principles. We do not spend time in this chapter covering all op-
tions and approaches, as there are two comprehensive books that study the field of
shadows in great depth [412, 1902]. Instead, we focus on surveying articles and pre-
sentations that have appeared since their publication, with a bias toward battle-tested
techniques.

The terminology used throughout this chapter is illustrated in Figure 7.1, where oc-
cluders are objects that cast shadows onto receivers. Punctual light sources, i.e., those
with no area, generate only fully shadowed regions, sometimes called hard shadows. If

light source

occlude\r/\

receiver

shadow = umbra + penumbra

Figure 7.1. Shadow terminology: light source, occluder, receiver, shadow, umbra, and penumbra.

223

224 7. Shadows

Figure 7.2. A mix of hard and soft shadows. Shadows from the crate are sharp, as the occluder is
near the receiver. The person’s shadow is sharp at the point of contact, softening as the distance
to the occluder increases. The distant tree branches give soft shadows [1711]. (Image from “Tom
Clancy’s The Division,” courtesy of Ubisoft.)

area or volume light sources are used, then soft shadows are produced. Each shadow
can then have a fully shadowed region, called the umbra, and a partially shadowed
region, called the penumbra. Soft shadows are recognized by their fuzzy shadow edges.
However, it is important to note that they generally cannot be rendered correctly by
just blurring the edges of a hard shadow with a low-pass filter. As can be seen in
Figure 7.2, a correct soft shadow is sharper the closer the shadow-casting geometry
is to the receiver. The umbra region of a soft shadow is not equivalent to a hard
shadow generated by a punctual light source. Instead, the umbra region of a soft
shadow decreases in size as the light source grows larger, and it might even disappear,
given a large enough light source and a receiver far enough from the occluder. Soft
shadows are generally preferable because the penumbrae edges let the viewer know
that the shadow is indeed a shadow. Hard-edged shadows usually look less realistic
and can sometimes be misinterpreted as actual geometric features, such as a crease in
a surface. However, hard shadows are faster to render than soft shadows.

7.1. Planar Shadows 225

More important than having a penumbra is having any shadow at all. Without
some shadow as a visual cue, scenes are often unconvincing and more difficult to
perceive. As Wanger shows [1846], it is usually better to have an inaccurate shadow
than none at all, as the eye is fairly forgiving about the shadow’s shape. For example,
a blurred black circle applied as a texture on the floor can anchor a character to the
ground.

In the following sections, we will go beyond these simple modeled shadows and
present methods that compute shadows automatically in real time from the occluders
in a scene. The first section handles the special case of shadows cast on planar surfaces,
and the second section covers more general shadow algorithms, i.e., casting shadows
onto arbitrary surfaces. Both hard and soft shadows will be covered. To conclude,
some optimization techniques are presented that apply to various shadow algorithms.

7.1 Planar Shadows

A simple case of shadowing occurs when objects cast shadows onto a planar surface.
A few types of algorithms for planar shadows are presented in this section, each with
variations in the softness and realism of the shadows.

7.1.1 Projection Shadows

In this scheme, the three-dimensional object is rendered a second time to create a
shadow. A matrix can be derived that projects the vertices of an object onto a
plane [162, 1759]. Consider the situation in Figure 7.3, where the light source is
located at 1, the vertex to be projected is at v, and the projected vertex is at p. We
will derive the projection matrix for the special case where the shadowed plane is
y = 0, and then this result will be generalized to work with any plane.
We start by deriving the projection for the z-coordinate. From the similar triangles
in the left part of Figure 7.3, we get
Dy — Uy ly lyve — vy

Uy — ly ly — vy

(7.1)

ly —vy

The z-coordinate is obtained in the same way: p, = (lyv; — l,vy)/(ly — vy), while
the y-coordinate is zero. Now these equations can be converted into the projection
matrix M:

I, ~l, 0 0
0 0 0 0

M=1o 1. 1, o (7:2)
0 -1 0 I

It is straightforward to verify that Mv = p, which means that M is indeed the
projection matrix.

226 7. Shadows

shadow

\ shadow

Figure 7.3. Left: A light source, located at 1, casts a shadow onto the plane y = 0. The vertex v
is projected onto the plane. The projected point is called p. The similar triangles are used for the
derivation of the projection matrix. Right: The shadow is being cast onto a plane, 7 : n-x+d = 0.

P T neX+d=0

In the general case, the plane onto which the shadows should be cast is not the
plane y = 0, but instead 7 : n-x + d = 0. This case is depicted in the right part
of Figure 7.3. The goal is again to find a matrix that projects v down to p. To this
end, the ray emanating at 1, which goes through v, is intersected by the plane 7. This
yields the projected point p:

d+n-1
=l-— (v -1. 7.3
p=l- T (73)

This equation can also be converted into a projection matrix, shown in Equa-

tion 7.4, which satisfies Mv = p:

n-l+d-1I.n, —lzny —lyn, —lzd
_ —lyng n-1+d—1Iyn, —lyn, —lyd

M = —l.ng —l.ny n-l+d-10Ln, -l.d (7.4)
—Ny —Ny —n, n-l

As expected, this matrix turns into the matrix in Equation 7.2 if the plane is y = 0,
that is, n = (0,1,0) and d = 0.

To render the shadow, simply apply this matrix to the objects that should cast
shadows on the plane 7, and render this projected object with a dark color and no
illumination. In practice, you have to take measures to avoid allowing the projected
triangles to be rendered beneath the surface receiving them. One method is to add
some bias to the plane we project upon, so that the shadow triangles are always
rendered in front of the surface.

A safer method is to draw the ground plane first, then draw the projected triangles
with the z-buffer off, then render the rest of the geometry as usual. The projected

7.1. Planar Shadows 227

Figure 7.4. At the left, a correct shadow is shown, while in the figure on the right, an antishadow
appears, since the light source is below the topmost vertex of the object.

triangles are then always drawn on top of the ground plane, as no depth comparisons
are made.

