

TEXTURING & MODELING
A Procedural Approach
third edition

Team LRN

The Morgan Kaufmann Series in Computer Graphics and Geometric Modeling
Series Editor: Brian A. Barsky, University of California, Berkeley

Texturing & Modeling: A Procedural Approach,
Third Edition
David S. Ebert, F. Kenton Musgrave, Darwyn
Peachey, Ken Perlin, and Steven Worley

Geometric Tools for Computer Graphics
Philip Schneider and David Eberly

Understanding Virtual Reality:
Interface, Application, and Design
William Sherman and Alan Craig

Jim Blinn’s Corner: Notation, Notation, Notation
Jim Blinn

Level of Detail for 3D Graphics:
Application and Theory
David Luebke, Martin Reddy, Jonathan D. Cohen,
Amitabh Varshney, Benjamin Watson, and Robert
Huebner

Digital Video and HDTV Algorithms and
Interfaces
Charles Poynton

Pyramid Algorithms: A Dynamic Programming
Approach to Curves and Surfaces for
Geometric Modeling
Ron Goldman

Non-Photorealistic Computer Graphics:
Modeling, Rendering, and Animation
Thomas Strothotte and Stefan Schlechtweg

Curves and Surfaces for CAGD: A Practical Guide,
Fifth Edition
Gerald Farin

Subdivision Methods for Geometric Design:
A Constructive Approach
Joe Warren and Henrik Weimer

Computer Animation: Algorithms and Techniques
Rick Parent

The Computer Animator’s Technical Handbook
Lynn Pocock and Judson Rosebush

Advanced RenderMan:
Creating CGI for Motion Pictures
Anthony A. Apodaca and Larry Gritz

Curves and Surfaces in Geometric Modeling:
Theory and Algorithms
Jean Gallier

Andrew Glassner’s Notebook:
Recreational Computer Graphics
Andrew S. Glassner

Warping and Morphing of Graphical Objects
Jonas Gomes, Lucia Darsa, Bruno Costa, and Luiz
Velho

Jim Blinn’s Corner: Dirty Pixels
Jim Blinn

Rendering with Radiance:
The Art and Science of Lighting Visualization
Greg Ward Larson and Rob Shakespeare

Introduction to Implicit Surfaces
Edited by Jules Bloomenthal

Jim Blinn’s Corner:
A Trip Down the Graphics Pipeline
Jim Blinn

Interactive Curves and Surfaces:
A Multimedia Tutorial on CAGD
Alyn Rockwood and Peter Chambers

Wavelets for Computer Graphics:
Theory and Applications
Eric J. Stollnitz, Tony D. DeRose, and David H.
Salesin

Principles of Digital Image Synthesis
Andrew S. Glassner

Radiosity & Global Illumination
François X. Sillion and Claude Puech

Knotty: A B-Spline Visualization Program
Jonathan Yen

User Interface Management Systems:
Models and Algorithms
Dan R. Olsen, Jr.

Making Them Move: Mechanics, Control, and
Animation of Articulated Figures
Edited by Norman I. Badler, Brian A. Barsky, and
David Zeltzer

Geometric and Solid Modeling: An Introduction
Christoph M. Hoffmann

An Introduction to Splines for Use in Computer
Graphics and Geometric Modeling
Richard H. Bartels, John C. Beatty, and Brian A.
Barsky

Team LRN

TEXTURING & MODELING
A Procedural Approach
third edition

David S. Ebert
Purdue University

F. Kenton Musgrave
Pandromedia, Inc.

Darwyn Peachey
Pixar Animation Studios

Ken Perlin
New York University

Steven Worley
Worley Laboratories

With contributions from

William R. Mark
University of Texas at Austin

John C. Hart
University of Illinois at Urbana–Champaign

Team LRN

Publishing Director Diane D. Cerra
Publishing Services Manager Edward Wade
Senior Production Editor Cheri Palmer
Senior Developmental Editor Marilyn Alan
Editorial Coordinator Mona Buehler
Cover/Text Design Frances Baca Design
Cover Image © 2002 Armands Auseklis. MojoWorld by Robert Buttery
Technical Illustration/Composition Technologies ‘n’ Typography
Copyeditor Ken DellaPenta
Proofreader Jennifer McClain
Indexer Ty Koontz
Printer The Maple-Vail Book Manufacturing Group

Figure credits: Figures 4.2, 4.3, 4.4, 4.5, 4.6, 4.7, 4.10: Copyright © 1996 Association for Computing
Machinery, Inc. Used with permission. Figure 8.13: Copyright © 1984 Pixar Animation Studios. Figure
15.1: Copyright © 1985 Association for Computing Machinery, Inc. Used with permission.

Designations used by companies to distinguish their products are often claimed as trademarks or regis-
tered trademarks. In all instances in which Morgan Kaufmann Publishers is aware of a claim, the prod-
uct names appear in initial capital or all capital letters. Readers, however, should contact the appropriate
companies for more complete information regarding trademarks and registration.

Morgan Kaufmann Publishers
An imprint of Elsevier Science
340 Pine Street, Sixth Floor
San Francisco, CA 94104–3205
www.mkp.com

© 2003 by Elsevier Science (USA)
All rights reserved.
Printed in the United States of America

07 06 05 04 03 5 4 3 2 1

No part of this publication may be reproduced, stored in a retrieval system, or transmitted in any form
or by any means—electronic, mechanical, photocopying, or otherwise—without the prior written per-
mission of the publisher.

Library of Congress Control Number: 2002107243
ISBN: 1–55860–848–6

This book is printed on acid-free paper.

Team LRN

THE UBIQUITY OF PROCEDURAL
TECHNIQUES IN COMPUTER GRAPHICS xx....
OUR OBJECTIVE xxi...
DEVELOPMENT OF THIS BOOK xxii....................
SOURCE CODE xxii...
ACKNOWLEDGMENTS xxii...................................
AUTHOR ADDRESSES xxiii...................................

INTRODUCTION 1..
PROCEDURAL TECHNIQUES AND
COMPUTER GRAPHICS 1.................................

What Is a Procedural Technique? 1..........................
The Power of Procedural Techniques 2....................

PROCEDURAL TECHNIQUES AND
ADVANCED GEOMETRIC MODELING 2...........
AIM OF THIS BOOK 3...
ORGANIZATION 4..

BUILDING PROCEDURAL TEXTURES 7..............
INTRODUCTION 7..

Texture 8...
Procedural Texture 11...
Procedural versus Nonprocedural 12..........................
Implicit and Explicit Procedures 12..............................
Advantages of Procedural Texture 14.........................
Disadvantages of Procedural Texture 14....................
The RenderMan Shading Language 15......................
What If You Don�t Use RenderMan? 16......................

PROCEDURAL PATTERN GENERATION 20......
Shading Models 20..
Pattern Generation 22...
Texture Spaces 24..
Layering and Composition 25......................................
Steps, Clamps, and Conditionals 27...........................
Periodic Functions 31..

Team LRN

Splines and Mappings 34..
Example: Brick Texture 39..
Bump- Mapped Brick 41..
Example: Procedural Star Texture 46.........................
Spectral Synthesis 48..
What Now? 51...

ALIASING AND HOW TO PREVENT IT 52...........
Signal Processing 52...
Methods of Antialiasing Procedural Textures 56.........
Determining the Sampling Rate 57..............................
Clamping 59..
Analytic Prefiltering 61...
Better Filters 62...
Integrals and Summed- Area Tables 63......................
Example: Antialiased Brick Texture 64........................
Alternative Antialiasing Methods 66............................

MAKING NOISES 67...
Lattice Noises 69...
Value Noise 70..
Gradient Noise 72..
Value- Gradient Noise 77..
Lattice Convolution Noise 78.......................................
Sparse Convolution Noise 80......................................
Explicit Noise Algorithms 82..
Fourier Spectral Synthesis 82.....................................

GENERATING IRREGULAR PATTERNS 83........
Spectral Synthesis 85..
Perturbed Regular Patterns 89....................................
Perturbed Image Textures 90......................................
Random Placement Patterns 91..................................

CONCLUSION 94..

REAL-TIME PROGRAMMABLE SHADING 97........
INTRODUCTION 97..

What Makes Real- Time Shading Different? 98..........
Why Use a High- Level Programming
Language? 100..

Team LRN

What You Need to Learn Elsewhere 101......................
Real- Time Graphics Hardware 102..............................
Object Space Shading versus Screen Space
Shading 103..
Parallelism 106..
Hardware Data Types 108...
Resource Limits 109..
Memory Bandwidth and Performance Tuning 110........

SIMPLE EXAMPLES 111..
Vertex and Fragment Code in the Stanford
Shading System 111...
Two Versions of the Heidrich/ Banks Anisotropic
Shader 112..

SURFACE AND LIGHT SHADERS 116..................
THE INTERFACE BETWEEN SHADERS
AND APPLICATIONS 118.......................................
MORE EXAMPLES 121...

Volume- Rendering Shader 121....................................
Noise- Based Procedural Flame 124.............................

STRATEGIES FOR DEVELOPING
SHADERS 129..
FUTURE GPU HARDWARE AND
PROGRAMMING LANGUAGES 130......................
LITERATURE REVIEW 131....................................
ACKNOWLEDGMENTS 132...................................

CELLULAR TEXTURING 135.....................................
THE NEW BASES 136..
IMPLEMENTATION STRATEGY 140.....................

Dicing Space 142..
Neighbor Testing 144..
The Subtle Population Table 145..................................
Extensions and Alternatives 147...................................

SAMPLE CODE 149..

Team LRN

ADVANCED ANTIALIASING 157...............................
INDEX ALIASING 158...

An Example: Antialiasing Planetary Rings 163.............
SPOT GEOMETRY 166..
SAMPLING AND BUMPING 170.............................
OPTIMIZATION AND VERIFICATION 173.............
EMERGENCY ALTERNATIVES 175.......................

PRACTICAL METHODS FOR TEXTURE
DESIGN 179..

INTRODUCTION 179..
TOOLBOX FUNCTIONS 179..................................

The Art of Noise 179..
Color Mappings 181..
Bump- Mapping Methods 183.......................................

THE USER INTERFACE 187..................................
Parameter Ranges 188...
Color Table Equalization 189..
Exploring the Parameter Domain 192...........................
Previews 194...

EFFICIENCY 194..
TRICKS, PERVERSIONS, AND OTHER
FUN TEXTURE ABUSES 195.................................

Volume Rendering with Surface Textures 195..............
Odd Texture Ideas 196..
D Mapping Methods 197...

WHERE WE�RE GOING 199...................................

PROCEDURAL MODELING OF GASES 203............
INTRODUCTION 203..
PREVIOUS APPROACHES TO MODELING
GASES 204...
THE RENDERING SYSTEM 205............................

Volume- Rendering Algorithm 206................................

Team LRN

Illumination of Gaseous Phenomena 207......................
Volumetric Shadowing 207..

ALTERNATIVE RENDERING AND
MODELING APPROACHES FOR GASES 208.......
A PROCEDURAL FRAMEWORK: SOLID
SPACES 209...

Development of Solid Spaces 209................................
Description of Solid Spaces 210....................................
Mathematical Description of Solid Spaces 210.............

GEOMETRY OF THE GASES 211..........................
My Noise and Turbulence Functions 211......................
Basic Gas Shaping 214...

CONCLUSION 224..

ANIMATING SOLID SPACES 227..............................
ANIMATION PATHS 228...
ANIMATING SOLID TEXTURES 229......................

Marble Forming 229..
Marble Moving 232..
Animating Solid Textured Transparency 233................

ANIMATION OF GASEOUS VOLUMES 235..........
Helical Path Effects 236..

THREE- DIMENSIONAL TABLES 244....................
Accessing the Table Entries 245...................................
Functional Flow Field Tables 246..................................
Functional Flow Field Functions 246.............................
Combinations of Functions 251.....................................

ANIMATING HYPERTEXTURES 254.....................
Volumetric Marble Formation 255.................................

PARTICLE SYSTEMS: ANOTHER
PROCEDURAL ANIMATION TECHNIQUE 257......
CONCLUSION 261..

Team LRN

VOLUMETRIC CLOUD MODELING WITH
IMPLICIT FUNCTIONS 263..

CLOUD BASICS 263...
SURFACE- BASED CLOUD MODELING
APPROACHES 267...

VOLUMETRIC CLOUD MODELS 268..........................
A VOLUMETRIC CLOUD MODELING
SYSTEM 269...
VOLUMETRIC CLOUD RENDERING 272..............

Cumulus Cloud Models 272..
Cirrus and Stratus Clouds 275......................................
Cloud Creatures 278...
User Specification and Control 278...............................

ANIMATING VOLUMETRIC PROCEDURAL
CLOUDS 279...

Procedural Animation 279...
Implicit Primitive Animation 280.....................................

INTERACTIVITY AND CLOUDS 283......................
Simple Interactive Cloud Models 283............................
Rendering Clouds in Commercial Packages 284..........

CONCLUSION 284..

ISSUES AND STRATEGIES FOR
HARDWARE ACCELERATION OF
PROCEDURAL TECHNIQUES 287............................

INTRODUCTION 287..
GENERAL ISSUES 287..
COMMON ACCELERATION TECHNIQUES 289...
EXAMPLE ACCELERATED/ REAL- TIME
PROCEDURAL TEXTURES AND MODELS 291....

Noise and Turbulence 291..
Marble 292...
Smoke and Fog 297..
Real- Time Clouds and Procedural Detail 298..............

Team LRN

CONCLUSION 301..

PROCEDURAL SYNTHESIS OF GEOMETRY 305...
THE L- SYSTEM 307...
PARADIGMS GOVERNING THE
SYNTHESIS OF PROCEDURAL
GEOMETRY 312...

Data Amplification 312...
Lazy Evaluation 314..

THE SCENE GRAPH 315.......................................
PROCEDURAL GEOMETRIC INSTANCING 321...

Parameter Passing 321...
Accessing World Coordinates 323................................
Other Functions 327..
Comparison with L- Systems 329..................................
Ordering 330..

BOUNDING VOLUMES 330....................................
CONCLUSION 332..

Procedural Geometric Modeling and the Web 333........
Future Work 333..

ACKNOWLEDGMENTS 334...................................

NOISE, HYPERTEXTURE, ANTIALIASING,
AND GESTURE 337..

INTRODUCTION 337..
Shape, Solid Texture, and Hypertexture 337................

TWO BASIC PARADIGMS 338...............................
Bias, Gain, and So Forth 338..

CONSTRUCTING THE NOISE FUNCTION 340.....
Computing Which Cubical � Cel� We�re In 341..............
Finding the Pseudorandom Wavelet at Each
Vertex of the Cel 341...
Wavelet Coefficients 342...
To Quickly Index into G in a Nonbiased Way 343.........
Evaluating the Wavelet Centered at [i, j, k] 344............

Team LRN

CONCLUSION 301..

PROCEDURAL SYNTHESIS OF GEOMETRY 305...
THE L- SYSTEM 307...
PARADIGMS GOVERNING THE
SYNTHESIS OF PROCEDURAL
GEOMETRY 312...

Data Amplification 312...
Lazy Evaluation 314..

THE SCENE GRAPH 315.......................................
PROCEDURAL GEOMETRIC INSTANCING 321...

Parameter Passing 321...
Accessing World Coordinates 323................................
Other Functions 327..
Comparison with L- Systems 329..................................
Ordering 330..

BOUNDING VOLUMES 330....................................
CONCLUSION 332..

Procedural Geometric Modeling and the Web 333........
Future Work 333..

ACKNOWLEDGMENTS 334...................................

NOISE, HYPERTEXTURE, ANTIALIASING,
AND GESTURE 337..

INTRODUCTION 337..
Shape, Solid Texture, and Hypertexture 337................

TWO BASIC PARADIGMS 338...............................
Bias, Gain, and So Forth 338..

CONSTRUCTING THE NOISE FUNCTION 340.....
Computing Which Cubical � Cel� We�re In 341..............
Finding the Pseudorandom Wavelet at Each
Vertex of the Cel 341...
Wavelet Coefficients 342...
To Quickly Index into G in a Nonbiased Way 343.........
Evaluating the Wavelet Centered at [i, j, k] 344............

Team LRN

RECENT IMPROVEMENTS TO THE NOISE
FUNCTION 347...
RAYMARCHING 348...

System Code: The Raymarcher 349.............................
Application Code: User- Defined Functions 350............

INTERACTION 352...
Levels of Editing: Changing Algorithms to
Tweaking Knobs 352...
z- Slicing 353...

SOME SIMPLE SHAPES TO PLAY WITH 353.......
Sphere 353..
Egg 354...

EXAMPLES OF HYPERTEXTURE 354..................
Explosions 354..
Life- Forms 355...
Space- Filling Fractals 357..
Woven Cloth 357...

ARCHITEXTURE 359..
The NYU Torch 362...
Smoke 364..
Time Dependency 365..
Smoke Rings 365..
Optimization 367..

TURBULENCE 368...
ANTIALIASED RENDERING OF
PROCEDURAL TEXTURES 369.............................

Background 370..
The Basic Idea 370..
More Detailed Description 372......................................
The High- Contrast Filter 373..
Examples 374..
To Sum Up 376...

SURFLETS 376...
Introduction to Surflets 377..
Surflets as Wavelets 378...
Finding Visible Surfaces 379...

Team LRN

Selective Surface Refinement 380................................
A Surflet Generator 381...
Constructing a Surflet Hierarchy 381.............................
Self- Shadowing with Penumbra 382............................
Discussion 383..
Conclusion 384..

FLOW NOISE 384...
Rotating Gradients 385..
Pseudoadvection 386..
Results 387..

PROCEDURAL SHAPE SYNTHESIS 387..............
TEXTURAL LIMB ANIMATION 387.........................

Introduction to Textural Limb Motion 391......................
Road Map 391...
Related Work 392..
Basic Notions 392..
Stochastic Control of Gesture 392.................................
The System 393..

EXAMPLES 395..
TEXTURE FOR FACIAL MOVEMENT 395.............

Background 396..
Related Work 397..
The Movement Model 398...
Movement Layering 401..
The Bottom- Level Movement Vocabulary 402.............
Painting with Actions 403..
Using 405..
in Movement 405...
Same Action in Different Abstractions 408....................
What Next? 409...

CONCLUSION 410..

REAL-TIME PROCEDURAL SOLID
TEXTURING 413...

A REAL- TIME PROCEDURAL SOLID
TEXTURING ALGORITHM 413...............................

Team LRN

CREATING AN ATLAS FOR PROCEDURAL
SOLID TEXTURING 416...
AVOIDING SEAM ARTIFACTS 419........................
IMPLEMENTING REAL- TIME TEXTURING
PROCEDURES 421..
APPLICATIONS 425..
ACKNOWLEDGMENTS 427...................................

A BRIEF INTRODUCTION TO FRACTALS 429........
WHAT IS A FRACTAL? 430....................................
WHAT ARE FRACTALS GOOD FOR? 434............
FRACTALS AND PROCEDURALISM 436..............
PROCEDURAL fBm 436...
MULTIFRACTAL FUNCTIONS 438.........................
FRACTALS AND ONTOGENETIC
MODELING 442...
CONCLUSION 444..

FRACTAL SOLID TEXTURES: SOME
EXAMPLES 447..

CLOUDS 448...
Puffy Clouds 448...
A Variety of fBm 450..
Distortion for Cirrus Clouds and Global
Circulation 453...
The Coriolis Effect 458..

FIRE 460...
WATER 461...

Noise Ripples 461...
Wind- Blown Waters 463...

EARTH 466..
Sedimentary Rock Strata 466..
Gaea: Building an Entire Planet 467.............................
Selene 473..

Team LRN

RANDOM COLORING METHODS 477...................
Random fBm Coloring 477..
The GIT Texturing System 478.....................................
An Impressionistic Image Processing Filter 479............
The � Multicolor� Texture 483...

PLANETARY RINGS 485..

PROCEDURAL FRACTAL TERRAINS 489...............
ADVANTAGES OF POINT EVALUATION 489.......
THE HEIGHT FIELD 491...
HOMOGENEOUS fBm TERRAIN MODELS 495....

Fractal Dimension 495...
Visual Effects of the Basis Function 497.......................

HETEROGENEOUS TERRAIN MODELS 498........
Statistics by Altitude 500...
A Hybrid Multifractal 502...
Multiplicative Multifractal Terrains 505...........................

CONCLUSION 506..

QAEB RENDERING FOR PROCEDURAL
MODELS 509..

INTRODUCTION 509..
QAEB TRACING 510...
PROBLEM STATEMENT 511.................................
PRIOR ART 512..
THE QAEB ALGORITHM 513.................................
ERROR IN THE ALGORITHM 513..........................
NEAR AND FAR CLIPPING PLANES 514..............
CALCULATING THE INTERSECTION
POINT AND SURFACE NORMAL 515....................
ANTIALIASING 516...
A SPEEDUP SCHEME FOR HEIGHT
FIELDS 516...

Team LRN

SHADOWS, REFLECTION, AND
REFRACTION 517..
PERFORMANCE 518..
QAEB- TRACED HYPERTEXTURES 520..............

Clouds 521..
BILLOWING CLOUDS, PYROCLASTIC
FLOWS, AND FIREBALLS 523...............................

Fireballs 525..
Psychedelic Clouds 525..

CONCLUSION 525..

ATMOSPHERIC MODELS 529...................................
INTRODUCTION 529..
BEER�S LAW AND HOMOGENEOUS FOG 531....
EXPONENTIAL MIST 532.......................................
A RADIALLY SYMMETRIC PLANETARY
ATMOSPHERE 534...
A MINIMAL RAYLEIGH SCATTERING
APPROXIMATION 536..
TRAPEZOIDAL QUADRATURE OF 539.................
GADD AND RENDERMAN 539...............................
IMPLEMENTATION 539..
NUMERICAL QUADRATURE WITH
BOUNDED ERROR FOR GENERAL
RADIAL GADDs 542..
CONCLUSION 544..

GENETIC TEXTURES 547..
INTRODUCTION: THE PROBLEM OF
PARAMETER PROLIFERATION 547.....................
A USEFUL MODEL: AESTHETIC 548....................
SPACES 548...
CONTROL VERSUS AUTOMATICITY 549.............

Team LRN

A MODEL FROM BIOLOGY: GENETICS
AND EVOLUTION 550..

The Analogy: Genetic Programming 552......................
Implementation 555...

INTERPRETATION OF THE ROOT NODE 555.....
THE LIBRARY OF GENETIC BASES 556..............
OTHER EXAMPLES OF GENETIC
PROGRAMMING AND GENETIC ART 557............
A FINAL DISTINCTION: GENETIC
PROGRAMMING VERSUS GENETIC
ALGORITHMS 558..
CONCLUSION 560..

MOJOWORLD: BUILDING PROCEDURAL
PLANETS 565...

INTRODUCTION 565..
FRACTALS AND VISUAL COMPLEXITY 567........

Building Mountains 567...
Building Planets 568..
Building a Virtual Universe 571.....................................

WHAT IS A FRACTAL? 571....................................
Self- Similarity 572...
Dilation Symmetry 573..
Random Fractals 574..

A BIT OF HISTORY OF FRACTAL
TERRAINS 575..

The Mathematics 575..
Mathematical Imaging of Fractal Terrains 576..............
The Computer Graphics Research Community 576......
The Literature 579...
The Software 579..
Disclaimers and Apologies 580.....................................
The Present and Future 581..

BUILDING RANDOM FRACTALS 582....................
The Basis Function 583...

Team LRN

Fractal Dimension: � Roughness� 583...........................
Octaves: Limits to Detail 584...
Lacunarity: The Gap between Successive
Frequencies 585..

ADVANCED TOPICS 587.......................................
Dimensions: Domain and Range 587............................
Hyperspace 588..
The Basis Functions 590...
The Seed Tables 597..
Monofractals 599...
Multifractals 600..
Function Fractals 602..
Domain Distortion 604...
Distorted Fractal Functions 606.....................................
Crossover Scales 606...
Driving Function Parameters with Functions 607..........

USING FRACTALS 608...
Textures 608..
Terrains 609..
Displacement Maps 610..
Clouds 611..
Planets 611..
Nebulae 611..

THE EXPRESSIVE VOCABULARY OF
RANDOM FRACTALS 611......................................
EXPERIMENT! 613...
THE FUTURE 614...

ON THE FUTURE: ENGINEERING THE
APPEARANCE OF CYBERSPACE 617.....................

INTRODUCTION 617..
CLAIMS 618..
THE FRACTAL GEOMETRY OF
CYBERSPACE 620...
CONCLUSION 623..

Team LRN

APPENDICES 625..

BIBLIOGRAPHY 629..
CONTRIBUTORS 687...

Team LRN

FOREWORD

What is a realistic image? This is an age-old question in art, and a contemporary
question in computer graphics. This book provides a modern answer involving the
computer and a new definition of realism.

The classic definition of realism has been veridical realism. Does the picture pass
the comparison test? That is, would an observer judge the picture to be real? This is
traditionally described by Pliny’s story (in Book 35 of his Natural History) of the an-
cient painter Zeuxis who painted a picture of a boy carrying some grapes, and when
the birds flew up to the picture, he approached the work and, in irritation, said, “I
have painted the grapes better than the boy, for if I had rendered him perfectly, the
birds would have been afraid.”

Nowadays the ultimate in fooling the eye is special effects in the movies. Almost
every movie involves hundreds of special effects that are seamlessly combined with
live action. It is impossible to tell what is real and what is synthesized. Equally amaz-
ing are full-length, computer-generated pictures such as Shrek. Although few would
be fooled into believing these worlds are real, it is more the artistic choice of the sto-
ryteller than a technological limitation. A major achievement in the last two decades
is that computers allowed us to achieve veridical realism of imagined scenes.

Besides direct comparison, there are other definitions of real. Masters such as
Vermeer used optical devices to aid them in painting realistic pictures, and modern
photorealists such as Richard Estes paint over a projected image of a photograph.
Thus, another definition of real is to be traced or copied from an image. In this sense
the montage of composite layers in a movie is photoreal, since different elements
come from different film sequences. There are many other definitions of realism. For
example, real can mean a choice of subject matter, such as everyday life versus a
myth or an idealized form.

The definition of realism that I like the most is the one I first heard from my col-
league, then at Pixar, Alvy Ray Smith: he claimed photorealism was roughly equiva-
lent to visual complexity. Two factors underlie visual complexity, diversity in the
types of primitives and their sheer numbers. This definition resonates with computer
scientists, since computers are very good at both supporting a wide range of

v

Team LRN

computational primitives and processing enormous amounts of data. This book is
about using the computer to generate visual complexity, an approach called proce-
dural modeling.

The causes of visual complexity in the computer-generated image are the ingre-
dients of perception: color, texture, edges, depth, and motion. The equivalents in
object-space, or in the scene, are color, pattern, reflection, illumination, shape, and
motion. All these factors come together in composite materials such as wood, stone,
and cloth and in natural phenomena such as clouds, steam, smoke, fire, water, land-
scapes, and planetoids. Procedural models for these myriad objects are the subjects
of this book.

Why are computers so good at generating visual complexity? The reason is pro-
found as well as practical.

First, computers expand the types of models that may be used. For example, a
surface may be defined as the zeros of an implicit function of x, y, and z. The simplest
implicit functions are quadratic functions of the coordinates and define the famous
quadric surfaces: spheres, cones, cylinders, and so on. Using a modern programming
language with all its built-in functions and arithmetic operators, much more compli-
cated expressions are just as easy to form and to evaluate. Perlin’s hypertextured sur-
faces arise from this flexibility and generality.

Second, computers can generate many from few. A few parameters (or a small
amount of geometry) magically expand into a large, detailed model. “Data
amplification” gives the user tremendous power, leveraging their efforts and
offloading tedious specification of every single detail. A related concept is
Kolmogorev complexity, or the smallest program capable of generating a given func-
tion. A very few lines of code can produce beautiful pictures. The hacker
“demoscene” dramatically illustrates this idea. Here programmers are given the con-
straint that the size of the file containing both code and data (models, textures,
sounds) must fit in less than 64KB. From this file emerges a richly detailed
animation.

Third, computational models are by necessity discrete and finite. Although at
first this may seem like a limitation, since computational procedures must approxi-
mate continuous mathematics and physics, it may in fact open up many new possi-
bilities. For example, an approximation of a smooth curve may be generated from
an n-sided polygon by a simple corner-cutting algorithm. Each step consists of cut-
ting off all the corners of the polygon, replacing a vertex with an edge and two new
vertices. After an infinite number of iterations of the cutting procedure, the input
polygon will converge to a smooth curve. However, on a computer, we can never
perform an infinite number of steps, so perfectly smooth curves can never be con-
structed. Once we give up on idealized mathematical smoothness, we can generalize

vi FOREWORD

Team LRN

corner-cutting polygons to subdividing 3D polyhedral meshes; although these new
algorithms do not form smooth objects, a whole new universe of different types of
curves and surfaces can now be generated on the computer.

For these reasons procedural modeling is a very powerful new tool that is en-
abled by the computer. This approach is what is fundamentally different about com-
puter graphics and traditional forms of image making.

An important issue that remains, the Achilles heel of this approach, is controlla-
bility. Whether it is a physical simulation with its initial or boundary conditions, or a
procedural model with its parameters, the end result must serve the needs of the user.
The benefit of filling in detail automatically comes at a cost: the user loses control
over the details. The need for controllability drives the development of interactive,
what-you-see-is-what-you-get systems. This tension between precise control and
programmed complexity remains an interesting research issue. In practice, virtual
characters are usually modeled manually, and their motion is generated using key-
frame animation. However, buildings, landscapes, and crowds are increasingly being
generated using procedural techniques.

This new edition is particularly timely. Although the interest in procedural mod-
eling subsided for a while, there has suddenly been an explosion of new research and
development. Processing power continues to increase faster than human modeling
power, and as a result models produced procedurally have a level of detail that can-
not be produced by hand. New approaches have also emerged: machine learning has
been coupled with procedural modeling so that it is now possible to analyze and
then synthesize textures, shapes, motions, and styles from examples.

Another major new development is programmable graphics hardware. Graphics
processing units, or GPUs, have always been increasing in performance much faster
than CPUs. In the last few years, GPUs switched from a fixed-functionality to a flexi-
ble, programmable graphics pipeline. Now it is possible to download procedural
models into these processors. Currently, GPUs are mostly limited to evaluating pro-
cedural texture and reflection models, but in the not too distant future they will be
able to produce geometry and motion procedurally as well. Procedural models thus
have technology on their side, since they use less bandwidth and communication re-
sources than traditional approaches to graphics systems.

This book describes the complete toolbox of procedural techniques from theory
to practice. The authors are the key inventors of the technology and some of the
most creative individuals I know. This book has always been my favorite computer
graphics book, and I hope you will enjoy it as much as I have.

Pat Hanrahan

FOREWORD vii

Team LRN

PREFACE

This book imparts a working knowledge of procedural approaches in texturing,
modeling, shading, and animation and demonstrates their use in high-quality offline
and real-time applications. These include two-dimensional and solid texturing,
hypertextures, volume density functions, and fractals. Readers are provided with the
details often omitted from technical papers, enabling them to explore how the proce-
dures are designed to produce realistic imagery. This book also contains many useful
procedures and descriptions of how these procedures were developed. Readers will
gain not only a powerful toolbox of procedures upon which to build a library of pro-
cedural textures and objects, but also a better understanding of how these functions
work and how to design them. With procedures like noise1 and turbulence and an
understanding of procedural design techniques, readers will be able to design more
complex procedures to produce realistic textures, gases, hypertextures, landscapes,
and planets. The procedural techniques are explained not by people who have read
some technical papers and tried to decipher them, but by the people who develop the
techniques, wrote the seminal papers in the area, and have worked with procedural
design for more than 10 years.

THE UBIQUITY OF PROCEDURAL TECHNIQUES IN COMPUTER
GRAPHICS
Procedural modeling, texturing, and shading are ubiquitous, vital tools for creating
realistic graphics and animation in applications ranging from movie special effects to
computer games. Procedural techniques were originally introduced to produce tex-
tures for objects. With the introduction of three-dimensional texturing techniques
(solid texturing) by Ken Perlin, Darwyn Peachey, and Geoffrey Gardner in 1985, the
use of procedural techniques exploded. Realistic images containing marble, wood,
stone, and clouds were now possible. Procedural techniques became an area of

xx

1. Ken Perlin won a Technical Achievement Award from the Academy of Motion Picture Arts and Sci-
ences in 1997 for the development of his noise function.

Team LRN

active research in computer graphics. Many programmers and researchers developed
their own procedures to simulate natural materials and natural phenomena. What
was lacking, however, was a clear understanding of the design of procedural tech-
niques and of the primitive stochastic functions that were used to produce these
amazing images. Since the mid-1980s, the use of procedural techniques has grown
rapidly, and they can now be used to actually define the geometry of objects such as
water, fire, gases, planets, and tribbles.

The use of procedural techniques is not limited to still images; they have been
used successfully for animation and the simulation of natural phenomena such as
fog, fire, water, and atmospheric patterns. The animation of procedural models re-
quires knowledge of both animation principles and the characteristics of the proce-
dural model. Procedural animation is a powerful technique for producing complex,
realistic motion.

With the advent of low-cost programmable graphics processors, procedural
techniques have become vital to creating high-quality effects in interactive entertain-
ment and computer games. As of late 2002, it is now possible to implement most of
the techniques presented in this book as controllable, interactive procedures that can
harness the power of programmable PC graphics to run at real-time rates.

OUR OBJECTIVE
The objective of this book is to provide readers with an understanding and working
knowledge of procedural techniques in texturing, modeling, and animation. This
book describes the current state of procedural techniques and provides readers with
the challenge and information necessary to extend the state of the art. Readers will
gain the following from the book:

• A thorough understanding of procedural techniques for solid texturing

• An insight into different design approaches used by the authors in designing
procedures

• A toolbox of procedures and basic primitive functions (noise, turbulence, etc.)
to produce realistic images

• An understanding of several advanced procedural approaches for modeling ob-
ject geometry (hypertextures, gases, fractals)

• An introduction to animating these procedural objects and textures

• An understanding of how to adapt these techniques to commodity graphics
hardware

PREFACE xxi

Team LRN

DEVELOPMENT OF THIS BOOK
At SIGGRAPH ’91, Darwyn Peachey and David Ebert first discussed the need for a
course to explain how texture and modeling procedures are designed to create
impressive images of wood and marble objects, gases, landscapes, and planets. There
were some classic papers on these topics, but they were lacking in several re-
spects. First of all, not enough detail was given to enable readers to reproduce the re-
sults in most of the papers. Second, if an image could be reproduced, readers still
didn’t know how to modify the procedure to get a different effect. Finally, the rea-
son why a procedure produced a given image was unclear. There seemed to be
some “magic” behind the development of these procedures. From this discus-
sion, our course at SIGGRAPH ’92 arose. There was great demand for the course
at both SIGGRAPH ’92 and SIGGRAPH ’93. We have received useful feedback,
thanks, and requests for more material on this topic from the attendees of these
courses.

With the success of these courses, we decided to produce the first edition of
this book. It was similar in nature to our course notes, but greatly expanded and re-
vised. The second edition contained new chapters discussing work from 1994 to
1998.

There were two motivations for the third edition. First, we wanted to expand,
update, and, in essence, complete this book to be the reference and source for proce-
dural techniques in computer graphics. Second, we wanted to describe the develop-
ments that have been made in procedural techniques in the past five years and the
applications of these techniques to games and other real-time graphics applications.
Two authors, William Mark and John Hart, have been added to more completely
cover interactive procedural techniques.

SOURCE CODE
All of the source code for the examples in this book is available on the Web
site for the book at www.mkp.com/tm3.

ACKNOWLEDGMENTS
We wish to thank the reviewers of our book proposal, who made valuable sugges-
tions to improve this book. We also wish to thank the attendees of our SIGGRAPH
courses, and our students, for feedback and suggestions that led to its development.
Susan Ebert, Judy Peachey, and Rick Sayre were of immeasurable help in reviewing

xxii PREFACE

Team LRN

parts of this book. Holly Rushmeier helped with figure creation. Larry Gritz pro-
vided RenderMan translations for Ken Musgrave’s code and coauthored Chapter
18. Nikolai Svakhine and Joe Kniss contributed to Chapter 10. Tom Deering helped
Darwyn Peachey with his Illustrator figures, and Benjamin Zhu, Xue Dong Wong,
Rajesh Raichoudhury, and Ron Espiritu helped Ken Perlin in the preparation of his
chapters. Bill Mark thanks Pat Hanrahan for sharing his knowledge and advice, and
for providing him with the opportunity to spend time writing his chapter. We also
wish to thank our families, friends, and coworkers for support during the develop-
ment of this book. Finally, we wish to thank the staff at Morgan Kaufmann for pro-
ducing this third edition.

David S. Ebert

AUTHOR ADDRESSES
Our current physical and email addresses are given below.

PREFACE xxiii

Dr. David S. Ebert
School of Electrical and

Computer Engineering
1285 EE Building
Purdue University
West Lafayette, IN 47906
ebertd@purdue.edu

Dr. F. Kenton Musgrave
FractalWorlds.com
15724 Trapshire Court
Waterford, VA 20197–1002
musgrave@fractalworlds.com

Darwyn Peachey
Pixar
1200 Park Avenue
Emeryville, CA 94608
peachey@pixar.com

Dr. Ken Perlin
NYU Media Research Lab
719 Broadway, Room 1202
New York, NY 10003
perlin@nyu.edu

Steven Worley
Worley Laboratories
405 El Camino Real #121
Menlo Park, CA 94025
spworley@worley.com

Team LRN

1

Team LRN

INTRODUCTION
DAV I D S . E B E R T

PROCEDURAL TECHNIQUES AND COMPUTER GRAPHICS
Procedural techniques have been used throughout the history of computer graphics.
Many early modeling and texturing techniques included procedural definitions of
geometry and surface color. From these early beginnings, procedural techniques
have exploded into an important, powerful modeling, texturing, and animation par-
adigm. During the mid- to late 1980s, procedural techniques for creating realistic
textures, such as marble, wood, stone, and other natural material, gained wide-
spread use. These techniques were extended to procedural modeling, including mod-
els of water, smoke, steam, fire, planets, and even tribbles. The development of the
RenderMan shading language (Pixar 1989) greatly expanded the use of procedural
techniques. Currently, most commercial rendering and animation systems even pro-
vide a procedural interface. Procedural techniques have become an exciting, vital as-
pect of creating realistic computer-generated images and animations. As the field
continues to evolve, the importance and significance of procedural techniques will
continue to grow. There have been two recent important developments for real-time
procedural techniques: increased CPU power and powerful, programmable graphics
processors (GPUs), which are available on affordable PCs and game consoles. This
has started an age where we can envision and realize interactive complex procedural
models and effects.

What Is a Procedural Technique?

Procedural techniques are code segments or algorithms that specify some char-
acteristic of a computer-generated model or effect. For example, a procedural
texture for a marble surface does not use a scanned-in image to define the color
values. Instead, it uses algorithms and mathematical functions to determine the
color.

1

Team LRN

The Power of Procedural Techniques

One of the most important features of procedural techniques is abstraction. In a pro-
cedural approach, rather than explicitly specifying and storing all the complex de-
tails of a scene or sequence, we abstract them into a function or an algorithm (i.e., a
procedure) and evaluate that procedure when and where needed. We gain a storage
savings, as the details are no longer explicitly specified but implicit in the procedure,
and the time requirements for specification of details are shifted from the program-
mer to the computer. This allows us to create inherent multiresolution models and
textures that we can evaluate to the resolution needed.

We also gain the power of parametric control, allowing us to assign to a para-
meter a meaningful concept (e.g., a number that makes mountains rougher or
smoother). Parametric control also provides amplification of the modeler/animator’s
efforts: a few parameters yield large amounts of detail; Smith (1984) referred to this
as database amplification. This parametric control unburdens the user from the low-
level control and specification of detail. We also gain the serendipity inherent in pro-
cedural techniques: we are often pleasantly surprised by the unexpected behaviors of
procedures, particularly stochastic procedures.

Procedural models also offer flexibility. The designer of the procedures can cap-
ture the essence of the object, phenomenon, or motion without being constrained by
the complex laws of physics. Procedural techniques allow the inclusion in the model
of any desired amount of physical accuracy. The designer may produce a wide range
of effects, from accurately simulating natural laws to purely artistic effects.

PROCEDURAL TECHNIQUES AND ADVANCED GEOMETRIC MODELING
Geometric modeling techniques in computer graphics have evolved significantly as
the field matures and attempts to portray increasingly complex models and the com-
plexities of nature. Earlier geometric models, such as polygonal models, patches,
points, and lines, are insufficient to represent this increased complexity in a manage-
able and controllable fashion. Higher-level modeling techniques have been devel-
oped to provide an abstraction of the model, encode classes of objects, and allow
high-level control and specification of the models. Many of these advanced geomet-
ric modeling techniques are inherently procedural. Grammar-based models (Smith
1984; Prusinkiewicz and Lindenmayer 1990), including graftals and L-systems, al-
low the specification of a few parameters to simulate complex models of trees,
plants, and other natural objects. These models use formal languages to specify com-
plex growth rules for the natural objects.

2 CHAPTER 1 Introduction

Team LRN

Implicit surface models—also called blobby molecules (Blinn 1982b), meta-balls
(Nishimura et al. 1985), and soft objects (Wyvill, McPheeters, and Wyvill 1986)—
are used in modeling organic shapes, complex manufactured shapes, and “soft” ob-
jects that are difficult to animate and describe using more traditional techniques. Im-
plicit surfaces were first introduced into computer graphics by Blinn (1982b) to
produce images of electron density clouds. They are surfaces of constant value,
isosurfaces, created from blending primitives (functions or skeletal elements) repre-
sented by implicit equations of the form F(x, y, z) = 0. Implicit surfaces are a more
concise representation than parametric surfaces and provide greater flexibility in
modeling and animating soft objects. For modeling complex shapes, several basic
implicit surface primitives are smoothly blended to produce the final shape. The
detailed geometric shape of the implicit surface is not specified by the modeler/
animator; instead, it is procedurally determined through the evaluation of the im-
plicit functions, providing higher-level specification and animation control of com-
plex models.

Particle systems are procedural in their abstraction of specification of the object
and control of its animation (Reeves 1983). A particle system object is represented
by a large collection (cloud) of very simple geometric particles that change stochas-
tically over time. Therefore, particle systems do use a large database of geometric
primitives to represent natural objects (“fuzzy objects”), but the animation, loca-
tion, birth, and death of the particles representing the object are controlled algorith-
mically. As with other procedural modeling techniques, particle systems have the
advantage of database amplification, allowing the modeler/animator to specify and
control this extremely large cloud of geometric particles with only a few parameters.
Particle systems are described in more detail in Chapter 8.

These advanced geometric modeling techniques are not the focus of this book.
However, they may be combined with the techniques described in this book to ex-
ploit their procedural characteristics and evolve better modeling and animation
techniques.

Additionally, some aspects of image synthesis are by nature procedural; that is,
they can’t practically be evaluated in advance (e.g., view-dependent specular shading
and atmospheric effects). Our primary focus is procedural textures, procedural mod-
eling, and procedural animation.

AIM OF THIS BOOK
This book will give you a working knowledge of several procedural texturing,
modeling, and animation techniques, including two-dimensional texturing, solid

Aim of This Book 3

Team LRN

texturing, hypertextures, volumetric procedural models, fractal and genetic algo-
rithms, and virtual procedural actors. We provide you with the details of these tech-
niques, which are often omitted from technical papers, including useful and practical
guidelines for selecting parameter values.

We provide a toolbox of specific procedures and basic primitive functions
(noise, turbulence, etc.) to produce realistic images. An in-depth description of noise
functions is presented, accompanied by several implementations and a spectral
comparison of these functions. Some of the procedures presented can be used to cre-
ate realistic images of marble, brick, fire, steam, smoke, water, clouds, stone, and
planets.

ORGANIZATION
This book follows a progression in the use of procedural techniques: from proce-
dural texturing, to volumetric procedural objects, and finally to fractals. In each
chapter, the concepts are illustrated with a large number of example procedures.
These procedures are presented in C code segments or in the RenderMan shading
language.

The details of the design of these procedures are also explained to aid you in
gaining insights into the different procedural design approaches taken by the au-
thors. You should, therefore, be able to reproduce the images presented in this book
and extend the procedures presented to produce a myriad of effects.

Darwyn Peachey describes how to build procedural textures in Chapter 2. This
discussion includes two-dimensional texturing and solid texturing. Two important
procedures that are used throughout the book are described in this chapter: noise
and turbulence. Aliasing problems of procedural techniques are described, and sev-
eral antialiasing techniques suitable for procedural approaches are presented and
compared.

Real-time issues for procedural texturing and shading are described by William
R. Mark in Chapter 3. This chapter also provides an overview of the Stanford real-
time shading language, a high-level interface for writing real-time shaders.

The design of procedural textures is also the subject of Chapters 4, 5, and 6 by
Steve Worley. Chapter 4 contains useful guidelines and tricks to produce interesting
textures efficiently. Chapter 5 describes some additional approaches to antialiasing,
and Chapter 6 describes cellular texturing for generating interesting procedural
textures.

The next four chapters by David Ebert describe how turbulence and solid tex-
turing can be extended to produce images and animations of three-dimensional

4 CHAPTER 1 Introduction

Team LRN

gases (particulate volumes). Chapter 7 concentrates on techniques to produce still
images of volumetric “gases” (steam, fog, smoke). Chapter 8 discusses how to ani-
mate these three-dimensional volumes, as well as solid textures and hypertextures.
Chapter 9 describes how to extend these volumetric procedural models to model
and animate realistic clouds, and Chapter 10 discusses more real-time issues for
hardware-accelerated implementation of procedural textures and models.

Chapters 11 and 13 by John Hart discuss alternative approaches for procedural
models and textures. Chapter 11 concentrates on procedural models of geometry, in-
cluding procedural geometric instancing and grammar-based modeling. Chapter 13
concentrates on procedural textures using the texture atlas approach.

Chapter 12 by Ken Perlin discusses other types of volumetric procedural objects,
such as hypertextures and surflets. Ken also gives a detailed explanation of his fa-
mous noise function and its implementation, as well as the rendering of procedural
objects and antialiasing. Ken also describes the use of high-level, nondeterministic
“texture” to create gestural motions and facial animation for synthetic actors. By
blending textural controls, the apparent emotional state of a synthetic actor can be
created.

Chapters 14 through 20 by Ken Musgrave (Chapter 18 is also co-authored by
Larry Gritz and Steve Worley) describe fractals and their use in creating realistic
landscapes, planets, and atmospherics. Ken begins by giving a brief introduction to
fractals and then discusses fractal textures, landscapes, and planets. The discussion
proceeds to procedural rendering techniques, genetic procedural textures, and atmo-
spheric models.

Finally, Chapter 21 by Ken Musgrave discusses the role of procedural techniques
in the human-computer interface.

Organization 5

Team LRN

2

Team LRN

BUILDING PROCEDURAL TEXTURES
DA RW Y N P E A C H E Y

This chapter describes how to construct procedural texture functions in a variety of
ways, starting from very simple textures and eventually moving on to quite elaborate
ones. The discussion is intended to give you a thorough understanding of the major
building blocks of procedural textures and the ways in which they can be combined.

Geometric calculations are fundamental to procedural texturing, as they are to
most of 3D computer graphics. You should be familiar with 2D and 3D points, vec-
tors, Cartesian coordinate systems, dot products, cross products, and homogeneous
transformation matrices. You should also be familiar with the RGB (red, green, blue)
representation of colors and with simple diffuse and specular shading models. Con-
sult a graphics textbook (e.g., Foley et al. 1990; Hearn and Baker 1986) if any of this
sounds new or unfamiliar.

INTRODUCTION
Throughout the short history of computer graphics, researchers have sought to im-
prove the realism of their synthetic images by finding better ways to render the ap-
pearance of surfaces. This work can be divided into shading and texturing. Shading
is the process of calculating the color of a pixel or shading sample from user-
specified surface properties and the shading model. Texturing is a method of varying
the surface properties from point to point in order to give the appearance of surface
detail that is not actually present in the geometry of the surface.

Shading models (sometimes called illumination models, lighting models, or re-
flection models) simulate the interaction of light with surface materials. Shading
models are usually based on physics, but they always make a great number of simpli-
fying assumptions. Fully detailed physical models would be overkill for most com-
puter graphics purposes and would involve intractable calculations.

The simplest realistic shading model, and the one that was used first in computer
graphics, is the diffuse model, sometimes called the Lambertian model. A diffuse

7

Team LRN

surface has a dull or matte appearance. The diffuse model was followed by a vari-
ety of more realistic shading models that simulate specular (mirrorlike) reflection
(Phong 1975; Blinn 1977; Cook and Torrance 1981; He et al. 1991). Kajiya (1985)
introduced anisotropic shading models in which specular reflection properties are
different in different directions. Cabral, Max, and Springmeyer (1987), Miller
(1988a), and Poulin and Fournier (1990) have done further research on anisotropic
shading models.

All of the shading models described above are so-called local models, which deal
only with light arriving at the surface directly from light sources. In the early 1980s,
most research on shading models turned to the problem of simulating global illu-
mination effects, which result from indirect lighting due to reflection, refraction,
and scattering of light from other surfaces or participating media in the scene. Ray-
tracing and radiosity techniques typically are used to simulate global illumination
effects.

Texture

At about the same time as the early specular reflection models were being for-
mulated, Catmull (1974) generated the first textured computer graphics images.
Catmull’s surfaces were represented as parametric patches. Each point on the 3D
surface of a parametric patch corresponds to a particular 2D point (u, v) in parame-
ter space. This 2D-to-3D correspondence implies that a two-dimensional texture im-
age can easily be mapped onto the 3D surface. The (u, v) parameters of any point on
the patch can be used to compute a corresponding pixel location in the texture
image.

For example, let’s assume that you have a JPEG image with a resolution of 1024
× 512 pixels, and a patch (u, v) space that extends from 0 to 1 in each dimension.
For any (u, v) point on the patch surface, you can compute the corresponding pixel
location in the JPEG image by simply multiplying u times 1024 and v times 512. You
can use the color of the image pixel to determine the shading of the patch surface at
(u, v). In this way, the image can be texture mapped onto the patch. (Unfortunately,
this simple point-sampling approach to texture mapping usually will result in so-
called aliasing artifacts. To avoid such problems, more elaborate sampling and fil-
tering methods are needed to accurately compute the contribution of each texture
image pixel to each pixel of the final rendered graphics image.)

These first efforts proved that texture provided an interesting and detailed sur-
face appearance, instead of a simple and boring surface of a single uniform color. It
was clear that texture gave a quantum leap in realism at a very low cost in human

8 CHAPTER 2 Building Procedural Textures

Team LRN

effort and computer time. Variations and improvements on the notion of texture
mapping quickly followed.

Blinn and Newell (1976) introduced reflection mapping (also called environ-
ment mapping) to simulate reflections from mirrorlike surfaces. Reflection mapping
is a simplified form of ray tracing. The reflection mapping procedure calculates the
reflection direction R of a ray from the camera or viewer to the point being shaded:

R = 2(N ⋅ V)N − V

where N is the surface normal and V points toward the viewer (both must be nor-
malized). The texture image can be accessed using the “latitude” and “longitude”
angles of the normalized vector R = (x, y, z):

θ = tan−1 (y/x)

ϕ = sin−1 z

suitably scaled and translated to fit the range of texture image pixel coordinates. If
the reflection texture is chosen carefully, the texture-mapped surface appears to be
reflecting an image of its surroundings. The illusion is enhanced if both the position
of the shaded point and the reflection direction are used to calculate a ray intersec-
tion with an imaginary environment sphere surrounding the scene. The latitude and
longitude of the intersection can be used to access the reflection texture.

Blinn (1978) introduced bump mapping, which made it possible to simulate the
appearance of surface bumps without actually modifying the geometry. Bump map-
ping uses a texture pattern to modify the direction of surface normal vectors. When
the resulting normals are used in the shading calculation, the rendered surface ap-
pears to have bumps and indentations. Such bumps aren’t visible at the silhouette
edges of the surface, since they consist only of shading variations, not geometry.

Cook (1984) described an extension of bump mapping, called displacement
mapping, in which textures are used actually to move the surface, not just to change
the normals. Moving the surface does change the normals as well, so displacement
mapping often looks very much like bump mapping except that the bumps created
by displacement are even visible on the silhouettes of objects.

Reeves, Salesin, and Cook (1987) presented an algorithm for producing anti-
aliased shadows using an image texture based on a depth image of a scene rendered
from the position of the light source. A stochastic sampling technique called “per-
centage closer filtering” was applied to reduce the effects of aliasing in the depth
image.

Introduction 9

Team LRN

Peachey (1985) and Perlin (1985) described space-filling textures called solid
textures as an alternative to the 2D texture images that had traditionally been used.
Gardner (1984, 1985) used solid textures generated by sums of sinusoidal functions
to add texture to models of trees, terrains, and clouds. Solid textures are evaluated
based on the 3D coordinates of the point being textured, rather than the 2D surface
parameters of the point. Consequently, solid textures are unaffected by distortions of
the surface parameter space, such as you might see near the poles of a sphere. Conti-
nuity between the surface parameterization of adjacent patches isn’t a concern either.
The solid texture will remain consistent and have features of constant size regardless
of distortions in the surface coordinate systems.

For example, objects machined from solid wood exhibit different grain textures
depending on the orientation of the surface with respect to the longitudinal growth
axis of the original tree. Ordinary 2D techniques of applying wood-grain textures
typically result in a veneer or “plastic wood” effect. Although each surface of a
block may resemble solid wood, the unrealistic relationship between the textures on
the adjacent surfaces destroys the illusion. A solid texture that simulates wood gives
consistent textures on all surfaces of an object (Figure 2.1).

Recent work has focused on the problem of generating a smooth texture coordi-
nate mapping over a complex surface, such that the mapping introduces a minimal
amount of distortion in the size and shape of 2D textures applied with it. Ideally, a
mapping preserves distances, areas, and angles, so that the texture is undistorted.
However, in practice none of these properties is easily preserved when the textured
surface is complex in shape and topology. Piponi and Borshukov (2000) describe a
method called “pelting” that generates a seamless texture mapping of an arbitrary

10 CHAPTER 2 Building Procedural Textures

FIGURE 2.1 A wood-grain solid texture.

Team LRN

subdivision surface model. Pedersen (1995) lets the user interactively position tex-
ture patches on a surface, while helping the user minimize the distortion of the map-
ping. Praun, Finkelstein, and Hoppe (2000) introduce “lapped textures,” in which
many small swatches of texture are positioned on a surface in an overlapping fash-
ion, according to a user-defined vector field that guides the orientation and scale
of the swatches. Both Turk (2001) and Wei and Levoy (2001) generate a synthetic
texture from samples and “grow” the synthetic texture right on the target surface,
taking into account its shape and parameterization.

Procedural Texture

From the earliest days of texture mapping, a variety of researchers used synthetic
texture models to generate texture images instead of scanning or painting them.
Blinn and Newell (1976) used Fourier synthesis. Fu and Lu (1978) proposed a
syntactic grammar-based texture generation technique. Schacter and Ahuja (1979)
and Schacter (1980) used Fourier synthesis and stochastic models of various kinds
to generate texture imagery for flight simulators. Fournier, Fussell, and Carpenter
(1982) and Haruyama and Barsky (1984) proposed using stochastic subdivision
(“fractal”) methods to generate textures. Other researchers developed statistical tex-
ture models that analyzed the properties of natural textures and then reproduced the
textures from the statistical data (Gagalowicz and Ma 1985; Garber 1981).

Cook (1984) described the “shade trees” system, which was one of the first sys-
tems in which it was convenient to generate procedural textures during rendering.
Shade trees enable the use of a different shading model for each surface as well as for
light sources and for attenuation through the atmosphere. Because the inputs to the
shading model can be manipulated procedurally, shade trees make it possible to use
texture to control any part of the shading calculation. Color and transparency tex-
tures, reflection mapping, bump mapping, displacement mapping, and solid textur-
ing can all be implemented using shade trees.

Perlin (1985) described a complete procedural texture generation language and
laid the foundation for the most popular class of procedural textures in use today,
namely, those based on noise, a stochastic texture generation primitive.

Turk (1991) and Witkin and Kass (1991) described synthetic texture models in-
spired by the biochemical processes that produce (among other effects) pigmentation
patterns in the skins of animals.

Sims (1991a) described a very novel texture synthesis system in which pro-
cedural textures represented as LISP expressions are automatically modified and
combined by a genetic programming system. By interactively selecting among the

Introduction 11

Team LRN

resulting textures, the user of the system can direct the simulated evolution of a tex-
ture in some desired direction.

All of the texture synthesis methods mentioned in this section might be called
“procedural.” But just what is a procedural texture?

Procedural versus Nonprocedural

The definition of procedural texture is surprisingly slippery. The adjective proce-
dural is used in computer science to distinguish entities that are described by pro-
gram code rather than by data structures. For instance, in artificial intelligence there
is a distinction between procedural representations of knowledge and declarative
ones (see, for example, section 7.3 in Rich 1983). But anything we do with comput-
ers has a procedural aspect at some level, and almost every procedure takes some pa-
rameters or inputs that can be viewed as the declarative part of the description. In
the mapping of a texture image onto a surface, the procedural component is the ren-
derer’s texture mapping module, and the declarative component is the texture image.

It is tempting to define a procedural texture as one that is changed primarily by
modifying the algorithm rather than by changing its parameters or inputs. However,
a procedural texture in a black box is still a procedural texture, even though you
might be prevented from changing its code. This is true of procedural textures
that are provided to you in a non-source-code form as part of a proprietary commer-
cial renderer or texture package. Some rendering systems allow the user to create
new procedural textures and modify existing procedural textures, but many others
do not.

One major defining characteristic of a procedural texture is that it is synthetic—
generated from a program or model rather than just a digitized or painted image.
But image textures can be included among procedural textures in a procedural tex-
ture language that incorporates image-based texture mapping as one of its primitive
operations. Some very nice procedural textures can be based on the procedural com-
bination, modification, or distortion of image textures. The question “How proce-
dural are such textures?” is difficult to answer and hinges on the apparent amount of
difference between the source images and the resulting texture.

Implicit and Explicit Procedures

We can distinguish two major types of procedural texturing or modeling methods:
explicit and implicit methods. In explicit methods, the procedure directly generates
the points that make up a shape. In implicit methods, the procedure answers a query

12 CHAPTER 2 Building Procedural Textures

Team LRN

about a particular point. The most common form of implicit method is the isocurve
(in 2D) or isosurface (in 3D) method. A texture pattern is defined as a function F of
points P in the texture space, and the pattern consists of a level set of F, that is, the set
of all points at which the function has a particular value C: {P| F (P) = C}. For ex-
ample, a simple definition of a unit circle is the isocurve model .
Note that F must be reasonably well behaved if the function is to form a sensible pat-
tern: we want F to be continuous and perhaps differentiable depending on the
application.

Implicit geometric models traditionally have been popular in ray tracers because
the problem of intersecting a ray with the model can be expressed elegantly for im-
plicit models: given a model F(P) = 0 and a ray R(t) = O + t D with origin O and di-
rection D, the intersection point is simply R(thit) where thit is the smallest positive
root of F(R(t)) = 0. On the other hand, explicit models are convenient for depth
buffer renderers (Z-buffers and A-buffers) because the explicit model can directly
place points into the depth buffer in arbitrary order as the model is evaluated.

In the texturing domain, implicit procedural methods seem to be best for tex-
tures that are evaluated during rendering. In both ray tracers and depth buffer ren-
derers, texture samples usually must be evaluated in an order that is determined by
the renderer, not by the texture procedure. An implicit procedure fits perfectly in
such an environment because it is designed to answer a query about any point in the
texture at any time. An explicit procedure wants to generate its texture pattern in
some fixed order, which probably doesn’t match the needs of the rendering algo-
rithm. In most renderers, using an explicit texture routine would require running the
texture procedure as a prepass and having it generate the texture image into an im-
age buffer, where it could be looked up as necessary for texture application during
rendering. Many of the advantages of procedural textures are lost if the texture must
be evaluated in a prepass.

In principle the explicit and implicit methods can be used to produce the same
class of texture patterns or geometric models (virtually anything), but in practice
each approach has its own class of models that are convenient or feasible. Explicit
models are convenient for polygons and parametric curves and patches. Implicit
models are convenient for quadrics and for patterns that result from potential or
force fields. Since implicit models tend to be continuous throughout a region of the
modeling space, they are appropriate for continuous density and flow phenomena
such as natural stone textures, clouds, and fog.

The remainder of this chapter focuses on building procedural textures that are
evaluated during rendering and, therefore, on implicit procedural textures. Some of
the texture synthesis methods mentioned earlier, for example, reaction-diffusion

Introduction 13

2 2 2{ | 1}x yP R P P∈ + =

Team LRN

textures or syntactically generated textures, can be very difficult to generate implic-
itly during rendering. Other methods, such as Fourier spectral synthesis, fit well into
an implicit procedural system.

Advantages of Procedural Texture

The advantages of a procedural texture over an image texture are as follows:

• A procedural representation is extremely compact. The size of a procedural tex-
ture is usually measured in kilobytes, while the size of a texture image is usually
measured in megabytes. This is especially true for solid textures, since 3D tex-
ture “images” are extremely large. Nonetheless, some people have used
tomographic X-ray scanners to obtain digitized volume images for use as solid
textures.

• A procedural representation has no fixed resolution. In most cases it can pro-
vide a fully detailed texture no matter how closely you look at it (no matter
how high the resolution).

• A procedural representation covers no fixed area. In other words, it is unlim-
ited in extent and can cover an arbitrarily large area without seams and with-
out unwanted repetition of the texture pattern.

• A procedural texture can be parameterized, so it can generate a class of related
textures rather than being limited to one fixed texture image.

Many of these advantages are only potential advantages; procedural texturing
gives you the tools to gain these advantages, but you must make an effort to use
them. A badly written procedural texture could sacrifice any of these potential
advantages. A procedural texture evaluated before rendering has only one of these
advantages, namely, that it can be parameterized to generate a variety of related
textures.

Disadvantages of Procedural Texture

The disadvantages of a procedural texture as compared to an image texure are as
follows:

• A procedural texture can be difficult to build and debug. Programming is often
hard, and programming an implicit pattern description is especially hard in
nontrivial cases.

14 CHAPTER 2 Building Procedural Textures

Team LRN

• A procedural texture can be a surprise. It is often easier to predict the outcome
when you scan or paint a texture image. Some people choose to like this prop-
erty of procedural textures and call it “serendipity.” Some people hate it and
say that procedural textures are hard to control.

• Evaluating a procedural texture can be slower than accessing a stored texture
image. This is the classic time versus space trade-off.

• Aliasing can be a problem in procedural textures. Antialiasing can be tricky
and is less likely to be taken care of automatically than it is in image-based
texturing.

The RenderMan Shading Language

Some renderers provide special-purpose shading languages in which program code
for shading models and procedural textures can be written. The RenderMan shading
language is perhaps the best known and most widely used of such languages (Pixar
1989; Hanrahan and Lawson 1990). It is a descendant of the shade trees system de-
scribed by Cook (1984). The syntax of the language is C-like, but the shading lan-
guage contains built-in data types and operations that are convenient for computer
graphics calculations: for example, data types for points and colors, and operators
for common vector operations. The shading language lets us program any aspect of
the shading calculations performed by the RenderMan renderer: surface shading,
light source description, atmospheric effects, and surface displacement. Shading pa-
rameters can be made to vary across the surface to generate procedural texture
effects. These could consist of variations in color, transparency, surface position, sur-
face normal, shininess, shading model, or just about anything else you can think of.

The shading language is based on an implicit programming model, in which
shading procedures called “shaders” are asked to supply the color, opacity, and
other properties of specified points on a surface. As discussed in the previous section,
this shading paradigm is used in most renderers, both depth buffers and ray tracers.
We refer to the surface point being shaded as the “shading sample point” or simply
as the “sample point.” The color and opacity information that is computed by the
shader for the sample point sometimes is called the “shading sample.”

In the remainder of this chapter, the RenderMan shading language is used for
the procedural texturing examples. You should be able to understand the examples
without RenderMan experience, but if you plan to write RenderMan shaders your-
self, you will benefit from reading Upstill (1990).

Introduction 15

Team LRN

Figures 2.2–2.7 are examples of images produced at Pixar for television com-
mercials and films. All of the textures and lighting effects in these images were gen-
erated in the RenderMan shading language. Scanned texture images were used
occasionally for product packaging materials and other graphic designs that contain
text, since the shapes of letters are rather tedious to produce in an implicit proce-
dural texture. Most of the textures are purely procedural. These examples demon-
strate that the class of textures that can be generated procedurally is very large
indeed.

What If You Don’t Use RenderMan?

We hope that this chapter will be useful to a wide audience of people interested
in procedural textures, not only to those who write RenderMan shaders. The

16 CHAPTER 2 Building Procedural Textures

FIGURE 2.2 Knickknack. Copyright © 1989 Pixar.

Team LRN

FIGURE 2.3 Lifesavers, “At the Beach.” Image by Pixar. Copyright © 1991 FCB/Leber Katz
Partners.

FIGURE 2.4 Carefree Gum, “Bursting.” Image by Pixar. Copyright © 1993 FCB/Leber Katz
Partners.

Team LRN

FIGURE 2.5 Listerine, “Knight.” Image by Pixar. Copyright © 1991 J. Walter Thompson.

FIGURE 2.6 Listerine, “Arrows.” Image by Pixar. Copyright © 1994 J. Walter Thompson.

Team LRN

RenderMan shading language is a convenient way to express procedural shaders,
and it allows us to easily render high-quality images of the examples. However, this
chapter also describes the C language implementation of many of the procedural
texture building-block functions that are built into the RenderMan shading lan-
guage. This should allow you to translate the shading language examples into C
code that you can use in your own rendering program. The RenderMan shading lan-
guage is superficially much like the C language, so you might have to look closely to
see whether a given fragment of code is in C or in the shading language.

The RenderMan shading language provides functions that access image tex-
tures. It is not practical to include an implementation of those functions in this chap-
ter. Efficient image texture mapping with proper filtering is a complex task, and the
program code consists of several thousand lines of C. Most other renderers have
their own texture functions, and you should be able to translate the RenderMan tex-
ture functions into the appropriate code to access the texture functions of your
renderer.

Introduction 19

FIGURE 2.7 Listerine, “Arrows.” Image by Pixar. Copyright © 1994 J. Walter Thompson.

Team LRN

PROCEDURAL PATTERN GENERATION
Sitting down to build a procedural texture can be a daunting experience, at least the
first few times. This section gives some hints, guidelines, and examples that will help
you stave off the anxiety of facing an empty text editor screen with no idea of how to
begin. It is usually much easier to start by copying an example and modifying it to do
what you want than it is to start from scratch. Most of the time, it is better to bor-
row code than to invent it.

Most surface shaders can be split into two components called pattern generation
and the shading model. Pattern generation defines the texture pattern and sets the
values of surface properties that are used by the shading model. The shading model
simulates the behavior of the surface material with respect to diffuse and specular re-
flection.

Shading Models

Most surface shaders use one of a small number of shading models. The most com-
mon model includes diffuse and specular reflection and is called the “plastic” shad-
ing model. It is expressed in the RenderMan shading language as follows:

surface
plastic(float Ka = 1, Kd = 0.5, Ks = 0.5;

float roughness = 0.1;
color specularcolor = color (1,1,1))

{
point Nf = faceforward(normalize(N), I);
point V = normalize(-I);
Oi = Os;
Ci = Os * (Cs * (Ka * ambient()

+ Kd * diffuse(Nf))
+ specularcolor * Ks

* specular(Nf, V, roughness));
}

The following paragraphs explain the workings of the plastic shader in detail,
as a way of introducing the RenderMan shading language to readers who are not fa-
miliar with it.

The parameters of the plastic shader are the coefficients of ambient, diffuse,
and specular reflectance; the roughness, which controls the size of specular high-
lights; and the color of the specular highlights. Colors are represented by RGB

20 CHAPTER 2 Building Procedural Textures

Team LRN

triples, specifying the intensities of the red, green, and blue primary colors as num-
bers between 0 and 1. For example, in this notation, color (1,1,1) is white.

Any RenderMan surface shader can reference a large collection of built-in quan-
tities such as P, the 3D coordinates of the point on the surface being shaded, and N,
the surface normal at P. The normal vector is perpendicular to the tangent plane of
the surface at P and points toward the outside of the surface. Because surfaces can
be two-sided, it is possible to see the inside of a surface; in that case we want the nor-
mal vector to point toward the camera, not away from it. The built-in function
faceforward simply compares the direction of the incident ray vector I with the di-
rection of the normal vector N. I is the vector from the camera position to the point
P. If the two vectors I and N point in the same direction (i.e., if their dot product is
positive), faceforward returns -N instead of N.

The first statement in the body of the shader declares and initializes a surface
normal vector Nf, which is normalized and faces toward the camera. The second
statement declares and initializes a “viewer” vector V that is normalized and gives
the direction to the camera. The third statement sets the output opacity Oi to be
equal to the input surface opacity Os. If the surface is somewhat transparent, the
opacity is less than one. Actually, Os is a color, an RGB triple that gives the opacity
of the surface for each of the three primary colors. For an opaque surface, Os is
color(1,1,1).

The final statement in the shader does the interesting work. The output color Ci
is set to the product of the opacity and a color.1 The color is the sum of an ambient
term and a diffuse term multiplied by the input surface color Cs, added to a specular
term whose color is determined by the parameter specularcolor. The built-in func-
tions ambient, diffuse, and specular gather up all of the light from multiple light
sources according to a particular reflection model. For instance, diffuse computes
the sum of the intensity of each light source multiplied by the dot product of the di-
rection to the light source and the surface normal Nf (which is passed as a parameter
to diffuse).

The plastic shading model is flexible enough to include the other two most com-
mon RenderMan shading models, the “matte” model and the “metal” model, as spe-
cial cases. The matte model is a perfectly diffuse reflector, which is equivalent to
plastic with a Kd of 1 and a Ks of 0. The metal model is a perfectly specular reflector,

Procedural Pattern Generation 21

1. The color is multiplied by the opacity because RenderMan uses an “alpha blending” technique to
combine the colors of partially transparent surfaces, similar to the method described by Porter and Duff
(1984).

Team LRN

which is equivalent to plastic with a Kd of 0, a Ks of 1, and a specularcolor the
same as Cs. The specularcolor parameter is important because it has been ob-
served that when illuminated by a white light source, plastics and other dielectric
(insulating) materials have white highlights while metals and other conductive mate-
rials have colored highlights (Cook and Torrance 1981). For example, gold has a
gold-colored highlight.

The plastic shader is a good starting point for many procedural texture
shaders. We will simply replace the Cs in the last statement of the shader with a new
color variable Ct, the texture color that is computed by the pattern generation part
of the shader.

Pattern Generation

Pattern generation is usually the hard part of writing a RenderMan shader because it
involves figuring out how to generate a particular texture pattern procedurally.

If the texture pattern is simply an image texture, the shader can call the built-in
shading language function texture:

Ct = texture(“name.tx”,s,t);

The shading language texture function looks up pixel values from the specified
image texture “name.tx” and performs filtering calculations as needed to prevent
aliasing artifacts. The texture function has the usual 2D texture space with the
texture image in the unit square. The built-in variables s and t are the standard
RenderMan texture coordinates, which by default range over the unit interval [0, 1]
for any type of surface. The shading language also provides an environment func-
tion whose 2D texture space is accessed using a 3D direction vector that is converted
internally into 2D form to access a latitude-longitude or cube-face environment map
(Greene 1986).

When the texture image is suitable, there is no easier or more realistic way to
generate texture patterns. Unfortunately, it is difficult to get a texture image that is
suitable for many texture applications. It would be nice if all desired textures could
be implemented by finding a sample of the actual material, photographing it, and
scanning the photograph to produce a beautiful texture image. But this approach is
rarely adequate by itself. If a material is not completely flat and smooth, the photo-
graph will capture information about the lighting direction and the light source.
Each bump in the material will be shaded based on its slope, and in the worst case,
the bumps will cast shadows. Even if the material is flat and smooth, the photo-
graph often will record uneven lighting conditions, reflections of the environment

22 CHAPTER 2 Building Procedural Textures

Team LRN

surrounding the material, highlights from the light sources, and so on. This informa-
tion generates incorrect visual cues when the photograph is texture mapped onto a
surface in a scene with simulated lighting and environmental characteristics that dif-
fer from those in the photograph. A beautiful photograph often looks out of place
when texture mapped onto a computer graphics model.

Another problem with photographic texture images is that they aren’t infinitely
large. When a large area must be covered, copies of the texture are placed side by
side. A seam is usually visible because the texture pixels don’t match from the top to
the bottom or the left to the right. Sometimes retouching can be used to make the
edges match up seamlessly. Even when this has been done, a large area textured with
many copies of the image can look bad because it is obvious that a small amount of
texture data has been used to texture a large area. Prominent features in the texture
map are replicated over and over in an obviously repetitive way. Such problems can
be avoided by making sure that the texture photograph covers a large area of the
texture, but this will result in visible pixel artifacts in a rendered image that mag-
nifies a tiny part of the texture. (As an alternative approach, you might consider the
remarkably successful algorithm described by Wei and Levoy (2000), which analyzes
a small texture image and then synthesizes a larger texture image that resembles the
smaller image, but does not duplicate it.)

The right way to use image textures is to design the shader first and then go out
and get a suitable texture photograph to scan. The lighting, the size of the area pho-
tographed, and the resolution of the scanning should all be selected based on the ap-
plication of the shader. In many cases the required texture images will be bump
altitude maps, monochrome images of prominent textural features, and so on. The
texture images may be painted by hand, generated procedurally, or produced from
scanned material after substantial image processing and retouching.

Procedural pattern generators are more difficult to write. In addition to the
problems of creating a small piece of program code that produces a convincing simu-
lation of some material, the procedural pattern generator must be antialiased to pre-
vent fine details in the pattern from aliasing when seen from far away.

Procedural pattern generators are harder to write than texture image shaders,
but they have several nice properties. It is usually easy to make the texture cover an
arbitrarily large area without seams or objectionable repetition. It is easy to separate
small-scale shape effects such as bumps and dimples from color variations; each can
be generated separately in the procedural shader.

Writing procedural pattern generators is still an art form; there is no recipe that
will work every time. This is a programming task in which the problem is to generate
the appearance of some real-world material. The first step is to go out and examine

Procedural Pattern Generation 23

Team LRN

the real material: its color and color variations, its reflection properties, and its sur-
face characteristics (smooth or rough, bumpy or pitted). Photographs that you can
take back to your desk are very valuable. Architectural and design magazines and
books are a good source of pictures of materials.

Texture Spaces

The RenderMan shading language provides many different built-in coordinate sys-
tems (also called spaces). A coordinate system is defined by the concatenated stack of
transformation matrices that is in effect at a given point in the hierarchical structure
of the RenderMan geometric model.

• The current space is the one in which shading calculations are normally done.
In most renderers, current space will turn out to be either camera space or
world space, but you shouldn’t depend on this.

• The world space is the coordinate system in which the overall layout of your
scene is defined. It is the starting point for all other spaces.

• The object space is the one in which the surface being shaded was defined. For
instance, if the shader is shading a sphere, the object space of the sphere is the
coordinate system that was in effect when the RiSphere call was made to create
the sphere. Note that an object made up of several surfaces all using the same
shader might have different object spaces for each of the surfaces if there are
geometric transformations between the surfaces.

• The shader space is the coordinate system that existed when the shader was in-
voked (e.g., by an RiSurface call). This is a very useful space because it can be
attached to a user-defined collection of surfaces at an appropriate point in the
hierarchy of the geometric model so that all of the related surfaces share the
same shader space.

In addition, user-defined coordinate systems can be created and given names using
the RiCoordinateSystem call. These coordinate systems can be referenced by name
in the shading language.

It is very important to choose the right texture space when defining your texture.
Using the 2D surface texture coordinates (s, t) or the surface parameters (u, v) is
fairly safe, but might cause problems due to nonuniformities in the scale of the pa-
rameter space (e.g., compression of the parameter space at the poles of a sphere).
Solid textures avoid that problem because they are defined in terms of the 3D coordi-
nates of the sample point. If a solid texture is based on the camera space coordinates

24 CHAPTER 2 Building Procedural Textures

Team LRN

of the point, the texture on a surface will change whenever either the camera or the
object is moved. If the texture is based on world space coordinates, it will change
whenever the object is moved. In most cases, solid textures should be based on the
shader space coordinates of the shading samples, so that the texture will move prop-
erly with the object. The shader space is defined when the shader is invoked, and
that can be done at a suitable place in the transformation hierarchy of the model so
that everything works out.

It is a simplification to say that a texture is defined in terms of a single texture
space. In general a texture is a combination of a number of separate “features,” each
of which might be defined in terms of its own feature space. If the various feature
spaces that are used in creating the texture are not based on one underlying texture
space, great care must be exercised to be sure that texture features don’t shift with
respect to one another. The feature spaces should have a fixed relationship that
doesn’t change when the camera or the object moves.

Layering and Composition

The best approach to writing a complex texture pattern generator is to build it up
from simple parts. There are a number of ways to combine simple patterns to make
complex patterns.

One technique is layering, in which simple patterns are placed on top of one an-
other. For example, the colors of two texture layers could be added together. Usually,
it is better to have some texture function control how the layers are combined. The
shading language mix function is a convenient way of doing this.

C = mix(C0, Cl, f);

The number f, between 0 and 1, is used to select one of the colors C0 and C1. If f is
0, the result of the mix is C0. If f is 1, the result is C1. If f is between 0 and 1, the re-
sult is a linearly interpolated mixture of C0 and C1. The mix function is defined as

color
mix(color C0, color Cl, float f)
{

return (l-f)*C0 + f*Cl;
}

CO and C1 can be fixed colors, or they can be two subtextures. In either case, they are
combined under the control of the number f, which is itself the result of some proce-
dural texture function.

Procedural Pattern Generation 25

Team LRN

When two colors are multiplied together in the shading language, the result is a
color whose RGB components are the product of the corresponding components
from the input colors. That is, the red result is the product of the red components of
the two inputs. Color multiplication can simulate the filtering of one color by the
other. If color C0 represents the transparency of a filter to red, green, and blue light,
then C0*C1 represents the color C1 as viewed through the filter.

Be careful when using a four-channel image texture that was created from an
RGBA image (an image with an opacity or “alpha” channel) because the colors in
such an image are normally premultiplied by the value of the alpha channel. In this
case, it is not correct simply to combine the RGB channels with another color under
control of the alpha channel. The correct way to merge an RGBA texture over an-
other texture color Ct is

color C;
float A;

C = color texture(“mytexture”,s,t);
A = texture(“mytexture”[3],s,t);
result = C + (1-A) * Ct;

C is the image texture color, and A is the alpha channel of the image texture (channel
number 3). Since C has already been multiplied by A, the expression C + (1—A*Ct) is
the right way to lerp2 between C and Ct.

Another way to combine simple functions to make complex functions is func-
tional composition, using the outputs of one or more simple functions as the inputs
of another function. For example, one function generates a number that varies be-
tween 0 and 1 in a particular way, and this number is used as the input to another
function that generates different colors for different values of its numerical input.
One function might take inputs that are points in one texture space and produce out-
put points in another space that are the input to a second function; in this case, the
first function transforms points into the feature space needed by the second function.
Composition is very powerful and is so fundamental to programming that you really
can’t avoid using it.