If the ground plane has a limit, e.g., it is a rectangle, the projected shadows may
fall outside of it, breaking the illusion. To solve this problem, we can use a stencil
buffer. First, draw the receiver to the screen and to the stencil buffer. Then, with
the z-buffer off, draw the projected triangles only where the receiver was drawn, then
render the rest of the scene normally.

Another shadow algorithm is to render the triangles into a texture, which is then
applied to the ground plane. This texture is a type of light map, a texture that
modulates the intensity of the underlying surface (Section 11.5.1). As will be seen,
this idea of rendering the shadow projection to a texture also allows penumbrae and
shadows on curved surfaces. One drawback of this technique is that the texture can
become magnified, with a single texel covering multiple pixels, breaking the illusion.

If the shadow situation does not change from frame to frame, i.e., the light and
shadow casters do not move relative to each other, this texture can be reused. Most
shadow techniques can benefit from reusing intermediate computed results from frame
to frame if no change has occurred.

All shadow casters must be between the light and the ground-plane receiver. If the
light source is below the topmost point on the object, an antishadow [162] is generated,
since each vertex is projected through the point of the light source. Correct shadows
and antishadows are shown in Figure 7.4. An error will also occur if we project an
object that is below the receiving plane, since it too should cast no shadow.

It is certainly possible to explicitly cull and trim shadow triangles to avoid such
artifacts. A simpler method, presented next, is to use the existing GPU pipeline to
perform projection with clipping.

228 7. Shadows

C & . &
-

[

-

N

Figure 7.5. On the left, a rendering using Heckbert and Herf’s method, using 256 passes. On the right,
Haines’ method in one pass. The umbrae are too large with Haines’ method, which is particularly
noticeable around the doorway and window.

7.1.2 Soft Shadows

Projective shadows can also be made soft, by using a variety of techniques. Here, we
describe an algorithm from Heckbert and Herf [697, 722] that produces soft shadows.
The algorithm’s goal is to generate a texture on a ground plane that shows a soft
shadow. We then describe less accurate, faster methods.

Soft shadows appear whenever a light source has an area. One way to approximate
the effect of an area light is to sample it by using several punctual lights placed on its
surface. For each of these punctual light sources, an image is rendered and accumulated
into a buffer. The average of these images is then an image with soft shadows. Note
that, in theory, any algorithm that generates hard shadows can be used along with this
accumulation technique to produce penumbrae. In practice, doing so at interactive
rates is usually untenable because of the execution time that would be involved.

Heckbert and Herf use a frustum-based method to produce their shadows. The
idea is to treat the light as the viewer, and the ground plane forms the far clipping
plane of the frustum. The frustum is made wide enough to encompass the occluders.

A soft shadow texture is formed by generating a series of ground-plane textures.
The area light source is sampled over its surface, with each location used to shade the
image representing the ground plane, then to project the shadow-casting objects onto
this image. All these images are summed and averaged to produce a ground-plane
shadow texture. See the left side of Figure 7.5 for an example.

A problem with the sampled area-light method is that it tends to look like what
it is: several overlapping shadows from punctual light sources. Also, for n shadow
passes, only n + 1 distinct shades can be generated. A large number of passes gives
an accurate result, but at an excessive cost. The method is useful for obtaining a
(literally) “ground-truth” image for testing the quality of other, faster algorithms.

7.2. Shadows on Curved Surfaces 229

Figure 7.6. Drop shadow. A shadow texture is generated by rendering the shadow casters from above
and then blurring the image and rendering it on the ground plane. (Image generated in Autodesk’s
A860 viewer, model from Autodesk’s Inventor samples.)

A more efficient approach is to use convolution, i.e., filtering. Blurring a hard
shadow generated from a single point can be sufficient in some cases and can produce
a semitransparent texture that can be composited with real-world content. See Fig-
ure 7.6. However, a uniform blur can be unconvincing near where the object makes
contact with the ground.

There are many other methods that give a better approximation, at additional
cost. For example, Haines [644] starts with a projected hard shadow and then renders
the silhouette edges with gradients that go from dark in the center to white on the
edges to create plausible penumbrae. See the right side of Figure 7.5. However, these
penumbrae are not physically correct, as they should also extend to areas inside the
silhouette edges. Iwanicki [356, 806] draws on ideas from spherical harmonics and ap-
proximates occluding characters with ellipsoids to give soft shadows. All such methods
have various approximations and drawbacks, but are considerably more efficient than
averaging a large set of drop-shadow images.

7.2 Shadows on Curved Surfaces

One simple way to extend the idea of planar shadows to curved surfaces is to use a
generated shadow image as a projective texture [1192, 1254, 1272, 1597]. Think of
shadows from the light’s point of view. Whatever the light sees is illuminated; what
it does not see is in shadow. Say the occluder is rendered in black from the light’s

230 7. Shadows

viewpoint into an otherwise white texture. This texture can then be projected onto
the surfaces that are to receive the shadow. Effectively, each vertex on the receivers
has a (u, v) texture coordinate computed for it and has the texture applied to it. These
texture coordinates can be computed explicitly by the application. This differs a bit
from the ground shadow texture in the previous section, where objects are projected
onto a specific physical plane. Here, the image is made as a view from the light, like
a frame of film in a projector.

When rendered, the projected shadow texture modifies the receiver surfaces. It
can also be combined with other shadow methods, and sometimes is used primarily
for helping aid perception of an object’s location. For example, in a platform-hopping
video game, the main character might always be given a drop shadow directly below
it, even when the character is in full shadow [1343]. More elaborate algorithms can
give better results. For example, Eisemann and Décoret [411] assume a rectangular
overhead light and create a stack of shadow images of horizontal slices of the object,
which are then turned into mipmaps or similar. The corresponding area of each slice is
accessed proportional to its distance from the receiver by using its mipmap, meaning
that more distant slices will cast softer shadows.

There are some serious drawbacks of texture projection methods. First, the appli-
cation must identify which objects are occluders and which are their receivers. The
receiver must be maintained by the program to be further from the light than the
occluder, otherwise the shadow is “cast backward.” Also, occluding objects cannot
shadow themselves. The next two sections present algorithms that generate correct
shadows without the need for such intervention or limitations.

Note that a variety of lighting patterns can be obtained by using prebuilt projective
textures. A spotlight is simply a square projected texture with a circle inside of it
defining the light. A Venetian blinds effect can be created by a projected texture
consisting of horizontal lines. This type of texture is called a light attenuation mask,
cookie texture, or gobo map. A prebuilt pattern can be combined with a projected
texture created on the fly by simply multiplying the two textures together. Such
lights are discussed further in Section 6.9.

7.3 Shadow Volumes

Presented by Heidmann in 1991 [701], a method based on Crow’s shadow volumes [311]
can cast shadows onto arbitrary objects by clever use of the stencil buffer. It can be
used on any GPU, as the only requirement is a stencil buffer. It is not image based
(unlike the shadow map algorithm described next) and so avoids sampling problems,
thus producing correct sharp shadows everywhere. This can sometimes be a disadvan-
tage. For example, a character’s clothing may have folds that give thin, hard shadows
that alias badly. Shadow volumes are rarely used today, due to their unpredictable
cost [1599]. We give the algorithm a brief description here, as it illustrates some
important principles and research based on these continues.

7.3. Shadow Volumes 231

point

pyramid

triangle

shadow

volume

infinite pyramid

Figure 7.7. Left: the lines from a point light are extended through the vertices of a triangle to form
an infinite pyramid. Right: the upper part is a pyramid, and the lower part is an infinite truncated
pyramid, also called the shadow volume. All geometry that is inside the shadow volume is in shadow.

To begin, imagine a point and a triangle. Extending the lines from a point through
the vertices of a triangle to infinity yields an infinite three-sided pyramid. The part
under the triangle, i.e., the part that does not include the point, is a truncated infinite
pyramid, and the upper part is simply a pyramid. This is illustrated in Figure 7.7.
Now imagine that the point is actually a point light source. Then, any part of an
object that is inside the volume of the truncated pyramid (under the triangle) is in
shadow. This volume is called a shadow volume.

Say we view some scene and follow a ray from the eye through a pixel until the
ray hits the object to be displayed on screen. While the ray is on its way to this
object, we increment a counter each time it crosses a face of the shadow volume that
is frontfacing (i.e., facing toward the viewer). Thus, the counter is incremented each
time the ray goes into shadow. In the same manner, we decrement the same counter
each time the ray crosses a backfacing face of the truncated pyramid. The ray is then
going out of a shadow. We proceed, incrementing and decrementing the counter until
the ray hits the object that is to be displayed at that pixel. If the counter is greater
than zero, then that pixel is in shadow; otherwise it is not. This principle also works
when there is more than one triangle that casts shadows. See Figure 7.8.

Doing this with rays is time consuming. But there is a much smarter solution [701]:
A stencil buffer can do the counting for us. First, the stencil buffer is cleared. Second,
the whole scene is drawn into the framebuffer with only the color of the unlit material
used, to get these shading components in the color buffer and the depth information
into the z-buffer. Third, z-buffer updates and writing to the color buffer are turned off
(though z-buffer testing is still done), and then the frontfacing triangles of the shadow
volumes are drawn. During this process, the stencil operation is set to increment the
values in the stencil buffer wherever a triangle is drawn. Fourth, another pass is done
with the stencil buffer, this time drawing only the backfacing triangles of the shadow
volumes. For this pass, the values in the stencil buffer are decremented when the

232 7. Shadows

volumes

occluding
polygons

Figure 7.8. A two-dimensional side view of counting shadow-volume crossings using two different
counting methods. In z-pass volume counting, the count is incremented as a ray passes through a
frontfacing triangle of a shadow volume and decremented on leaving through a backfacing triangle.
So, at point A, the ray enters two shadow volumes for 42, then leaves two volumes, leaving a net
count of zero, so the point is in light. In z-fail volume counting, the count starts beyond the surface
(these counts are shown in italics). For the ray at point B, the z-pass method gives a +2 count by
passing through two frontfacing triangles, and the z-fail gives the same count by passing through two
backfacing triangles. Point C' shows how z-fail shadow volumes must be capped. The ray starting
from point C first hits a frontfacing triangle, giving —1. It then exits two shadow volumes (through
their endcaps, necessary for this method to work properly), giving a net count of +1. The count is
not zero, so the point is in shadow. Both methods always give the same count results for all points
on the viewed surfaces.

triangles are drawn. Incrementing and decrementing are done only when the pixels of
the rendered shadow-volume face are visible (i.e., not hidden by any real geometry).
At this point the stencil buffer holds the state of shadowing for every pixel. Finally,
the whole scene is rendered again, this time with only the components of the active
materials that are affected by the light, and displayed only where the value in the
stencil buffer is 0. A value of 0 indicates that the ray has gone out of shadow as many
times as it has gone into a shadow volume—i.e., this location is illuminated by the light.
This counting method is the basic idea behind shadow volumes. An example of
shadows generated by the shadow volume algorithm is shown in Figure 7.9. There are
efficient ways to implement the algorithm in a single pass [1514]. However, counting
problems will occur when an object penetrates the camera’s near plane. The solution,
called z-fail, involves counting the crossings hidden behind visible surfaces instead of
in front [450, 775]. A brief summary of this alternative is shown in Figure 7.8.
Creating quadrilaterals for every triangle creates a huge amount of overdraw. That
is, each triangle will create three quadrilaterals that must be rendered. A sphere

7.3. Shadow Volumes 233

Figure 7.9. Shadow volumes. On the left, a character casts a shadow. On the right, the extruded
triangles of the model are shown. (Images from Microsoft SDK [1208] sample “ShadowVolume.”)

made of a thousand triangles creates three thousand quadrilaterals, and each of those
quadrilaterals may span the screen. One solution is to draw only those quadrilaterals
along the silhouette edges of the object, e.g., our sphere may have only fifty silhouette
edges, so only fifty quadrilaterals are needed. The geometry shader can be used to
automatically generate such silhouette edges [1702]. Culling and clamping techniques
can also be used to lower fill costs [1061].