The computer science literature concerning functional programming is a good
source of techniques for combining functions (Ghezzi and Jazayeri 1982). Func-
tional languages such as LISP (Winston and Horn 1984) rely heavily on composition
and related techniques.

26 CHAPTER 2 Building Procedural Textures

2. In computer graphics, linear interpolation is colloquially called lerping.

Team LRN

The remainder of this section presents a series of primitive functions that are
used as building blocks for procedural textures. The presentation includes several
examples of the use of these primitives in procedural texture shaders.

Steps, Clamps, and Conditionals

From the earlier discussion on methods of combining primitive operations to make
procedural patterns, it should be clear that functions taking parameters and return-
ing values are the most convenient kind of primitive building blocks. Steps and
clamps are conditional functions that give us much the same capabilities that if
statements give us. But steps and clamps are often more convenient, simply because
they are functions.

The RenderMan shading language function step(a,x) returns the value 0 when
x is less than a and returns 1 otherwise. The step function can be written in C as
follows:

float
step(float a, float x)
{

return (float) (x >= a);
}

A graph of the step function is shown in Figure 2.8.
The main use of the step function is to replace an if statement or to produce a

sharp transition between one type of texture and another type of texture. For exam-
ple, an if statement such as

if (u < 0.5)
Ci = color (1,1,.5);

else
Ci = color (.5,.3,1);

Procedural Pattern Generation 27

FIGURE 2.8 The step function.

1

0
a

step(a,x)

Team LRN

can be rewritten to use the step function as follows:

Ci = mix(color (1,1,.5), color (.5,.3,1), step(0.5, u));

Later in this chapter when we examine antialiasing, you’ll learn how to create an
antialiased version of the step function. Writing a procedural texture with a lot of
if statements instead of step functions can make antialiasing much harder.3

Two step functions can be used to make a rectangular pulse as follows:

#define PULSE(a,b,x) (step((a),(x)) - step((b),(x)))

This preprocessor macro generates a pulse that begins at x = a and ends at x = b. A
graph of the pulse is shown in Figure 2.9.

The RenderMan shading language function clamp(x,a,b) returns the value a
when x is less than a, the value of x when x is between a and b, and the value b when
x is greater than b. The clamp function can be written in C as follows:

float
clamp(float x, float a, float b)
{

return (x < a ? a: (x > b ? b : x));
}

A graph of the clamp function is shown in Figure 2.10.
The well-known min and max functions are closely related to clamp. In fact, min

and max can be written as clamp calls, as follows:

min(x, b) ≡ clamp(x, x, b)

and

max(x, a) ≡ clamp(x, a, x)

Alternatively, clamp can be expressed in terms of min and max:

clamp(x, a, b) ≡ min(max(x, a), b)

28 CHAPTER 2 Building Procedural Textures

3. Another reason for using step instead of if in RenderMan shaders is that it encourages you to com-
pute the inputs of a conditional everywhere, not just in the fork of the conditional where they are used.
This can avoid problems in applying image textures and other area operations.

Team LRN

For completeness, here are the C implementations of min and max:

float
min(float a, float b)
{

return (a < b ? a : b);
}
float
max(float a, float b)
{

return (a < b ? b : a);
}

Another special conditional function is the abs function, expressed in C as
follows:

float
abs(float x)
{

return (x < 0 ? -x : x);
}

Procedural Pattern Generation 29

1

0
a b

PULSE(a,b,x)

FIGURE 2.9 Two steps used to make a pulse.

a

a

b

b

clamp(x,)a,b

FIGURE 2.10 The clamp function.

Team LRN

A graph of the abs function is shown in Figure 2.11. The abs function can be viewed
as a rectifier; for example, it will convert a sine wave that oscillates between −1 and
1 into a sequence of positive sinusoidal pulses that range from 0 to 1.

In addition to the “pure” or “sharp” conditionals step, clamp, min, max, and
abs, the RenderMan shading language provides a “smooth” conditional function
called smoothstep. This function is similar to step, but instead of a sharp transi-
tion from 0 to 1 at a specified threshold, smoothstep(a,b,x) makes a gradual tran-
sition from 0 to 1 beginning at threshold a and ending at threshold b. In order to do
this, smoothstep contains a cubic function whose slope is 0 at a and b and whose
value is 0 at a and 1 at b. There is only one cubic function that has these properties
for a = 0 and b = 1, namely, the function 3x2 − 2x3.

Here is a C implementation of smoothstep, with the cubic function expressed
according to Horner’s rule:4

float
smoothstep(float a, float b, float x)
{

if (x < a)
return 0;

if (x >= b)
return 1;

x = (x - a)/(b - a);
return (x*x * (3 - 2*x));

}

A graph of the smoothstep function is shown in Figure 2.12.

30 CHAPTER 2 Building Procedural Textures

4. Horner’s rule is a method of nested multiplication for efficiently evaluating polynomials.

1

0

abs(x)

FIGURE 2.11 The abs function.

Team LRN

The smoothstep function is used instead of step in many procedural textures
because sharp transitions often result in unsightly artifacts. Many of the artifacts are
due to aliasing, which is discussed at length later in this chapter. Sharp transitions
can be very unpleasant in animated sequences because some features of the texture
pattern appear suddenly as the camera or object moves (the features are said to
“pop” on and off). Most of the motion in an animated sequence is carefully “eased”
in and out to avoid sudden changes in speed or direction; the smoothstep function
helps to keep the procedural textures in the scene from changing in equally unset-
tling ways.

Periodic Functions

The best-known periodic functions are sin and cos. They are important because of
their close ties to the geometry of the circle, to angular measure, and to the represen-
tation of complex numbers. It can be shown that other functions can be built up
from a sum of sinusoidal terms of different frequencies and phases (see the discus-
sion on “Spectral Synthesis” on page 48).

sin and cos are available as built-in functions in C and in the RenderMan shad-
ing language. Some ANSI C implementations provide single-precision versions of
sin and cos, called sinf and cosf, which you might prefer to use to save computa-
tion time. A graph of the sin and cos functions is shown in Figure 2.13.

Another important periodic function is the mod function. mod(a,b) gives the
positive remainder obtained when dividing a by b. C users beware! Although C has a
built-in integer remainder operator “%” and math library functions fmod and fmodf
for double and float numbers, all of these are really remainder functions, not
modulus functions, in that they will return a negative result if the first operand, a, is
negative. Instead, you might use the following C implementation of mod:

Procedural Pattern Generation 31

1

0
a b

smoothstep(a,b,x)

FIGURE 2.12 The smoothstep function.

Team LRN

float
mod(float a, float b)
{

int n = (int)(a/b);
a -= n*b;
if (a < 0)
a += b;

return a;
}

A graph of the periodic sawtooth function mod(x,a)/a is shown in Figure 2.14. This
function has an amplitude of one and a period of a.

By applying mod to the inputs of some other function, we can make the other
function periodic too. Take any function, say, f (x), defined on the interval from 0 to
1 (technically, on the half-open interval [0, 1]). Then f (mod(x,a)/a) is a periodic
function. To make this work out nicely, it is best if f(0) = f(1) and even better if
the derivatives of f are also equal at 0 and 1. For example, the pulse function
PULSE(0.4,0.6,x) can be combined with the mod function to get the periodic square
wave function PULSE(0.4,0.6,mod(x,a)/a) with its period equal to a (see Figure
2.15).

It’s often preferable to use another mod-like idiom instead of mod in your
shaders. We can think of xf = mod(a,b)/b as the fractional part of the ratio a/b. In
many cases it is useful to have the integer part of the ratio, xi, as well.

float xf, xi;
xf = a/b;
xi = floor(xf);
xf -= xi;

The function floor(x) returns the largest integer that is less than or equal to x.
Since the floor function is a built-in part of both the C math library and the

32 CHAPTER 2 Building Procedural Textures

sin(x)

cos(x)

0

1

−1

FIGURE 2.13 The sin and cos functions.

Team LRN

RenderMan shading language, this piece of code will work equally well in either lan-
guage. Some versions of ANSI C provide a floorf function whose argument and re-
sult are single-precision float numbers. In C, the following macro is an alternative to
the built-in floor function:

#define FLOOR(x) ((int)(x) - ((x) < 0 && (x) != (int)(x)))

FLOOR isn’t precisely the same as floor, because FLOOR returns a value of int
type rather than double type. Be sure that the argument passed to FLOOR is the name
of a variable, since the macro may evaluate its argument up to four times.

A closely related function is the ceiling function ceil(x), which returns the
smallest integer that is greater than or equal to x. The function is built into the shad-
ing language and the C math library. ANSI C provides the single-precision version
ceilf. The following macro is an alternative to the C library function:

#define CEIL(x) ((int)(x) + ((x) > 0 && (x) != (int)(x)))

Procedural Pattern Generation 33

1

0
a 2a 3a 4a

mod(x,a)/a

FIGURE 2.14 The periodic function mod(x,a)/a.

1

0
a 2a 3a 4a

PULSE(0.4,0.6,mod(x,a)/a)

FIGURE 2.15 How to make a function periodic.

Team LRN

Splines and Mappings

The RenderMan shading language has a built-in spline function, which is a one-
dimensional Catmull-Rom interpolating spline through a set of so-called knot val-
ues. The parameter of the spline is a floating-point number.

result = spline(parameter,
knotl, knot2, . . . , knotN-1, knotN);

In the shading language, the knots can be numbers, colors, or points (but all
knots must be of the same type). The result has the same data type as the knots. If
parameter is 0, the result is knot2. If parameter is 1, the result is knotN-1. For val-
ues of parameter between 0 and 1, the value of result interpolates smoothly be-
tween the values of the knots from knot2 to knotN-1. The knotl and knotN values
determine the derivatives of the spline at its end points. Because the spline is a cubic
polynomial, there must be at least four knots.

Here is a C language implementation of spline in which the knots must be
floating-point numbers:

/* Coefficients of basis matrix. */
#define CROO -0.5
#define CR01 1.5
#define CR02 -1.5
#define CR03 0.5
#define CR10 1.0
#define CR11 -2.5
#define CR12 2.0
#define CR13 -0.5
#define CR20 -0.5
#define CR21 0.0
#define CR22 0.5
#define CR23 0.0
#define CR30 0.0
#define CR31 1.0
#define CR32 0.0
#define CR33 0.0

float
spline(float x, int nknots, float *knot)
{

int span;
int nspans = nknots - 3;
float cO, cl, c2, c3; /* coefficients of the cubic.*/
if (nspans < 1){/* illegal */

34 CHAPTER 2 Building Procedural Textures

Team LRN

fprintf(stderr, “Spline has too few knots.\n”);
return 0;

}
/* Find the appropriate 4-point span of the spline. */
x = clamp(x, 0, 1) * nspans;
span = (int) x;
if (span >= nknots - 3)

span = nknots - 3;
x -= span;
knot += span;

/* Evaluate the span cubic at x using Horner’s rule. */

c3 = CROO*knot[0] + CR01*knot[l] + CR02*knot[2] + CR03*knot[3];
c2 = CR10*knot[0] + CRll*knot[l] + CR12*knot[2] + CR13*knot[3];
cl = CR20*knot[0] + CR21*knot[l] + CR22*knot[2] + CR23*knot[3];
cO = CR30*knot[0] + CR31*knot[l] + CR32*knot[2] + CR33*knot[3];

return ((c3*x + c2)*x + cl)*x + cO;

}

A graph of a particular example of the spline function is shown in Figure 2.16.
This code can easily be adapted to work with knots that are colors or points.

Just do the same thing three times, once for each of the components of the knots. In
other words,

spline(parameter, (xl,yl,zl), . . . , (xN,yN,zN))

is exactly equivalent to

(spline(parameter, xl, . . . , xN),
spline(parameter, yl, . . . , yN),
spline(parameter, zl, . . . , zN))

Procedural Pattern Generation 35

FIGURE 2.16 An example of the spline function.

Team LRN

The spline function is used to map a number into another number or into a
color. A spline can approximate any function on the [0, 1] interval by giving values
of the function at equally spaced sample points as the knots of the spline. In other
words, the spline can interpolate function values from a table of known values at
equally spaced values of the input parameter. A spline with colors as knots can be
used as a color map or color table.

An example of this technique is a shader that simulates a shiny metallic sur-
face by a procedural reflection map texture. The shader computes the reflection di-
rection R of the viewer vector V. The vertical component of R in world space is
used to look up a color value in a spline that goes from brown earth color below to
pale bluish-white at the horizon and then to deeper shades of blue in the sky. Note
that the shading language’s built-in vtransform function properly converts a direc-
tion vector from the current rendering space to another coordinate system specified
by name.

#define BROWN color (0.1307,0.0609,0.0355)
#define BLUEO color (0.4274,0.5880,0.9347)
#define BLUE1 color (0.1221,0.3794,0.9347)
#define BLUE2 color (0.1090,0.3386,0.8342)
#define BLUES color (0.0643,0.2571,0.6734)
#define BLUE4 color (0.0513,0.2053,0.5377)
#define BLUES color (0.0326,0.1591,0.4322)
#define BLACK color (0,0,0)
surface
metallic()
{

point Nf = normalize(faceforward(N, I));
point V = normalize(-I);
point R; /* reflection direction */
point Rworld; /* R in world space */
color Ct;
float altitude;

R = 2 * Nf * (Nf . V) - V;
Rworld = normalize(vtransform(“world”, R));
altitude = 0.5 * zcomp(Rworld) + 0.5;
Ct = spline(altitude,

BROWN, BROWN, BROWN, BROWN, BROWN,
BROWN, BLUEO, BLUE1, BLUE2, BLUES,
BLUE4, BLUES, BLACK);

Oi = Os;
Ci = Os * Cs * Ct;

}

36 CHAPTER 2 Building Procedural Textures

Team LRN

Figure 2.17 is an image shaded with the metallic reflection map shader.
Since mix functions and so many other selection functions are controlled by val-

ues that range over the [0, 1] interval, mappings from the unit interval to itself can be
especially useful. Monotonically increasing functions on the unit interval can be
used to change the distribution of values in the interval. The best-known example of
such a function is the “gamma correction” function used to compensate for the
nonlinearity of CRT display systems:

float
gammacorrect(float gamma, float x)
{

return pow(x, 1/gamma);
}

Figure 2.18 shows the shape of the gamma correction function for gamma values of
0.4 and 2.3. If x varies over the [0, 1] interval, then the result is also in that interval.
The zero and one end points of the interval are mapped to themselves. Other values
are shifted upward toward one if gamma is greater than one, and shifted downward
toward zero if gamma is between zero and one.

Perlin and Hoffert (1989) use a version of the gamma correction function that
they call the bias function. The bias function replaces the gamma parameter with a
parameter b, defined such that bias(b,0.5) = b.

Procedural Pattern Generation 37

Team LRN

float
bias(float b, float x)
{

return pow(x, log(b)/log(0.5));
}

Figure 2.19 shows the shape of the bias function for different choices of b.
Perlin and Hoffert (1989) present another function to remap the unit interval.

This function is called gain and can be implemented as follows:

float
gain(float g, float x)
{

if (x < 0.5)
return bias(l-g, 2*x)/2;

else
return 1 - bias(l-g, 2 - 2*x)/2;

}

38 CHAPTER 2 Building Procedural Textures

gamma(2.3,x)

gamma(0.4,x)

0

1

1

FIGURE 2.18 The gamma correction function.

bias(0.8,x)

bias(0.2,x)

0

1

1

FIGURE 2.19 The bias function.

Team LRN

Regardless of the value of g, all gain functions return 0.5 when x is 0.5. Above
and below 0.5, the gain function consists of two scaled-down bias curves forming
an S-shaped curve. Figure 2.20 shows the shape of the gain function for different
choices of g.

Schlick (1994) presents approximations to bias and gain that can be evaluated
more quickly than the power functions given here.

Example: Brick Texture

One of the standard texture pattern clichés in computer graphics is the checkerboard
pattern. This pattern was especially popular in a variety of early papers on anti-
aliasing. Generating a checkerboard procedurally is quite easy. It is simply a matter
of determining which square of the checkerboard contains the sample point and then
testing the parity of the sum of the row and column to determine the color of that
square.

This section presents a procedural texture generator for a simple brick pattern
that is related to the checkerboard but is a bit more interesting. The pattern consists
of rows of bricks in which alternate rows are offset by one-half the width of a brick.
The bricks are separated by a mortar that has a different color than the bricks. Fig-
ure 2.21 is a diagram of the brick pattern.

The following is a listing of the shading language code for the brick shader, with
explanatory remarks inserted here and there.

#define BRICKWIDTH 0.25
#define BRICKHEIGHT 0.08
#define MORTARTHICKNESS 0.01

#define BMWIDTH (BRICKWIDTH+MORTARTHICKNESS)
#define BMHEIGHT (BRICKHEIGHT+MORTARTHICKNESS)

Procedural Pattern Generation 39

gain(0.8,x)

0

1

1

gain(0.2,x)

0

1

1

FIGURE 2.20 The gain function.

Team LRN

#define MWF (MORTARTHICKNESS*0.5/BMWIDTH)
#define MHF (MORTARTHICKNESS*0.5/BMHEIGHT)

surface brick(
uniform float Ka = 1;
uniform float Kd = 1;
uniform color Cbrick = color (0.5, 0.15, 0.14);
uniform color Cmortar = color (0.5, 0.5, 0.5);
)

{
color Ct;
point Nf;
float ss, tt, sbrick, tbrick, w, h;
float scoord = s;
float tcoord = t;

Nf = normalize(faceforward(N, I));

ss = scoord / BMWIDTH;
tt = tcoord / BMHEIGHT;

if (mod(tt*0.5,l) > 0.5)
ss += 0.5; /* shift alternate rows */

The texture coordinates scoord and tcoord begin with the values of the stan-
dard texture coordinates s and t, and then are divided by the dimensions of a brick
(including one-half of the mortar around the brick) to obtain new coordinates ss
and tt that vary from 0 to 1 within a single brick. scoord and tcoord become the
coordinates of the upper-left corner of the brick containing the point being shaded.

40 CHAPTER 2 Building Procedural Textures

0 1

0

1

MORTARTHICKNESS

BRICKWIDTH BRICKHEIGHT

FIGURE 2.21 The geometry of a brick.

Team LRN

Alternate rows of bricks are offset by one-half brick width to simulate the usual way
in which bricks are laid.

sbrick = floor(ss); /* which brick? */
tbrick = floor(tt); /* which brick? */
ss -= sbrick;
tt -= tbrick;

Having identified which brick contains the point being shaded, as well as the
texture coordinates of the point within the brick, it remains to determine whether
the point is in the brick proper or in the mortar between the bricks.

w = step(MWF,ss) - step(1-MWF,ss);
th = step(MHF,tt) - step(1-MHF,tt);

Ct = mix(Cmortar, Cbrick, w*h);

/* diffuse reflection model */
Oi = Os;
Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));

}

The rectangular brick shape results from two pulses (see page 28), a horizontal
pulse w and a vertical pulse h. w is zero when the point is horizontally within the mor-
tar region and rises to one when the point is horizontally within the brick region. h
does the same thing vertically. When the two values are multiplied together, the re-
sult is the logical AND of w and h. That is, w * h is nonzero only when the point is
within the brick region both horizontally and vertically. In this case, the mix function
switches from the mortar color Cmortar to the brick color Cbrick.

The shader ends by using the texture color Ct in a simple diffuse shading model
to shade the surface. Figure 2.22 is an image rendered with the brick texture from
this example.

Bump-Mapped Brick

Now let’s try our hand at some procedural bump mapping. Recall that bump map-
ping involves modifying the surface normal vectors to give the appearance that the
surface has bumps or indentations. How is this actually done? We will examine two
methods.

Blinn (1978), the paper that introduced bump mapping, describes how a bump
of height F(u, v) along the normal vector N can be simulated. The modified or “per-
turbed” normal vector is N′ = N + D. The perturbation vector D lies in the tangent

Procedural Pattern Generation 41

Team LRN

plane of the surface and is therefore perpendicular to N. D is based on the sum of
two separate perturbation vectors U and V (Figure 2.23).

42 CHAPTER 2 Building Procedural Textures

FIGURE 2.22 The brick texture.

N
N′

∂P

∂V

V

U D

∂P

∂U

FIGURE 2.23 The geometry of bump mapping.

F P
U N

u v
∂ ∂

= ×
∂ ∂

Σ Τ

F P
V N

v u
∂ ∂

=− ×
∂ ∂

Ω Σ ςΞ

()
1

D U V
N

= +

Team LRN

Let’s analyze the expression for U. Note that the cross product

is perpendicular to N and therefore lies in the tangent plane of the surface. It is also
perpendicular to the partial derivative of P, the surface position, with respect to v.
This derivative lies in the tangent plane and indicates the direction in which P
changes as the surface parameter v is increased. If the parametric directions are per-
pendicular (usually they are only approximately perpendicular), adding a perturba-
tion to N along the direction of this cross product would tilt N as if there were an
upward slope in the surface along the u direction. The partial derivative ∂F/∂u gives
the slope of the bump function in the u direction.

This technique looks somewhat frightening, but is fairly easy to implement if
you already have the normal vector and the parametric derivatives of P. In the
RenderMan shading language, N, dPdu, and dPdv contain these values. The differ-
encing operators Du and Dv allow you to approximate the parametric derivatives of
any expression. So Blinn’s method of bump mapping could be implemented using the
following shading language code:

float F; point U, V, D;
F = /* fill in some bump function here */
U = Du(F) * (N ^ dPdv);
V = -(Dv(F) * (N ^ dPdu));
D = 1/length(N) * (U + V);
Nf = N + D;
Nf = normalize(faceforward(Nf, I));

Then use Nf in the shading model just as you normally would. The resulting surface
shading should give the appearance of a pattern of bumps determined by F.

Fortunately, the shading language provides a more easily remembered way to
implement bump mapping and even displacement mapping.

float F;
point PP;

F = /* fill in some bump function here */

PP = P + F * normalize(N);
Nf = calculatenormal(PP);
Nf = normalize(faceforward(Nf, I));

In this code fragment, a new position PP is computed by moving along the direc-
tion of the normal a distance determined by the bump height F. Then the built-in

Procedural Pattern Generation 43

P
N

v
∂

×
∂

Team LRN

function calculatenormal is used to compute the normal vector of the modified sur-
face PP. calculatenormal(PP) does nothing more than return the cross product of
the parametric derivatives of the modified surface:

point
calculatenormal(point PP)
{

return Du(PP) ^ Dv(PP);
}

To create actual geometric bumps by displacement mapping, you use very simi-
lar shading language code:

float F;

F = /* fill in some bump function here */

p = p + F * normalize(N);
N = calculatenormal(P);

Instead of creating a new variable PP that represents the bumped surface, this
code assigns a new value to the original surface position P. In the shading language
this means that the positions of points on the surface are actually moved by the
shader to create bumps in the geometry. Similarly, the true normal vector N is recom-
puted so that it matches the displaced surface properly. We’ve omitted the last line
that computes Nf because displacement mapping should be done in a separate dis-
placement shader, not in the surface shader.5

To get a better understanding of bump mapping, let’s add bump-mapped mortar
grooves to our brick texture. The first step is to design the shape of the groove
profile, that is, the vertical cross section of the bump function. Figure 2.24 is a dia-
gram of the profile of the bricks and mortar grooves.

In order to realistically render the mortar groove between the bricks, we want
the brick shader to compute a procedural bump-mapping function that will be used
to adjust the normal vector before shading. To this end, we add the following code to
the brick shader, immediately before the last statement (the one that computes Ci
from the shading model).

44 CHAPTER 2 Building Procedural Textures

5. Pixar’s PhotoRealistic RenderMan renderer requires you to specify a displacement bound that tells the
renderer what the maximum value of the bump height or other displacement will be. This is fully ex-
plained in the user’s manual for the renderer.

Team LRN

/* compute bump-mapping function for mortar grooves */
sbump = smoothstep(0,MWF,ss) - smoothstep(1-MWF,1,ss);
tbump = smoothstep(0,MHF,tt) - smoothstep(1-MHF,1,tt);
stbump = sbump * tbump;

The first two statements define the bump profile along the s and t directions in-
dependently. The first smoothstep call in each statement provides the positive slope
of the bump function at the start of the brick, and the last smoothstep call in each
statement provides the negative slope at the end of the brick. The last statement com-
bines the sbump vertical groove and tbump horizontal groove to make an overall
bump value stbump.

/* compute shading normal */
Nf = calculatenormal(P + normalize(N) * stbump);
Nf = normalize(faceforward(Nf, I));
Oi = Os;
Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));

Finally, the shading normal Nf is computed based on the bump height as de-
scribed earlier in this section. The shader ends as before by using the texture color Ct
and bump-mapped normal Nf in a diffuse shading model to shade the surface. Figure
2.25 is an image of the bump-mapped brick texture.

There is a subtle issue hidden in this example. Recall that the shader displaces
the surface position by a bump height stbump along the normal vector. Since the
built-in normal vector N was used without modification, the displacement is defined
in the shader’s current space, not in shader space. Even though the bump function
itself is locked to the surface because it is defined in terms of the s and t surface tex-
ture coordinates, the height of the bumps could change if the object is scaled relative

Procedural Pattern Generation 45

ss:
tt:

0

1

0
0

MWF
MHF

1–MWF
1–MHF

1
1

FIGURE 2.24 Brick and groove profile.

Team LRN

to the world space. To avoid this problem, we could have transformed the surface
point and normal vector into shader space, done the displacement there, and trans-
formed the new normal back to current space, as follows:

point Nsh, Psh;
Psh = transform(“shader”, P);
Nsh = normalize(ntransform(“shader”, N));
Nsh = calculatenormal(Psh + Nsh * stbump);
Nf = ntransform(“shader”, “current”, Nsh);
Nf = normalize(faceforward(Nf, I));

Note the use of ntransform rather than transform to transform normal vec-
tors from one space to another. Normal vectors are transformed differently than
points or direction vectors (see pages 216–217 of Foley et al. 1990). The second
ntransform uses two space names to request a transformation from shader space to
current space.

Example: Procedural Star Texture

Now let’s try to generate a texture pattern that consists of a yellow five-pointed star
on a background color Cs. The star pattern seems quite difficult until you think
about it in polar coordinates. This is an example of how choosing the appropriate
feature space makes it much easier to generate a tricky feature.

Figure 2.26 shows that each point of a five-pointed star is 72 degrees wide. Each
half-point (36 degrees) is described by a single edge. The end points of the edge are a

46 CHAPTER 2 Building Procedural Textures

FIGURE 2.25 The bump-mapped brick texture.

Team LRN

point at radius rmin from the center of the star and another point at radius rmax
from the center of the star.

surface
star(

uniform float Ka = 1;
uniform float Kd = 1;
uniform color starcolor = color (1.0000,0.5161,0.0000);
uniform float npoints = 5;
uniform float sctr = 0.5;
uniform float tctr = 0.5;

)
{

point Nf = normalize(faceforward(N, I));
color Ct;
float ss, tt, angle, r, a, in_out;
uniform float rmin = 0.07, rmax = 0.2;
uniform float starangle = 2*PI/npoints;
uniform point pO = rmax*(cos(0),sin(0), 0);
uniform point pi = rmin*

(cos(starangle/2),sin(starangle/2),0);
uniform point d0 = pi - p0; point d1;
ss = s - sctr; tt = t - tctr;
angle = atan(ss, tt) + PI;
r = sqrt(ss*ss + tt*tt);

At this point, the shader has computed polar coordinates relative to the center of
the star. These coordinates r and angle act as the feature space for the star.

a = mod(angle, starangle)/starangle;
if (a >= 0.5)

a = 1 - a;

Procedural Pattern Generation 47

rmax

rmin

36°

36°

FIGURE 2.26 The geometry of a star.

Team LRN

Now the shader has computed the coordinates of the sample point (r,a) in a
new feature space: the space of one point of the star. a is first set to range from 0 to 1
over each star point. To avoid checking both of the edges that define the “V” shape
of the star point, sample points in the upper half of the star point are reflected
through the center line of the star point. The new sample point (r,a) is inside the
star if and only if the original sample point was inside the star, due to the symmetry
of the star point around its center line.

dl = r*(cos(a), sin(a),0) - p0;
in_out = step(0, zcomp(d0^d1));
Ct = mix(Cs, starcolor, in_out);
/* diffuse (“matte”) shading model */
Oi = Os;
Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));

}

To test whether (r,a) is inside the star, the shader finds the vectors d0 from the
tip of the star point to the rmin vertex and d1 from the tip of the star point to the
sample point. Now we use a handy trick from vector algebra. The cross product of
two vectors is perpendicular to the plane containing the vectors, but there are two
directions in which it could point. If the plane of the two vectors is the (x, y) plane,
the cross product will point along the positive z-axis or along the negative z-axis.
The direction in which it points is determined by whether the first vector is to the left
or to the right of the second vector. So we can use the direction of the cross product
to decide which side of the star edge d0 the sample point is on.

Since the vectors d0 and d1 have z components of zero, the cross product will
have x and y components of zero. Therefore, the shader can simply test the sign of
zcomp(d0^d1). We use step(0,zcomp(d0^d1)) instead of sign(zcomp(d0^d1)) be-
cause the sign function returns −1, 0, or 1. We want a binary (0 or 1) answer to the
query “Is the sample point inside or outside the star?” This binary answer, in_out,
is used to select the texture color Ct using the mix function, and the texture color is
used to shade the sample point according to the diffuse shading model.

Figure 2.27 is an image rendered using the star shader.

Spectral Synthesis

Gardner (1984, 1985) demonstrated that procedural methods could generate re-
markably complex and natural-looking textures simply by using a combination
of sinusoidal component functions of differing frequencies, amplitudes, and phases.
The theory of Fourier analysis tells us that functions can be represented as a sum

48 CHAPTER 2 Building Procedural Textures

Team LRN

of sinusoidal terms. The Fourier transform takes a function from the temporal
or spatial domain, where it is usually defined, into the frequency domain, where
it is represented by the amplitude and phase of a series of sinusoidal waves
(Bracewell 1986; Brigham 1988). When the series of sinusoidal waves is summed
together, it reproduces the original function; this is called the inverse Fourier
transform.

Spectral synthesis is a rather inefficient implementation of the inverse discrete
Fourier transform, which takes a function from the frequency domain back to the
spatial domain. Given the amplitude and phase for each sinusoidal component, we
can sum up the waves to get the desired function. The efficient way to do this is the
inverse fast Fourier transform (FFT) algorithm, but that method generates the in-
verse Fourier transform for a large set of points all at once. In an implicit procedural
texture we have to generate the inverse Fourier transform for a single sample point,
and the best way to do that seems to be a direct summation of the sine wave
components.

In procedural texture generation, we usually don’t have all of the frequency do-
main information needed to reconstruct some function exactly. Instead, we want a
function with some known characteristics, usually its power spectrum, and we don’t
care too much about the details of its behavior. It is possible to take a scanned image
of a texture, compute its frequency domain representation using a fast Fourier trans-
form, and use the results to determine coefficients for a spectral synthesis procedural
texture, but in our experience that approach is rarely taken.

Procedural Pattern Generation 49

FIGURE 2.27 The star texture pattern.

Team LRN

One of Gardner’s simplest examples is a 2D texture that can be applied to a flat
sky plane to simulate clouds. Here is a RenderMan shader that generates such a
texture:

#define NTERMS 5
surface cloudplane(

color cloudcolor = color (1,1,1);
)

{
color Ct;
point Psh;
float i, amplitude, f;
float x, fx, xfreq, xphase;
float y, fy, yfreq, yphase;
uniform float offset = 0.5;
uniform float xoffset = 13;
uniform float yoffset = 96;

Psh = transform(“shader”, P);
x = xcomp(Psh) + xoffset;
y = ycomp(Psh) + yoffset;

xphase = 0.9; /* arbitrary */
yphase = 0.7; /* arbitrary */
xfreq = 2 * PI * 0.023;
yfreq = 2 * PI * 0.021;
amplitude = 0.3;
f = 0;
for (i = 0; i < NTERMS; i += 1) {

fx = amplitude *
(offset + cos(xfreq * (x + xphase)));

fy = amplitude *
(offset + cos(yfreq * (y + yphase)));

f += fx * fy;
xphase = PI/2 * 0.9 * cos (yfreq * y);
yphase = PI/2 * 1.1 * cos (xfreq * x);

xfreq *= 1.9 + i * 0.1; /* approximately 2 */
yfreq *= 2.2 - i * 0.08; /* approximately 2 */
amplitude *= 0.707;

}
f = clamp(f, 0, 1);

Ct = mix(Cs, cloudcolor, f);
Oi = Os;
Ci = Os * Ct;

}

50 CHAPTER 2 Building Procedural Textures

Team LRN

This texture is a sum of five components, each of which is a cosine function with
a different frequency, amplitude, and phase. The frequencies, amplitudes, and phases
are chosen according to rules discovered by Gardner in his experiments. Gardner’s
technique is somewhat unusual for spectral synthesis in that the phase of each com-
ponent is coupled to the value of the previous component in the other coordinate
(for example, the x phase depends on the value of the preceding y component).

Making an acceptable cloud texture in this way is a battle to avoid regular pat-
terns in the texture. Natural textures usually don’t have periodic patterns that repeat
exactly. Spectral synthesis relies on complexity to hide its underlying regularity and
periodicity. There are several “magic numbers” strewn throughout this shader in an
attempt to prevent regular patterns from appearing in the texture. Fourier spectral
synthesis using a finite number of sine waves will always generate a periodic func-
tion, but the period can be made quite long so that the periodicity is not obvious to
the observer. Figure 2.28 is an image rendered using the cloudplane shader with Cs
set to a sky-blue color.

What Now?

You could go a long way using just the methods described so far. Some of these tech-
niques can produce rich textures with a lot of varied detail, but even more variety is
possible. In particular, we haven’t yet discussed the noise function, the most popular
of all procedural texture primitives. But first, let’s digress a bit and examine one of
the most important issues that affect procedural textures, namely, the difficulties of
aliasing and antialiasing.

Procedural Pattern Generation 51

FIGURE 2.28 The cloud plane texture pattern.

Team LRN

ALIASING AND HOW TO PREVENT IT
Aliasing is a term from the field of signal processing. In computer graphics, aliasing
refers to a variety of image flaws and unpleasant artifacts that result from improper
use of sampling. The staircaselike “jaggies” that can appear on slanted lines and
edges are the most obvious examples of aliasing. The next section presents an infor-
mal discussion of basic signal processing concepts, including aliasing. For a more
rigorous presentation, see Oppenheim and Schafer (1989), a standard signal pro-
cessing textbook.

Signal Processing

As shown in Figure 2.29, a continuous signal can be converted into a discrete
form by measuring its value at equally spaced sample points. This is called sam-
pling. The original signal can be reconstructed later from the sample values by
interpolation.

Sampling and reconstruction are fundamental to computer graphics.6 Raster im-
ages are discrete digital representations of the continuous optical signals that nature
delivers to our eyes and to our cameras. Synthetic images are made by sampling of
geometric models that are mathematically continuous. Of course, our image signals
are two-dimensional. Signal processing originally was developed to deal with the
one-dimensional time-varying signals encountered in communications. The field of
image processing is in essence the two-dimensional extension of signal processing
techniques to deal with images.

Fortunately for computer graphics, the process of sampling and reconstruction
is guaranteed to work under certain conditions, namely, when the amount of infor-
mation in the original signal does not exceed the amount of information that can be
captured by the samples. This is known as the sampling theorem. The amount of in-
formation in the original signal is called its bandwidth. The amount of information
that can be captured by the samples is dependent upon the sampling rate, the num-
ber of sample points per unit distance. Unfortunately for computer graphics, the
conditions for correct sampling and reconstruction are not always easy to meet, and
when they are not met, aliasing occurs.

The theory of Fourier analysis tells us that a function can be represented as a
sum of sinusoidal components with various frequencies, phases, and amplitudes.
The Fourier transform converts the function from its original form in the “spatial

52 CHAPTER 2 Building Procedural Textures

6. Mitchell and Netravali (1988) includes an excellent discussion of the many places in which sampling
and reconstruction arise in computer graphics.

Team LRN

domain” into a set of sinusoidal components in the “frequency domain.” A signal
with limited bandwidth will have a maximum frequency in its frequency domain
representation. If that frequency is less than or equal to one-half of the sampling rate,
the signal can be correctly sampled and reconstructed without aliasing. Aliasing will
occur if the maximum frequency exceeds one-half of the sampling rate (this is called
the Nyquist frequency). The maximum frequency in the reconstructed signal cannot
exceed the Nyquist frequency, but the energy contributed to the original signal by
the excessively high frequency components does not simply disappear. Instead, it ap-
pears in the reconstructed signal as erroneous lower-frequency energy, which is
called an alias of the high-frequency energy in the original signal. Figure 2.30 illus-
trates this situation. The original signal varies too often to be adequately captured by
the samples. Note that the signal reconstructed from the samples is quite different
from the original signal. The problem of aliasing can be addressed by changing the
sample points to be closer together, or by modifying the original signal to eliminate
the high frequencies. If it is possible to increase the sampling rate, that is always ben-
eficial. With more samples, the original signal can be reconstructed more accurately.

Aliasing and How to Prevent It 53

Sample points

Original and
reconstructed
signals

1 2 3 4 5 6

FIGURE 2.29 Sampling and reconstruction.

Reconstructed
signal

Original signal

1 2 3 4 5 6

Sample points

FIGURE 2.30 Aliasing.

Team LRN

The Nyquist frequency threshold at which aliasing begins is increased, so the fre-
quencies in the signal might now be below the Nyquist frequency.

Unfortunately, there is always some practical limit on the resolution of an image
due to memory space or display limitations, and the sampling rate of an image is
proportional to its resolution. It is impossible for an image to show details that are
too small to be visible at the resolution of the image. Therefore, it is vital to take ex-
cessively high frequencies out of the original signal so that they don’t show up as
aliases and detract from the part of the signal that can be seen given the available
resolution.

There is another reason why increasing the sampling rate is never a complete so-
lution to the problem of aliasing. Some signals have unlimited bandwidth, so there is
no maximum frequency. Sharp changes in the signal, for example, a step function,
have frequency components of arbitrarily high frequency. No matter how great the
image resolution, increasing the sampling rate to any finite value cannot eliminate
aliasing when sampling such signals. This is why sloped lines are jaggy on even the
highest resolution displays (unless they have been antialiased properly). Resolution
increases alone can make the jaggies smaller, but never can eliminate them.

Since aliasing can’t always be solved by increasing the sampling rate, we are
forced to figure out how to remove high frequencies from the signal before sampling.
The technique is called low-pass filtering because it passes low-frequency informa-
tion while eliminating higher-frequency information.7 The visual effect of low-pass
filtering is to blur the image. The challenge is to blur the image as little as possible
while adequately attenuating the unwanted high frequencies.

It is often difficult to low-pass-filter the signal before sampling. A common strat-
egy in computer graphics is to supersample or oversample the signal, that is, to
sample it at a higher rate than the desired output sampling rate. For example, we
might choose to sample the signal four times for every output sample. If the signal
were reconstructed from these samples, its maximum possible frequency would be
four times the Nyquist frequency of the output sampling rate. A discrete low-pass fil-
ter can be applied to the “supersamples” to attenuate frequencies that exceed the
Nyquist frequency of the output sampling rate. This method alleviates aliasing from
frequencies between the output Nyquist frequency and the Nyquist frequency of the
supersamples. Unfortunately, frequencies higher than the Nyquist frequency of the
supersamples will still appear as aliases in the reconstructed signal.

54 CHAPTER 2 Building Procedural Textures

7. In practice, effective antialiasing often requires a lower-frequency filtering criterion than the Nyquist
frequency because the filtering is imperfect and the reconstruction of the signal from its samples is also
imperfect.

Team LRN

An alternative approach to antialiasing is to supersample the signal at irregu-
larly spaced points. This is called stochastic sampling (Cook, Porter, and Carpenter
1984; Cook 1986; Lee, Redner, and Uselton 1985; Dippé and Wold 1985). The en-
ergy from frequencies above the Nyquist frequency of the supersamples appears in
the reconstructed signal as random noise rather than as a structured low-frequency
alias. People are far less likely to notice this noise in the rendered image than they are
to notice a low-frequency alias pattern. But it is preferable to low-pass-filter the sig-
nal before sampling because in that case no noise will be added to the reconstructed
signal.

In summary, to produce an antialiased image with a specified resolution, the
most effective strategy is to remove excessively high frequencies from the signal by
low-pass filtering before sampling. If it isn’t possible to filter the signal, the best strat-
egy is to stochastically supersample it at as high a rate as is practical, and apply a dis-
crete low-pass filter to the supersamples. The next section discusses ways to build
low-pass filtering into procedural textures to eliminate aliasing artifacts.

You might wonder why aliasing is a problem in procedural textures. Doesn’t the
renderer do antialiasing? In fact, most renderers have some antialiasing scheme to
prevent aliasing artifacts that result from sharp edges in the geometric model. Ren-
derers that support image textures usually include some texture antialiasing in the
texture mapping software. But these forms of antialiasing do not solve the aliasing
problem for procedural textures.

The best case for “automatic” antialiasing of procedural textures is probably a
stochastic ray tracer or, in fact, any renderer that stochastically supersamples the
procedural texture. Rendering in this way is likely to be slow because of the many
shading samples that are required by the supersampling process. And in the end, sto-
chastic supersampling can only convert aliases into noise, not eliminate the un-
wanted high frequencies completely. If we can build a better form of antialiasing into
the procedural texture, the result will look cleaner and the renderer can be freed of
the need to compute expensive supersamples of the procedural texture.

PhotoRealistic RenderMan performs antialiasing by stochastically sampling the
scene geometry and filtering the results of the sampling process (Cook, Carpenter,
and Catmull 1987). The geometry is converted into a mesh of tiny quadrilaterals,
and shading samples are computed at each vertex of the mesh before the stochastic
sampling takes place. The vertices of the mesh are a set of samples of the location of
the surface at equally spaced values of the surface parameters (u, v). Many shaders
can be viewed as signal-generating functions defined on (u, v). A shader is evaluated
at the mesh vertices, and the resulting colors and other properties are assigned to the
mesh. This is really a sampling of the shader function at a grid of (u, v) values and its

Aliasing and How to Prevent It 55

Team LRN

reconstruction as a colored mesh of quadrilaterals. If the frequency content of the
shader exceeds the Nyquist frequency of the mesh vertex (u, v) sampling rate, aliases
will appear in the mesh colors. The reconstructed mesh color function is resampled
by the stochastic sampling of the scene geometry. But once aliases have been intro-
duced during the shader sampling process, they can never be removed by subsequent
pixel sampling and filtering.

The separation of shader sampling from pixel sampling in PhotoRealistic
RenderMan is advantageous because it permits a lower sampling rate for the shader
samples than for the pixel samples. Shader samples are usually much more expensive
to evaluate than pixel samples, so it makes sense to evaluate fewer of them. But this
increases the need to perform some type of antialiasing in the shader itself; we can’t
rely on the stochastic supersampling of pixel samples to alleviate aliasing in proce-
dural textures.

When image textures are used in the RenderMan shading language, the anti-
aliasing is automatic. The texture system in the renderer filters the texture image pix-
els as necessary to attenuate frequencies higher than the Nyquist frequency of the (u,
v) sampling rate in order to avoid aliasing.8

The brick texture from earlier in the chapter provides a concrete example of the
aliasing problem. Figure 2.31 shows how the brick texture looks when the sampling
rate is low. Notice that the width of the mortar grooves appears to vary in different
parts of the image due to aliasing. This is the original version of the texture, without
bump-mapped grooves. Later in the chapter we’ll see how to add antialiasing tech-
niques to the brick texture to alleviate the aliases.

Methods of Antialiasing Procedural Textures

By now you should be convinced that some form of antialiasing is necessary in pro-
cedural texture functions. In the remainder of this section we’ll examine various
ways to build low-pass filtering into procedural textures: clamping, analytic prefil-
tering, integrals, and alternative antialiasing methods. Clamping is a special-purpose
filtering method that applies only to textures created by spectral synthesis. Analytic
prefiltering techniques are ways to compute low-pass-filtered values for some of the
primitive functions that are used to build procedural textures. One class of analytic
prefiltering methods is based on the ability to compute the integral of the texture

56 CHAPTER 2 Building Procedural Textures

8. See Feibush, Levoy, and Cook (1980), Williams (1983), Crow (1984), and Heckbert (1986a, 1986b)
for detailed descriptions of methods for antialiasing image textures.

Team LRN

function over a rectangular region. Finally, we’ll consider alternatives to low-pass fil-
tering that can be used when proper filtering is not practical.

Some procedural texture primitives are inherently band-limited; that is, they
contain only a limited, bounded set of frequencies. sin is an obvious example of
such a function. The texture function and its relatives have built-in filtering, so they
are also band-limited. Unfortunately, some common language constructs such as if
and step create sharp changes in value that generate arbitrarily high frequencies.
Sharp changes in the shading function must be avoided. smoothstep is a smoothed
replacement for step that can reduce the tendency to alias. Can we simply replace
step functions with smoothstep functions?

The smoothstep function has less high-frequency energy than step, but using a
particular smoothstep as a fixed replacement for step is not an adequate solution. If
the shader is tuned for a particular view, the smoothstep will alias when the texture
is viewed from further away because the fixed-width smoothstep will be too sharp.
On the other hand, when the texture is viewed from close up, the smoothstep edge is
too blurry. A properly antialiased edge should look equally sharp at all scales. To
achieve this effect, the smoothstep width must be varied based on the sampling rate.

Determining the Sampling Rate

To do low-pass filtering properly, the procedural texture function must know the
sampling rate at which the renderer is sampling the texture. The sampling rate is just
the reciprocal of the spacing between adjacent samples in the relevant texture space

Aliasing and How to Prevent It 57

FIGURE 2.31 Aliasing in the brick texture.

Team LRN

or feature space. This is called the sampling interval. For simple box filtering, the
sampling interval is also the usual choice for the width of the box filter.

Obviously, the sampling interval cannot be determined from a single sample in
isolation. Earlier parts of this chapter have presented a model of procedural texture
in which the implicit texture function simply answers queries about the surface
properties at a single sample point. The procedural texture is invoked many times by
the renderer to evaluate the texture at different sample points, but each invocation is
independent of all of the others.

To determine the sampling rate or sampling interval without changing this
model of procedural texture, the renderer must provide some extra information to
each invocation of the procedural texture. In the RenderMan shading language, this
information is in the form of built-in variables called du and dv and functions called
Du and Dv. The du and dv variables give the sampling intervals for the surface pa-
rameters (u, v). If the texture is written in terms of (u, v), the filter widths can be
taken directly from du and dv.

In most cases, procedural textures are written in terms of the standard texture
coordinates (s, t), which are scaled and translated versions of (u, v), or in terms of
texture coordinates computed from the 3D coordinates of the surface point P in
some space. In these cases, it is harder to determine the sampling interval, and the
functions Du and Dv must be used. Du(a) gives an approximation to the derivative of
some computed quantity a with respect to the surface parameter u. Similarly, Dv(a)
gives an approximation to the derivative of some computed quantity a with respect
to the surface parameter v. By multiplying the derivatives by the (u, v) sampling in-
tervals, the procedural texture can estimate the sampling interval for a particular
computed texture coordinate a. In general, it is not safe to assume that the texture
coordinate changes only when u changes or only when v changes. Changes along
both parametric directions have to be considered and combined to get a good esti-
mate, awidth, of the sampling interval for a:

awidth = abs(Du(a)*du) + abs(Dv(a)*dv);

The sum of the absolute values gives an upper bound on the sampling interval; if
this estimate is in error, it tends to make the filter too wide so that the result is
blurred too much. This is safer than making the filter too narrow, which would al-
low aliasing to occur.

It is desirable for the sampling interval estimate to remain constant or change
smoothly. Sudden changes in the sampling interval result in sudden changes in the
texture filtering, and that can be a noticeable and annoying flaw in itself. Even if the

58 CHAPTER 2 Building Procedural Textures

Team LRN

derivatives Du and Dv are accurate and change smoothly, there is no guarantee that
the renderer’s sampling intervals in (u, v) will also behave themselves. Many ren-
derers use some form of adaptive sampling or adaptive subdivision to vary the
rate of sampling depending on the apparent amount of detail in the image. In
PhotoRealistic RenderMan, adaptive subdivision changes the shader sampling inter-
vals depending on the size of the surface in the image. A surface seen in perspective
could have sudden changes in sampling intervals between the nearer and more dis-
tant parts of the surface. A renderer that uses adaptive sampling based on some esti-
mate of apparent detail might end up using the values returned by the procedural
texture itself to determine the appropriate sampling rates. That would be an interest-
ing situation indeed—one that might make proper low-pass filtering in the texture a
very difficult task.

The remedy for cases in which the renderer’s sampling interval is varying in an
undesirable way is to use some other estimate of the sampling interval, an estimate
that is both less accurate and smoother than the one described above. One such trick
is to use the distance between the camera and the surface position to control the low-
pass filtering:

awidth = length(I) * k;

The filter width (sampling interval estimate) is proportional to the distance from the
camera (length(I)), but some experimentation is needed to get the right scaling
factor k.

It is especially tricky to find the right filter width to antialias a bump height func-
tion for a bump-mapping texture. Since the bump height affects the normal vector
used in shading, specular highlights can appear on the edges of bumps. Specular re-
flection functions have quite sharp angular falloff, and this sharpness can add addi-
tional high frequencies to the color output of the shader that are not in the bump
height function. It might not be sufficient to filter the bump height function using the
same low-pass filter that would be used for an ordinary texture that changes only the
color or opacity. A wider filter probably is needed, but determining just how much
wider it should be is a black art.

Clamping

Clamping (Norton, Rockwood, and Skolmoski 1982) is a very direct method of
eliminating high frequencies from texture patterns that are generated by spectral
synthesis. Since each frequency component is explicitly added to a spectral synthesis

Aliasing and How to Prevent It 59

Team LRN

texture, it is fairly easy to omit every component whose frequency is greater than the
Nyquist frequency.

Let’s begin with the following simple spectral synthesis loop, with a texture co-
ordinate s:

value = 0;
for (f = MINFREQ; f < MAXFREQ; f *= 2)

value += sin(2*PI*f*s)/f;

The loop begins at a frequency of MINFREQ and ends at a frequency less than
MAXFREQ, doubling the frequency on each successive iteration of the loop. The am-
plitude of each sinusoidal component is the reciprocal of its frequency.

The following version is antialiased using the simplest form of clamping. The
sampling interval in s is swidth.

value = 0;
cutoff = clamp(0.5/swidth, 0, MAXFREQ);
for (f = MINFREQ; f < cutoff; f *= 2)

value += sin(2*PI*f*s)/f;

In this version the loop stops at a frequency less than cutoff, which is the
Nyquist frequency for the sampling rate 1/swidth. In order to avoid “pops,” sud-
den changes in the texture as the sampling rate changes (e.g., as we zoom in to-
ward the textured surface), it is important to fade out each component gradually as
the Nyquist frequency approaches the component frequency. The following texture
function incorporates this gradual fade-out strategy:

value = 0;
cutoff = clamp(0.5/swidth, 0, MAXFREQ);
for (f = MINFREQ; f < 0.5*cutoff; f *= 2)

value += sin(2*PI*f*s)/f;
fade = clamp(2*(cutoff-f)/cutoff, 0, 1);
value += fade * sin(2*PI*f*s)/f;

The loop ends one component earlier than before, and that last component
(whose frequency is between 0.5*cutoff and cutoff) is added in after the loop and
is scaled by fade. The fade value gradually drops from 1 to 0 as the frequency of the
component increases from 0.5*cutoff toward cutoff. This is really a result of
changes in swidth and therefore in cutoff, rather than changes in the set of fre-
quency components in the texture pattern.

Note that the time to generate the spectral synthesis texture pattern will increase
as the sampling rate increases, that is, as we look more closely at the texture pattern.
More and more iterations of the synthesis loop will be executed as the camera

60 CHAPTER 2 Building Procedural Textures

Team LRN

approaches the textured surface. The example code incorporates MAXFREQ as a safety
measure, but if MAXFREQ is reached, the texture will begin to look ragged when
viewed even more closely.

Clamping works very well for spectral synthesis textures created with sine
waves. It is hard to imagine a clearer and more effective implementation of low-pass
filtering! But when the spectral synthesis uses some primitive that has a richer fre-
quency spectrum of its own, clamping doesn’t work as well.

If the primitive contains frequencies higher than its nominal frequency, the low-
pass filtering will be imperfect and some high-frequency energy will leak into the tex-
ture. This can cause aliasing.

Even if the primitive is perfectly band-limited to frequencies lower than its nomi-
nal frequency, clamping is imperfect as a means of antialiasing. In this case, clamping
will eliminate aliasing, but the character of the texture may change as high frequen-
cies are removed because each component contains low frequencies that are removed
along with the high frequencies.

Analytic Prefiltering

A procedural texture can be filtered explicitly by computing the convolution of the
texture function with a filter function. This is difficult in general, but if we choose a
simple filter, the technique can be implemented successfully. The simplest filter of all
is the box filter; the value of a box filter is simply the average of the input function
value over the area of the box filter.

To compute the convolution of a function with a box filter the function must be
integrated over the area under the filter. This sounds tough, but it’s easy if the func-
tion is simple enough. Consider the step function shown in Figure 2.8. The step
function is rather ill-behaved because it is discontinuous at its threshold value. Let’s
apply a box filter extending from x to x + w to the function step(b,x). The result is
the box-filtered step function, boxstep(a,b,x), where a = b - w (Figure 2.32). The
value of boxstep is the area under the step function within the filter box. When the
entire filter is left of b (that is, x > b), the value is 0. When the entire filter is right of b
(that is, x > b), the value is 1. But boxstep is “smoother” than the step function; in-
stead of being a sharp, discontinuous transition from 0 to 1 at b, boxstep is a linear
ramp from 0 to 1 starting at a and ending at b. The slope of the ramp is 1/w.

The boxstep function can be written as a preprocessor macro in C or the shad-
ing language as follows:

#define boxstep(a,b,x) clamp(((x)-(a))/((b)-(a)),0,1)

Aliasing and How to Prevent It 61

Team LRN

Now the step(b,x) can be replaced with boxstep(b-w,b,x). If the filter width
w is chosen correctly, the boxstep function should reduce aliasing compared to the
step function.

Better Filters

Now we know how to generate a box-filtered version of the step function, but the
box filter is far from ideal for antialiasing. A better filter usually results in fewer arti-
facts or less unnecessary blurring. A better alternative to boxstep is the smoothstep
function that was discussed earlier in this chapter. Filtering of the step with a first-
order filter (box) gives a second-order function, namely, the linear ramp. Filtering of
the step with a third-order filter (quadratic) gives a fourth-order function, namely,
the cubic smoothstep. Using smoothstep to replace step is like filtering with a qua-
dratic filter, which is a better approximation to the ideal sinc filter than the box filter
is.

The boxstep macro is designed to be plug-compatible with smoothstep. The
call boxstep(WHERE-swidth, WHERE, s) can be replaced with the call smooth-
step(WHERE-swidth, WHERE, s). This is the filtered version of step(WHERE, s),
given a filter extending from s to s+swidth.

Using the smoothstep cubic function as a filtered step is convenient and efficient
because it is a standard part of the shading language. However, there are other filters
and other filtered steps that are preferable in many applications. In particular, some
filters such as the sinc and Catmull-Rom filters have negative lobes—the filter values
dip below zero at some points. Such filters generally produce sharper texture pat-
terns, although ringing artifacts are sometimes visible. A Catmull-Rom filter can be
convolved with a step function (which is equivalent to integrating the filter function)
to produce a catstep filtered step function that has been used with good results
(Sayre 1992).

62 CHAPTER 2 Building Procedural Textures

1

0
a b

boxstep(a,b,x)

FIGURE 2.32 Box-filtering the step function.

Team LRN

Integrals and Summed-Area Tables

Crow (1984) introduced the summed-area table method of antialiasing image tex-
tures. A summed-area table is an image made from the texture image. As illustrated
in Figure 2.33(a), the pixel value at coordinates (s, t) in the summed-area table is the
sum of all of the pixels in the rectangular area (0:s, 0:t) in the texture image. Of
course, the summed-area table might need higher-precision pixel values than those
of the original texture to store the sums accurately.

The summed-area table makes it easy to compute the sum of all of the texture
image pixels in any axis-aligned rectangular region. Figure 2.33(b) shows how this is
done. The pixel values at the corners of the region A, B, C, D are obtained from the
summed-area table (four pixel accesses). The sum over the desired region is then sim-
ply D + A − B − C. This sum divided by the area of the region is the average value
of the texture image over the region. If the region corresponds to the size and posi-
tion of a box filter in the (s, t) space, the average value from the summed-area table
calculation can be used as an antialiased texture value. The cost of the antialiasing is
constant regardless of the size of the region covered by the filter, which is very
desirable.

The summed-area table is really a table of the integral of the original texture im-
age over various regions of the (s, t) space. An analogous antialiasing method for
procedural textures is to compute the definite integral of the procedural texture over
some range of texture coordinate values, rather than computing the texture value it-
self. For example, a procedural texture function f(x) on some texture coordinate x
might have a known indefinite integral function F(x). If the desired box filter width is

Aliasing and How to Prevent It 63

(a)

(0,0)

()s, t

(b)

A B

C D

FIGURE 2.33 The summed-area table: (a) table entry (s, t) stores area of shaded
region; (b) four entries A, B, C, D are used to compute shaded area.

Team LRN

wx, the expression (F(x) − F(x − wx))/wx might be used as a filtered alternative to the
texture value f(x). Integrals for many of the basic building blocks of procedural tex-
tures are easy to compute, but a few are tricky.9

Example: Antialiased Brick Texture

As an example of the application of these techniques, let’s build antialiasing into the
brick texture described earlier in this chapter.

The first step is to add the code needed to determine the filter width. The width
variables must be added to the list of local variable declarations:

float swidth, twidth;

To compute the filter widths, we can add two lines of code just before the two
lines that compute the brick numbers sbrick and tbrick:

swidth = abs(Du(ss)*du) + abs(Dv(ss)*dv);
twidth = abs(Du(tt)*du) + abs(Dv(tt)*dv);
sbrick = floor(ss); /* which brick? */
tbrick = floor(tt); /* which brick? */

The actual antialiasing is done by replacing the following two lines of the origi-
nal shader that determine where to change from mortar color to brick color:

w = step(MWF,ss) - step(1-MWF,ss);
h = step(MHF,tt) - step(1-MHF,tt);

with an antialiased version of the code:

w = boxstep(MWF-swidth,MWF,ss)
- boxstep(1-MWF-swidth,1-MWF,ss);

h = boxstep(MHF-twidth,MHF,tt)
- boxstep(l-MHF-twidth,l-MHF,tt);

This is just the same code using boxstep instead of step. If the texture pattern
consisted of a single brick in an infinite field of mortar, this would be sufficient. Un-
fortunately, more is required in order to handle a periodic pattern like the brick tex-
ture. The brick texture depends on a mod-like folding of the texture coordinates to
convert a single pulse into a periodic sequence of pulses. But a wide filter positioned

64 CHAPTER 2 Building Procedural Textures

9. The noise functions described in the later section “Making Noises” are among the tricky ones to
integrate.

Team LRN

inside one brick can overlap another brick, a situation that is not properly accounted
for in this periodic pulse scheme.

To solve the aliasing problem in a more general way, we can apply the integra-
tion technique described in the previous section. The integral of a sequence of square
wave pulses is a function that consists of upward-sloping ramps and plateaus. The
ramps correspond to the intervals where the pulses have a value of 1, and the pla-
teaus correspond to the intervals where the pulses have a value of 0. In other words
the slope of the integral is either 0 or 1, depending on the pulse value. The slope is
the derivative of the integral, which is obviously the same as the original function.

The integrals of the periodic pulse functions in the ss and tt directions are given
by the following preprocessor macros:

#define frac(x) mod((x),l)
#define sintegral(ss) (floor(ss)*(1–2*MWF) + \

max(0,frac(ss)-MWF))
#define tintegral(tt) (floor(tt)*(1–2*MHF) + \

max(0,frac(tt)-MHF))

These are definite integrals from 0 to ss and 0 to tt. The ss integral consists of the
integral of all of the preceding complete pulses (the term involving the floor func-
tion) plus the contribution of the current partial pulse (the term involving the frac-
tional part of the coordinate).

To compute the antialiased value of the periodic pulse function, the shader must
determine the value of the definite integral over the area of the filter. The value of the
integral is divided by the area of the filter to get the average value of the periodic
pulse function in the filtered region.

w = (sintegral(ss+swidth) - sintegral(ss))/swidth;
h = (tintegral(tt+twidth) - tintegral(tt))/twidth;

When using this method of antialiasing, you should remove the following lines
of code from the shader:

ss -= sbrick;
tt -= tbrick;

because the floor and mod operations in the integrals provide the necessary periodic-
ity for the pulse sequence. Forcing ss and tt to lie in the unit interval interferes with
the calculation of the correct integral values.

Aliasing and How to Prevent It 65

Team LRN

Figure 2.34 shows the antialiased version of the brick texture, which should be
compared with the original version shown in Figure 2.31. The widths of the mortar
grooves are more consistent in the antialiased version of the texture.

Alternative Antialiasing Methods

Building low-pass filtering into a complicated procedural texture function can be
far from easy. In some cases you might be forced to abandon the worthy goal of
“proper” filtering and fall back on some alternative strategy that is more practical to
implement.

One simple alternative to low-pass filtering is simply to blend between two or
more versions of the texture based on some criterion related to sampling rate. For
example, as the sampling rate indicates that the samples are getting close to the rate
at which the texture begins to alias, you can fade your texture toward a color that is
the average color of the texture. This is clearly a hack; the transition between the de-
tailed texture and the average color might be quite obvious, although this is proba-
bly better than just letting the texture alias. The transition can be smoothed out by
using more than two representations of the texture and blending between adjacent
pairs of textures at the appropriate sampling rates.

A more sophisticated antialiasing method is to supersample the texture pattern
in the procedural texture itself. When the shader is asked to supply the color of a
sample point, it will generate several more closely spaced texture samples and com-
bine them in some weighted sum that implements a low-pass filter. As mentioned
earlier, supersampling will at least decrease the sampling rate at which aliasing

66 CHAPTER 2 Building Procedural Textures

FIGURE 2.34 Box-filtered version of the brick texture.

Team LRN

begins. If the positions of the supersamples are jittered stochastically, the aliases will
tend to be broken up into noise that might not be objectionable.

Supersampling in the procedural texture can be complicated and expensive, but
it might be more efficient than supersampling implemented by the renderer. The pro-
cedural texture can limit the amount of code that is executed for each texture sample
and therefore do a more lightweight version of supersampling.

MAKING NOISES
To generate irregular procedural textures, we need an irregular primitive function,
usually called noise. This is a function that is apparently stochastic and will break
up the monotony of patterns that would otherwise be too regular. When we use
terms like “random” and “stochastic” in this discussion, we almost always mean to
say “apparently random” or “pseudorandom.” True randomness is unusual in com-
puter science, and as you will see, it is actually undesirable in procedural textures.

We discussed the importance of aliasing and antialiasing before covering irregu-
lar patterns because issues related to antialiasing are of key importance in the design
of stochastic texture primitives.

The obvious stochastic texture primitive is white noise, a source of random
numbers, uniformly distributed with no correlation whatsoever between successive
numbers. White noise can be generated by a random physical process, such as the
thermal noise that occurs within many analog electronic systems. Try tuning a televi-
sion to a channel on which no station is currently broadcasting if you want to see a
good approximation to white noise.

A pseudorandom number generator produces a fair approximation to white
noise. But is white noise really what we need? Alas, a bit of thought reveals that it is
not. White noise is never the same twice. If we generate a texture pattern on the sur-
face of some object, let’s say a marble pattern, we certainly will want the pattern to
stay the same frame after frame in an animation or when we look at the object from
a variety of camera positions. In fact, we need a function that is apparently random
but is a repeatable function of some inputs. Truly random functions don’t have in-
puts. The desired stochastic texture primitive will take texture coordinates as its in-
puts and will always return the same value given the same texture coordinates.

Luckily, it isn’t hard to design such a function. Looking into the literature of
hashing and pseudorandom number generation, we can find several ways to convert
a set of coordinate numbers into some hashed value that can be treated as a pseudo-
random number (PRN). Alternatively, the hashed value can be used as an index into
a table of previously generated PRNs.

Making Noises 67

Team LRN

Even this repeatable sort of white noise isn’t quite what is needed in a stochastic
texture primitive. The repeatable pseudorandom function has an unlimited amount
of detail, which is another way of saying that its values at adjacent points are com-
pletely independent of one another (uncorrelated). This sounds like what we want,
but it proves to be troublesome because of the prevalence of point sampling in com-
puter graphics. If we view an object from a new camera angle, the positions of the
sample points at which the texture function is evaluated will change. A good PRN
function will change its value markedly if the inputs change even slightly. Conse-
quently, the texture will change when the camera is moved, and we don’t want that
to happen.

Another way to look at this problem is in terms of aliasing. White noise has its
energy spread equally over all frequencies, including frequencies much higher than
the Nyquist frequency of the shading samples. The sampling rate can never be high
enough to capture the details of the white noise.

To keep our procedural textures stable and to keep them from aliasing, we need
a stochastic function that is smoother than white noise. The solution is to use a low-
pass-filtered version of white noise.10 In the remainder of this chapter, we refer to
these filtered noise functions simply as noise functions.

The properties of an ideal noise function are as follows:

• noise is a repeatable pseudorandom function of its inputs.

• noise has a known range, namely, from −1 to 1.

• noise is band-limited, with a maximum frequency of about 1.

• noise doesn’t exhibit obvious periodicities or regular patterns. Such
pseudorandom functions are always periodic, but the period can be made very
long and therefore the periodicity is not conspicuous.

• noise is stationary—that is, its statistical character should be translationally
invariant.

• noise is isotropic—that is, its statistical character should be rotationally
invariant.

The remainder of this section presents a number of implementations of noise that
meet these criteria with varying degrees of success.

68 CHAPTER 2 Building Procedural Textures

10. Low-pass-filtered noise is sometimes called pink noise, but that term is more properly applied to a
stochastic function with a 1/f power spectrum.

Team LRN

Lattice Noises

Lattice noises are the most popular implementations of noise for procedural texture
applications. They are simple and efficient and have been used with excellent results.
Ken Perlin’s noise function (Perlin 1985), “the function that launched a thousand
textures,” is a lattice noise of the gradient variety; an implementation equivalent to
Perlin’s is described on page 75.11

The generation of a lattice noise begins with one or more uniformly distributed
PRNs at every point in the texture space whose coordinates are integers. These
points form the integer lattice. The necessary low-pass filtering of the noise is accom-
plished by a smooth interpolation between the PRNs. To see why this works, recall
that the correct reconstruction of a signal from a set of samples can never contain
frequencies higher than the Nyquist frequency of the sample rate. Since the PRNs at
the integer lattice points are equally spaced samples of white noise and since recon-
struction from samples is a form of interpolation, it is reasonable to expect that the
interpolated function will be approximately band-limited below the Nyquist fre-
quency of the lattice interval. The quality of the resulting noise function depends on
the nature of the interpolation scheme.

All lattice noises need some way to generate one or more pseudorandom num-
bers at every lattice point. The noise functions in this chapter use a table of PRNs
that is generated the first time noise is called. To find the PRNs in the table that are
to be used for a particular integer lattice point (ix,iy,iz), we’ll use the following
code:

#define TABSIZE 256
#define TABMASK (TABSIZE-1)
#define PERM(x) perm[(x)STABMASK]
#define INDEX(ix,iy,iz) PERM((ix)+PERM((iy)+PERM(iz)))

The macro INDEX returns an index into an array with TABSIZE entries. The selected
entry provides the PRNs needed for the lattice point. Note that TABSIZE must be a
power of two so that performing i&TABMASK is equivalent to i%TABSIZE. As noted
on page 31, using i%TABSIZE isn’t safe, because it will yield a negative result if i is
negative. Using the bitwise AND operation “&” avoids this problem.

The array perm contains a previously generated random permutation of the inte-
gers from zero to TABMASK onto themselves. Feeding sequential integers through the

Making Noises 69

11. In case you wish to compare the implementations, note that Ken describes his noise function in detail
in Chapter 12.

Team LRN

permutation gives back a pseudorandom sequence. This hashing mechanism is used
to break up the regular patterns that would result if ix, iy, and iz were simply
added together to form an index into the noiseTab table. Here is a suitable perm
array:

static unsigned char perm[TABSIZE] = {

};

This hashing technique is similar to the permutation used by Ken Perlin in his noise
function.

Ward (1991) gives an implementation of a lattice noise in which the lattice PRNs
are generated directly by a hashing function rather than by looking in a table of ran-
dom values.

Value Noise

Given a PRN between −1 and 1 at each lattice point, a noise function can be com-
puted by interpolating among these random values. This is called value noise. The
following routine will initialize a table of PRNs for value noise:

#define RANDMASK OxVfffffff
#define RANDNBR ((random() & RANDMASK)/(double) RANDMASK)

70 CHAPTER 2 Building Procedural Textures

225, 155, 210, 108, 175, 199, 221, 144, 203, 116, 70, 213, 69, 158, 33, 252,

5, 82, 173, 133, 222, 139, 174, 27, 9, 71, 90, 246, 75, 130, 91, 191,

169, 138, 2, 151, 194, 235, 81, 7, 25, 113, 228, 159, 205, 253, 134, 142,

248, 65, 224, 217, 22, 121, 229, 63, 89, 103, 96, 104, 156, 17, 201, 129,

36, 8, 165, 110, 237, 117, 231, 56, 132, 211, 152, 20, 181, 111, 239, 218,

170, 163, 51, 172, 157, 47, 80, 212, 176, 250, 87, 49, 99, 242, 136, 189,

162, 115, 44, 43, 124, 94, 150, 16, 141, 247, 32, 10, 198, 223, 255, 72,

53, 131, 84, 57, 220, 197, 58, 50, 208, 11, 241, 28, 3, 192, 62, 202,

18, 215, 153, 24, 76, 41, 15, 179, 39, 46, 55, 6, 128, 167, 23, 188,

106, 34, 187, 140, 164, 73, 112, 182, 244, 195, 227, 13, 35, 77, 196, 185,

26, 200, 226, 119, 31, 123, 168, 125, 249, 68, 183, 230, 177, 135, 160, 180,

12, 1, 243, 148, 102, 166, 38, 238, 251, 37, 240, 126, 64, 74, 161, 40,

184, 149, 171, 178, 101, 66, 29, 59, 146, 61, 254, 107, 42, 86, 154, 4,

236, 232, 120, 21, 233, 209, 45, 98, 193, 114, 78, 19, 206, 14, 118, 127,

48, 79, 147, 85, 30, 207, 219, 54, 88, 234, 190, 122, 95, 67, 143, 109,

137, 214, 145, 93, 92, 100, 245, 0, 216, 186, 60, 83, 105, 97, 204, 52

Team LRN

float valueTab[TABSIZE];

void
valueTabInit(int seed)
{

float *table = valueTab;
int i;
srandom(seed);
for(i = 0; i < TABSIZE; i++)
*table++ = 1. - 2.*RANDNBR;

}

Given this table, it is straightforward to generate the PRN for an integer lattice
point with coordinates ix, iy, and iz:

float
vlattice(int ix, int iy, int iz)
{

return valueTab[INDEX(ix,iy,iz)];
}

The key decision to be made in implementing value noise is how to interpolate
among the lattice PRNs. Many different methods have been used, ranging from lin-
ear interpolation to a variety of cubic interpolation techniques. Linear interpolation
is insufficient for a smooth-looking noise; value noise based on linear interpolation
looks “boxy,” with obvious lattice cell artifacts. The derivative of a linearly interpo-
lated value is not continuous, and the sharp changes are obvious to the eye. It is
better to use a cubic interpolation method so both the derivative and the second de-
rivative are continuous. Here is a simple implementation using the cubic Catmull-
Rom spline interpolation function shown on page 34:

float
vnoise(float x, float y, float z)
{

int ix, iy, iz;
int i, j, k;
float fx, fy, fz;
float xknots[4], yknots[4], zknots[4];
static int initialized = 0;

if (!initialized) {
valueTabInit(665);
initialized = 1;
}

ix = FLOOR(x);
fx = x - ix;

Making Noises 71

Team LRN

iy = FLOOR(y);
fy = y - iy;

iz = FLOOR(z);
fz = z - iz;

for (k = -1; k <= 2; k++) {
for (j = -1; j <= 2; j++) {
for (i = -1; i <= 2; i++)

xknots[i+l] = vlattice(ix+i,iy+j,iz+k);
yknots[j+l] = spline(fx, 4, xknots);

}
zknots[k+l] = spline(fy, 4, yknots);

}
return spline(fz, 4, zknots);

}

Since this is a cubic Catmull-Rom spline function in all three dimensions, the
spline has 64 control points, which are the vertices of the 27 lattice cells surround-
ing the point in question. Obviously, this interpolation can be quite expensive. It
might make sense to use a modified version of the spline function that is optimized
for the special case of four knots and a parameter value that is known to be between
0 and 1.

A graph of a 1D sample of vnoise is shown in Figure 2.35(a), and an image of a
2D slice of the function is shown in Figure 2.36(a). Figure 2.37(a) shows its power
spectrum. The noise obviously meets the criterion of being band-limited; it has no
significant energy at frequencies above 1.

Many other interpolation schemes are possible for value noise. Quadratic and
cubic B-splines are among the most popular. These splines don’t actually interpolate
the lattice PRN values; instead they approximate the values, which may lead to a
narrower oscillation range (lower amplitude) for the B-spline noise. The lattice con-
volution noise discussed on page 78 can be considered a value noise in which the in-
terpolation is done by convolving a filter kernel with the lattice PRN values.

Lewis (1989) describes the use of Wiener interpolation to interpolate lattice
PRNs. Lewis claims that Wiener interpolation is efficient and provides a limited
amount of control of the noise power spectrum.

Gradient Noise

Value noise is the simplest way to generate a low-pass-filtered stochastic function. A
less obvious method is to generate a pseudorandom gradient vector at each lattice
point and then use the gradients to generate the stochastic function. This is called

72 CHAPTER 2 Building Procedural Textures

Team LRN

gradient noise. The noise function described by Perlin (1985) and Perlin and Hoffert
(1989) was the first implementation of gradient noise. The RenderMan shading lan-
guage noise function used in the irregular texture examples later in this chapter is a
similar implementation of gradient noise.

The value of a gradient noise is 0 at all of the integer lattice points. The pseudo-
random gradients determine its behavior between lattice points. The gradient
method uses an interpolation based on the gradients at the eight corners of a single
lattice cell, rather than the 64-vertex neighborhood used in the cubic interpolation
method described in the previous section.

Our implementation of gradient noise begins by using the following routine to
initialize the table of pseudorandom gradient vectors:

#include <math.h>

float gradientTab[TABSIZE*3];

Making Noises 73

−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10 12 14 16

(a)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16

(b)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0 2 4 6 8 10 12 14 16

(c)

−1.2
−1.0
−0.8
−0.6
−0.4
−0.2

0.0
0.2
0.4
0.6
0.8
1.0

0 2 4 6 8 10 12 14 16

(d)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0 2 4 6 8 10 12 14 16

(e)

−0.8

−0.6

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

0 2 4 6 8 10 12 14 16

(f)

FIGURE 2.35 Graphs of various noises: (a) vnoise; (b) gnoise (Perlin’s noise); (c) vnoise + gnoise; (d) Ward’s
Hermite noise; (e) vcnoise; (f) scnoise.

Team LRN

void
gradientTabInit(int seed)
{

float *table = gradientTab;
float z, r, theta;
int i;

srandom(seed);
for(i = 0; i < TABSIZE; i++) {

z = 1. - 2.*RANDNBR;
/* r is radius of x,y circle */
r = sqrtf(l - z*z);
/* theta is angle in (x,y) */
theta = 2 * M_PI * RANDNBR;

74 CHAPTER 2 Building Procedural Textures

(a) (c)

(e)

(b)

(d) (f)

FIGURE 2.36 2D slices of various noises: (a) vnoise; (b) gnoise (Perlin’s noise); (c) vnoise + gnoise; (d) Ward’s
Hermite noise; (e) vcnoise; (f) scnoise.

Team LRN

*table++ = r * cosf(theta);
*table++ = r * sinf(theta);
*table++ = z;

}
}

This method of generating the gradient vectors attempts to produce unit vectors
uniformly distributed over the unit sphere. It begins by generating a uniformly dis-
tributed z coordinate that is the sine of the latitude angle. The cosine of the same lat-
itude angle is the radius r of the circle of constant latitude on the sphere. A second
PRN is generated to give the longitude angle theta that determines the x and y com-
ponents of the gradient.

Perlin’s noise implementation uses a different scheme of generating uniformly
distributed unit gradients. His method is to generate vectors with components be-
tween −1 and 1. Such vectors lie within the cube that bounds the unit sphere. Any
vector whose length is greater than 1 lies outside the unit sphere and is discarded.

Making Noises 75

(a)
0.0 0.2 0.4 0.6 0.8 1.0

(b)
0.0 0.2 0.4 0.6 0.8 1.0

(c)
0.0 0.2 0.4 0.6 0.8 1.0

(d)
0.0 0.2 0.4 0.6 0.8 1.0

(f)
0.0 0.2 0.4 0.6 0.8 1.0

(e)
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2.37 The power spectra of various noises: (a) vnoise; (b) gnoise (Perlin’s noise);
(c) vnoise + gnoise; (d) Ward’s Hermite noise; (e) vcnoise; (f) scnoise.

Team LRN

Keeping such vectors would bias the distribution in favor of the directions toward
the corners of the cube. These directions have the greatest volume within the cube
per solid angle. The remaining vectors are normalized to unit length.

The following routine generates the value of gradient noise for a single integer
lattice point with coordinates ix, iy, and iz. The value glattice of the gradient
noise for an individual lattice point is the dot product of the lattice gradient and the
fractional part of the input point relative to the lattice point, given by fx, fy, and fz.

float
glattice(int ix, int iy, int iz,
float fx, float fy, float fz)
{

float *g = &gradientTab[INDEX(ix,iy,iz)*3];
return g[0]*fx + g[l]*fy + g[2]*fz;

}

Eight glattice values are combined using smoothed trilinear interpolation
to get the gradient noise value. The linear interpolations are controlled by a
smoothstep-like function of the fractional parts of the input coordinates.