However, the shadow volume algorithm still has a terrible drawback: extreme
variability. Imagine a single, small triangle in view. If the camera and the light are
in exactly the same position, the shadow-volume cost is minimal. The quadrilaterals
formed will not cover any pixels as they are edge-on to the view. Only the triangle
itself matters. Say the viewer now orbits around the triangle, keeping it in view. As
the camera moves away from the light source, the shadow-volume quadrilaterals will
become more visible and cover more of the screen, causing more computation to occur.
If the viewer should happen to move into the shadow of the triangle, the shadow volume
will entirely fill the screen, costing a considerable amount of time to evaluate compared
to our original view. This variability is what makes shadow volumes unusable in
interactive applications where a consistent frame rate is important. Viewing toward
the light can cause huge, unpredictable jumps in the cost of the algorithm, as can
other scenarios.

For these reasons shadow volumes have been for the most part abandoned by appli-
cations. However, given the continuing evolution of new and different ways to access
data on the GPU, and the clever repurposing of such functionality by researchers,
shadow volumes may someday come back into general use. For example, Sintorn et
al. [1648] give an overview of shadow-volume algorithms that improve efficiency and
propose their own hierarchical acceleration structure.

The next algorithm presented, shadow mapping, has a much more predictable cost
and is well suited to the GPU, and so forms the basis for shadow generation in many
applications.

234 7. Shadows

7.4 Shadow Maps

In 1978, Williams [1888] proposed that a common z-buffer-based renderer could be
used to generate shadows quickly on arbitrary objects. The idea is to render the
scene, using the z-buffer, from the position of the light source that is to cast shadows.
Whatever the light “sees” is illuminated, the rest is in shadow. When this image is
generated, only z-buffering is required. Lighting, texturing, and writing values into
the color buffer can be turned off.

Each pixel in the z-buffer now contains the z-depth of the object closest to the light
source. We call the entire contents of the z-buffer the shadow map, also sometimes
known as the shadow depth map or shadow buffer. To use the shadow map, the scene
is rendered a second time, but this time with respect to the viewer. As each drawing
primitive is rendered, its location at each pixel is compared to the shadow map. If
a rendered point is farther away from the light source than the corresponding value
in the shadow map, that point is in shadow, otherwise it is not. This technique is
implemented by using texture mapping. See Figure 7.10. Shadow mapping is a popular
algorithm because it is relatively predictable. The cost of building the shadow map
is roughly linear with the number of rendered primitives, and access time is constant.
The shadow map can be generated once and reused each frame for scenes where the
light and objects are not moving, such as for computer-aided design.

When a single z-buffer is generated, the light can “look” in only a particular
direction, like a camera. For a distant directional light such as the sun, the light’s
view is set to encompass all objects casting shadows into the viewing volume that the
eye sees. The light uses an orthographic projection, and its view needs to be made
wide and high enough in = and y to view this set of objects. Local light sources
need similar adjustments, as possible. If the local light is far enough away from the
shadow-casting objects, a single view frustum may be sufficient to encompass all of
these. Alternately, if the local light is a spotlight, it has a natural frustum associated
with it, with everything outside its frustum considered not illuminated.

If the local light source is inside a scene and is surrounded by shadow-casters, a
typical solution is to use a six-view cube, similar to cubic environment mapping [865].
These are called omnidirectional shadow maps. The main challenge for omnidirec-
tional maps is avoiding artifacts along the seams where two separate maps meet.
King and Newhall [895] analyze the problems in depth and provide solutions, and
Gerasimov [525] provides some implementation details. Forsyth [484, 486] presents
a general multi-frustum partitioning scheme for omnidirectional lights that also pro-
vides more shadow map resolution where needed. Crytek [1590, 1678, 1679] sets the
resolution of each of the six views for a point light based on the screen-space coverage
of each view’s projected frustum, with all maps stored in a texture atlas.

Not all objects in the scene need to be rendered into the light’s view volume. First,
only objects that can cast shadows need to be rendered. For example, if it is known
that the ground can only receive shadows and not cast one, then it does not have to
be rendered into the shadow map.

7.4. Shadow Maps 235

eye
light light A
(shadow map

Figure 7.10. Shadow mapping. On the top left, a shadow map is formed by storing the depths to the
surfaces in view. On the top right, the eye is shown looking at two locations. The sphere is seen at
point v, and this point is found to be located at texel a on the shadow map. The depth stored there
is not (much) less than point v, is from the light, so the point is illuminated. The rectangle hit at
point v}, is (much) farther away from the light than the depth stored at texel b, and so is in shadow.
On the bottom left is the view of a scene from the light’s perspective, with white being farther away.
On the bottom right is the scene rendered with this shadow map.

Shadow casters are by definition those inside the light’s view frustum. This frustum
can be augmented or tightened in several ways, allowing us to safely disregard some
shadow casters [896, 1812]. Think of the set of shadow receivers visible to the eye.
This set of objects is within some maximum distance along the light’s view direction.
Anything beyond this distance cannot cast a shadow on the visible receivers. Similarly,
the set of visible receivers may well be smaller than the light’s original = and y view
bounds. See Figure 7.11. Another example is that if the light source is inside the
eye’s view frustum, no object outside this additional frustum can cast a shadow on
a receiver. Rendering only relevant objects not only can save time rendering, but
can also reduce the size required for the light’s frustum and so increase the effective
resolution of the shadow map, thus improving quality. In addition, it helps if the light
frustum’s near plane is as far away from the light as possible, and if the far plane is

236 7. Shadows

light light light

eye eye eye

.O

O

| |

Figure 7.11. On the left, the light’s view encompasses the eye’s frustum. In the middle, the light’s far
plane is pulled in to include only visible receivers, so culling the triangle as a caster; the near plane is
also adjusted. On the right, the light’s frustum sides are made to bound the visible receivers, culling
the green capsule.

as close as possible. Doing so increases the effective precision of the z-buffer [1792]
(Section 4.7.2).

One disadvantage of shadow mapping is that the quality of the shadows depends
on the resolution (in pixels) of the shadow map and on the numerical precision of
the z-buffer. Since the shadow map is sampled during the depth comparison, the
algorithm is susceptible to aliasing problems, especially close to points of contact
between objects. A common problem is self-shadow aliasing, often called “surface
acne” or “shadow acne,” in which a triangle is incorrectly considered to shadow itself.
This problem has two sources. One is simply the numerical limits of precision of the
processor. The other source is geometric, from the fact that the value of a point
sample is being used to represent an area’s depth. That is, samples generated for the
light are almost never at the same locations as the screen samples (e.g., pixels are
often sampled at their centers). When the light’s stored depth value is compared to
the viewed surface’s depth, the light’s value may be slightly lower than the surface’s,
resulting in self-shadowing. The effects of such errors are shown in Figure 7.12.

One common method to help avoid (but not always eliminate) various shadow-map
artifacts is to introduce a bias factor. When checking the distance found in the shadow
map with the distance of the location being tested, a small bias is subtracted from
the receiver’s distance. See Figure 7.13. This bias could be a constant value [1022],
but doing so can fail when the receiver is not mostly facing the light. A more effective
method is to use a bias that is proportional to the angle of the receiver to the light.
The more the surface tilts away from the light, the greater the bias grows, to avoid the
problem. This type of bias is called the slope scale bias. Both biases can be applied by
using a command such as OpenGL’s glPolygon0ffset) to shift each polygon away
from the light. Note that if a surface directly faces the light, it is not biased backward

7.4. Shadow Maps 237

Figure 7.12. Shadow-mapping bias artifacts. On the left, the bias is too low, so self-shadowing occurs.
On the right, a high bias causes the shoes to not cast contact shadows. The shadow-map resolution
is also too low, giving the shadow a blocky appearance. (Images generated using a shadow demo by
Christoph Peters.)

at all by slope scale bias. For this reason, a constant bias is used along with slope
scale bias to avoid possible precision errors. Slope scale bias is also often clamped at
some maximum, since the tangent value can be extremely high when the surface is
nearly edge-on when viewed from the light.

|/ N |9 N |/
\/’ \y

K

Figure 7.13. Shadow bias. The surfaces are rendered into a shadow map for an overhead light,
with the vertical lines representing shadow-map pixel centers. Occluder depths are recorded at the
X locations. We want to know if the surface is lit at the three samples shown as dots. The closest
shadow-map depth value for each is shown with the same color x. On the left, if no bias is added,
the blue and orange samples will be incorrectly determined to be in shadow, since they are farther
from the light than their corresponding shadow-map depths. In the middle, a constant depth bias
is subtracted from each sample, placing each closer to the light. The blue sample is still considered
in shadow because it is not closer to the light than the shadow-map depth it is tested against. On
the right, the shadow map is formed by moving each polygon away from the light proportional to its
slope. All sample depths are now closer than their shadow-map depths, so all are lit.

238 7. Shadows

Holbert [759, 760] introduced normal offset bias, which first shifts the receiver’s
world-space location a bit along the surface’s normal direction, proportional to the sine
of the angle between the light’s direction and the geometric normal. See Figure 7.24
on page 250. This changes not only the depth but also the z- and y-coordinates
where the sample is tested on the shadow map. As the light’s angle becomes more
shallow to the surface, this offset is increased, in hopes that the sample becomes far
enough above the surface to avoid self-shadowing. This method can be visualized as
moving the sample to a “virtual surface” above the receiver. This offset is a world-
space distance, so Pettineo [1403] recommends scaling it by the depth range of the
shadow map. Pesce [1391] suggests the idea of biasing along the camera view direction,
which also works by adjusting the shadow-map coordinates. Other bias methods are
discussed in Section 7.5, as the shadow method presented there needs to also test
several neighboring samples.

Too much bias causes a problem called light leaks or Peter Panning, in which the
object appears to float slightly above the underlying surface. This artifact occurs
because the area beneath the object’s point of contact, e.g., the ground under a foot,
is pushed too far forward and so does not receive a shadow.

One way to avoid self-shadowing problems is to render only the backfaces to the
shadow map. Called second-depth shadow mapping [1845], this scheme works well for
many situations, especially for a rendering system where hand-tweaking a bias is not
an option. The problem cases occur when objects are two-sided, thin, or in contact
with one another. If an object is a model where both sides of the mesh are visible, e.g.,
a palm frond or sheet of paper, self-shadowing can occur because the backface and
the frontface are in the same location. Similarly, if no biasing is performed, problems
can occur near silhouette edges or thin objects, since in these areas backfaces are close
to frontfaces. Adding a bias can help avoid surface acne, but the scheme is more
susceptible to light leaking, as there is no separation between the receiver and the
backfaces of the occluder at the point of contact. See Figure 7.14. Which scheme
to choose can be situation dependent. For example, Sousa et al. [1679] found using
frontfaces for sun shadows and backfaces for interior lights to work best for their
applications.