#define LERP(t,x0,xl) ((x0) + (t)*((xl)-(x0)))
#define SMOOTHSTEP(x) ((x)*(x)*(3 - 2*(x)))

float
gnoise(float x, float y, float z)
{

int ix, iy, iz;
float fx0, fxl, fy0, fyl, fz0, fzl;
float wx, wy, wz;
float vx0, vxl, vy0, vyl, vz0, vzl;

static int initialized = 0;

if (!initialized) {
gradientTabInit(665);
initialized = 1;

}
ix = FLOOR(x);
fx0 = x - ix;
fxl = fx0 - 1;
wx = SMOOTHSTEP(fx0);
iy = FLOOR(y);
fy0 = y - iy;
fyl = fy0 - 1;
wy = SMOOTHSTEP(fy0);

76 CHAPTER 2 Building Procedural Textures

Team LRN

iz = FLOOR(z);
fz0 = z - iz;
fzl = fz0 - 1;
wz = SMOOTHSTEP(fz0) ;

vx0 = glattice(ix,iy,iz,fx0,fy0,fz0);
vxl = glattice(ix+l,iy,iz,fxl,fy0,fz0);
vy0 = LERP(wx, vx0, vxl);
vx0 = glattice(ix,iy+l,iz,fx0,fyl,fz0);
vxl = glattice(ix+1,iy+1,iz,fxl,fyl,fz0);
vyl = LERP(wx, vx0, vxl);
vz0 = LERP(wy, vy0, vyl);
vx0 = glattice(ix,iy,iz+l,fx0,fy0,fzl);
vxl = glattice(ix+l,iy,iz+l,fxl,fy0,fzl);
vy0 = LERP(wx, vx0, vxl);
vx0 = glattice(ix,iy+l,iz+l,fx0,fyl,fzl);
vxl = glattice(ix+l,iy+l,iz+l,fxl,fyl,fzl);
vyl = LERP(wx, vx0, vxl);
vzl = LERP(wy, vy0, vyl);

return LERP(wz, vz0, vzl);
}

Figure 2.35(b) is a graph of a 1D sample of a gradient noise, and Figure 2.36(b)
shows a 2D slice of the noise. Figure 2.37(b) shows its power spectrum. Most of the
energy of gradient noise comes from frequencies between 0.3 and 0.7. There is more
high-frequency energy in gradient noise than in value noise and less low-frequency
energy. These are consequences of the fact that gradient noise has zeros at each lat-
tice point and therefore is forced to change direction at least once per lattice step.

Value-Gradient Noise

A gradient noise is zero at all of the integer lattice points. This regular pattern of ze-
ros sometimes results in a noticeable grid pattern in the gradient noise. To avoid this
problem without losing the spectral advantages of gradient noise, we might try to
combine the value and gradient methods to produce a value-gradient noise function.

One implementation of value-gradient noise is simple: it is just a weighted sum
of a value noise and a gradient noise. Some computation can be saved by combining
the two functions and sharing common code such as the INDEX calculation from the
integer coordinates and the calculation of ix, fx0, and so on. Figure 2.35(c) shows
a graph of a weighted sum of our Catmull-Rom vnoise and the gradient gnoise,
and Figure 2.36(c) shows a 2D slice of it. Figure 2.37(c) shows the power spectrum

Making Noises 77

Team LRN

of this function. The slice image looks a little less regular than the gradient noise
slice, presumably because the regular pattern of zero crossings has been eliminated.

A more sophisticated form of value-gradient noise is based on cubic Hermite in-
terpolation. The Hermite spline is specified by its value and tangent at each of its end
points. For a value-gradient noise, the tangents of the spline can be taken from the
gradients. Ward (1991) gives the source code for just such a value-gradient noise.
(Ward states that this is Perlin’s noise function, but don’t be fooled—it is quite differ-
ent.) Figures 2.35(d) and 2.36(d) show Ward’s Hermite noise function, and Figure
2.37(d) shows its power spectrum.12 The power spectrum is remarkably regular, ris-
ing quite smoothly from DC to a frequency of about 0.2 and then falling smoothly
down to 0 at a frequency of 1. Since the power is spread quite widely over the spec-
trum and the dominant frequencies are quite low, this noise function could be dif-
ficult to use in spectral synthesis.

Lattice Convolution Noise

One objection to the lattice noises is that they often exhibit axis-aligned artifacts.
Many of the artifacts can be traced to the anisotropic nature of the interpolation
schemes used to blend the lattice PRN values. What we’ll call lattice convolution
noise is an attempt to avoid anisotropy by using a discrete convolution technique to
do the interpolation. The PRNs at the lattice points are treated as the values of ran-
dom impulses and are convolved with a radially symmetrical filter. In the implemen-
tation that follows, we’ll use a Catmull-Rom filter with negative lobes and a radius
of 2. This means that any lattice point within a distance of two units from the input
point must be considered in doing the convolution. The convolution is simply the
sum of the product of each lattice point PRN value times the value of the filter func-
tion based on the distance of the input point from the lattice point.

Here is an implementation of lattice convolution noise called vcnoise. It begins
with the filter function catrom2, which takes a squared distance as input to avoid
the need to compute square roots. The first time catrom2 is called, it computes a ta-
ble of Catmull-Rom filter values as a function of squared distances. Subsequent calls
simply look up values from this table.

78 CHAPTER 2 Building Procedural Textures

12. This analysis of Ward’s noise function is actually based on the source code that is provided on the
diskette that accompanies Graphics Gems IV. The code on the diskette seems to be a newer version of
Ward’s routine with an improved interpolation method.

Team LRN

static float catrom2(float d)
{
#define SAMPRATE 100 /* table entries per unit distance */
#define NENTRIES (4*SAMPRATE+1)

float x;
int i;
static float table[NENTRIES];
static int initialized = 0;
if (d >= 4)

return 0;
if (!initialized) {

for (i = 0; i < NENTRIES; i++){
x = i/(float) SAMPRATE;
x = sqrtf(x);
if (x < 1)

table[i] = 0.5 * (2+x*x*(-5+x*3));
else

table[i] = 0.5 * (4+x*(-8+x*(5-x)));
}
initialized = 1;

}
d = d*SAMPRATE + 0.5;
i = FLOOR(d);
if (i >= NENTRIES)

return 0;
return table[i];

}

float
vcnoise(float x, float y, float z)
{

int ix, iy, iz;
int i, j, k;
float fx, fy, fz;
float dx, dy, dz;
float sum = 0;
static int initialized = 0;
if (!initialized) {

valueTabInit(665);
initialized = 1;

}
ix = FLOOR(x);
fx = x - ix;
iy = FLOOR(y);
fy = y - iy;
iz = FLOOR(z);
fz = z - iz;

Making Noises 79

Team LRN

for (k = -1; k <= 2; k++) {
dz = k - fz;
dz = dz*dz;
for (j = -1; j <= 2; j++) {

dy = j - fy;
dy = dy*dy;
for (i = -1; i <= 2; i++){

dx = i - fx;
dx = dx*dx;
sum += vlattice(ix+i,iy+j,iz+k)

* catrom2(dx + dy + dz);
}

}
}
return sum;

}

Figure 2.35(e) shows a graph of vcnoise, and Figure 2.36(e) shows a 2D slice of
it. Figure 2.37(e) shows its power spectrum. The spectrum is not unlike that of the
other value noises. Perhaps this is not surprising since it is essentially a value noise
with a different interpolation scheme. Some degree of spectral control should be pos-
sible by modifying the filter shape.

Sparse Convolution Noise

There are several ways to generate noise functions that aren’t based on a regular lat-
tice of PRNs. One such method is called sparse convolution (Lewis 1984, 1989). A
similar technique called spot noise is described by van Wijk (1991).

Sparse convolution involves building up a noise function by convolving a filter
function with a collection of randomly located random impulses (a Poisson process).
The scattered random impulses are considered to be a “sparse” form of white noise,
hence the term “sparse convolution.” The low-pass filtering of the white noise is ac-
complished by the filter function. The power spectrum of the sparse convolution
noise is derived from the power spectrum of the filter kernel, so some control of the
noise spectrum is possible by modifying the filter.

Sparse convolution is essentially the same as the lattice convolution noise algo-
rithm described in the previous section, except that the PRN impulse values are
located at pseudorandom points in each lattice cell. Here is an implementation
of scnoise, a sparse convolution noise based on Lewis’s description. The filter used
is the Catmull-Rom filter described in the previous section. Three randomly placed
impulses are generated in each lattice cell. A neighborhood of 125 lattice cells must

80 CHAPTER 2 Building Procedural Textures

Team LRN

be considered for each call to the noise function because a randomly placed impulse
two cells away could have a nonzero filter value within the current cell. As a result
this noise function is computationally expensive.

static float impulseTab[TABSIZE*4];
static void
impulseTabInit(int seed)
{

int i;
float *f = impulseTab;
srandom(seed); /* Set random number generator seed. */
for (i = 0; i < TABSIZE; i++) {

*f++ = RANDNBR;
*f++ = RANDNBR;
*f++ = RANDNBR;
*f++ = 1. - 2.*RANDNBR;

}
}

#define NEXT(h) (((h)+l) & TABMASK)
#define NIMPULSES 3

float
scnoise(float x, float y, float z)
{

static int initialized;
float *fp;
int i, j, k, h, n;
int ix, iy, iz;
float sum = 0;
float fx, fy, fz, dx, dy, dz, distsq;

/* Initialize the random impulse table if necessary. */
if (!initialized) {

impulseTabInit(665);
initialized = 1;

}
ix = FLOOR (x); fx = x - ix;
iy = FLOOR(y); fy = y - iy;
iz = FLOOR (z); fz = z - iz;

/* Perform the sparse convolution. */
for (i = -2; i <= 2; i++) {

for (j = -2; j <= 2; j++) {
for (k = -2; k <= 2; k++) {

/* Compute voxel hash code. */
h = INDEX(ix+i,iy+j,iz+k);

Making Noises 81

Team LRN

for (n = NIMPULSES; n > 0; n—, h = NEXT(h)) {
/* Convolve filter and impulse. */
fp = &impulseTab[h*4];
dx = fx - (i + *fp++);
dy = fy - (j + *fp++);
dz = fz - (k + *fp++);
distsq = dx*dx + dy*dy + dz*dz;
sum += catrom2(distsq) * *fp;

}
}

}
}

return sum / NIMPULSES;
}

Figures 2.35(f) and 2.36(f) show 1D and 2D sections of scnoise. Figure 2.37(f)
shows the power spectrum. The spectrum is similar to that of the other value noises,
but the slice image appears to exhibit fewer gridlike patterns than the other noises.

Explicit Noise Algorithms

Some interesting methods of generating noises and random fractals aren’t conve-
nient for implicit procedural texture synthesis. These methods generate a large batch
of noise values all at once in an explicit fashion. To use them in an implicit proce-
dural texture during rendering, the noise values would have to be generated before
rendering and stored in a table or texture image. A good example of such a tech-
nique is the midpoint displacement method (Fournier, Fussell, and Carpenter 1982).
A related method of random successive additions is described by Saupe (1992).
Lewis (1986, 1987) describes a generalization of such methods to give greater spec-
tral control. Saupe (1989) shows that such methods can be more than an order of
magnitude less expensive than implicit evaluation methods.

Fourier Spectral Synthesis

Another explicit method of noise generation is to generate a pseudorandom discrete
frequency spectrum in which the power at a given frequency has a probability distri-
bution that is correct for the desired noise. Then a discrete inverse Fourier transform
(usually an inverse FFT) is performed on the frequency domain representation to get
a spatial domain representation of the noise. Saupe (1988) and Voss (1988) describe
this technique.

82 CHAPTER 2 Building Procedural Textures

Team LRN

In the description of spectral synthesis textures on page 51, the example showed
that many hand-picked “random” coefficients were used to generate the cloud tex-
ture. We could think of this as the generation of a random frequency domain repre-
sentation and the evaluation of the corresponding spatial function using a spectral
sum to implement the discrete inverse Fourier transform. This is far less efficient
than an FFT algorithm, but has the advantage that it can be evaluated a point at a
time for use in an implicit procedural texture. The complexity and apparent irregu-
larity of Gardner’s textures is less surprising when they are seen to be noiselike sto-
chastic functions in disguise!

Direct Fourier synthesis of noise is much slower than the lattice noises described
earlier and is probably not practical for procedural texture synthesis. Lattice convo-
lution and sparse convolution are other methods that offer the promise of detailed
spectral control of the noise. There is a trade-off between trying to generate all de-
sired spectral characteristics in a single call to noise by using an expensive method
such as Fourier synthesis or sparse convolution versus the strategy of building up
spectral characteristics using a weighted sum of several cheaper gradient noise
components.

Gradient noise seems to be a good primitive function to use for building up spec-
tral sums of noise components, as demonstrated in the next section. When combin-
ing multiple noise calls to build up a more complex stochastic function, the gradient
noise gives better control of the spectrum of the complex function because gradient
noise has little low-frequency energy compared to the other noise functions; its dom-
inant frequencies are near one-half.

GENERATING IRREGULAR PATTERNS
Armed with the stochastic primitive functions from the preceding section, we can
now begin to generate irregular texture patterns. Since most natural materials are
somewhat irregular and nonuniform, irregular texture patterns are valuable in simu-
lating these materials. Even manufactured materials are usually irregular as a result
of shipping damage, weathering, manufacturing errors, and so on. This section de-
scribes several ways to generate irregular patterns and gives examples in the form of
RenderMan shaders.

The noise function in the RenderMan shading language is an implementation of
the lattice gradient noise described in the preceding section. The RenderMan func-
tion is unusual in that it has been scaled and offset to range from 0 to 1, instead of
the more usual range of −1 to 1. This means that the RenderMan noise function has
a value of 0.5 at the integer lattice points. The −1 to 1 range is sometimes more

Generating Irregular Patterns 83

Team LRN

convenient, and we can use the following signed noise macro in RenderMan shaders
to get a noise in this range:

#define snoise(x) (2 * noise(x) - 1)

The RenderMan noise function can be called with a 1D, 2D, or 3D input point,
and will return a 1D or 3D result (a number, a point, or a color).

Most textures need several calls to noise to independently determine a variety
of stochastic properties of the material. Remember that repeated calls to noise with
the same inputs will give the same results. Different results can be obtained by shift-
ing to another position in the noise space. It is common to call

noise(Q * frequency + offset)

where offset is of the same type as the coordinate Q and has the effect of establish-
ing a new noise space with a different origin point.

There are two approaches to generating time-dependent textures. Textures that
move or flow can be produced by moving through the 3D noise space over time:

f = noise(P - time*D);

can be used to make the texture appear to move in the direction and rate given by the
vector D as time advances. Textures that simply evolve without a clear flow direction
are harder to create. A 4D noise function is the best approach. RenderMan’s noise
function is limited to three dimensions.13 In some cases one or two dimensions of the
noise result can be used to represent spatial position, so that the remaining dimen-
sion can be used to represent time.

The shading language function pnoise is a relative of noise. The noise space
can be wrapped back on itself to achieve periodic effects. For example, if a period of
30 is specified, pnoise will give the same value for input x + 30 as for input x. The
oscillation frequency of the noise value is unaffected. Here are some typical pnoise
calls:

pnoise(f, 30);
pnoise(s, t, 30, 30)
pnoise(P, point (10, 15, 30))

84 CHAPTER 2 Building Procedural Textures

13. We use a 4D quadratic B-spline value noise in our in-house animation system with good results. It
pays to keep the order of the interpolation fairly low for 4D noise to avoid having too many lattice point
terms in the interpolation.

Team LRN

It is easy to implement pnoise by making the choice of lattice PRNs periodic
with the desired period. This technique is limited to integer periods.

When generating procedural textures using any of the noise functions described
in this chapter, it is important to develop an understanding of the range and distribu-
tion of the noise values. It can be difficult to normalize a stochastic function so that
the range is exactly −1 to 1. Furthermore, most of the noise values tend to lie close
to 0 with only occasional excursions to the limits of the range. A histogram of the
distribution of the noise values is a useful tool in designing functions based on
noise.

Spectral Synthesis

The discussion on page 48 showed how complex regular functions with arbitrary
spectral content can be built up from sine waves. As mentioned earlier, the many
pseudorandom coefficients in Gardner’s spectral synthesis textures might be viewed
as a way of generating a noise function by the inverse Fourier transform method.
Spectral synthesis using a noise function as the primitive gives an even richer sto-
chastic content to the texture and reduces the need to use random coefficients for
each component. When a stochastic function with a particular power spectrum is
needed, spectral synthesis based on noise can be used to generate it.

Several calls to noise can be combined to build up a stochastic spectral function
with a particular frequency/power spectrum. A noise loop of the form

value = 0;
for (f = MINFREQ; f < MAXFREQ; f *= 2)

value += amplitude * snoise(Q * f);

with amplitude varying as a function of frequency f will build up a value with a de-
sired spectrum. Q is the sample point in some texture space.

Perlin’s well-known turbulence function is essentially a stochastic function of
this type with a “fractal” power spectrum, that is, a power spectrum in which ampli-
tude is proportional to 1/f.

float
fractalsum(point Q)
{

float value = 0;
for (f = MINFREQ; f < MAXFREQ; f *= 2)
value += snoise(Q * f)/f;

return value;
}

Generating Irregular Patterns 85

Team LRN

This isn’t quite the same as turbulence, however. Derivative discontinuities are
added to the turbulence function by using the absolute value of the snoise func-
tion. Taking the absolute value folds the function at each zero crossing, making the
function undifferentiable at these points. The number of peaks in the function is
doubled, since the troughs become peaks.

float
turbulence(point Q)
{

float value = 0;
for (f = MINFREQ; f < MAXFREQ; f *= 2)
value += abs(snoise(Q * f))/f;

return value;
}

Figure 2.38 shows a slice of the fractalsum function on the left and a slice of
the turbulence function on the right. The fractalsum is very cloudlike in appear-
ance, while turbulence is apparently lumpier, with sharper changes in value. Figure
2.39(a) shows the power spectrum of the fractalsum function, and Figure 2.39(b)
shows the power spectrum of the turbulence function. As you might expect, the
power spectra show a rapid decline in energy as the frequency increases; this is a di-
rect result of the 1/f amplitude scaling in the spectral synthesis loops.

Spectral synthesis loops should use clamping to prevent aliasing. Here is a ver-
sion of turbulence with clamping included:

86 CHAPTER 2 Building Procedural Textures

FIGURE 2.38 Slices of fractalsum and turbulence functions.

Team LRN

float
turbulence(point Q)
{

float value = 0;
float cutoff = clamp(0.5/Qwidth, 0, MAXFREQ);
float fade;

for (f = MINFREQ; f < 0.5*cutoff; f *= 2)
value += abs(snoise(Q * f))/f;

fade = clamp(2*(cutoff-f)/cutoff, 0, 1);
value += fade * abs(snoise(Q * f))/f;
return value;

}

Marble is a material that is typically simulated using an irregular texture based
on spectral synthesis. The following marble shader uses a four-octave spectral syn-
thesis based on noise to build up a stochastic value called marble that is similar to
fractalsum. It is best to use a solid texture space for a marble texture, so that the
texture can be used to shade curved surfaces as if they were carved out of a solid
block of marble. This is accomplished by using the 3D surface point as the argument
to the noise calls.

#define PALE_BLUE color (0.25, 0.25, 0.35)
#define MEDIUM_BLUE color (0.10, 0.10, 0.30)
#define DARK_BLUE color (0.05, 0.05, 0.26)
#define DARKER_BLUE color (0.03, 0.03, 0.20)
#define NNOISE 4

Generating Irregular Patterns 87

(a)
0.0 0.2 0.4 0.6 0.8 1.0

(b)
0.0 0.2 0.4 0.6 0.8 1.0

FIGURE 2.39 Power spectra of (a) fractalsum and (b) turbulence
functions.

Team LRN

color
marble_color(float m)
{

return color spline(
clamp(2 * m + .75, 0, 1),
PALE_BLUE, PALE_BLUE,
MEDIUM_BLUE, MEDIUM_BLUE, MEDIUM_BLUE,
PALE_BLUE, PALE_BLUE,
DARK_BLUE, DARK_BLUE,
DARKER_BLUE, DARKER_BLUE,
PALE_BLUE, DARKER_BLUE);

}

surface blue_marble(
uniform float Ka = 1;
uniform float Kd = 0.8;
uniform float Ks = 0.2;
uniform float texturescale = 2.5;
uniform float roughness = 0.1;

)
{

color Ct;
point NN;
point PP;
float i, f, marble;

NN = normalize(faceforward(N, I));
PP = transform(“shader”, P) * texturescale;
marble = 0; f = 1;
for (i = 0; i < NNOISE; i += 1) {

marble += snoise(PP * f)/f;
f *= 2.17;

}
Ct = marble_color(marble);
Ci = Os * (Ct * (Ka * ambient() + Kd * diffuse(NN))

+ Ks * specular(NN, normalize(-I), roughness));
}

The function marble_color maps the floating-point number marble into a color
using a color spline. Figure 2.40 shows an example of the marble texture.

The spectral synthesis loop in this shader has no clamping control to avoid
aliasing. If the texture is viewed from far away, aliasing artifacts will appear.

Note that the frequency multiplier in the spectral synthesis loop is 2.17 instead
of exactly 2. This is usually better because it prevents the alignment of the lattice
points of successive snoise components, and that tends to reduce lattice artifacts. In

88 CHAPTER 2 Building Procedural Textures

Team LRN

Chapter 6, Steve Worley describes another way to reduce lattice artifacts: randomly
rotating the texture spaces of the different components.

Changing the frequency multiplier from 2 to some other value (like 2.17) affects
the average size of gaps or lacunae in the texture pattern. In the fractal literature, this
property of the texture is called lacunarity (Mandelbrot 1982). The scaling of the
amplitude of successive components affects the fractal dimension of the texture. The
1/f amplitude scaling used here gives a 1/f 2 scaling of the power spectrum, since
power spectral density is proportional to amplitude squared. This results in an ap-
proximation to fractional Brownian motion (fBm) (Saupe 1992).

Perturbed Regular Patterns

Purely stochastic patterns tend to have an amorphous character. Often the goal is a
more structured pattern with some appearance of regularity. The usual approach is
to start with a regular pattern and add noise to it in order to make it look more inter-
esting and more natural.

For example, the brick texture described on page 39 is unrealistically regular, as
if the bricklayer were inhumanly precise. To add some variety to the texture, noise
can be used to modify the relative positions of the bricks in the different rows. The
following is the code from the original shader that calculates which brick contains
the sample point.

sbrick = floor(ss); /* which brick? */
tbrick = floor(tt); /* which brick? */
ss -= sbrick;
tt -= tbrick;

Generating Irregular Patterns 89

FIGURE 2.40 Blue marble texture.

Team LRN

To perturb the ss location of the bricks, we can rewrite this code as follows:

tbrick = floor(tt); /* which brick? */
ss += 0.1 * snoise(tbrick+0.5);
sbrick = floor(ss); /* which brick? */
ss -= sbrick;
tt -= tbrick;

There are a few subtle points to note here. The call to snoise uses tbrick rather
than tt so that the noise value is constant over the entire brick. Otherwise, the sto-
chastic offset would vary over the height of the brick and make the vertical edges of
the brick wavy. Of course, we had to reorder the calculation of sbrick and tbrick
so that sbrick can depend on tbrick. The value of the perturbation will change sud-
denly as tbrick jumps from one integer to the next. That’s okay in this case, because
the perturbation affects only the horizontal position of a row of bricks, and changes
only in the middle of the mortar groove between the rows.

Since snoise is a gradient noise that is zero at all integer points, the perturba-
tion always would be zero if the shader used snoise(tbrick). Instead, it uses
snoise(tbrick + 0.5) to sample the value of the noise halfway between the integer
points, where it should have an interesting value.

The 0.1 multiplier on the snoise simply controls the size of the irregularity
added to the texture. It can be adjusted as desired.

A more realistic version of this brick texture would incorporate some noise-
based variations in the color of the bricks and mortar as well as a small stochas-
tic bump mapping of the normal to simulate roughness of the bricks. It is easy to
keep layering more stochastic effects onto a texture pattern to increase its realism or
visual appeal. But it is important to begin with a simple version of the basic pat-
tern and get that texture working reliably before attempting to add details and
irregularity.

Perturbed Image Textures

Another valuable trick is to use a stochastic function to modify the texture coordi-
nates used to access an image texture. This is very easy to do. For example, the sim-
ple texture access

Ct = texture(“example.tx”, s, t);

using the built-in texture coordinates s and t can be replaced with the following:

90 CHAPTER 2 Building Procedural Textures

Team LRN

point Psh;
float ss, tt;
Psh = transform(“shader”, P);
ss = s + 0.2 * snoise(Psh);
tt = t + 0.2 * snoise(Psh+(1.5,6.7,3.4));
Ct = texture(“example.tx”, ss, tt);

In this example, snoise based on the 3D surface position in “shader” space is
used to modify the texture coordinates slightly. Figure 2.41(a) shows the original im-
age texture, and Figure 2.41(b) is a texture produced by perturbing the image tex-
ture with the code above.

Random Placement Patterns

A random placement pattern is a texture pattern that consists of a number of regular
or irregular subpatterns or “bombs” that are dropped in random positions and ori-
entations to form the texture. This bombing technique (Schacter and Ahuja 1979)
was originally used in an explicit form to generate image textures before render-
ing. With some difficulty, it can be used in an implicit texture function during
rendering.

The most obvious implementation is to store the positions of bombs in a table
and to search the table for each sample point. This is rather inefficient and is espe-
cially hard to implement in the RenderMan shading language since the language has
no tables or arrays. With a little ingenuity, we can devise a method of bombing that
uses only noise to determine the bomb positions relevant to a sample point. The

Generating Irregular Patterns 91

FIGURE 2.41 Perturbing an image texture: (a) original image; (b) perturbed image.

(a) (b)

Team LRN

texture space is divided into a grid of square cells, with a bomb located at a random
position within each cell.

In the following example shader, the bomb is the star pattern created by the pro-
cedural texture on page 46.

#define NCELLS 10
#define CELLSIZE (1/NCELLS)
#define snoise(s,t) (2*noise((s),(t))-l)

surface wallpaper(
uniform float Ka = 1;
uniform float Kd = 1;
uniform color starcolor = color (1.0000,0.5161,0.0000);
uniform float npoints = 5;
)

{
color Ct;
point Nf;
float ss, tt, angle, r, a, in_out;
float sctr, tctr, scell, tcell;
uniform float rmin = 0.01, rmax = 0.03;
uniform float starangle = 2*PI/npoints;
uniform point pO = rmax*(cos(0),sin(0), 0);
uniform point pi = rmin*

(cos(starangle/2),sin(starangle/2), 0);
uniform point dO = pi - pO;
point d1;

scell = floor(s*NCELLS);
tcell = floor(t*NCELLS);
sctr = CELLSIZE * (scell + 0.5

+ 0.6 * snoise(scell+0.5, tcell+0.5));
tctr = CELLSIZE * (tcell + 0.5

+ 0.6 * snoise(scell+3.5, tcell+8.5));
ss = s - sctr;
tt = t - tctr;
angle = atan(ss, tt) + PI;
r = sqrt(ss*ss + tt*tt);
a = mod(angle, starangle)/starangle;

if (a >= 0.5)
a = 1 - a;

d1 = r*(cos(a), sin(a),0) - pO;
in_out = step(0, zcomp(d0^d1));
Ct = mix(Cs, starcolor, in_out);

/* “matte” reflection model */
Nf = normalize(faceforward(N, I));

92 CHAPTER 2 Building Procedural Textures

Team LRN

Oi = Os;
Ci = Os * Ct * (Ka * ambient() + Kd * diffuse(Nf));

}

A couple of improvements can be made to this procedural texture. The require-
ment to have exactly one star in each cell makes the pattern quite regular. A separate
noise value for each cell could be tested to see whether the cell should contain a star.

If a star is so far from the center of a cell that it protrudes outside the cell, this
shader will clip off the part of the star that is outside the cell. This is a consequence
of the fact that a given star is “noticed” only by sample points that lie inside the
star’s cell. The shader can be modified to perform the same shading tests for the eight
cells that surround the cell containing the sample point. Stars that crossed over the
cell edge will then be rendered correctly. The tests can be done by a pair of nested for
loops that iterate over −1, 0, and 1. The nested loops generate nine different values
for the cell coordinate pair (scell, tcell). The star in each cell is tested against the
sample point.

scellctr = floor(s*NCELLS);
tcellctr = floor(t*NCELLS);
in_out = 0;
for (i = -1; i <= 1; i += 1) {

for (j = -1; j <= 1; j += 1) {
scell = scellctr + i;
tcell = tcellctr + j;
if (noise(3*scell-9.5,7*tcell+7.5) < 0.55) {

sctr = CELLSIZE * (scell + 0.5
+ 0.6 * snoise(scell+0.5, tcell+0.5));

tctr = CELLSIZE * (tcell + 0.5
+ 0.6 * snoise(scell+3.5, tcell+8.5));

ss = s - sctr;
tt = t - tctr;

angle = atan(ss, tt) + PI;
r = sqrt(ss*ss + tt*tt);
a = mod(angle, starangle)/starangle;

if (a >= 0.5)
a = 1 - a;

d1 = r*(cos(a), sin(a),0) - pO;
in_out += step(0, zcomp(d0^d1));

}
}

}
Ct = mix(Cs, starcolor, step(0.5, in_out));

Generating Irregular Patterns 93

Team LRN

The first noise call is used to decide whether or not to put a star in the cell. Note
that the value of in_out can now be as high as 9. The additional step call in the last
line converts it back to a 0 to 1 range so that the mix will work properly. Of course,
the step functions in the wallpaper shader should be smoothstep calls with appro-
priate filter widths to prevent jaggy edges on the stars. Figure 2.42 shows the star
wallpaper pattern generated by the shader.

The wallpaper texture in Pixar’s film Knickknack (Figure 2.2) is a more elabo-
rate example of a procedural texture based on bombing.

Note that the bomb subpattern used for a random placement texture doesn’t
have to be a procedural texture like the star. An image texture can be used instead, so
that the bombing procedure can lay down copies of any picture you like, instead of
the stars.

CONCLUSION
This chapter describes an approach to constructing procedural textures and a set of
building blocks that you can use to build them. The range of textures that you can
build is limited only by your imagination and your programming expertise. We hope
that the examples in this chapter and in the rest of the book will inspire you and en-
able you to create wonderful imagery of your own, using procedural textures and
models.

94 CHAPTER 2 Building Procedural Textures

FIGURE 2.42 Random placement wallpaper texture.

Team LRN

Team LRN

3

Team LRN

REAL-TIME PROGRAMMABLE SHADING
W I L L I A M R . M A R K

INTRODUCTION
The materials and lighting effects in the real world are very complex, but for many
years real-time graphics hardware could only support a few simple shading models.
VLSI technology has now progressed to the point where it is possible for a single-
chip real-time graphics processor to support complex, user-programmable shading
programs with high performance.

This transition in graphics hardware has enabled new applications and has
changed existing ones. For visual simulation applications such as flight simulators,
real-time programmable shading enables much greater visual realism. In entertain-
ment applications such as games, programmable shading allows artists to create a
unique “look.” For data visualization applications such as volume rendering, pro-
grammable shading allows the transfer functions that map data values to colors to
be more complex and allows these transfer functions to be modified interactively.
Finally, programmable graphics hardware is sufficiently flexible that it can be used as
a general-purpose parallel computer, to run applications that its designers didn’t
even anticipate.

Many of the sophisticated shading and lighting algorithms that were originally
developed for offline rendering can now be used for real-time rendering. However,
there are some significant differences between real-time programmable shading and
offline programmable shading. A few of these differences are transitory and will dis-
appear as graphics hardware continues to evolve. But many of them are more funda-
mental and are likely to persist for many years. One major goal of this chapter is to
explain these fundamental differences and their implications—in other words, to
provide a bridge between the established domain of offline programmable shading
and the newer domain of real-time programmable shading. The other major goals of
this chapter are to describe the current state of the art in real-time programmable
shading and to provide examples of shaders that run on real-time hardware.

97

Team LRN

After this introduction, the remainder of this chapter is organized as follows:

• First we describe why graphics hardware is fast and the limitations that it im-
poses on programmability in order to provide this high performance.

• Then we provide an initial example of a real-time shading program and show
that it can be written in two very different styles—one style is a RenderMan-
like style, and the other style is closer to the underlying hardware representa-
tion of the program.

• The next two sections discuss the factorization of shading into “surface” and
“light” computations and describe the interface between applications and shad-
ing programs.

• We then provide two longer shading programs that demonstrate useful real-
time shading techniques.

• We conclude with some strategies for developing real-time shaders and some
thoughts on the future of real-time programmable shading.

The remainder of this introductory section will cover three topics. First, we will
summarize the fundamental differences between real-time shading and offline shad-
ing. Then, we will explain our reasons for using a high-level language to program
real-time graphics hardware, instead of an assembly-level language. Finally, we will
list some of the topics that are not covered in this chapter because they are very simi-
lar to the corresponding topics from offline procedural shading and are thus well
covered earlier in this book and elsewhere.

What Makes Real-Time Shading Different?

Although real-time programmable shading is similar in many respects to offline pro-
grammable shading, there are several unique characteristics of real-time program-
mable shading:

• Most applications are interactive. As a result, the shader writer usually does not
know which viewpoints will be used to view an object and may not even know
which lights will be near an object.

• Performance is critical. Real-time rendering requires a greater emphasis on per-
formance than offline rendering. Furthermore, performance must be consistent
from frame to frame.

98 CHAPTER 3 Real-Time Programmable Shading

Team LRN

• Shaders execute on graphics hardware. Graphics hardware provides high per-
formance at low cost, but imposes certain restrictions on shading programs in
order to obtain this high performance.

We will discuss each of these points in more detail.
In offline rendering, the viewpoints used with any particular shader are known

prior to the one-time final rendering, so shaders and lighting can be tuned for these
viewpoints. In contrast, most interactive applications (e.g., games) give the user con-
trol over the viewpoint, either directly or indirectly. Thus, the shader writer does not
know in advance what viewpoints will be used with the shader. As a result, the tasks
of scene lighting and shader antialiasing are more difficult than they are in the off-
line case. Programmers must insure that their solutions work for any viewpoint,
rather than just for a particular set of viewpoints that were specified by the movie
director.

One likely consequence of this difference is that the adoption rate of physically
based illumination techniques will be more rapid in real-time rendering than it has
been in offline movie rendering.

Although real-time shading presents new challenges to the shader programmer,
it also provides one very important advantage: Scenes can be re-rendered in fractions
of a second rather than minutes or hours. As a result, it is much easier to experiment
with changes to a shader until the desired visual effect is achieved. The importance
of this rapid modify/compile/render cycle cannot be overstated. More than most
other types of programming, shader development is inherently iterative because the
algorithms being implemented are ill-defined approximations to complex real-world
phenomena. The ultimate test for a shader is “Does it look right?” so the develop-
ment process is most efficient when it can be rapidly driven by this test.

Rendering performance is an issue in almost any type of rendering, but it is espe-
cially important for real-time rendering. The final frames for a real-time application
may be rendered billions of times. In contrast, the final frames for a movie that is
generated with an offline renderer are only generated once. The economics of these
two cases are very different, requiring that much more effort be expended on opti-
mizing rendering performance for the real-time case.

The consequences of this difference are apparent when we examine the shader-
writing styles for offline rendering and real-time rendering. Many offline shaders
are designed in part as modeling tools. As a result, these shaders have many parame-
ters and option flags and can be thousands of lines long. These shaders provide great
flexibility to artists, but at a cost in complexity. In contrast, real-time shaders are

Introduction 99

Team LRN

more highly specialized. Real-time shaders also rely more heavily on performance-
tuning techniques such as the use of table lookups for vector normalization.

Real-time rendering imposes one additional performance requirement that is not
present for offline rendering: the rendering cost of every frame must be below a
certain threshold to provide acceptable interactivity. In contrast, in a computer-
generated movie, it is acceptable for a few frames to take an order of magnitude
longer to render than the average frame.

Offline shading systems use only the CPU, but real-time shading systems per-
form most of their computations on the graphics hardware (GPU), because the
GPU’s peak performance is about two orders of magnitude greater than that of the
CPU. But this high performance comes with a penalty—the GPU programming
model is more restricted than that of the CPU. These restrictions are necessary to al-
low programmable GPUs to provide high performance at a low cost. The section
“Real-Time Graphics Hardware” describes these restrictions and explains how they
enable high performance.

Why Use a High-Level Programming Language?

Most graphics hardware supports one or more low-level programming interfaces,
generally at the assembly language level. It is possible to program the GPU using
these low-level interfaces, but we won’t describe them in this chapter. Instead, this
chapter uses a high-level shading language for GPU programming. Programs written
in this high-level language (often referred to as shaders) must be compiled into as-
sembly language before being run.

A high-level shading language provides a number of advantages over an assem-
bly language interface:

1. It is easier and more productive to program in a high-level language. Ease of
programming is especially important when developing shaders because the best
approach to shader development is to try something, look at it, and then iter-
ate. In contrast, programming at the assembly language level is sufficiently
painful that it discourages exploration of ideas.

2. Writing programs in a high-level language makes it easy to create “libraries” of
shaders. More importantly, the shaders from such a library can be easily modi-
fied and/or combined to meet specific needs.

3. A high-level language provides at least some degree of hardware independence.
In contrast, GPU assembly languages are often completely different for

100 CHAPTER 3 Real-Time Programmable Shading

Team LRN

products from different hardware companies, and in many cases are even dif-
ferent for different products from the same company.

4. A high-level language (and associated compiler) can virtualize the hardware to
hide hardware resource limits. For example, a compiler can use multiple ren-
dering passes to hide limits on the number of textures, to hide limits on the
number of temporary variables, or to hide limits on the size of a shader. With
the proper hardware support for this virtualization, it can be completely invisi-
ble to the programmer.

5. A high-level language has the potential to provide better performance than typ-
ical handwritten assembly language code. The reason is that the compiler can
optimize shaders using detailed information about the GPU that would be too
tedious to use when writing assembly language code by hand. When the com-
piler is developed by the hardware vendor, the compiler may also use informa-
tion about the GPU design that the hardware vendor would be unwilling to
disclose publicly for competitive reasons.

For these reasons, we expect that high-level languages will become the standard
GPU programming interface in the future, and we focus on them in this chapter.

What You Need to Learn Elsewhere

We’ve already discussed some of the differences between real-time and offline pro-
grammable shading, but the two are also similar in many respects. Many of the
features of real-time shading languages have been adopted from the RenderMan
shading language, and many of the techniques used in offline shaders are equally
useful in real-time shaders. Since there is already a wide variety of high-quality in-
formation available about offline procedural shading, this chapter largely avoids
repeating this information. Instead, we encourage you to use these other resources,
then rely on this chapter to learn about the unique characteristics of real-time
shading.

For readers who are unfamiliar with procedural shading, Chapter 2 of this book
provides essential background material. The important topics in Chapter 2 include
the basic introduction to procedural shading; the distinction between “image-based”
and “procedural” approaches to shading; and the discussion of antialiasing for pro-
cedural shaders.

The standard procedural shading language for offline rendering is the
RenderMan shading language. Although current real-time shading languages differ
in important ways from RenderMan, almost all of the basic shader-writing strategies

Introduction 101

Team LRN

that are used for RenderMan shaders are equally applicable to real-time shaders.
There are two books that describe the RenderMan shading language and discuss
shader-writing techniques. The first is The RenderMan Companion: A Programmer’s
Guide to Realistic Computer Graphics, by Steve Upstill (1990). The second is Ad-
vanced RenderMan: Creating CGI for Motion Pictures, by Tony Apodaca and Larry
Gritz (2000). The Advanced RenderMan book is a particularly good complement to
the material in this chapter.

There are several different implementations of the RenderMan standard. The
first one is Pixar’s PhotoRealistic RenderMan (PRMan). Another is the Blue Moon
Rendering Tools (BMRT). Most RenderMan shaders that are simple will run on any
implementation of RenderMan, and these shaders are a valuable source of ideas for
real-time shading.

If you are writing a complete real-time graphics application, you will need to
understand the entire graphics pipeline, not just the programmable shading parts of
it. There are two major interfaces for controlling the entire graphics pipeline—
Direct3D and OpenGL. Historically, OpenGL has been the better-architected API,
but it often requires the use of vendor-specific extensions to access the latest hard-
ware features. In contrast, Direct3D has been more difficult to learn and use, but has
evolved more rapidly to support leading-edge features with a common interface.
OpenGL is described in the OpenGL Programming Guide (OpenGL ARB 1999),
and in extension specifications available from the Web sites of graphics hardware
companies. A variety of books are published every year or two to describe the latest
version of Direct3D.

Real-Time Graphics Hardware

High-performance real-time programmable shading languages are designed to run
on GPUs. To make effective use of these languages and to be able to predict how
their capabilities will evolve with time, it is crucial to have some understanding of
graphics hardware. This section discusses some of the characteristics of graphics
hardware that are most important for programmable shading.

CPUs and GPUs are designed with very different goals. CPUs are designed to
provide high performance on general-purpose, sequential programs. In contrast,
GPUs are designed to provide high performance for the specialized and highly paral-
lelizable task of polygon rendering and shading.

GPU architectures are organized around these two themes of specialization and
parallelization. For example, rasterization and texture decompression are typically
performed using specialized hardware. As a result, the programmability of these

102 CHAPTER 3 Real-Time Programmable Shading

Team LRN

parts of the graphics pipeline is limited. For other parts of the graphics pipeline that
are programmable, the GPU architecture imposes certain programming restrictions
to facilitate massive parallelism at low cost. For example, the programmable pixel/
fragment processors in 2002-generation GPUs do not support a store-to-memory in-
struction because supporting this type of memory access with reasonable ordering
semantics would impose extra costs in a parallel architecture.

Object Space Shading versus Screen Space Shading

Hardware graphics pipelines perform some programmable shading in object space
(at vertices) and some programmable shading in screen space (in effect, at pixels). In
contrast, the REYES algorithm used by Pixar’s PRMan performs all shading in ob-
ject space, at the vertices of automatically generated micropolygons.1 Hardware
pipelines use the hybrid vertex/pixel shading approach for a variety of reasons, in-
cluding the need for high performance and the evolutionary path that graphics hard-
ware has followed in the past. We will explain the two approaches to programmable
shading in more detail and discuss their advantages and disadvantages.

RenderMan uses curved surfaces (both tensor-product splines and subdivision
surfaces) as its primary geometric primitives. To render these surfaces, PRMan dices
them into grids, then uniformly tessellates each grid into “micropolygons” that are
smaller than a pixel, as in Figure 3.1(a). The programmable shader executes at each
vertex of these micropolygons. The programmable shader may change the position
of the vertex, as well as calculate its color and opacity. Next, for each pixel in which
a micropolygon is visible, its color is evaluated at one or more screen space sample
points. The color at each sample point is determined using either flat shading or
Gouraud shading. The algorithm is described in more detail in Cook, Carpenter, and
Catmull (1987) and Apodaca and Gritz (2000).

In contrast, graphics hardware uses triangular polygons as its primary geometric
primitive. One set of programmable shading computations is performed at the verti-
ces of these triangles, prior to their transformation into screen space. Then, the trian-
gles are rasterized into screen space samples, referred to as fragments. Next, a second
set of programmable computations is performed at each fragment. These two sets of
programmable computations are commonly known as per-vertex and per-fragment
computations, respectively. This process is illustrated in Figure 3.1(b). Finally, if
multisample antialiasing is active, the visibility of a fragment may be tested at multi-
ple points in screen space (not shown in the figure).

Introduction 103

1. Note that other RenderMan implementations, such as BMRT, use different approaches.

Team LRN

The most important difference between object space shading and screen space
shading is that an object space shader may change the position of the surface—that
is, it can displace the surface, using either a displacement map or a procedural
computation. In contrast, a screen space shader is forbidden to change the three-
dimensional position of a fragment because the (u,v) screen space location of the
fragment has already been fixed by the rasterizer. A screen space shader is limited to
changing the screen space depth of a fragment.

For rapidly varying shading computations such as specular lighting, it is impor-
tant that the shading computation be performed approximately once per pixel to
produce high-quality images. Screen space shading is automatically performed at
this rate, but object space shading is not. The REYES algorithm solves this problem
by automatically generating micropolygons of the necessary size from curved sur-
faces specified by the user. There are a number of reasons why this approach has not
yet been used in real-time hardware:

• Historically, the performance of graphics hardware has not been high enough
to allow the use of pixel-sized polygons. Transformation and lighting were

104 CHAPTER 3 Real-Time Programmable Shading

Grids of
micropolygons

in 3D space

Triangles
in screen space

Shaded grids of
micropolygons

in 3D space

Samples in
screen space
(fragments)

Geometric
primitives

in 3D space

Triangles
in 3D space

Points in
screen space

Fully shaded
fragments

3D space

3D space

Screen space

Screen space

Dice

Vertex
shader

program

Fragment
shader

program

Sample
Shader

program

Sample
(rasterize)

(a)

(b)

FIGURE 3.1 Comparison of (a) the REYES pipeline (used in Pixar’s RenderMan) and (b) the
pipeline used in real-time graphics hardware.

Team LRN

performed relatively infrequently at the vertices of large polygons, and these re-
sults were interpolated in screen space. This interpolation is much more ef-
ficient than reevaluating the shading equation at each pixel. The performance
of graphics hardware has now increased to the point where this optimization is
less important than it once was, but because performance is so crucial in real-
time graphics, it is still useful to be able to perform some computations less of-
ten than others.

• If all shading computations are performed at object space vertices, it is crucial
that polygons be approximately the size of a pixel. Adopting this approach for
real-time use would require automatic tessellation of curved surfaces and/or
large polygons to form micropolygons. To avoid performance loss from the
CPU-to-GPU bandwidth bottleneck, this tessellation must be performed by the
graphics hardware. As of this writing, some hardware does support hardware
tessellation of curved surfaces, but this hardware lacks the automatic adjust-
ment of tessellation rate needed to guarantee pixel-sized micropolygons and has
not been widely used by developers. Hardware implementation of adaptive tes-
sellation is challenging; feedback paths of the type used in the REYES dicing al-
gorithm are complex to implement, as are algorithms that avoid cracks at
boundaries where tessellation rates change. However, we can expect that these
challenges will eventually be overcome.

• Because graphics hardware has historically performed high-frequency shading
computations at fragments rather than vertices, 2002-generation graphics hard-
ware does not support the use of texture maps at vertices. A switch to 100%
object space shading would require that texture mapping capability be added to
the programmable vertex hardware.

There are several other differences between the pure object space shading model
used by the REYES algorithm and the hybrid model used by graphics hardware:

• If a displacement map contains large, rapidly varying displacements, the object
space shading model can create polygons that are large and flat-shaded in
screen space. In contrast, the hybrid vertex/fragment shading model performs
fragment computations once per pixel even for large polygons generated by the
displacement process.

• The object space shading model allows motion blur and depth-of-field effects to
be generated inexpensively. Shading computations are performed once in object
space, and the shaded surfaces are sampled many times to generate the motion

Introduction 105

Team LRN

blur and depth-of-field effects. In contrast, the accumulation buffer technique
that is typically used to generate these effects in conjunction with screen space
shading requires that the shading computations be repeated for each set of
samples.

• Antialiasing of procedural shaders often relies on derivative computations, and
computing these derivatives is very simple at fragments. If vertices are specified
directly (rather than automatically generated by dicing, as in REYES), comput-
ing derivatives at vertices is more complex than doing so at fragments because
the neighborhood relationships for vertices are less regular.

One minor, but sometimes annoying, implication of the different rendering
approaches used by RenderMan and real-time hardware is that real-time hard-
ware does not make the “geometric normal” available to vertex programs. In
RenderMan, the geometric normal is available as the variable Ng and is directly com-
puted from the local orientation of the curved surface being rendered. In 2002-
generation graphics hardware, only the shading normal N is available in vertex pro-
grams. However, the geometric normal can be made available to fragment programs
on some graphics hardware via two-sided lighting tricks.

Parallelism

Graphics hardware relies heavily on several forms of parallelism to achieve high per-
formance. Typically, programming any type of parallel computer is difficult because
most algorithms have dependencies among the different computations required by
the algorithm. These dependencies require communication and synchronization be-
tween processors. The need for communication and synchronization tends to reduce
processor utilization and requires expensive hardware support.

The programmable processors in graphics hardware largely avoid these costs by
restricting the communication that is allowed. As a result, the hardware can provide
very high performance at low cost, as long as the user’s algorithms can tolerate the
restrictions on communication.

On 2002-generation graphics hardware, the programmable vertex processor al-
lows only access to data for a single vertex. As a result, the hardware can perform
operations on different vertices in any order or in parallel. If multiple vertex proces-
sors operate in parallel, no communication or synchronization is required between
them.2 Likewise, the programmable fragment processor allows access to data for just

106 CHAPTER 3 Real-Time Programmable Shading

2. Note that some synchronization is required when vertices are assembled into primitives, but because
this operation is not programmable, it can be performed by highly specialized hardware.

Team LRN

one fragment. High-level real-time shading languages that compile to this hardware
must expose the restriction that each vertex is processed independently and each
fragment is processed independently.

If both read and write access is provided to a memory, that memory provides an-
other form of communication. The system must define (and support) ordering se-
mantics for the reads and writes. To avoid the costs associated with supporting these
ordering semantics, 2002-generation GPUs tightly restrict memory accesses. Frag-
ment processors can read from texture memory, but not write to it. Fragment pro-
cessors can write to frame buffer memory, but not read from it. The only read
access to frame buffer memory is via the nonprogrammable read/modify/write blend
unit. These read/modify/write operations are performed in the order that polygons
were specified, but the hardware required to implement this ordering is simplified
because the fragment processor is not allowed to specify the address of the write. In-
stead, the write address is determined by the (nonprogrammable) rasterizer. All of
these restrictions are exposed in high-level real-time shading languages. Fortunately,
the restrictions are straightforward and are also present in the RenderMan shading
language.

One implication of the restricted memory access model is that a compiler must
store all of a shader’s temporary variables in hardware registers. On a CPU, tem-
porary variables can be “spilled” from registers to main memory, but this simple
strategy does not work on a GPU because there is no general read/write access to
memory. The only way to perform this spilling on 2002-generation graphics hard-
ware is for the compiler to split the shading computation into multiple hardware
rendering passes. Then, temporary variables can be saved into the graphics memory
in one pass and restored from that memory in a subsequent rendering pass. Note
that the CPU software must issue a barrier operation between rendering passes to
switch the region of memory used for the temporary storage from write-only access
(“frame buffer mode”) to read-only access (“texture mode”).

At the fragment level, most 2002-generation graphics hardware uses a SIMD
(single instruction, multiple data) computation model—the same sequence of in-
structions is executed for each fragment. At the instruction set level, the SIMD model
is evident from the absence of a conditional branch instruction. Hardware that uses
this SIMD computation model cannot execute data-dependent loops using a single
hardware rendering pass. Shading languages that compile to this hardware must ei-
ther forbid these operations or implement them inefficiently by using multiple ren-
dering passes and stencil-buffer tests.3 If/then/else operations can be executed within

Introduction 107

3. This strategy is inefficient because it consumes additional memory bandwidth and requires retrans-
formation and rerasterization of geometry.

Team LRN

a single rendering pass, but only by effectively executing both the “then” and “else”
clauses for every fragment, and then choosing which result to keep.

The situation is different for vertex computations. Some 2002-generation hard-
ware supports looping and branching for vertex computations. Thus, the vertex
hardware uses an SPMD (single program, multiple data) computation model—dif-
ferent vertices execute the same program, but they may take different execution
paths through that program.

The SIMD computation model is less expensive to implement in hardware than
the SPMD model because the instruction storage, fetch, and decode hardware can
be shared among many processing units. Furthermore, SIMD execution can easily
guarantee that the computations for different fragments complete in the correct or-
der. However, data-dependent looping is valuable for algorithms such as anisotropic
filtering, antialiasing of turbulent noise functions, and traversal of complex data
structures. For these reasons, it is likely that graphics hardware will eventually incor-
porate direct support for conditional branch instructions in fragment programs.

Hardware Data Types

Graphics hardware has historically used low-precision, fixed-point data types for
fragment computations. The registers and computation units for smaller data types
are less expensive than those for larger data types; for example, the die area required
by a hardware multiplier grows approximately as the square of the number of bits of
precision. But general-purpose shader programs require higher-precision data types,
especially for texture coordinate computations (e.g., computing the index into an en-
vironment map). Shader programs are also easier to write if the hardware supports
floating-point data types instead of fixed-point data types, since the availability of
floating-point data types frees the programmer from having to worry about scale
factors.

For these reasons, 2002-generation hardware supports 32-bit floating-point
fragment arithmetic. However, because lower-precision arithmetic can be performed
more quickly, 2002-generation hardware also supports lower-precision floating-
point and fixed-point data types. Shaders that use these lower-precision data types
will typically run faster than shaders that reply primarily on the 32-bit floating-point
data type.

Pre-2002-generation graphics hardware only supports 8-bit or 9-bit fixed-point
arithmetic for most fragment computations. If a shader that is written in a high-level
language needs to run on this older hardware, its variables must all be declared using
these older fixed-point data types. Even on newer hardware, shader writers must

108 CHAPTER 3 Real-Time Programmable Shading

Team LRN

restrict themselves to using data types that are hardware supported on all of the
hardware platforms that they are targeting. Compilers can effectively hide some dif-
ferences between hardware instruction sets, but they cannot efficiently hide differ-
ences between hardware data types.

Resource Limits

In general, graphics hardware has limits on resources of various types. These limited
resources include the following:

• Memory for storing instructions

• Registers for storing temporary variables

• Interpolators for vertex-to-fragment interpolants

• Texture units

• Memory for textures and frame buffer

Ideally, these resource limits would be hidden from the high-level language pro-
grammer by some combination of hardware-based and software-based virtualiza-
tion techniques. As an analogy, CPUs hide limits on main memory size by using a
virtual memory system that pages data to and from disk. Performance may degrade
when this virtualization is activated, but programs produce exactly the same results
that they would if more main memory were available. CPU hardware includes
features that are designed to support this virtualization. Unfortunately, 2002-
generation graphics hardware does not yet support resource virtualization as well as
CPUs. Most resource limits can be circumvented by using multiple rendering passes,
but multipass rendering is an imperfect virtualization technique. Generally, the need
to resend geometry from the CPU to the GPU cannot be completely hidden from the
application program. Furthermore, multipass rendering produces incorrect results
for overlapping, partially transparent surfaces. As a result, shader programmers
must sometimes concern themselves with limits on the resources that a program may
consume.

Even if virtualization is implemented well, it may cause nonlinear changes in
performance that are sufficiently large to be of concern to programmers. For exam-
ple, adding one more statement to a shader can cause its performance to drop in half
on some graphics hardware. Programmers who are concerned about performance
on particular hardware must understand the resource limits and performance char-
acteristics of that hardware.

Introduction 109

Team LRN

Memory Bandwidth and Performance Tuning

Z-buffered rendering consumes an enormous amount of memory bandwidth for
reading and writing the frame buffer. If surfaces are texture mapped, additional
memory bandwidth is required to read the texels from texture memory. As a result,
the performance of real-time graphics hardware has historically been limited primar-
ily by memory bandwidth, especially when rendering large polygons.

As VLSI technology advances, this limitation becomes more pronounced be-
cause on-chip computational performance improves more rapidly than bandwidth
to off-chip memories. One solution to this problem would be to put the entire frame
buffer, plus a frame-sized texture cache, on chip. But as of this writing, this solution
is not yet economical for PC graphics hardware.

Graphics hardware designers have instead taken a different approach—-they
have placed the increased computational performance at the programmer’s disposal,
by adding the programmable hardware units that are the focus of this chapter. Be-
sides enabling the generation of much more realistic images, these programmable
units indirectly reduce the demand for memory bandwidth by allowing program-
mers to use a single rendering pass to implement algorithms that used to require
multiple rendering passes. In processor design terminology, GPUs have become a
specialized type of stream processor (Rixner et al. 1998). Stream processors are de-
signed to support a high compute-to-bandwidth ratio, by reading a packet of data
(e.g., a vertex), executing a complex computational kernel (e.g., a vertex program)
on this data, and then writing a packet of data (e.g., a transformed vertex).

Unfortunately, the availability of these programmable units makes performance
tuning very complex. At any one time, rendering performance may be limited by
vertex-processor performance, fragment-processor performance, memory band-
width (including texture fetches), or any one of a whole set of other factors, such as
host-to-GPU bandwidth. Detailed approaches to performance tuning are hardware
dependent, but we will describe two performance-tuning techniques that are broadly
applicable.

First, it is often possible to trade compute performance for memory bandwidth
and vice versa. The simplest example of such a trade-off is the use of a table lookup
(i.e., texture read) in place of a complex computation. If a shading program is com-
pute limited, then making this trade-off will improve rendering performance.

Second, for programs that are limited by memory bandwidth, it may be possible
to improve performance by more effectively utilizing the hardware’s texture cache.
In general, reducing the size of a texture will improve performance, as will restruc-
turing programs that use table lookups so that they are more likely to repeatedly ac-
cess the same table entries.

110 CHAPTER 3 Real-Time Programmable Shading

Team LRN

SIMPLE EXAMPLES
Throughout the rest of this chapter, we will use a series of example shading pro-
grams that show some of the effects that can be achieved with a real-time program-
mable shading system. These shaders are written using the Stanford real-time
shading language. The Stanford real-time shading system is an experimental system
designed to show that a hardware-independent shading language can be efficiently
compiled to programmable graphics hardware. At the time that we developed the
examples in this chapter, it was the only high level language available for main-
stream programmable graphics hardware.

As this book was in the final stages of publication, commercially supported pro-
gramming languages for programmable GPUs were beginning to appear. These lan-
guages, including NVIDIA’s Cg language, follow the philosophy of the C language in
the sense that they are designed primarily to provide convenient access to all of the
capabilities of the underlying hardware, rather than to facilitate any particular use of
the hardware. In contrast, RenderMan, and to a lesser extent the Stanford shading
language, are designed for the specific task of surface shading and include a variety
of features designed to support that task.

All but one of the examples in this chapter avoid most of these specialized fea-
tures and therefore can be easily ported to commercially supported GPU program-
ming languages such as Cg. However, you may want to check the author’s Web site
for updated versions of the examples before porting them yourself.

Vertex and Fragment Code in the Stanford Shading System

Most of the commercially available GPU programming languages require that the
user write two separate programs—a vertex program and a fragment program. One
of the unique features of the Stanford shading language is the ability to combine ver-
tex and fragment computations within a single program. The user specifies whether
computations are per vertex or per fragment by using the vertex and fragment type
modifiers. The following code shows how a simple program can use these type
modifiers. The Stanford language also allows computations to be performed once
for each group of primitives, using the primitive group type modifier. Typically,
this capability is used for operations such as inverting and transposing the model-
view matrix. On 2002-era hardware, these operations are executed on the CPU
rather than the GPU.

//
// A very simple program written in the Stanford shading language. This program
// includes both vertex computations and fragment computations. The fragment

Simple Examples 111

Team LRN

// type modifier indicates that a variable is instanced once for each fragment.
// Likewise, the vertex and primitive group type modifiers indicate that a vari-
// able is instanced once for each vertex or once for each group of primitives,
// respectively.
//
// Scale ‘u’ component of texture coordinate, and apply texture to surface
//
surface shader float4
applytexture (vertex float4 uv, primitive group texref star) {

vertex float4 uv_vert = {uv[0]*2, uv[1], 0, 1}; // Scale texcoord
fragment float4 uv_frag = uv_vert; // Interpolate
fragment float4 surf = texture(star, uv_frag); // Texture lookup
return surf;

}

The Stanford language uses simple “type promotion” rules to determine
whether specific computations within an expression are mapped to the CPU, the ver-
tex processor, or the fragment processor. For example, when a vertex expression is
multiplied by another vertex expression, the computation is performed by the ver-
tex processor and yields another vertex expression. When a vertex expression is
multiplied by a fragment expression, the vertex expression is interpolated to pro-
duce a fragment expression before performing the multiplication on the fragment
processor. The compiler is responsible for using these rules to split the user’s single
program into separate vertex and fragment programs that can be executed on the
graphics hardware, and a separate primitive group program that is executed on the
CPU.

This unified vertex/fragment programming model is very convenient for
straight-line code, but it becomes unwieldly in a language that supports imperative
looping constructs, such as “for” and “while” loops. The Stanford language doesn’t
support these constructs, but the newer commercially available languages do, and
therefore they require the user to write separate vertex and fragment programs. The
example shaders in this chapter are designed to be easily split into separate vertex
and fragment programs for such languages.

Two Versions of the Heidrich/Banks Anisotropic Shader

One of the most important advantages of programmable graphics hardware is that it
can be used to implement almost any lighting model. For anisotropic surfaces, one
lighting model that is especially appropriate for real-time use is Heidrich and Seidel’s
(1999) formulation of the Banks (1994) anisotropic lighting model. Figure 3.2 illus-
trates this lighting model applied to a sphere.

Heidrich and Seidel’s lighting model was designed to execute efficiently on
graphics hardware. The vertex-processing hardware computes a pair of dot

112 CHAPTER 3 Real-Time Programmable Shading

Team LRN

products, and these dot products are used as indices for a 2D table lookup at each
fragment. The 2D table is precomputed and stored in a 2D texture map. Heidrich
and Seidel have described a whole family of real-time lighting models that are based
on the idea of factoring lighting models into independent terms that depend on
only one or two angles. Each such term can be stored in a 1D or 2D texture map.
The SIGGRAPH paper that describes their approach (Heidrich and Seidel 1999) is
worthwhile reading for anyone who is interested in lighting models that are both re-
alistic and efficient.

We will now look at two programs that implement the Banks/Heidrich light-
ing model using two different shader-writing styles. The first program expresses al-
most all of the transform and shading computations explicitly. For example, the first
two statements transform the position from homogeneous model space to Cartesian
eye space, and later statements transform the surface normal and binormal vec -
tors (Ndir and Bdir) to eye space. These computations rely directly on parameters

Simple Examples 113

FIGURE 3.2 Banks/Heidrich anisotropic lighting shader applied to a sphere.

Team LRN

provided through the geometry API, such as the vertex position and the modelview
matrix.

//
// The first of two implementations of the Heidrich/Banks anisotropic lighting
// model. This implementation explicitly expresses every computation that will
// be performed by the programmable vertex and fragment hardware, except for the
// final transformation of position into clip space. The anisotex texture must
// be precomputed as described in Heidrich and Seidel (1999). Adapted from a
// shader written by Kekoa Proudfoot; used with permission.
//
// Relies on the following predefined variables:
// __position = object space position for vertex (from API vertex calls)
// __normal = object space normal for vertex (from API vertex calls)
// __binormal = object space binormal for vertex (from API vertex calls)
// __modelview = 4 × 4 modelview matrix
// __invmodelview3 = inverse transpose of 3 × 3 modelview matrix
// __ambient = global ambient color
//
surface shader float4
anisotropic1 (texref star, // Surface texture

texref anisotex, // Precomputed table for BRDF calc
float4 lightpos, // Light position
float4 lightcolor) { // Light color

//
// Determine light’s location and its intensity at surface
//
vertex float4 Peye4 = __modelview * __position; // calc eye space obj pos
vertex float3 Peye3 = {Peye4[0], Peye4[1], Peye4[2]} / Peye4[3];
vertex float3 Lvec = rgb(lightpos) - Peye3;
vertex float3 Ldir = normalize(Lvec);
vertex float4 light_intensity = lightcolor / (1.0 + .01*length(Lvec));
//
// Look up surface texture using computed texture coordinates
//
vertex float4 surf_uv = {0.5*__position[2]+0.5, 0.5*__position[0]+0.5, 0, 1};
fragment float4 surf = texture(star, surf_uv);
//
// Compute eye space normal and binormal direction vectors
//
vertex float3 Ndir = normalize(__invmodelview3 * __objnormal);
vertex float3 Bdir = normalize(__modelview3 * __objbinormal);
//
// Heidrich/Banks anisotropic lighting
// Uses a texture as table lookup
//

114 CHAPTER 3 Real-Time Programmable Shading

vertex float3 Edir =normalize(-Peye3); // Direction from surface to eye
vertex float4 aniso_uv = {0.5*dot(Bdir,Edir)+0.5, 0.5*dot(Bdir,Ldir)+0.5, 0, 1};

Team LRN

//
// Calculate ambient term; modulate lighting by surface texture
//
float4 Ma = {0.1, 0.1, 0.1, 1.0}; // Ambient coefficient
return surf * (Ma*__ambient + anisotrp);

}

This program also explicitly specifies whether variables are instanced at each
vertex or at each fragment. This style of programming makes it clear which compu-
tations will be performed in the vertex-processing hardware, and which will be per-
formed in the fragment-processing hardware. It also makes it easy to port this
program to shading languages that require vertex and fragment computations to be
specified in separate programs.

The second version of the Heidrich/Banks shader program looks quite different,
although it compiles to the same hardware operations:

//
// The second of two implementations of the Heidrich/Banks anisotropic lighting
// model. This implementation uses separate surface and light programs and
// relies on implicitly specified computations. Two unique features of the
// Stanford system are used here: The perlight variables in the surface shader
// are instanced once for each active light shader. The integrate() function
// performs a sum over all lights of its argument. The argument to integrate()
// must be a perlight expression, but the result is an ordinary expression.
// Adapted from a shader written by Kekoa Proudfoot; used with permission.
//

//
// Light shader with constant and linear terms
//
// Relies on the following predefined variable:
// Sdist = distance from light to surface point
//
light shader float4
simple_light (float4 lightcolor, float ac, float al)
{

return lightcolor * (1.0 / (al * Sdist + ac));
}

//
// Heidrich/Banks anisotropic shader; works with any light shader(s).
//
// Relies on the following predefined variables:
// Pobj object space surface position, w=1
// N eye space normal vector, normalized, w=0

Simple Examples 115

fragment float4 anisotrp = light_intensity *
max(dot(Ndir,Ldir),0) * texture(anisotex, aniso_uv);

Team LRN

// B eye space binormal vector, normalized, w=0
// E eye space local eye vector, normalized, w=0
// L eye space light vector, normalized, w=0 (per light)
// Cl color of light (per light)
// Ca color of global ambient light
//
surface shader float4
anisotropic2 (texref star, texref anisotex) {

//
// Look up surface texture using computed texture coordinates
//
float4 surf_uv = {0.5*Pobj[2]+0.5, 0.5*Pobj[0]+0.5), 0, 1};
float4 surf = texture(star, surf_uv);
//
// Heidrich/Banks anisotropic lighting
// Uses a texture as table lookup
//
perlight float4 aniso_uv = {0.5*dot(B,E)+0.5, 0.5*dot(B,L)+0.5, 0, 1};
perlight float4 anisotrp = Cl *

max(dot(N,L),0) * texture(anisotex, aniso_uv);
//
// Calculate ambient term; modulate lighting by surface texture
//
float4 Ma = {0.1, 0.1, 0.1, 1.0}; // Ambient coefficient
return surf *(Ma * Ca + integrate(anisotrp));

}

The differences between the two versions of the program fall into three catego-
ries. First, the second version relies on the shading system to implicitly perform some
computations, such as the transformation of the normal vector from object space to
eye space. Second, this program specifies “surface” and “light” computations in two
different shaders, and relies on the shading system to combine these computations
into a single hardware program at compile time. We will discuss this capability of the
Stanford system in more detail later. Third, this program doesn’t explicitly specify
whether computations are performed per vertex or per fragment. Instead, it relies on
the Stanford system’s default rules to determine whether computations are per-
formed per vertex or per fragment. As mentioned earlier, these default rules are simi-
lar to the type promotion rules in the C language.

SURFACE AND LIGHT SHADERS
Historically, real-time graphics APIs have allowed the application to manage surface
properties separately from light properties. Surface properties include the textur-
ing modes and surface color(s). Light properties include the number of lights, the

116 CHAPTER 3 Real-Time Programmable Shading

Team LRN

type of each light, and the color(s) of each light. For example, in OpenGL, the
glColorMaterial routine modifies surface properties, and the glLight routine mod-
ifies light properties.

This separability of surface and light properties corresponds to the behavior we
observe in the physical world—any light in a scene will modify the appearance of
any surface, as long as the two are visible from each other. The RenderMan shading
language supports this distinction by providing two types of shaders—light shaders
and surface shaders. A light shader is responsible for calculating the intensity and
color of light that is incident on any surface element from a particular light. A sur-
face shader is responsible for determining the final surface color (as seen from a par-
ticular direction), given a set of incident light intensities.

Unfortunately, light and surface computations are not cleanly separated in
graphics hardware because a Z-buffered rendering pipeline is fundamentally just a
surface renderer. If the application changes the number of active lights, the graphics
system must change the computation performed by the hardware at every point on
every surface. For a fixed-function rendering pipeline, the hardware driver can man-
age the required changes to the hardware configuration, since the fixed-function
pipeline’s lighting model is simple enough that the configuration changes are local-
ized to the vertex-processing part of the pipeline.

When the hardware API supports full programmability, it becomes much more
difficult for the hardware driver to maintain the illusion that surface and light com-
putations are fully separable. As a result, 2002-generation low-level programmable
APIs for graphics hardware eliminate the distinction between surface and light com-
putations. These APIs expose one programmable vertex processor and one program-
mable fragment processor. These processors must perform all of the per-vertex and
per-fragment computations, respectively. The user is responsible for combining sur-
face and light computations to create these programs.

Even though the hardware does not directly support separate surface and light
shaders, it is possible for high-level real-time shading language to do so. However, if
a language supports separability, the separability is an illusion that must be main-
tained by the language’s compiler and run-time system. The compiler and run-time
system are responsible for combining each surface shader with the active light
shader(s) to create a single vertex program and single fragment program that will
run on the underlying hardware.

As with almost any binding operation, there is a trade-off between the perfor-
mance of the combined code and the cost of the binding operation. If the binding is
done early, prior to most of the compilation process, then the resulting code is very
efficient, but the binding operation itself is expensive—it is essentially a recompile. If

Surface and Light Shaders 117

Team LRN

the binding is done late, then the binding operation is inexpensive, but the result-
ing code is likely to be less efficient because the compiler cannot perform global
optimizations.

The Stanford shading system supports separate surface and light shaders using
the early-binding model. The binding process is explicit: the run-time API requires
that light shaders be bound to a surface shader before compiling the surface shader.
The Stanford system could have used an implicit binding model instead, but implicit
early binding is dangerous because the binding process is sufficiently expensive that
the application should be aware of it. In addition to supporting surface and light
shaders, the Stanford system also supports deformation shaders, which can modify
the position and local coordinate frame of a surface point.

As of 2002, most other high-level real-time shading languages do not support
separate surface and light shaders. One reason for this omission is that built-in sup-
port for separate surfaces and lights requires that the shading system impose an in-
terface between the two types of shaders. For example, in the RenderMan shading
language, lights return a single RGB color. In the Stanford shading language, lights
return a single RGBA color. Interestingly, neither of these interfaces is sufficient to
support the OpenGL lighting model! The reason is that the OpenGL lighting model
requires that lights return three RGBA colors—ambient, diffuse, and specular. Al-
though such lights are not physically realizable, the flexibility they provide has
proven to be very useful in practice.

Since it is difficult to pick a single surface/light interface that is appropriate for
all uses, it is likely that future real-time shading languages will provide a more
general mechanism for specifying interfaces between cooperating routines. In the
RenderMan shading language, it is common for users to define such interfaces indi-
rectly, using extra shader parameters and the RenderMan message-passing routines.

THE INTERFACE BETWEEN SHADERS AND APPLICATIONS
A shader program is not a stand-alone program. It operates on data (e.g., vertices)
provided through some external mechanism, it obtains its parameters (e.g., light po-
sitions) through some external mechanism, and it is enabled and disabled through
some external mechanism. Typically, this external mechanism is an API that is either
layered on top of the primary real-time API or fully integrated with it. For example,
the Stanford shading system uses a set of API calls that are implemented on top of
OpenGL, while the proposed OpenGL 2.0 shading language requires changes to the
OpenGL API itself. Although the RenderMan standard is best known for its shading

118 CHAPTER 3 Real-Time Programmable Shading

Team LRN

language, it also includes an entire API that is used to specify geometry, to set shader
parameters, and to generally control the rendering process.

For programmers who migrate from fixed-function real-time graphics pipelines
to programmable pipelines, it is useful to understand which parts of the fixed-
function API are subsumed by shading programs and which are not. Most of the
state management API routines are replaced by the shading language. For example, a
shader program replaces the fixed-function API routines used to configure texture
blending, to configure lighting, and to set texture coordinate generation modes.
However, current shading languages do not replace the API commands used to load
textures. The application program is responsible for loading textures before using a
shader.

A programmable shading system retains the fixed-function API routines used to
feed data down the graphics pipeline and augments them with new routines. For ex-
ample, the API routines used to specify the position and normal vector of a vertex
are retained. New API routines are provided to allow the specification of shader-
specific vertex parameters (e.g., skinning weights) and to allow the specification of
shader-specific state (e.g., “time,” for an animated shader).

To use a more concrete example, the Stanford shading system provides API rou-
tines that allow an application to do the following:

• Load a shader’s source code from a file

• Associate a light shader with a surface shader

• Compile a surface shader and its associated light shader(s)

• Bind to a compiled shader (i.e., prepare to render with it)

• Specify values of arbitrary shader parameters (either through immediate-mode
style commands or through vertex arrays)

• Specify vertices to be rendered (again, either through immediate-mode style
commands or through vertex arrays)

The following program shows the API calls required to render one face of a cube
using the Stanford shading system.

//
// Pieces of a C program that make the API calls required to render one face of a
// cube using the Stanford shading system. All of the sgl* calls are shading API
// calls. sglParameterHandle() binds a numeric handle to a string name.
// sglParameter4fv() specifies the value of a shader parameter, using a numeric

The Interface between Shaders and Applications 119

Team LRN

// handle. sglBindShader() specifies which shader should be used for rendering.
// The other sgl* calls are wrappers around the similarly named OpenGL calls.
// Note that this listing omits the API calls required to initialize the shading
// system and to compile the shader.
//
// Setup
//
float green[] = {0.0, 1.0, 0.0, 1.0};
float a[] = {0.0, 0.0, 0.0, 1.0};
float b[] = {0.0, 1.0, 0.0, 1.0};
float c[] = {1.0, 1.0, 0.0, 1.0};
float d[] = {1.0, 0.0, 0.0, 1.0};
//
// Assign numeric handles to parameter names
// Only needs to be done once for a shader
// This shader requires a “surfcolor” parameter and a “uv” parameter.
//
const int UV = 3;
const int SURFCOLOR = 4;
sglBindShader(200); // Bind a shader that was compiled earlier
sglParameterHandle(“uv”, UV);
sglParameterHandle(“surfcolor”, SURFCOLOR);
.
.
.

//
// Render y=1 face of a cube
// Surface color is green; assign “uv” coordinates for texturing
//
sglBindShader(200); // Bind a shader that was compiled earlier
sglBegin(GL_QUADS);
sglParameter4fv(SURFCOLOR, green);
sglNormal3f(0.0,1.0,0.0);
sglParameter4fv(UV, a); sglVertex3f(-1.0, 1.0, -1.0);
sglParameter4fv(UV, b); sglVertex3f(1.0, 1.0, -1.0);
sglParameter4fv(UV, c); sglVertex3f(1.0, 1.0, 1.0);
sglParameter4fv(UV, d); sglVertex3f(-1.0, 1.0, 1.0);
sglEnd();

It is important to remember that most programmable shaders require significant
support from the main application program. In addition to binding the shader, the
application program must specify values for the shader’s parameters, load textures,
and provide any auxiliary data that is needed in conjunction with each vertex and/or
triangle. When designing a shader, it is crucial to decide how much of a burden you
are willing to impose on the application program. For example, will you restrict

120 CHAPTER 3 Real-Time Programmable Shading

Team LRN

your shader to using a specific set of values that is already provided with each vertex
by the application? Or are you willing to require that the application provide new
per-vertex values just for your shader?

MORE EXAMPLES
This section discusses two shading programs that are substantially more complex
than the previous examples. The first is a shader used for volume rendering. It re-
quires hardware capabilities such as dependent texturing that were not supported on
PC graphics hardware prior to NVIDIA’s GeForce3. The second is a shader for pro-
cedurally generated flame. It consists entirely of fragment operations and requires an
NVIDIA NV30 (fall 2002) or better to run.

Volume-Rendering Shader

Now that consumer-level graphics cards support both 3D textures and fragment-
level programmability, it is possible to use these cards to perform volume rendering
with a variety of classification and lighting functions. This type of volume rendering
is implemented by rendering a series of 2D slices from a 3D texture and compositing
the slices as they are rendered (Cabral, Cam, and Foran 1994; Van Gelder and Kim
1996). The volume shader is applied to each slice as it is rendered and composited.

The following program is an example of this type of shader. Figure 3.3 illustrates
the use of this shader. Many variants on this theme are possible; for example, better-
looking results can be obtained by using a double-sided lighting model in place of
the single-sided lighting model used in the lightmodel_gradient() function.

//
// A volume-rendering shader written in the Stanford shading language.
// On each invocation, the shader classifies and shades one sample from the
// volume. Information about the volume is stored in 3D texture maps. This
// shader was written by Ren Ng; used with permission.
//
// functions to transform 3 and 4 vectors from
// eye space to object space
//
surface float3 objectspace(float3 V) {return (invert(affine(__modelview))*V);}
surface float4 objectspace(float4 V) {return (invert(__modelview)*V);}

// simple light shader
//
light shader float4

More Examples 121

Team LRN

constant_light(float4 color) {
return color;

}

// function to do specular & diffuse lighting based on a gradient field
//
// Hobj: the half angle vector in object space
// Lobj: the lighting vector in object space
// Nobj: the gradient vector in object space
// a: ambient term
// d: diffuse coefficient
// s: specular coefficient
//
surface float3
lightmodel_gradient (perlight float3 Hobj,

perlight float3 Lobj,
fragment float3 Nobj,
float3 a, float3 d, float3 s) {

// Diffuse
perlight float NdotL = dot(Nobj, Lobj);
perlight float3 diff = d * clamp01(NdotL);

122 CHAPTER 3 Real-Time Programmable Shading

FIGURE 3.3 Using a volume-rendering shader to visualize a 3D MRI of a mouse abdomen. Ren Ng
wrote the shader and captured this frame. The mouse data set is courtesy of G. A. Johnson, G. P.
Cofer, S. L. Gewalt, and L. W. Hedlund at the Duke University Center for In Vivo Microscopy.

Team LRN

// Specular exponent of 8.0
perlight float NdotH = clamp01(dot(Nobj, Hobj));
perlight float NdotH2 = NdotH * NdotH;
perlight float NdotH4 = NdotH2 * NdotH2;
perlight float NdotH8 = NdotH4 * NdotH4;
perlight float3 spec = s * NdotH8;

// Combine
return integrate(a + rgb(Cl) * (diff + spec));

}

// Surface shader for resampling polygons drawn through a volume.
// Note that compositing is set up by the calling application.
//
// density_plus_gradientmag: a 2-component, 3D texture containing
// density in the red channel and the magnitude of gradient in alpha
// gradient: a 3-component, signed 3D texture containing the gradient
// color_opacity_transfer2d: a 2D texture that contains an RGBA value
// (a base color and opacity), to be indexed by gradient magnitude
// and density
// voxelsPerSlice: inverse of the average number of resampling slices
// that pass through each voxel
// ambientColor: ambient lighting color
// specularColor: specular lighting color
// objToTex: a matrix that transforms from the object coordinates of
// the volume to texture coordinates. This matrix provides the client
// application with flexibility in exactly how the volume is
// stored in an OpenGL texture
// opacityFactor: a dial for the application to easily change the
// overall opacity of the volume.
//
surface shader float4
volume_shader (texref density_plus_gradientmag,

texref gradient,
texref color_opacity_transfer2d,
primitive group float voxelsPerSlice,
primitive group float4 ambientColor,
primitive group float4 specularColor,
primitive group matrix4 objToTex,
primitive group float opacityFactor) {

// texture coordinate set-up: convert from world
// coordinates to object coordinates.
matrix4 worldToTex = objToTex * invert(__modelview);
float4 uvw = worldToTex * P;

// Classification: map (density, gradient magnitude) -> (base color, alpha)
// using a dependent texture lookup
fragment float4 density_maggrad = texture3d(density_plus_gradientmag, uvw);
fragment float4 dep_uv = { density_maggrad[3], density_maggrad[0], 0, 1 };
fragment float4 basecolor_alpha = texture(color_opacity_transfer2d, dep_uv);

More Examples 123

Team LRN

fragment float3 basecolor = rgb(basecolor_alpha);
fragment float alpha = basecolor_alpha[3] * (4.0 * voxelsPerSlice);

// Shading: Blinn-Phong model, evaluated in object space
// 3D texture gives an object space normal vector
// transform eye space H and L vectors into object space
fragment float3 Nobj = rgb(texture3d(gradient, uvw)); // uses signed texture
perlight float3 Hobj = normalize(objectspace(H));
perlight float3 Lobj = normalize(objectspace(L));
float3 A = rgb(ambientColor);
float3 D = basecolor;
float3 S = rgb(specularColor);
fragment float3 color = lightmodel_gradient(Hobj, Lobj, Nobj, A, D, S);

float opacFact = clamp01(opacityFactor);

fragment float4 rgba = {opacFact * (4.0 * alpha) * color, // RGB
opacFact * (4.0 * alpha) }; // ALPHA

return rgba;
}

Noise-Based Procedural Flame

The following program is an animated flame shader. This shader is sufficiently com-
plex that it is at the outer extreme of what is reasonable in a real-time shader in
2002. Figure 3.4 shows a single frame generated using this shader.