Note that for shadow mapping, objects must be “watertight” (manifold and closed,
i.e., solid; Section 16.3.3), or must have both front- and backfaces rendered to the map,
else the object may not fully cast a shadow. Woo [1900] proposes a general method that
attempts to, literally, be a happy medium between using just frontfaces or backfaces
for shadowing. The idea is to render solid objects to a shadow map and keep track of
the two closest surfaces to the light. This process can be performed by depth peeling
or other transparency-related techniques. The average depth between the two objects
forms an intermediate layer whose depth is used as a shadow map, sometimes called
a dual shadow map [1865]. If the object is thick enough, self-shadowing and light-leak
artifacts are minimized. Bavoil et al. [116] discuss ways to address potential artifacts,
along with other implementation details. The main drawbacks are the additional costs

7.4. Shadow Maps 239

front faces second-depth midpoint

Figure 7.14. Shadow-map surfaces for an overhead light source. On the left, surfaces facing the
light, marked in red, are sent to the shadow map. Surfaces may be incorrectly determined to shadow
themselves (“acne”), so need to be biased away from the light. In the middle, only the backfacing
triangles are rendered into the shadow map. A bias pushing these occluders downward could let light
leak onto the ground plane near location a; a bias forward can cause illuminated locations near the
silhouette boundaries marked b to be considered in shadow. On the right, an intermediate surface is
formed at the midpoints between the closest front- and backfacing triangles found at each location
on the shadow map. A light leak can occur near point ¢ (which can also happen with second-depth
shadow mapping), as the nearest shadow-map sample may be on the intermediate surface to the left
of this location, and so the point would be closer to the light.

associated with using two shadow maps. Myers [1253] discusses an artist-controlled
depth layer between the occlude and receiver.

As the viewer moves, the light’s view volume often changes size as the set of shadow
casters changes. Such changes in turn cause the shadows to shift slightly from frame
to frame. This occurs because the light’s shadow map is sampling a different set of
directions from the light, and these directions are not aligned with the previous set.
For directional lights, the solution is to force each succeeding shadow map generated to
maintain the same relative texel beam locations in world space [927, 1227, 1792, 1810].
That is, you can think of the shadow map as imposing a two-dimensional gridded frame
of reference on the whole world, with each grid cell representing a pixel sample on the
map. As you move, the shadow map is generated for a different set of these same
grid cells. In other words, the light’s view projection is forced to this grid to maintain
frame to frame coherence.

7.4.1 Resolution Enhancement

Similar to how textures are used, ideally we want one shadow-map texel to cover about
one image pixel. If we have a light source located at the same position as the eye, the
shadow map perfectly maps one-to-one with the screen-space pixels (and there are no
visible shadows, since the light illuminates exactly what the eye sees). As soon as the
light’s direction changes, this per-pixel ratio changes, which can cause artifacts. An
example is shown in Figure 7.15. The shadow is blocky and poorly defined because a
large number of pixels in the foreground are associated with each texel of the shadow
map. This mismatch is called perspective aliasing. Single shadow-map texels can also

240 7. Shadows

Figure 7.15. The image to the left is created using standard shadow mapping; the image to the
right using LiSPSM. The projections of each shadow map’s texels are shown. The two shadow maps
have the same resolution, the difference being that LiSPSM reforms the light’s matrices to provide a
higher sampling rate nearer the viewer. (Images courtesy of Daniel Scherzer, Vienna University of
Technology.)

cover many pixels if a surface is nearly edge-on to the light, but faces the viewer.
This problem is known as projective aliasing [1792]; see Figure 7.16. Blockiness can
be decreased by increasing the shadow-map resolution, but at the cost of additional
memory and processing.

There is another approach to creating the light’s sampling pattern that makes it
more closely resemble the camera’s pattern. This is done by changing the way the
scene projects toward the light. Normally we think of a view as being symmetric,
with the view vector in the center of the frustum. However, the view direction merely
defines a view plane, but not which pixels are sampled. The window defining the
frustum can be shifted, skewed, or rotated on this plane, creating a quadrilateral that
gives a different mapping of world to view space. The quadrilateral is still sampled at
regular intervals, as this is the nature of a linear transform matrix and its use by the
GPU. The sampling rate can be modified by varying the light’s view direction and
the view window’s bounds. See Figure 7.17.

There are 22 degrees of freedom in mapping the light’s view to the eye’s [896].
Exploration of this solution space led to several different algorithms that attempt

7.4. Shadow Maps 241

Figure 7.16. On the left the light is nearly overhead. The edge of the shadow is a bit ragged due to a
low resolution compared to the eye’s view. On the right the light is near the horizon, so each shadow
texel covers considerably more screen area horizontally and so gives a more jagged edge. (Images
generated by TheRealMJP’s “Shadows” program on Github.)

to better match the light’s sampling rates to the eye’s. Methods include perspective
shadow maps (PSM) [1691], trapezoidal shadow maps (TSM) [1132], and light space
perspective shadow maps (LISPSM) [1893, 1895]. See Figure 7.15 and Figure 7.26 on
page 254 for examples. Techniques in this class are referred to as perspective warping
methods.

An advantage of these matrix-warping algorithms is that no additional work is
needed beyond modifying the light’s matrices. Each method has its own strengths
and weaknesses [484], as each can help match sampling rates for some geometry and
lighting situations, while worsening these rates for others. Lloyd et al. [1062, 1063] an-
alyze the equivalences between PSM, TSM, and LiSPSM, giving an excellent overview
of the sampling and aliasing issues with these approaches. These schemes work best
when the light’s direction is perpendicular to the view’s direction (e.g., overhead), as
the perspective transform can then be shifted to put more samples closer to the eye.

light light

eye eye

floor floor

Figure 7.17. For an overhead light, on the left the sampling on the floor does not match the eye’s
rate. By changing the light’s view direction and projection window on the right, the sampling rate
is biased toward having a higher density of texels nearer the eye.