//
// An animated flame shader consisting entirely of per-fragment computations.
// This shader is written in the Stanford shading language and is designed to
// be applied to a single square polygon with (u,v) in the range [0,1]. It
// compiles to 122 NV_fragment_program instructions. This shader is ©2001
// NVIDIA; used with permission.
//
float abs(float x) {
return(select(x < 0, -x, x));

}

//
// fastspline--Evaluate spline function
// for spline parameters (1, 0.8, 0.1, 0, 0)
//
float fastspline(float x) {

float t0 = x*2;
float r0 = 0.8 + t0*(-0.45 + t0*(-0.8 + t0*(0.55)));

124 CHAPTER 3 Real-Time Programmable Shading

Team LRN

float t1 = (x-0.5)*2;
float r1 = 0.1 + t1*(-0.4 + t1*(0.55 + t1*(-0.25)));

float r = select(x < 0.5, r0, r1);
return r;

}

// Rotate 2D vector (stored in float3) by 30 degrees and scale by 2
float3 rotate30scale2(float3 x) {

More Examples 125

FIGURE 3.4 One frame generated using an animated flame shader. This scene consists of only three
rectangles—one for the stone wall, one for the floor, and one for the flame. The rectangle with the
flame shader is rendered last because the flame is partially transparent and because the flame
shader uses the depth of the background at each pixel.

Team LRN

return {x[0]*2.0*0.866, x[1]*2.0*(-0.5), 0.0} +
{x[0]*2.0*0.5, x[1]*2.0*(-0.866), 0.0};

}

// Return one 3D noise value from a 2D noise texture
float noise3D(float3 T, texref noisetex,

float3 L1offset, float L1weight,
float3 L2offset, float L2weight) {

float L1 = texture(noisetex, T+L1offset)[0];
float L2 = texture(noisetex, T+L2offset)[0];
float N = L2*L2weight + L1*L1weight; // Range of N is [0,1]
return abs(N-0.5);

}

// Obtain background depth for this pixel from a texture
// that has been created with render-to-texture or equivalent.
// In this case, the depth is packed into the RGB values.
float lookup_olddepth(texref depthtex) {

float4 dtex = texture(depthtex, rgb(xyz_screen())/1024);
return dtex[0] + dtex[1]/256 + dtex[2]/(256*256);

}

//
// Notes on texture parameters:
// * ‘noisetex’ holds random noise.
// Its wrap mode must be set to REPEAT for both dimensions.
// * ‘permutetex’ holds a 1D array of random values
// Its wrap mode must be set to REPEAT, and it can be point-sampled.
// * ‘depthtex’ holds the depth of the background,
// with the floating-point depth value stuffed into RGB
//
surface shader float4
flame (float4 uv, primitive group float time,

texref permutetex, texref noisetex,
texref depthtex) {

fragment float u = uv[0];
fragment float v = uv[1];
//
// Calculate the coordinates (T) for turbulence computation
//
float framediff = time*0.2; // Animate--upward flame movement with time
float3 T = {u, v+framediff, 0};
//
// Scale the turbulence coordinates.
// ‘freqscale’ adjusts the spatial frequency of the turbulence
// The 1/64.0 scales into the range of the 64 × 64 noise texture
//
constant float freqscale = 16;
T = T * ({freqscale, freqscale/2, 0} * {1/64.0, 1/64.0, 0});

126 CHAPTER 3 Real-Time Programmable Shading

Team LRN

//
// To get a third (temporal) dimension of noise, we generate a pair of
// pseudorandom time-varying offsets into the 2D noise texture. We use
// a 64 × 1 (really 64 × 64) permutation texture to generate the offsets.
//
constant float changerate = 6.0;
float timeval = time*changerate;
float timerem = timeval - floor(timeval);
float timebase = floor(timeval); // Determines pair of samples
float L1weight = 1.0 - timerem;
float L2weight = timerem;
float ocoord1 = timebase/64.0 + 1.0/128.0;
float ocoord2 = ocoord1 + 1.0/64.0;
float3 L1offset = rgb(texture(permutetex, {ocoord1, 1.0/128.0, 0.0}));
float3 L2offset = rgb(texture(permutetex, {ocoord2, 1.0/128.0, 0.0}));

//
// Generate turbulence with four octaves of noise
//
float turb;
turb = noise3D(T, noisetex, L1offset, L1weight, L2offset, L2weight);
T = rotate30scale2(T); // Rotate T by 30 deg and scale by 2
turb = turb +

0.5 * noise3D(T, noisetex, L1offset, L1weight, L2offset, L2weight);
T = rotate30scale2(T); // Rotate T by 30 deg and scale by 2
turb = turb +

0.25 * noise3D(T, noisetex, L1offset, L1weight, L2offset, L2weight);
T = rotate30scale2(T); // Rotate T by 30 deg and scale by 2
turb = turb +

0.125 * noise3D(T, noisetex, L1offset, L1weight, L2offset, L2weight);
//
// Calculate the flame intensity in the “edge” (silhouette) region.
// It decreases both with the distance from the vertical axis
// and with height. It is also perturbed by the turbulence value.
//
float turbscale = 0.5 + 0.7*(1-v);
float x = (1.0/sqrt(v)) * (abs(2.0*u-1.0) + turbscale*turb);
float edgedensity = 12.5 * fastspline(clamp(x, 0, 1));
//
// Calculate the color for the edge region of the flame
//
float FlameTemperature = 0.6;
float3 FlameColor = {1.0, FlameTemperature, FlameTemperature-0.2};
float3 edgecolor = FlameColor * edgedensity;
//
// Calculate the color for the interior region of the flame
// The flame interior is cooler near the top
//
float indensity = (2.85*turb+0.55) + v*0.35;

More Examples 127

Team LRN

float3 incolor = FlameColor * indensity;
//
// Transition from the interior color to the edge color at the point
// where the densities (and thus colors) are equal
//
float3 flamecolor = select(edgedensity > indensity, incolor, edgecolor);
float density = select(edgedensity > indensity, indensity, edgedensity);
//
// Clamp the color and density
//
flamecolor = clamp(flamecolor, 0, 1);
density = clamp(density, 0, 1);
//
// If no depth-based attenuation is desired, can exit the shader here:
// return {flamecolor, density};
//
// ** Depth-based attenuation **
// This attenuation reduces the “straight edge” effect where the flame
// meets the floor. It is equivalent to a very simple volume
// integration (in Z)
//
constant float depthscale = 0.002;
constant float flamethickness = depthscale; // flame thick in [0,1] Z units
constant float depthperturb = 1.75 * depthscale; // depth perturb scale
constant float edgeperturb = 3.5 * depthscale; // depth perturb at side
float olddepth = lookup_olddepth(depthtex);
//
// Perturb current depth by turbulence value (to avoid uniformity);
// and by abs(u-0.5) to give rounded appearance to flame base
//
float depth = xyz_screen()[2];
depth = depth + depthperturb*turb + edgeperturb*abs(u-0.5);
//
// Attenuation is proportional to difference between
// current depth (after perturbation) and background depth.
//
float atten = (olddepth - depth) / flamethickness;
return {flamecolor, density*min(atten,1.0)};

} // flame

This shader is almost entirely procedural; although it uses three textures, these
textures are used only to assist in the generation of pseudorandom noise and to pro-
vide the shader with the depth of the background geometry at the current pixel.

Pseudorandom 3D noise can be generated using a variety of techniques. At one
extreme is an almost entirely procedural technique (used by most of the examples in
earlier chapters in this book); at the other extreme is a single 3D texture lookup.

128 CHAPTER 3 Real-Time Programmable Shading

Team LRN

This flame shader uses an intermediate approach: for each 3D noise evaluation, the
shader performs a pair of two 2D texture lookups and combines the results. In ef-
fect, one dimension of the 3D noise function is evaluated procedurally, and the other
two dimensions are obtained from a texture. The best approach to evaluating a 3D
pseudorandom noise function depends strongly on the performance characteristics
of the target hardware, so this shader’s approach will not be ideal for all hardware.

This flame shader consists of four basic parts. First, the shader computes a tur-
bulence function from four octaves of pseudorandom noise. The pseudorandom
noise varies as a function of u, v, and time. The dependence on time animates the
flame. Second, the shader calculates the flame’s intensity. The spatial dependence of
this computation provides the flame with its inverted-V shape. The shader uses this
intensity to determine the location of the flame’s silhouette and to calculate the
flame’s color in the regions near the silhouette. Third, the shader calculates the
flame’s color in the interior (nonsilhouette) regions of the flame. This color is primar-
ily based on the pseudorandom turbulence value, but is adjusted to make the flame
look hotter at the base and cooler at the top. Finally, the shader reduces the opacity
of the flame if the depth of the flame’s polygon is similar to the depth of the back-
ground object. Without this depth-based attenuation, the flame would end abruptly
where the flame’s polygon intersects the floor.

STRATEGIES FOR DEVELOPING SHADERS
Developing complex shaders is difficult and is somewhat different from most other
programming tasks. The task is partly a programming task and partly an artistic
task. A real-time shader needs to achieve a visually pleasing result with the best pos-
sible performance, and it is often not clear what the best strategy is for reaching this
goal. The Advanced RenderMan book (Apodaca and Gritz 2000) is worth reading
for its insights into this process.

The following hints may also be useful:

• Find photographs and/or videos of the real-world effect you are trying to
model. For example, I found several video clips and photographs of real fire be-
fore writing the preceding flame shader.

• Don’t start from scratch. Find an existing shader that does something similar to
what you are trying to do, and use that as a starting point. Almost all of the ex-
amples in this chapter used some other shader as a starting point. Offline
shaders can often be adapted for real-time use, or at least mined for insights

Strategies for Developing Shaders 129

Team LRN

into the phenomenon that is being modeled. For example, the preceding flame
shader evolved from a much simpler offline shader that I found in the
ShaderLab2 package sold by Primitive Itch software. Graphics hardware com-
panies usually maintain Web pages that provide examples of real-time shaders
that run well on their hardware.

• Iterate! When you are working on a real-time shader, you have the luxury of
being able to tweak it and see the result within seconds. Take advantage of this
capability to look at the images produced by your shader as you develop it. It-
eration is especially important for shaders that use a primarily phenomeno-
logical strategy (i.e., the computation is designed to look right), rather than a
physically based strategy (the computation is designed to model some underly-
ing physical process).

• Consider different approaches: in some cases an image-based approach (texture
map) is best; in other cases a procedural approach works best. Most shaders
use a combination of the two techniques. The light/surface interaction shader
that John Carmack uses in his Doom game is an excellent example of combin-
ing computation with texture mapping to efficiently produce a desired effect on
2002-era graphics hardware.

• If shader performance is a major concern, make sure you understand which op-
erations are efficient on the target hardware and which are not. Sometimes it
can be helpful to examine the assembly language output from the compiler (if
this is possible) to get ideas for improving the performance of a shader.

FUTURE GPU HARDWARE AND PROGRAMMING LANGUAGES
In 1999, GPUs were totally unprogrammable. Less than three years later, in 2002,
GPUs included very general programmability for both vertex and fragment opera-
tions. Future changes are likely to be somewhat less dramatic, but we will continue
to see an expansion of the generality and scope of GPU programmability. As GPU
programmability matures, we can expect that hardware vendors will converge to-
ward a common set of hardware data types and basic programmable features. This
convergence will make it easier to use a high-level programming language to write
shaders that are portable across a broad range of graphics hardware.

As graphics hardware becomes more general, it is likely that GPU programming
languages will continue to evolve to look more like general-purpose programming

130 CHAPTER 3 Real-Time Programmable Shading

Team LRN

languages and less like specialized shading languages. This distinction is subtle,
but important. General-purpose C-like languages provide straightforward access to
hardware capabilities, without making any assumptions about the kind of program
that the user is writing. In contrast, shading languages make certain assumptions
about the kind of code that the user is writing. For example, the RenderMan shading
language includes data types for points, vectors, and normals; in some cases, the
compiler automatically transforms variables from one coordinate system to another.
These capabilities are convenient for writing a shader, but unnecessary and even
awkward for writing other types of GPU code. Ultimately, it is likely that specialized
languages like RenderMan will be available for GPUs, but that programs written in
these languages will be automatically converted into a C-like language before being
compiled and run.

As graphics hardware and programming languages become more general, we
will also see a wider variety of algorithms implemented on GPUs. For example, ray-
tracing algorithms can be implemented on 2002-generation GPUs with reasonable
efficiency (Purcell et al. 2002). If nontraditional uses of the GPU such as ray tracing
can be shown to be sufficiently valuable, they will in turn influence the future evolu-
tion of GPUs.

LITERATURE REVIEW
The RenderMan shading language (Hanrahan and Lawson 1990) is the standard for
offline programmable shading. The definitive definition of the language is provided
by the RenderMan specification (Pixar 2000). The two books on RenderMan men-
tioned earlier in the chapter (Upstill 1990; Apodaca and Gritz 2000) contain much
information that is useful for real-time shading programmers.

Prior to the era of programmable PC graphics hardware, there were two ma-
jor efforts to build real-time programmable shading systems: the PixelFlow project
Olano and Lastra 1998; Leech 1998) and SGI’s OpenGL Shader (Peercy et al. 2000).
Many of the lessons learned from these systems are still valuable for anyone who is
designing new programmable hardware or shading languages.

The first shading language for PC graphics hardware was developed as part of
the Quake III game engine (Jaquays and Hook 1999). This simple language showed
that game writers would be willing to use a shading language if it provided portabil-
ity to different hardware platforms without an unreasonable performance penalty.
The Stanford shading system was the first system designed to target highly program-
mable PC graphics hardware and is described in Proudfoot et al. (2001).

Literature Review 131

Team LRN

ACKNOWLEDGMENTS
Eric Chan, Matt Pharr, Kurt Akeley, and David Ebert read drafts of this chapter and
made excellent suggestions for improvements.

The contents of this chapter were inspired by research done as part of the Stan-
ford real-time programmable shading project. Kekoa Proudfoot, Pat Hanrahan, and
I began building the Stanford real-time shading system in 1999. Svetoslav Tzvetkov,
Eric Chan, Pradeep Sen, John Owens, and Philipp Schloter added key capabilities to
it. Ren Ng demonstrated that the system could be used to enable interactive, pro-
grammable volume rendering, in collaboration with David Ebert, Marc Levoy, and
other project members. Our industry partners ATI (Andy Grueber, Steve Morein,
Evan Hart, and Jason Mitchell), NVIDIA (Matt Papakipos, Mark Kilgard, David
Kirk, and many others), SGI (Mark Peercy and Marc Olano), SONY-Kihara Re-
search Center (Takashi Totsuka and Yuji Yamaguchi), SUN (Michael Deering), and
3dfx (John Danskin, Roger Allen, and Gary Tarolli) provided information about fu-
ture graphics hardware, access to prerelease hardware and drivers, and funding.
Matt, Mark, and others at NVIDIA were particularly strong supporters of our proj-
ect. Their comments had an influence on the research direction we chose, and they
provided us with outstanding access to prerelease hardware and drivers.

More recently, Tim Purcell, Ian Buck, Pat Hanrahan, and I began investigating
the use of programmable graphics hardware for ray tracing and scientific computa-
tion. My thoughts about future graphics hardware architectures have been influ-
enced by Bill Dally’s Imagine project (Rixner et al. 1998; Owens et al. 2000) and by
discussions with Mark Horowitz and Kurt Akeley.

I’d like to thank Pat Hanrahan for inviting me to work in a great research envi-
ronment at Stanford, for sharing his thoughts on procedural shading, and for letting
me take the time to write this chapter. Finally, I thank NVIDIA, and David Kirk in
particular, for allowing me to include up-to-date information about NV30 hardware
in this chapter, and for granting permission to include the flame shader that I wrote
for NVIDIA.

132 CHAPTER 3 Real-Time Programmable Shading

Team LRN

Team LRN

4

Team LRN

CELLULAR TEXTURING
S T E V E N W O R L E Y

Procedural texturing uses fractal noise extensively. This book has multiple chapters
that are virtually subtitled “More Applications of Fractal Noise.” The major reason
for this popularity is that noise is very versatile.

The noise function simply computes a single value for every location in space.
We can then use that value in literally thousands of interesting ways, such as perturb-
ing an existing pattern spatially, mapping directly to a density or color, taking its de-
rivative for bump mapping, or adding multiple scales of noise to make a fractal
version. While there are infinitely many functions that can be computed from an in-
put location, noise’s random (but controlled) behavior gives a much more interesting
appearance than simple gradients or mixtures of sines.

This simple functional nature of noise makes it an adaptable tool that you might
call a texture “basis” function. A basis function should be a scalar value, defined
over ℜ3. A good basis function is useful in the same way noise is, since its value can
be used in versatile, diverse methods like we do with noise. Certainly not all textures
use basis functions; a brick wall pattern is not based on mapping a computed value
into a color spline.

This brings us to the introduction of new basis functions based on cellular tex-
turing. Their appearance and behavior are very different than noise’s (which makes
them a good complement to the noise appearance), but they are basis functions, like
noise, and we can immediately use many of the fun ideas we’ve learned about for
noise for the new basis.

Cellular texturing is related to randomly distributed discrete features spread
through space. Noise has a “discoloration” or “mountain range” kind of feeling.
Cellular textures evoke more of a “sponge,” “lizard scales,” “pebbles,” or “flag-
stones” feeling. They often split space into small, randomly tiled regions called cells.
Even though these regions are discrete, the cellular basis function itself is continuous
and can be evaluated anywhere in space.

135

Team LRN

The behaviors of noise and cellular texturing complement each other. This chap-
ter starts with a description of the definition of the cellular function to teach you
enough to use it as a texture author. The second half of the chapter is about imple-
menting the basis function itself. Since source code for implementation is included
with this book, this section can be skipped if you wish. However, the cellular basis is
a lot more “hackable” than noise’s definition, so many advanced textures will re-
write parts of the algorithm; therefore, so a complete description of the classic imple-
mentation is provided.

THE NEW BASES
The cellular texturing basis functions are based on the fundamental idea of ran-
domly scattering “feature points” throughout 3D space and building a scalar func-
tion based on the distribution of the points near the sample location. We’ll define this
main idea with a few simple functions.

For any location x, there is some feature point that lies closer to x than any other
feature point. Define F1(x) as the distance from x to that closest feature point. Fig-
ure 4.1 shows an example of this in 2D. As x varies, F1 varies continuously as the
distance between the sample location and the fixed feature point varies. It’s still con-
tinuous even when the calculation “switches” from one feature point to its neighbor
that has now become the closest. The derivative of F1 will change discontinuously
at these boundaries when the two feature points are equidistant from the sample
location.

These locations where the function F1 “switches” from one feature point to the
next (where its derivative is discontinuous) are along the equidistance planes that

136 CHAPTER 4 Cellular Texturing

FIGURE 4.1 Fn values are the distance to the nth closest feature point.

F4

F3

F5

F1
F2

Sample location

Team LRN

The New Bases 137

separate two points in 3D space. These planes are exactly the planes that are com-
puted by a Voronoi diagram, a partition of space into cellular regions.

The function F2(x) can be defined as the distance between the location x and the
feature point that is the second closest to x. With similar arguments as before, F2 is
continuous everywhere, but its derivative is not at those locations where the second-
closest point swaps with either the first closest or third closest. Similarly, we can de-
fine Fn(x) as the distance between x and the nth closest feature point.

The functions F have some interesting properties. Fn are always continuous. Fn

are nondecreasing; 0 ≤ F1(x) ≤ F2(x) ≤ F3(x). In general, Fn(x) ≤ Fn+1(x) by the
definition of Fn. The gradient of Fn is simply the unit direction vector from the nth
closest feature point to x.

These careful definitions are very useful when we want to start making interest-
ing textures. As with the noise function, mapping values of the function into a color
and normal displacement can produce visually interesting and impressive effects. In
the simplest case, F1(x) can be mapped into a color spline and bump. The character
of F1 is very simple, since the function increases radially around each feature point.
Thus, mapping a color to small values of F1 will cause a surface texture to place
spots around each feature point—polka dots! Figure 4.2 shows this radial behavior
in the upper left.

Much more interesting behavior begins when we examine F2 and F3 (upper right
and lower left in Figure 4.2). These have more rapid changes and internal structure
and are slightly more visually interesting. These too can be directly mapped into col-
ors and bumps, but they can also produce even more interesting patterns by forming
linear combinations with each other. For example, since F2 ≥ F1 for all x, the func-
tion F2(x) − F1(x) is well defined and very interesting, as shown in the bottom right
of the figure. This combination has a value of 0 where F1 = F2, which occurs at the
Voronoi boundaries. This allows an interesting way to make a latticework of con-
nected ridges, forming a veinlike tracery.

We have interesting patterns in the basis functions F1, F2, F3 and now we see that
the linear combination F2 − F1 forms yet another basis. This leads us to experiment
with other linear combinations, such as 2F3 − F2 − F1 or F1 + F2. In fact, most linear
combinations tend to be interesting! The best way to see the different possible ap-
pearances is to generate multiple different linear combinations randomly and simply
look at them, and save the ones that appeal to you. A user interface that lets you edit
the linear coefficients is also fun, but a simple button to generate random coefficients
is better. (It seems more useful to see brand-new patterns each time than to edit four
mystery sliders that are difficult to “aim” to any goal.)

F4 and other high n start looking similar, but the lower values of n (up to 4) are
quite interesting and distinct. More importantly, linear combinations of these Fn

Team LRN

have more “character” than the plain Fn, particularly differences of two or more
simple bases. Since the range of the function will change, it’s easiest to evaluate 1000
samples or so and learn the minimum and maximum ranges to expect, and remap
this value to a more stable 0–1 range. For “final” textures, this normalization only
has to be precomputed once and hardwired into the source code afterwards.

Figure 4.3 shows 20 sample surfaces that are all just examples of combinations
of these low-n basis functions (C1F1 + C2F2 + C3F3 + C4F4 for various values of Cn).

These patterns are interesting and useful, but we can also use the basis functions
to make fractal versions, much like noise is used to produce fractal noise. By com-
puting multiple “scales” of the function at different weights and scaling factors, a
more visually complex appearance can be made. This is a simple loop, computing a
function Gn = ∑ 2−iFn(2ix) for moderate ranges of i (i = 0–5), and using Gn as the in-
dex for colors and bumps.

The fractal versions of any of the basic basis function combinations become ex-
tremely appealing. Figure 4.4 shows a fractal version of F1 forming the spotted pat-
tern and bumps on the hide of a creature. Fractal noise is used for the tongue, and a
linear gradient is applied to the main body for color variation. Other fractal versions
of primitives are shown in the row of cut tori in Figure 4.5.

138 CHAPTER 4 Cellular Texturing

FIGURE 4.2 Gradient-mapped samples of F1, F2, F3, and F2 − F1.

Team LRN

The New Bases 139

FIGURE 4.3 A variety of example appearances formed by linear combinations of the Fn functions.

FIGURE 4.4 Natural-looking reptile hide using fractal-versions of the Fn functions.

Team LRN

The fractal version of F1 is perhaps the most useful. Applied solely as a bump
map, the surface becomes crumpled like paper or tinfoil. This surface has been
extremely popular with artists as a way to break up a smooth surface, providing a
subtle roughening with an appearance unlike fractal noise bumps. A surprising dis-
covery was that a reflective, bumped-map plane with this “crumple” appearance
bears an excellent resemblance to seawater, as shown in Figure 4.6. This bump-only
fractal texture has become extremely popular in many renderers.

Since the cellular texture is a family of bases, it’s fun to try more advanced inces-
tuous combinations! Nonlinear combinations of simple polynomial products such as
F1F2 or F3

2 − F2
2 are also interesting and useful texture bases. Again, renormalizing

by empirically testing the output range makes the new basis easier to apply to color
maps.

If the F1 function returns a unique ID number to represent the closest feature
point’s identity, this number can be used to form features that are constant over a
cell, for example, to shade the entire cell a single constant color. When combined
with bumping based on F2 − F1, quite interesting flagstonelike surfaces can be easily
generated. Figure 4.7 shows this technique, which also uses fractal noise discolor-
ation in each cell. Note that unlike Miyata (1990), no precomputation is necessary
and the surface can be applied on any shaped 3D object.

Bump mapping of the flagstonelike areas is particularly effective, and it is cheap
to add since the gradient of Fn is just the radial unit vector pointing away from the
appropriate feature point toward the sample location.

IMPLEMENTATION STRATEGY
It’s not necessary to understand how to implement the cellular texture basis function
in order to use it. But more than noise, the basis seems to encourage modifications
and adaptations of the main algorithm to produce new effects, often with a very

140 CHAPTER 4 Cellular Texturing

FIGURE 4.5 More examples of fractal combinations.

Team LRN

different behavior than the original version. The following sections describe my im-
plementation method, hopefully to allow you to modify it to make your own alter-
natives. The source code is also commented, but like all software, understanding the
algorithm first will make understanding the actual code much easier.1

Implementation Strategy 141

FIGURE 4.6 Sea surface formed from bump-mapped fractal F1 functions.

1. If you do create interesting extensions or speedups, please contact me at steve@worley.com!

Team LRN

The first step is to define how feature points are spread through space. The den-
sity and distribution of points will change the character of the basis functions. Our
first assumption is that we want an isotropic function, to avoid any underlying pat-
tern aligned with the world’s axes. A simple idea like adding a point at every integer
gridpoint and jittering their locations is easy to implement, but that underlying grid
will bias the pattern, and it will be easy to see that “array” point layout.

The correct way to eliminate this bias is to keep the idea of splitting space into
cubes, but choosing the number of points inside each cube in a way that will com-
pletely obscure the underlying cube pattern. We’ll analyze this separately later.

Dicing Space

Since space will be filled with an infinite number of feature points, we need to be able
to generate and test just a limited region of space at a time. The easiest way to do this
is to dice space into cubes and deal with feature points inside each cube. This allows
us to look at the points near our sample by examining the cube that the sample loca-
tion is in plus the immediate neighbor cubes. An example is shown in Figure 4.8,
where the “X” marks our sample location and dots show feature points in each
cube. We can ignore the more distant cubes as long as we’re assured that the feature
points will lie within the 3 × 3 grid of local cubes.

142 CHAPTER 4 Cellular Texturing

FIGURE 4.7 3D flagstone texture shows Voronoi cells.

Team LRN

Each “cube” in space can be uniquely represented by its integer coordinates, and
by simple floor operations we can determine, for example, that a point like (1.2,
3.33, 2.3) lies within the cube indexed by (1, 3, 2).

Now we determine how many and where feature points lie inside this cube. The
“random” number we use to determine the number of points in a cube obviously
must be unique to that cube and reproducible at need. There is a similar requirement
in the noise function, which also uses a cubic lattice with fixed values associated with
each gridpoint. We also need this seed to generate the location of the feature points
themselves.

The solution to this problem is to hash the three integer coordinates of a cube
into a single 32-bit integer that is used as the seed for a fast random number gen-
erator. This is easy to compute as something like 702395077x + 915488749y +
2120969693z mod 232. The constants are random but chosen to be odd, and not
simple multiples of each other mod 232. Like linear congruential random number
generators, the low-order bits of this seed value are not very random.

We compute the number of points in the cube using this seed to pick a value
from a short lookup table of 256 possibilities. This hardwired array of possible point
populations is carefully precomputed (as described on page 145) to give us the
“keep the points isotropic” magic property we desire. We use the high-order bits
from our seed to index into the table to decide how many feature points to add into
the cube. Since our table is a nice length of 256, we can just use the eight high-order

Implementation Strategy 143

FIGURE 4.8 Searching for local feature points in neighboring cubes of space.

Team LRN

bits of the seed value to get the index. (The original 1996 paper used a different
method for picking the point count, but the lookup table is both easier and more
versatile.)

Neighbor Testing

Next, we compute the locations of the m feature points inside the sample cube.
Again, these are values that are random, but fixed for each cube. We use the already
initialized random number generator to compute the XYZ locations of each of the
feature points. These coordinates are relative to the base of the cube and always
range from 0 to 1 for each coordinate.

As we generate each point, we compute its distance to the original function eval-
uation location and keep a sorted list of the n smallest distances we’ve seen so far.
As we test each point in turn, we effectively do an insertion sort to include the new
point in the current list. This sounds expensive, but for typical values of n of 2 or 3,
it only takes one or two comparisons and is not a major contributor to the algo-
rithm’s evaluation time.

This procedure finds the closest feature points and the values of F1 to Fn for the
points within the current cube of space (the one that contains the hit point). How-
ever, the feature points within a neighboring cube could quite possibly contain a fea-
ture point even closer than the ones we have found already, so we must iterate
among the boundary cubes too. We could just test all 26 immediate neighboring
cubes, but by checking the closest distance we’ve computed so far (our tentative nth
closest feature distance) we can throw out whole rows of cubes at once by deciding
when no point in the neighbor cube could possibly contribute to our list.

Figure 4.9 shows this elimination in a 2D example. The central cube has three
feature points. We compute F1 based on the feature point closest to the sample loca-
tion (marked by “X”). We don’t know yet what points are in the adjoining cubes
marked by “?,” but if we examine a circle of radius F1, we can see that it’s possible
that the cubes labeled A, B, and C might contribute a closer feature point, so we have
to check them. If we want to make sure our computation of F2 is accurate, we have
to look at a larger circle and additionally test cubes D and E. In practice, we can
make these decisions quickly since it’s easy to compare the current F distance to the
distance of the neighbor cubes (especially since we can just compare the squared dis-
tances, which are faster to compute).

This kind of analysis also shows us that we need sufficient feature point density
to make sure that one layer of neighbor cubes is enough to guarantee that we’ve
found the closest point. We could start checking cubes that are even more distant

144 CHAPTER 4 Cellular Texturing

A-

Team LRN

neighbors, but that becomes more and more expensive. Checking all neighbors re-
quires at most 33=27 cubes, but including more distant neighbors 2 cubes away
would need 53=125 cubes.

After we’ve checked all of the necessary neighbors, we’ve finished computing
our values of F. If we computed Fn, we were effectively finding values for all F1, F2,
. . . , Fn simultaneously, which is very convenient. The code included with this book
returns all these values, plus the delta vectors corresponding to each feature point,
plus a unique ID integer for each point (equal to the hashed cube ID plus the index of
the feature point as it was computed). These all tend to be useful when using the
function to form textures. If you don’t need the extra information, you can modify
the source code to return only the Fn values to gain a small speedup.

The Subtle Population Table

The desire for an isotropic distribution of points in space requires careful design. It
can be done by choosing the number of points in each cube randomly but using a
Poisson distribution. This distribution gives the probability of finding a specific
number of points in a region when given a mean density. There may be more or less
than this expected number of points in the region; the exact probabilities of any
number of points in a region can be computed by using the discrete Poisson distribu-
tion function. If we generate the points inside of each cube randomly, with the

Implementation Strategy 145

F1

F2

?

?

?

?

?

?

?

?

A B

C

ED

FIGURE 4.9 We don’t need to test neighbor cubes that are too distant.

Team LRN

population based on the Poisson probabilities, the feature points will be truly isotro-
pic and the texture function will have no grid bias at all.

Each cube in space may contain zero, one, or more feature points. We determine
this on the fly quite simply by noting that the Poisson random distribution func-
tion describes the exact probabilities of each of the possible number of feature points
occurring in the cube. For a mean density of λ feature points per unit volume, the
probability of m points occurring in a unit cube is P(λ,m) = {(λ−m eλ m!)}−1. Thus we
can tabulate the probabilities for m = 0, 1, 2, 3, . . . easily. Computation is aided by
the convenient recurrence relations P(λ, 0) = e−λ and .

The value of λ to use is an interesting design decision. A high λ will tend to have
a lot of feature points in each cube, and it will take extra time to generate and test
the points. But a low λ will tend to have to evaluate more of the neighbor cubes.
What’s the best balance for speed? We’re aided by the fact that we can change the
feature scale of our function by simply scaling the input location by a constant. So
no matter what λ we choose, we can renormalize the function to hide the specific λ.
For the convenience of texture authors, I like to normalize the function such that the
mean value of F1 is equal to 1.0. This is similar to Perlin’s decision to make the noise
function vary over a characteristic distance of 1.0.

The obvious way to choose λ is to simply try different values and find which one
gives the fastest average evaluation speed! But we do have an extra limitation. If λ is
too low (less than 2.0 or so), then it’s possible that the feature points are so sparse
that the central 27 cubes are not enough to guarantee that we’ve found the closest
point. We could start testing more distant cubes, but it’s much more convenient to
just use a high enough density to insure that the central 27 are sufficient. Also, notice
that if we require the accurate computation of higher-order n values of Fn, we’ll need
a higher density of points to keep those more distant points within our “one cube”
distance limit. Experiments (and some quick analysis) show that computation of an
accurate Fn requires a density of λ ≈ n. If the density is too low, our function fails and
starts to sometimes return values for Fn that are discontinuous across the cube
boundaries. This is not good.

Unfortunately, this lower limit for λ affects our efficiency, since by Murphy’s law,
fastest evaluation usually happens at lower λ values. So in practice, we can cheat by
taking our carefully computed Poisson distribution and corrupting it to try to reduce
the cases that cause problems. These are the cases when the population m is a low
value of 0 or 1 (it’s the low densities that don’t give us enough candidates, and those
empty cubes are particularly unhelpful). We could just clip the lowest allowable den-
sity to be at least 1. This helps evaluation efficiency enormously, since it allows us to
use lower values of λ without causing the artifacts of discontinuous boundaries.

146 CHAPTER 4 Cellular Texturing

(,) (, 1)P m P mm
λλ = λ −

Team LRN

However, this clipping violates our careful isotropic function design. But if we
choose to do this, we can at least do it knowledgeably and know that we can restore
isotropy if we want to spend a little more CPU time to do it.

For actual implementation, we generate a set of integers that follow this Poisson
density. By randomly selecting from this precomputed array, we can quickly com-
pute cube populations that follow our chosen distribution. Since this table is pre-
computed, we can tweak and tune it as much as we like.

In practice, I’ve compromised speed versus isotropy by first generating a distri-
bution following an ideal Poisson distribution. I then bias the distribution against
those evil low populations by randomly increasing a fraction of the 0 and 1 popula-
tions by one. I can run lots of empirical tests to look for discontinuities indicating the
density isn’t sufficient and also at what average speed the function runs. For accurate
computation of F2, using a density of λ = 1.60 and incrementing 75% of the 0 and 1
populations is enough to prevent visible artifacts and give a good evaluation speed.
Since most texturing usually only uses F1 to F4, we can tune for F4 and find that λ =
2.50 and again a 75% random increment works. This is the precomputed table that’s
used in the example code for this book. There’s also commented code for generating
these lookup tables.

This population distribution seems overanalyzed, but the end results are worth
it. While it’s possible to simply use a constant population of, say, m = 3 and skip the
table completely, the subtle axis bias can show up as noticeable artifacts that are dif-
ficult to analyze and understand. The Poisson table takes negligible extra evaluation
overhead but gives you a noticeably higher-quality basis.

Extensions and Alternatives

The cellular noise function itself is extremely extendable and customizable. This is in
contrast to Perlin noise, which tends to be viewed as a black box; you rarely have to
open the hood to tinker with its engine. Even multifractals, introduced by Ken
Musgrave, still use noise’s basic function in its basic form.

A variety of small speedups can be made to the basic cellular basis algorithm and
implementation, including making a version hardwired to return only specific Fn val-
ues, using fixed-point computation, using parallel vector CPU instructions such as
MMX and SSE, changing the boundary cube segmentation to use hexagonal pack-
ing, and more.

Most fundamentally, the most interesting modification is to change the defini-
tion of distance. There are many different distance metrics that can be used in mathe-
matics, and the Euclidean distance is just the simplest. The basis can instead be

Implementation Strategy 147

Team LRN

computed using the “Manhattan distance” between two points (|dx| + |dy| +
|dz|), which forms regions that are rigidly rectangular but still random. These make
surfaces like random right-angle channels—useful for spaceship hulls or circuit
board traces. Figure 4.10 shows a nonfractal version of F1 that uses this Manhattan
distance metric. A radial coordinate version can cover spheres, creating a surface
similar to the “Death Star.” A whole range of cell shapes can be computed with a
distance formula of the form Even more metrics are pos-
sible, including strange ones such as adding a small fractal noise variation to the Eu-
clidean distance to make an oddly undulating craterscape. With these alternative
metrics, the basis values are still monotonic (Fn+1 ≥ Fn), but the derivatives can
change based on the metric you choose, which may affect your bump-mapping
method.2

The main design constraint is that the distance metric should tend to increase as
the Euclidean distance increases. This limitation is just to allow our simple “search
all 27 neighboring cubes” algorithm to find the feature points within its search re-
gion. Since different metrics have different “reaches” that are not always easy to an-
alyze, we usually use a simpler version of the basic algorithm that uses a larger

148 CHAPTER 4 Cellular Texturing

.yx znn n
x y zC dx C dy C dz+ +

FIGURE 4.10 The F1 “Manhattan” distance metric shows random rectangular shapes.

2. In practice, you can use a finite-difference bump-mapping method to allow arbitrary bumping without
having to worry much about whether the derivative is easy to compute or not. See the discussion on page
170.

Team LRN

average density λ and checks all 27 neighbor cubes exhaustively. This means compu-
tation is slower than the optimized Euclidean distance version. After you’ve designed
a new basis, you may be able to decrease λ and/or implement a fast rejection tech-
nique tailored to your new pattern. It’s useful to make a test harness to evaluate your
function millions of times randomly to measure speed as well as look for discontinu-
ities in high Fn, which indicate you’ll need a higher density for the limited 27-cube
search.

Changes to other parts of the basic algorithm can produce other kinds of effects.
The density of the feature points can be made to vary spatially, allowing for small,
dense features in one area and larger features in another. Object geometry might be
used to disperse precomputed feature spots (similar to Turk 1991) at the expense of
requiring precomputation and table lookup, but gaining object surface dependence
similar to the advantages Turk found. The algorithm is normally computed in 3D,
but 2D variants are even faster; 4D variants can be used for animated fields, al-
though these become very slow because of the necessity to compute up to 34=81
cubes instead of 33=27.

SAMPLE CODE
The Web site for this book (www.mkp.com/tm3) contains my implementation of the
cellular texturing function, as well as a utility for generating the Poisson lookup ta-
bles. It is written in vanilla C for maximum portability. It is designed to return accu-
rate values of Fn up to and including n = 4. It can return higher-order values as well,
but in that case you may want to replace the Poisson table with a higher density to
keep it artifact free. The function returns the values of Fn, the separation vector be-
tween the sample location and the nth feature point, and a unique ID number for
that feature point. You are welcomed and encouraged to use this code in your own
projects, private and commercial.

/* Copyright 1994, 2002 by Steven Worley
This software may be modified and redistributed without restriction
provided this comment header remains intact in the source code.
This code is provided with no warrantee, express or implied, for
any purpose.

A detailed description and application examples can be found in the
1996 SIGGRAPH paper “A Cellular Texture Basis Function” and
especially in the 2003 book Texturing & Modeling, A Procedural
Approach, 3rd edition. There is also extra information on the Web
site http://www.worley.com/cellular.html.

Sample Code 149

Team LRN

If you do find interesting uses for this tool, and especially if
you enhance it, please drop me an email at steve@worley.com.

An implementation of the key cellular texturing basis
function. This function is hardwired to return an average F_1 value
of 1.0. It returns the <n> closest feature point distances
F_1, F_2, .. F_n the vector delta to those points, and a 32-bit
seed for each of the feature points. This function is not
difficult to extend to compute alternative information such as
higher-order F values, to use the Manhattan distance metric, or
other fun perversions.

<at> The input sample location.
<max_order> Smaller values compute faster. < 5, read the book to extend it.
<F> The output values of F_1, F_2, .. F[n] in F[0], F[1], F[n-1]
<delta> The output vector difference between the sample point and the n-th

closest feature point. Thus, the feature point’s location is the
hit point minus this value. The DERIVATIVE of F is the unit
normalized version of this vector.

<ID> The output 32-bit ID number that labels the feature point. This
is useful for domain partitions, especially for coloring flagstone
patterns.

This implementation is tuned for speed in a way that any order > 5
will likely have discontinuous artifacts in its computation of F5+.
This can be fixed by increasing the internal points-per-cube
density in the source code, at the expense of slower
computation. The book lists the details of this tuning. */

#include <math.h>
#include <stdio.h>
#include <assert.h>
#include “cell.h” /* Function prototype */

/* A hardwired lookup table to quickly determine how many feature
points should be in each spatial cube. We use a table so we don’t
need to make multiple slower tests. A random number indexed into
this array will give an approximate Poisson distribution of mean
density 2.5. Read the book for the long-winded explanation. */

static int Poisson_count[256]=

{4,3,1,1,1,2,4,2,2,2,5,1,0,2,1,2,2,0,4,3,2,1,2,1,3,2,2,4,2,2,5,1,2,3,
2,2,2,2,2,3,2,4,2,5,3,2,2,2,5,3,3,5,2,1,3,3,4,4,2,3,0,4,2,2,2,1,3,2,
2,2,3,3,3,1,2,0,2,1,1,2,2,2,2,5,3,2,3,2,3,2,2,1,0,2,1,1,2,1,2,2,1,3,
4,2,2,2,5,4,2,4,2,2,5,4,3,2,2,5,4,3,3,3,5,2,2,2,2,2,3,1,1,4,2,1,3,3,
4,3,2,4,3,3,3,4,5,1,4,2,4,3,1,2,3,5,3,2,1,3,1,3,3,3,2,3,1,5,5,4,2,2,
4,1,3,4,1,5,3,3,5,3,4,3,2,2,1,1,1,1,1,2,4,5,4,5,4,2,1,5,1,1,2,3,3,3,
2,5,2,3,3,2,0,2,1,1,4,2,1,3,2,1,2,2,3,2,5,5,3,4,5,5,2,4,4,5,3,2,2,2,
1,4,2,3,3,4,2,5,4,2,4,2,2,2,4,5,3,2};

150 CHAPTER 4 Cellular Texturing

Team LRN

Sample Code 151

/* This constant is manipulated to make sure that the mean value of F[0]
is 1.0. This makes an easy natural “scale” size of the cellular features. */

#define DENSITY_ADJUSTMENT 0.398150

/* the function to merge-sort a “cube” of samples into the current best-found
list of values. */

static void AddSamples(long xi, long yi, long zi, long max_order,
double at[3], double *F,
double (*delta)[3], unsigned long *ID);

/* The main function! */
void Worley(double at[3], long max_order,

double *F, double (*delta)[3], unsigned long *ID)
{
double x2,y2,z2, mx2, my2, mz2;
double new_at[3];
long int_at[3], i;

/* Initialize the F values to “huge” so they will be replaced by the
first real sample tests. Note we’ll be storing and comparing the
SQUARED distance from the feature points to avoid lots of slow
sqrt() calls. We’ll use sqrt() only on the final answer. */
for (i=0; i<max_order; i++) F[i]=999999.9;

/* Make our own local copy, multiplying to make mean(F[0])==1.0 */
new_at[0]=DENSITY_ADJUSTMENT*at[0];
new_at[1]=DENSITY_ADJUSTMENT*at[1];
new_at[2]=DENSITY_ADJUSTMENT*at[2];

/* Find the integer cube holding the hit point */
int_at[0]=(long)floor(new_at[0]); /* A macro could make this slightly faster */
int_at[1]=(long)floor(new_at[1]);
int_at[2]=(long)floor(new_at[2]);

/* A simple way to compute the closest neighbors would be to test all
boundary cubes exhaustively. This is simple with code like:
{
long ii, jj, kk;
for (ii=-1; ii<=1; ii++) for (jj=-1; jj<=1; jj++) for (kk=-1; kk<=1; kk++)
AddSamples(int_at[0]+ii,int_at[1]+jj,int_at[2]+kk,
max_order, new_at, F, delta, ID);

}
But this wastes a lot of time working on cubes that are known to be
too far away to matter! So we can use a more complex testing method
that avoids this needless testing of distant cubes. This doubles the
speed of the algorithm. */

/* Test the central cube for closest point(s). */
AddSamples(int_at[0], int_at[1], int_at[2], max_order, new_at, F, delta, ID);

Team LRN

/* We test if neighbor cubes are even POSSIBLE contributors by examining the
combinations of the sum of the squared distances from the cube’s lower
or upper corners.*/

x2=new_at[0]-int_at[0];
y2=new_at[1]-int_at[1];
z2=new_at[2]-int_at[2];
mx2=(1.0-x2)*(1.0-x2);
my2=(1.0-y2)*(1.0-y2);
mz2=(1.0-z2)*(1.0-z2);
x2*=x2;
y2*=y2;
z2*=z2;

/* Test 6 facing neighbors of center cube. These are closest and most
likely to have a close feature point. */

if (x2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1] , int_at[2] ,
max_order, new_at, F, delta, ID);

if (y2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]-1, int_at[2] ,
max_order, new_at, F, delta, ID);

if (z2<F[max_order-1]) AddSamples(int_at[0] , int_at[1] , int_at[2]-1,
max_order, new_at, F, delta, ID);

if (mx2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1] , int_at[2] ,
max_order, new_at, F, delta, ID);

if (my2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]+1, int_at[2] ,
max_order, new_at, F, delta, ID);

if (mz2<F[max_order-1]) AddSamples(int_at[0] , int_at[1] , int_at[2]+1,
max_order, new_at, F, delta, ID);

/* Test 12 “edge cube” neighbors if necessary. They’re next closest. */
if (x2+ y2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]-1, int_at[2] ,

max_order, new_at, F, delta, ID);
if (x2+ z2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1] , int_at[2]-1,

max_order, new_at, F, delta, ID);
if (y2+ z2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]-1, int_at[2]-1,

max_order, new_at, F, delta, ID);
if (mx2+my2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]+1, int_at[2] ,

max_order, new_at, F, delta, ID);
if (mx2+mz2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1] , int_at[2]+1,

max_order, new_at, F, delta, ID);
if (my2+mz2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]+1, int_at[2]+1,

max_order, new_at, F, delta, ID);
if (x2+my2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]+1, int_at[2] ,

max_order, new_at, F, delta, ID);
if (x2+mz2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1] , int_at[2]+1,

max_order, new_at, F, delta, ID);
if (y2+mz2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]-1, int_at[2]+1,

max_order, new_at, F, delta, ID);
if (mx2+ y2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]-1, int_at[2] ,

max_order, new_at, F, delta, ID);

152 CHAPTER 4 Cellular Texturing

Team LRN

Sample Code 153

if (mx2+ z2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1] , int_at[2]-1,
max_order, new_at, F, delta, ID);

if (my2+ z2<F[max_order-1]) AddSamples(int_at[0] , int_at[1]+1, int_at[2]-1,
max_order, new_at, F, delta, ID);

/* Final 8 “corner” cubes */
if (x2+ y2+ z2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]-1, int_at[2]-1,

max_order, new_at, F, delta, ID);
if (x2+ y2+mz2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]-1, int_at[2]+1,

max_order, new_at, F, delta, ID);
if (x2+my2+ z2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]+1, int_at[2]-1,

max_order, new_at, F, delta, ID);
if (x2+my2+mz2<F[max_order-1]) AddSamples(int_at[0]-1, int_at[1]+1, int_at[2]+1,

max_order, new_at, F, delta, ID);
if (mx2+ y2+ z2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]-1, int_at[2]-1,

max_order, new_at, F, delta, ID);
if (mx2+ y2+mz2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]-1, int_at[2]+1,

max_order, new_at, F, delta, ID);
if (mx2+my2+ z2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]+1, int_at[2]-1,

max_order, new_at, F, delta, ID);
if (mx2+my2+mz2<F[max_order-1]) AddSamples(int_at[0]+1, int_at[1]+1, int_at[2]+1,

max_order, new_at, F, delta, ID);

/* We’re done! Convert everything to right size scale */
for (i=0; i<max_order; i++)
{
F[i]=sqrt(F[i])*(1.0/DENSITY_ADJUSTMENT);
delta[i][0]*=(1.0/DENSITY_ADJUSTMENT);
delta[i][1]*=(1.0/DENSITY_ADJUSTMENT);
delta[i][2]*=(1.0/DENSITY_ADJUSTMENT);

}

return;
}

static void AddSamples(long xi, long yi, long zi, long max_order,
double at[3], double *F,
double (*delta)[3], unsigned long *ID)

{
double dx, dy, dz, fx, fy, fz, d2;
long count, i, j, index;
unsigned long seed, this_id;

/* Each cube has a random number seed based on the cube’s ID number.
The seed might be better if it were a nonlinear hash like Perlin uses
for noise, but we do very well with this faster simple one.
Our LCG uses Knuth-approved constants for maximal periods. */

seed=702395077*xi + 915488749*yi + 2120969693*zi;

/* How many feature points are in this cube? */

Team LRN

154 CHAPTER 4 Cellular Texturing

count=Poisson_count[seed>>24]; /* 256 element lookup table. Use MSB */

seed=1402024253*seed+586950981; /* churn the seed with good Knuth LCG */

for (j=0; j<count; j++) /* test and insert each point into our solution */
{
this_id=seed;
seed=1402024253*seed+586950981; /* churn */

/* compute the 0 .. 1 feature point location’s XYZ */
fx=(seed+0.5)*(1.0/4294967296.0);
seed=1402024253*seed+586950981; /* churn */
fy=(seed+0.5)*(1.0/4294967296.0);
seed=1402024253*seed+586950981; /* churn */
fz=(seed+0.5)*(1.0/4294967296.0);
seed=1402024253*seed+586950981; /* churn */

/* delta from feature point to sample location */
dx=xi+fx-at[0];
dy=yi+fy-at[1];
dz=zi+fz-at[2];

/* Distance computation! Lots of interesting variations are
possible here!
Biased “stretched” A*dx*dx+B*dy*dy+C*dz*dz
Manhattan distance fabs(dx)+fabs(dy)+fabs(dz)
Radial Manhattan: A*fabs(dR)+B*fabs(dTheta)+C*dz
Superquadratic: pow(fabs(dx), A) + pow(fabs(dy), B) + pow(fabs(dz),C)

Go ahead and make your own! Remember that you must insure that a
new distance function causes large deltas in 3D space to map into
large deltas in your distance function, so our 3D search can find
them! [Alternatively, change the search algorithm for your special
cases.]

*/

d2=dx*dx+dy*dy+dz*dz; /* Euclidean distance, squared */

if (d2<F[max_order-1]) /* Is this point close enough to rememember? */
{

/* Insert the information into the output arrays if it’s close enough.
We use an insertion sort. No need for a binary search to find
the appropriate index .. usually we’re dealing with order 2,3,4 so
we can just go through the list. If you were computing order 50
(wow!!), you could get a speedup with a binary search in the sorted
F[] list. */

index=max_order;
while (index>0 && d2<F[index-1]) index--;

Team LRN

/* We insert this new point into slot # <index> */

/* Bump down more distant information to make room for this new point. */
for (i=max_order-1; i-->index;)

{
F[i+1]=F[i];
ID[i+1]=ID[i];
delta[i+1][0]=delta[i][0];
delta[i+1][1]=delta[i][1];
delta[i+1][2]=delta[i][2];

}
/* Insert the new point’s information into the list. */
F[index]=d2;
ID[index]=this_id;
delta[index][0]=dx;
delta[index][1]=dy;
delta[index][2]=dz;

}
}

return;
}

Sample Code 155

Team LRN

/* We insert this new point into slot # <index> */

/* Bump down more distant information to make room for this new point. */
for (i=max_order-1; i-->index;)

{
F[i+1]=F[i];
ID[i+1]=ID[i];
delta[i+1][0]=delta[i][0];
delta[i+1][1]=delta[i][1];
delta[i+1][2]=delta[i][2];

}
/* Insert the new point’s information into the list. */
F[index]=d2;
ID[index]=this_id;
delta[index][0]=dx;
delta[index][1]=dy;
delta[index][2]=dz;

}
}

return;
}

Sample Code 155

Team LRN

5

Team LRN

ADVANCED ANTIALIASING
S T E V E N W O R L E Y

It’s very tempting to ignore the problem of antialiasing when writing textures. Cer-
tainly, the first textures anyone writes are very quick tools that make you happy to
get any kind of pattern at all on your objects. But as you mature, you learn that even
the simplest textures behave very poorly because of the problem of aliasing. This is
why the topic of antialiasing is discussed so avidly in so many places in this book.

Aliasing has different definitions depending on context, but it ultimately resolves
to the problem that you want to show the average effect of a texture over an area,
yet it’s a lot easier to just return a sample of the texture at just one infinitely small
point. If you ignore the problem of antialiasing, you’ll start making imagery that
simply looks bad. You’ll find artifacts like stippling or stairstepping in your images.
You’ll have especially visible problems when you make animations, since the motion
of objects tends to highlight any aliasing problem by causing buzzing in the image—
or worse.

It’s very tempting to try to ignore the problem anyway, especially since most ren-
derers have options to perform supersampling of the image for you to automatically
reduce the aliasing problems. But don’t depend on this! Your users may not need the
whole image supersampled if the only problem is your texture. Image supersampling
is expensive. Supersampling is not an answer to the problem of texture aliasing. It’s
just a final brute-force attempt to hide the problem.

The obvious objection to adding antialiasing abilities to textures is efficiency.
Textures tend to be slow, and adding any more baggage (such as built-in integration
for antialiasing) is bound to slow them even more, as well as increase the complexity
of the code. This seems to argue for shorter, dumber textures, but in practice this is
not true; a texture that can antialias itself can do so with a single (albeit slower) eval-
uation. Supersampling might take a dozen samples and still be less accurate. Correct
antialiasing can therefore be an efficiency issue—and an important one.

Antialiasing is unfortunately a lot of work for the texture designer, since it often
requires careful thought. It often takes a different design method to do proper

157

Team LRN

texture area integration, and the new method is never easier than simple point
sampling.

This chapter covers only some aspects of antialiasing and in particular does not
discuss band limiting, covered by Darwyn Peachey in Chapter 2.

INDEX ALIASING
It can be useful to look at the sources of aliasing in order to identify any components
that we might be able to improve in behavior. In particular, nearly all textures can be
summarized as being some formula or procedure (call it the “pattern” function) that
returns a scalar defined over space. This value is transformed into a color or other at-
tribute using a second function. This final transformation function might be some-
thing as simple as a linear gradient, but it can be abstracted to be a general lookup
table that can characterize any behavior at all.1 This design paradigm is convenient
because it’s not difficult to implement and is very versatile for the user.2

If we have a texture that follows this design method, we can see that aliasing is
not caused from a single source, but from two. Imagine a point color sample being
computed. The scalar pattern function is called, which returns a number. This num-
ber is used to index into the color transformation (lookup table), which identifies the
color to return.

There is a source of aliasing in both steps of this process. Point-sampling the sca-
lar pattern function obviously cannot characterize the average behavior of the pat-
tern over the area. Less obviously, aliasing is caused in the color transformation step.
A single value is used to determine the output color. This causes aliasing too, al-
though it’s more difficult to identify.

To illustrate a worst-case example, imagine our pattern function is a single scale
of Perlin-style noise, and it varies between roughly −1 and 1. We choose a color map
that is green for all input values except a very narrow band of bright red centered at
the value corresponding to 0. This would make a pattern that is primarily green ev-
erywhere except for tiny spots of red where the noise value happens to be right at

158 CHAPTER 5 Advanced Antialiasing

1. A caveat here: since a table has only a finite number of entries, of course it can’t perfectly represent
any transformation. Luckily, in practice most of these transformations are simple enough that using just
a few hundred entries does an excellent job of “summarizing” the transformation. Using a few thousand
table entries is very likely to be adequate for any task. This is just a couple K of storage, so it’s not a big
overhead.
2. Note that there is more discussion of this methodology on pages 181 and 182.

Team LRN

0.0. Now, if we try to antialias this texture, we run into a large problem if our inte-
gration spot size is very large compared to the variation scale of the noise function.
The average value of the noise over the large integration spot will converge to 0. Yet
if we feed this perfectly integrated value into our color lookup table, we get a solid
red color even though the true average color is a mostly green shade! This is a worst-
case demonstration of aliasing in the final color transformation stage, sometimes
termed index aliasing.

This aliasing is caused by rapid changes of the function used to transform scalar
pattern values into output colors. Another example can help show how this aliasing
might occur. Figure 5.1 shows a nontrivial color map that might be used to trans-
form a fractal noise value into one component of the surface color. If we evaluate the
fractal noise function several times, we get several corresponding color point evalua-
tions. It can be seen that in this example, the samples lie in one region of the color
map; does the average of the point samples accurately reflect the average of the re-
gion? We can convince ourselves that other noise samples are likely to occur through

Index Aliasing 159

FIGURE 5.1 Point samplings of a complex color map.

0

50

100

150

200

250

−1.0 −0.8 −0.6 −0.4 −0.2 0.0 0.2 0.4 0.6 0.8 1.0

Input value

O
ut

pu
t

co
lo

r
va

lu
e

Team LRN

the region from 0.3 to 0.7 and that the set of five current samples, by simple bad
luck, probably shows a color value that is higher than the true mean color over this
region.

With some thought, we can design a strategy to significantly reduce this source
of aliasing. To do this, we need to think about what the true output should be and
how it is created. Then we can examine our approximations and see how we might
modify our strategy. We’ll consider the scalar “pattern” function as a black-box
function so the method will be applicable to any texture that uses a color map in this
way.

The true output of an antialiased texture cannot be described by a single sample
of our color spline. This is quickly seen by our red/green color example, since the av-
erage integrated color doesn’t even appear in the color spline. If we consider what
the average of an infinite number of point texture and color samples would converge
to, we’ll recognize the fact that the final average color is a weighted sum of the color
spline. These weights are determined by the distribution of the pattern function’s
samples over the area in question. We can immediately see that since the distribution
is what is important, a single sample value (like one evaluated at the mean of the dis-
tribution) is inadequate for determining the final average color.

What is the distribution defined by the pattern function over the integration
area? We don’t know, since we’re treating the pattern function as a black box. We
can make at least one assumption: the distribution is probably roughly continuous.
We can make this assumption because most useful pattern functions (think of fractal
noise, or a field that changes linearly with distance from a point or line, or a per-
turbed sine wave value) do not have discontinuities. Sharp changes tend to occur in
the color transformation step, not the pattern function. If the pattern function is
continuous, the samples taken over a local area will tend to cover a local range of
values. This does not mean that all of these covered values will be equally likely, just
that it’s unlikely to have multiple separate peaks in the distribution with no samples
in between.

Our only method of exploring the pattern function’s distribution is to take point
samples. We could implement naive supersampling by just indexing each of these
samples into the color lookup table and averaging the output colors. But we can do
better by thinking about the problem a bit more, perhaps with a simple example.
Imagine we take just two samples of the pattern function. What is our best estimate
for the final surface color?

Here we use our assumption of continuity. We can make an admittedly vague
guess that the samples we took imply that future samples will occur between the two
samples we have. Without any more information, a valid argument is that we can

160 CHAPTER 5 Advanced Antialiasing

Team LRN

make a best guess of the distribution of the pattern value by simply assuming that all
values between the two samples are equally likely.

If we have a guess like this for the distribution of the pattern values, how can we
turn this into a best guess for the final color output? For a certain input distribution,
we can compute the final color distribution and therefore the mean of this output.
Since we’re modeling our input distribution as a box of equally likely values between
the samples we’ve taken, we can simply integrate the color lookup table between
these values to find the mean. The trick to try to eliminate the index aliasing is to try
to model the input distribution as best we can, since then we can integrate the (ex-
plicitly known) color map using that distribution as a weighting to get as accurate an
estimate of the average color as possible.

Two important questions remain: How do we best model that input distribu-
tion? And how do we compute the weighted integration of the color map efficiently?
The first problem must be solved by sampling the black-box pattern function. For
two samples, an argument can be made for using a uniform distribution between the
two sample values. How about for three samples? If values of 1.0, 1.1, and 1.5 are
returned, what is our best guess for the distribution? With such limited information,
we can somewhat visualize a range of values between 1.0 and 1.5, with a lopsided
distribution toward the low values. Yes, this might not be what the true distribution
looks like, but it is our best guess.

Such a vague definition of a distribution is inadequate, and especially when
higher numbers of samples are known, we must have a general method of computing
an approximation to the input distribution. The best method seems to be the follow-
ing: If we take N samples, we make the assumption that if we sort the values in as-
cending order, new samples are equally likely to occur between each adjacent pair of
samples. This models a piecewise flat distribution, much like a bar graph. Figure 5.2
shows a collection of point samples from some (unknown) distribution, as well as a
best-guess reconstruction of the distribution function. Each “bar” that forms the

Index Aliasing 161

FIGURE 5.2 Reconstruction of an unknown distribution from point samples.

Team LRN

distribution denotes an equal probability, and therefore each has the same area.
Note that this transforms a high density of samples (which are spaced closely to-
gether) into tall, high-probability regions.

This method for reconstructing a “best-guess” distribution has three advan-
tages. First, it behaves as we would expect for small numbers of samples: one sample
isn’t enough to guess a distribution, two make a simple bar, and our example with
three points does compensate for the lopsidedness of the sample points. Second, the
reconstruction behaves better and better as more points are used. It will converge to
the true distribution, even those with discontinuities or gaps. Third, we’ll see that a
piecewise constant distribution helps us perform the second required task for index
antialiasing, which is to weight the color lookup table by the distribution and ef-
ficiently find the mean output color.

To do this integration, we can first develop a method of integrating a lookup ta-
ble quickly over a range of values with uniform weight. This is equivalent to finding
the sum of the table entries over the range, then dividing by the number of entries
summed. There is an easy method for performing sums like this, called a sum table.
These are in fact already used in computer graphics, primarily for 2D image map
antialiasing. Here we wish to perform the sum on a mere 1D function, which is even
easier.

A sum table is a simple concept. If we have an array of values and want to be
able to sum those values over a certain interval, we can use a second, precomputed
array called the sum table. Each entry of the sum table is equal to the sum of the en-
tries of the original table up to that entry number. If our original table T were [1 3 4
2 3], our sum table S would be [1 4 8 10 13]. Now if we want to sum the values of
entries a to b in T inclusively, we can simply evaluate S(b) − S(a − 1).3

Thus, by two simple table lookups and one subtraction, it is an easy matter to
sum any number of entries in the original table. Looking at our reconstructed input
distribution, the piecewise uniform weights lend themselves to this summed table
evaluation perfectly. Each interval of the distribution is assigned a weight (inversely
proportional to its width). The mean value of the color table over the interval is
found through the difference of two sum table entries divided by the number of en-
tries spanned. This mean is weighted by the region’s weight, and the complete
weighted color sum is divided by the sum of all the weights to determine the final
output color estimate.

Since the end of one interval is shared by the start of the next, we can even com-
bine the terms containing the same indexing into the sum table. When we have N

162 CHAPTER 5 Advanced Antialiasing

3. A bit of care has to be taken when a = 1, where we assume S(0) is 0.

Team LRN

samples of the pattern function, we only need N indexes into the sum table. This
makes the evaluation extremely economical.

In some cases you can simplify the calculation further by calculating the mean
and standard deviation of the samples. You can average the texture value over the
color table range defined by the central mean value with total width equal to twice
the standard deviation. This method simplifies the color map calculation to two
lookups and also does not require sorting.

Index antialiasing is just one step of full texture antialiasing, but it’s an ex-
tremely useful one. It’s much more effective than blind supersampling, since (espe-
cially for low numbers of samples) at least a reasonable model of the variation of the
texture is used to estimate the variation the color map undergoes. Implementation of
index antialiasing is very easy, although it does assume a lookup table for your color
map. This table will need to be filled, taking some preprocessing time and extra
memory. This overhead is very small, however, even for a very large table, since the
tables are only one-dimensional.

There are several extensions and adaptations of this algorithm, especially if you
know something more about your pattern function. Sometimes you might be able to
make assumptions about the shape of the sample distribution or be able to compute
the true distribution analytically. For example, if the pattern function is defined by
the distance of a point from a line, then the spot size defines a circle4 of points. The
true distribution of the sample values can also be determined algebraically or even
geometrically. This can allow you to perform nearly perfect antialiasing! Obviously,
the more you know about your pattern function, the better you’ll be able to model
its sample distribution over an area, and the better your antialiasing will become.

An Example: Antialiasing Planetary Rings

A great example of index aliasing is in generating planetary rings. The fine ring
structure is a function of radius, but often the surface is viewed from far away and a
single sample may range over a large range of radii, and many rings should be “aver-
aged” together to provide a filtered version of the ring effect.

The planetary ring texture here uses the index aliasing reduction technique to
provide a smoothly filtered version of the complex rings efficiently.

/* this is a 1D table, we can splurge for lots of entries and it still
won’t be too large to store. */

Index Aliasing 163

4. An ellipse, actually.

Team LRN

#define TABLESIZE 16384

int initialized=0;
float table[TABLESIZE];

static double RingTexture(double *pos, double spotsize,
double inner, double outer, double transition,
double varyscale, double ampratio,
double low, double high)

{
double R0, R1, weight;
int I0, I1;

/* We need a color table premade for us with the accumulated densities. */
if (!initialized) MakeColorTable(inner, outer, transition,
varyscale, ampratio, low, high);

/* OK, let’s find our range of radii. The range of radii are centered
at the point’s radius from the origin, and we split the spot radius
between the two.
To tweak the antialiasing, we could scale the spotsize up or down
here before we use it.
*/

R0=sqrt(pos[0]*pos[0]+pos[1]*pos[1]+pos[2]*pos[2])-0.5*spotsize;
R1=R0+spotsize;

/* R0 may be negative if we have huge spot sizes, which is obviously
wrong and awkward. Let’s make sure it’s at least 0.0. */

R0=MAX(R0, 0.0);

/* OK, we know what range we want to average over. Let’s transform those
into index numbers in our color table. We know that at radius = [outer],
we want to be at index [TABLESIZE-1]. So we multiply by a
constant.

Note that we lose a little resolution because we quantize the
index into an integer. If the table were smaller, we could
compensate by using a linear interpolation, but with a really big
table the effect is negligible, and it definitely makes the code simpler.

*/

I0=(int)(R0*(TABLESIZE-1)/outer);
I1=(int)(R1*(TABLESIZE-1)/outer);
/* We make a tiny change to make sure I0 and I1 are not coincident, which

simplifies tests later. This case will rarely happen anyway. */
if (I0==I1) I1++;

164 CHAPTER 5 Advanced Antialiasing

Team LRN

/* These indexes may be out of range. If so, let’s do the right thing. */
if (I0>=TABLESIZE) return 0.0; /* We’re completely outside the rings,
no effect. */

if (I1>=TABLESIZE)
{
/* Our outer range has run “off” of the end of the result. We have to

take this into account by figuring the ratio of what’s fallen off
to what remains, and make sure our final output is properly
weighted. */

weight=((double)(TABLESIZE-I0))/(I1-I0);
/* Now we change I1 to start within the range. The weight parameter

will compensate for the range change. */
I1=TABLESIZE-1;

}
else weight=1.0; /* We’re fully within the rings, we’ll use the full

weight. */

/* We now want the average value between I0 and I1. This is the
easy part! */

return weight*(table[I1]-table[I0])/(I1-I0);
}

/* Routine to build the summed color table itself. This includes the
computation of the ring density tucked within a simple loop to
build the sum table as it goes. This is a precomputation that only
needs to be done once. */

static void MakeColorTable(double inner, double outer, double transition,
double varyscale, double ampratio,
double low, double high)

{
double R, A, F;
int i;

/* Sweep the radii out to the outer radius. Accumulate samples in
the summed color table. Point-sample the ring density at each sample.
A radius of 0 is index 0. A radius of [outer] is equal to the table
size-1.

*/

table[0]=0.0; /* Start with a 0 table */

for (i=0; i<TABLESIZE-1; i++)
{
R=outer*(i+0.5)/(TABLESIZE-1); /* R varies between 0 and [outer] */

/* Compute the simple inner/outer transitions to form an alpha channel
of a simple washerlike disk. This will be used to modulate the

Index Aliasing 165

Team LRN

density of the fine rings and prevent any rings from being too
close or too far from the center. */

if (R<=inner) A=0.0;
else /* In first transition zone? */

if (R<inner+transition)
{
A=(R-inner)/transition; /* Linear 0 to 1 ramp */
A*=A*(3.0–2.0*A); /* Hermite curve smooth transition */

}
else /* In outer transition zone? */
if (R>outer-transition)
{
A=(outer-R)/transition; /* Linear 1 to 0 ramp */
A*=A*(3.0–2.0*A); /* Hermite curve smooth transition */

}
else A=1.0; /* We’re in the main body of the ring. */

/* Now let’s compute the ring density. We use a 1D version of
fractal noise. We use a 3D noise routine but pass in (R, 0, 0)*/

F=fractal3(R, 0.0, 0.0, varyscale, ampratio);

/* F is now between -1 and 1. But we use the low and high values as
a clipping range for the noise. */

if (F<=low) F=0.0; /* F is too low, we set the ring density to 0.0. */
else if (F>=high) F=1.0; /* Full ring density */
else /* We’re in a transition zone. */

{
F=(F-low)/(high-low); /* Now a 0 to 1 range */
F*=F*(3.0–2.0*F); /* Hermite it to make it smooth */

}

/* OK, our ring density is F and our shaping alpha value is A. The
net density is the PRODUCT of these two. */

table[i+1]=table[i]+R*F;
}
initialized=1;
return;

}

SPOT GEOMETRY
Your antialiasing goal is usually to find the average texture value over a small area.
This area is known as the spot size, and usually the renderer will tell you what this
size is. Some renderers like RenderMan are very careful in computing these spot

166 CHAPTER 5 Advanced Antialiasing

Team LRN

sizes, but others (especially ray tracers, it seems) are very careless and give no spot
size or (perhaps worse) an incorrect spot size.

This spot size is easy to understand if you think about a very simple renderer
that takes one sample per pixel and renders a simple plane with a texture on it. Since
it’s rendering with just one sample per pixel, the texture algorithm will ideally return
the average color of the texture pattern over that pixel. But textures don’t know or
care about pixels; they almost always want to be given a location in texture coordi-
nates. What you usually want is a texture center location, in XYZ coordinates, and a
radius (the spot size) measured in that same coordinate system.

If you’re lucky, the renderer will give you this radius at the same time as the
sample location. For example, RenderMan’s rendering method chops objects into
smaller and smaller parts until each bit is smaller than a pixel when it is projected
onto the output image. During this slicing and dicing, it keeps track of the ex-
act range of texture coordinates for each little bit, known as a micropolygon. It
ultimately reduces surfaces to a tiny rectangular chunk of texture with exactly
known texture coordinate ranges, which it passes to the texture to be evaluated.
RenderMan is extremely texture-friendly because of this careful coordinate
treatment.

More conventional renderers usually concern themselves with projecting the ge-
ometry onto the screen and then, grudgingly, determining the texture coordinates to
pass to the texture code. These tend to be point locations computed by starting with
a world coordinate value and transforming first to object and then to texture coordi-
nates. The spot size is then ideally computed by analyzing the transformation be-
tween texture space and image space and using this to approximate a texture spot
size.

If the previous sentence sounds like vague hand-waving, that’s because very few
renderers compute spot sizes very well. They all use different techniques and approx-
imations. I’ve had personal experience with three different renderers, and each had
inaccurate spot sizes. There are several ways of dealing with this inaccuracy, even if
you have no control over the renderer itself. One method is to find correction factors
to “massage” the spot size back to be more accurate by using different constants to
scale the spot size.5

Another method is to compute the spot sizes yourself, if you have enough infor-
mation. The derivation is straightforward but involves several steps and simplifying
assumptions. It can be frustrating to locate all the information needed to complete
each step, since renderers often don’t give you all of the surface data you need.

Spot Geometry 167

5. This is straightforward to do with the image-based verification method described on page 174.

Team LRN

First, we must know what size the spot we are antialiasing is in the output im-
age. This is often the size of one pixel, but in the case of image supersampling the size
may be smaller.

We first need a conversion to change a world coordinate into an image coordi-
nate I. (This is the formula that takes any 3D location in world coordinates and pre-
dicts where the point will project onto your output image.) This relation is usually
computed by two transformations. The first is a rotation and offset transformation
to translate the camera to a coordinate system where it is at 0, 0, 0 and looking for-
ward. The second transformation is the perspective transform, which projects the
(transformed) 3D point onto the screen. They are often combined into a single oper-
ation, although it may be easier to think of them as two sequential operations.

We then need a transformation from world coordinates to texture coordinates.
This is usually a simple linear matrix equation with an offset. It is often the concate-
nation of two transformations, the first from world to object space and the second
from object to texture space.

By concatenating the effects of each transformation in the sequence together, we
arrive at a nonlinear transformation function, I(T), which relates texture coordinates
to screen coordinates. Its exact representation depends on your camera model and
coordinate system definitions, so even its form tends to be unique to every renderer.

Next, we make an assumption that the texture area we are averaging over is so
small that it can be well approximated by a planar sample through the texture. This
is not always true (think of a sphere that is so distant that it is a single pixel in size),
but the assumption holds well in almost every case.

If the antialiasing spot we are averaging over is a flat 2D area, the direction per-
pendicular to this region must be the same direction as the surface normal (in texture
coordinates). The surface normal in fact defines the plane’s normal. We can pick two
vectors (call them R and S) that are mutually perpendicular to each other and also to
the surface normal N. These three vectors define a new coordinate system. We know
that the texture spot is defined only in the plane of R and S.

We can choose which R and S to use by thinking about the geometry of the tex-
ture spot. If the surface normal N directly faces the camera, the spot will be a flat cir-
cle, and we can use any R and S that are perpendicular to N since there’s no preferred
spot direction.

If the surface normal does not directly face the camera, the texture spot will be
tilted slightly away from us. This will make the texture spot elongated in one direc-
tion. If the view direction toward the camera is V, the elongated texture direction
will lie in the direction of V projected onto the surface.

We want to align our texture spot in this direction in order to simplify our
antialiasing later. In practice, we often do this in world coordinates first. We start

168 CHAPTER 5 Advanced Antialiasing

Team LRN

with Vw, the world coordinate view direction from the texture location toward the
camera, and Nw, the surface normal in world coordinates. We form Sw as the non-
elongated direction by taking the cross product Vw × Nw and normalizing. Rw, the
direction along the elongation, is computed by normalizing Sw × Nw. We then trans-
form Sw and Rw into texture coordinates by using the world-to-object and object-to-
texture transformations.

If the texture sample position (which defines the center of the area we want to
average over) is T, we can parameterize the region we want to average over as T +
rR + sS, where r and s are scalars. But we don’t know what range of r and s should
be used—yet. To determine them, we can use our formula we computed earlier for
transforming from texture coordinates to screen coordinates. If we substitute our
parametric spot equation into the projected image formula, I(T + rR + sS) tells us
where on the screen a texture sample at parametric coordinate (r, s) falls.

We can now differentiate I with respect to r and s. We do this twice, since I is
really a coordinate pair (x, y). This gives us .

We can stop here and return an isotropic spot size that gives just a single radius
to average over by noting that if we want to average over a pixel, we want to move a
small delta of 0.5 pixels up, down, left, and right in the image. We can use something
similar to

to get a kind of “average spot radius.” This result isn’t bad, and most renderers stop
here and give a value similar to this. We can stop here if we want and just integrate
our texture over (−∆ .. ∆, −∆ .. ∆).

But we’ve nearly derived a much higher-quality spot computation that accounts
for stretched spots. We know how I changes with both s and r. We can set up two lin-
ear equations,

which states that we assume our image spot to vary half a pixel in both x and y, and
we expect r and s to vary by ± ∆r, ± ∆s to allow the texture spot to vary over the
entire pixel. The solution of these equations is

Spot Geometry 169

, and, ,y yx xdI dIdI dI
dr dr ds ds

2 2 2 2y yx xdI dIdI dI
dr dr ds ds

∆ = + + +Σ Τ Σ Τ Σ Τ Σ Τ

0.5x xdI dI
r s

dr ds
∆ + ∆ =Σ Τ Σ Τ

0.5y ydI dI
r s

dr ds
∆ + ∆ =Σ Τ Σ Τ

Team LRN

and

These give us the ranges (−∆r, ∆r) and (−∆s, ∆s) that multiply the R and S direc-
tion vectors to define the texture antialiasing geometry. You can view this as an el-
lipse or rectangle in texture space. This is a great spot geometry because we can
antialias over an elongated spot if we care to, and we can also change our spot size if
we know more about the shape of the sample in image space.

This computation seems somewhat daunting, with multiple transformations to
compute on the fly and terrible math equations to solve. In practice, it’s not quite so
bad because the transformation formula I(T) doesn’t change from texture sample to
sample. The work that must be done does involve several multiplies and divides, but
most of the overhead comes from the square roots used in normalizing the S and R
vectors.

With a computation like this, it’s easy to see how a renderer can give poor spot
size estimates if it is careless.

SAMPLING AND BUMPING
Some textures can be analytically integrated, like step functions and thick lines.
Other textures have certain behaviors that can give at least better approximations
than point sampling, such as band-limiting fractal noise scales to match the sample
size. However, really odd textures just aren’t practical to modify or even understand
because of their custom design or complexity.

Supersampling is a last resort to reduce aliasing artifacts. It always works. It’s
usually inefficient and crude, but if we’re forced to do this supersampling, we can at
least do it intelligently.

We can benefit from having the texture perform its own antialiasing (even by
supersampling) instead of the renderer. A short header at the beginning of the tex-
ture does its own supersampling of the surface area and returns the mean result. This
is useful for several reasons. First, this means that all textures are treated the same by
the renderer; a position and spot radius are passed, and the texture returns an

170 CHAPTER 5 Advanced Antialiasing

2

yx

y yx x

dIdI
dr dr
dI dIdI dI

dr ds ds dr

s
−

∆ =
−Χ ∆

2

yx

y yx x

dIdI
dr dr
dI dIdI dI

dr ds ds dr

r
−

∆ =
−Χ ∆

Team LRN

integrated texture estimate. The renderer does not need to treat antialiasing textures
differently than ones that can only be point-sampled. Second, since the evaluation
loop for the samples is within the texture, not the renderer, overhead (in particular,
function calls) are reduced. This is a small savings in general, but for simple textures
like checkerboards it can be significant in proportion to the texture’s overall speed.