242 7. Shadows

One lighting situation where matrix-warping techniques fail to help is when a light
is in front of the camera and pointing at it. This situation is known as dueling frusta,
or more colloquially as “deer in the headlights.” More shadow-map samples are needed
nearer the eye, but linear warping can only make the situation worse [1555]. This and
other problems, such as sudden changes in quality [430] and a “nervous,” unstable
quality to the shadows produced during camera movement [484, 1227], have made
these approaches fall out of favor.

The idea of adding more samples where the viewer is located is a good one, leading
to algorithms that generate several shadow maps for a given view. This idea first made
a noticeable impact when Carmack described it at his keynote at Quakecon 2004. Blow
independently implemented such a system [174]. The idea is simple: Generate a fixed
set of shadow maps (possibly at different resolutions), covering different areas of the
scene. In Blow’s scheme, four shadow maps are nested around the viewer. In this way,
a high-resolution map is available for nearby objects, with the resolution dropping for
those objects far away. Forsyth [483, 486] presents a related idea, generating different
shadow maps for different visible sets of objects. The problem of how to handle the
transition for objects spanning the border between two shadow maps is avoided in
his setup, since each object has one and only one shadow map associated with it.
Flagship Studios developed a system that blended these two ideas. One shadow map
is for nearby dynamic objects, another is for a grid section of the static objects near
the viewer, and a third is for the static objects in the scene as a whole. The first
shadow map is generated each frame. The other two could be generated just once,
since the light source and geometry are static. While all these particular systems are
now quite old, the ideas of multiple maps for different objects and situations, some
precomputed and some dynamic, is a common theme among algorithms that have
been developed since.

In 2006 Engel [430], Lloyd et al. [1062, 1063], and Zhang et al. [1962, 1963] inde-
pendently researched the same basic idea.! The idea is to divide the view frustum’s
volume into a few pieces by slicing it parallel to the view direction. See Figure 7.18.
As depth increases, each successive volume has about two to three times the depth
range of the previous volume [430, 1962]. For each view volume, the light source can
make a frustum that tightly bounds it and then generate a shadow map. By using
texture atlases or arrays, the different shadow maps can be treated as one large texture
object, thus minimizing cache access delays. A comparison of the quality improvement
obtained is shown in Figure 7.19. Engel’s name for this algorithm, cascaded shadow
maps (CSM), is more commonly used than Zhang’s term, parallel-split shadow maps,
but both appear in the literature and are effectively the same [1964].

This type of algorithm is straightforward to implement, can cover huge scene areas
with reasonable results, and is robust. The dueling frusta problem can be addressed
by sampling at a higher rate closer to the eye, and there are no serious worst-case

ITadamura et al. [1735] introduced the idea seven years earlier, but it did not have an impact
until other researchers explored its usefulness.

7.4. Shadow Maps 243

view /
frustum light //"

Figure 7.18. On the left, the view frustum from the eye is split into four volumes. On the right,
bounding boxes are created for the volumes, which determine the volume rendered by each of the
four shadow maps for the directional light. (After Engel [430].)

Figure 7.19. On the left, the scene’s wide viewable area causes a single shadow map at a 2048 x 2048
resolution to exhibit perspective aliasing. On the right, four 1024 x 1024 shadow maps placed along
the view axis improve quality considerably [1963]. A zoom of the front corner of the fence is shown
in the inset red boxes. (Images courtesy of Fan Zhang, The Chinese University of Hong Kong.)

244 7. Shadows

Figure 7.20. Shadow cascade visualization. Purple, green, yellow, and red represent the nearest
through farthest cascades. (Image courtesy of Unity Technologies.)

problems. Because of these strengths, cascaded shadow mapping is used in many
applications.

While it is possible to use perspective warping to pack more samples into subdi-
vided areas of a single shadow map [1783], the norm is to use a separate shadow map
for each cascade. As Figure 7.18 implies, and Figure 7.20 shows from the viewer’s per-
spective, the area covered by each map can vary. Smaller view volumes for the closer
shadow maps provide more samples where they are needed. Determining how the
range of z-depths is split among the maps—a task called z-partitioning—can be quite
simple or involved [412, 991, 1791]. One method is logarithmic partitioning [1062],
where the ratio of far to near plane distances is made the same for each cascade map:

r=4/=, (7.5)

where n and f are the near and far planes of the whole scene, ¢ is the number of
maps, and 7 is the resulting ratio. For example, if the scene’s closest object is 1 meter
away, the maximum distance is 1000 meters, and we have three cascaded maps, then
r = {/1000/1 = 10. The near and far plane distances for the closest view would be 1
and 10, the next interval is 10 to 100 to maintain this ratio, and the last is 100 to 1000
meters. The initial near depth has a large effect on this partitioning. If the near depth
was only 0.1 meters, then the cube root of 10000 is 21.54, a considerably higher ratio,
e.g., 0.1 to 2.154 to 46.42 to 1000. This would mean that each shadow map generated
must cover a larger area, lowering its precision. In practice such a partitioning gives
considerable resolution to the area close to the near plane, which is wasted if there
are no objects in this area. One way to avoid this mismatch is to set the partition
distances as a weighted blend of logarithmic and equidistant distributions [1962, 1963],
but it would be better still if we could determine tight view bounds for the scene.
The challenge is in setting the near plane. If set too far from the eye, objects may
be clipped by this plane, an extremely bad artifact. For a cut scene, an artist can set

7.4. Shadow Maps 245

this value precisely in advance [1590], but for an interactive environment the problem
is more challenging. Lauritzen et al. [991, 1403] present sample distribution shadow
maps (SDSM), which use the z-depth values from the previous frame to determine a
better partitioning by one of two methods.