But how should a texture antialias itself with point samples? How does it pick
the locations? Luckily, we already know the answer! The previous section on “Spot
Geometry” has told us exactly how to vary our samples to cover the range of the tex-
ture’s spot.6

In the simplest case, we just need to evaluate the texture multiple times over the
range of spots defined by ∆r and ∆s in our texture coordinates. The average response
of these samples is an antialiased supersample of the texture. But if you’ve read the
“Index Antialiasing” section, you’ll realize that technique is designed for this kind of
point supersampling.

But there’s a further bonus that is very easy to miss. A very common tech-
nique of bump mapping is to compute a vector derivative of a function and “perturb
the surface normal” with it. But many times, this perturbation is done incorrectly
because it often looks good anyway! In particular, if you take the derivative of a
function (for example, fractal noise) and simply add it to the shading normal and
renormalize, you’ll get good-looking bumps, as shown in Figure 5.3(a). This is ex-
actly what Ken Perlin did in his 1985 paper with its fabulous images. It’s also what I
did for dozens of commercial procedural textures. But it’s wrong!

The right answer is to use the bump-mapping formula first shown by Blinn
(1978), which Darwyn Peachey discusses in Chapter 2.7 It’s easy to skip this because
the math is annoying. But, if you look at Figure 5.3, you’ll see why understanding
the texture spot geometry is so important.8

Why does the “simple” method work? Because it looks good and especially for
fractal noise patterns you don’t have any “correct” sample for your eyes to compare
it to. There are clues, however, that indicate that it’s wrong, especially if you animate

Sampling and Bumping 171

6. I know you skipped that section because it didn’t seem exciting and had some ugly-looking math for-
mulas. You’re reading this section first because of the bumpy sphere pictures. You can improve your tex-
tures too, once you understand your spot geometry, though . . .
7. And again, a very good renderer will do all of this for you. This is one of the simple secrets of why
RenderMan procedural textures tend to look so good! But many other renderers, even high-end com-
mercial ones, do not do this for you!
8. I wish I had understood this for my 1992 commercial texture collections!

Team LRN

your object rotating; the lighting will simply be inconsistent because the normal is
incorrect.

When we know the spot geometry, we have all of the information we need to do
“correct” bumping. If we’re doing a small supersampling of our texture (to help
eliminate aliasing), we can use the same engine to compute the bumping for us simul-
taneously. We don’t even need to evaluate the derivative of our texture, since our
point samples can tell us the average derivative over our spot, which is all that
matters.

If we’re sampling over our texture spot, we might have part of our texture return
a single scalar value for the bump height of the surface. If we evaluate the height over
the whole spot, we can fit an average “tilt” to the texture spot. We then just tilt our
surface normal to match the tilt of the texture spot, and we get the correct surface
bumping.

Luckily, computing this tilt is easy! It’s just a least-squares fit of the arbitrary tex-
ture height function H(r, s) to a line, repeated for the R and S directions. If we take
samples symmetrically around the center of the spot, the slopes of the tilts are easy to
compute:9

172 CHAPTER 5 Advanced Antialiasing

(a) (b)

FIGURE 5.3 Incorrect bumping of many textures: (a) “classic” bumping versus (b) correct.

9. Using a 1D least-squares line fitting method, which isn’t perfect for super-steep slopes but is more than
good enough.

2

(,)rH r sdH
dr r

=−
∑

∑

Team LRN

and

We then add these slopes to the surface normal. We need to do this in world coordi-
nates since that’s probably what the renderer expects. But this is just

The √ term is just to renormalize the surface normal. Note that we are using the
world coordinates Rw, Sw instead of texture coordinate R, S.

As a practical example, imagine sampling our texture at four texture locations,
at the corners of our texture spot. We have some height function (maybe a fractal
noise value) H(r, s). So we can expand out the equations and find

and similarly for S. If you look closely, you can even see how this is a finite-difference
approximation to the derivative. But it’s better than knowing even the exact true de-
rivative at the center of the spot, because this is an average derivative over the whole
spot and it will not suffer nearly as much aliasing.

This entire section on spot geometry is really a topic that authors of renderers
should understand and implement, but unfortunately they often don’t. Luckily, we
texture authors can sometimes do the work ourselves to get good results. The proper
texture spot definitions can give better antialiasing, proper sampling, and great
bump mapping.

OPTIMIZATION AND VERIFICATION
After you’ve added antialiasing support or new spot geometry computations, it can
be difficult to determine exactly how well it’s working. The most common method is
to render an image, zoom into the detail, see that it looks kind of blurry, and con-
gratulate yourself.

This obviously isn’t very scientific! In fact, it’s hard to judge by eye whether your
antialiasing is adequate or not. You can argue that if your eye can’t tell, it doesn’t
matter, but in practice it’s good to minimize it even below visible levels, since a

Optimization and Verification 173

2

((,) (,) (,) (,)
4()

dH r H r s H r s H r s H r s
dr r

∆ −∆ ∆ + −∆ −∆ − ∆ ∆ − ∆ −∆
=

∆

original
bumped

2 21

dH dH
w wdr ds

dH dH
dr ds

N R S
N

+ +
=

+ +Α Α Β Α Β Β

2

(,)sH r sdH
ds s

=−
∑

∑

Team LRN

different application (perhaps with more extreme conditions) may amplify even a
small amount of aliasing artifacts into a real problem.

There’s a surprisingly straightforward and useful method for tweaking anti-
aliasing for optimum results. It is important to reduce your measure of antialiasing
“goodness” into a measurable number that you can actually try to optimize.

This can be done in nearly any situation by forming a controlled scientific exper-
iment. It’s usually very easy to adapt the following procedure to optimize anti-
aliasing in every case.

First, you need to design a scene to render that exercises your texture. Strive to
include situations that will typically cause problems. You want to have a single im-
age that shows your texture at different scale sizes (infinite planes work well for this)
as well as different viewing angles (spheres work well for this). I often use four
infinite planes forming a box, receding to infinity, with about 10 spheres at different
depths.

You need to generate a “reference” image of this scene, one that is as accurate as
possible, including texture antialiasing. This can be done by rendering your scene at
very high resolution, such as 4K by 4K, then filtering the image down in size to
something more manageable like 256 by 256. This “manual supersampling” is
nearly foolproof in making a good antialiased image since so many samples are used
per pixel. Be wary of letting your renderer do supersampling for you when building a
reference image! Its own supersampling may be biased or have subtle errors of its
own.

This reference image provides a measure that we can compare our antialiasing
against. When we render with no image supersampling, we can detect errors due to
aliasing by simply comparing the rendered image with the reference image, pixel by
pixel. The match is far from perfect because the reference image also includes geo-
metric antialiasing, but this doesn’t upset our texture antialiasing comparison.

The comparison between our test render image and the reference image should
be done numerically. The most obvious error metric is to use a simple sum of the
squared differences for each pixel. If the images are identical, this value will be 0.
You can write a small application that takes the difference between two images and
returns the numeric error value. It can also be interesting to output an image that
highlights the pixels that have the most error.

With a tool for determining the antialiasing error, it becomes very easy (and, sur-
prisingly, a little fun if you’re a math geek) to optimize your texture antialiasing to
minimize it. In particular, the simplest yet most useful variation to explore is a
“tweak” value that scales your texture spot size.

174 CHAPTER 5 Advanced Antialiasing

Team LRN

Even if you’ve been careful in determining spot size, it’s very easy for the spot
size to “drift” from its optimal value. It is not uncommon for the spot size to be off
significantly! One renderer I deal with returns a spot size that is at least four times
larger than it should be, and I have to scale it down appropriately to reduce the error.

With an error metric in hand, you can vary any part of your antialiasing code to
determine whether it has a positive effect. Are there strange constants in your anti-
aliasing code for dealing with spot size or sample rates? How about estimates of tex-
ture variability for use with index antialiasing? Cutoff frequencies for fractal noise?
You can tweak all of these to optimize your algorithm’s output.

You can also use the reference comparison to investigate the efficiency and qual-
ity of different algorithms. You can test a supersampling method to determine its
speed and error as compared to a more intelligent but slower band-limiting method.

This method does not do well at catching temporal aliasing problems since it
considers only a single image at a time. You could make a similar test that uses multi-
ple images to determine the antialiasing error metric. Even this is not perfect, but it
does help in better characterizing the final error.

EMERGENCY ALTERNATIVES
Sometimes with deadlines looming, you may still be tearing out your hair due to
aliasing problems. While you can always throw more supersampling onto the prob-
lem, this often still isn’t acceptable because of time or CPU limits. The ideas that fol-
low may be technically dubious and even repugnantly crude, but elegance tends not
to matter when you have a shot deadline in three hours.

The most common and obvious texture “tweak” is to scale the texture spot size.
Even without a reference image comparison as discussed in the previous section, you
can usually reduce aliasing artifacts by using an exaggerated spot size. Often this
may eliminate aliasing at the expense of a softened look to your surface.

If your texture is aliasing and it uses a color map, you can try applying a blur to
the color map. This will soften the transition zones between colors, which can hide a
lot of terrible artifacts. Since the blur only has to be done once to the simple 1D color
map, the computational overhead is inconsequential and does not slow final render-
ing. I first used this method to solve an aliasing problem, but I later found that it was
a useful control for users to use at their own discretion.

A painful alternative that should only be used in true emergencies is a simple im-
age blur effect. Make a mask that isolates the pixels that show the texture, and apply
a 2D image blur to the final rendered image using that mask. This mask may be an

Emergency Alternatives 175

Team LRN

alpha channel that the renderer can output, or even a hand-painted one. By applying
a small blur of just one or two pixels radius, aliasing artifacts in your texture are
usually hidden very quickly. It has the unfortunate side effect of softening your sur-
face features and even geometry details.

A final desperate alternative is effective with simple geometry. If you render your
texture out as a 2D image, you can use the rendered image as a map on your surface.
Most renderers have decent image map antialiasing using a MIP map or summed
area table. Two-dimensional antialiasing with these methods tends to do especially
well in high-compression areas, where a large amount of detail gets crammed into
just a few pixels.

176 CHAPTER 5 Advanced Antialiasing

Team LRN

Team LRN

6

Team LRN

PRACTICAL METHODS FOR TEXTURE DESIGN
S T E V E N W O R L E Y

INTRODUCTION
This entire book is primarily about texturing: different ways to use a mathematical
formula to decide how to color the surface of an object. This chapter discusses as-
pects of texturing from a practical point of view, especially in dealing with the tex-
ture controls (parameters) users manipulate. This chapter shares many topics with
Chapter 2, but from a different point of view.

I have written over 150 algorithmic surface textures (mostly for commercial use
by other animators), and after a while you definitely get a feel for the design of the
algorithms, as well as a toolbox full of utilities and ideas that make writing the tex-
tures easier. Several recurring themes and tricks occur over and over (such as map-
ping a computed value into a color lookup table or adding a bump-mapping effect
to a color texture), and these topics form the basis of this chapter.

TOOLBOX FUNCTIONS
After building such a large library of textures, it has become clear that many
new textures are just variants of each other—new ways to organize a set of stock
routines together. Building blocks such as fractal noise functions, color mapping
methods, and bump-mapping definitions occur in nearly every texture! This sec-
tion discusses these common elements since their ubiquitous use makes them so
important.

The Art of Noise

Fractal noise is, without question, the most important element currently used in pro-
cedural texturing. We won’t discuss the basic implementation of the fractal noise
function here, since many of the other chapters of this book discuss it in some de-
tail (this alone is evidence of its importance in procedural texturing). Instead, we’ll

179

Team LRN

discuss some enhancements and modifications to the basic noise algorithm, mostly
to produce higher-quality and easier-to-use noise.

The biggest problem with the “plain” fractal noise algorithm is artifacts. The
basic routine interpolates over a cubic lattice, and you’ll be able to see that lattice on
your surface, especially if you are using a small number of summed scales. Purists
will also note that the basic Perlin noise isn’t very isotropic, since diagonal directions
have a longer distance gap between sample points than the points along the coordi-
nate directions.

One method to hide this artifacting is to rotate each summed scale to align to a
(precomputed) random orientation. Since the lattices of the different scales won’t
line up, the artifacts will at least be uncorrelated and a lot less noticeable. If you
want to return derivatives for each scale (for bump mapping), you’ll have to multiply
the vector derivative result from each scale with the appropriate inverse rotation ma-
trix (which is the transpose of the original rotation matrix) before you sum them.

I made these transformations by generating random rotation matrices and tak-
ing only those that point inside a single octant of a sphere. Since a 90-degree rotation
(or 180 or 270) will still cause the lattices to match up, a single octant is the most ro-
tation that is necessary.1 Keeping the rotations confined within one octant also helps
you check that there are not two similar rotations for different scales. (Remember
this is a one-time precompute: you can manually sort through about 10 of these to
make sure the matrices are all reasonably different.) To test what octant a rotation
matrix maps to, just pump the vector (1 0 0) through the matrix and look for a vec-
tor with all positive components. You can generate the rotation matrices using the
algorithm(s) in Graphics Gems III by Ken Shoemake and Jim Arvo. Figure 6.1
shows two examples of matrices that might be used.

This rotation trick is most useful when bump mapping, since the differentiation
of the noise value clearly exposes the lattice artifacts: there are sharp discontinuities
of the second derivatives along the lattice lines. When you differentiate for bump
mapping, these second derivatives become discontinuous first derivatives and are
easily visible.

Another strategy to help hide noise artifacts is to choose the lacunarity (the ratio
between the sizes of successive scales) intelligently. A natural lacunarity to use is 0.5,
but don’t use this! It’s better to use a value with a lot of digits (like 0.485743 or
0.527473), which will give you the same effective ratio. A ratio of exactly 0.5 will
make the different scales “register” closely (the next smaller scale repeats exactly
twice on top of the larger scale), so artifacts can appear periodically. This periodicity
is broken by using a number that’s not a simple ratio.

180 CHAPTER 6 Practical Methods for Texture Design

1. Note that these are full 3D rotations, not 2D, but you know what I mean.

Team LRN

Don’t overlook enhancements or variants on the fractal noise algorithm. Ex-
tending the noise interpolation to four-dimensional space is particularly useful, as
this allows you to make time-animated fractal noise. Another interesting variation
I’ve used is to replace the random gradient and values of each noise “cell” with a
lookup table of a function such as a sine wave. This lets you use your fractal noise
machinery (and all the textures that have been designed to use it) with different pat-
terns. Remember Perlin’s original noise algorithm is not sacred; its usefulness should
actually encourage you to experiment with its definition.

Color Mappings

Looking in our toolbox of common routines, the continual use of mappings makes
this topic very important to discuss. Most textures use a paradigm that computes a
value such as fractal noise and then uses this value to decide what color to apply to
your object. In simpler textures this added color is always of a single shade, and the
noise value is used to determine some “strength” from 0 to 1, which is used to deter-
mine how much to cross-fade the original surface color with the applied texture
color.

This mapping allows the user quite a bit of control over the applied color, and its
simplicity makes it both easy to implement and easy for the user to control even with
raw numeric values as inputs. One mapping method I have used with great success
defines four “transition” values. These transition values control the position and
shape of a certain mapping function that turns the fractal noise (or other function)
value into an output value from 0 to 1. Figure 6.2 shows the shape of this function.
Two transitions, labeled T1 and T2, are each defined by a beginning value and end-
ing value. By setting the different levels where these transitions occur, a large vari-
ety of mappings can be made from gradients to step functions to more complex
“bandpass” shapes.

The implementation of such a mapping is trivial. The mapping is worth discuss-
ing mostly because this method is so useful in practice, since it is easy for users to

Toolbox Functions 181

0.98860
0.07958
0.12780

0.85450
0.48691
0.18093

−0.07651
0.99665
0.02881

0.46227
0.55396
0.69240

−

−
−

−

−

−

0.12967
0.01871
0.99138

0.23691
0.67530
0.69845

0. 88609
0.07651
0.12967

0.85450
0.46227
0.23691

−
−

−

0.07958
0.99665
0.01871

0.486 19
0.55396
0.67530

−

0.12780
0.02881
0.99138

0.18093
0.69240
0.69845

−

−
−

Rotation matrix Inverse

FIGURE 6.1 Two random rotation matrices (and inverses).

Team LRN

manipulate even numerically. A more sophisticated mapping method is much more
general: color splines.

A color spline is simply an arbitrary mapping of an input value to an output
color.2 Often this mapping consists of a piecewise continuous interpolation between
color values using a spline. Any number of spline knots (and node colors) can be de-
fined, so the method is truly arbitrary. It does become very difficult for a user to con-
trol or manipulate an arbitrary spline mapping method without a good graphical
interface; columns of color values and knot positions aren’t easily visualizable.

182 CHAPTER 6 Practical Methods for Texture Design

0

20

40

60

80

100

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

Color level

Pe
rc

en
ta

ge
of

co
lo

r
ap

pl
ie

d

T1 start 0.2 T1 end 0.4 T2 start 0.55 T2 end 0.65

FIGURE 6.2 A mapping defined by four user values.

2. You might recognize that the word “color” throughout this chapter (and book) is always used loosely.
Most object surface attributes can be controlled through textures, and while the object’s diffuse re-
flection color is the most often modified value, any of the other surface attributes are controllable using
the exact same methods. It’s just a lot easier to say “color” than “surface attributes specified by some
vector that you can modify with your texture interface.”

Team LRN

Bump-Mapping Methods

The most important element of impressive textures is the use of coordinated bump
mapping. I’ll repeat that: impressive and useful textures use bump mapping.
Gouged-out depressions, ridges, or bumps are always more realistic and interesting
than a simple layer of color paint. Luckily, nearly any color texture can have bump
mapping added to it. Feedback from users shows that bump-mapping ability is un-
questionably the most useful “extra” feature that a texture can have.

It’s usually not difficult to add bump mapping to a basic texture. If you have a
function that maps a scalar field to a value (like a color-mapped fractal noise value
or a perturbed sine for marble veins), you can take the derivative of the scalar func-
tion in all three directions (x, y, z,), add these values to the surface normal, then
renormalize it.3 You should also add a parameter for users to control the apparent
height of the bump. This is just multiplied to the derivative before the addition so the
user can turn off the bump mapping by using a zero value or make the bump “go
the other way” by using a negative value.

In the case of geometric figures (say, a hexagon mesh, or even a plain, checker-
board), there’s not really a function to take the derivative of. In this case, I like mak-
ing a “ridge,” which is basically a line that follows along the exterior boundary of
the figure at a fixed (user-defined) distance inside the boundary. This ridge basically
makes a bevel around the outside rim of the figure, allowing the user to make the fig-
ure look raised or depressed into the surface. Figure 6.3 shows an example of how a
simple bevel makes a flat pattern appear three-dimensional.

But a simple triangular bevel is awfully plain. It’s good to give the user more
control over the shape of this outer rim to make a variety of shapes, from a boxy
groove to a circular caulk bead. In the case of a checkerboard, a user might make a
concave rounded depression, which would make the squares look like they were sur-
rounded by mortared joints.

I’ve tried several ideas to give the user control over the shapes of these ridges,
but one has turned out to be the most useful. You don’t want to have too many pa-
rameters for the user to juggle, but you still want to give them enough control to
make a variety of joints. I’ve found that a combination of just four parameters works
very well in defining a variety of bevel shapes.

The first parameter is the ridge width. What is the total width of the seam or
bevel? In many (most!) cases this bevel is going to be butted up against another seam,

Toolbox Functions 183

3. This is technically wrong! Really you need to do a little more work to get “correct” results, as dis-
cussed on page 170.

Team LRN

so you might want to halve the number internally. (An example of this is a checker-
board: every tile is next to its neighbor. It’s easier for the user to think about the total
width of the joint instead of the width of the part of the joint in just one square.)

The second parameter is what I call the “plateau width.” This is a distance along
the outside of the ridge that isn’t affected. This allows users to make joints that have
a flat part in the middle of a seam, sort of a valley between the cliff walls that are
formed by the bevel. This plateau obviously must be less than the total width of the
bevel.

The last two parameters control the shape of the bevel. If you think of the ridge
as being a fancy step function (it starts low, ends high, and does something in be-
tween), you want to be able to define that transition by a straight line, a smooth S
curve, or anything in between. I’ve found that using a smooth cubic curve over the
transition allows the users to define most useful shapes by setting just two numbers,
the slopes of the curve at the start and end of the transition. Slopes of 0.0 would
make a smooth blending with the rest of the surface, and if both slopes were 1.0, the

184 CHAPTER 6 Practical Methods for Texture Design

FIGURE 6.3 A ridged hexagon mesh.

Team LRN

transition would be a classic straight-line bevel. This is best shown in Figure 6.4,
which also shows how the plateau is used.

The ridges shown are just examples, since there’s really a continuum of curves
that can be made. The slopes can even be continuously changed over time to animate
the bevel morphing its shape.

These slope controls are obviously useful for making different ridge profiles, but
how do you actually convert the parameters into numbers that can be used for bump
mapping? The best way is to use the simple Hermite blending curves. Hermite curves
are a simple type of spline, defined by a cubic polynomial over a range from 0 to 1. A
cubic polynomial is very convenient since it’s cheap to compute and has four degrees
of freedom to control its shape. We can completely define this cubic curve by setting
the starting and ending values and slopes.

This is perfect for us, since our ridge is basically a smooth curve that starts at a
low height (0) and ends up high (1). We have the user specify the starting and ending
slopes, defining the curve’s last two degrees of freedom. The slope of this curve con-
trols the amount of bump added to the surface normal.4 We’ll parameterize the
width of the bevel from 0 to 1 to make using the Hermite spline easy.

We have four values (start and end heights, start and end slopes) we can use to
construct the cubic polynomial by adding together weighted copies of the four

Toolbox Functions 185

Bottom
slope

Top
slope

Ridge
shapePlateau?

1.0

0.0

0.0

0.0

−1.0

1.0

0.0

1.0

0.0

−1.0

Yes

Yes

Yes

No

Yes

FIGURE 6.4 Bump-mapped ridge shapes for different slope controls.

4. “Adding” is a tricky word! A crude literal addition of the derivative to the normal won’t give you cor-
rect results (although they’ll look OK sometimes). Again, see the bump-mapping coordinate discussion
on page 170 to understand how bump mapping should be done correctly.

Team LRN

Hermite “blending functions.” The sum, F(t), is the unique cubic polynomial that
satisfies the four constraints.

These blending functions are called P1, P4, R1, and R4, and represent the values
of F(0), F(1), F′(0), and F′(1), respectively (see Figure 6.5).

P1 = 2t3 − 3t2 + 1

P4 = −2t3 + 3t2

R1 = t3 − 2t2 + t

R4 = t3 − t2

P′1 = 6t2 − 6t

P′4 = −6t2 + 6t

R′1 = 3t2 − 4t+1

R′4 = 3t2 − 2t

In the case of the ridge, the start and end values will always be fixed to 0 and 1,
respectively. The user supplies the two slopes (call them sb and st for bottom and
top). The curve that represents our ridge shape is therefore P1 + sbR1 + stR4. The de-
rivative of the curve at the hit point is . This tells us the slope of
our ridge at the hit point: the weight we use when adding to the surface normal.

186 CHAPTER 6 Practical Methods for Texture Design

1 1 4() () ()tbP t s R t s R t+ +′ ′ ′

FIGURE 6.5 Hermite blending functions.

−0.2

0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

t

F(
t)

P1 P4

R1

R4

Team LRN

So, explicitly, the “ridge” algorithm is as follows:

1. Decide if the hit point lies within the bevel width. You’ll need to come up with
a measure of how close a hit point is to the “edge” of the figure.

2. If the hit is outside the bevel width or inside the plateau width, exit. The sur-
face is flat at this location.

3. Set Nadd equal to the normal vector perpendicular to the bevel. (This is the vec-
tor that points from the hit point toward the closest edge.) For example, on a
checkerboard, if the hit point is on a bevel on the right (+X) side of a square,
the normal would be (1, 0, 0), and the bevel on the bottom (−Y) of the square
would have a normal of (0, −1, 0).

4. Set t to the normalized (dimensionless) distance along the slope. (If the hit point
was d units from the edge, t = 1.0 − (d − plateau width) /(ridge width −
plateau width.)

5. Compute s, the slope of the cubic curve at the hit point. This is
where sb and st are user parameters.

6. Weight Nadd by sA and add it to the hit point’s surface normal. A is yet another
user parameter, controlling the amplitude of the bump effect.

7. Renormalize the surface normal.

This is actually pretty easy to implement. The hardest part is probably determining
the distance to the edge of a figure like a hexagon.

Note that this kind of bump mapping doesn’t have to be restricted to geometric
figures! It’s easy to add to 3D scalar field functions, too. This lets you use something
like fractal noise to make weird squiggly canyons or raise marble veins out of the
surface of a stone. In this case the t variable is usually set by a high and low value de-
fined by the user. The derivative of the field provides the Nadd vector.

THE USER INTERFACE
Writing an algorithm that makes an interesting surface is only half the battle! One of
the overlooked aspects of texture design is defining the user-accessible parameters.
Even when an environment has a fancy GUI for manipulating the texture, the user is
usually faced with setting a whole bunch of parameters with vague labels. The us-
ability of your textures can be dramatically increased by using some thought and
planning during your implementation. This is especially true when designing the

The User Interface 187

1 1() ()bP t s R t+ +′ ′

4(),ts R t′

Team LRN

interface that you or users will use to control the texture. This interface often is not a
fancy previewer, but simply a set of parameter values or even a crude text file. (In
1992, text file parameter definition was common. It’s scary, but in 2002, it’s still
common!) Even with such basic interfaces, careful parameter design can make the
texture significantly easier to use.

Parameter Ranges

It might seem obvious, but the user should be provided with suggestions for accept-
able ranges for each parameter. Some ranges are easy enough to define, like colors or
a percentage level. But, since all interesting textures seem to use ad hoc code that
even the programmer doesn’t quite understand, there are always going to be mystery
constants that the user has to play with to get different effects. It’s awfully inelegant
to have a parameter named “squiggliness” that only makes useful patterns when it is
between 55 and 107.5

One way to help the user control vague parameters like this is to remap a param-
eter’s range. If “squiggliness” is just a mystery constant (which happens to be inter-
esting over that 55–107 range), it’s silly to expect users to enter these weird values. If
you find that a parameter like this has one particular range of usability, you can use a
linear transformation to remap the range: the user would enter a number from 0 to 1
for “squiggliness,” not a value in the nonintuitive internal range. The new range of
values provide the exact same amount of control as before, but at least the user
knows that values like 0.3 or 0.9 might be interesting to try. (They can also experi-
ment and try − 0.2 or 1.1, of course, but they’ll understand if the result isn’t useful.)
The remapped range then serves as an indirect guide to selecting useful parameter
settings.

Remapping linear ranges like this is easy, especially when you’re remapping
from 0 to 1. Since the transformation is linear, it’s just a multiply and an addition. If
x is between 0 and 1, you can map to the values from L and H by the simple formula
L + x (H − L).

This does not mean that you should make all parameters map to a 0–1 range!
RGB colors are often easiest to enter as three 0–255 values. The width of a check in a
checkerboard texture should be measured in the coordinate system’s units. Common
sense should be your guide.

188 CHAPTER 6 Practical Methods for Texture Design

5. This may seem like a contrived example, but veteran texture authors know it’s not. Mystery constants
seem to be an integral, recurring aspect of texture design.

Team LRN

Color Table Equalization

Color splines were discussed on page 182. Fractal noise textures in particular work
well with this mapping method. However, while it is very easy to say, “Just feed the
fractal noise value into a lookup table,” how is this table designed? Obviously, it de-
pends on whether you’re making a texture that will be manipulated with a fancy
GUI or one that is a subroutine the user has specified with raw parameter values. In
practice, it usually boils down to the latter, since the GUI is just a front end for set-
ting numeric parameters.

The biggest problem users find with setting color splines or levels is the fact that
it is hard to know how much effect their color choices will have. This is critically
true for renderers that can’t quickly preview textures interactively. The biggest ob-
stacle to users in setting color levels is that they do not know how much impact their
choices will have on the rendered surface. Say that the users can define a color
scheme where fractal noise below the value of −0.5 is black, a value above 0.5 is
white, and in between values are a smooth gray transition. The problem is that the
users have no idea how much of their object is going to be colored! Is the surface go-
ing to be dominated by huge patches of black and white, with narrow gray transi-
tions in between? Or will it be gray values everywhere that never quite get to solid
black or white?

Of course, the user can experiment and try to find the right levels to start and
end color applications, but it is frustrating to have such an arbitrary, nonlinear scale!
It is even worse, since if you change the number of noise octaves added onto the
fractal sum, the scale changes again! If you think about it, it would be much easier if
the users could deal with constant percentage levels and not weird, unknown ranges.
Thus, a user could set the “lower” 20% of the noise to map to black, the “upper”
20% to white, and the remaining 60% to a gray gradient. This way the user has
some idea how large each color range will be on the surface.

Thus there are two steps to making the noise levels “behave.” First, they need to
be normalized so that the amplitude ratio between scales and the total number of
scales don’t make the noise ranges change too much. The second part consists of
making a table to map these values to percentages. The second step is really just a
histogram equalization or a cumulative probability function.

The normalization step is pretty easy. Ideally, you want the fractal noise, no mat-
ter how many scales or what scale size or ratio you use, to return a value over the
same range. You can do this adequately well by dividing the final sum by the square
root of the sum of the squares of all the amplitudes of the scales. For those who don’t
want to parse that last sentence,

The User Interface 189

Team LRN

where

F = normalized fractal noise value
L = largest scale size
s = size ratio between successive scales (usually around 0.5)
a = amplitude ratio between successive scales (usually around 0.5)
n = number of scales added (usually between 3 and 10)
x = hit location (a vector)

This normalization makes it a lot nicer when you are tweaking textures: the rela-
tive amounts of colors or size of the bumps won’t be affected when you change the
scale or amplitude ratio or number of summed scales.

The equalization step is a little more involved. The values of fractal noise will
fall into a range, probably within −2 to 2, with most values around 0. It looks a lot
like a normal distribution except the tails die out quickly. The histogram shown in
Figure 6.6 shows the distribution of 10,000 sample values of fractal noise. In prac-
tice, more samples should be used, but with this number the slight random errors are
visible to remind you this is an empirical measurement, not an analytic one.6

The histogram is very interesting, but we’re really looking for a way to map the
user’s percentage level to a noise value. If, for example, 10% of all noise values fell
below −0.9, we’d know to map 10% to that −0.9 value. Zero percent would map
to the very lowest noise value, and 100% would map to the very highest. This is a
cumulative function and is used in probability and statistics quite often. Luckily, the
way to explicitly measure this relation empirically is straightforward.

First, store many random values of fractal noise in an array. Computing 250,000
samples is probably sufficient, but more is even better. (This is a one-time computa-
tion, so speed doesn’t matter.) Sort the values into an ascending array. If you plotted
the sorted array, you’d get a curve similar to the normalization plot shown in Figure
6.7. This is now a lookup table! For example, if you used 100,000 samples, the
50,000th number in the sorted array would correspond to the 50% level: half of the

190 CHAPTER 6 Practical Methods for Texture Design

1
0

1 2
0

()
()

()

i
xn i

i Ls

n i
i

a N
F x

a

−
=

−
=

=
∑

∑

6. You may recognize that in many cases the distribution of fractal functions tends to form a normal dis-
tribution because of the statistical Law of Large Numbers. So for some functions, you can just use a
Gaussian as a distribution model and use the Erf() function to compute the normalization values.

Team LRN

The User Interface 191

0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

−2.0 −1.5 −1.0 −0.5 0.0 0.5 1.0 1.5 2.0 2.5

Noise value

Pr
ob

ab
ili

ty
de

ns
it

y

FIGURE 6.6 Histogram of 10,000 noise values.

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
Percentage

N
oi

se
va

lu
e

FIGURE 6.7 Percentage to noise value normalization curve.

Team LRN

noise values would be less than the value stored in this location in the sorted array.
(It’s the median!) The 10,000th number corresponds to the 10% level, since 10% of
the 100,000 values are less than this value.

You obviously don’t need to store 100,000 lookup values in your texture code!
You can store perhaps just 11 equally spaced samples and linearly interpolate be-
tween them: a 15% level would be computed by averaging the 10% and 20% levels.
Probably 16,000 values is a fine enough “grain” that you don’t even need to bother
interpolating.

Adding the translation from user parameter values (probably expressed in a 0 to
1 fractional value) to a noise value is easy enough, probably done as a first step and
stored in a static variable. If you have a fancy GUI it can even be done as a pre-
process as soon as the user has set the levels.

It is impossible to overstress the usefulness of this equalization to users. They
can actually plan out the coverage of different colors fairly accurately the first time.
If they want a sky 20% covered with clouds, they immediately know the settings to
use. This convenience is no real computational load, but for the user it makes using
the texture a lot more intuitive.

Exploring the Parameter Domain

Even as the author of a texture algorithm, determining appropriate parameter values
to use can be very difficult. A mere texture user should have some strategies for ma-
nipulating a set of parameters.

The easiest method of setting a texture’s parameters is to simply use previously
interesting values! It may seem silly, but if you don’t keep track of settings you have
already produced, you’ll always be starting from scratch whenever you wish to pro-
duce a new surface appearance. Keeping track of previous successful settings will
give you a starting point for surfaces with the absolute minimum amount of future
effort.

The library of settings is obviously not practical until you build that library first,
and even then the library won’t always have an example of the surface you desire.
Other strategies for modifying the parameters give you significantly more control.

The most obvious but most demanding method is simply to understand the tex-
ture well and use your intelligence to choose the proper settings. When you are fa-
miliar with what each parameter does, you can predict what the modified surface
will look like and just set the values appropriately. A trivial example is when you
wish to change the colors applied by the texture, so you simply edit the color

192 CHAPTER 6 Practical Methods for Texture Design

Team LRN

parameters. However, knowledge of the texture’s controls still isn’t enough; if you
want a surface that has a more “blobby” behavior, but there’s no convenient param-
eter named “blobbiness,” you’ll be forced to determine what parameters (or set of
parameters!) will produce the effect you want.

While in theory you can simply use your experience and judgment to set the pa-
rameters, in practice this can be difficult. Oddly, often the most effective editing
method is just to vary different parameters wildly! Blindly adjust them! Don’t be
conservative! When the dust settles, look at the surface produced; it may be some-
thing you like and can use. If it’s not, it only takes a few seconds to try again.

This random method is arguably just as powerful as the “forethought” editing
method. Even when I feel I understand the texture well (because I wrote it!) random
settings will sometimes make interesting appearances I didn’t expect and couldn’t
even plan for. It’s a great starting point, since from here you can use the “intellec-
tual,” planned editing steps. The random method will give you a wide variety of sur-
faces that, even if they are not immediately useful, you can still save in an attribute
library; it’s likely you might be able to use them sometime in the future.

The final editing strategy is what I call the “polish” step. When you have a set-
ting you are happy with, you can use a methodical last pass to optimize your set-
tings. The idea is that if the surface looks as good to you as possible, then changing
any of the parameters must make a less perfect surface. (If it didn’t, you’d have an
even better surface than you started with, right?) With this in mind, you can go
through each parameter sequentially. Perturb the value by a small amount, but
enough to make a visible change. If you like the new pattern better, then congratula-
tions, you’ve just refined your surface and improved it! If not, try adjusting the pa-
rameter a small amount the other way. If neither adjustment improves your surface,
reset the value to what it was initially, then proceed to the next parameter. After
you’ve gone through all the parameters, your surface is optimized; any parameter
changes will make it less attractive.

While there are many strategies for editing parameters, the best strategy of all
has got to be the long-term accumulation of a library of example parameter settings
for each texture. You’ll find new surfaces all the time when exploring (especially us-
ing the random flailing method), and if your attribute library is large, the next time
you need a specific surface, you’ll be that much more likely to have a good starting
surface; otherwise you’d be forced to start from scratch.7

The User Interface 193

7. If you’re designing a texture system, make sure to allow some sort of a user preset functionality!

Team LRN

Previews

Especially when you are initially developing textures, it is painful to run test after
test to see how the texture is behaving. Obviously, the faster your development plat-
form is, the better, but even then the design cycle time can be painfully slow.

I heartily agree with Ken Perlin’s advice on this problem: generate low-
resolution tests! Most problems are glaring errors, and even 200 × 200 pixel test im-
ages are often enough detail to judge the gross behavior of a texture very quickly. If
you’re in a compile-render-recode-compile loop, you might be surprised how much
time is wasted just waiting for the next render, even with modern fast CPUs.

If you can’t speed up your computer, the best way to help cut the design cycle
time is to have the renderer display the image as it is rendering (if it can!). This way
you can abort the render as soon as you know there is a problem, as opposed to
waiting for the whole thing to finish before discovering there’s a problem.

Even better is to design a previewer specifically for editing texture parameters.
Place each parameter on a slider, and implement a progressive refinement display.
This is a rendered image (perhaps just a simple plane or image of a sphere) that is
rendered at a very coarse resolution. After the image has been computed, the image
should be recomputed at a resolution that is twice as fine, updating the display ap-
propriately. (Note that one-fourth of the pixels have already been computed!) This
refinement continues until you’ve computed the texture down to the individual pixel
level.

If this preview can be interrupted and restarted by changing a parameter (ideally
by just grabbing and changing a slider), the design cycle for setting parameters be-
comes enormously faster. Even with a very slow computer, the update is interactive
(due to the progressive display scheme). An editor like this increased the utility of my
entire set of textures by a (conservatively estimated!) factor of five. The utility of a
texture to a user (especially a nontechnical one) is inversely proportional to the time
for a complete design cycle.

EFFICIENCY
As important and useful as it is, procedural texturing has one flaw that often limits
its potential. That flaw is simply efficiency. A complex surface tends to require

194 CHAPTER 6 Practical Methods for Texture Design

Team LRN

complex computations to define it.8 In particular, the most used building block of
texturing (Perlin’s fractal noise) is, unfortunately, slow.

The first and second editions of this book contained several pages of “speedup
tricks” here, dealing with clever C macros to save a few microseconds. This was im-
portant in the “good old days” of 25 MHz processors. In today’s modern era, we still
love speed, but it’s actually counterproductive to spend enormous effort optimizing
C code when CPUs can now render a full screen of fractal noise in real time. This
speed allows us to concentrate more on texture design and not programming details.

But efficiency is still important! It just means that we can focus more on the al-
gorithms, especially caching and antialiasing. Because procedural textures are easier
and faster to compute, we’re just using them more. In 1989, Perlin’s hypertextures
were hyperslow. But today, most professional renderers have volumetric texture and
shading effects, which are an order of magnitude more compute intensive.

TRICKS, PERVERSIONS, AND OTHER FUN TEXTURE ABUSES
Basic textures are often implemented in the same rough method. A function is passed
an XYZ location in space, the current surface attributes, and perhaps some user pa-
rameters, and the texture modifies the attributes based on some internal function.
This generic design is sufficient for more general surface texturing, but if you are cre-
ative you can actually produce some truly unique and interesting effects even with
the limited information most textures usually have.

Volume Rendering with Surface Textures

One of the sneakiest tricks is to change a surface texture into a true volume texture.
This has been done since the beginning of algorithmic texturing; Geoffrey Gardner,
as early as 1985, was fabulously effective at turning simple ellipsoid surfaces into ap-
parent cloud volumes (Gardner 1985). This wasn’t a true volume integration, but it
looked great!

You can actually do a true volume rendering with simple surface textures as long
as you limit your surfaces to a somewhat restricted geometry. The easiest method of
doing this relies on the texture knowing which direction the incoming ray is arriving
from and assuming the user is applying the texture only to one type of surface like a
sphere. The trick is simple: since you know the hit point of the ray, the direction of

Tricks, Perversions, and Other Fun Texture Abuses 195

8. The notable exceptions to this rule are patterns such as the fractal Mandelbrot set, but these have an
uncontrollable complexity; you can’t easily use the Mandelbrot set to make an image of granite paving
stones.

Team LRN

the ray, and you’re assuming you’re hitting a sphere (so you know the geometry),
you know exactly what path the ray would take if it passed through the sphere.

Now, if you perform a volume rendering with this information (which might be
an analytic integration of a fog function, a numeric integration of a 3D volume den-
sity, or some other volume-rendering technique9), you can just use the final output
color as a surface color. In particular, this is the surface emittance; often renderers
will let you define this emittance (which is sometimes called luminosity) or, just as
useful in this case, allow you to specify the true RGB surface color the surface will be
treated as (and no shading will be done). By setting this surface color to the volume
density computed intensity, the illusion of a gas can be complete! The gas must be
contained by the sphere that defines it, but it is a true 3D effect and as such can be
viewed from any angle. The biggest caveat is that the camera cannot fly through the
volume density.

Odd Texture Ideas

If you think about the abilities of textures, you might realize that textures might
be useful for more than just applying a color onto the surface of an object. In partic-
ular, if your host renderer passes the current surface color to the texture, you can
design routines that can manipulate that color. You might map a bitmap onto a sur-
face, then use a “gamma correction” texture to brighten the image. This texture
would just be called after the brushmap is applied and would correct the image “on
demand.”

In fact, I’ve found quite a few “utility” textures like this that don’t really apply a
pattern at all. One is a solid color texture that has just two arguments, an RGB sur-
face color and a “fade” value. By applying a solid color to an object, you can cover
up previous textures. The fade value allows you to make the surface any opacity you
want. If you linearly change this opacity over time, you can “fade in” an image map
or previous texture. Or you could use the texture at a small (10%) opacity to just
tint a surface’s color.

Another useful texture transforms the RGB surface color to HSV, then lets the
user “rotate” the hue around the color wheel. This is a cheap form of color cycling
and is especially useful for animations.

You also shouldn’t get stuck thinking that textures have to be fractal noise pat-
terns or endlessly tiled figures. I’ve found that textures can be useful in adding fairly
specific, structured features that you might think would be better implemented with
an image map. One example is an LED display like a watch or calculator. The

196 CHAPTER 6 Practical Methods for Texture Design

9. Chapter 8 by David Ebert discusses this topic extensively.

Team LRN

texture takes a decimal number as an argument and displays it on the simulated
seven-segment digits! This might seem weird, but you can now make something
like an animated countdown without having to make hundreds of image maps
manually.10

In a similar vein, a “radar” texture can make a sweeping line rotate around a cir-
cle tirelessly, with radar “blips” that brighten and fade realistically. All sorts of items
that need to be continually updated (clocks, blinking control panel lights, simulated
computer displays) can often be implemented as a semispecific surface texture.

A fun texture is the Mandelbrot set. Just map the hit point’s XY position to the
complex plane. As the camera approaches the surface of the object, the texture auto-
matically zooms the detail of the set! This is an awfully fun way to waste valuable
CPU time.

Don’t get stuck in always layering an image onto the surface, either. One of my
most often used textures uses fractal noise to perturb the brightness of the surface. A
user might use a brushmap or another texture to provide surface detail, then use this
“weathering” texture to add random variations to the surface. An example might be
a texture that takes a fractal noise value F and scales the object surface color by a
factor of 1 + αF. Even for subtle values of α the perfect hue of the surface is given
some variation. This is dramatically impressive when a regular grid of squares sud-
denly becomes the weathered hull of an ocean liner.

2D Mapping Methods

For obvious reasons, 3D procedural textures are more versatile than 2D image
maps. But modern renderers have powerful image mapping controls, which can of-
ten be great to use even with procedurals. The simple idea is to convert the 3D proce-
dural texture into a 2D image map and allow the renderer to deal with it from there.
This can speed up rendering and allow use of a procedural in 3D hardware (for
OpenGL display), for video games that use real-time graphics, for solving anti-
aliasing problems (since the renderer’s image map antialiasing will be used), and of
course for renderers that simply lack the proper texturing architecture.

Converting a 3D procedural to a 2D image requires some kind of harness to gen-
erate the maps. Tools for this are becoming more common as UV mapped model-
ing has become the norm. This means that the model itself has encoded UV values
over each patch or polygon, correlating each surface point with a 2D image loca-
tion. The image generation harness can iterate over the entire object, evaluating the

Tricks, Perversions, and Other Fun Texture Abuses 197

10. There is a sample of my LED texture on this book’s Web site. It’s admittedly a decade-old artifact of
amateur coding, but may be interesting for reference.

Team LRN

procedural over the surface and “writing” the color values into the 2D image map.
This test harness can be crude or sophisticated, depending on how it deals with sam-
pling the surface evenly and how it filters the result to form the 2D texture sample.
But once working, this process is invaluable for many artists’ goals. The generic term
for this technique is texture baking.

The 3D nature of the procedural texture allows many 2D effects that couldn’t be
made by hand-painting because of the varying distortion that a human artist can’t
compensate for. This is even true for common spherical projection maps that are just
a special case of UV mapping (which use a formula instead of an arbitrary table to
associate UV values with the surface.) For example, an unwrapped image of the
Earth (showing continents, oceans, etc.) applied to a sphere produces a final spheri-
cal planet with the proper appearance. This polar coordinate mapping method
allows the renderer to use the surface’s 3D XYZ point to find the 2D UV coordi-
nates of the corresponding position on the image map. This mapping is an “equal-
angular” mapping, not a Mercator mapping, so the transformation is particularly
simple:

For UV maps defined by this spherical transform, we can invert the equations
and use it to convert a UV map into an XYZ position for our procedural. Assuming
we are evaluating the texture on the surface of a sphere of unit radius, this reverse
transformation is not difficult. Simply,

X = cos((V − 0.5)⋅2π)sin(U⋅2π)

Y = cos((V − 0.5)⋅2π)cos(U⋅2π)

Z = sin((V − 0.5)⋅2π)

Figures 6.8 and 6.9 show an example of how baking can work in practice. A
basketball was defined algorithmically by using a brute-force procedure to evaluate
a function over the surface of a sphere. Simple rules were used to determine whether
a point was in a stripe or not (this is a quick geometric decision). A large lookup ta-
ble of points distributed over the surface of the sphere was examined to see if the
sample point was within a “pip” on the surface.11 The inverse spherical mapping
transformation was used to loop over the pixels of a texture map, and depending on
whether the corresponding 3D surface point is located within a line or a pip, the

198 CHAPTER 6 Practical Methods for Texture Design

1

1 2 2 2

tan (,)
2

sin (/)
0.5

2

X Y
U

Z X Y Z
V

−

−

=
π

+ +
= +

π

11. No subtlety here, every element in the lookup table of a couple thousand points was examined. This
example was not a procedural texture designed for rendering (it was to produce a one-shot image map),
so efficiency was not a big concern.

Team LRN

image map was set to a gray value. This texture map was then used directly in a
renderer.

In practice this trick works extremely well, since the predistortion of the image
map exactly compensates for the renderer’s subsequent distortion when wrapping.
No seams are visible, and the image is not stretched; both occur when naive maps
(such as digitized imagery) are used. This book’s Web site contains the (admittedly
old and inelegant) procedural to generate the basketball’s appearance.

Note that this exact same method can be used to evaluate a texture over a cylin-
der or other shapes, as long as the transformation the renderer uses to map a 3D
XYZ location to a UV image sample is known and an inverse transformation can be
determined.

WHERE WE’RE GOING
Procedural texturing (and modeling) is certainly still in the frontier of computer
graphics. It’s an open-ended niche that is two decades old, but still growing in impor-
tance. The always-increasing power of computers is displacing rendering speed
as the major bottleneck; the production of complex material appearances and

Where We’re Going 199

FIGURE 6.8 A 2D basketball image map.

FIGURE 6.9 The seamless wrapped ball.

Team LRN

geometry is now possible and practical. Imagine the complexity present in a full
model of a city; a single animator could not design each building and surface manu-
ally. The answer is of course procedural definition, which is why it is steadily becom-
ing more and more important over time.12

But what topics will be at that frontier? There are obviously many, but I see sev-
eral “holes” in classical texturing that will likely be important soon.13 One of the
largest gaps in even simple texturing is a strategy for more intelligent textures—ones
that examine their environment (and particularly the object geometry) to change
their appearance. The strategy used by Greg Turk (1991) for reaction-diffusion tex-
tures is one of the early forays into this field, but the potential is enormous. Imagine
designing a dragon, but having the dragon scales behave differently over the belly of
the dragon than the wings. Individual scales might change size based on the curva-
ture of the skin (where there is high curvature, the plates need to be smaller to keep
the area flexible). What is a good method for doing even this size scaling? What
other effects could be modulated by object geometry? What about the geometry
should the textures examine? The applications are obvious, but there have been no
great developments in this area. Yet.

I see another topic becoming important soon. With the complexity of textures
continually increasing (both in application methods and in internal design complex-
ity), a “black-box” texture starts to become unwieldy for users to control. The black
box is a texture personified by many control parameters, almost always numbers.
When textures grow, the number of controls grows. It is not unusual to have up to
30 or 40 of these parameters! Even when carefully chosen and labeled, this many
levers and knobs become difficult for the user to handle! This can be minimized
through a good user interface (see page 194), but even then it is easy for a user (espe-
cially a nontechnical artist) to become swamped.

The black-box design is likely to be around for quite a while; it is a convenient
way to design textures for the programmer. These parameters must therefore some-
how be abstracted or hidden from users to avoid overwhelming them. This probably
implies a user interface similar to the ones used by both Sims (1991a) and Todd and
Latham (1993). Essentially, the user is presented not with many parameters to adjust

200 CHAPTER 6 Practical Methods for Texture Design

12. When this chapter was first written in 1994, I envisioned the day that we would have procedurally
built cities, and even planets that could be viewed at any level of detail from orbit to 1 meter. That day
has already come. At SIGGRAPH 2001, a procedural city technique was presented, as well as
MojoWorld, a commercial “build a synthetic planet at any scale” renderer. What will happen in another
10 years?
13. I wrote this same sentence in 1994, but the topics are still just as appropriate in 2002, if not more so.

Team LRN

but with a collection of images. Each image is computed using different parameters
(which are hidden from the user), and the user empirically ranks or sorts the images
to identify the ones that are most interesting. From an artist’s point of view, this is
obviously appealing; it is very easy to use. The abstraction can also hide “parame-
ters” of arbitrary complexity; Sims’s textures are actually giant LISP expressions, not
a mere vector of numeric parameters.

The big questions that remain are what sort of method is best for deciding how
to choose the parameters to make the image to present to the user, and how to use
the user’s preferences to guide the production of new trial settings. Todd and Latham
(1993) present a rudimentary answer to this question, mainly involving parameter
“momentum,” but especially for complex models this can become inadequate. I feel
that development of a robust method for “texture evolution” based on numeric pa-
rameter vectors will be one of the most important tools for making procedural tex-
tures more useful from a user’s point of view. In particular, two topics need to be
studied: accounting for past explorations of the texture’s parameter space and com-
pensating for parameter correlations (where connections between parameters will
complicate a “gradient” optimum search method). The growing complexity of tex-
tures really demands a new style of interface design, and this looks like the most
promising.

So, while texturing is now two decades old, it is more important than ever. In
computer graphics during the 1970s, the surface visibility problem was the main
frontier. In the 1980s, lighting and surface properties (including the development of
radiosity and BRDF surface models) were probably the most important develop-
ments. The 1990s produced efficient global lighting and image-based rendering. It is
too early to tell what this current decade will be dominated by, but my prediction, es-
pecially for the next 10 years, will be procedural object and surface definition. We
finally know how to render any model; now let’s make the computer help us build
the models themselves.

Where We’re Going 201

Team LRN

7

Team LRN

PROCEDURAL MODELING OF GASES
DAV I D S . E B E R T

INTRODUCTION
This chapter presents a framework for volumetric procedural modeling and tex-
turing. Volumetric procedural models are a general class of procedural techniques
that are great for modeling natural phenomena. Most graphics applications use
surface-based models of objects; however, these models are not sufficient to ef-
fectively capture the intricate space-filling characteristics of many natural phe-
nomena, such as water, fire, smoke, steam, clouds, and other gaseous phenomena.
Volume models are also used extensively for modeling fur and other “soft”
objects.M

Volumetric procedural models use three-dimensional volume density functions
(vdf(x,y,z)) that define the model density (or opacity) of a continuous three-
dimensional space. Volume density functions (vdf’s) are the natural extension of
solid texturing (Perlin 1985) to describe the actual geometry of objects. I have used
them for modeling and animating gases such as steam, fog, smoke, and clouds
(Ebert, Carlson, and Parent 1994; Ebert 1991; Ebert and Parent 1990; Ebert, Ebert,
and Boyer 1990; Ebert et al. 1997). Hypertextures (Perlin and Hoffert 1989), de-
scribed by Ken Perlin in Chapter 12, and Inakage’s flames (Inakage 1991) are other
examples of the use of volume density functions.

This chapter will focus on the use of volumetric procedural models for creating
realistic images of gases, specifically smoke, steam, and fog. I will use the term gas
to encompass gas and particulate volumes, both of which are governed by light-
scattering models for small particles. Atmospheric attenuation and lighting models
are robust enough to encompass both types of volumes and produce visually correct
results.

As in the preceding chapters, the procedures in this chapter will make use of the
stochastic functions noise() and turbulence(). I will give a simple implementa-
tion of the noise() and turbulence() functions used in my system.

203

Team LRN

This chapter first summarizes previous approaches to modeling gases, and then
presents a brief description of my volume ray-tracing system for gases and several
approaches for using graphics hardware to implement these effects. The concept
of three-dimensional “solid spaces” is introduced next to stress the importance
of the relationship of procedural (function/texture) space to object and screen
space. Finally, it concludes with a detailed description of how to create still images
of gases.

PREVIOUS APPROACHES TO MODELING GASES
Attempts to model gases in computer graphics started in the late 1970s. Since that
time, there have been many different approaches. These can be categorized as tech-
niques for modeling the geometry of gases and techniques for rendering scenes with
gases and atmospheric effects.

There have been several approaches to modeling the geometry of gases. Some
authors use a constant density medium (Klassen 1987; Nishita, Miyawaki, and
Nakamae 1987) but do allow different layers of constant densities. Still, only very
limited geometries for gases can be modeled. Voss and Musgrave use fractals to cre-
ate realistic clouds and fog effects (Voss 1983; Musgrave 1990). Max (1986) uses
height fields for simulating light diffusion effects, and Kajiya uses a physically
based model for modeling clouds (Kajiya and Von Herzen 1984). Gardner (1985,
1990) has produced extremely realistic images of clouds by using Fourier synthe-
sis to control the transparency of hollow ellipsoids. The main disadvantage of
this approach is that it is not a true three-dimensional geometric model for the
clouds.

I have developed several approaches for modeling gases based on volume den-
sity functions (Ebert 1991; Ebert and Parent 1990; Ebert, Ebert, and Boyer 1990;
Ebert, Boyer, and Roble 1989). These models are true three-dimensional models for
the geometry of gases and provide more realistic results than previous techniques.
Stam and Fiume (1991, 1993, 1995) also use a three-dimensional geometric model
for gases. This model uses “fuzzy blobbies,” which are similar to volumetric meta-
balls and particle systems, for the geometric model of the gases. Stam and Fedkiw
have extended this work to use physically based Navier-Stokes solutions for model-
ing gases and have achieved very realistic effects (Stam 1999; Fedkiw, Stam, and
Jensen 2001). Sakas (1993) uses spectral synthesis to define three-dimensional geo-
metric models for gases. Many authors have used a variety of techniques for the
detailed modeling and real-time approximation of clouds, which is described in
Chapter 9.

204 CHAPTER 7 Procedural Modeling of Gases

Team LRN

The rendering of scenes containing clouds, fog, atmospheric dispersion effects,
and other gaseous phenomena has also been an area of active research in com-
puter graphics. Several papers describe atmospheric dispersion effects (Willis 1987;
Nishita, Miyawaki, and Nakamae 1987; Rushmeier and Torrance 1987; Musgrave
1990), while others cover the illumination of these gaseous phenomena in detail
(Blinn 1982a; Kajiya and Von Herzen 1984; Max 1986; Klassen 1987; Ebert and
Parent 1990). Most authors use a low-albedo reflection model, while a few (Blinn
1982a; Kajiya and Von Herzen 1984; Rushmeier and Torrance 1987; Max 1994;
Nishita, Nakamae, and Dobashi 1996; Wann Jensen and Christensen 1998; Fedkiw,
Stam, and Wann Jensen 2001) discuss the implementation of a high-albedo model.
(A low-albedo reflectance model assumes that secondary scattering effects are negli-
gible, while a high-albedo illumination model calculates the secondary and higher-
order scattering effects.) There has also been considerable work in the past several
years in developing interactive rendering techniques for gases and clouds, described
in Chapter 10.

THE RENDERING SYSTEM
For true three-dimensional images and animations of gases, volume rendering must
be performed. Any volumetric rendering system, such as the systems described by
Perlin and Hoffert (1989) and Kajiya and Von Herzen (1984), or approximated
volume-rendering system can be used, provided that you can specify procedures to
define the density/opacity of each volume element for the gas. I will briefly discuss
my rendering approach, which is described in detail in Ebert and Parent (1990). This
hybrid rendering system uses a fast scanline a-buffer rendering algorithm for the
surface-defined objects in the scene, while volume-modeled objects are volume ren-
dered using a per-pixel volume ray-tracing technique. The algorithm first creates the
a-buffer for a scanline containing a list for each pixel of all the fragments that par-
tially or fully cover the pixel. Then, if a volume is active for a pixel, the extent of vol-
ume rendering necessary is determined. The volume rendering is performed next,
creating a-buffer fragments for the separate sections of the volumes. (It is necessary
to break the volume objects into separate sections that lie in front of, in between,
and behind the surface-based fragments in the scene to generate correct images.) The
volume ray tracing that is used is a very simple extension to a traditional ray tracer:
instead of stopping the tracing of a ray when an object is hit, the tracing actually
steps through the object/volume at a defined step size and accumulates the opacity
and color of each small volumetric segment of the object/volume. Volume rendering
ceases once full coverage of the pixel by volume or surfaced-defined elements is

The Rendering System 205

Team LRN

achieved. Finally, these volume a-buffer fragments are sorted into the a-buffer frag-
ment list based on their average Z-depth values, and the a-buffer fragment list is ren-
dered to produce the final color of the pixel.

Volume-Rendering Algorithm

The volume-rendering technique used for gases in this system is similar to the one
discussed in Perlin and Hoffert (1989). The ray from the eye through the pixel is
traced through the defining geometry of the volume. For each increment through the
volume sections, the volume density function is evaluated. The color, density, opac-
ity, shadowing, and illumination of each sample is then calculated. The illumination
and densities are accumulated based on a low-albedo illumination model for gases
and atmospheric attenuation.

The basic gas volume-rendering algorithm is the following:

for each section of gas
for each increment along the ray

get color, density, & opacity of this element
if self_shadowing

retrieve the shadowing of this element from the
solid shadow table

color = calculate the illumination of the
gas using opacity, density, and
the appropriate model

final_clr = final_clr + color;
sum_density = sum_density + density;
if(transparency < 0.01)

stop tracing
increment sample_pt

create the a_buffer fragment

In sampling along the ray, a Monte Carlo method is used to choose the sample
point to reduce aliasing artifacts. The opacity is the density obtained from evaluating
the volume density function multiplied by the step size. This multiplication is neces-
sary because in the gaseous model we are approximating an integral to calculate the
opacity along the ray (Kajiya and Von Herzen 1984). The approximation used is

where τ is the optical depth of the material, ρ() is the density of the material, tnear is
the starting point for the volume tracing, and tfar is the ending point. The final incre-
ment along the ray may be smaller, so its opacity is scaled proportionally (Kajiya and
Kay 1989).

206 CHAPTER 7 Procedural Modeling of Gases

((), (), ())opacity 1
tfar
tnear

x t y t z t te−τ× ρ ×∆∑= −

Team LRN

Illumination of Gaseous Phenomena

The system uses a low-albedo gaseous illumination model based on Kajiya and Von
Herzen (1984). The phase functions that are used are sums of Henyey-Greenstein
functions as described in Blinn (1982a). The illumination model is the following:

where I is

phase(θ) is the phase function, the function characterizing the total brightness of a
particle as a function of the angle between the light and the eye (Blinn 1982a).
Ii(x(t),y(t),z(t)) is the amount of light from light source I reflected from this element.

Self-shadowing of the gas is incorporated into I by attenuating the brightness of
each light. An approximation for a high-albedo illumination model can also be in-
corporated by adding an ambient term based on the albedo of the material into Ii.
This ambient term accounts for the percentage of light reflected from the element
due to second- and higher-order scattering effects.

Volumetric Shadowing

Volumetric shadowing is important in obtaining accurate images. As mentioned
above, self-shadowing can be incorporated into the illumination model by attenuat-
ing the brightness of each light. The simplest way to self-shadow the gas is to trace a
ray from each of the volume elements to each of the lights, determining the opacity
of the material along the ray using the preceding equation for opacity. This method
is similar to shadowing calculations performed in ray tracing and can be very slow.
My experiments have shown that ray-traced self-shadowing can account for as
much as 75% to 95% of the total computation time.

To speed up shadowing calculations, a precalculated table can be used. Kajiya
discusses this approach with the restriction that the light source be at infinity (Kajiya
and Von Herzen 1984; Kajiya and Kay 1989). I have extended this approach to re-
move this restriction. Using my technique, the light source may even be inside the
volume. This shadow-table-based technique can improve performance by a factor of
10–15 over the ray-traced shadowing technique. A complete description of this
shadowing technique can be found in Ebert (1991).

The Rendering System 207

(() (), ()) ((), (), ())
far

t
tnear

near

t
x u y u z u u

t

B e I x t y t z t t−τ× ρ ×∆∑= × × ρ × ∆∑

((), (), ()) ()i
i

I x t y t z t phase×∑ θ

Team LRN

The shadow table is computed once per frame. To use the shadow table when
volume tracing, the location of the sample point within the shadow table is deter-
mined. This point will lie within a parallelepiped formed by eight table entries. These
eight entries are trilinearly interpolated to obtain the sum of the densities between
this sample point and the light. To determine the amount of light attenuation, the
following formula is used.

As mentioned above, this shadow table algorithm is much more efficient than
the ray-tracing shadowing algorithm. Another benefit of this approach is the flexibil-
ity of detail on demand. If very accurate images are needed, the size of the shadow
table can be increased. If the volume is very small in the image and very accurate
shadows are not needed, a small resolution shadow table (e.g., 83) can be chosen.
For most images, I use a shadow table size of 323 or 643.

Recent work in shadowing for volumetric objects provides more efficient
shadow rendering. The deep shadow map approach is an extension of traditional
two-dimensional texture mapping that allows shadows from semitransparent volu-
metric objects (Lokovic and Veach 2000) by storing a visibility function in each en-
try in the deep shadow map. This visibility function stores, for each depth, the
fraction of light that reaches this depth.1 Kim and Neumann (2001) have developed
a hardware-accelerated opacity shadow mapping technique that is similar to 3D
hardware texture-based volume rendering, using a large number (e.g., 100–500) of
opacity maps to accurately calculate volumetric shadows. Kniss, Kindlmann, and
Hansen (2002) have recently developed a 3D hardware texture map slicing tech-
nique that allows shadows from volumetric objects, including gases that are ren-
dered using three-dimensional texture maps.

ALTERNATIVE RENDERING AND MODELING APPROACHES FOR
GASES
There are three types of alternative rendering approaches commonly used for gases:

• Particle systems

• Billboards and imposters

• Three-dimensional hardware texture mapping

208 CHAPTER 7 Procedural Modeling of Gases

1. In actuality, a piecewise linear approximation of the function is stored.

sum_densities step_sizelight _ atten 1 e−τ× ×= −

Team LRN

Particle systems are most commonly used for thin gases, such as smoke. There are
two problems in using particle systems for gases. The first is the complexity of com-
puting particle self-shadowing, and the second is the computational complexity of
simulating large or dense areas of gas (millions of particles may be needed for
the simulation). Billboards and imposters have been effectively used for interactive
cloud rendering, with some limitations imposed on the animation of the clouds and/
or light sources for efficiency in interactive rendering (Dobashi et al. 2000; Harris
and Lastra 2001). Three-dimensional hardware texture mapping can be used with
slice-based volume rendering to simulate clouds and other dense gases (Kniss,
Kindlmann, and Hansen 2002). A combination of a coarse volume representation
and procedural detail, which can be rendered in the graphics processor, is used to
produce convincing volumetric effects and is described in more detail in Chapter 10.

A PROCEDURAL FRAMEWORK: SOLID SPACES
This section describes a general and flexible framework for procedural techniques,
called solid spaces. The development of this framework, its mathematical definition,
and its role in procedural texturing and modeling are described below.

Development of Solid Spaces

My approach to modeling and animating gases started with work in solid texturing.
Solid texturing can be viewed as creating a three-dimensional color space that sur-
rounds the object. When the solid texture is applied to the object, it is as if the defin-
ing space is being carved away. A good example of this is using solid texturing to
create objects made from wood and marble. The solid texture space defines a three-
dimensional volume of wood or marble, in which the object lies.

Most of my solid texturing procedures are based on the noise and turbulence
functions. This work extended to modeling gases when I was asked to produce an
image of a butterfly emerging from fog or mist. Since gases are controlled by turbu-
lent flow, it seemed natural to somehow incorporate the use of noise and turbulence
functions into this modeling. My rendering system already supported solid texturing
of multiple object characteristics, so the approach that I developed was to use solid
textured transparency to produce layers of fog or clouds. The solid textured trans-
parency function was, of course, based on turbulence. This approach is very similar
to Gardner’s approach (Gardner 1985) and has the same disadvantage of not being a
true three-dimensional model, even though the solid texture procedure is defined
throughout three-space. In both cases, these three-dimensional procedures are evalu-
ated only at the surfaces of objects. To remedy this shortcoming, my next extension

A Procedural Framework: Solid Spaces 209

Team LRN

was to use turbulence-based procedures to define the density of three-dimensional
volumes, instead of controlling the transparency of hollow surfaces.

As you can see, the idea of using three-dimensional spaces to represent object at-
tributes such as color, transparency, and even geometry is a common theme in this
progression. My system for representing object attributes using this idea is termed
solid spaces. The solid space framework encompasses traditional solid texturing,
hypertextures, and volume density functions within a unified framework.

Description of Solid Spaces

Solid spaces are three-dimensional spaces associated with an object that allow for
control of an attribute of the object. For instance, in solid color texturing, described
in Chapters 2 and 6, the texture space is a solid space associated with the object that
defines the color of each point in the volume that the object occupies. This space can
be considered to be associated with, or represent, the space of the material from
which the object is created.

Solid spaces have many uses in describing object attributes. As mentioned ear-
lier, solid spaces can be used to represent the color attributes of an object. This is
very natural for objects whose color is determined from procedures defining a mar-
ble color space, as in Figure 8.2. Many authors use solid color spaces for creating
realistic images of natural objects (Perlin 1985; Peachey 1985; Musgrave and
Mandelbrot 1989). Often in solid texturing (using solid color spaces) there are addi-
tional solid spaces, which are combined to define the color space. For example, in
most of my work in solid texturing, a noise and turbulence space is used in defining
the color space. Other solid space examples include geometry (hypertextures and
volume density functions), roughness (solid bump mapping), reflectivity, transpar-
ency, illumination characteristics, and shadowing of objects. Solid spaces can even
be used to control the animation of objects, as will be described in the next chapter.

Mathematical Description of Solid Spaces

Solid spaces can be described simply in mathematical terms. They can be considered
to be a function from three-space to n-space, where n can be any nonzero positive in-
teger. More formally, solid spaces can be defined as the following function:

S(x,y,z) = F, F ∈ Rn, n ∈ 1, 2, 3, . . .

Of course, the definition of the solid space can change over time; thus, time
could be considered to be a fourth dimension to the solid space function. For most
uses of solid spaces, S is a continuous function throughout three-space. The

210 CHAPTER 7 Procedural Modeling of Gases

Team LRN

exception is the use of solid spaces for representing object geometries. In this case, S
normally has a discontinuity at the boundary of the object. For example, in the case
of implicit surfaces, S is normally continuous throughout the surface of the object,
but thresholding is used to change the density value abruptly to 0 for points whose
density is not within a narrow range of values that defines the surface of the object.
The choice of F determines the frequencies in the resulting solid spaces and, there-
fore, the amount of aliasing artifacts that may appear in a final image.

GEOMETRY OF THE GASES
Now that some background material has been discussed, this section will describe
detailed procedures for modeling gases. As mentioned in the introduction, the geom-
etry of the gases is modeled using turbulent-flow-based volume density functions.
The volume density functions take the location of the point in world space, find its
corresponding location in the turbulence space (a three-dimensional space), and ap-
ply the turbulence function. The value returned by the turbulence function is used as
the basis for the gas density and is then “shaped” to simulate the type of gas desired
by using simple mathematical functions. In the discussion that follows, I will first de-
scribe my noise and turbulence functions and then describe the use of basic mathe-
matical functions for shaping the gas. Finally, the development of several example
procedures for modeling the geometry of the gases will be explored.

My Noise and Turbulence Functions

In earlier chapters of this book, detailed descriptions of noise and turbulence were
discussed, including noise and turbulence functions with much better spectral char-
acteristics. I am providing my implementations to enable the reader to reproduce the
images of gases described in this chapter. If other noise implementations are used,
then the gas shaping that is needed will be slightly different. (I have experimented
with this.) My noise implementation uses trilinear interpolation of random num-
bers stored at the lattice points of a regular grid. I use a grid size of 64 × 64 × 64.
The 3D array is actually 65 × 65 × 65 with the last column equaling the first col-
umn to make accessing entries easier (noise[64][64][64] = noise[0][0][0]). To
implement this using 3D texture mapping hardware, you can simply create the 64 ×
64 × 64 table and turn the texture repetition mode to repeat. This random number
lattice-based noise implementation is actually very well suited for 3D texture map-
ping hardware implementation, and the simple DirectX or OpenGL calls to read
values from this 3D texture map will perform the noise lattice interpolation
automatically.

Geometry of the Gases 211

Team LRN

The noise lattice is computed and written to a file using the following code:

// //
// WRITE_NOISE.C
// This program generates a noise function file for solid texturing.
// by David S. Ebert
// //
#include <math.h>
#include <stdio.h>
#define SIZE 64
double drand48();
int main(int argc, char **argv)
{
long i,j, k, ii,jj,kk;
float noise[SIZE+1][SIZE+1][SIZE+1];
FILE *noise_file;
noise_file = fopen(“noise.data”,”w”);

for (i=0; i<SIZE; i++) for
(j=0; j<SIZE; j++) for
(k=0; k<SIZE; k++)

{
noise[i][j][k] = (float)drand48();

}
// This is a hack, but it works. Remember this is
// only done once.
for (i=0; i<SIZE+1; i++)
for (j=0; j<SIZE+1; j++)
for (k=0; k<SIZE+1; k++)
{
ii = (i == SIZE)? 0: i;
jj = (j == SIZE)? 0: j;
kk = (k == SIZE)? 0: k;
noise[i][j][k] = noise[ii][jj][kk];

}
fwrite(noise,sizeof(float),(SIZE+1)*(SIZE+1)*(SIZE+1),

noise_file);
fclose(noise_file);
}

To compute the noise for a point in three-space, the calc_noise() function
given below is called. This function replicates the noise lattice to fill the positive
octant of three-space. To use this procedure, the points must be in this octant of
space. I allow the user to input scale and translation factors for each object to posi-
tion the object in the noise space.

The noise procedure given below, calc_noise, uses trilinear interpolation of the
lattice point values to calculate the noise for the point. The turbulence() function
given below is the standard Perlin turbulence function (Perlin 1985).

212 CHAPTER 7 Procedural Modeling of Gases

Team LRN

typedef struct xyz_td
{
float x, y, z;

} xyz_td;
float calc_noise();
float turbulence();

// //
// Calc_noise
// This is basically how the trilinear interpolation works. I
// lerp down the left front edge of the cube, then the right
// front edge of the cube(p_l, p_r). Then I lerp down the left
// back and right back edges of the cube (p_l2, p_r2). Then I
// lerp across the front face between p_l and p_r (p_face1). Then
// I lerp across the back face between p_l2 and p_r2 (p_face2).
// Now I lerp along the line between p_face1 and p_face2.
// //
float calc_noise(xyz_td pnt)
{
float t1;
float p_l,p_l2,// value lerped down left side of face 1 & face 2

p_r,p_r2, // value lerped down left side of face 1 & face 2
p_face1, // value lerped across face 1 (x-y plane ceil of z)
p_face2, // value lerped across face 2 (x-y plane floor of z)
p_final; //value lerped through cube (in z)

extern float noise[SIZE+-1][SIZE+-1][SIZE+-1];
register int x, y, z, px, py, pz;

px = (int)pnt.x;
py = (int)pnt.y;
pz = (int)pnt.z;
x = px &(SIZE); // make sure the values are in the table
y = py &(SIZE); // Effectively replicates table throughout space
z = pz &(SIZE);

t1 = pnt.y - py;
p_l = noise[x][y][z+1]+t1*(noise[x][y+1][z+1]-

noise[x][y][z+1]);
p_r = noise [x+1][y][z+1]+t1*(noise[x+1][y+1][z+1]-

noise[x+1][y][z+1]);
p_l2 = noise[x][y][z]+ t1*(noise[x][y+1][z] -

noise[x][y][z]);
p_r2 = noise[x+l][y][z]+ t1*(noise[x+1][y+1][z]-noise[x+1][y][z]);
t1 = pnt.x - px;
p_face1 = p_l + t1 * (p_r - p_l);
p_face2 = p_12 + t1 * (p_r2 - p_l2);
t1 = pnt.z - pz;
p_final = p_face2 + t1*(p_face1 - p_face2);
return(p_final);

}

Geometry of the Gases 213

Team LRN

//
// ///
// TURBULENCE
// ///
float turbulence(xyz_td pnt, float pixel_size)
{
float t, scale;
t=0;
for(scale=1.0; scale >pixel_size; scale/=2.0)
{
pnt.x = pnt.x/scale; pnt.y = pnt.y/scale;
pnt.z = pnt.z/scale;
t+= calc_noise(pnt)* scale;

}
return(t);

}

Neither of these routines is optimized. Using bit-shifting operations to index
into the integer lattice can optimize the noise lattice access. Precalculating a table of
scale multipliers and using multiplication by reciprocals instead of division can opti-
mize the turbulence function.

Basic Gas Shaping

Several basic mathematical functions are used to shape the geometry of the gas. The
first of these is the power function. Let’s look at a simple procedure for modeling a
gas and see the effects of the power function, and other functions, on the resulting
shape of the gas.

void basic_gas(xyz_td pnt, float *density,float *parms)
{
float turb;
int i;
static float pow_table[POW_TABLE_SIZE];
static int calcd=1;

if(calcd) { calcd=0;
for(i=POW_TABLE_SIZE-1; i>=0; i--)

pow_table[i]=(float)pow(((double)(i))/(POW_TABLE_SIZE-1)*
parms[1]*2.0,(double)parms[2]);

}
turb =turbulence(pnt, pixel_size);
density =pow_table[(int)(turb(.5*(POW_TABLE_SIZE-1)))];

}

This procedure takes as input the location of the point being rendered in the
solid space, pnt, and a parameter array of floating-point numbers, parms. The

214 CHAPTER 7 Procedural Modeling of Gases

Team LRN

returned value is the density of the gas. parms[1] is the maximum density value for
the gas with a range of 0.0–1.0, and parms[2] is the exponent for the power
function.

Figure 7.1 shows the effects of changing the power exponent, with parms[1] =
0.57. Clearly, the greater the exponent, the greater the contrast and definition to the
gas plume shape. With the exponent at 1, there is a continuous variation in the den-
sity of the gas; with the exponent at 2, it appears to be separate individual plumes of
gas. Therefore, depending on the type of gas being modeled, the appropriate expo-
nential value can be chosen. This procedure also shows how precalculated tables can
increase the efficiency of the procedures. The pow_table[] array is calculated once
per image and assumes that the maximum density value, parms[1], is constant for
each given image. A table size of 10,000 should be sufficient for producing accurate
images. This table is used to limit the number of pow function calls. If the following
straightforward implementation were used, a power function call would be needed
per volume density function evaluation:

*density = (float) pow((double)turb*parms[1],(double)parms[2]);

Geometry of the Gases 215

FIGURE 7.1 The effects of the power and sine function on the gas shape: (top left) a power
exponent of 1; (top right) a power exponent of 2; (bottom left) a power exponent of 3; (bottom
right) the sine function applied to the gas. Copyright © 1994 David S. Ebert.

Team LRN

Assuming an image size of 640 × 480, with 100 volume samples per pixel, the use of
the precomputed table saves 30,710,000 pow function calls.

Another useful mathematical function is the sine function. Perlin (1985) uses the
sine function in solid texturing to create marble, which will be described in a later
section. This function can also be used in shaping gases, which can be accomplished
by making the following change to the basic_gas function:

turb =(1.0 +sin(turbulence(pnt, pixel_size)*M_PI*5))*.5;

This change creates “veins” in the shape of the gas, similar to the marble veins in
solid texturing. As can be seen from these examples, it is very easy to shape the gas
using simple mathematical functions. The remainder of this chapter will extend this
basic_gas procedure to produce more complex shapes in the gas.

Patchy Fog

The first example of still gas is patchy fog. The earlier basic_gas function can be
used to produce still images of patchy fog. For nice fog, parms[1]=0.5, parms[2]=
3.0. The parms[2] value determines the “patchiness” of the fog, with lower values
giving more continuous fog. parms[1] controls the denseness of the fog that is in the
resulting image.

Steam Rising from a Teacup

The goal of our second example is to create a realistic image of steam rising from a
teacup. The first step is to place a “slab” (Kajiya 1986) of volume gas over the tea-
cup. (Any ray-traceable solid can be used for defining the extent of the volume.) As
steam is not a very thick gas, a maximum density value of 0.57 will be used with an
exponent of 6.0 for the power function. The resulting image in Figure 7.2 (left) was
produced from the preceding basic_gas procedure.

The image created, however, does not look like steam rising from a teacup. First,
the steam is not confined to only above and over the cup. Second, the steam’s den-
sity does not decrease as it rises. These problems can be easily corrected. To solve the
first problem, ramp off the density spherically from the center of the top of the tea.
This will confine the steam within the radius of the cup and make the steam rise
higher over the center of the cup. The following steam_slabl procedure incorpo-
rates these changes into the basic_gas procedure:

void steam_slab1(xyz_td pnt, xyz_td pnt_world, float
*density, float *parms, vol_td vol)

216 CHAPTER 7 Procedural Modeling of Gases

Team LRN

{
float turb, dist_sq,density_max;
int

i, indx;
xyz_td diff;
static float pow_table[POW_TABLE_SIZE], ramp[RAMP_SIZE],

offset[OFFSET_SIZE];
static int calcd=1;
if(calcd) { calcd=0;

for(i=POW_TABLE_SIZE-1; i>=0; i--)
pow_table[i] =

(float)pow(((double)(i))/(POW_TABLE_SIZE-1)*
parms[1]* 2.0,(double)parms[2]);

make_tables(ramp);
}

turb = fast_turbulence(pnt, pixel_size);
*density = pow_table[(int)(turb*0.5*(POW_TABLE_SIZE-1))];

// determine distance from center of the slab ^2.
XYZ_SUB(diff,vol.shape.center, pnt_world);
dist_sq = DOT_XYZ(diff,diff);

Geometry of the Gases 217

FIGURE 7.2 Preliminary steam rising from a teacup. Left: No shaping of the steam. Right:
Only spherical attenuation. Copyright © 1992 David S. Ebert.

Team LRN

density_max = dist_sq*vol.shape.inv_rad_sq.y;
indx = (int) ((pnt.x+pnt.y+pnt.z)*100) & (OFFSET_SIZE -1);
density_max += parms[3]*offset[indx];

if(density_max >= .25) // ramp off if > 25% from center
{ // get table index 0:RAMP_SIZE-1
i = (density_max -.25)*4/3*RAMP_SIZE;
i=MIN(i,RAMP_SIZE-1);
density_max = ramp[i];
*density *=density_max;

}
}

void make_tables(float *ramp, float *offset)
{
int i;
float dist;
srand48(42);
for(i=0; i < OFFSET_SIZE; i++)
{
offset[i] = (float)drand48();

}
for(i = 0; i < RAMP_SIZE; i++)
{ dist =i/(RAMP_SIZE -1.0);
ramp[i]=(cos(dist*M_PI) +1.0)/2.0;
}

}

These modifications produce the more realistic image seen in Figure 7.2 (right).
Two additional parameters are used in this new procedure: pnt_world and vol.
pnt_world is the location of the point in world space; vol is a structure containing
information on the volume being rendered. Table 7.1 clarifies the use of the various
variables.

The procedure now ramps off the density spherically using a cosine falloff func-
tion. If the distance from the center squared is greater than 25%, the cosine falloff is
applied. The resulting image can be seen on the right in Figure 7.2. This image is
better than the one shown on the left in Figure 7.2, but still lacking.

To solve the second problem, the gas density decreasing as it rises, the density of
the gas needs to be ramped off as it rises to get a more natural look. The following
addition to the end of the steam_slab1 procedure will accomplish this:

dist = pnt_world.y - vol.shape.center.y;
if(dist > 0.0)
{ dist = (dist +offset[indx]*.1)*vol.shape.inv_rad.y;
if(dist > .05)

218 CHAPTER 7 Procedural Modeling of Gases

Team LRN

{ offset2 = (dist -.05)*1.111111;
offset2 = 1 - (exp(offset2)-1.0)/1.718282;
offset2 *= parms[1];
*density *= offset;

}
}

This procedure uses the ex function to decrease the density as the gas rises. If the
vertical distance above the center is greater than 5% of the total distance, the density
is exponentially ramped off to 0. The result of this addition to the above procedure
can be seen in Figure 7.3. As can be seen in this image, the resulting steam is very
convincing. In the next chapter, animation effects using this basic steam model will
be presented.

A Single Column of Smoke

The final example procedure creates a single column of rising smoke. The basis of
the smoke shape is a vertical cylinder. Two observations can make the resulting

Geometry of the Gases 219

TABLE 7.1 VARIABLES FOR STEAM PROCEDURE

variable description

pnt location of the point in the solid texture space

pnt_world location of the point in world space

density the value returned from the function

parms[1] maximum density of the gas

parms[2] exponent for the power function for gas shaping

parms[3] amount of randomness to use in falloff

parms[4] distance at which to start ramping off the gas density

vol.shape.center center of the volume

vol.shape.inv_rad_sq 1/radius squared of the slab

dist_sq point’s distance squared from the center of the volume

density_max density scaling factor based on distance squared

from the center

indx an index into a random number table

offset a precomputed table of random numbers used to

add noise to the ramp off of the density

ramp a table used for cosine falloff of the density values

A-

Team LRN

image look realistic. First, smoke disperses as it rises. Second, the smoke column is
initially fairly smooth, but as the smoke rises, turbulent behavior becomes the domi-
nant characteristic of the flow. In order to reproduce these observations, turbulence
is added to the cylinder’s center to make the column of smoke look more natural. To
simulate air currents and general turbulent effects, more turbulence is added as the
height from the bottom of the smoke column increases. To simulate dispersion, the
density of the gas is ramped off to zero as the gas rises. These ideas will produce a
very straight column of smoke. The following additional observation will make the
image more realistic: smoke tends to bend and swirl as it rises. Displacing each point
by a vertical spiral (helix) creates the swirling of the smoke. The x- and z-coordinates
of the point are displaced by the cosine and sine of the angle of rotation. The y-
coordinate of the point is displaced by the turbulence of the point. The following
procedure produces a single column of smoke based on these observations.

// //
// Smoke_stream
// //
// parms[1] = Maximum density value - density scaling factor
// parms[2] = height for 0 density (end of ramping it off)

220 CHAPTER 7 Procedural Modeling of Gases

FIGURE 7.3 Final image of steam rising from a teacup, with both spherical and height density
attenuation. Copyright © 1997 David S. Ebert.

Team LRN

// parms[3] = height to start adding turbulence
// parms[4] = height(length) for maximum turbulence;
// parms[5] = height to start ramping density off
// parms[6] = center.y
// parms[7] = speed for rising
// parms[8] = radius
// parms[9] = max radius of swirling
// //

void smoke_stream(xyz_td pnt, float *density, float *parms,
xyz_td pnt_world, vol_td *vol)

{
float dist_sq;
extern float offset[OFFSET_SIZE];
xyz_td diff;
xyz_td hel_path, new_path, direction2, center;
double ease(), turb_amount, theta_swirl, cos_theta,

sin_theta;
static int calcd=1;
static float cos_theta2, sin_theta2;

static xyz_td bottom;
static double rad_sq, max_turb_length, radius, big_radius,

st_d_ramp, d_ramp_length, end_d_ramp,
inv_max_turb_length;

double height, fast_turb, t_ease, path_turb, rad_sq2;
if(calcd)
{ bottom.x = 0; bottom.z = 0;
bottom.y = parms[6];
radius = parms[8];
big_radius = parms[9];
rad_sq = radius*radius;
max_turb_length = parms[4];
inv_max_turb_length = 1/max_turb_length;
st_d_ramp = parms[5];
end_d_ramp = parms[2];
d_ramp_length = end_d_ramp - st_d_ramp;
theta_swirl = 45.0*M_PI/180.0; // swirling effect
cos_theta = cos(theta_swirl);
sin_theta = sin(theta_swirl);
cos_theta2 = .01*cos_theta;
sin_theta2 = .0075*sin_theta;
calcd=0;

}

height = pnt_world.y - bottom.y + fast_noise(pnt)*radius;
// We don’t want smoke below the bottom of the column
if(height < 0)
{ *density =0; return;}

height -= parms[3];

Geometry of the Gases 221

Team LRN

if (height < 0.0)
height =0.0;

// calculate the eased turbulence, taking into account the value
// may be greater than 1, which ease won’t handle.
t_ease = height* inv_max_turb_length;
if(t_ease > 1.0)
{ t_ease = ((int)(t_ease)) +ease((t_ease - ((int)t_ease)),
.001, .999);
if(t_ease > 2.5)

t_ease = 2.5;
}

else
t_ease = ease(t_ease, .5, .999);

// Calculate the amount of turbulence to add in
fast_turb= fast_turbulence(pnt);
turb_amount = (fast_turb -0.875)* (.2 + .8*t_ease);
path_turb = fast_turb*(.2 + .8*t_ease);
// add turbulence to the height and see if it is above the top
height +=0.1*turb_amount;
if(height > end_d_ramp)

{ *density=0; return; }
//increase the radius of the column as the smoke rises
if(height <=0)

rad_sq2 = rad_sq*.25;
else if (height <=end_d_ramp)

{ rad_sq2 = (.5 + .5*(ease(height/(1.75*end_d_ramp), .5,
.5)))*radius;

rad_sq2 *=rad_sq2;
}

// **
// move along a helical path
// **

// calculate the path based on the unperturbed flow: helical path

hel_path.x = cos_theta2 *(1+ path_turb)*
(1+cos(pnt_world.y*M_PI*2) *.11)
(1+ t_ease.1) + big_radius*path_turb;

hel_path.z = sin_theta2 *(1+path_turb)*
(1+sin(pnt_world.y*M_PI*2)*.085)*
(1+ t_ease*.1) + .03*path_turb;

hel_path.y = - path_turb;
XYZ_ADD(direction2, pnt_world, hel_path);

//adjusting the center point for ramping off the density based on
//the turbulence of the moved point
turb_amount *= big_radius;
center.x = bottom.x - turb_amount;
center.z = bottom.z + .75*turb_amount;
//calculate the radial distance from the center and ramp off the

222 CHAPTER 7 Procedural Modeling of Gases

Team LRN

// density based on this distance squared.
diff.x = center.x - direction2.x;
diff.z = center.z - direction2.z;
dist_sq = diff.x*diff.x + diff.z*diff.z;
if(dist_sq > rad_sq2)
{*density=0; return;}

density = (1-dist_sq/rad_sq2 + fast_turb.05) *
parms[1];

if(height > st_d_ramp)
*density *= (1- ease((height - st_d_ramp)/(d_ramp_length), .5, .5));

}

The result of this procedure can be seen in Figure 7.4. In this procedure, turbu-
lence is added to many variables before doing tests and computing paths. The addi-
tion of the turbulence produces a more natural appearance to the column of smoke.
This procedure uses the same offset table as in the steam_slab1 procedure. An
ease procedure is also used to perform ease-in and ease-out of the turbulence addi-
tion and density ramping. The helical path that is used is actually the multiplication
of two helical paths with the addition of turbulence. This calculation provides better

Geometry of the Gases 223

FIGURE 7.4 A rising column of smoke. Copyright © 1994 David S. Ebert.

Team LRN

results than a single helical path. The parameter values and their description can be
found in Table 7.2.

CONCLUSION
This chapter has provided an introduction to the solid space framework for proce-
dural modeling and texturing and shown several example procedures for producing
still images of gases. Animating these procedures is the topic of the next chapter,
while Chapter 10 discusses methods for accelerating these techniques using graphics
hardware.

224 CHAPTER 7 Procedural Modeling of Gases

TABLE 7.2 PARAMETERS FOR SMOKE COLUMN PROCEDURE

parm value description

1 0.93 density scaling factor

2 1.6 height for 0 density (end of ramping it off)

3 0.175 height to start adding turbulence

4 0.685 height for maximum turbulence

5 0.0 height to start ramping density off

6 −0.88 center.y
7 2.0 speed for rising

8 0.04 radius

9 0.08 maximum radius of swirling

Team LRN

Team LRN

8

Team LRN

ANIMATING SOLID SPACES
DAV I D S . E B E R T

The previous chapter discussed modeling the geometry of gases. This chapter
discusses animating gases and other procedurally defined solid spaces. There are
several ways that solid spaces can be animated. This chapter will consider two
approaches:

1. Changing the solid space over time

2. Moving the point being rendered through the solid space

The first approach has time as a parameter that changes the definition of the
space over time, a very natural and obvious way to animate procedural techniques.
With this approach, time has to be considered in the design of the procedure, and the
procedure evolves with time. Procedures that change the space to simulate growth,
evolution, or aging are common examples of this approach. A related technique cre-
ates the procedure in a four-dimensional space, with time as the fourth dimension,
such as a 4D noise function.

The second approach does not actually change the solid space, but moves the
point in the volume or object over time through the space, in effect procedurally
warping or perturbing the space. Moving the fixed three-dimensional screen space
point along a path over time through the solid space before evaluating the tur-
bulence function animates the gas (solid texture, hypertexture). Each three-
dimensional screen space point is inversely mapped back to world space. From
world space, it is mapped into the gas and turbulence space through the use of sim-
ple affine transformations. Finally, it is moved through the turbulence space over
time to create the movement. Therefore, the path direction will have the reverse vi-
sual effect. For example, a downward path applied to the screen space point will
show the texture or volume object rising. Figure 8.1 illustrates this process.

Both of these techniques can be applied to solid texturing, gases, and hyper-
textures. After a brief discussion of animation paths, the application of these two

227

Team LRN

techniques to solid texturing is discussed, followed by an exploration of the way
they are used for gas animation and hypertextures, including liquids. Finally, the
chapter concludes with a discussion of an additional procedural animation tech-
nique, particle systems.

ANIMATION PATHS
This chapter will describe various ways of creating animation paths for movement
through the solid space. For many examples, I will use a helical (spiral) path. There
are two reasons for using helical paths. First, most gases do not move along a linear
path. Turbulence, convection, wind, and so on, change the path movement. From
my observations, smoke, steam, and fog tend to swirl while moving in a given direc-
tion. A helical path can capture this general sense of motion. Second, helical paths
are very simple to calculate. The calculation involves rotation around the axis of
the helix (direction of motion) and movement along the axis. To create the rotation,
the sine and cosine functions are used. The angle for these functions is based on the
frame number to produce the rotation over time. The rate of rotation can be con-
trolled by taking the frame number modulo a constant. Linear motion, again based
on the frame number, will be used to create the movement along the axis.

The code segment below creates a helical path that rotates about the axis once
every 100 frames. The speed of movement along the axis is controlled by the vari-
able linear_speed.

theta = (frame_number%100)*(2*M_PI/100);
path.x = cos(theta);
path.y = sin(theta);
path.z = theta*linear_speed;

228 CHAPTER 8 Animating Solid Spaces

Screen spaceSolid space World space

Figure 8.1 Moving a screen space point through the solid space.

Team LRN

One final point will clarify the procedures given in this chapter. To get smooth
transitions between values and smooth acceleration and deceleration, ease-in and
ease-out procedures are used. These are the standard routines used by animators to
stop a moving object from jumping instantaneously from a speed of 0 to a constant
velocity. One simple implementation of these functions assumes a sine curve for the
acceleration and integrates this curve over one-half of its period.

ANIMATING SOLID TEXTURES
This section will show how the previous two animation approaches can be used for
solid texturing. Applying these techniques to color solid texturing will be discussed
first, followed by solid textured transparency.

A marble procedure will be used as an example of color solid texture animation.
The following simple marble procedure is based on Perlin’s marble function (Perlin
1985). An interactive hardware-accelerated version of marble is described in Chap-
ter 10.

rgb_td marble(xyz_td pnt)
{
float y;
y = pnt.y + 3.0*turbulence(pnt, .0125);
y = sin(y*M_PI);
return (marble_color(y));

}
rgb_td marble_color(float x)
{
rgb_td clr;
x = sqrt(x+1.0)*.7071;
clr.g = .30 + .8*x;
x=sqrt(x);
clr.r = .30 + .6*x;
clr.b = .60 + .4*x;
return (clr);

}

This procedure applies a sine function to the turbulence of the point. The resulting
value is then mapped to the color. The results achievable by this procedure can be
seen in Figure 8.2 (lower right).

Marble Forming

The application of the previous two animation approaches to this function has very
different effects. When the first approach is used, changing the solid space over time,

Animating Solid Textures 229

Team LRN

the formation of marble from banded rock can be achieved. Marble is formed from
the turbulent mixing of different bands of rock. To simulate this process, initially no
turbulence is added to the point; therefore, the sine function determines the color.
Basing the color on the sine function produces banded material. As the frame num-
ber increases, the amount of turbulence added to the point is increased, deforming
the bands into the marble vein pattern. The resulting procedure is the following:

rgb_td marble_forming(xyz_td pnt, int frame_num, int
start_frame, int end_frame)

{
float x, turb_percent, displacement;

if(frame_num < start_frame)
{ turb_percent=0;
displacement=0;

}
else if (frame_num >= end_frame)
{ turb_percent=1;
displacement=3;

}
else
{ turb_percent= ((float)(frame_num-start_frame))/

230 CHAPTER 8 Animating Solid Spaces

FIGURE 8.2 Marble forming. The images show the banded material heating, deforming,
then cooling and solidifying. Copyright © 1992 David S. Ebert.

Team LRN

(end_frame-start_frame);
displacement = 3*turb_percent;

}
x = pnt.x + turb_percent*3.0*turbulence(pnt, .0125) –

displacement;
x = sin(x*M_PI);
return (marble_color(x));
}

The displacement value in this procedure is used to stop the entire texture from
moving. Without the displacement value, the entire banded pattern moves horizon-
tally to the left of the image, instead of the veins forming in place.

This procedure produces the desired effect, but the realism of the results can be
increased by a few small changes. First of all, ease-in and ease-out of the rate of add-
ing turbulence will give more natural motion. Second, the color of the marble can be
changed to simulate heating before and during the deformation, and to simulate
cooling after the deformation. The marble color is blended with a “glowing” marble
color to simulate the heating and cooling. (Even though this may not be physically
accurate, it produces a nice effect.) This can be achieved by the following procedure:

rgb_td marble_forming2(xyz_td pnt, int frame_num, int start_frame,
int end_frame, int heat_length)

{
float x, turb_percent, displacement, glow_percent;
rgb_td m_color;
if(frame_num < (start_frame-heat_length/2) 11

2

frame_num > end_frame+heat_length/2)
glow_percent=0;

else if (frame_num < start_frame + heat_length/2)
glow_percent= 1.0 - ease(((start_frame+heat_length/2-

frame_num)/ heat_length),0.4, 0.6);
else if (frame_num > end_frame-heat_length/2)

glow_percent = ease(((frame_num-(end_frame-
heat_length/2))/heat_length),0.4, 0.6);

else
glow_percent=1.0;

if(frame_num < start_frame)
{ turb_percent=0; displacement=0;
}

else if (frame_num >= end_frame)
{ turb_percent=1; displacement=3;
}

else
{ turb_percent= ((float)(frame_num-start_frame))/

(end_frame-start_frame);
turb_percent=ease(turb_percent, 0.3, 0.7);

Animating Solid Textures 231

Team LRN

displacement = 3*turb_percent;
}

x = pnt.y + turb_percent*3.0*turbulence(pnt, .0125) –
displacement;

x = sin(x*M_PI);
m_color=marble_color(x);
glow_percent= .5* glow_percent;
m_color.r= glow_percent*(1.0)+ (1-glow_percent)*m_color.r;
m_color.g= glow_percent*(0.4)+ (1-glow_percent)*m_color.g;
m_color.b= glow_percent*(0.8)+ (1-glow_percent)*m_color.b;
return(m_color);

}

The resulting images can be seen in Figure 8.2. This figure shows four images of
the change in the marble from banded rock (upper-left image) to the final marbled
rock (lower-right image). Of course, the resulting sequence would be even more real-
istic if the material actually deformed, instead of the color simply changing. This ef-
fect will be described in the “Animating Hypertextures” section.

Marble Moving

A different effect can be achieved by the second animation approach, moving the
point through the solid space. Any path can be used for movement through the mar-
ble space. A simple, obvious choice would be a linear path. Another choice, which
produces very ethereal patterns in the material, is to use a turbulent path. The proce-
dure below uses yet another choice for the path. This procedure moves the point
along a horizontal helical path before evaluating the turbulence function, producing
the effect of the marble pattern moving through the object. The helical path provides
a more interesting result than the linear path, but does not change the general marble
patterns as does using a turbulent path through the turbulence space. This technique
can be used to determine the portion of marble from which to “cut” the object in or-
der to achieve the most pleasing vein patterns. (You are in essence moving the object
through a three-dimensional volume of marble.)

rgb_td moving_marble(xyz_td pnt, int frame_num)
{
float x, tmp, tmp2;
static float down, theta, sin_theta, cos_theta;
xyz_td hel_path, direction;
static int calcd=1;

if(calcd)
{ theta=(frame_num%SWIRL_FRAMES)*SWIRL_AMOUNT;//swirling
cos_theta = RAD1 * cos(theta) + 0.5;

232 CHAPTER 8 Animating Solid Spaces

Team LRN

sin_theta = RAD2 * sin(theta) - 2.0;
down = (float)frame_num*DOWN_AMOUNT+2.0;
calcd=0;

}
tmp = fast_noise(pnt); // add some randomness
tmp2 = tmp*1.75;

// calculate the helical path
hel_path.y = cos_theta + tmp;
hel_path.x = (-down) + tmp2;
hel_path.z = sin_theta - tmp2;
XYZ_ADD(direction, pnt, hel_path);
x = pnt.y + 3.0*turbulence(direction, .0125);
x = sin(x*M_PI);
return (marble_color(x));

}

In this procedure, SWIRL_FRAMES and SWIRL_AMOUNT determine the number of
frames for one complete rotation of the helical path. By choosing SWIRL_FRAMES =
126 and SWIRL_AMOUNT = 2π/126, the path swirls every 126 frames. DOWN_AMOUNT
controls the speed of the downward movement along the helical path. A reasonable
speed for downward movement for a unit-sized object is to use DOWN_AMOUNT =
0.0095. RAD1 and RAD2 are the y and z radii of the helical path.

Animating Solid Textured Transparency

This section describes the use of the second solid space animation technique, moving
the point through the solid space, for animating solid textured transparency.

This animation technique is the one that I originally used for animating gases
and is still the main technique that I use for gases. The results of this technique ap-
plied to solid textured transparency can be seen in Ebert, Boyer, and Roble (1989).
The fog procedure given next is similar in its animation approach to the earlier
moving_marble procedure. It produces fog moving through the surface of an object
and can be used as a surface-based approach to simulate fog or clouds. Again in this
procedure, a downward helical path is used for the movement through the space,
which produces an upward swirling to the gas movement.

void fog(xyz_td pnt, float *transp, int frame_num)
{
float tmp;
xyz_td direction,cyl;
double theta;
pnt.x += 2.0 +turbulence(pnt, .1);
tmp = noise_it(pnt);
pnt.y += 4+tmp; pnt.z += -2 - tmp;

Animating Solid Textures 233

Team LRN

theta =(frame_num%SWIRL_FRAMES)*SWIRL_AMOUNT;
cyl.x =RAD1 * cos(theta); cyl.z =RAD2 * sin(theta);
direction.x = pnt.x + cyl.x;
direction.y = pnt.y - frame_num*DOWN_AMOUNT;
direction.z = pnt.z + cyl.z;
*transp = turbulence(direction, .015);
*transp = (1.0 -(*transp)*(*transp)*.275);
*transp =(*transp)*(*transp)*(*transp);

}

An image showing this procedure applied to a cube can be seen in Figure 8.3.
The values used for this image can be found in Table 8.1.

Another example of the use of solid textured transparency animation can be
seen in Figure 8.4, which contains a still from an animation entitled Once a Pawn a
Foggy Knight . . . (Ebert, Boyer, and Roble 1989). In this scene, three planes are posi-
tioned to give a two-dimensional approximation of three-dimensional fog. One
plane is in front of the scene, one plane is approximately in the middle, and the final
plane is behind all the objects in the scene.

This technique is similar to Gardner’s technique for producing images of clouds
(Gardner 1985), except that it uses turbulence to control the transparency instead of
Fourier synthesis. As with any surface-based approach to modeling gases, including

234 CHAPTER 8 Animating Solid Spaces

Figure 8.3 Solid textured transparency-based fog. Copyright © 1994 David S. Ebert.

Team LRN

Gardner’s, this technique cannot produce three-dimensional volumes of fog or accu-
rate shadowing from the fog.

ANIMATION OF GASEOUS VOLUMES
As described in the previous section, animation technique 2, moving the point
through the solid space, is the technique that I use to animate gases. This technique

Animation of Gaseous Volumes 235

TABLE 8.1 VALUES FOR FOG PROCEDURE

parameter value

DOWN_AMOUNT 0.0095

SWIRL_FRAMES 126

SWIRL_AMOUNT 2π/126

RAD1 0.12

RAD2 0.08

FIGURE 8.4 A scene from Once a Pawn a Foggy Knight . . . showing solid textured transparency
used to simulate fog. Copyright © 1989 David S. Ebert.

Team LRN

will be used in all the examples in this section. Moving each fixed three-dimensional
screen space point along a path over time through the solid space before evaluating
the turbulence function creates the gas movement. First, each three-dimensional
screen space point is inversely mapped back to world space. Second, it is mapped
from world space into the gas and turbulence space through the use of simple affine
transformations. Finally, it is moved through the turbulence space over time to cre-
ate the movement of the gas. Therefore, the path direction will have the reverse vi-
sual effect. For example, a downward path applied to the screen space point will
cause the gas to rise.

This gas animation technique can be considered to be the inverse of particle sys-
tems because each point in three-dimensional screen space is moved through the gas
space to see which portion of the gas occupies the current location in screen space.
The main advantage of this approach over particle systems is that extremely large
geometric databases of particles are not required to get realistic images. The com-
plexity is always controlled by the number of screen space points in which the gas is
potentially visible.

Several interesting animation effects can be achieved through the use of helical
paths for movement through the solid space. These helical path effects will be de-
scribed first, followed by the use of three-dimensional tables for controlling the gas
movement. Finally, several additional primitives for creating gas animation will be
presented.

Helical Path Effects

Helical paths can be used to create several different animation effects for gases. In
this chapter, three examples of helical path effects will be presented: steam rising
from a teacup, rolling fog, and a rising column of smoke.

Steam Rising from a Teacup

In the previous chapter, a procedure for producing a still image of steam rising from
a teacup was described. This procedure can be modified to produce convincing ani-
mations of steam rising from the teacup by the addition of helical paths for motion.
Each point in the volume is moved downward along a helical path to produce the
steam rising and swirling in the opposite direction. The modification needed is given
below. This animation technique is the same technique that was used in the
moving_marble procedure.

236 CHAPTER 8 Animating Solid Spaces

Team LRN

void steam_moving(xyz_td pnt, xyz_td pnt_world, float *density,
float *parms, vol_td vol)

{
*** float noise_amt,turb, dist_sq, density_max, offset2, theta, dist;

static float pow_table[POW_TABLE_SIZE], ramp[RAMP_SIZE],
offset[OFFSET_SIZE];

extern int frame_num;
xyz_td direction, diff;
int i, indx;
static int calcd=1;

*** static float down, cos_theta, sin_theta;

if(calcd)
{ calcd=0;
// determine how to move point through space(helical path)

*** theta =(frame_num%SWIRL_FRAMES)*SWIRL;
*** down = (float)frame_num*DOWN*3.0 +4.0;
*** cos_theta = RAD1*cos(theta) +2.0;
*** sin_theta = RAD2*sin(theta) -2.0;

for(i=POW_TABLE_SIZE-1; i>=0; i--)
pow_table[i] =(float)pow(((double)(i))/(POW_TABLE_SIZE-1)*

parms[1]* 2.0,(double)parms[2]);
make_tables(ramp);
}

// move the point along the helical path
*** noise_amt = fast_noise(pnt);
*** direction.x = pnt.x + cos_theta + noise_amt;
*** direction.y = pnt.y - down + noise_amt;
*** direction.z = pnt.z +sin_theta + noise_amt;

turb =fast_turbulence(direction);
*density = pow_table[(int)(turb*0.5*(POW_TABLE_SIZE-1))];
// determine distance from center of the slab ^2.
XYZ_SUB(diff,vol.shape.center, pnt_world);
dist_sq = DOT_XYZ(diff,diff) ;
density_max = dist_sq*vol.shape.inv_rad_sq.y;
indx = (int)((pnt.x+pnt.y+pnt.z)*100) & (OFFSET_SIZE -1);
density_max += parms[3]*offset[indx];
if(density_max >= .25) // ramp off if > 25% from center
{ // get table index 0:RAMP_SIZE-1
i = (density_max -.25)*4/3*RAMP_SIZE;
i=MIN(i,RAMP_SIZE-1);
density_max = ramp[i];
*density *=density_max;

}
// ramp it off vertically
dist = pnt_world.y - vol.shape.center.y;
if(dist > 0.0)
{ dist = (dist +offset[indx]*.1)*vol.shape.inv_rad.y;

Animation of Gaseous Volumes 237

Team LRN

if(dist > .05)
{ offset2 = (dist -.05)*1.111111;
offset2 = 1 - (exp(offset2)-1.0)71.718282;
offset2*=parms[1];
*density *= offset2;

}
}

}

The lines that have changed from the earlier steam_slab1 procedure are marked
with three asterisks (***). This procedure creates upward swirling movement in
the gas, which swirls around 360 degrees every SWIRL_FRAMES frame. Noise is ap-
plied to the path to make it appear more random. The parameters RAD1 and RAD2
determine the elliptical shape of the swirling path. Additional variables in this proce-
dure are the angle of rotation about the helical path (theta), the frame number
(frame_num), the cosine of the angle of rotation (cos_theta), the sine of the angle of
rotation (sin_theta), the amount to move along the helical axis (down), a noise
amount to add to the path (noise_amt), and the new location of the point after
movement along the path (direction).

The downward helical path through the gas space produces the effect of the gas
rising and swirling in the opposite direction.

For more realistic steam motion, a simulation of air currents is helpful. Adding
turbulence to the helical path can approximate this, where the amount of turbulence
added is proportional to the height above the teacup. (This assumes that no turbu-
lence is added at the surface.)

Fog Animation

The next example of helical path effects is the creation of rolling fog. For this anima-
tion, a horizontal helical path will be used to create the swirling motion of the fog to
the right of the scene. From examining the following volume_fog_animation proce-
dure, it is clear that this procedure uses the same animation technique as the earlier
steam_moving procedure: move each point along a helical path before evaluating the
turbulence function. The value returned by the turbulence function is again multi-
plied by a density scalar factor, parms[1], and raised to a power, parms[2]. As in
the previous procedures, a precomputed table of density values raised to a power is
used to speed calculation. A more complete description of the use of helical paths for
producing fog animation can be found in Ebert and Parent (1990).

void volume_fog_animation(xyz_td pnt, xyz_td pnt_world, float
*density, float *parms, vol_td vol)

238 CHAPTER 8 Animating Solid Spaces

Team LRN

{
float noise_amt, turb;
extern int frame_num;
xyz_td direction;
int indx;
static float pow_table[POW_TABLE_SIZE];
int i;
static int calcd=1;
static float down, cos_theta, sin_theta, theta;
if(calcd)
{
down = (float)frame_num*SPEED*1.5 +2.0;
theta =(frame_num%SWIRL_FRAMES)*SWIRL_AMOUNT;//get swirling effect
cos_theta = cos(theta)*.1 + 0.5; //use a radius of .1
sin_theta = sin(theta)*.14 - 2.0; //use a radius of .14
calcd=0;
for(i=POW_TABLE_SIZE-1; i>=0; i--)
{
pow_table[i]=(float)pow(((double)(i))/(POW_TABLE_SIZE-1)*

parms[1]*4.0,(double)parms[2]);
}

}
// make it move horizontally & add some noise to the movement
noise_amt = fast_noise(pnt);
direction.x = pnt.x - down + noise_amt*1.5;
direction.y = pnt.y + cos_theta +noise_amt;
direction.z = pnt.z + sin_theta -noise_amt*1.5;
// base the turbulence on the new point
turb =fast_turbulence(direction);
*density = pow_table[(int)((turb*turb)*(.25*(POW_TABLE_SIZE-1)))];
// make sure density isn’t greater than 1
if(*density >1)
*density=1;

}

As in the fog and steam_moving procedures, the volume_fog_animation proce-
dure uses the same values for SWIRL_FRAMES (126) and SWIRL_AMOUNT (2π/126).
SPEED controls the rate of horizontal movement, and the value I use to produce
gently rolling fog is 0.012. The results achievable by this procedure can be seen in
Figure 8.5, which is a still from an animation entitled Getting into Art (Ebert, Ebert,
and Boyer 1990). For this image, parms[1] = 0.22 and parms[2] = 4.0.

Smoke Rising

The final example of helical path effects is the animation of the smoke_stream proce-
dure given earlier to create a single column of smoke. Two different helical paths are

Animation of Gaseous Volumes 239

Team LRN

used to produce the swirling column of smoke. This smoke_stream procedure al-
ready used a helical path to displace each point to get a more convincing column of
smoke. We will now modify this helical path to make it a downward helical path
based on the frame number, creating the rising column of smoke. The second helical
path will actually displace the center point of the cylinder, producing a swirling cyl-
inder of smoke (instead of a vertical cylinder as was used in Chapter 7). This second
helical path will swirl at a different rate than the first. The same input parameter val-
ues can be used for this procedure. The following is the procedure that is the result of
these modifications.

// **
// Rising_smoke_stream
// **
// parms[1] = maximum density value - density scaling factor
// parms[2] = height for 0 density (end of ramping it off)
// parms[3] = height to start adding turbulence
// parms[4] = height (length) for maximum turbulence
// parms[5] = height to start ramping off density
// parms[6] = center.y
// parms[7] = speed for rising
// parms[8] = radius

240 CHAPTER 8 Animating Solid Spaces

FIGURE 8.5 A scene from Getting into Art, showing volume-rendered fog animation created by
horizontal helical paths. Copyright © 1990 David S. Ebert.

Team LRN

// parms[9] = max radius of swirling
// **
void rising_smoke_stream(xyz_td pnt,float *density, float

*parms, xyz_td pnt_world, vol_td *vol)
{
float dist_sq;
extern float offset[OFFSET_SIZE];
extern int frame_num;
static int calcd=1;
static float down, cos_theta2, sin_theta2;
xyz_td hel_path, center, diff, direction2;
double ease(), turb_amount, theta_swirl, cos_theta, sin_theta;
static xyz_td bottom;
static double rad_sq, max_turb_length, radius, big_radius,

st_d_ramp, d_ramp_length, end_d_ramp, down3,
inv_max_turb_length, cos_theta3, sin_theta3;

double height, fast_turb, t_ease, path_turb, rad_sq2;

if(calcd)
{
bottom.x = 0; bottom.z = 0;
bottom.y = parms[6];
radius = parms[8];
big_radius = parms[9];
rad_sq = radius*radius;
max_turb_length = parms[4];
inv_max_turb_length = 1/max_turb_length;
st_d_ramp = parms[5];
st_d_ramp =MIN(st_d_ramp, end_d_ramp);
end_d_ramp = parms[2];
d_ramp_length = end_d_ramp - st_d_ramp;
//calculate rotation about the helix axis based on frame_number

*** theta_swirl=(frame_num%SWIRL_FRAMES_SMOKE)*SWIRL_SMOKE; // swirling
*** cos_theta = cos(theta_swirl);
*** sin_theta = sin(theta_swirl);
*** down = (float)(frame_num)*DOWN_SMOKE*.75 * parms[7];

// Calculate sine and cosine of the different radii of the
// two helical paths

*** cos_theta2 = .01*cos_theta;
*** sin_theta2 = .0075*sin_theta;
*** cos_theta3= cos_theta2*2.25;
*** sin_theta3= sin_theta2*4.5;
*** down3= down*2.25;

calcd=0;
}

height = pnt_world.y - bottom.y + fast_noise(pnt)*radius;
// We don’t want smoke below the bottom of the column
if(height < 0)

Animation of Gaseous Volumes 241

Team LRN

{ *density =0; return;}
height -= parms[3];
if (height < 0.0)
height =0.0;

// calculate the eased turbulence, taking into account the
// value may be greater than 1, which ease won’t handle.
t_ease = height* inv_max_turb_length;
if(t_ease > 1.0)
{ t_ease =((int)(t_ease))+ease((t_ease-((int)t_ease)), .001,.999);
if(t_ease > 2.5) t_ease = 2.5;

}
else
t_ease = ease(t_ease, .5, .999);

// move point along the helical path before evaluating turbulence
*** pnt.x += cos_theta3;
*** pnt.y -= down3;
*** pnt.z += sin_theta3;

fast_turb= fast_turbulence_three(pnt);
turb_amount = (fast_turb -0.875)* (.2 + .8*t_ease);
path_turb = fast_turb*(.2 + .8*t_ease);
// add turbulence to the height & see if it is above the top
height +=0.1*turb_amount;
if(height > end_d_ramp)
{ *density=0; return; }

// increase the radius of the column as the smoke rises
if(height <=0)
rad_sq2 = rad_sq*.25;

else if (height <=end_d_ramp)
{
rad_sq2 =(.5 +.5*(ease(height/(1.75*end_d_ramp),.5, .5)))*radius;
rad_sq2 *=rad_sq2;

}
else

rad_sq2 = rad_sq;
//
// move along a helical path plus add the ability to use tables
//
// calculate the path based on the unperturbed flow: helical path
//

*** hel_path.x = cos_theta2 *(1+path_turb)*(1+t_ease*.l)*
(l+cos((pnt_world.y+down*.5)*M_PI*2)*.11) + big_radius*path_turb;

*** hel_path.z = sin_theta2 * (1+path_turb)*(1+ t_ease*.1)*
(1+sin((pnt_world.y +down*.5)*M_PI*2)*.085) + .03*path_turb;

*** hel_path.y = (- down) - path_turb;
XYZ_ADD(direction2, pnt_world, hel_path);
// adjusting center point for ramping off density based on the
// turbulence of the moved point

turb_amount *= big_radius;
center.x = bottom.x - turb_amount;
center.z = bottom.z + .75*turb_amount;

242 CHAPTER 8 Animating Solid Spaces

Team LRN

// calculate the radial distance from the center and ramp
// off the density based on this distance squared.
diff.x = center.x - direction2.x;
diff.z = center.z - direction2.z;
dist_sq = diff.x*diff.x + diff.z*diff.z;
if(dist_sq > rad_sq2)

{*density=0; return;}
density = (1-dist_sq/rad_sq2 + fast_turb.05)* parms[1];
if(height > st_d_ramp)

*density *= (1-ease((height - st_d_ramp)/(d_ramp_length),
.5 , .5));

}

The statements that have been changed from the smoke_stream procedure are
marked with three asterisks (***). As can be seen, the main changes are in calculat-
ing and using two helical paths based on the frame number. One path displaces the
center of the cylinder, and the point being rendered is moved along the other path.
After trials with only one helical path, it becomes clear that two helical paths give a
better effect. Figure 8.6 shows the results of this rising_smoke_stream procedure.
This figure contains three images from an animation of rising smoke.

Animation of Gaseous Volumes 243

FIGURE 8.6 Rising column of smoke animation. Images are every 30 frames. Copyright © 1994
David S. Ebert.

Team LRN

THREE-DIMENSIONAL TABLES
As shown above, a wide variety of effects can be achieved through the use of helical
paths. These aforementioned procedures require the same type of path to be used for
movement throughout the entire volume of gas. Obviously, more complex motion
can be achieved by having different path motions for different locations within the
gas. A three-dimensional table specifying different procedures for different locations
within the volume is a good, flexible solution for creating complex motion in this
manner.

The use of three-dimensional tables (solid spaces) to control the animation
of the gases is an extension of my previous use of solid spaces in which three-
dimensional tables were used for volume shadowing effects (Ebert and Parent 1990).

The three-dimensional tables are handled in the following manner: The table
surrounds the gas volume in world space, and values are stored at each of the lattice
points in the table (see Figure 8.7). These values represent the calculated values for
that specific location in the volume. To determine the values for other locations in
the volume, the eight table entries forming the parallelepiped surrounding the point
are interpolated. For speed in accessing the table values, I currently require table di-
mensions to be powers of two and actually store the three-dimensional table as a
one-dimensional array. This restriction allows the use of simple bit-shifting opera-
tions in determining the array index. These tables could be extended to have nonuni-
form spacing between table entries within each dimension, creating an octree-like

244 CHAPTER 8 Animating Solid Spaces

Figure 8.7 Three-dimensional table surrounding a sphere.

Team LRN

structure; however, this would greatly increase the time necessary to access values
from the table, as this fast bit-shifting approach could no longer be used. Table di-
mensions are commonly of the order of 64 × 64 × 64 or 128 × 64 × 32.

I use two types of tables for controlling the motion of the gases: vector field ta-
bles and functional flow field tables. The vector field tables store direction vectors,
density scaling factors, and other information for their use at each point in the lat-
tice. Therefore, these tables are suited for visualizing computational fluid dynamics
simulations or using external programs for controlling the gas motion. The vector
field tables will not be described in this chapter. A thorough description of their use
and merits can be found in Ebert (1991). This chapter concentrates on the use of
functional flow field tables for animation control.

The functional flow field and vector field tables are incorporated into the volume
density functions for controlling the shape and movement of the gas. Each volume
density function has a default path and velocity for the gas movement. First, the de-
fault path and velocity are calculated; second, the vector field tables are evaluated;
and, finally, functions that calculate direction vectors, density scaling factors, and so
on, from the functional flow field tables are applied. The default path vector, the vec-
tor from the vector field table, and the vector from the flow field function are com-
bined to produce the new path for the movement through the gas space.

Accessing the Table Entries

When values are accessed from these tables during rendering, the location of the
sample point within the table is determined. As mentioned earlier, this point will lie
within a parallelepiped formed by the eight table entries that surround the point.
The values at these eight points are interpolated to determine the final value. The lo-
cation within the table is determined by first mapping the three-dimensional screen
space point back into world space. The following formula is then used to find the lo-
cation of the point within the table:

ptable.x = (point.x-table_start.x) * table_inv_step.x
ptable.y = (point.y-table_start.y) * table_inv_step.y
ptable.z = (point.z-table_start.z) * table_inv_step.z

Ptable is the location of the point within the three-dimensional table, which is
determined from point, the location of the point in world space. table_start is the
location in world space of the starting table entry, and table_inv_step is the inverse
of the step size between table elements in each dimension. Once the location within
the table is determined, the values corresponding to the eight surrounding table en-
tries are then interpolated (trilinear interpolation should suffice).

Three-Dimensional Tables 245

Team LRN

Functional Flow Field Tables

Functional flow field tables are a valuable tool for choreographing gas animation.
These tables define, for each region of the gas, which functions to evaluate to control
the gas movement. Each flow field table entry can contain either one specific func-
tion to evaluate or a list of functions to evaluate to determine the path for the gas
motion (path through the gas space). For each function, a file is specified that con-
tains the type of function and parameters for that function. The functions evaluated
by the flow field tables return the following information:

• Direction vector

• Density scaling value

• Percentage of vector to use

• Velocity

The advantage of using flow field functions is that they can provide infinite de-
tail in the motion of the gas. They are not stored at a fixed resolution, but are evalu-
ated for each point that is volume rendered. The disadvantage is that the functions
are much more expensive to evaluate than simply interpolating values from the vec-
tor field table.

The “percentage of vector to use” value in the previous list is used to provide a
smooth transition between control of the gas movement by the flow field functions,
the vector field tables, and the default path of the gas. This value is also used to allow
a smooth transition between control of the gas by different flow field functions. This
value will decrease as the distance from the center of control of a given flow field
function increases.

Functional Flow Field Functions

Two powerful types of functions for controlling the movement of the gases are
attractors/repulsors and vortex functions. Repulsors are the exact opposite of attrac-
tors, so only attractors will be described here. To create a repulsor from an attractor,
simply negate the direction vector.

All of the following procedures will take as input the location of the point in
the solid space (pnt) and a structure containing parameters for each instance of
the function (ff). These procedures will return a density scaling factor (density_
scaling), the direction vector for movement through the gas space (direction), the
percentage of this vector to use in determining the motion through the gas space
(percent_to_use), and a velocity scaling factor (velocity). The density_scaling

246 CHAPTER 8 Animating Solid Spaces

Team LRN

parameter allows these procedures to decrease or increase the gas density as it moves
through a region of space. The velocity parameter similarly allows these proce-
dures to change the velocity of the gas as it moves through a region of space. The
most important parameters, however, are the direction and percent_to_use pa-
rameters, which are used to determine the path motion through the solid space.

Attractors

Attractors are primitive functions that can provide a wide range of effects. Figure 8.8
shows several frames of an attractor whose attraction increases in strength over
time. Each attractor has a minimum and maximum attraction value. In this figure,
the interpolation varies over time between the minimum and maximum attraction
values of the attractor. By animating the location and strength of an attractor, many
different effects can be achieved. Effects such as a breeze blowing (see Figure 8.9)
and the wake of a moving object are easy to create. Spherical attractors create paths
radially away from the center of attraction (as stated previously, path movement
needs to be in the opposite direction of the desired visual effect). The following is an
example of a simple spherical attractor function:

Three-Dimensional Tables 247

Figure 8.8 Effect of a spherical attractor increasing over time. Images are every 45 frames.
The top-left image has 0 attraction. The lower-right image has the maximum attraction.
Copyright © 1992 David S. Ebert.

Team LRN

void spherical_attractor(xyz_td point, flow_func_td ff, xyz_td
*direction, float *density_scaling,
float *velocity, float *percent_to_use)

{
float dist, d2;
// calculate distance & direction from center of attractor
XYZ_SUB(*direction, point, ff.center);
dist=sqrt(DOT_XYZ(*direction,*direction));
// set the density scaling and the velocity to 1
*density_scaling=1.0;
*velocity=1.0;
// calculate the falloff factor (cosine)
if(dist > ff.distance)

*percent_to_use=0;
else if (dist < ff.falloff_start)

*percent_to_use=1.0;
else
{ d2 =(dist-ff.falloff_start)/(ff.distance-

ff.falloff_start);
*percent_to_use = (cos(d2*M_PI)+1.0)*.5;
}

}

248 CHAPTER 8 Animating Solid Spaces

FIGURE 8.9 An increasing breeze blowing toward the right created by an attractor.
Copyright © 1991 David S. Ebert.

Team LRN

The flow_func_td structure contains parameters for each instance of the spheri-
cal attractor. The parameters include the center of the attractor (ff.center), the
effective distance of attraction (ff.distance), and the location to begin the fall-
off from the attractor path to the default path (ff.falloff_start). This function
ramps the use of the attractor path from ff.falloff_start to ff.distance. A co-
sine function is used for a smooth transition between the path defined by the attrac-
tor and the default path of the gas.

Extensions of Spherical Attractors

Variations on this simple spherical attractor include moving attractors, angle-limited
attractors, attractors with variable maximum attraction, nonspherical attractors,
and, of course, combinations of any or all of these types.

One variation on the preceding spherical attractor procedure is to animate the
location of the center of attraction. This allows for dynamic animation control of
the gas. Another useful variation is angle-limited attractors. As opposed to having
the range of the attraction being 360 degrees, an axis and an angle for the range of
attraction can be specified. This can be implemented in a manner very similar to
angle-limited light sources and can be animated over time. These two variations can
be combined to produce interesting effects. For example, an angle-limited attractor
following the movement of the object can create a wake from a moving object. This
attractor will cause the gas behind the object to be displaced and pulled in the direc-
tion of the moving object. The minimum and maximum attraction of the attractor
can also be animated over time to produce nice effects as seen in Figures 8.8 and 8.9.
Figure 8.8 shows an attractor increasing in strength over time, and Figure 8.9 shows
a breeze blowing the steam rising from a teacup. As will be described later, the breeze
is simulated with an animated attractor.

The geometry of the attraction can be not only spherical, but also planar or lin-
ear. A linear attractor can be used for creating the flow of a gas along a wall, as will
be explained later.

Spiral Vortex Functions

Vortex functions have a variety of uses, from simulating actual physical vortices to
creating interesting disturbances in flow patterns as an approximation of turbulent
flow. The procedures described are not attempts at a physical simulation of vorti-
ces—an extremely complex procedure requiring large amounts of supercomputer
time for approximation models.

Three-Dimensional Tables 249

Team LRN

One vortex function is based on the simple 2D polar coordinate function

r = θ

which translates into three-dimensional coordinates as

x = θ × cos(θ)

y = θ × sin(θ)

The third dimension is normally linear movement over time along the third axis.
To animate this function, θ is based on the frame number. To increase the vortex ac-
tion, a scalar multiplier for the sine and cosine terms based on the distance from the
vortex’s axis is added. This polar equation alone produces swirling motion; however,
more convincing vortices can be created by the modifications described below, which
base the angle of rotation on both the frame number and the distance from the cen-
ter of the vortex. The resulting vortex procedure is the following:

void calc_vortex(xyz_td *pt, flow_func_td *ff, xyz_td *direction,
float *velocity, float *percent_to_use, int frame_num)

{
static tran_mat_td mat={0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0};
xyz_td dir, pt2, diff;
float theta, dist, d2, dist2;
float cos_theta, sin_theta, compl_cos, ratio_mult;
// calculate distance from center of vortex

XYZ_SUB(diff,(*pt), ff->center);
dist=sqrt(DOT_XYZ(diff,diff));
dist2 = dist/ff->distance;
// calculate angle of rotation about the axis
theta = (ff->parms[0]*(1+.001*(frame_num)))/

(pow((.1+dist2*.9), ff->parms[1]));
// calculate matrix for rotating about the cylinder’s axis

calc_rot_mat(theta, ff->axis, mat);
transform_XYZ((long)1,mat,pt,&pt2);
XYZ_SUB(dir,pt2,(*pt));
direction->x = dir.x;
direction->y = dir.y;
direction->z = dir.z;
// Have the maximum strength increase from frame parms[4] to
// parms[5] to a maximum of parms[2]

if(frame_num < ff->parms[4])
ratio_mult=0;

else if (frame_num <= ff->parms[5])
ratio_mult = (frame_num - ff->parms[4])/

(ff->parms[5] - ff->parms[4])* ff->parms[2];

250 CHAPTER 8 Animating Solid Spaces

Team LRN

else
ratio_mult = ff->parms[2];
//calculate the falloff factor

if(dist > ff->distance)
{ *percent_to_use=0;
*velocity=1;

}
else if (dist < ff->falloff_start)
{ *percent_to_use=l.0 *ratio_mult;
// calc velocity
*velocity= 1.0+(1.0 - (dist/ff->falloff_start));

}
else
{ d2 =(dist-ff->falloff_start)/(ff->distance –

ff->falloff_start);
*percent_to_use = (cos(d2*M_PI)+l.0)*.5*ratio_mult;
*velocity= 1.0+(1.0 - (dist/ff->falloff_start));
}

}

This procedure uses the earlier polar function in combination with suggestions
from Karl Sims (1990) to produce the vortex motion. For these vortices, both the
frame number and the relative distance of the point from the center (or axis) of rota-
tion determine the angle of rotation about the axis. The direction vector is then the
vector difference of the transformed point and the original point. The calc_vortex
procedure also allows the animation of the strength of the vortex action.

A third type of vortex function is based on the conservation of angular momen-
tum: r * q = constant, where r is the distance from the center of the vortex. This for-
mula can be used in the earlier vortex procedure to calculate the angle of rotation
about the axis of the vortex: θ = (time * constant)/r. The angular momentum will be
conserved, producing more realistic motion.

An example of the effects achievable by the previous vortex procedure can be
seen in Figure 8.10. Animating the location of these vortices produces interesting ef-
fects, especially when coordinating their movement with the movement of objects in
the scene, such as a swirling wake created by an object moving through the gas.

Combinations of Functions

The real power of flow field functions is the ability to combine these primitive func-
tions to control the gas movement through different volumes of space. The combina-
tion of flow field functions provides very interesting and complex gas motion. Two
examples of the combination of flow field functions, wind blowing and flow into a
hole, are presented next to illustrate the power of this technique.

Three-Dimensional Tables 251

Team LRN

Wind Effects

The first complex gas motion example is wind blowing the steam rising from a tea-
cup. A spherical attractor is used to create the wind effect. Figure 8.9 shows frames
of an animation of a breeze blowing the steam from the left of the image. To produce
this effect, an attractor was placed to the upper right of the teacup and the strength
of attraction was increased over time. The maximum attraction was only 30%,
producing a light breeze. An increase in the maximum attraction would simulate an
increase in the strength of the wind. The top-left image shows the steam rising verti-
cally with no effect of the wind. The sequence of images (top-right image to bottom-
right image) shows the effect on the steam as the breeze starts blowing toward the
right of the image. This is a simple combination of helical motion with an attractor.
Notice how the volume of the steam, as well as the motion of the individual plumes,
is “blown” toward the upper right. This effect was created by moving the center of
the volume point for the ramping of the density over time. The x-value of the center

252 CHAPTER 8 Animating Solid Spaces

FIGURE 8.10 Spiral vortex. Images are every 21 frames. The top-left image is the default
motion of the gas. The remaining images show the effects of the spiral vortex.
Copyright © 1994 David S. Ebert.

Team LRN

point is increased, based on the height from the cup and the frame number. By
changing the spherical_attractor flow function and the steam_moving procedure
given earlier, the blowing effect can be implemented. The following is the addition
needed to the spherical_attractor procedure:

// ***
// Move the Volume of the Steam
// Shifting is based on the height above the cup
// (parms[6]->parms[7]) and the frame range for increasing
// the strength of the attractor. This is from ratio_mult
// that is calculated above in calc_vortex.
// ***
// Have the maximum strength increase from frame parms[4] to
// parms[5] to a maximum of parms[2]
if(frame_num < ff->parms[4])
ratio_mult=0;

else if (frame_num <= ff->parms[5])
ratio_mult = (frame_num - ff->parms[4])/
(ff->parms[5] - ff->parms[4]) * ff->parms[2];

if(point.y < ff->parms[6])
x_disp=0;

else
{if(point.y <= ff->parms[7])
d2=COS_ERP((point.y-ff->parms[6])/

(ff->parms[7]-ff->parms[6]));
else
d2=0;
x_disp=(1-d2)*ratio_mult*parms[8]+fast_noise(point)*

ff->parms[9];
}
return(x_disp);

Table 8.2 clarifies the use of all the parameters. The ratio_mult value for in-
creasing the strength of the attraction is calculated in the same way as in the
calc_vortex procedure. The x_disp value needs to be returned to the steam_rising
function. This value is then added to the center variable before the density is
ramped off. The following addition to the steam_rising procedure will accomplish
this:

center = vol.shape.center;
center.x += x_disp;

Flow into a Hole in a Wall

The next example of combining flow field functions constrains the flow into an
opening in a wall. The resulting images are shown in Figure 8.11. Figure 8.11(a)

Three-Dimensional Tables 253

Team LRN

shows gas flowing into an opening in a wall on the right of the image. Figure 8.11(b)
shows liquid flowing into the opening. For this example, three types of functions are
used. The first function is an angle-limited spherical attractor placed at the center of
the hole. This attractor has a range of 180 degrees from the axis of the hole toward
the left. The next function is an angle-limited repulsor placed at the same location,
again with a range of repulsion of 180 degrees, but to the right of the hole. These
two functions create the flow into the hole and through the hole. The final type of
function creates the tangential flow along the walls. This function can be considered
a linear attraction field on the left side of the hole. The line in this case would be
through the hole and perpendicular to the wall (horizontal). This attractor has maxi-
mum attraction near the wall, with the attraction decreasing as the distance from the
wall increases. As can be seen from the flow patterns toward the hole and along the
wall in Figure 8.11, the effect is very convincing. This figure also shows how these
techniques can be applied to hypertextures. Figure 8.11(b) is rendered as a hyper-
texture to simulate a (compressible) liquid flowing into the opening.

ANIMATING HYPERTEXTURES
All of the animation techniques described above can be applied to hypertextures;
only the rendering algorithm needs to be changed. The volume density functions that
I use for gases are, in reality, hypertexture functions. The difference is that an atmo-
spheric rendering model is used. Therefore, by using a nongaseous model for illumi-
nation and for converting densities to opacities, the techniques described above will

254 CHAPTER 8 Animating Solid Spaces

TABLE 8.2 PARAMETERS FOR WIND EFFECTS

variable description

point location of the point in world space

ff → parms[2] maximum strength of attraction

ff → parms[4] starting frame for attraction increasing

ff → parms[5] ending strength for attraction increasing

ff → parms[6] minimum y-value for steam displacement

ff → parms[7] maximum y-value for steam displacement

ff → parms[8] maximum amount of steam displacement

ff → parms[9] amount of noise to add in

Team LRN

produce hypertexture animations. An example of this is Figure 8.11(b). The geome-
try and motion procedures are the same for both of the images in Figure 8.11.

Volumetric Marble Formation

One other example of hypertexture animation will be explored: simulating marble
formation. The addition of hypertexture animation to the solid texture animation
discussed earlier will increase the realism of the animation considerably.

One approach is to base the density changes on the color of the marble. Initially,
no turbulence will be added to the “fluid”: density values will be determined in a
manner similar to the marble color values, giving the different bands different den-
sities. Just as in the earlier marble_forming procedure, turbulence will be added over
time. In the following procedure, these changes are achieved by returning the amount
of turbulence, turb_amount, from the solid texture function, marble_forming,
described earlier. The density is based on the turbulence amount from the solid tex-
ture function. This is then shaped using the power function in a similar manner to
the gas functions given before. Finally, a trick by Perlin (subtracting 0.5, multiplying

Animating Hypertextures 255

(a) (b)

FIGURE 8.11 (a) Gas flowing into a hole in the wall. (b) Liquid flowing into a hole in the wall.
Copyright © 1991 David S. Ebert.

Team LRN

by a scalar, adding 0.5, and limiting the result to the range of 0.2 to 1.0) is used to
form a hard surface more quickly (Perlin 1992). The result of this function can be
seen in Figure 8.12.

//
// parms[1] = maximum density value: density scaling factor
// parms[2] = exponent for density scaling
// parms[3] = x resolution for Perlin’s trick (0–640)
// parms[8] = 1/radius of fuzzy area for Perlin’s trick(> 1.0)
//

void molten_marble(xyz_td pnt, float *density, float *parms,
vol_td vol)

{
float parms_scalar, turb_amount;
turb_amount = solid_txt(pnt,vol);
*density = (pow(turb_amount, parms[2]))*0.35 +0.65;
// Introduce harder surface more quickly.
// parms[3] multiplied by 1/640
*density *=parms[l];
parms_scalar = (parms[3]*.0015625)*parms[8];
*density= (*density-0.5)*parms_scalar +0.5;
*density = MAX(0.2, MIN(1.0,*density));

}

256 CHAPTER 8 Animating Solid Spaces

FIGURE 8.12 Liquid marble forming. Copyright © 1993 David S. Ebert.

Team LRN

PARTICLE SYSTEMS: ANOTHER PROCEDURAL ANIMATION
TECHNIQUE

As previously mentioned, particle systems are different from the rest of the proce-
dural techniques presented in this book in that their abstraction is in control of the
animation and specification of the object. Particle systems were first used in com-
puter graphics by Reeves (1983) to model a wall of fire for the movie Star Trek II:
The Wrath of Khan. Since particle systems are a volumetric modeling technique,
they are most commonly used to represent volumetric natural phenomena such as
fire, water, clouds, snow, and rain (Reeves 1983). Structured particle systems, an ex-
tension of particle systems, have also been used to model grass and trees (Reeves and
Blau 1985).

A particle system is defined by both a collection of geometric particles and the
algorithms that govern their creation, movement, and death. Each geometric particle
has several attributes, including its initial position, velocity, size, color, transparency,
shape, and lifetime.

To create an animation of a particle system object, the following are performed
at each time step (Reeves 1983):

• New particles are generated and assigned their attributes.

• Particles that have existed in the system past their lifetime are removed.

• Each remaining particle is moved and transformed by the particle system algo-
rithms as prescribed by their individual attributes.

• These particles are rendered, using special-purpose rendering algorithms, to
produce an image of the particle system.

The creation, death, and movement of particles are controlled by stochastic pro-
cedures, allowing complex, realistic motion to be created with a few parameters. The
creation procedure for particles is controlled by parameters defining either the mean
number of particles created at each time step and its variance or the mean number of
particles created per unit of screen area at each time step and its variance. These val-
ues can be varied over time as well. The actual number of particles created is
stochastically determined to be within mean + variance and mean − variance. The
initial color, velocity, size, and transparency are also stochastically determined by
mean and variance values. The initial shape of the particle system is defined by an or-
igin, a region about this origin in which new generated particles are placed, angles

Particle Systems: Another Procedural Animation Technique 257

Team LRN

defining the orientation of the particle system, and the initial direction of movement
for the particles.

The movement of particles is also controlled by stochastic procedures (stochas-
tically determined velocity vectors). These procedures move the particles by adding
their velocity vector to their position vector. Random variations can be added to the
velocity vector at each frame, and acceleration procedures can be incorporated to
simulate effects such as gravity, vorticity, conservation of momentum and energy,
wind fields, air resistance, attraction, repulsion, turbulence fields, and vortices. The
simulation of physically based forces allows realistic motion and complex dynamics
to be displayed by the particle system, while being controlled by only a few parame-
ters. Besides the movement of particles, their color and transparency can also change
dynamically to give more complex effects. The death of particles is controlled very
simply by removing particles from the system whose lifetimes have expired or who
have strayed more than a given distance from the origin of the particle system.

The Genesis Demo sequence from Star Trek II: The Wrath of Khan is an exam-
ple of the effects achievable by such a particle system. For this effect, a two-level
particle system was used to create the wall of fire. The first-level particle system gen-
erated concentric, expanding rings of particle systems on the planet’s surface. The
second-level particle system generated particles at each of these locations, simulating
explosions. During the Genesis Demo sequence, the number of particles in the sys-
tem ranged from several thousand initially to over 750,000 near the end.

Reeves extended the use of particle systems to model fields of grass and forests
of trees, calling this new technique structured particle systems (Reeves and Blau
1985). In structured particle systems, the particles are no longer an independent col-
lection of particles, but rather form a connected, cohesive three-dimensional object
and have many complex relationships among themselves. Each particle represents an
element of a tree (e.g., branch, leaf) or part of a blade of grass. These particle systems
are, therefore, similar to L-systems and graftals, specifically probabilistic, context-
sensitive L-systems. Each particle is similar to a letter in an L-system alphabet, and
the procedures governing the generation, movement, and death of particles are simi-
lar to the production rules. However, they differ from L-systems in several ways.
First, the goal of structured particle systems is to model the visual appearance of
whole collections of trees and grass, and not to correctly model the detailed geome-
try of each plant. Second, they are not concerned with biological correctness or
modeling the growth of plants. Structured particle systems construct trees by re-
cursively generating subbranches, with stochastic variations of parameters such as
branching angle, thickness, and placement within a value range for each type of tree.

258 CHAPTER 8 Animating Solid Spaces

Team LRN

Additional stochastic procedures are used for placement of the trees on the terrain,
random warping of branches, and bending of branches to simulate tropism. A forest
of such trees can, therefore, be specified with a few parameters for distribution of
tree species and several parameters defining the mean values and variances for tree
height, width, first branch height, length, angle, and thickness of each species.

Both regular particle systems and structured particle systems pose special ren-
dering problems because of the large number of primitives. Regular particle systems
have been rendered simply as point light sources (or linear light sources for anti-
aliased moving particles) for fire effects, accumulating the contribution of each parti-
cle into the frame buffer and compositing the particle system image with the surface-
rendered image. No occlusion or interparticle illumination is considered. Structured
particle systems are much more difficult to render, and specialized probabilistic ren-
dering algorithms have been developed to render them (Reeves and Blau 1985). Illu-
mination, shadowing, and hidden surface calculations need to be performed for the
particles. Since stochastically varying objects are being modeled, approximately cor-
rect rendering will provide sufficient realism. Probabilistic and approximate tech-
niques are used to determine the shadowing and illumination of each tree element.
The particle’s distance into the tree from the light source determines its amount of
diffuse shading and probability of having specular highlights. Self-shadowing is sim-
ulated by exponentially decreasing the ambient illumination as the particle’s distance
within the tree increases. External shadowing is also probabilistically calculated to
simulate the shadowing of one tree by another tree. For hidden surface calculations,
an initial depth sort of all trees and a painter’s algorithm are used. Within each tree,
again, a painter’s algorithm is used, along with a back-to-front bucket sort of all the
particles. This will not correctly solve the hidden surface problem in all cases, but
will give realistic, approximately correct images. Figure 8.13 contains images from
the animation The Adventures of André & Wally B, illustrating the power of struc-
tured particle systems and probabilistic rendering techniques for structured particle
systems.

Efficient rendering of particle systems is still an open active research prob-
lem (e.g., Etzmuss, Eberhardt, and Hauth 2000). Although particle systems allow
complex scenes to be specified with only a few parameters, they sometimes require
rather slow, specialized rendering algorithms. Simulation of fluids (Miller and Pearce
1989), cloth (Breen, House, and Wozny 1994; Baraff and Witkin 1998; Plath 2000),
and surface modeling with oriented particle systems (Szeliski and Tonnesen 1992)
are recent, promising extensions of particle systems. Sims (1990) demonstrated the
suitability of highly parallel computing architectures to particle systems simulation.

Particle Systems: Another Procedural Animation Technique 259

Team LRN

260 CHAPTER 8 Animating Solid Spaces

FIGURE 8.13 Examples of probabilistic rendering of structure particle systems from The
Adventures of André and Wally B. Courtesy of W. Reeves and R. Blau.

Team LRN

Particle systems, with their ease of specification and good dynamical control, have
great potential when combined with other modeling techniques such as implicit sur-
faces (Witkin and Heckbert 1994) and volumetric procedural modeling.

Particle systems provide a very nice, powerful animation system for high-level
control of complex dynamics and can be combined with many of the procedural
techniques described in this book. For instance, turbulence functions are often com-
bined with particle systems.

CONCLUSION
This chapter described several approaches to animating procedural models and
showed several practical examples. The general animation approaches presented can
be used with any procedural model or texture. The next chapter discusses how hy-
brid procedural models can be used to model and animate procedural clouds, while
hardware acceleration techniques for these animation approaches can be found in
Chapter 10.

Conclusion 261

Team LRN

9

Team LRN

VOLUMETRIC CLOUD MODELING WITH
IMPLICIT FUNCTIONS

DAV I D S . E B E R T

Modeling clouds is a very difficult task because of their complex, amorphous struc-
ture and because even an untrained eye can judge the realism of a cloud model. Their
ubiquitous nature makes them an important modeling and animation task. Several
examples of the wide-ranging beauty of clouds can be seen in Figure 9.1. This chap-
ter provides an introduction to the important visual and physical characteristics of
clouds and important rendering issues for clouds. An overview of previous ap-
proaches to cloud modeling and animation, as well as recent approaches to interac-
tive cloud modeling, is presented next. Finally, this chapter describes my volumetric
procedural approach for cloud modeling and animation that allows easy, natural
specification and animation of the clouds, provides the flexibility to include as much
physics or art as desired into the model, unburdens the user from detailed geometry
specification, and produces realistic volumetric cloud models. This technique com-
bines the flexibility of volumetric procedural modeling with the smooth blending
and ease of control of primitive-based implicit functions (meta-balls, blobs) to create
a powerful new modeling technique. This technique also demonstrates the advan-
tages of primitive-based implicit functions for modeling semitransparent volumetric
objects. An exploration of how this cloud modeling approach can be adapted for
real-time rendering can be found in Chapter 10.

CLOUD BASICS
Clouds are made of visible ice crystals and/or water droplets suspended in air, de-
pending on the altitude of the cloud and, hence, the air temperature. Clouds are
formed by air rising, cooling the water vapor in the air to its saturation point, and
condensing onto small particles in the atmosphere. The visible condensed water va-
por forms a cloud (University of Illinois 2002). Cloud shape varies based on the pro-
cess that forces the air to rise or bubble up, the height at which the clouds form, and
various other conditions (University of Illinois 2002). These air-lifting forces include

263

Team LRN

264 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

(a)

FIGURE 9.1 Several example photographs of real clouds. Copyright © 2002 David S. Ebert.

(b)

Team LRN

Cloud Basics 265

(c)

(d)

Team LRN

convection, convergence, lifting along frontal boundaries, lifting due to mountains
(called orographic lifting), and Kelvin-Helmholtz shearing. Kelvin-Helmholtz shear-
ing (billows) occurs when there is vertical wind shear and produces clouds that look
similar to water waves or ripples. Several sources present a very nice introduction to
clouds and their identification (University of Illinois 2002; Tricker 1970; Cotton and
Anthes 1989; Houze 1993).

When considering cloud altitude, clouds formed above 20,000 feet (e.g., cirrus,
cirrostratus) are often thin and wispy in appearance and composed primarily of ice
crystals because of the cold temperatures. Clouds formed between 6500 feet and
23,000 feet (e.g., altocumulus) are primarily formed of water droplets and have the
appearance of collections of small puffy clouds, sometimes in waves. Clouds formed
below 6500 feet (e.g., stratus, stratocumulus) are, again, primarily comprised of wa-
ter droplets and have the appearance of large clouds in layers. The most characteris-
tic cloud type is the puffy cumulus cloud. Cumulus clouds are normally formed by
convection or frontal lifting and can vary from having little vertical height to form-
ing huge vertical towers (cumulonimbus) created by very strong convection.

The visual appearance of clouds not only is useful for creating more natural im-
ages and animations but is also very important for weather forecasters. Weather
spotters are trained to look for key components of the visual appearance of clouds,
enabling them to determine information on potential storms that cannot be collected
from weather radar and other measurements. Clouds have several easily identifiable
visual characteristics that must be modeled to produce accurate images and anima-
tions. First of all, clouds have a volumetrically varying amorphous structure with de-
tail at many different scales. Second, cloud formation often results from swirling,
bubbling, turbulent processes that produce the characteristic cloud patterns and
their evolution over time. Finally, they have several illumination/shading characteris-
tics that must be accurately rendered to obtain convincing images. Clouds are a
three-dimensional medium of small ice and water droplets that absorb, scatter, and
reflect light.

Illumination models for clouds are classified as low-albedo and high-albedo
models. A low-albedo reflectance model assumes that secondary scattering effects
are negligible, while a high-albedo illumination model calculates the secondary and
higher-order scattering effects. For optically thick clouds, such as cumulus, stratus,
and cumulonimbus, secondary scattering effects are significant, and high-albedo illu-
mination models (e.g., Blinn 1982a; Kajiya and Von Herzen 1984; Rushmeier and
Torrance 1987; Max 1994; Nishita, Nakamae, and Dobashi 1996) should be used.
Detailed descriptions of implementing a low-albedo illumination algorithm can be
found in several sources (Kajiya and Von Herzen 1984; Ebert and Parent 1990).

266 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

Team LRN

Simulation of wavelength-dependent scattering is also important to create correct at-
mospheric dispersion effects for sunrise and sunset scenes (see Figures 9.4 and 9.5
for example renderings of clouds with sunset illumination). Self-shadowing of
clouds and cloud shadowing on landscapes are also important to create realistic im-
ages of cloud scenes and landscapes. Correct cloud shadowing requires volumetric
shadowing techniques to create accurate images, which can be very expensive when
volumetric ray tracing is used. As mentioned in Chapter 7, a much faster alternative
is to use volumetric shadow tables (Kajiya and Von Herzen 1984; Ebert and Parent
1990) or hardware-based 3D texture slicing (Kniss, Kindlmann, and Hansen 2002).

SURFACE-BASED CLOUD MODELING APPROACHES
Modeling clouds in computer graphics has been a challenge for nearly 20 years
(Dungan 1979), and major advances in cloud modeling still warrant presentation
in the SIGGRAPH Papers Program (e.g., Dobashi et al. 2000). Many previous ap-
proaches have used semitransparent surfaces to produce convincing images of
clouds. Voss (1983) introduced the idea of using fractal synthesis of parallel plane
models to produce images of clouds seen from a distance. Gardner (1984, 1985,
1990) produces very impressive images and animations of clouds by using Fourier
synthesis1 to control the transparency of large, hollow ellipsoids. In his approach,
large collections of ellipsoids define the general shape of the clouds, while the Fou-
rier synthesis procedurally generates the transparency texture and creates the cloud
detail. Kluyskens (2002) uses a similar approach to produce clouds in Alias/
Wavefront’s Maya animation system. He uses randomized, overlapping spheres to
define the general cloud shape. A solid-texture “cloud texture” is then used to color
the cloud and to control the transparency of the spheres. Finally, the transparency of
the spheres near their edges is increased so that the defining spherical shape is not
noticeable. Gardner’s approach has been extended to real-time cloud rendering by
using OpenGL extensions and adapting the transparency calculations for easier
hardware implementation using subtracting blending modes (Elinas and Stürzlinger
2000).

Even simpler approaches to clouds are often used for interactive applications,
such as games. One of the most common techniques is to create a 2D cloud texture
that is texture mapped onto the sky dome of the scene. These textures are commonly
generated using noise-based textures, and a real-time approach to generating proce-
dural cloud textures using multitexturing and hardware blending can be found in

Surface-Based Cloud Modeling Approaches 267

1. In this case, sums of cosines with different amplitudes and periods control the textured transparency.

Team LRN

Pallister (2002). The use of billboards and imposters2 allows more interaction with
the clouds in the scene. As with most other approaches using polygonal surfaces to
approximate clouds, a Gaussian or exponential falloff of the transparency toward
the edge of the cloud is needed so that the defining shape cannot be seen.

VOLUMETRIC CLOUD MODELS

Although surface-based techniques can produce realistic images of clouds viewed
from a distance, these cloud models are hollow and do not allow the user to seam-
lessly enter, travel through, and inspect the interior of the cloud model. To capture
the three-dimensional structure of a cloud, volumetric density-based models must be
used. Kajiya and Von Herzen (1984) produced the first volumetric cloud model in
computer graphics, but the results are not photorealistic. Stam and Fiume (1995)
and Foster and Metaxas (1997) have produced convincing volumetric models of
smoke and steam, but have not done substantial work on modeling clouds.

Neyret (1997) has recently produced some preliminary results of a convective
cloud model based on general physical characteristics, such as bubbling and con-
vection processes. This model may be promising for simulating convective clouds;
however, it currently uses surfaces (large particles) to model the cloud structure. Ex-
tending this approach to volumetric cloud modeling and animation should produce
very convincing images and animations.

Several researchers have combined volume modeling of clouds with surface-
based imposter rendering. Mark Harris has recently extended the imposter tech-
nique to generate real-time flythroughs of complex, static cloudscapes (Harris and
Lastra 2001; Harris 2002). Spherical particles are used to generate volumetric den-
sity distributions for clouds (approximately 200 particles per cloud), and a multiple
scattering illumination model is precomputed for quicker shading of the particles.
The particles are then rendered using splatting (Westover 1990) to create the impos-
ters for the clouds. To allow the viewer to correctly fly through the environment and
the actual clouds, the imposters need to be updated frequently. Dobashi et al. (2000)
also have used imposters to allow quick rendering of clouds that are modeled using a
partially physics-based cellular automata approach. However, the preintegration of
the imposters for rendering limits the performance of this approach. As previously

268 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

2. An imposter is a texture-mapped polygon with the precomputed rendering of an object (color and al-
pha) mapped onto simple geometry to speed rendering. The texture-mapped image needs to be updated
as the view changes to reflect the appropriate image of viewing the object from a new viewpoint.

Team LRN

mentioned, both of these approaches are actually volumetric cloud models, but use
texture-mapped imposters for speed in rendering.

Particle systems (Reeves 1983) are commonly used to simulate volumetric gases,
such as smoke, with very convincing results and provide easy animation control. The
difficulty with using particle systems for cloud modeling is the massive number of
particles that are necessary to simulate realistic clouds.

Several authors have used the idea of volume-rendered implicit functions for
volumetric cloud modeling (Bloomenthal et al. 1997). Nishita has used volume-
rendered implicits as a basic cloud model in his work on multiple scattering illumi-
nation models; however, this work has concentrated on illumination effects and not
on realistic modeling of the cloud geometry (Nishita, Nakamae, and Dobashi 1996).
Stam has also used volumetric blobbies to create his models of smoke and clouds
(Stam and Fiume 1991, 1993, 1995). I have used volumetric implicits combined
with particle systems and procedural detail to simulate the formation and geometry
of volumetric clouds (Ebert 1997; Ebert and Bedwell 1998). This approach uses
implicits to provide a natural way of specifying and animating the global structure of
the cloud, while using more traditional procedural techniques to model the detailed
structure. The implicits are controlled by a modified particle system that incorpo-
rates simple simulations of cloud formation dynamics, as described later in this
chapter.

A VOLUMETRIC CLOUD MODELING SYSTEM
In developing this new cloud modeling and animation system, I have chosen to build
upon the recent work in advanced modeling techniques and volumetric procedural
modeling. As mentioned in Chapter 1, many advanced geometric modeling tech-
niques, such as fractals (Peitgen, Jürgens, and Saupe 1992), implicit surfaces (Blinn
1982b; Wyvill, McPheeters, and Wyvill 1986; Nishimura et al. 1985), grammar-
based modeling (Smith 1984; Prusinkiewicz and Lindenmayer 1990), and volumet-
ric procedural models/hypertextures (Perlin 1985; Ebert, Musgrave, et al. 1994) use
procedural abstraction of detail to allow the designer to control and animate objects
at a high level. Their inherent procedural nature provides flexibility, data amplifica-
tion, abstraction of detail, and ease of parametric control. When modeling complex
volumetric phenomena, such as clouds, this abstraction of detail and data ampli-
fication are necessary to make the modeling and animation tractable. It would be
impractical for an animator to specify and control the detailed three-dimensional
density of a cloud model. This system does not use a physics-based approach

A Volumetric Cloud Modeling System 269

Team LRN

because it is computationally prohibitive and nonintuitive to use for many animators
and modelers. Setting and animating correct physics parameters for dew point, par-
ticulate distributions, temperature and pressure gradients, and so forth is a time-
consuming, detailed task. This model was developed to allow the modeler and ani-
mator to work at a much higher level and doesn’t limit the animator by the laws of
physics.

Volumetric procedural models have all of the advantages of procedural tech-
niques and are a natural choice for cloud modeling because they are the most flexi-
ble, advanced modeling technique. Since a procedure is evaluated to determine the
object’s density, any advanced modeling technique, simple physics simulation, math-
ematical function, or artistic algorithm can be included in the model.

The volumetric cloud model uses a two-level model: the cloud macrostructure
and the cloud microstructure. Implicit functions and turbulent volume densities
model these, respectively. The basic structure of the cloud model combines these two
components to determine the final density of the cloud.

Procedural turbulence and noise functions create the cloud’s microstructure,
in a manner similar to the basic_gas function (see Chapter 7). This allows the pro-
cedural simulation of natural detail to the level needed. Simple mathematical func-
tions are added to allow shaping of the density distributions and control over the
sharpness of the density falloff.

Implicit functions were chosen to model the cloud macrostructure because of
their ease of specification and smoothly blending density distributions. The user sim-
ply specifies the location, type, and weight of the implicit primitives to create the
overall cloud shape. Any implicit primitive, including spheres, cylinders, ellipsoids,
and skeletal implicits, can be used to model the cloud macrostructure. Since these are
volume rendered as a semitransparent medium, the whole volumetric field function
is being rendered. In contrast, implicit surface modeling only uses a small range of
values of the field to create the objects. The implicit density functions are primitive-
based density functions: they are defined by summed, weighted, parameterized,
primitive implicit surfaces. A simple example of the implicit formulation of a sphere
centered at the point center with radius r is the following:

F(x,y,z):(x − center.x)2 + (y − center.y)2 + (z − center.z)2 − r2 = 0

The real power of implicit functions is the smooth blending of the density fields
from separate primitive sources. I use Wyvill’s standard cubic function (Wyvill,
McPheeters, and Wyvill 1986) as the density (blending) function for the implicit
primitives:

270 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

Team LRN

In the preceding equation, r is the distance from the primitive. This density func-
tion is a cubic in the distance squared, and its value ranges from 1 when r = 0
(within the primitive) to 0 at r = R. This density function has several advantages.
First, its value drops off quickly to zero (at the distance R), reducing the number of
primitives that must be considered in creating the final surface. Second, it has zero
derivatives at r = 0 and r = R and is symmetrical about the contour value 0.5, pro-
viding for smooth blends between primitives. The final implicit density value is then
the weighted sum of the density field values of each primitive:

where wi is the weight of the ith primitive and q is the closest point on element i
from p.

To create nonsolid implicit primitives, the location of the point is procedurally
altered before the evaluation of the blending functions. This alteration can be the
product of the procedure and the implicit function and/or a warping of the implicit
space.