The first method is to look through the z-depths for the minimum and maximum
values and use these to set the near and far planes. This is performed using what
is called a reduce operation on the GPU, in which a series of ever-smaller buffers are
analyzed by a compute or other shader, with the output buffer fed back as input, until
a 1 x 1 buffer is left. Normally, the values are pushed out a bit to adjust for the speed
of movement of objects in the scene. Unless corrective action is taken, nearby objects
entering from the edge of the screen may still cause problems for a frame, though will
quickly be corrected in the next.

The second method also analyzes the depth buffer’s values, making a graph called
a histogram that records the distribution of the z-depths along the range. In addition
to finding tight near and far planes, the graph may have gaps in it where there are no
objects at all. Any partition plane normally added to such an area can be snapped
to where objects actually exist, giving more z-depth precision to the set of cascade
maps.

In practice, the first method is general, is quick (typically in the 1 ms range per
frame), and gives good results, so it has been adopted in several applications [1405,
1811]. See Figure 7.21.

As with a single shadow map, shimmering artifacts due to light samples moving
frame to frame are a problem, and can be even worse as objects move between cascades.
A variety of methods are used to maintain stable sample points in world space, each
with their own advantages [41, 865, 1381, 1403, 1678, 1679, 1810]. A sudden change
in a shadow’s quality can occur when an object spans the boundary between two
shadow maps. One solution is to have the view volumes slightly overlap. Samples
taken in these overlap zones gather results from both adjoining shadow maps and
are blended [1791]. Alternately, a single sample can be taken in such zone by using
dithering [1381].

Due to its popularity, considerable effort has been put into improving efficiency
and quality [1791, 1964]. If nothing changes within a shadow map’s frustum, that
shadow map does not need to be recomputed. For each light, the list of shadow
casters can be precomputed by finding which objects are visible to the light, and
of these, which can cast shadows on receivers [1405]. Since it is fairly difficult to
perceive whether a shadow is correct, some shortcuts can be taken that are applicable
to cascades and other algorithms. One technique is to use a low level of detail model
as a proxy to actually cast the shadow [652, 1812]. Another is to remove tiny occluders
from consideration [1381, 1811]. The more distant shadow maps may be updated less
frequently than once a frame, on the theory that such shadows are less important.
This idea risks artifacts caused by large moving objects, so needs to be used with
care [865, 1389, 1391, 1678, 1679]. Day [329] presents the idea of “scrolling” distant
maps from frame to frame, the idea being that most of each static shadow map is

246 7. Shadows

Figure 7.21. Effect of depth bounds. On the left, no special processing is used to adjust the near
and far planes. On the right, SDSM is used to find tighter bounds. Note the window frame near the
left edge of each image, the area beneath the flower box on the second floor, and the window on the
first floor, where undersampling due to loose view bounds causes artifacts. Exponential shadow maps
are used to render these particular images, but the idea of improving depth precision is useful for
all shadow map techniques. (Image courtesy of Ready at Dawn Studios, copyright Sony Interactive
Entertainment.)

reusable frame to frame, and only the fringes may change and so need rendering.
Games such as DOOM (2016) maintain a large atlas of shadow maps, regenerating
only those where objects have moved [294]. The farther cascaded maps could be set to
ignore dynamic objects entirely, since such shadows may contribute little to the scene.
With some environments, a high-resolution static shadow map can be used in place
of these farther cascades, which can significantly reduce the workload [415, 1590]. A
sparse texture system (Section 19.10.1) can be employed for worlds where a single
static shadow map would be enormous [241, 625, 1253]. Cascaded shadow mapping
can be combined with baked-in light-map textures or other shadow techniques that
are more appropriate for particular situations [652]. Valient’s presentation [1811] is
noteworthy in that it describes different shadow system customizations and techniques
for a wide range of video games. Section 11.5.1 discusses precomputed light and
shadow algorithms in detail.

Creating several separate shadow maps means a run through some set of geometry
for each. A number of approaches to improve efficiency have been built on the idea
of rendering occluders to a set of shadow maps in a single pass. The geometry shader
can be used to replicate object data and send it to multiple views [41]. Instanced
geometry shaders allow an object to be output into up to 32 depth textures [1456].

7.5. Percentage-Closer Filtering 247

Multiple-viewport extensions can perform operations such as rendering an object to a
specific texture array slice [41, 154, 530]. Section 21.3.1 discusses these in more detail,
in the context of their use for virtual reality. A possible drawback of viewport-sharing
techniques is that the occluders for all the shadow maps generated must be sent down
the pipeline, versus the set found to be relevant to each shadow map [1791, 1810].

You yourself are currently in the shadows of billions of light sources around the
world. Light reaches you from only a few of these. In real-time rendering, large scenes
with multiple lights can become swamped with computation if all lights are active
at all times. If a volume of space is inside the view frustum but not visible to the
eye, objects that occlude this receiver volume do not need to be evaluated [625, 1137].
Bittner et al. [152] use occlusion culling (Section 19.7) from the eye to find all visible
shadow receivers, and then render all potential shadow receivers to a stencil buffer
mask from the light’s point of view. This mask encodes which visible shadow receivers
are seen from the light. To generate the shadow map, they render the objects from
the light using occlusion culling and use the mask to cull objects where no receivers
are located. Various culling strategies can also work for lights. Since irradiance falls
off with the square of the distance, a common technique is to cull light sources after a
certain threshold distance. For example, the portal culling technique in Section 19.5
can find which lights affect which cells. This is an active area of research, since the
performance benefits can be considerable [1330, 1604].

7.5 Percentage-Closer Filtering

A simple extension of the shadow-map technique can provide pseudo-soft shadows.
This method can also help ameliorate resolution problems that cause shadows to
look blocky when a single light-sample cell covers many screen pixels. The solution is
similar to texture magnification (Section 6.2.1). Instead of a single sample being taken
off the shadow map, the four nearest samples are retrieved. The technique does not
interpolate between the depths themselves, but rather the results of their comparisons
with the surface’s depth. That is, the surface’s depth is comp