These techniques are combined into a simple cloud model:

volumetric_procedural_implicit_function(pnt, blend%, pixel_size)
perturbed_point = procedurally alter pnt

using noise and turbulence
density1 = implicit_function(perturbed_point)
density2 = turbulence(pnt, pixel_size)
blend = blend% * density1 +(1 - blend%) * density2
density = shape resulting density based on user controls for

wispiness and denseness (e.g., use pow and
exponential function)

return(density)

The density from the implicit primitives is combined with a pure turbulence-
based density using a user-specified blend% (60% to 80% gives good results). The
blending of the two densities allows the creation of clouds that range from entirely
determined by the implicit function density to entirely determined by the procedural
turbulence function. When the clouds are completely determined by the implicit

A Volumetric Cloud Modeling System 271

() ()implicit cubDensity
ii

i

p w F p q= −∑ Χ ∆

()
6 4 2

cub 6 4 2

4 17 22
1

9 9 9
r r r

F r
R R R

=− + − +

Team LRN

functions, they will tend to look more like cotton balls. The addition of the proce-
dural alteration and turbulence is what gives them their naturalistic look.

VOLUMETRIC CLOUD RENDERING
This chapter focuses on the use of these techniques for modeling and animating real-
istic clouds. The volume rendering of the clouds is not discussed in detail. For a de-
scription of the volume-rendering system that was used to make my images of
clouds in this book, please see Chapter 7. Any volume-rendering system can be used
with these volumetric cloud procedures; however, to get realistic effects, the system
should accumulate densities using atmospheric attenuation, and a physics-based illu-
mination algorithm should be used. For accurate images of cumulus clouds, a high-
albedo illumination algorithm (e.g., Max 1994; Nishita, Nakamae, and Dobashi
1996) is needed. Chapter 10 also shows how these techniques can be rendered at in-
teractive rates using 3D texture mapping hardware.

Cumulus Cloud Models

Cumulus clouds are very common in nature and can be easily simulated using spher-
ical or elliptical implicit primitives. Figure 9.2 shows the type of result that can be
achieved by using nine implicit spheres to model a cumulus cloud. The animator/
modeler simply positions the implicit spheres to produce the general cloud struc-
ture. Procedural modification then alters the density distribution to create the de-
tailed wisps. The algorithm used to create the clouds in Figures 9.2 and 9.3 is the
following:

void cumulus(xyz_td pnt, float *density, float *parms, xyz_td
pnt_w, vol_td vol)

{
float new_turbulence(); // my turbulence function
float peachey_noise(); // Darwyn Peachey’s noise function
float metaball_evaluate(); // function for evaluating

// meta-ball primitives
float mdens, // meta-ball density value

turb, turb_amount // turbulence amount
peach; // Peachey noise value

xyz_td path; // path for swirling the point
extern int frame_num;
static int ncalcd = 1;
static float sin_theta_cloud, cos_theta_cloud, theta,

path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;

272 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

Team LRN

Volumetric Cloud Rendering 273

FIGURE 9.2 An example cumulus cloud. Copyright © 1997 David S. Ebert.

FIGURE 9.3 Example cloud creatures. Copyright © 1998 David S. Ebert.

Team LRN

// calculate values that only depend on the frame number
// once per frame
if(ncalcd)
{
ncalcd = 0;
// create gentle swirling in the cloud

theta = (frame_num%600)*.01047196; // swirling effect
cos_theta_cloud = cos(theta);
sin_theta_cloud = sin(theta);
path_x = sin_theta_cloud*.005*frame_num;
path_y = .01215*(float)frame_num;
path_z = sin_theta_cloud*.0035*frame_num;
scalar_x = (. 5+(float)frame_num*0.010);
scalar_z = (float)frame_num*.0073;
}

// Add some noise to the point’s location
peach = peachey_noise(pnt); // Use Darwyn Peachey’s noise
pnt.x -= path_x - peach*scalar_x;
pnt.y = pnt.y - path_y +.5*peach;
pnt.z += path_z - peach*scalar_z;
// Perturb the location of the point before evaluating the
// implicit primitives.
turb = fast_turbulence(pnt);
turb_amount = parms[4]*turb;
pnt_w.x += turb_amount;
pnt_w.y -= turb_amount;
pnt_w.z += turb_amount;
mdens = (float)metaball_evaluate((double)pnt_w.x,

(double)pnt_w.y, (double)pnt_w.z, (vol.metaball));
density = parms[1](parms[3]*mdens + (1.0 -

parms[3])*turb*mdens);
*density = pow(*density,(double)parms[2]);

}

Parms[3] is the blending function value between implicit (meta-ball) density and
the product of the turbulence density and the implicit density. This method of blend-
ing ensures that the entire cloud density is a product of the implicit field values, pre-
venting cloud pieces from occurring outside the defining primitives. Using a large
parms[3] generates clouds that are mainly defined by their implicit primitives and
are, therefore, “smoother” and less turbulent. Parms[1] is a density scaling fac -
tor, parms[2] is the exponent for the pow() function, and parms[4] controls the
amount of turbulence to use in displacing the point before evaluation of the implicit
primitives. For good images of cumulus clouds, useful values are the following: 0.2
< parms[1] < 0.4, parms[2] = 0.5, parms[3] = 0.4, and parms[4] = 0.7.

274 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

Team LRN

Cirrus and Stratus Clouds

Cirrus clouds differ greatly from cumulus clouds in their density, thickness, and fall-
off. In general, cirrus clouds are thinner, less dense, and wispier. These effects can
be created by altering the parameters to the cumulus cloud procedure and also
by changing the implicit primitives. The density value parameter for a cirrus cloud
is normally chosen as a smaller value and the exponent is chosen larger, produc-
ing larger areas of no clouds and a greater number of individual clouds. To create
cirrus clouds, the user can simply specify the global shape (envelope) of the clouds
with a few implicit primitives or specify implicit primitives to determine the loca-
tion and shape of each cloud. In the former case, the shape of each cloud is mainly
controlled by the volumetric procedural function and turbulence simulation, as op-
posed to cumulus clouds where the implicit functions are the main shape control. It
is also useful to modulate the densities along the direction of the jet stream to pro-
duce more natural wisps. For instance, the user can specify a predominant direction
of wind flow and use a turbulent version of this vector to control the densities as
follows:

void Cirrus(xyz_td pnt, float *density, float *parms, xyz_td
pnt_w, vol_td vol, xyz_td jet_stream)

{
float new_turbulence(); // my turbulence function
float peachey_noise(); // Darwyn Peachey’s noise function
float metaball_evaluate(); // function for evaluating the

// meta-ball primitives
float mdens, // meta-ball density value

turb,turb_amount // turbulence amount
peach; // Peachey noise value
xyz_td path; // path for swirling the point

extern int frame_num;
static int ncalcd = 1;
static float sin_theta_cloud, cos_theta_cloud, theta,

path_x, path_y, path_z, scalar_x, scalar_y, scalar_z;
// calculate values that only depend on the frame number
// once per frame

if(ncalcd)
{
ncalcd = 0;
//create gentle swirling in the cloud
theta = (frame_num%600)*.01047196; // swirling effect
cos_theta_cloud = cos(theta);
sin_theta_cloud = sin(theta);
path_x = sin_theta_cloud*.005*frame_num;

Volumetric Cloud Rendering 275

Team LRN

path_y = .01215*(float)frame_num;
path_z = sin_theta_cloud*.0035*frame_num;
scalar_x = (.5+(float)frame_num*0.010);
scalar_z = (float)frame_num*.0073;

}
// Add some noise to the point’s location
peach = peachey_noise(pnt); // Use Darwyn Peachey’s noise
pnt.x -= path_x - peach*scalar_x;
pnt.y = pnt.y - path_y +.5*peach;
pnt.z += path_z - peach*scalar_z;
// Perturb the location of the point before evaluating the
// implicit primitives.
turb = fast_turbulence(pnt);
turb_amount = parms[4]*turb;
pnt_w.x += turb_amount;
pnt_w.y -= turb_amount;
pnt_w.z += turb_amount; // make the jet stream turbulent
jet_stream.x += .2*turb;
jet_stream.y += .3*turb;
jet_stream.z += .25*turb;
// warp point along the jet stream vector
pnt_w = warp(jet_stream, pnt_w);
mdens = (float)metaball_evaluate((double)pnt_w.x,

(double)pnt_w.y, (double)pnt_w.z, (vol.metaball));
density = parms[1](parms[3]*mdens + (1.0 - parms[3])*

turb*mdens);
*density = pow(*density,(double)parms[2]);
}

Examples of cirrus cloud formations created using these techniques can be seen
in Figures 9.4 and 9.5. Figure 9.5 shows a higher cirrostratus layer created by a large
elliptical primitive and a few individual lower cirrus clouds created with cylindrical
primitives.

Stratus clouds can also be modeled by using a few implicits to create the global
shape or extent of the stratus layer, while using volumetric procedural functions to
define the detailed structure of all of the clouds within this layer. Stratus cloud layers
are normally thicker and less wispy, as compared with cirrus clouds. Adjusting the
size of the turbulent space (smaller/fewer wisps), using a smaller exponent value
(creates more of a cloud layer effect), and increasing the density of the cloud can cre-
ate stratus clouds. Using simple mathematical functions to shape the densities can
create some of the more interesting stratus effects, such as a mackerel sky. The mack-
erel stratus cloud layer in Figure 9.6 was created by modulating the densities with
turbulent sine waves in the x and y directions.

276 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

A-

Team LRN

Volumetric Cloud Rendering 277

FIGURE 9.4 Cirrus clouds. Copyright © 1998 David S. Ebert.

FIGURE 9.5 Another example of cirrus and cirrostratus clouds. Copyright © 1998 David S. Ebert.

Team LRN

Cloud Creatures

The combination of implicit functions with volumetric procedural models pro-
vides an easy-to-use system for creating realistic clouds, artistic clouds, and cloud
creatures. Some examples of cloud creatures created using a simple graphical user
interface (GUI) to position nine implicit spheres can be seen in Figure 9.3. They
were designed in less than 15 minutes each, and a straw poll shows that viewers
have seen many different objects in them (similar to real cloud shapes). Currently,
the simple GUI only allows access to a small portion of the system. The rest of
the controls are available through a text-based interface. Allowing the user ac-
cess to more of the controls, implicit primitives, and parameters of the full cloud
modeling system can create more complex shapes, time-based deformations, and
animations. These cloud creatures are easily designed and animated by control-
ling the implicit primitives and procedural parameters. The implicit primitives blend
and deform smoothly, allowing the specification and animation of skeletal struc-
tures, and provide an intuitive interface to modeling amorphous volumetric
creatures.

User Specification and Control

Since the system uses implicit primitives for the cloud macrostructure, the user cre-
ates the general cloud structure by specifying the location, type, and weight of each
implicit primitive. For the image in Figure 9.2, nine implicit spheres were positioned
to create the cumulus cloud. Figure 9.3 shows the wide range of cloud shapes and

278 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

FIGURE 9.6 A mackerel stratus layer. Copyright © 1998 David S. Ebert.

Team LRN

creatures that can be created by simply adjusting the location of each primitive and
the overall density of the model through a simple GUI. The use of implicit primitives
makes this a much more natural interface than with traditional procedural tech-
niques. Each of the cloud models in this chapter was created in less than 30 minutes
of design time.

The user of the system also specifies a density scaling factor, a power exponent
for the density distribution (controls amount of wispiness), any warping procedures
to apply to the cloud, and the name of the volumetric procedural function so that
special effects can be programmed into the system.

ANIMATING VOLUMETRIC PROCEDURAL CLOUDS
The volumetric cloud models described earlier produce nice still images of clouds
and also clouds that gently evolve over time. The models can be animated using the
procedural animation techniques in Chapter 8 or by animating the implicit primi-
tives. Procedural animation is the most flexible and powerful technique since any de-
formation, warp, or physical simulation can be added to the procedure. An animator
using key frames or dynamics simulations can animate the implicit primitives. Sev-
eral examples of applying these two animation techniques for various effects are de-
scribed below.

Procedural Animation

Both the implicit primitives and the procedural cloud space can be animated algo-
rithmically. One of the most useful forms of implicit primitive animation is warping.
A time-varying warp function can be used to gradually warp the shape of the cloud
over time to simulate the formation of clouds, their movement, and their deforma-
tion by wind and other forces. Cloud formations are usually altered based on the jet
stream. To simulate this effect, all that is needed is to warp the primitives along a
vector representing the jet stream. This can be done by warping the points before
evaluating the implicit functions. The amount of warping can be controlled by the
wind velocity or gradually added in over time to simulate the initial cloud develop-
ment. Implicits can be warped along the jet stream as follows:

perturb_pnt = procedurally alter pnt using noise and turbulence
height = relative height of perturb_pnt
vector = jet_stream + turbulence(pnt)
perturb_pnt = warp(perturb_pnt, vector, height)
densityl = implicit_function(perturbed_pnt)
. . .

Animating Volumetric Procedural Clouds 279

Team LRN

To get more natural effects, it is useful to alter each point by a small amount of
turbulence before warping it. Several frames from an animation of a cumulus cloud
warping along the jet stream can be seen in Figure 9.7. To create this effect, ease-in
and ease-out based on the frame number were used to animate the warp amount.
The implicit primitives’ locations do not move in this animation, but the warping
function animates the space to move and distort the cloud along the jet stream vec-
tor. Other warping functions to simulate squash and stretch (Bloomenthal et al.
1997) and other effects can also be used. Instead of a single vector and velocity, a
vector field is input into the program to define more complex weather patterns. The
current system allows the specification of vector flow tables and tables of functional
primitives (attractors, vortices) to control the motion and deformation of the clouds.
Stam (1995) used this procedural warping technique successfully in animating gases.

Implicit Primitive Animation

The implicit primitives can be animated in the same manner as implicit surfaces:
each primitive’s location, parameters (e.g., radii), and weight can be animated over
time. This provides an easy-to-use, high-level animation interface for cloud anima-
tion. This technique was used in the animation “A Cloud Is Born” (Ebert et al.
1997), showing the birth of a cumulus cloud followed by a flythrough of it. Several
stills from the formation sequence can be seen in Figure 9.8. For this animation, the
centers of the implicit spheres were moved over time to simulate three separate cloud
elements merging and growing into a full cumulus cloud. The radii of the spheres
were also increased over time. Finally, to create animation in the detailed cloud

280 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

FIGURE 9.7 Cloud warping along the jet stream. Copyright © 1998 David S. Ebert.

Team LRN

structure, each point was moved along a turbulent path over time before evaluation
of the turbulence function, as illustrated in the cumulus procedure.

A powerful animation tool for volumetric procedural implicit functions is the
use of dynamics and physics-based simulations to control the movement of the
implicits and the deformation of space. Since the implicits are modeling the macro-
structure of the cloud while procedural techniques are modeling the microstructure,
fewer primitives are needed to achieve complex cloud models. Dynamics simulations
can be applied to the clouds by using particle system techniques, with each particle
representing a volumetric implicit primitive. The smooth blending and procedurally
generated detail allow complex results with less than a few hundred primitives, a
factor of 100–1000 less than needed with traditional particle systems. I have imple-
mented a simple particle system for volumetric procedural implicit particles. The
user specifies a few initial implicit primitives and dynamics information, such as
speed, initial velocity, force function, and lifetime, and the system generates the loca-
tion, number, size, and type of implicit for each frame. In our initial tests, it took less
than one minute to generate and animate the implicit particles for 200 frames.

Animating Volumetric Procedural Clouds 281

FIGURE 9.8 Several stills from “A Cloud Is Born” showing the formation of the cloud. Copyright
© 1998 David S. Ebert.

Team LRN

Unlike traditional particle systems, cloud implicit particles never die—they just be-
come dormant.

Cumulus clouds created through this volumetric procedural implicit particle sys-
tem can be seen in Figure 9.9. The stills in Figure 9.9 show a cloud created by an up-
ward turbulent force. The number of children created from a particle was also
controlled by the turbulence of the particle’s location. For the animations in this fig-
ure, the initial number of implicit primitives was 12, and the final number was ap-
proximately 50.

The animation and formation of cirrus and stratus clouds can also be controlled
by the use of a volumetric procedural implicit particle system. For the formation of a
large area of cirrus or cirrostratus clouds, the particle system can randomly seed
space and then use turbulence to grow the clouds from the creation of new implicit
primitives, as can be seen in Figure 9.10. The cirrostratus layer in this image con-
tains 150 implicit primitives that were generated from the user specifying 5 seed
primitives.

To control the dynamics of the cloud particle system, any commercial particle
animation program can also be used. A useful approach for cloud dynamics is to use

282 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

FIGURE 9.9 Volumetric procedural implicit particle system formation of a cumulus cloud.
Copyright © 1998 David S. Ebert.

Team LRN

qualitative dynamics—simple simulations of the observed properties and formation
of clouds. The underlying physical forces that create a wide range of cloud forma-
tions are extremely complex to simulate, computationally expensive, and very re-
strictive. The incorporation of simple, parameterized rules that simulate observable
cloud behavior will produce a powerful cloud animation system.

INTERACTIVITY AND CLOUDS
Creating models of clouds that can be rendered and animated at interactive rates is
an exciting challenge, which is becoming tractable with the latest increases in graph-
ics hardware speed and programmability.

Simple Interactive Cloud Models

There are several physical processes that govern the formation of clouds. Simple
visual simulations of these techniques with particle systems can be used to pro-
duce more convincing cloud formation animations. As mentioned previously, Neyret

Interactivity and Clouds 283

FIGURE 9.10 Formation of a cirrostratus cloud layer using volumetric procedural implicit particles.
Copyright © 1998 David S. Ebert.

Team LRN

(1997) suggests that the following physical processes are important to cloud forma-
tion simulations: Rayleigh-Taylor instability, bubbles, temperature rate variation,
Kelvin-Helmholtz instability, vortices, and Bernard cells. His model also takes into
account phenomena at various scales, bubble generation, and cloud evolution.

Results from an implementation of these techniques by Ruchigartha using MEL
scripts in Maya can be found at www.ece.purdue.edu/�ebertd/ruchi1. An exam-
ple of the output from her system and the GUI cloud control can be seen in Fig-
ure 9.11.

Rendering Clouds in Commercial Packages

The main component needed to effectively render clouds is volume-rendering sup-
port in your renderer. Volumetric shadows, low- or high-albedo illumination, and
correct atmospheric attenuation are needed to produce realistic-looking clouds. An
example of a volume-rendering plug-in for Maya that can be used to create volume-
rendered clouds can be found on the Maya Conductor CD from 1999 and on
the HighEnd3D Web page, www.highend3d.com/maya/plugins. The plug-in,
volumeGas, by Marlin Rowley and Vlad Korolov, implements a simplified version of
my volume renderer (which was used to produce the images in these chapters). A re-
sulting image from this plug-in can be seen in Figure 9.12.

CONCLUSION
The goal of these last three chapters has been to describe several techniques used to
create realistic images and animations of gases and fluids, as well as provide insight
into the development of these techniques. These chapters have shown a useful ap-
proach to modeling gases, as well as animation techniques for procedural modeling.
To aid in reproducing and expanding the results presented here, all of the images are
accompanied by detailed descriptions of the procedures used to create them. This
gives you not only the opportunity to reproduce the results but also the challenge to
expand upon the techniques presented. These chapters also provide insight into the
procedural design approach that I use and will, hopefully, inspire you to explore and
expand procedural modeling and animation techniques. The next chapter extends
this work to discuss issues with real-time procedural techniques and hardware accel-
eration of these techniques.

284 CHAPTER 9 Volumetric Cloud Modeling with Implicit Functions

Team LRN

FIGURE 9.11 MEL GUI and sample images from Maya-based cloud particle system generator.

FIGURE 9.12. An example cloud rendering from a Maya plug-in. Image created by Marlin Rowley.

Team LRN

10

Team LRN

ISSUES AND STRATEGIES FOR HARDWARE
ACCELERATION OF PROCEDURAL TECHNIQUES

DAV I D S . E B E R T

With contributions from Joe M. Kniss and Nikolai Svakhine

INTRODUCTION
As mentioned in Chapter 1, graphics hardware has reached a point in terms of speed
and programmability that we can now start utilizing it for procedural texturing and
modeling. This chapter will discuss general issues relating to hardware acceleration
of procedural techniques, some common approaches to utilizing graphics hardware,
and several examples showing how we can utilize the current generation of graphics
hardware (as of 2002). With the rapid change in graphics technology, we should see
more programmability and power for procedural techniques every year. One thing
to remember in designing your application is that procedural techniques will con-
tinue to be a great solution to solve the data transfer bottleneck within your com-
puter for years to come.

To clarify the presentation in the rest of the chapter, it is useful to review some
basic terminology, which was introduced in Chapter 3. I’ll refer to the graphics pro-
cessing unit on the graphics board as the GPU. In most 2002-generation GPUs, there
are two basic levels of processing: vertex processing and fragment processing. The
vertex processing performs operations for each vertex (e.g., matrix and space trans-
formations, lighting, etc.), and the fragment processing refers to processing that is
performed per pixel-sized geometric primitive fragment. You are encouraged to read
this chapter in conjunction with, or after, the discussion of real-time programmable
shading by Bill Mark in Chapter 3. These chapters cover several similar issues, but
each has a different perspective and different emphasis.

GENERAL ISSUES
In general, when migrating a procedural technique from CPU rendering to GPU ren-
dering, there are several factors to consider, including the following:

287

Team LRN

• Language interface

• Precision

• Flexibility and capabilities

• Storage

• Levels of operation

The language interface is a basic issue that must be confronted, since most cur-
rent standards don’t provide all of the features of the graphics hardware at a high-
level language (C, C++) interface. Several hardware manufacturers are currently de-
veloping better tools to simplify the task of programming the graphics hardware,
but, currently, the only high-level language interface available is the Stanford real-
time shading language (RTSL). This is a very basic issue that will, hopefully, be
solved in the near term and adopted into the next generation of graphics standards
(e.g., proposals for OpenGL 2.0).

The issue of computational precision will probably still exist for several years,
and it must be considered when designing and implementing algorithms that will run
on a variety of graphics platforms and game consoles. Therefore, when designing an
algorithm, the precision at each stage in the pipeline must be considered. For in-
stance, in many 2002-generation graphics cards and game consoles, vertex process-
ing has higher precision than fragment processing, while the final texture combiners
in the fragment-processing hardware have higher accuracy than earlier operations.
These precision issues are most important for approximating detailed functions,
when performing a large number of computations and iterative computations (e.g.,
multipass computations). Accumulation of error may have a significant effect on the
results. Another issue that needs to be considered is the precision of the operands.
For instance, if you are limited to 8-bit operands because the operands are coming
from a texture map access, having 16-bit precision for an operation is not much of
an advantage. Again, these precision issues have a cumulative effect and increase as
the complexity of the algorithm increases. Finally, precision is also a factor in hard-
ware interpolation and must be considered when using hardware blending and tex-
ture mapping interpolation to perform some computations.

Flexibility is a longer-term concern for hardware-accelerated procedural tech-
niques. Most graphics hardware has limits on the operations that can be performed
at each stage, and it may be necessary to reorder the operations in your software
procedural technique to implement it using graphics hardware. For instance, with
2002-generation GPUs, you cannot create geometry on the fly within the GPU for

288 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

performance reasons, and vertex programs cannot access texture maps. The avail-
able operations are also a determining factor in designing GPU-accelerated proce-
dural techniques. What mathematical functions are required? Are these available at
the desired stage in the hardware pipeline? If not, can they be approximated using
texture maps, tables, or registers? How many texture maps can be accessed in a sin-
gle hardware pass? What is the performance trade-off between two-dimensional tex-
ture map accesses and three-dimensional texture map accesses?

The recent trend in the flexibility of graphics hardware operations is that, in gen-
eral, vertex processing offers more program flexibility than fragment processing.
The GPU program flexibility has a significant impact on the ease and effectiveness of
real-time procedural texturing and modeling. As this flexibility increases, it will be
possible to implement more complex and elegant procedural models and textures
entirely within the GPU. Hopefully, within the next several years, we will be able to
simply download an algorithm to the GPU and completely generate the model, as
well as the textures, within the GPU.

As with hardware flexibility, available storage can significantly impact the de-
sign of procedural techniques. When decomposing an algorithm into vertex and
fragment components, is there enough storage at each stage? The type of storage and
the access penalty of the storage are important to consider. Having the ability to
write to a texture map provides a large amount of storage for the algorithm; how-
ever, this will be much slower than writing and reading from a small set of registers.
Access to texture map storage also allows information that doesn’t change per frame
to be precomputed and then accessed from the texture map, increasing the perfor-
mance of the algorithm.

As can be seen from the above discussion, the various levels of operation in the
graphics pipeline, in most cases, must be considered to develop efficient real-time
procedural techniques. Some high-level language compilers (e.g., RTSL) can hide
some of the architecture specifics from the user, but the understanding of at least the
separation of vertex and fragment processing must be considered to develop effec-
tive interactive procedural techniques.

COMMON ACCELERATION TECHNIQUES
This section describes a number of common approaches to accelerate procedural
techniques using graphics hardware. Many of these techniques are straightforward
extensions of common software acceleration techniques and common hardware
rendering acceleration techniques. Precomputation is probably the most common
acceleration technique in graphics and can be used to some extent with procedural

Common Acceleration Techniques 289

Team LRN

techniques. However, the trade-off of performance from precomputation with the
flexibility and detail provided by on-the-fly computation must be considered. Pre-
computing a marble texture and storing it in a 2D texture map would not be con-
sidered a procedural texture since the detail on demand and other benefits of
procedural techniques would be lost. However, precomputing functional approxi-
mations (e.g., sine, cosine, limited power functions) for functions not available in the
GPU program is commonly used to allow hardware implementation of procedural
techniques.

Another common technique is the use of dummy geometry and depth culling.
Most graphics hardware does not allow a vertex or fragment program to create new
geometry. Therefore, in order to create a hardware procedural model, the common
trick is to create a large list of dummy polygons that are initially created with a depth
value that allows fast hardware culling of the geometry to reduce computations for
unused dummy geometry. The algorithm that is creating “new” geometry simply
transforms the geometry from the dummy list to make it visible and part of the pro-
cedural model. This can easily be done for a particle system that runs completely on
the graphics hardware and could also be used to create L-system or grammar-based
plant models that grow and evolve based on algorithms running on the graphics
hardware.

A good algorithm designer can also harness the power of the components of the
graphics hardware to perform tasks for which they weren’t originally designed.
Most GPUs have hardware that performs interpolation, dot products, blending, and
filtering. By storing values appropriately into textures, registers, operands of differ-
ent combiner stages, and so on, you can use the hardware to perform these opera-
tions as they are needed in your procedure. For instance, Pallister (2002) has used
multitexturing, texture blending, and built-in hardware filtering and interpolation
for quickly computing clouds for sky domes. The hardware dot product capability
can also be used for space transformation to compute warps and procedures that use
different texture/model spaces.

The use of multilevel procedural models can be easily adapted to hardware to
achieve higher-resolution models at interactive rates. The most flexible way to imple-
ment this approach takes advantage of the dependent texture read facility in many
GPUs. This feature is vital for many procedural techniques and allows texture coor-
dinates for accessing a texture to be computed based, at least partially, on the results
of a previous texture lookup result. To create the multilevel model, a coarse model is
created from a low-resolution texture map, and a separate detail texture map is com-
bined to produce higher-frequency details, as illustrated with the interactive proce-
dural cloud example below. Detail and noise textures can also create more natural

290 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

and artistic effects by using them to adjust the texture coordinates for accessing an-
other texture map. These texture coordinates can also be animated over time by
varying the amount of the detail/noise texture that is used in generating the new tex-
ture lookup.

Animation of procedural techniques in real time is a challenge. Updating large
texture maps per frame is not currently feasible because of memory bandwidth lim-
its. However, animating texture coordinates and coefficients of procedures can be
performed in real time. If this approach is used in the design of the procedural
model/texture, it is very easy to create animated real-time effects.

EXAMPLE ACCELERATED/REAL-TIME PROCEDURAL TEXTURES AND
MODELS
Several examples of real-time procedural techniques are presented below to illustrate
how to take the procedural techniques described throughout this book and adapt
them to interactive graphics hardware.

Noise and Turbulence

One of the most common procedural functions used is the noise function, so this is a
natural place to start describing how to implement procedural techniques in graph-
ics hardware. Several different approaches have been taken to implement hardware
noise and turbulence. Hart (2001) has used the programmability of the graphics
hardware to actually calculate noise and turbulence functions by making many
passes through the graphics hardware. The more common approach is to use 2D or
3D texture mapping hardware to generate a lattice-based noise function. With a 2D
texture map, the third texture coordinate is used as a scaling factor for accessing dif-
ferent components of the 2D texture map. A 3D texture map implementation is very
straightforward for implementation: simply compute a 3D texture map of random
numbers. If you then set the texture mapping mode to repeat the texture through-
out space, the texture mapping hardware will do the interpolation within the lattice
for free.

The main difficulty that arises is in implementing turbulence and more complex
noise functions (e.g., gradient noise). A turbulence function can easily be imple-
mented by making several texture lookups into the 3D noise texture, scaled and
summed appropriately. However, there may be a penalty with this method, since it
requires several texture accesses (e.g., four or five) for the turbulence functions
alone. Depending on your hardware, this may significantly limit the number of

Example Accelerated/Real-Time Procedural Textures and Models 291

Team LRN

texture accesses available in a single pass. The good news is that all of the texture ac-
cesses are to the same texture, and this does not introduce the overhead of multiple
3D texture maps. Of course, multiple levels of turbulence values can be precom-
puted and the result stored in the three-dimensional texture, but the replication of
the turbulence function throughout space without seams becomes trickier. Also, this
introduces smooth interpolation of the turbulence values within the lattice cells and
decreases the fine detail of the turbulence function that can be produced for the
same-size three-dimensional table. For instance, with a 643 noise table and four oc-
taves of noise values summed (four texture accesses), the resulting resolution of the
turbulence function is much greater than using a 643 turbulence texture map.

Marble

A simple, classic procedural texture is the following marble function:

marble(pnt) = color_spline(sin(pnt.x + turbulence(pnt)) +1)*.5, white, blue)

With flexible dependent texture reads, this can be implemented in hardware using
the following algorithm:

R1 = texture3D(turbulence, pnt) using 3D texture access (1 to n accesses)
R2 = sin_texture(pnt.x+R1) => offset dependent read

1D texture contains (sin(value)+1)*.5
R3 = color_spline_texture(R2) => value dependent read

This implementation requires at least three texture accesses with two dependent tex-
ture reads. Additionally, the register combiners need to support the offset dependent
read and replace dependent read operations.

An example implementation of this in NVIDIA’s Cg language (version 1.01),
with restrictions in vertex and fragment programmability based on the capabilities
in the Nvidia GeForce3 graphics processor, follows. This illustrates how these tech-
niques can be applied to programmable graphics hardware and also the importance
of the flexibility of operations at the different levels of the graphics pipeline: restric-
tions in the dependent texture read operations make this example more complex than
the previous example. Therefore, the marble formula is simplified and several values
are precomputed into textures. This procedure allows the real-time change of the pe-
riod of the sine function and the amount of turbulence/noise added. To make this ex-
ample more robust and eliminate texture seams, the single 3D turbulence texture call
should be replaced with several scaled 3D noise texture calls to implement the turbu-
lence function in the graphics hardware. The procedure has a vertex program and a
fragment program component that use two textures: T(s, t, r) and sine01(s, t).

292 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

The noise and coordinate texture, T(s, t, r), has elements of the following form:

T(s, t, r) =
Turb(s, t, r) s, t, or r

R G B A

where

R-component – Turb(s, t, r) – turbulence at point (s, t, r).
G-component – s, t, or r, depending on desired marble orientation.
B, A – unused

The sine01(s, t) texture contains the values of the following function:

sine01(s, t) = (sin((s+t)*2pi)+1)*0.5

The color of the marble texture is computed to produce a blue-white marble using
the following procedure:

VOID Sine(D3DXVECTOR4* pOut, D3DXVECTOR2* pTexCoord, D3DXVECTOR2* pTexelSize,
LPVOID pData)
{

double sine;
double R_, G_, B_;
double t;
sine = (sin((pTexCoord->x+pTexCoord->y)*2*MY_PI)+1)*0.5;

if (sine < 0.2)
{
R_ = G_ = 255;
B_ = 255;

}
else if (sine >= 0.2 && sine < 0.45)
{
t = (sine - 0.2)/0.25;
B_ = 255;
R_ = (1-t)*255;
G_ = (1-t)*255;

}
else if (sine >= 0.45 && sine < 0.6)
{
R_ = G_ = 0;
B_ = 255;

}
else if (sine >= 0.6 && sine < 0.8)
{
t = (sine - 0.6)/0.2;

Example Accelerated/Real-Time Procedural Textures and Models 293

Team LRN

R_ = (t)*255;
G_ = (t)*255;
B_ = 255;

}
else if (sine >= 0.8)
{
R_ = G_ = 255;
B_ = 255;

}

pOut->x = R_/255.0;
pOut->y = G_/255.0;
pOut->z = B_/255.0;
pOut->w = 1.0;

return;

}

The following Cg vertex and marble shaders are based on NVIDIA’s Direct3D
implementation of DetailNormalMaps() that is part of the Cg Demo Suite.

Marble_Vertex.cg

struct a2v : application2vertex {
float4 position;
float3 normal;
float2 texture;
float3 S;
float3 T;
float3 SxT;

};

struct v2f : vertex2fragment {
float4 HPOS;
float4 COL0; //lightvector in tangent space
float4 COL1; //normal in tangent space
float4 TEX0;
float4 TEX1;
float4 TEX2;

};

v2f main(a2v I,
uniform float4x4 obj2proj,
uniform float3 lightVector, //in object space
uniform float3 eyePosition, //in object space
uniform float2 AB,
uniform float4 offset,

294 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

uniform float4 tile
)

{
v2f O;

/* Transform Position coordinates */

// transform position to projection space

float4 outPosition = mul(obj2proj, I.position);

O.HPOS = outPosition;

/* Compute lightVector used for lighting */
// compute the 3 x 3 transform from tangent space to object space
float3x3 obj2tangent;
obj2tangent[0] = I.S;
obj2tangent[1] = I.T;
obj2tangent[2] = I.SxT;

// transform light vector from object space to tangent space and
// pass it as a color

O.COL0.xyz = 0.5 * mul(obj2tangent, lightVector) + 0.5.xxx;

//Normal is (0, 0, 1) in tangent space
O.COL1.xyz = float3(0, 0, 1);

/* Setting up noise and marble parameters */

float A = AB.x; //A and B coefficients of marble formula, passed as
//uniform parameters to a shader

float B = AB.y;

//3D texture coordinate is just scaled and biased point coordinate
O.TEX0 = tile.x*0.2*(I.position+offset);
O.TEX0.w = 1.0f;

//Those are the coordinates used for Sine calc in marble,
//TEX1 and TEX2 are used as coordinates for dependent texture lookup
//in pixel shader (Marble_Pixel.cg)

O.TEX1.xyz = float3(A*B, 0, 0);
O.TEX2.xyz = float3(0, A, 0);

return O;
}

Example Accelerated/Real-Time Procedural Textures and Models 295

Team LRN

Marble_Pixel.cg

struct v2f : vertex2fragment {
float4 HPOS;
float4 COL0; //light vector in tangent space
float4 COL1; //normal vector in tangent space
float4 TEX0;
float4 TEX1;
float4 TEX2;

};

//fragout is standard connector fragment2framebuffer, outputting float4 color.

fragout main(v2f I,
uniform sampler3D noiseTexture,
uniform sampler2D sineTexture,
)

{
fragout O;
//Texture coordinate interpolants, TEX0, TEX1, and TEX2 are set in
//the vertex program (Marble_Vertex.cg)

float4 noiseVal = tex3D(noiseTexture); //TEX0 is used here, getting
//turbulence/x value

float4 marbleValue = tex2D_dp3x2(sineTexture, I.TEX1, noiseVal);

//TEX1 and TEX2 are used here.
//The coordinates for the sine lookup are
//S = A*B*Turb(x);
//T = A*P.x;
//So the result of lookup is sin(A*(P.x+B*Turb(x)).

//Lighting part calculates parameter diffIntensity
float ambient = 0.2f;
float4 sNormal = (I.COL1);
float4 lightVector = expand(I.COL0); //Calculated in vertex program
float diffIntensity = uclamp(dot3(sNormal.xyz, lightVector.xyz))
+ambient;

//Final result
O.col = marbleValue*diffIntensity;
return O;

}

Results from this marble function, with varying periods of the sine function, can be
seen in Figure 10.1.

296 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

Smoke and Fog

Three-dimensional space-filling smoke and fog can easily be created with 3D texture
mapping hardware. The common approach is to implement volume rendering using
a series of slicing planes that “slice” the volume and texture space. Evaluating
shaders and 3D textures at each fragment in the slice plane samples the volume and
performs the volume rendering. The shader should return the color and opacity of
the given region in space. These slice plane polygons are then composited in a front-
to-back or back-to-front order in the rendering process. For procedural smoke and
fog, the actual opacity and color is determined by shaping a turbulence function gen-
erated from a 3D noise texture, as described in Chapter 7. A simple smoke function
for determining opacity is the following:

Smoke(pnt) = (turbulence(pnt)*scalar)power

This can be implemented with three octaves of noise using the following proce-
dure for each volume slice fragment:

R1 = texture3D(noise, pnt)—1st octave of noise using 3D texture
pnt2 = pnt * {2.0,2.0,2.0,1}

Example Accelerated/Real-Time Procedural Textures and Models 297

FIGURE 10.1 Example real-time marble textures created with varying periods of the sine function. Images created
by Nikolai Svakhine.

Team LRN

R2 = texture3D(noise, pnt2)—2nd octave of noise using 3D texture
R2*= R1

pnt2 = pnt2 * {2.0,2.0,2.0,1}
R3 = texture3D(noise, pnt2)—3rd octave of noise using 3D texture
R3*= R2
R4 = scalar—for general density scaling

or

R4 = texture3D (scalar, pnt)—use a varying scalar texture for more
variation

R5 = texture1D (power_texture, R3*R4)—only need 1D texture if power is
constant

or

R5 = texture2D(power_texture,R3*R4, power)—for multifractal effect where
the power is varied throughout space

This requires three 3D texture accesses plus a dependent texture read. Depending on
your hardware capabilities, the above general idea may need to be reorganized due
to restrictions on the order of operations. Of course, a precomputed turbulence tex-
ture could be used, but a high-resolution 3D texture would be needed to get good re-
sults. To animate the function, a downward helical path is very effective in creating
the impression of the smoke rising. Therefore, the point is first swirled downward
before the calls to the noise texture. The swirling can be calculated using a simple
time-dependent helical path (as described in Chapter 8). This helical path is gener-
ated by a cosine texture and the following formula, which adds another texture read
and changes the noise texture read to a dependent texture offset read:

p2.x = r1*cos(theta)—theta varies with frame_number, r1 is one ellipse
radii

p2.z = r2*cos(theta)—r2 is 2nd ellipse radii
p2.y = -const*frame_number
R1 = texture3D(noise, pnt+p2)—using 3D dependent offset texture

...

Real-Time Clouds and Procedural Detail

High-frequency detail cannot be represented effectively using reasonably sized mod-
els that will fit in 3D texture memory on current-generation graphics boards. These
high-frequency details are essential for capturing the characteristics of many volu-
metric objects such as clouds, smoke, trees, hair, and fur. Procedural noise simula-
tion is a very powerful tool to use with small volumes to produce visually compelling

298 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

Team LRN

simulations of these types of volumetric objects. My approach for modeling these
details is similar to my approach for modeling clouds, described in Chapter 9: use a
coarse technique for modeling the macrostructure and use procedural noise-based
simulations for the microstructure. These techniques can be adapted to interactive
volume rendering through two volume perturbation approaches that are efficient on
modern graphics hardware. The first approach is used to perturb optical properties
in the shading stage, while the second approach is used to perturb the volume itself.

Both volume perturbation approaches employ a small 3D perturbation volume,
323. Each texel is initialized with four random 8-bit numbers, stored as RGBA com-
ponents and blurred slightly to hide the artifacts caused by trilinear interpolation.
Texel access is then set to repeat. Again, depending on the graphics hardware, an ad-
ditional rendering pass may be needed for both approaches because of limitations
imposed on the number of textures that can be simultaneously applied to a polygon
and the number of sequential dependent texture reads permitted. The additional
pass occurs before the shading volume-rendering pass.

With a volume object, multiple copies of the 3D noise texture are applied to
each volume slice at different scales. They are then weighted and summed per pixel.
To animate the perturbation, we add a different offset to each noise texture’s coordi-
nates and update it each frame.

The first approach uses my lattice-based noise described in Chapter 7 to modify
the optical properties of the volume-rendered object using four per-pixel noise com-
ponents. This approach makes the materials appear to have inhomogeneities. The
user may select which optical properties are modified, and this technique can pro-
duce the subtle iridescent effects seen in Figure 10.2(c).

The second approach is closely related to Peachey’s vector-based noise simula-
tion described in Chapter 2. It uses the noise to modify the location of the data ac-
cess for the volume. In this case, three components of the noise texture form a vector,
which is added to the texture coordinates for the volume data per pixel. The data is
then read using a dependent texture read. The perturbed data is rendered to a pixel
buffer that is used instead of the original volume data. The perturbation texture is
applied to the polygon twice, once to achieve low frequency with high-amplitude
perturbations and again to achieve high frequency with low-amplitude perturba-
tions. Allowing the texture to repeat creates the high-frequency content. Figure 10.2
shows how a coarse volume model can be combined with the volume perturbation
technique to produce an extremely detailed interactively rendered cloud. The origi-
nal 643 voxel data set is generated from a simple combination of volumetric blended
implicit ellipses and defines the cloud macrostructure, as described in Chapter 9.
The final rendered image in Figure 10.2(c), produced with the volume perturbation

Example Accelerated/Real-Time Procedural Textures and Models 299

Team LRN

(a)

(b)

FIGURE 10.2 Procedural clouds generated at interactive rates by Joe Kniss: (a) the underlying data
(643); (b) the perturbed volume; (c) the perturbed volume lit from behind with low-frequency
noise added to the indirect attenuation to achieve subtle iridescent effects.

(c)

Team LRN

technique, shows detail that would be equivalent to an unperturbed voxel data set of
at least one hundred times the resolution. Figure 10.3 contains another cloud image
created with the same technique that shows more complex cloud structures with
dramatic lighting. Figure 10.4 demonstrates this technique on another example. By
perturbing the volume data set of a teddy bear with a high-frequency noise, a furlike
surface on the teddy bear can be obtained.

These volumetric procedural models of clouds and fur can be animated by up-
dating the texture coordinates of the noise texture octaves each frame. Dynamically
changing three-dimensional textures is too time consuming; however, varying per-
turbation amounts and animation of texture coordinates offers a fast, effective way
to animate procedural techniques in real time.

CONCLUSION
This chapter discussed a number of important issues related to adapting procedural
techniques to real-time graphics hardware. As graphics hardware and CPU hard-
ware change, the trade-offs between computation in the CPU and on the GPU will
vary. However, issues such as flexibility, storage, levels of computation, and language
interfaces will persist. Designing effective real-time procedural techniques is a chal-
lenge that has started to become solvable. The examples in this chapter should give
some insight into approaches that can be used to adapt procedural techniques to
real-time rendering.

Conclusion 301

FIGURE 10.3 More complex cloud scene rendered at interactive rates using a two-level approach.
Image created by Joe Kniss.

Team LRN

302 CHAPTER 10 Issues and Strategies for Hardware Acceleration of Procedural Techniques

(a)

(b)

FIGURE 10.4 Volume renderings of
a teddy bear volume data set by Joe
Kniss: (a) the original volume;
(b) procedural high-frequency fur
added in the rendering process.

Team LRN

Team LRN

11

Team LRN

PROCEDURAL SYNTHESIS OF GEOMETRY
J O H N C . H A R T

This chapter focuses on procedural methods that generate new graphical objects by
synthesizing geometry. These methods have been designed to model the intricate de-
tail found in natural shapes like plants. Unlike the shader, which is treated as an op-
erator that can deform the geometry of some base reference object, procedural
geometry synthesis creates an entirely new object by generating its geometry from
nothing.

The ideas of procedural geometry synthesis extend naturally to procedural scene
synthesis. Not only are these techniques capable of growing a tree from a sprout, but
they can also populate an entire forest with unique instances of the tree (see Figure
11.1) (Deussen et al. 1998). They can also be applied to other, nonbiological applica-
tions, such as the automatic synthesis of entire cities of unique buildings (Parish and
Müller 2001).

The most popular method for describing procedural models of plants and natu-
ral shapes has been the L-system (Prusinkiewicz and Lindenmayer 1990). The L-
system is a grammar of replacement rules that capture various self-similar aspects of
biological shape and development. The grammar operates on a set of turtle graphics
symbols that translate the words generated by the grammar into graphical objects.
The next section briefly reviews the L-system and turtle graphics and demonstrates
them with a few samples.

Algorithms for the synthesis of procedural geometry fall into two classes. Data
amplification algorithms evaluate procedures to synthesize all of their geometry; lazy
evaluation algorithms evaluate the geometry synthesis procedures on demand. These
paradigms each have benefits and drawbacks, which we will compare later in this
chapter.

While the L-system, coupled with turtle graphics, has been an effective and pro-
ductive language for articulating a large variety of natural and artificial shapes and
scenes, it does suffer two shortcomings.

305

Team LRN

Procedural techniques are used to model detail, but the efficient processing and
rendering of scenes containing a large amount of geometric detail require it to be or-
ganized into a hierarchical, spatially coherent data structure. Turtle graphics objects
are specified by a serial stream of instructions to the turtle, which, in many cases, is
not the most effective representation for processing and rendering.

Furthermore, L-systems are difficult to process by humans. The L-system works
with a large variety of symbols to specify operations within a full-featured 3D turtle-
based scene description language. While these symbols are mnemonic, they can
be likened to an assembly language. Their density makes them difficult to visu-
ally parse, and the large number of symbols used makes their articulation
cumbersome.

306 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.1 A procedurally synthesized environment where each plant species was ray-traced
separately and composited into the final scene. The renderer executed a plant modeling program
called xfrog to generate the plants on demand, using a lazy evaluation technique described later in
the chapter. Image courtesy of Oliver Duessen. Copyright © 1998 Association for Computational
Machinery, Inc.

Team LRN

The scene graph used by most commonly available modeling systems can be
used to perform some limited procedural geometry synthesis. The replacement rules
in an L-system that allow it to model self-similar detail can be represented in the
scene graph using instancing. We will investigate the use of the scene graph for pro-
cedural geometry synthesis and demonstrate its abilities on a few simple procedural
models.

The scene graph has some major benefits as a technique for procedural geometry
synthesis. Its models can more easily be organized into hierarchical, spatially coher-
ent data structures for efficient processing and rendering. Moreover, the articulation
of scene graphs is more familiar to the computer graphics community, as demon-
strated by the variety of scene description languages and programming libraries
based on it.

But the standard form of the scene graph available in graphics systems is
too limited to represent the wide variety of shapes and processes modeled by L-
systems. We will show that an extension of the capabilities of the scene graph,
called procedural geometric instancing, allows it to represent a larger subset
of the shapes that can be modeled by an L-system. This subset includes a wide va-
riety of the natural detailed shapes needed by typical production graphics
applications.

THE L-SYSTEM
The L-system is a string rewriting system invented by Aristid Lindenmayer (1968).
It was later shown to be a useful tool for graphics by Alvy Ray Smith (1984).
Przemyslaw Prusinkiewicz then led an effort to develop it into a full-featured sys-
tem for modeling the behavior of plant growth (Prusinkiewicz and Lindenmayer
1990).

An L-system is a grammar on an alphabet of symbols, such as “F”, “+”, and
“-”. The development of an L-system model is encapsulated in a set of produc-
tions—rules that describe the replacement of a nonterminal symbol with a string of
zero or more symbols. For example, a production might be

F → F+F--F+F (11.1)

which says that every F in the input string should be replaced by F+F--F+F, which in-
creases the number of nonterminal symbols in the string, causing it to grow with
each production application.

The L-System 307

Team LRN

This L-system growth is seeded with an axiom—an initial string such as the sin-
gleton F. Applying the production turns the initial string into F+F--F+F. Applying it
again to this result yields

F+F--F+F + F+F--F+F -- F+F--F+F + F+F--F+F

with spaces inserted to aid readability.
Unlike context-free grammars, L-system productions are applied in parallel, re-

placing as many symbols as possible in the current result. Hence the output of an L-
system does not depend on the order the productions are applied.

This is a deterministic context-free L-system (a.k.a. a D0L-system), because each
nonterminal symbol is the trigger of only one production, and this production does
not care what symbols are to the left or right of the nonterminal symbol. An L-
system can also be context-sensitive such that a nonterminal symbol would be re-
placed by something different depending on its surrounding symbols.

The symbols that an L-system operates on are assigned a geometric meaning.
One such assignment is to interpret the strings as instructions to a turtle impaled
with a pen (Abelson and diSessa 1982). The symbol “F” moves the turtle forward
(leaving a trail) and the symbol “+” (respectively “-”) rotates the turtle counter-
clockwise (clockwise) by a preset angle. Using the results of the example L-system
and setting the angle of rotation to ± 60° yields the shapes shown in Figure 11.2.

In this manner, we can make a large variety of squiggly lines. We want to use the
L-system, however, to model plant structures. Plant structures use branching as a

308 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.2 The von Koch snowflake curve development modeled by the L-system (11.1) and the
shape to which it eventually converges.

F F

F F

F

−

+

−

+

Team LRN

means of distributing leaves that collect photosynthetic energy across a wide area,
while concentrating the flow of nutrients to and from a similarly branching root sys-
tem through a single trunk.

When a sequence of symbols generated by the L-system completes the descrip-
tion of a branch, the turtle must return to the base of the branch to continue describ-
ing the remainder of the plant structure. The L-system could be cleverly designed
to allow the turtle to retrace its steps back to its base, but it would be cumbersome,
inefficient, and incomprehensible. A better solution is offered through the use of
brackets to save and restore the state of the turtle. The left bracket symbol “[“ in-
structs the turtle to record its state (position and orientation); the right bracket “]”
instantly teleports the turtle to its most recently stored state. This state information
can be stored on a stack, which allows bracket symbols to be nested.

These state store/restore commands allow L-systems to model branching struc-
tures. For example, the L-system

F → F[+F]F[-F]F (11.2)

grows the sprout F into the trees shown in Figure 11.3.

The L-System 309

FIGURE 11.3 Development of the simple tree modeled by the L-system (11.2). (a) In this
progression, the segment length remains constant, which simulates the growth of the bush from a
sapling. (b) In this progression, the length of the segments decreases by 1/3 in each iteration and
the tree increases its detail in place. While the progression in (a) is a developmental model useful
for simulating the biological and visual properties of the growth of the tree, the progression in (b)
represents a hierarchical model useful in efficiently processing and rendering the tree.

(a) (b)

Team LRN

The turtle graphics shape description has been extended into a full-featured
three-dimensional graphics system. In three dimensions the symbols “+” and “-”
change the turtle’s yaw, and the new symbols “^” and “&” change the turtle’s pitch
(up and down), whereas “\” and “/” change its roll (left and right). We can use these
3D turtle motions to grow a ternary tree with the L-system production

F → F[&F][&/F][&\F]

which attaches three branch segments to the end of each segment, shown in Figure
11.4 along with the resulting tree after several iterations of the production.

In these examples, the segment lengths and rotation angles have all been identi-
cal and fixed to some global constant value. When modeling a specific growth struc-
ture, we may want to specify different segment lengths and rotation angles. The
elements of the turtle geometry can be parameterized to provide this control. For ex-
ample, F(50) draws a segment of length 50 units, and +(30) rotates the turtle 30°
about its yaw axis. Note that using a 3D turtle, Figure 11.2 can be constructed by
the production

F → /(180)-(30)F+(60)F-(30)\(180)

310 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.4 (a) The trunk and (b) the resulting ternary tree modeled using 3D turtle commands.

(a) (b)

Team LRN

which constructs the snowflake curve out of two smaller inverted snowflake curves.
The curves are inverted by flipping the turtle over, which exchanges counterclock-
wise with clockwise.

In three dimensions, the line segments are replaced with cylinders. These cylin-
ders represent the branches, twigs, and stems of the plant structure. Newer branches
should be thinner than older branches near the base. The symbol “!” decreases the
width of all segments specified after it in a string. Note that the “]” bracket resets
the branch diameter to the state corresponding to the location of the “[“ symbol in
the string. Hence “F[!+F]F” draws a trunk of two equal-diameter segments with a
thinner segment branching off its side. The segment length can also be specified di-
rectly. The “!(d)” substring sets the current segment diameter to d.

The L-system approximates the shape of the plant support structure as a se-
quence of straight cylinder segments. These cylinder segments can be joined by plac-
ing a sphere at the joints. The turtle command “@O” draws a sphere around the
current turtle position whose diameter is equal to the current segment diameter.
Hence “F@O+F” uses a sphere as an elbow between the two cylinders. Alternatively, a
generalized cylinder can be constructed as a tube around a space curve by using the
symbol “@Gc” to specify the current turtle position as a control point, and using
the symbols “@Gs” and “@Ge” to start and end the curve segment. The diameter of
the generalized cylinder can also be set differently at each control point using the “!”
symbol before each “@Gc” substring.

The turtle geometry system quickly ran out of symbols from the ASCII character
set and so needs multicharacter symbols. These multicharacter symbols are usually
prefixed by the “@” character.

Polygons can also be defined using the turtle geometry. The turtle motion inside
the delimiters “{” and “}” is assumed to describe the edges of a filled polygon.
Within these braces, the symbol “F” describes an edge between two vertices. That
operation can be decomposed into the “.” symbol, which defined a vertex at the cur-
rent turtle position, and the “G” symbol, which moves the turtle without defining a
vertex.

Bicubic patches can also be modeled. The substring “@PS(n)” defines a new
bicubic patch labeled by the integer n. The substring “@PC(n,i,j)” defines the posi-
tion of the (i,j) control point to the current turtle position. The substring “@PD(n)”
indicates that patch n should be drawn.

Color and texture can also be specified. Colors are predefined in a color map,
and the symbol “;(f,b)” defines the frontside color to index f and the backside
color to index b. The symbol “;” alone increments the current color index. For
example, a three-element color table containing brown, yellow, and green can be
used for the colors of branches, twigs, and stems in the string “F[;+F[;+F]

The L-System 311

Team LRN

[;-F]][;-F[+F][-F]]”. Note that the color index is reset by the “]” closing
bracket. The symbol “@T(n)” can be used to indicate that the output of subsequent
turtle commands should be texture mapped. The parameter n indicates which tex-
ture map should be used. Texture mapping is turned off by the “@T(0)” substring.

The command “@L(label)” prints the label at the current turtle location, which
is useful for debugging or annotation. The command “@S(command)” executes an
operating system command, which could be used, for example, to provide audio
feedback during the L-system processing.

PARADIGMS GOVERNING THE SYNTHESIS OF PROCEDURAL
GEOMETRY
Many different interactive modeling systems tend to follow the same standard flow
of data (e.g., Figures 1.5, 3.2, and 7.3 of Foley et al. 1990). The user articulates a
conceptual model to the modeler. The modeler interprets the articulation and con-
verts it into an intermediate representation suitable for manipulation, processing,
and rendering. The renderer accepts the intermediate representation and synthesizes
an image of the object. The user then observes the rendered model, compares it to
the conceptual model, and makes changes according to their difference.

The procedural synthesis of geometry follows this same data flow model, al-
though the implementation of the specifics of the intermediate representation can
follow two different paradigms: data amplification or lazy evaluation.

Data Amplification

The L-system describes procedural geometry following the paradigm of a data am-
plifier, as shown in Figure 11.5. Smith (1984) coined this term to explain how pro-
cedural methods transform the relatively small amounts of information in a
procedural model articulation into highly detailed objects described by massive
amounts of geometry. (The figure’s representation of the data amplifier with an op-
amp circuit is not far fetched. The electronic amplifier scales its output voltage and

312 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.5 The “data amplifier” procedural modeling system.

User Articulation Geometry Renderer

Modeler
+

−

Team LRN

then combines it with the input voltage. Such rescale-and-add processes form the ba-
sis of a variety of procedural models.)

Procedural modelers that follow the data amplification paradigm synthesize
some kind of intermediate geometric representation. This intermediate representa-
tion is a scene description consisting of polygons or other primitives. For an L-
system model of a tree, the intermediate representation would consist of cones repre-
senting the branches and polygonal meshes representing the leaves. The intermedi-
ate representation is then passed to a renderer to convert it into an image.

Procedural methods are used to synthesize detailed scenes. The intermediate rep-
resentation for such scenes can become extremely large, growing exponentially in
the number of L-system production applications. For example, the L-system descrip-
tion for a single poplar tree was only 16 KB, but when evaluated yielded a 6.7 MB
intermediate representation (Deussen et al. 1998). Data amplification causes an in-
termediate data explosion as a compact procedural model is converted into a huge
geometric representation, which is then rendered into an image.

The intermediate representation generated by an L-system is also largely unor-
ganized. The geometry output by evaluating an L-system is in a stream order that
follows the path of the turtle. The bracketing used to indicate branching structures
does organize this stream into a postorder traversal, but this organization has not
been utilized. The lack of hierarchical organization prevents renderers from cap-
italizing on spatial coherence when determining visibility. Standard methods can
process the unorganized geometry into more efficient data structures such as a grid
or octree. However, these data structures further increase the storage requirement.

We can avoid storage of the intermediate geometry representation by rendering
the primitives generated by the turtle as soon as they are generated. This avoids the
intermediate data explosion, but at the expense of the extra time required to manage
the turtle during the rendering process. This also limits the rendering to per-polygon
methods such as Z-buffered rasterization and would not work for per-pixel methods
such as ray tracing.

Reeves and Blau (1985) rendered the turtle graphics generated by an L-system
using particles instead of geometry. The particles were rendered directly to the screen
as filtered streaks of shading. The drawback of rendering particle trails directly to
the frame buffer is indirectly due to aliasing. The streaks of shading resulting from a
rendered particle trail represent fine details, such as pine needles or blades of grass.
These details often project to an area smaller than the size of a pixel and use the al-
pha channel to contribute only a portion of the pixel’s color. For this technique to
work correctly in a Z-buffered rendering environment, the particle traces must be
rendered in depth order, and the particle traces must not intertwine. Fortunately, a

Paradigms Governing the Synthesis of Procedural Geometry 313

Team LRN

precisely correct rendering is often not necessary. Minor occlusion errors are easily
obfuscated by the overwhelming amount of visual detail found in procedurally syn-
thesized scenes. “The rich detail in the images tends to mask deviations from an ex-
act rendering” (Reeves and Blau 1985, p. 313).

Another option is to rasterize the streaks of shading generated by the particle
traces into an intermediate volume (Kajiya and Kay 1989). Direct volume-rendering
techniques can be used to render the intermediate representation to more accurately
determine visibility. This technique was used to simulate the shading of fur and car-
peting, and modeled a convincing teddy bear.

Lazy Evaluation

Lazy evaluation avoids intermediate geometry representation problems of the data
amplifier by executing the geometry synthesis procedure only when it is needed.
Lazy evaluation is illustrated diagrammatically in Figure 11.6.

Lazy evaluation facilitates a client-server relationship between the modeler and
the renderer, allowing the modeler to generate only the geometry needed for the ren-
derer to draw an accurate picture. This process saves time and space by avoiding the
need to store and process a massive intermediate geometric representation.

In order for lazy evaluation to work in a procedural geometry system, the ren-
derer needs to know how to request the geometry it needs, and the procedural model
needs to know what geometry to generate. This process creates a dialog between the
modeler and the renderer.

Procedural geometries can sometimes be organized in spatially coherent data
structures. Examples of these data structures include bounding volume hierarchies,
octrees, and grids. Such data structures make rendering much more efficient. The
ability to cull significant portions of a large geometric database allows the renderer
to focus its attention only on the visible components of the scene. Techniques for
capitalizing on spatial coherence data structures exist for both ray tracing (Rubin
and Whitted 1980; Kay and Kajiya 1986; Snyder and Barr 1987) and Z-buffered
rasterization (Greene and Kass 1993).

314 CHAPTER 11 Procedural Synthesis of Geometry

Coordinates

Renderer
(client)

Modeler
(server)User Articulation

Geometry

FIGURE 11.6 The “lazy evaluation” procedural modeling system.

Team LRN

These spatial coherence data structures also support lazy evaluation of the pro-
cedural model. For example, the modeler can generate a bounding volume and ask
the renderer if it needs any of the geometry it might contain. If the renderer declines,
then the procedural model does not synthesize the geometry inside it. The tricky part
of implementing the lazy evaluation of a procedure is determining the bounding vol-
ume of its geometry without actually executing the procedure.

L-systems alone do not contain the necessary data structures to support lazy
evaluation. The next section describes how L-systems can be simulated with scene
graphs, which include the data structures and algorithms that support lazy
evaluation.

THE SCENE GRAPH
Geometric objects are often constructed and stored in a local “model” coordinate
system specific to the object. These objects may be placed into a scene by transform-
ing them into a shared “world” coordinate system. The placement of a model into a
scene is called instancing. The model is called the master, and the transformed copy
placed in a scene is called an instance (Sutherland 1963).

In order to manage complex scenes containing many objects, objects can be or-
ganized into hierarchies. Instances of individual objects can be collected together
into a composite object, and the composite object can be instanced into the scene.
The structure of this hierarchy is called a scene graph.

There are a variety of libraries and languages available to describe scene graphs.
For example, the Java3D and Direct3D graphics libraries contained a “retained
mode” scene graph that allowed entire scenes to be stored in memory and rendered
automatically. The VRML (Virtual Reality Modeling Language) is a file representa-
tion of a scene graph that can be used to store a scene graph as a text file to be used
for storage and communication of scenes.

An instance is a node in a scene graph consisting of a transformation, a shader,
and a pointer to either another scene graph node or a geometric primitive, as shown
in Figure 11.7(a). The transformation allows the instance to be transformed by any
affine transformation, and the shader allows the instances of an object to have differ-
ent appearance properties. Instancing can turn a tree-structured scene graph into a
directed acyclic graph, such that a node may have more than one parent in the hier-
archy, as shown in Figure 11.7(b).

In the following examples, we use a specialized scene description language that
encourages instancing. Scene graph nodes are named and can be accessed by their
given name. An object corresponding to a scene graph node is described using the
syntax

The Scene Graph 315

Team LRN

define <name> <description> end

where <description> is a list of instances and/or primitives. Instances and primi-
tives not contained as named nodes are assumed to be elements of an implicit list
node at the top of the scene graph.

Each instance or primitive precedes a list of zero or more transformation and
shading commands. The transformation and shading commands are accumulated in
order and act only on the most recently specified instance or primitive. When a new
instance or primitive is declared, the transformation is reset to the identity, and the
shading is restored to the default shading of the current parent object. Hence the
specification

cylinder(10,1) scale 2
cylinder(10,1) rotate 30,(0,0,1)

creates the union of a cylinder along the y-axis of length 10 and radius 1 uniformly
scaled by two, and a second cylinder also of length 10 and radius 1 rotated by 30°
about the z-axis. The second cylinder is not scaled by two.

The transformation and shading commands of an instance are applied relative
to the current transformation and shading of the context into which they are in-
stanced. For example, the description

316 CHAPTER 11 Procedural Synthesis of Geometry

Transformation

Shader

list

diffuse .7,.7,.7 scale 1,2,1
translate 2,0,0
diffuse .4,.4,.4

scale 2,1,2
translate 1,0,2
diffuse .9,.9,.9

cylinder

(a) (b) (c)

FIGURE 11.7 Anatomy of an instance: (a) The instance is a pointer to another object, with
additional transformation and shading parameters. (b) The scene graph is a collection of instances,
in this case a list of three instances of a cylinder primitive. (c) The configuration of the cylinders.

Team LRN

define A
sphere translate (2,0,0) diffuse 1,(1,0,0)

end

define B
A rotate 90,(0,0,1) diffuse 1,(0,0,1)

end

defines object A as a red unit sphere centered at the point (2,0,0), and object B as a
blue sphere centered at the point (0,2,0).

The scene graph can use instancing to implement turtle graphics. For example,
the turtle graphics stream “F[+F]F[-F]F” can be implemented in our scene descrip-
tion language as

define F
cylinder(1.0,0.1)

end

define +F
F rotate 30,(0,0,1)

end

define -F
F rotate -30,(0,0,1)

end

F scale 1/3
+F scale 1/3 translate (0,1/3,0)
F scale 1/3 translate (0,1/3,0)
-F scale 1/3 translate (0,2/3,0)
F scale 1/3 translate (0,2/3,0)

One problem worth noting is that the state after the turtle has moved and must
be maintained. This is why the translation commands must be inserted after some of
the instances.

We can also use instancing to implement the productions of an L-system (Hart
1992). Consider the single-production L-system

A → F[+F]F[-F]F (11.3)

with the axiom “A”. We can represent this structure as a scene graph as

define A
F scale 1/3
+F scale 1/3 translate (0,1/3,0)
F scale 1/3 translate (0,1/3,0)

The Scene Graph 317

Team LRN

-F scale 1/3 translate (0,2/3,0)
F scale 1/3 translate (0,2/3,0)

end

A

where objects “F”,“+F”, and “-F” are defined as before. An equivalent scene graph
is shown in Figure 11.8(a), which yields the arrangement of cylinders shown in Fig-
ure 11.9(a).

This is even more powerful when we represent an additional iteration of devel-
opment as the L-system

A → F[+F]F[-F]F (11.4)

B → A[+A]A[-A]A (11.5)

with the axiom “B”. The corresponding scene graph is now

define +A A rotate 30,(0,0,1) end
define -A A rotate -30,(0,0,1) end

define B
A scale 1/3
+A scale 1/3 translate (0,1/3,0)
A scale 1/3 translate (0,1/3,0)

318 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.8 Scene graphs for the bush L-system: (a) one iteration, (b) two iterations, and (c)
infinitely many iterations.

A A

B

A*

(a) (b) (c)

Team LRN

-A scale 1/3 translate (0,2/3,0)
A scale 1/3 translate (0,2/3,0)

end

B

where “A” is defined as before. This scene graph is equivalent to the one shown in
Figure 11.8(b) and yields the arrangement of cylinders shown in Figure 11.9(b).

Noticing the similarities between “A” and “B”, you might be tempted to develop
the instance

define +A* A* rotate 30,(0,0,1) end
define -A* A* rotate -30,(0,0,1) end

The Scene Graph 319

(a) (b) (c)

FIGURE 11.9 Bushes modeled by (a) “A”, (b) “B”, and (c) “A*”.

Team LRN

define A*
A* scale 1/3
+A* scale 1/3 translate (0,1/3,0)
A* scale 1/3 translate (0,1/3,0)
-A* scale 1/3 translate (0,2/3,0)
A* scale 1/3 translate (0,2/3,0)

end

where the scale is introduced to keep the results the same size. This scene graph is
equivalent to the one shown in Figure 11.8(c) and yields the limit set shown in Figure
11.9(c).

A cyclic scene graph describes the often (but not always) fractal shape that is the
limit case of the L-system. The scene graph now has cycles and consists entirely of in-
stances (no primitives), which means the resulting shape is described entirely by
transformations, without any base geometry. Such structures are called (recurrent)
iterated function systems, and special rendering techniques need to be used to dis-
play them (Hart and DeFanti 1991).

Figure 11.10 shows another example of the structure of scene graphs. The tops
of each of the scene graphs all consist of the same union (list) node of three elements.
These elements are instance nodes whose transformations are indicated by

• A—scale by 1/2 and translate (−0.433,−0.25,0)

• B—scale by 1/2 and translate (0,0.5,0)

• C—scale by 1/2 and translate (−0.433,−0.25,0)

320 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.10 (a) Tree-structured scene graph, (b) directed acyclic scene graph, and (c) cyclic scene
graph. The resulting scene is shown below each scene graph.

A A A

A

U

B C

B B BC C C

(a)

A

A

B

B

U

C

C

(b)

U

B

A C

(c)

Team LRN

The scene graph in Figure 11.10(b) compactly combines the common subtrees of the
scene graph in Figure 11.10(a). The scene graph in Figure 11.10(b) contains two
copies of each node, which could be further compacted into the scene graph in Fig-
ure 11.10(c) if cycles are allowed. However, adding cycles results in a (recurrent) it-
erated function system, which describes objects entirely by transformations with no
explicit geometric primitives (e.g., the triangle primitives are missing from the scene
graph in Figure 11.10(c)).

We would like to get the power of cycles shown in Figure 11.10(c), but without
the loss of geometric primitives or the difficulty in detecting cycles. We would instead
like to permit conditional cycles that could terminate under some resolution-specific
criterion.

The scene graph representation also provides a clear hierarchical organization of
the procedural geometry for more efficient processing and rendering using lazy eval-
uation. A bounding volume can be stored at each of the instance nodes, and this
bounding volume can be used to determine if a node’s underlying geometry need be
generated. For example, the earlier iterates of Figure 11.9 can serve as bounding vol-
umes for the later iterates.

The scene graph is only capable of representing a small subfamily of L-systems,
specifically deterministic nonparametric context-free L-systems without global ef-
fects such as tropism. In order to convert the more powerful extensions of L-systems
into more efficient scene graphs, the scene graph will need to be augmented with the
procedural extensions described in the next section.

PROCEDURAL GEOMETRIC INSTANCING
Procedural geometric instancing (PGI) augments the instance in a scene graph with a
procedure, as shown in Figure 11.11. This procedure is executed at the time of
instantiation (i.e., every time the object appears in a scene). The procedure has access
to the instance node that called it and can change the node’s transformation and
shading parameters. The procedure can also change the instance to refer to a differ-
ent object node in the scene graph. In addition, the procedure also has access to ex-
ternal global scene graph variables, such as the current object-to-world coordinate
transformation matrix and passing parameters between nodes.

Parameter Passing

One enhancement to the L-system model allows it to describe shapes using real val-
ues (Prusinkiewicz and Lindenmayer 1990). Among other abilities, parametric L-
systems can create more complex relationships between parent and child geometries.

Procedural Geometric Instancing 321

Team LRN

Parameters are by no means new to the concept of instancing. For example, they
are present in SPHIGS (Foley et al. 1990), but their use here to control hierarchi-
cal subdivision differentiates them from previous implementations. Parameters are
bound at instantiation in the standard fashion using a stack to allow recursion. Pa-
rameters may alter transformations or may be passed along to further instances.
Both uses are demonstrated in the following example.

Example: Inductive Instancing

Iterative instancing builds up vast databases hierarchically, in O(log n) steps, by
instancing lists of lists [Snyder and Barr 1987; Hart 1992]. For example, a list of
four instances of a blade of grass makes a clump, four clumps make a patch, and
four patches make a plot—of 64 blades of grass. Though each list consists of four
instances of the same element, each instance’s transformation component differs to
describe four distinct copies of the geometry.

Even the step-saving process of iterative instancing becomes pedantic when deal-
ing with billions of similar objects. Inductive instancing uses instancing parameters
to reduce the order of explicit instancing steps in the definition from O(log n)
to O(1). Using the field-of-grass example, we define an object grass(n) as a list
of four instances of grass(n-1), and end the induction with the definition of
grass(0), which instances a single blade of grass.

define grass(0) blade end

define grass(n)
grass(n-1)
grass(n-1) translate 2^n*(0.1,0.0,0.0)

322 CHAPTER 11 Procedural Synthesis of Geometry

Transformation

Shader

Procedure

FIGURE 11.11 A procedural instance. The procedure is executed at the
time of instantiation.

Team LRN

grass(n-1) translate 2^n*(0.0,0.0,0.1)
grass(n-1) translate 2^n*(0.1,0.0,0.1)

end

grass(15)

Hence, a single instance of grass(i) inductively produces the basis of the scene
in Figure 11.12 containing 4i blades of grass.

Inductive instancing is similar in appearance to the predicate logic of Prolog. Or-
ganized properly, the defined names may be compared against the calling instance
name until a match is found. For example, grass(15) would not match grass(0)
but would match grass(n).

Accessing World Coordinates

Objects are defined in a local coordinate frame, but are instanced into a world coor-
dinate system. In some situations, an instance may need to change its geometry based
on its global location and orientation. Given an object definition and a specific
instantiation, let W denote the 4 × 4 homogeneous transformation matrix that maps
the object to its instantiation. The transformation W maps local coordinates to
world coordinates.

Procedural geometric instancing adopts the convention that within the scope of
an instance, the object-to-world transformation that is available to the procedure is
the one from the beginning of the instantiation and is unaffected by the instance’s
transformations. This solves an ordering problem where a scale followed by a

Parameter Passing 323

FIGURE 11.12 Grass modeled through iterative instancing, with randomness added using
techniques described later in this section.

Team LRN

rotation (which ordinarily are mutually commutative) might not be equivalent to a
rotation followed by a scale if either depends on global position or orientation.

The following three examples demonstrate procedural models requiring access
to world coordinates.

Example: Tropism

L-systems simulate biological systems more realistically through the use of global ef-
fects. One such effect is tropism—an external directional influence on the branching
patterns of trees (Prusinkiewicz and Lindenmayer 1990). Downward tropism simu-
lates gravity, resulting in sagging branches; sideways tropism results in a wind-blown
tree; and upward tropism simulates branches growing toward sunlight. In each case,
the tropism direction is uniform, regardless of the local coordinate system of the
branch it affects.

Given its global orientation, an instance affected by tropism can react by rotat-
ing itself into the direction of the tropism. For example, the following PGI specifica-
tion models Figure 11.13, illustrating two perfectly ternary trees, although one is
made more realistic through the use of tropism.

define limb(r, l) cone(l,r,0.577*r) end
define tree(0, r, l, t, alpha)

limb(r,l)
leaf translate (0,l,0)

end

324 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.13 These trees have equivalent instancing structures except that the one on the right is
influenced by downward tropism, simulating the effect of gravity on its growth.

Team LRN

define branch(n, r, l, t, alpha)
tree(n,r,l,t,alpha) rotate 30,(0,0,1)

end

define tree(n, r, l, t, alpha)
limb(r,l)
branch(n-1,0.577*r,0.9*l,t,alpha)

tropism((0,1,0,0),-alpha,t)
translate (0,l,0)

branch(n-1,0.577*r,0.9*l,t,alpha)
tropism((0,1,0,0),-alpha,t)
rotate 120,(0,1,0) translate (0,l,0)

branch(n-1,0.577*r,0.9*l,t,alpha)
tropism((0,1,0,0),-alpha,t)
rotate 240,(0,1,0) translate (0,l,0)

end

tree(8,.2,1,(0,-1,0),0) translate(-4,0,0)
tree(8,.2,1,(0,-1,0),20) translate(4,0,0)

The procedure tropism is defined as

tropism(v, α, t) ≡ rotate α ||Wv × t||, Wv × t (11.6)

This tropism definition may be substituted by hand, translated via a macro, or hard-
coded as a new transformation.

The object limb consists of an instance of tree rotated 30°. Under standard
instancing, this object could be eliminated, and the 30° could be inserted in the
definition of tree. However, this operation is pulled out of the definition of tree be-
cause the world transformation matrix W used in the definition of tropism is only
updated at the time of instantiation. The separate definition causes the tropism effect
to operate on a branch after it has rotated 30° away from its parent’s major axis.

Tropism is typically constant, although a more accurate model would increase
its severity as branches become slimmer. Thompson (1942) demonstrates that sur-
face tension dictates many of the forms found in nature. In the case of trees, the
strength of a limb is proportionate to its surface area, l × r, whereas its mass (disre-
garding its child limbs) is proportionate to its volume, l × r2. We can simulate this by
simply increasing the degree of tropism α inversely with respect to the branch radius
r. Hence, branch would be instantiated with the parameters

branch(n-1,0.577*r,0.9*l,t,(1-r)*alpha0)

where alpha0 is a constant, maximum angle of tropism.

Parameter Passing 325

Team LRN

While variable tropism could be incorporated, via source code modification, as a
new parameterized symbol in the turtle-based L-system paradigm, procedural geo-
metric instancing provides the tools to articulate it in the scene description.

Example: Crop Circles

Prusinkiewicz, James, and Mech (1994) added a query command “?” to the turtle’s
vocabulary that returned the turtle’s world position. This information was used to
prune L-system development based on external influences. The world coordinate
transformation can similarly detect the presence of an external influence, and the ge-
ometry can appropriately respond. A crop circle such as those allegedly left by UFO
encounters is similar to the simulation of topiary, except that the response of pruning
is replaced with bending as demonstrated in Figure 11.14.

Such designs can be described implicitly (Prusinkiewicz, James, and Mech 1994)
in the case of a circle, or through a texture map (crop map) (Reeves and Blau 1985)
in the case of the teapot.

Example: Geometry Mapping

The grass example from the previous section shows how geometry can be instanced
an arbitrary number of times onto a given section of a plane. Consider the definition
of a Bezier patch as a mapping from the parameter plane into space. This mapping

326 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.14 Crop circles trampled in a field of cones.

Team LRN

takes blades of grass from the plane onto the Bezier patch. Replacing the blades of
grass with fine filaments of hair yields a fully geometric specification of fur or hair.

Other Functions

In addition to passing parameters and accessing world coordinates, several other
features based on these abilities make specification of procedural models easier.

Random Numbers

Randomness can simulate the chaos found in nature and is found in almost all pro-
cedural natural modeling systems. Moreover, various kinds of random numbers are
useful for natural modeling.

The notation [a,b] returns a random number uniformly distributed between
a and b. The notation {a,b} likewise returns a Gaussian-distributed random
number.

The Perlin noise function provides a band-limited random variable (Perlin 1985)
and is implemented as the scalar-valued function noise. A typical invocation
of the noise function using the world coordinate position is specified:
noise(W(0,0,0,1)).

Example: Meadows

Fractional Brownian motion models a variety of terrain. This example uses three oc-
taves of a 1/f2 power distribution to model the terrain of a hilly meadow. Grass is
instanced on the meadow through a translation procedurally modified by the noise
function. The placement of the grass is further perturbed by a uniformly random lat-
eral translation, and its orientation is perturbed by the noise function.

The following PGI scene specification describes the meadow displayed in Figure
11.15. The vector-valued function rotate(x,theta,axis) returns the vector x ro-
tated by theta about the axis axis. Its use in the definition of fnoise disguises the
creases and nonisotropic artifacts of the noise function due to a simplified interpola-
tion function.

#define NS 16 /* noise scale */
#define fnoise(x) (NS*(noise((1/NS)*(x)) +

0.25 noise((2/NS) rot((x),30,(0,1,0))) +
0.0625 noise((4/NS) rot((x),60,(0,1,0)))))

#define RES 0.1 /* polygonization resolution */

Parameter Passing 327

Team LRN

define plate(-1)
polygon (-RES,fnoise(W(-RES,0,-RES,1)),-RES),

(-RES,fnoise(W(-RES,0, RES,1)), RES),
(RES,fnoise(W(RES,0, RES,1)), RES)

polygon (RES,fnoise(W(RES,0, RES,1)), RES),
(RES,fnoise(W(RES,0,-RES,1)),-RES),
(-RES,fnoise(W(-RES,0,-RES,1)),-RES)

end

define plate(n)
plate(n-1) translate 2^n*(RES,0, RES)
plate(n-1) translate 2^n*(-RES,0, RES)
plate(n-1) translate 2^n*(RES,0,-RES)
plate(n-1) translate 2^n*(-RES,0,-RES)

end

define blade(0) polygon (-.05,0,0),(.05,0,0),(0,.3,0) end

define blade(n)
blade(n-1)
scale (.9,.9,.9) rotate 10,(1,0,0) translate (0,.2,0)

polygon (-.05,0,0),(.05,0,0),(.045,.2,0),(-.045,.2,0)
end

define grass(-2)
blade(10)
rotate 360*noise((1/16)*(W(0,0,0,1))),(0,1,0)
translate [-.05,.05],fnoise(W(0,0,0,1)),[-.05,.05])

end

328 CHAPTER 11 Procedural Synthesis of Geometry

FIGURE 11.15 A grassy meadow with an exaggerated specular component to demonstrate reflection
“hot spots.” No texture maps were used in this image.

Team LRN

define grass(n)
grass(n-1) translate 2^n*(.1,0,.1)
grass(n-1) translate 2^n*(-.1,0,.1)
grass(n-1) translate 2^n*(.1,0,-.1)
grass(n-1) translate 2^n*(-.1,0,-.1)

end

plate(6)
grass(6)

Levels of Detail

The scale at which geometry projects to the area of a pixel on the screen under the
rules of perspective is bound from above by the function

lod(x) = ||x − x0|| 2tan(θ/2)/n (11.7)

where x0 is the eyepoint, θ is the field of view, and n is the linear resolution. The con-
dition lod(W(0,0,0,1)) > 1 was used to halt recursive subdivision of fractal shapes
constructed by scaled instances of the unit sphere (Hart and DeFanti 1991). In typi-
cal use, lod replaces complex geometries with simpler ones to optimize display of de-
tailed scenes.

Comparison with L-Systems

L-systems are organized into families based on their representational power. The
simplest family is the deterministic context-free L-system. Parameters were added
to handle geometric situations requiring nonintegral lengths (Prusinkiewicz and
Lindenmayer 1990). Stochasticism was added to simulate the chaotic influences of
nature. Various degrees of context sensitivity can be used to simulate the transmis-
sion of messages from one section of the L-system model to another during develop-
ment. Global influences affect only the resulting geometry, such as tropism, which
can simulate the effect of gravitational pull when determining the branching direc-
tion of a tree limb.

Figure 11.16 depicts the representational power of procedural geometric in-
stancing with respect to the family of L-system representations. Standard geometric
instancing can efficiently represent only the simplest L-system subfamily, whereas
there is currently no geometrically efficient representation for any form of context-
sensitive L-system. Procedural geometric instancing is a compromise, efficiently rep-
resenting the output of a stochastic context-free parametric L-system with global
effects.

Parameter Passing 329

Team LRN

Ordering

Several rendering methods benefit from a front-to-back ordering of the geometry
sent to it. We order our bounding volume hierarchy through the use of axially sorted
lists. The contents of each list are sorted six times, in nonincreasing order of their
most extreme points in the positive and negative x, y, and z directions. Each list is
then threaded six times according to these orderings. At instantiation, we determine
which of the six vectors, W−1T (±1,0,0,0), W−1T (0,±1,0,0), or W−1T (0,0,±1,0),
has the maximum dot product with a unit vector from the position W (0,0,0,1)
pointing toward the viewer. The elements of the list are then instantiated according
to this order. While not perfect, this method does an effective job of instancing geom-
etry globally in a front-to-back order.

BOUNDING VOLUMES
The bounding volume of procedural geometry must account for the different possi-
ble shapes the procedural geometry may take. A bounding volume is associated with
every node in a PGI scene graph, and the procedure associated with the node can al-
ter the bounding volume of the instantiation.

Early terrain models simulated fractional Brownian motion by midpoint dis-
placement, which was an early subdivision surface method for triangle or quadri-
lateral meshes (Fournier, Fussel, and Carpenter 1982). Later systems computed
the maximum possible extent of the midpoint displacement surface of a mesh ele-
ment and used this extent to construct a bounding volume for the mesh ele-
ment (Kajiya 1983; Bouville 1985). This supported the lazy evaluation of the
procedural terrain model. If the renderer determines that the bounding volume of
a mesh element is not visible, then that element need not be subdivided and
displaced.

330 CHAPTER 11 Procedural Synthesis of Geometry

Stochastic context-sensitive parametric L-systems

Procedural geometric instancing Stochastic context-free parametric L-systems≡

Standard geometric instancing Deterministic context-free L-systems≡

FIGURE 11.16 Hierarchy of representations.

Team LRN

Bounding volumes for procedural geometry can be computed statically or dy-
namically. A static bounding volume encases all possible geometries synthesized by
the procedure, whereas a dynamic bounding volume is designed to tightly bound the
specific output of a particular evaluation of the procedure.

Dynamic bounding volumes are more efficient than static bounding volumes,
but they are also much more difficult to devise. Dynamic bounding volumes need to
be computed at the time of instantiation. A bounding volume procedure is executed
that predicts the extent of the procedural geometry based on the parameters used to
synthesize the geometry.

Example: Bounding Grass

The bounding box hierarchy for the field of grass specified previously in an example
is constructed by the dynamic bounding volume

bounds((0,0,0),2n+1 (.1,0,.1) + (0,0.3,0))

where bounds specifies a bounding box with two of its opposing corners. Each blade
of grass is assumed to be 0.1 units thick and 0.3 units high.

Example: Bounding Trees

Under standard geometric instancing, a tree may be specified as a trunk and several
smaller instances of the tree. Repeated forever, this generates a linear fractal, and the
instancing structure is similar to an iterated function system (Hart 1992). Given an
iterated function system, the problem of finding an optimal bounding volume for its
attractor remains open, although several working solutions have appeared (Hart
and DeFanti 1991; Canright 1994; Dubuc and Hamzaoui 1994).

Under procedural geometric instancing, tree subdivision gains additional free-
dom for global influences. Beginning from the trunk, it is a matter of chaos where
each leaf is finally instanced. Bounding volumes are derived from prediction, which
is difficult in such chaotic cases. Hence, we look to the worst possible case to obtain
an efficient parametric bound on the geometry of a tree.

Trees, such as those described previously in an example, scale geometrically,
with each branch a smaller replica of its parent. Geometric series, such as the length
of branches from trunk to leaf, sum according to the formulas (and PGI built-in
functions)

Bounding Volumes 331

Team LRN

(11.8)

(11.9)

Consider the definition of a tree whose branches scale by factors of λi. Let λ =
max λi be the scaling factor of the major branch; for sympodial trees (Prusinkiewicz
and Lindenmayer 1990), this is the extension of the trunk. Then from the base of the
trunk, which is canonically set to unit length, the branches can extend no farther
than sumx(λ) units away. When limited to n iterations, the branches are bound by a
sphere of radius sumxmn(λ, 0, n) centered at the base of the trunk. At iteration m,
these branches are bound by a sphere of radius sumxmn(λ, m, n) centered at the cur-
rent point. While these bounds are quite loose initially, they converge to tighter
bounds at higher levels.

While tight bounding volumes of near-terminal limbs will efficiently cull the ren-
dering of hidden branches, a tight bound on the entire tree is also useful to avoid ren-
dering trees that are hidden behind dense forests or mountain ridges. A simple
worst-case analysis can precompute the maximum height a tree attains as well as the
maximum width. These computations are less useful for the branches because the
global influences may be different on the arbitrarily positioned and oriented instance
of the tree. However, clipping the bounding volumes of the branches to the tree’s
bounding volume makes the branch bounding volumes tighter and more efficient.

CONCLUSION
Procedural geometric instancing is a language for articulating geometric detail. Its
main impact is the insertion of procedural hooks into the scene graph. These hooks
allow the scene graph to serve as a model for procedural geometry and allow it to
overcome the intermediate storage problem. The resulting scene graph provides on-
demand lazy evaluation of its instances performed at the time of instantiation, and
only for objects affecting the current rendering of the scene.

Procedural geometric instancing is a geometric complement to shading lan-
guages. It provides the renderer with a procedural interface to the model’s geometry
definition in the same way that a shading language provides the renderer with a pro-
cedural interface to the model’s shading definition.

332 CHAPTER 11 Procedural Synthesis of Geometry

(, ,)
1

n m n
i

i m

x x
x sumxmn x m n

x
=

−
= =

−
∑

0

1
()

1
i

i

x x
x

∞

=

= =
−

∑ sumx

Team LRN

Procedural geometric instancing yields geometries that are processed more ef-
ficiently than those generated by turtle graphics. Procedural geometric instancing is
also based on the scene graph and its associated scene description, which is a more
familiar and readable format for the articulation of procedural models than is an L-
system’s productions of turtle graphics symbols.

The parameterization and other features of procedural geometric instancing
make standard textual geometric descriptions of natural models more compact and
readable.

Procedural Geometric Modeling and the Web

Procedural modeling can play a critical role in multimedia, networking, and the
World Wide Web. Two standards have recently become popular: Java and VRML.
Java is a system that allows programs to be automatically loaded from a remote site
and run safely on any architecture and operating system. The Virtual Reality
Modeling Language (VRML) has become a standard for transmitting geometric
scene databases.

In their current form, VRML geometric databases are transmitted in their en-
tirety over the network, and Java has little support for generating complicated geo-
metric databases. However, both can be enhanced to support the lazy evaluation
paradigm for procedural modeling.

One example extends the capabilities of Java or an equivalent language to sup-
port the generation and hierarchical organization of detailed geometry. A user may
download this script, and a renderer then runs it to procedurally generate the neces-
sary geometry to accommodate the vantage point of the viewer. This example places
the network at the “articulation” step of the paradigm.

A second example places the network at the “geometry/coordinates” bidirec-
tional step of the lazy evaluation paradigm. In this example, a powerful server gen-
erates the geometry needed by a remote client renderer to view a scene and transmits
only this geometry over the network. As the client changes viewpoint, the server then
generates and transmits only the new geometry needed for the new scene.

Future Work

The major obstacle to efficient rendering for procedural geometric instancing is the
construction of effective bounding volume hierarchies. Since geometry is created on
demand, a bounding volume must be able to predict the extent of its contents. Such
procedural bounding volumes were constructed for fractal terrain models by Kajiya

Conclusion 333

Team LRN

(1983) and Bouville (1985), but their generalization to arbitrary subdivision pro-
cesses remains unsolved.

Amburn, Grant, and Whitted (1986) developed a system in which context was
weighted between independent subdivision-based models. Fowler, Prusinkiewicz,
and Battjes (1992) developed a geometric context-sensitive model of phyllotaxis
based on the currently generated geometry of a procedural model. A similar tech-
nique could model the upward tropism of the tips of branches on some evergreen
trees. These tips bend upward depending on the visibility of sunlight. If the tree was
instanced from the highest branches, working its way down to the ground level, the
visibility of each branch with respect to the previously instanced branches could be
efficently computed using a separate frame buffer as a progressively updated “light”
map.

ACKNOWLEDGMENTS
Procedural geometric instancing has been in various forms of development for
nearly a decade, and some of this development was funded by Intel. Anand
Ramagapalrao implemented the front-to-back sorting of hierarchical bounding vol-
umes. Chanikarn Kulratanayan and Hui Fang also used the system for their research
and generated numerous impressive example images. A significant portion of the
ideas behind PGI resulted from conversations with Przemyslaw Prusinkiewicz, most
occurring on various ski lifts across the Northwest.

334 CHAPTER 11 Procedural Synthesis of Geometry

Team LRN

Team LRN

12

Team LRN

NOISE, HYPERTEXTURE, ANTIALIASING,
AND GESTURE

K E N P E R L I N

INTRODUCTION
This first section touches on several topics that relate to the work I’ve done in proce-
dural modeling. A brief introduction to hypertexture and a review of its fundamen-
tal concepts is followed by a discussion of the essential functions needed in order to
be able to easily tweak procedural models.

The second section is a short tutorial on how the noise function is constructed,
followed by a discussion of how raymarching for hypertexture works and some
examples of hypertexture. Next comes an interesting possible approach for anti-
aliasing procedurally defined images. Then we discuss a surface representation based
on sparse wavelets. We conclude by applying notions from procedural modeling to
human figure motion.

Shape, Solid Texture, and Hypertexture

The precursor to hypertexture was solid texture. Solid texturing is simply the pro-
cess of evaluating a function over R3 at each visible surface point of a rendered
computer graphic (CG) model. The function over R3 then becomes a sort of solid
material, out of which the CG model shape appears to be “carved.”

I became interested in what happens when you start extending these texture
functions off of the CG surface. What do they look like as space-filling functions? So
I developed a simple formalism that allowed me to play with this idea, by extending
the notion of characteristic function.

Traditionally, the shape of any object in a computer graphic simulation is de-
scribed by a characteristic function—a mapping from each point in R3 to the

337

Team LRN

Boolean values true (for points inside the object) or false (for points outside the ob-
ject). This is a point set. The boundary of this point set is the surface of the object.

I replaced the Boolean characteristic function with a continuous one. We define
for any object a characteristic function that is a mapping from f: R3 → [0 . . . 1].
All points for which f is 0 are said to be outside the object. All points for
which f is 1 are said to be strictly inside the object. Finally, all points for which
0 < f < 1 are said to be in the object’s fuzzy region.

This formulation gives the object surface an appreciable thickness. We can now
combine solid texture functions with the function that describes the object’s fuzzy re-
gion. In this way shape and solid texture become unified—a shape can be seen as
just a particular solid texture function. I refer to this flavor of texture modeling
as hypertexture, since we are texturing in a higher dimension (the full three-
dimensional object space)—and also because it’s a really atrocious pun.

TWO BASIC PARADIGMS
There are two distinct ways that solid textures can be combined with fuzzy shapes.
You can either use the texture to distort the space before evaluating the shape, or add
the texture value to a fairly soft shape function, then apply a “sharpening” function
to the result.

The first approach involves calculations of the form

where is a simple vector expression. The second approach involves calculations of
the form

Bias, Gain, and So Forth

The secret to making good procedural textures is an interface that allows you to tune
things in a way that makes sense to you. For example, let’s say that there is some re-
gion over which a function value is varying from 0.0 to 1.0. Perhaps you realize that
this function should be “pushed up” so that it takes on higher values in its middle
range. Or maybe you want to push its values a bit toward its high and low values
and away from the middle.

338 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

()x
�

x
�

x
�

()x
�

x
�

()x
�

() shape(texture())f x x x= + υ
�� � �

υ
�

() sharpen(() texture())f x shape x x= +
� � �

Team LRN

You could do these things with spline functions or with power functions. For ex-
ample, let’s say that f(t): R → [0 . . . 1]. Then pow(f(t), 0.8) will push the values of f
up toward 1.0. But this is not intuitive to use because it’s hard to figure out what val-
ues to put into the second argument to produce a particular visual result. For this
reason, I’ve built two functions that I use constantly, just to do these little continuous
tweaks.

Bias

To get the same functionality provided by the power function, but with a more intu-
itive interface, I’ve defined the function biasb, which is a power curve defined over
the unit interval such that biasb (0.0) = 0.0, biasb (0.5) = b, and biasb (1.0) = 1.0. By
increasing or decreasing b, we can thus bias the values in an object’s fuzzy region up
or down. Note that bias0.5 is the identity function.

Bias is defined by

Gain

Similarly, we often want an intuitive way to control whether a function spends
most of its time near its middle range or, conversely, near its extremes. It’s sort of
like having a gain on your TV set. You can force all the intensities toward middle
gray (low gain) or, conversely, force a rapid transition from black to white (high
gain).

We want to define gaing over the unit interval such that

gaing (0.0) = 0.0

gaing (0.25) = 0.5 − g/2

gaing (0.5) = 0.5

gaing (0.75) = 0.5 + g/2

gaing (1.0) = 1.0

By increasing or decreasing g, we can thus increase or decrease the rate at which the
midrange of an object’s fuzzy region goes from 0.0 to 1.0. Note that gain0.5 is the
identity function.

Two Basic Paradigms 339

ln()
ln(0.5)

b

t

Team LRN

Motivated by the above, I’ve defined gain by

The above two functions provide a surprisingly complete set of tools for tweak-
ing things. If you want to make something look “darker” or “more transparent,”
you would generally use biasb with b < 0.5. Conversely, if you want to make some-
thing look “brighter” or “more opaque,” you would generally use biasb with b >
0.5.

Similarly, if you want to “fuzz out” a texture, you would generally use gaing

with g < 0.5. Conversely, if you want to “sharpen” a texture, you would generally
use gaing with g > 0.5. Most of the time, you’ll want to instrument various numeri-
cal parameters with bias and gain settings and tune things to taste.

CONSTRUCTING THE NOISE FUNCTION
Part of the reason that procedural texture is effective is that it incorporates random-
ness in a controlled way. Most of the work involved in achieving this is contained in-
side the noise function, which is an approximation to what you would get if you
took white noise (say, every point in some sampling mapped to a random value be-
tween −1.0 and 1.0) and blurred it to dampen out frequencies beyond some cutoff.

The key observation here is that, even though you are creating “random” things,
you can use noise to introduce high frequencies in a controlled way by applying
noise to an appropriately scaled domain. For example, if is a point in R3, then
noise (2 introduces frequencies twice as high as does noise Another way of
saying this is that it introduces details that are twice as small.

Ideally the noise function would be constructed by blurring white noise, prefera-
bly by convolving with some Gaussian kernel. Unfortunately, this approach would
necessitate building a volume of white noise and then blurring it all at once. This is
quite impractical.

Instead, we want an approximation that can be evaluated at arbitrary points,
without having to precompute anything over some big chunk of volume. The ap-
proach described here is the original one I came up with in 1983, which I still use. It’s
a kind of spline function with pseudorandom knots.

The key to understanding the algorithm is to think of space as being divided into
a regular lattice of cubical cels, with one pseudorandom wavelet per lattice point.

340 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

x
�

)x
�

().x
�

1 1(2) 2 (2 2)
if 0.5 then else

2 2
g gbias t bias t

t
− −− −

>

A-

Team LRN

You shouldn’t get scared off by the use of the term “wavelet.” A wavelet is simply a
function that drops off to zero outside of some region and that integrates to zero.
This latter condition means that the wavelet function has some positive region and
some negative region, and that the two regions balance each other out. When I talk
about the “radius” of a wavelet, I just mean the distance in its domain space from
the wavelet center to where its value drops off to zero.

We will use wavelets that have a radius of one cel. Therefore, any given point in
R3 will be influenced by eight overlapping wavelets—one for each corner of the cel
containing the point.

Computation proceeds in three successive steps:

• Compute which cubical “cel” we’re in.

• Compute the wavelet centered on each of eight vertices.

• Sum the wavelets.

Computing Which Cubical “Cel” We’re In

The “lowest” corner of the cel containing point [x, y, z] is given by

Then the eight vertices of the cel containing [x, y, z] are

(1) [i, j, k]

(2) [i + 1, j, k]

(3) [i, j + 1, k]

. . .

(8) [i + 1, j + 1, k + 1]

Finding the Pseudorandom Wavelet at Each Vertex of the Cel

For each of the above lattice points, we want to find what wavelet to apply. Ideally,
the mapping from cels to wavelet coefficients would be nonrepeating. It turns out,
though, that because noise has no large-scale structure, the mapping can eventually
repeat itself, without this repetition being at all noticeable. This allows us to use a
relatively simple table lookup scheme to map vertices to coefficients. I find that a re-
peat distance of 256 is more than large enough.

Constructing the noise Function 341

[, ,] [, ,]i j k x y z =

Team LRN

The basic idea is to map any [i, j, k] into a unique number between 0 and 255.
We precompute a table G of 256 pseudorandom coefficient values and always index
into this fixed set of values.

In the following two sections we will accomplish two things. First, we will dis-
cuss what properties we want from the wavelet coefficients and how to precompute
G—a table of 256 sets of coefficients that has these properties. Then we will discuss
the properties we want in the mapping from P : [i, j, k] → 0 . . . 255 and how to
achieve these properties.

Wavelet Coefficients

I actually force the noise function to take on a value of zero at each lattice point.
This ensures that it can’t have any appreciable energy at low spatial frequencies. To
achieve this, I give a value at its center of zero to each of the overlapping wavelets
that are being summed and then give each wavelet a radius of one—so that each
wavelet will reach a value of zero just as it gets to the center of its neighbors.

This means that we can define the wavelet centered at each lattice point as a
smooth function with the following properties:

• It has a value of zero at its center.

• It has some randomly chosen gradient at its center.

• It smoothly drops off to zero a unit distance from its center.

So we have to randomly choose a gradient for each wavelet center. I do this via a
Monte Carlo method—precompute a table of gradients in uniformly random direc-
tions and then index into this table. To create the gradient table, I need a set of points
that are uniformly distributed on the surface of a unit sphere. I ensure that this set of
points will be uniformly distributed as follows:

• Choose points uniformly within the cube [−1 . . . 1]3.

• Throw out any points falling outside of the unit sphere.

• Project surviving points onto the unit sphere.

The pseudocode to do this is

for i in [0 . . . 255]
repeat

x = random(−1. ⋅⋅⋅ +1.)

342 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

y = random(−1. ⋅⋅⋅ +1.)
z = random(−1. ⋅⋅⋅ +1.)

until x2 + y2 + z2 < 1.0
G[i] = normalize [x, y, z]

To Quickly Index into G in a Nonbiased Way

Now we need to find a way to answer the following question: If any point in R3 is in
the vicinity of a wavelet, how can it rapidly get the coefficients of that wavelet?

We basically want a really random way to map lattice points [i, j, k] to indices of
G. We have to avoid regularities in this mapping, since any regularity would be ex-
tremely visible to somebody looking at the final noise function.

I use the following method:

• Precompute a “random” permutation table P.

• Use this table to “fold” [i, j, k] into a single n.

In this section I describe first how to create a suitable permutation table and then
how to use this table to “fold” [i, j, k] into the range [0 . . . 255].

The permutation table can be precomputed, so that step doesn’t need to be espe-
cially fast. The pseudorandom permutation table P is created by

for i in [0 . . . 255]
j = random[0 . . . 255]
exchange P[i] with P[j]

The folding function fold(i, j, k) is then computed by

n = P[imod 256]

n = P[(n + j)mod 256]

n = P[(n + k)mod 256]

For added speed, I don’t actually do the mod operations. Instead, I precompute
P to be twice as long, setting P[256 . . . 511] := P[0 . . . 255]. Then if 0 ≤ i, j, k ≤
255, we can just do P[P[P[i] + j] + k] for each wavelet.

Now for each vertex of the unit cube whose “lowest” corner is [i, j, k], we can
quickly obtain wavelet coefficients as follows:

(1) G(fold(i, j, k))

(2) G(fold(i + 1, j, k))

Constructing the noise Function 343

Team LRN

(3) G(fold(i, j + 1, k))

. . .

(8) G(fold(i + 1, j + 1, k + 1))

Evaluating the Wavelet Centered at [i, j, k]

The remaining steps to finding noise(x, y, z) are now as follows:

1. Each wavelet is a product of
• a cubic weight that drops to zero at radius 1
• a linear function, which is zero at (i, j, k)

2. To compute the wavelet we must
• get (x, y, z) relative to the wavelet center
• compute the weight function
• multiply the weight by the linear function

First we must get (x, y, z) relative to the wavelet center:

[u, v, w] = [x − i, y − j, z − k]

Note that u, v, w values are bounded by −1 ≤ u, v, w ≤ 1.
Now we must compute the dropoff Ω(i,j,k)(u, v, w) about [i, j, k]:

Ω(i,j,k)(u, v, w) = drop(u) × drop(v) × drop(w)

where each component dropoff is given by the cubic approximation

drop(t) = 1. − 3|t|2 + 2|t|3 (but zero whenever|t| > 1)

and we must multiply this by the linear function that has the desired gradient and a
value of zero at the wavelet center:

The value of wavelet(i,j,k) at (x, y, z) is now given by

Finally, noise (x, y, z) is given by the sum of the eight wavelets near (x, y, z).
Following is a complete implementation of noise over R3:

/* noise function over R3-implemented by a pseudorandom tricubic spline */

#include <stdio.h>
#include <math.h>

344 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(, , ,) [, ,]i j kG u v w⋅

(, ,) (, ,)(, ,)([, ,])i j k i j ku v w G u v wΩ ⋅

Team LRN

#define DOT(a,b) (a[0] * b[0] + a[1] * b[1] + a[2] * b[2])

#define B 256

static p[B + B + 2];
static float g[B + B + 2][3];
static start = 1;

#define setup(i,b0,b1,r0,r1) \
t = vec[i] + 10000.;
\ b0 = ((int)t) & (B-1); \
b1 = (b0+1) & (B-1); \
r0 = t - (int)t; \
r1 = r0 - 1.;

float noise3(vec)
float vec[3];
{

int bx0, bx1, by0, by1, bz0, bz1, b00, b10, b01, b11;
float rx0, rx1, ry0, ry1, rz0, rz1, *q, sy, sz, a, b, c, d, t, u, v;
register i, j;

if (start) {
start = 0;
init();

}

setup(0, bx0,bx1, rx0,rx1);
setup(1, by0,by1, ry0,ry1);
setup(2, bz0,bz1, rz0,rz1);

i = p[bx0];
j = p[bx1];

b00 = p[i + by0];
b10 = p[j + by0];
b01 = p[i + by1];
b11 = p[j + by1];

#define at(rx,ry,rz) (rx * q[0] + ry * q[1] + rz * q[2])

#define s_curve(t) (t * t * (3. - 2. * t))

#define lerp(t, a, b) (a + t * (b - a))

sx = s_curve(rx0);
sy = s_curve(ry0);
sz = s_curve(rz0);

Constructing the noise Function 345

Team LRN

q = g[b00 + bz0] ; u = at(rx0,ry0,rz0);
q = g[b10 + bz0] ; v = at(rx1,ry0,rz0);
a = lerp(sx, u, v);

q = g[b01 + bz0] ; u = at(rx0,ry1,rz0);
q = g[b11 + bz0] ; v = at(rx1,ry1,rz0);
b = lerp(sx, u, v);

c = lerp(sy, a, b); /* interpolate in y at low x */

q = g[b00 + bz1] ; u = at(rx0,ry0,rz1);
q = g[b10 + bz1] ; v = at(rx1,ry0,rz1);
a = lerp(sx, u, v);

q = g[b01 + bz1] ; u = at(rx0,ry1,rz1);
q = g[b11 + bz1] ; v = at(rx1,ry1,rz1);
b = lerp(sx, u, v);

d = lerp(sy, a, b); /* interpolate in y at high x */

return 1.5 * lerp(sz, c, d); /* interpolate in z */
}

static init()
{

long random();
int i, j, k;
float v[3], s;

/* Create an array of random gradient vectors uniformly on the
unit sphere */
srandom(1);
for (i = 0 ; i < B ; i++) {

do { /* Choose uniformly in a cube */
for (j=0 ; j<3 ; j++)

v[j] = (float)((random() % (B + B)) - B)/B;
s = DOT(v,v);

} while (s > 1.0); /* If not in sphere try again */
s = sqrt(s);
for (j = 0 ; j < 3 ; j++) /* Else normalize */

g[i][j] = v[j] / s;
}

/* Create a pseudorandom permutation of [1 .. B] */
for (i = 0 ; i < B ; i++)

p[i] = i;
for (i = B ; i > 0 ; i -= 2) {

k = p[i];
p[i] = p[j = random() % B];
p[j] = k;

346 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

}

/* Extend g and p arrays to allow for faster indexing, */
for (i = 0 ; i < B + 2 ; i++) {

p[B + i] = p[i];
for (j = 0 ; j < 3 ; j++)
g[B + i][j] = g[i][j];

}
}

RECENT IMPROVEMENTS TO THE NOISE FUNCTION
I recently made some tweaks to the noise function that make it look better and run
somewhat faster (Perlin 2002). Note that the cubic interpolation polynomial 3t2 −
2t3 has a derivative of 6 − 12t, which has nonzero first and second derivatives at t =
0 and t = 1. These create second-order discontinuities across the coordinate-aligned
faces of adjoining cubic cells, which become noticeable when a noise-displaced sur-
face is shaded, and the surface normal (which is itself a derivative operator) acquires
a visibly discontinuous derivative. We can instead use the interpolation polynomial
6t5 − 15t4 + 10t3, which has zero first and second derivatives at t = 0 and t = 1. The
improvement can be seen by comparing the two noise-displaced superquadrics (see
Figure 12.1).

Recent Improvements to the noise Function 347

(a) (b)

FIGURE 12.1 (a) Noise interpolated with 3t2 − 2t3; (b) noise interpolated with 6t5 − 15t4 + 10t3.

Team LRN

Also, we can speed up the algorithm while reducing grid-oriented artifacts, by
replacing the g array with a small set of fixed gradient directions:

(1, 1, 0),(−1, 1, 0),(1, −1, 0),(−1, −1, 0),

(1, 0, 1),(−1, 0, 1),(1, 0, −1),(−1, 0, −1),

(0, 1, 1),(0, −1, 1),(0, 1, −1),(0, −1, −1)

This set of gradient directions does two things: (1) it avoids the main axis and long
diagonal directions, thereby avoiding the possibility of axis-aligned clumping, and
(2) it allows the eight inner products to be effected without requiring any multiplies,
thereby removing 24 multiplies from the computation. The improvement can be seen
by comparing the two gradient strategies (see Figure 12.2).

RAYMARCHING
To see hypertexture, you need a raymarcher renderer. I’ve implemented the ray-
marcher in two parts. First I built a system layer—the part that never changes. This
renders hypertexture by marching a step at a time along each ray, accumulating den-
sity at each sample along the way. There are all kinds of hooks for user interaction
built into the raymarcher.

Then, for each type of hypertexture, I construct different “application” code,
describing a particular hypertexture. At this point in the process I can safely wear the

348 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(a) (b)

FIGURE 12.2 (a) Noise with old gradient distribution; (b) noise with new gradient distribution.

Team LRN

hat of a “naive user.” Everything is structured so that at this level I don’t have to
worry about any system details. All I really need to worry about is what density to
return at any point in R3. This makes it very painless to try out different types of
hypertexture.

System Code: The Raymarcher

I render hypertexture by “raymarching”—stepping front to back along each ray
from the eye until either total opacity is reached or the ray hits a back clipping plane.
Conceptually, the raymarching is done inside the unit cube: −0.5 < x, y, z < 0.5. A
4 × 4 viewing matrix transforms this cube to the desired view volume.

One ray is fired per pixel; the general procedure is as follows:

step = 1.0/resolution;
for (y = -0.5 ; y < 0.5 ; y += step)
for (x = -0.5 ; x < 0.5 ; x += step) {

[point, point_step] = create_ray([x,y,-0.5], [x,y,-0.5+step], view_matrix);
previous_density = 0.;
init_density_function(); /* User supplied */
color = [0,0,0,0];
for (z = -0.5 ; z < 0.5 && color.alpha < 0.999 ; z += step} {

density = density_function(point); /* User supplied */
c = compute_color(density); /* User supplied */

/* Do shading only if needed */

if (is_shaded && density != previous_density) {
normal = compute_normal(point, density);
c = compute_shading(c, point, normal); /* User supplied */
previous_density = density;

}

/* Attenuation varies with resolution */

c[3] = 1.0 - pow(1.0 - c[3], 100. * step);

/* Integrate front to back */

if (c[3] > 0.)} {
t = c[3] * (1.0 - color.alpha);
color += [t*c.red, t*c.green, t*c.blue, t];
}

Raymarching 349

Team LRN

/* March further along the ray */

point += point_step;
}

}

Application Code: User-Defined Functions

The “user” gets to define four functions to create a particular hypertexture:

void init_density_function();
float density_function(float x, float y, float z);
color compute_color(float density);
color compute_shading(color c, vector point, vector normal);

What makes things really simple is that as a user you only have to define behavior at
any given single point in space—the raymarcher then does the rest for you.

• init_density_function()—This function is called once per ray. It gives you a
convenient place to compute things that don’t change at every sample.

• density_function()—This is where you specify the mapping from points to
densities. Most of the behavior of the hypertexture is contained in this
function.

• compute_color()—Here you map densities to colors. This also gives you a
chance to calculate a refractive index.

• compute_shading()—Nonluminous hypertextures react to light and must be
shaded. The model I use is to treat any substance that has a density gradient as
a translucent surface, with the gradient direction acting as a normal vector, as
though the substance consists of small, shiny, suspended spheres.

In the raymarcher library I’ve included a Phong shading routine. I usually just
call that with the desired light direction, highlight power, and so on.

Shading is relatively expensive, since it requires a normal calculation. Also, in
many cases (e.g., self-luminous gases) shading is not necessary. For this reason, shad-
ing is only done if the user sets an is_shaded flag.

The raymarcher computes normals for shading by calling the user’s density func-
tion three extra times:

350 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

vector = compute_normal(point, density) {
vector d = = [

density_function[point.x - epsilon, point.y, point.z] - density,
density_function[point.x, point.y - epsilon, point.z] - density,
density_function[point.x, point.y, point.z - epsilon] - density];

return d / |d|;
}

The preceding is the basic raymarcher. Two features have not been shown—re-
fraction and shadows. Shadows are done by shooting secondary rays at each ray step
where density != 0. They are prohibitively expensive except for hypertextures with
“hard,” fairly sharpened surfaces. In this case the accumulated opacity reaches total-
ity in only a few steps, and so relatively few shadow rays need be followed.

Refraction is done by adding a fifth component to the color vector—an index of
refraction. The user sets c.irefract (usually from density) in the compute_color
function. The raymarcher then uses Snell’s law to shift the direction of point_step
whenever c.irefract changes from one step along the ray to the next. An example
of this is shown in Figure 12.3.

Since the density can change from one sample point to the next, it follows
that the normal vector can also change continuously. This means that refraction
can occur continuously. In other words, light can travel in curved paths inside a

Raymarching 351

FIGURE 12.3 Blue glass.

Team LRN

hypertexture. This raises some interesting possibilities. For example, imagine a man-
ufacturing process that creates wafers whose index of refraction varies linearly from
one face to the other (probably by some diffusion process). By carving such a mate-
rial, you could create optical components within which light travels in curved paths.
It might be possible to do things this way that would be very difficult or impossible
to do with traditional optical components (in which light only bends at discrete sur-
faces between materials). The results of such components should be quite straight-
forward to visualize using refractive hypertexture.

INTERACTION
Various kinds of interaction with hypertextures are possible, including modifica-
tion of parameters and algorithmic models and various types of previewing, such
as z-slicing.

Levels of Editing: Changing Algorithms to Tweaking Knobs

There are three levels of changes you can make. I describe them in order of slowest to
implement (and most sweeping in effect) to fastest to implement.

• Semantic changes—changing the user functions: This is redefining your
hypertexture methods. This type of change is covered in detail in the next
section.

• Parameters you change by editing an input file of numeric parameters: This
saves the time of recompiling the user functions, when all you want to change is
some numeric value. The raymarcher has a mechanism built into it that lets you
refer to a file that binds symbols to floating-point values when you run the pro-
gram. These bindings are made accessible to the hypertexture designer at the
inner rendering loop.

In the following examples, I will adopt the following convention: Any sym-
bol that begins with a capital letter refers to a parameter whose value has been
set in this input file. Symbols beginning with lowercase letters refer to variables
that are computed within the individual rays and samples.

• Parameters you change from the command line: These override any parameters
with the same name in the input file. They are used to make animations show-
ing things changing. For example, let’s say you want to create an animation of
a sphere with an expanding Radius, and you are working in the UNIX csh
shell:

352 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

set i = 0
while ($i < 100)

rm hypertexture -Radius $i sphere > $i
@ i++

end

There are also some special parameters: XFORM for the view matrix, RES for im-
age resolution, and CLIP for image clipping (when you just want to recalculate part
of an image). These can be set either from the command line or as an environment
variable (the former overrides the latter, of course).

In this chapter, I have hardwired numerical parameters into a number of expres-
sions. These are just there to “tune” the model in various useful ways. For example,
the expression “100 * step” appearing above in the attenuation step of the ray-
marcher has the effect of scaling the integrated density so that the user can get good
results by specifying densities in the convenient range [0.0 . . . 1.0].

z-Slicing

For much of the time when designing hypertextures, you just need a general sense of
the shape and position of the textured object. In this case it is useful to evaluate only
at a fixed z—setting the value of a ray to the density at only one sample point a fixed
distance away. This obviously runs many times faster than a full raymarch. I use z-
slicing for general sizing and placement, often going through many fast iterations in
z-slice mode to get those things just right.

SOME SIMPLE SHAPES TO PLAY WITH
Generally, the creation of a hypertexture begins with an algorithmically defined
shape. This is the shape that will subsequently be modified to create the final highly
detailed hypertexture.

Sphere

Start with a sphere with inner_radius and outer_radius defined. Inside inner_
radius, density is everywhere 1.0. Beyond outer_radius, density has dropped com-
pletely to 0.0. The interesting part is the hollow shell in between:

/* (1) Precompute (only once) */

rr0 = outer_radius * outer_radius;
rr1 = inner_radius * inner_radius;

Some Simple Shapes to Play With 353

Team LRN

/* (2) radius squared */

t = x * x + y * y + z * z;

/* (3) compute dropoff */

if (t > rr0)
return 0.;

else if (t < rr1)
return 1.;

else
return (t - rr0) / (rr1 - rr0);

Egg

To create an egg, you start with a sphere, but distort it by making it narrower at the
top. A good maximal “narrowing” value is 2/3, which is obtained by inserting the
following step into the sphere procedure:

/* (1.5) introduce eccentricity */

e = (5. - y / outer_radius) / 6.;
x = x / e;
z = z / e;

Notice that we must divide, not multiply, by the scale factor. This is because x
and z are the arguments to a shape-defining function—to make the egg thinner at the
top, we must increase (not decrease) the scale of x and z.

EXAMPLES OF HYPERTEXTURE
We now show various examples of hypertexture. Each example will illustrate one or
more hypertexture design principles.

Explosions

The texture component here is turbulence uniformly positioned throughout space.

t = 0.5 + Ampl * turbulence(x, y, z);
return max(0., min(1. t));

Shape is just a sphere with inner_radius = 0.0, which ensures that the fuzzy re-
gion will consist of the entire sphere interior.

354 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

The density function is

d = shape(x, y, z);
if (d > 0.)

d = d * texture(x, y, z);
return d;

You can animate an explosion by increasing the sphere outer_radius over time.
Figure 12.4(a) shows an explosion with outer_radius set to 0.4. Figure 12.4(b)
shows the same explosion with outer_radius set to 0.8.

To create these explosions I oriented the cusps of the texture inward, creating
the effect of locally expanding balls of flame on the surface. Contrast this with Fig-
ure 12.5 (Perlin and Hoffert 1989), where the cusps were oriented outward to create
a licking flame effect.

Life-Forms

Just for fun, I placed a shape similar to the above explosions inside of an egg
shape of constant density, as in Figure 12.6. By pulsing the outer_radius and Ampl

Examples of Hypertexture 355

(b)(a)

FIGURE 12.4 (a) Explosion with outer_radius set to 0.4; (b) same explosion with outer_radius set to 0.8.

Team LRN

FIGURE 12.5 Fireball.

FIGURE 12.6 Explosion shape inside an egg.

Team LRN

rhythmically, while rotating slightly over time, I managed to hatch some rather in-
triguing simulations.

Space-Filling Fractals

Figure 12.7(a) through 12.7(d) shows steps in the simulation of a sparsely fractal
material. At each step, noise() is used to carve volume away from the egg. Then
noise() of twice the frequency is carved away from the remainder, and so on.

Figure 12.8 shows one possible result of such a process, a shape having infinite
surface area and zero volume.

Woven Cloth

Cloth is defined by the perpendicular interweaving of warp threads and woof
threads. We define a warp function warp(x, y, z), where y is the direction perpen-
dicular to the cloth:

/* (1) make an undulating slab */

if (fabs(y) > PI)
return 0.;

y = y + PI/2 * cos(x) * cos(z);
if (fabs(y) > PI/2)

return 0.;

density = cos(y);

/* (2) separate the undulating slab into fibers via cos(z) */

density = density * cos(z);

/* (3) shape the boundary into a hard surface */

density = density * density;
density = bias(density, Bias);
density = gain(density, Gain);
return density;

We can then define a woof function by rotating 90 degrees in z, x, and flipping in
y. The complete cloth function is then

cloth(x, y, z) = warp(x, y, z) + warp(z, -y, x);

Examples of Hypertexture 357

Team LRN

358 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(b)(a)

(c) (d)

FIGURE 12.7 Steps in the simulation of a sparsely fractal material.

Team LRN

You can make the cloth wrinkle, fold, and so on, by transforming x, y, and z be-
fore applying the cloth function. You can also add high frequency noise() to x, y, z
before applying cloth(), to simulate the appearance of roughly formed fibers. In the
examples shown I have done both sorts of things.

In the cloth examples shown here, I “sharpen” the surface by applying the
bias() and gain() functions. Figure 12.9(a) through 12.9(d) shows extreme close-
ups of cloth with various bias and gain settings. Figure 12.9(a) has low bias and
gain. In Figure 12.9(b) I increase gain, which “sharpens” the surface. In Figure
12.9(c) I increase bias, which expands the surface, in effect fattening the individual
threads. In Figure 12.9(d) I increase both bias and gain. Figure 12.10 shows a high-
resolution rendering of a low-bias, high-gain cloth, which gives a “thread” effect.
Conversely, a high bias, low gain would give a “woolen” effect.

ARCHITEXTURE
Now let’s take an architectural sketch and “grow” solid texture around it, ending up
with hard textured surfaces. This is similar in spirit to Ned Greene’s voxel automata

Architexture 359

FIGURE 12.8 A shape having infinite surface and zero volume.

Team LRN

algorithm. The difference is that whereas he literally “grows” a volume from a defin-
ing skeleton, one progressive voxel layer at a time, the hypertexture approach di-
rectly evaluates its result independently at each point in space.

I start with a skeleton of architectural elements. This can be supplied by free-
hand drawing or, alternatively, generated from a CAD program. Each architectural
element is a “path” in space formed by consecutive points Pi.

Each path defines an influence region around it, which gives the architexture its
shape component. This region is created by “blurring” the path. To do this I treat

360 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(a)

(c)

(b)

(d)

FIGURE 12.9 Extreme close-ups of cloth with various bias and gain settings.

Team LRN

each point along the path as the center of a low-density soft sphere of radius R. The
shape density at a given point is given by

where the normalizing constant K is the distance between successive points on the
path. For each volume sample, the cost per path point is a dot product and some
adds, which is fairly expensive. To speed things up I maintain a bounding box
around each path, which eliminates most paths from consideration for any given
sample point.

I’ve only played so far with rocklike textures for architexture. The texture com-
ponent of this is given by a simple noise-based fractal generator:

Architexture 361

x
�

2 2
2

1
path_shape() max(0,)i

i

x R P x
KR

= − −∑� �

FIGURE 12.10 High-resolution rendering of a low-bias, high-gain cloth gives a “thread” effect.

log

log _

rock_texture() 2 (2)
resolution

f f

f base freq

x noise x−

=

= ∑� �

Team LRN

and I define the final density by

where I use the sharpening function to reduce the effective fuzzy region size about
one volume sample. For a given image resolution and shape radius R, correct
sharpen is done by

• scaling the density gradient about 0.5 by a factor of 1/R (adjusting also for
variable image resolution)

• clipping the resulting density to between 0.0 and 1.0

The idea of the above is that the larger R becomes, the smaller will be the gradi-
ent of density within the fuzzy region, so the more sharpening is needed. The actual
code I use to do this is

density = (density - 0.5) * (resolution / 600) / R + 0.5;
density = max(0.0, min(1.0, density));

I also decrease the shape’s radius R with height (y-coordinate), which gives archi-
tectural elements a sense of being more massive in their lower, weight-supporting
regions.

In Figures 12.11 and 12.12 I show a typical arch (which I suppose could archly
be called archetypical architexture). This started out as a simple curved line tracing
the inner skeleton, which was then processed as described above.

Figure 12.11 shows a sequence where three parameters are being varied. From
left to right the width of the arch at the base increases. From top to bottom the thick-
ness enhancement toward the base increases. These two parameters act in concert to
add a “weight-supporting” character to architextural elements. Finally, the ampli-
tude of the texture is increased linearly from the first image in the sequence to the
last. Figure 12.12 shows a high-resolution version of the bottom-right image in the
sequence.

The NYU Torch

In Figure 12.13, a number of hypertextures were used for various parts of the same
object to build an impression of this well-known New York University icon. The var-
ious amounts of violet reflected down from the flame to the torch handle were just
added manually, as a function of y.

362 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

sharpen(path_shape() rock_texture())x x+
� �

Team LRN

FIGURE 12.11 Arch with varying parameter values.

FIGURE 12.12 High-resolution version of the last image in the arch sequence.

Team LRN

Smoke

In a recent experiment we tried to create the look of an animating smoke column, us-
ing as simple a hypertexture as possible. This work was done in collaboration with
Ajay Rajkumar at NYU.

The basic approach was to create a smooth smoke “column” along the y-axis
and then to perturb this column in x,z—increasing the perturbation at greater y

364 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.13 New York University torch.

Team LRN

values. We added knobs for such things as column opacity and width. These “shap-
ing” knobs can have a great effect on the final result. For example, Figure 12.14(a)
and 12.14(b) vary only in their column width. Yet the difference in appearance be-
tween them is drastic.

Time Dependency

We make the smoke appear to “drift” in any direction over time by moving the do-
main of the turbulence in the opposite direction. In the following example, we do
this domain shift in both x and y.

We move y linearly downward, to give the impression of a rising current. We
move x to the left but increase the rate of movement at greater y values. This creates
the impression that the smoke starts out moving vertically, but then drifts off to the
right as it dissipates near the top.

The particular shape of the smoke can vary dramatically over time, yet the
general feel of the smoke stays the same. Compare, for example, the two images
in Figure 12.15(a) and 12.15(b), which are two frames from the same smoke
animation.

Smoke Rings

Figure 12.16 shows the formation over time of a smoke ring. Smoke rings will occur
when the turbulence function distorts the space sufficiently so that the column ap-
pears to double over on itself horizontally. We need to let this happen only fairly
high up on the column. If it happens too low, then the rings will appear to be form-
ing somewhere off in space, not out of the column itself.

Architexture 365

(b)(a)

FIGURE 12.14 Animating smoke column using simple hypertexture.

Team LRN

(a)

FIGURE 12.15 Appearance of “drift” in smoke animation.

(a) (b)

(c) (d)

(e) (f)

FIGURE 12.16 Formation of a smoke ring.

(b)

Team LRN

For this reason, we employ two different gain curves. One controls turbulence
amplitude near the column as a function of y, and the other controls turbulence am-
plitude far from the column as a function of y. The latter curve always lags behind
the former, thereby preventing low-lying smoke rings.

Optimization

Since smoke is quite sparse within its sampled volume, it is a good candidate for op-
timization based on judicious presampling. Tests on the AT&T Pixel Machine with
64 DSP32 processors showed that it took about 8 hours to compute a single frame of
a 640 × 480 × 640 volume. This is rather impractical for animation. To speed this
up, we precompute the image at a smaller resolution to find out where the smoke
lives within the volume. We then do the final computation only within those parts of
the volume.

More specifically, we do a preliminary raymarch at one-fourth the final x, y, z
resolution. Note that this requires only 1/64 as many density evaluations as would a
full computation. At each 4 × 4 pixel, we save the interval along z that bounds all
nonzero densities. For many pixels, this will be a null interval. Then to be conserva-
tive, at each pixel we extend this interval to be its union with the intervals at all
neighbor pixels.

We use this image of bounding z intervals to restrict the domain of the final
raymarching. We have found about a 30-fold speedup using this method—each im-
age now takes about 16 minutes to compute (including the time for the subsampled
prepass). Smoke is optimal for this type of speedup for two reasons: (1) since it is
sparse, the speedup is great, and (2) since density takes many sample widths to fall
off to zero, tiny details are not inadvertently skipped over.

Here is pseudocode for the smoke density function. It’s mostly just C code with
some unimportant details and declarations left out.

smoke_density_function(x, y, z)
{

/* k1, k2, etc. are the column shape knobs */

/* rotate z randomly about y, based on noise function */
/* this creates the impression of random “swirls” */

t = noise(x,y,z);
s = sin(t / 180. * PI);
c = cos(t / 180. * PI);
z = x * s + z * c;

Architexture 367

Team LRN

/* once the space is “swirled”, create the column of smoke */

/* 1) phase-shift x and z using turbulence; this varies with time */

x += k1 * phase_shift(x, y, z);
z += k2 * phase_shift(x, y, z + k3);

/* 2) define column by distance from the y-axis */

rx = (x * x + z * z) * k4;

/* 3) if inside the column, make smoke */

if (rx < =1.) {
rx = bias(rx, k5); /* the basic column shape is */
s = sin(PI * rx); /* a tube with hollow core */
return s * s;

}
else

return 0.;
}

phase_shift(x, y, z)
float x, y, z;
{

/* c1, c2, etc. are the “texture” knobs */

p[0] = c1 * x + bias(y + .5, .3) * TIME; /* vary with time */
p[1] = c1 * y + TIME;
p[2] = c1 * z + c2;
g = gain(y + .5, c3); /* dropoff with y */

/* these 3 lines remove smoke rings that are */
/* too low in y to be physically plausible */

r = max(0., 1. - (x * x + z * z) * c5);
gl = gain(bias(y + .5, c4), c3); /* smoke ring dropoff with y */
g = g * LERP(gl, r, 1.);

return g * (turbulence(p, 1., RES) + c6); /* c6 recenters the column */

}

TURBULENCE
The turbulence function, which you use to make marble, clouds, explosions, and so
on, is just a simple fractal generating loop built on top of the noise function. It is not

368 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

a real turbulence model at all. The key trick is the use of the fabs() function, which
makes the function have gradient discontinuity “fault lines” at all scales. This fools
the eye into thinking it is seeing the results of turbulent flow. The turbulence()
function gives the best results when used as a phase shift, as in the familiar marble
trick:

sin(point + turbulence(point) * point.x);

Note the second argument in the following code, lofreq, which sets the lowest
desired frequency component of the turbulence. The third argument, hifreq, is used
by the function to ensure that the turbulence effect reaches down to the single pixel
level, but no further. I usually set this argument equal to the image resolution.

float turbulence(point, lofreq, hifreq)
float point[3], freq, resolution;
{

float noise3(), freq, t, p[3];

p[0] = point[0] + 123.456;
p[1] = point[1];
p[2] = point[2];

t = 0;
for (freq = lofreq ; freq < hifreq ; freq *= 2.) {

t += fabs(noise3(p)) / freq;

p[0] *= 2.;
p[1] *= 2.;
p[2] *= 2.;

}
return t - 0.3; /* readjust so that mean returned value is 0.0 */

}

ANTIALIASED RENDERING OF PROCEDURAL TEXTURES
This section describes a way of antialiasing edges that result from conditionals in
procedurally defined images, at a cost of one sample per pixel, wherever there are no
other sources of high frequencies. The method proceeds by bifurcating the calcu-
lation over the image at conditional statements. Where a pixel straddles both true
and false branches under its convolution area, both branches are followed and
then linearly combined. A neighbor-comparing, antialiased, high-contrast filter is
used to define regions of bifurcation. The method proceeds recursively for nested
conditionals.

Antialiased Rendering of Procedural Textures 369

Team LRN

Background

If an image is described by an algorithmic procedure, then in principle there are cases
where antialiasing can be done analytically, without supersampling, just by examin-
ing the procedure itself.

Generally speaking, there are two sources of high frequencies for procedurally
generated images. Edge events are caused by conditional statements that do Boolean
operations on continuous quantities. For example, there are infinitely high frequen-
cies on the image of a circular disk formed by the following conditional statement
when sampled over the unit square:

if (x − .5)2 + (y − .5)2 < .25 then white else black

The edges of discontinuity in this image can, in principle, be detected by analyz-
ing the statement itself. Nonedge high-frequency events cannot be detected in this
way. For example, to render the image represented by

if sin(105 x) in(105 y) > 0 then white else black

we need to resort to statistical oversampling or other numerical quadrature meth-
ods, since this expression has inherently high frequencies.

The Basic Idea

As in Perlin (1985), consider any procedure that takes a position (x, y) in an image as
its argument and returns a color. Usually, we create an image from such a procedure
by running the procedure at enough samples to create an antialiased image. Where
the results produce high variance, we sample more finely and then apply a weighted
sum of the results to convolve with a pixel reconstruction kernel.

One common source of this high local variance is the fact that at neighboring
samples the procedure follows different paths at conditional statements. No matter
how finely we oversample, we are faced with an infinitely thin edge on the image—a
step function—between the true and false regions of this conditional.

Our method is to identify those edges on the image caused by conditional ex-
pressions. We do this by comparing neighboring sample values at each conditional
expression in the computation. We use the results of this comparison to create an
antialiased filter that represents the resulting step function as though it had been
properly sampled.

To do this, we can view the procedure as a single-instruction-multiple-data
(SIMD) parallel operation over all samples of the image. More precisely, we view the

370 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

computation as a reverse Polish stack machine. Items on the stack are entire images.
For example, the “+” operator takes two images from the stack, adds them sample
by sample, and puts the result back on the stack.

This calculation proceeds in lockstep for all samples. When a conditional is
reached, we can evaluate both sides of the conditional and then just disregard the
results from one of the branches.

Obviously, this approach is wasteful. Instead, we would like to go down only
one path wherever possible. We arrange to do this as follows. We recast each condi-
tional expression using a pseudofunction ifpos, so that expr ifpos evaluates to 1
when expr > 0 and 0 otherwise. Using the ifpos operator we can recast any function
containing conditionals into an expression

expr ifpos [ToDoIfFalse, ToDoIfTrue] LERP

where t [a, b] LERP is a linear interpolation operation defined as follows: when t
≤ 0 or t ≥ 1, LERP returns a or b, respectively. When 0 < t < 1, LERP returns a +
t(b − a). For example:

abs(x) = if x < 0 then −x else x

can be expressed as

x ifpos [−x , x]LERP

Over the convolution kernel of any pixel, ifpos will return true for some samples
and false for others, creating a step function over the image. We actually return a
floating-point value between 0.0 and 1.0 to express the convolution of this step func-
tion with each sample’s reconstruction kernel. Now the problem of properly sam-
pling edges that have been formed from conditions is completely contained within
one pseudofunction.

This is done as follows. When execution of our SIMD stack machine gets to an
ifpos function, it looks at the image on top of the stack and runs a high-contrast filter
h on this image, which examines the neighbors of each sample. If the sample and its
neighbors are all positive or all negative, then h returns 1 or 0, respectively. Other-
wise, h approximates the gradient near the sample by fitting a plane to the values at
neighboring samples. Where there is a large variance from this plane, then super-
sampling must be done—the procedure must be run at more samples.

But where there is a low variance, then just from the available samples, h can
produce a linear approximation to the argument of ifpos in the neighborhood of

Antialiased Rendering of Procedural Textures 371

Team LRN

the sample. It uses this to construct a step function, which it then convolves with the
sample’s reconstruction kernel. As we shall see, this is a fairly inexpensive procedure.

After the h function is run, the samples of the image on the stack will fall into
one of three subsets:

value ≡ 0

0 < value < 1

value ≡ 1

We label these subsets F, M, and T (for “false,” “midway,” and “true”), respectively.
Once h is run, we gather up all samples in (F union M) and run the ToDoIfFalse

statements on these. Then we gather up all samples in (T union M) and run the
ToDoIfTrue statements on these. Finally, we do a linear interpolation between the
two branches over the samples in M and place the reconstructed image on the stack.

Because each conditional splits the image into subsets, some of a sample’s neigh-
bors may be undefined inside a conditional. This means that within nested condi-
tionals, h may not be faced with a full complement of neighbors. This happens near
samples of the image where several conditional edges intersect. As long as there is at
least one horizontal and one vertical neighbor, h can re-create the gradient it needs.
When there are no longer enough neighbors, h flags a “high-variance” condition,
and supersampling is then invoked.

More Detailed Description

In this section we describe the flow of control of the algorithm. We maintain a stack
of lists of current_samples. We start with current_samples = ALL samples. At any
given moment during execution, samples are examined only if they are in the current
list.

(I) When the ifpos token is encountered:
Evaluate high-contrast filter for all samples in current_samples.
Use the result to make the three sublists: F, M, T.
Push these sublists onto an FMT stack.
Push a new current_samples list (M union T).

(II) Continue to evaluate normally, over samples in current_samples.
If the ifpos code is encountered, recurse to (I).

(III) When the beginning of the ToDoIfFalse code is encountered:
Pop the current_samples stack.
Push a new current_samples list (F union M).

372 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

Evaluate normally until matching LERP token is encountered.
If the ifpos token is encountered first, recurse to (I).

(IV) When the LERP token is encountered:
Pop the current_samples stack.
For all samples in current_samples:
For all stacktop[1] := LERP(stacktop[1], stacktop[−1], stacktop[0])
Pop the FMT stack.

The High-Contrast Filter

Given a large enough subset of the eight neighbors around a sample, we can use the
value at the sample and its neighbors to construct an approximation to the integral
under the sample’s reconstruction kernel in the area where ifpos evaluates to 1.

Let f(x, y) denote the value of the expression at any small offset (x, y) from the
sample. First we do a least-squares fit of the differences in value between the sample
and its neighbors to approximate the x and y partials. If the variance is high for ei-
ther of these two computations, then we give up and resort to supersampling the
procedure in the neighborhood of the sample.

Otherwise, we can use the linear approximation function ax + by + c = 0 near
the sample, where c = f(0,0), and a and b approximate the x and y partials of f,
respectively.

We want to find out the integral under the sample’s reconstruction kernel of the
step function

if f(x, y) > 0 then 1 else 0

We assume a circularly symmetric reconstruction kernel.
The problem at this stage is illustrated in Figure 12.17. Figure 12.17(a) shows

the sample reconstruction kernel, Figure 12.17(b) shows the intersection of this ker-
nel with a linear approximation of the function near the sample, Figure 12.17(c)
shows the step function induced by this linear function, and Figure 12.17(d) shows
the region under the kernel where this step function is positive.

Since we assume the kernel is circularly symmetric, finding the convolution
reduces to a one-dimensional problem. We need only compute the perpendicular
distance from the sample to the step and then use a spline fit to approximate the
integral under the kernel in the positive region of the step function.

To do this, we compute the magnitude of the linear gradient

Antialiased Rendering of Procedural Textures 373

2 2()f a b′ = +

Team LRN

Then we calculate the distance from the sample to the line of the image where this
function equals zero by

d = f(x,y) / |f′|

Finally, we approximate the integral of the reconstruction kernel by a cubic spline:

if t < −.5 then 0 else if t > .5 then 1 else 3t + .5)2 − 2(t + .5)3

Examples

Figure 12.18(a) through 12.18(f) shows a succession of steps in the creation of a sim-
ple procedural image that requires two levels of nested conditionals. Each image is
on the top of the stack during a particular snapshot of execution.

The image is formed by doing a conditional evaluation of the circular disk (Fig-
ure 12.18(a)):

(x − .5)2 + (y − .5)2

374 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(a)

(c)

(b)

(d)

FIGURE 12.17 Reconstruction kernel.

Team LRN

Antialiased Rendering of Procedural Textures 375

(a)

(c)

(e)

(b)

(d)

(f)

FIGURE 12.18 Creation of a simple procedural image that requires two levels of nested
conditionals.

Team LRN

Then .32 is subtracted, a conditional is done, execution bifurcates, and noise (Perlin
1985) is applied to the outside of the disk (Figure 12.18(b)). Then sin(10x +
noise(x, y)/10)sin(10y + noise(x, y)/10) is evaluated inside the disk (Figure 12.18(c)),
and another conditional is done. A constant is applied to the negative areas, and
.5 + noise(3x, y) is applied to the positive areas (Figure 12.18(d)). Finally, Figure
12.18(e) and 12.18(f) show the successive reconstruction of the two nested levels of
conditionals.

To Sum Up

The previous method recasts image synthesis as a set of recursively bifurcating SIMD
processes over image samples. In this way we were able to do true procedural
antialiasing of edges.

This approach differs from previous approaches in that it finds and resolves
sampling problems by using information contained in the image synthesis algorithm
itself, usually without resorting to supersampling. Whether such methods can be ap-
plied to the general image synthesis problem is an open question.

SURFLETS
Instead of regenerating hypertexture procedurally all the time, it is sometimes useful
to “cache” it in some format for display. For this purpose we want rapid and ac-
curate display, as well as a good ability to do light propagation—including self-
shadowing and diffuse penumbra.

This section describes a useful intermediate representation for procedurally gen-
erated volumes. The approach is based on a sparse wavelet representation and is
particularly suitable for the sorts of free-form surfaces generated by hypertextural
algorithms.

Other sorts of complex volumetric data can also be conveniently represented us-
ing this approach, including medical data (CT and MR) and meteorological, geolog-
ical, or molecular surface data.

A surflet is a flavor of wavelet that can be used to construct free-form surfaces.
Surfaces obtained by evaluating scalar volumes or procedural volumetric models
such as hypertexture can be stored in the intermediate form of surflets. This allows
us when rendering such surfaces to (1) do self-shadowing, including penumbras,
from multiple light sources, and (2) have the option at rendering time to either (a)
further refine the surface locally from the volume data or (b) do a bump texture ap-
proximation or any mixture of (a) and (b). Thus issues of lighting placement and
level-of-details differences can be resolved at a postprocessing stage, after the bulk of

376 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

the computation is completed. This is work I did mainly with Benjamin Zhu and is
based in part on earlier work that I did together with Xue Dong Yang.

First we will define the surflet model and show a particular implementation.
Then we will discuss how to find visible surfaces. We will show how, by using
surflets, we can decide locally at rendering time whether true volumetric surface re-
finement or shading approximation should be performed. Finally, we will introduce
a multiresolution, hierarchical modeling of surflets and describe a way to do self-
shadowing with penumbra.

Introduction to Surflets

Volume visualization studies the manipulation and display of volume data. De-
pending on the intermediate representation between raw data and final display,
volume visualization techniques can be classified as surface-based techniques (or sur-
face modeling) (Lorensen and Cline 1987, 1990; Wyvill, McPheeters, and Wyvill
1986) and volume rendering (Drebin, Carpenter, and Hanrahan 1988; Hanrahan
1990; Kajiya and Von Herzen 1984; Levoy 1988, 1990a, 1990b, 1990c; Sabella
1988; Westover 1990). Methods in the first category approximate surfaces of inter-
est (determined by thresholds) by geometric primitives and then display these primi-
tives, whereas volume rendering directly operates on the volume data and renders
the scenes.

Surface modeling is the main topic of this discussion. Since surfaces offer a
better understanding of the external structure of volumes, accurately reconstructing
surfaces from volumes and subsequently rendering the surfaces efficiently is very im-
portant in practice. Surface modeling techniques differ from one another in that dif-
ferent primitives can be used to approximate the surfaces of interest. Keppel (1975)
and Fuchs (Fuchs, Kedem, and Uselton 1977) construct contours on each 2D slice
and connect contours on subsequent slices with triangles. The cuberille model uses
parallel planes to create surfaces (Chen et al. 1985; Gordon and Reynolds 1985;
Hoehne et al. 1990). The marching-cube algorithm uses voxel-sized triangles to ap-
proximate surfaces (Cline, Lorensen, and Eudke 1988; Lorensen and Cline 1987,
1990; Wyvill, McPheeters, and Wyvill 1986). Bicubic patches can also be used to re-
construct surfaces (Gallagher and Nagtegaal 1989).

All of these techniques share a common characteristic: the geometric primitives
involved in surface reconstruction are in an explicit form. This leads to an interesting
question: Can we define the surfaces of interest in an implicit form? If so, what are
the advantages of using the implicit representation?

In the following sections, a “surflet” model is introduced to define free-form sur-
faces. Those sections will describe methods to find visible surfaces, perform selective

Surflets 377

Team LRN

surface refinement, and do self-shadowing with penumbra. A multiresolution, hier-
archical modeling of isosurfaces is sketched. Experimental results are shown to dem-
onstrate the benefits of adopting this new model.

Surflets as Wavelets

As discussed earlier in the section on noise, a wavelet (Mallat 1989a, 1989b) is a
function that is finite in extent and integrates to zero. Decomposing signals or im-
ages into wavelets and then doing analysis on the wavelet decomposition is a power-
ful tool in signal and image recognition.

We use a specific kind of continuous wavelet, which we call surflets, to approxi-
mate surfaces. We use a summation of surflets that together define a function over R3

so that the desired surface is closely approximated by the locus of points where (i)
the summation function is zero but where (ii) the function’s gradient magnitude is
nonzero. The general intuition here is that each surflet is used as a free-form spline
that approximates a little piece of localized surface. All of these surflets sum together
to form isosurfaces of interest.

We define each surflet as follows: let be a sampled location in space
and let r be its sampling radius. Then if the sample at has a value of d and a gradi-
ent vector of , we define a wavelet approximation to the sample at
near by

where

• is any point in R3

• is the wavelet center

• is the wavelet gradient

• r is the wavelet radius

• i varies over the three coordinates

• drop(t) is defined as for the noise function: 2t3 − 3t2

At points with distance greater than r from we assign a value of zero.
defines a surflet. Since each sample at cannot affect any sampled lo-

cation farther than r away from its center, the wavelet contribution is localized.

378 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

[, ,]p x y z=
�

p
�

n
�

[, ,]x x y z=
�

p
�

()i i
i i i

x p
drop n x p

r
−

× −∏ ∑Ω Ξ

x
�

p
�

n
�

p
�

[, ,]p d n
� �

p
�

Team LRN

It should be pointed out that other continuous functions might also work well,
as long as each surflet has a limited extent in terms of its wavelet contribution, and
this contribution drops from 1.0 down to 0.0 monotonically. The cubic drop-off
function is chosen due to its simplicity.

In practice, we define the surflets on a rectangular grid. When surflets are refined
(see ahead), the size of the sampling grid is successively halved. We generate surflets
from a functional sampling with the following steps:

• Subtract the desired isovalue from all samples.

• Find samples that have any six-connected neighbor with density of opposite
sign.

• Approximate surflet normal by density difference between neighbors.

• Approximate surflet normal .

• Use to locate center near the sample.

We use the normal to locate the surflet center as follows:

• Approximate surflet normal by taking density difference between neighbor
samples along each coordinate axis.

• Use to locate surflet center :

Note that we end up with something very closely related to the noise function (Perlin
1985). In fact, the noise function can be viewed as the surflet decomposition of a
random density function sampled at a rectangular grid.

Finding Visible Surfaces

Because surflets are well-defined analytic functions, it is possible to find the intersec-
tion of a ray with the zero surface of a summation-of-surflets function.

Since the contribution from each surflet has a limited extent, for each point in
R3 only a finite number of surflets will have a nonzero wavelet contribution to
Two alternatives are possible for finding a ray-surface intersection. A numerical
method such as binary division or Newton iteration can guarantee convergence to
the true intersection, given initial guesses close to the actual solution. However, since
all these numerical methods involve iterative root finding, they can be quite slow. We
instead use a faster approximation method.

Surflets 379

x
�

.x
�

n
�

n
�

n
�

p
�

n
�

n
�

p
�

sample samplep x d n= −
� � �

Team LRN

As in cone tracing (Amanatides 1984), we trace a fat ray (a cone) into the scene.
We represent each surflet by a sphere whose radius is the surflet’s r times a constant
factor and whose center is . We shrink the cone ray into a thin line and grow all
the spheres by the cross-sectional width of the cone at the surflet. This is equivalent
to the computation in Amanatides (1984). Since perspective projection is used, the
spheres that approximate the surflets become variously sized. Each sphere is given a
weight according to how far along its radius it intersects the ray as well as the magni-
tude of its gradient. Spheres that mutually intersect each other within the ray form a
local bit of surface. We use a scheme similar to the fragment merging in Carpenter’s
A-buffer algorithm (Carpenter 1984) and use the weighted average of the surflet
normals as the surface fragment normal. All such surface fragments are evaluated
from front to back along the ray as opacity accumulates.

Shading is done as in Duff (1985). We stop raymarching when the opacity
reaches totality. Because we render one surflet at a time (as opposed to one ray at a
time), our surface approximation method is view dependent, in contrast to the nu-
merical approach, which is view independent.

Visible surfaces can be rendered efficiently by using a depth-sorting algorithm
similar to the Z-buffer algorithm. More efficiency can be derived by using the selec-
tive surface refinement described in the following section and the hierarchical surflet
modeling described in the section “Constructing a Surflet Hierarchy.”

Selective Surface Refinement

A sampled location is defined as a singularity if, along any coordinate axis, it is in-
side the surface while its two neighbors are outside the surface, or it is outside the
surface while its two neighbors are inside the surface.

We generally need to refine a surflet only when any one of the following condi-
tions is true:

• Due to perspective, the surflet is large with respect to a pixel on the viewing
plane.

• The surflet normal is nearly perpendicular to the line of sight, thus presenting a
silhouette edge.

• The surflet is a singularity.

However, if only the first condition is satisfied, then a surflet, no matter how large,
can be visually approximated by normal perturbation alone.

380 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

p
�

Team LRN

By using selective surface refinement, we can greatly reduce the rendering time.
Since surface refinement adapts to the complexity of a scene, different parts of the
scene can be rendered at different resolutions. This is very attractive in practice. We
have observed that the number of surflets involved in rendering decreases by more
than 50% when we start at a low resolution and perform selective surface re-
finement at the next higher resolution than when we start directly at the next resolu-
tion level.

A Surflet Generator

Surflets can be generated from either sampled scalar data or procedural volumetric
functions such as hypertexture. In the first case, we read in digitized samples from a
regular grid; in the latter case, we evaluate samples on a regular grid. One orthogo-
nal 2D slice is processed at a time. We always keep three slices, which helps us detect
surflets as well as singularities.

After each slice has been processed, we find those samples that have any neigh-
bors with density value on the opposite side of the isosurface density. At a candidate
sample located at point , we approximate the normal gradient by the density
difference d between the samples and its neighboring samples along each coordinate
axis. Forward difference, central difference, or a mixture of both (Hoehne et al.
1990) can be applied to get gradients. If the distance from the sample to the surface
is less than 0.5, then defines a surflet. This 0.5 bias is determined empirically
to compromise between two constraints: (1) If the distance is too small, we do not
have enough surflets to interlock with each other, and consequently we might get
undersampling. (2) If the distance is too big, then we will have too many surflets.
This will create a huge intermediate structure to store surflets, and the rendering
time will be too high.

For those samples that are singularities, each one is treated as eight different
samples in eight octants; their gradient vectors and distances to the isosurface are
evaluated. Therefore, a maximum number of eight surflets can be generated. Each
singular surflet will have an appropriate flag tagged in its data structure, indicating
which octant it contributes to.

Constructing a Surflet Hierarchy

Up to now we have described surflets limited to a single resolution. However, it
would be more desirable to create surflets iteratively from lower resolutions to
higher resolutions. A hierarchical surflet model not only can provide the freedom to

Surflets 381

p
�

n
�

[, ,]p d n
� �

Team LRN

render surfaces at arbitrary levels of detail but also can avoid unnecessary details
that would be washed out due to shadowing and so on.

We construct a surflet hierarchy as follows: Since only the isosurfaces are inter-
esting to us, a candidate set of potential surflets is created at each resolution as in the
previous section. Each candidate set is generally very small as compared to the num-
ber of samples in the volume. All surflets at the lowest resolution level are detected
and collected. We compute the image at this resolution based on the wavelet ap-
proximation formula. Then we proceed to the next higher level and subtract the im-
age at this level from the image at the previous level. Because we have precomputed
the surflet candidate set at this level, the computation only involves those poten-
tial surflets. Those samples less than r/2 away from the isosurface are classified
as surflets, where r is the sampling radius at this resolution. We repeat the same
procedure and subtract images at lower resolutions from higher resolutions. When
the sampling resolution equals the size of the sampling grid, a surflet hierarchy is
created.

Self-Shadowing with Penumbra

Let us assume for simplicity that there is a single light source in the scene. We can
then handle multiple light sources as the summation of the shading contribution
from each light source.

We want to render surfaces with self-shadowing and penumbra. It is theoreti-
cally impossible to use a point source to create true penumbra, although some fil-
tering techniques might create quite vivid penumbra effects (Reeves, Salesin, and
Cook 1987). We instead use a light source of a certain shape, such as a spherical light
source (or a rectangular light source). The portion of light source visible from any
surflet is computed and used to determine the brightness at a surflet. An approxima-
tion of this portion is sketched here.

Each surflet in the scene is approximated by a sphere whose radius r is the sam-
pling radius and whose center is given by . For each visible surflet, we trace a fat
shadow ray from the surflet center to the light source. The spread angle of the fat ray
is approximated by R/D, where R is the radius of the spherical light source and D is
the distance from the surflet center to the center of the light source. We perform cone
tracing to determine shadowing and penumbra in the same way that we found visi-
ble surfaces. We shrink the cone ray into a thin line and grow the spheres accord-
ingly. The portion of the shadow ray that any surflet blocks is determined by how far
along its radius the surflet intersects the ray. To make the approximation more accu-
rate, spheres that mutually intersect each other within the ray are split into small,

382 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

p
�

Team LRN

disjoint fragments. Portions of the shadow ray blocked by all these small segments
are computed and summed to find the proportion of light blocked by this piece of
surface.

We compose the portion of the shadow ray blocked by isosurfaces by a
method similar to the image composition scheme in Duff (1985). The shadow ray
marches through the scene until (1) the blocked portion reaches totality or (2) the
shadow ray reaches the light source. In the first case, the surflet that initiates the
shadow ray is in full umbra. In the latter case, we subtract this blocked portion
from 1.0 to get the surflet illumination. Clearly, the surflet is in penumbra if its illu-
mination level is less than 1.0, and the surflet is not in shadow if its illumination
equals 1.0.

To speed up the rendering, we can render surflets in shadow at lower resolu-
tions. For example, we can do shadow detection at low resolutions and do selective
surface refinement only for those visible surflets not in shadow. A major advantage
of this scheme is that important surface details are not left out, while unnecessary de-
tails hidden by the shadow are not given much attention. This can produce softer
shadows, as well as increase rendering speed.

Discussion

The surflet model has a number of advantages over other surface-based techniques.
First, it has an implicit form. Although we approximate surflets with spheres in our
implementation, it does not mean that this is the only choice. On the contrary, it is
not clear to us whether this is the best way. For example, with special hardware, nu-
merical root finding can be more accurate and more promising. We have also started
to experiment with ellipsoid-like primitives to approximate surflets.

Second, the surflet model provides a convenient way to do hierarchical model-
ing of surfaces and selective surface refinement due to its implicit form. This feature
cannot be found in many existing surface modeling methods. Adaptive sampling
gives us the power to avoid unnecessary details while preserving important surface
subtleties.

Third, the representation has a compact structure. Our experiments indicated
that using surflets takes only 25% to 50% of the storage of marching cubes at the
same resolution.

Fourth, isosurfaces can be rendered in parallel with surflets. Since for any point
on the isosurfaces there are only a limited number of surflets determining the zero
crossing, surflets are amenable to either a parallel implementation or an implementa-
tion with distributed computing.

Surflets 383

Team LRN

Fifth, surflets can be integrated with wavelets in a straightforward manner to
yield a combined model of surface modeling and volume rendering. If we delay
thresholding until the rendering stage, we can generate wavelets by subtracting the
low-resolution signals from the high-resolution signals with the same kind of hierar-
chical modeling as in the section “Constructing a Surflet Hierarchy.” Depending on
our need, we can do either volume rendering or thresholding followed by surface
rendering at rendering time. This integrated approach is attractive, since it reduces
the difference between rendering surfaces and rendering volumes. However, it dif-
fers from conventional volume rendering (Drebin, Carpenter, and Hanrahan 1988;
Levoy 1988, 1990c) in that an intermediate data structure, as well as hierarchical
modeling, is introduced to speed up the process. Thresholding can still be used at
rendering time to distinguish the rendering from volume rendering. Moreover, it is
possible to have volume details and surface details in the same scene.

Conclusion

Surflets are a free-form modeling of isosurfaces. This model is attractive in that it
provides a convenient way to do shadowing, selective surface refinement, and hier-
archical modeling. Moreover, it requires much less storage than other volume-to-
surface methods and allows considerable freedom for a particular implementation.
Finally, it encourages an integrated approach for surface modeling and volume
rendering.

This surflet model is still quite empirical. Although it is quite intuitive and sup-
ported by image synthesis theory (Grossman and Morlet 1984; Mallat 1989a,
1989b), in many places we have had to tune the parameters to make the rendered
images more realistic.

There is a lot of promise in integrating surface modeling with volume rendering.
This kind of hybrid is very promising for hierarchical modeling of surfaces, since hi-
erarchical modeling of volumes is more general than that of surfaces.

FLOW NOISE
In recent work with Fabrice Neyret (Perlin and Neyret 2001) we have been modify-
ing the noise function so that it can give a suggestion of swirling and flowing time-
varying textures.

Flow textures that use noise can look great, but they often don’t “flow” right,
because they lack the swirling and advection of real flow. We extend noise so that

384 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

shaders that use it can be animated over time to produce flow textures with a “swirl-
ing” quality. We also show how to visually approximate advected flow within
shaders.

Rotating Gradients

Remember that we can think of the noise function as a sum of overlapping pseudo-
random wavelets. Each wavelet, centered at a different integer lattice point (i, j, k),
consists of a product of a weight kernel K and a linear function (a, b, c)i,j,k. K
smoothly drops off away from (i, j, k), reaching 0 in both value and gradient at unit
distance. Each (a, b, c)i,j,k = a(x − i) + b(y − j) + c(z − j), which has a value of 0 at
(i, j, k). The result of summing all these overlapping wavelets, noise has a character-
istic random yet smooth appearance.

Our modification is to rotate all the linear vectors (a, b, c)i,j,k over time, which
causes each wavelet to rotate in place. This process is illustrated in Figure 12.19.

Because all the (a, b, c) vectors were uncorrelated before the rotation, they will
remain uncorrelated after the rotation, so at every moment the result will look like
noise. Figure 12.20 illustrates this difference.

Yet over time, the result will impart a “swirling” quality to flow. When multiple
scales of noise are summed together, we make the rotation proportional to spatial
frequency (finer noise is rotated faster), which visually models real flow.

Flow Noise 385

(b)

FIGURE 12.19 (a) Gradient * kernel ⇒ wavelet; (b) rotated gradiant * kernel ⇒ rotated wavelet.

(a)

Team LRN

Pseudoadvection

Beyond swirling, fluids also contain advection of small features by larger ones, such
as ripples on waves. This effect tends to stretch persistent features (e.g., foam), but
not newly created ones (e.g., billowing), to varying degrees, according to their rate of
regeneration, or structure memory M.

Traditional Perlin turbulence is an independent sum of scaled noise, where the
scaled noise is

bi(x) = noise(2i x)/2i

and the turbulence is

This can define a displacement texture

color(x) = C(x + ItN(x))

386 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(b)(a)

FIGURE 12.20 (a) Before rotation; (b) after rotation.

0
() ()

N
N i

i
t x b x

=
= ∑

Team LRN

where C is a color table and I controls amplitude. Our pseudoadvection displaces
features at scale i + 1 and location x0 in the noise domain to x1 = x0 + k ti(x0), where
k is the amplitude of the displacement (see below). For small displacements, this can
be approximated by x1 − k ti(x1), so displacement k is proportional to an amplitude
I specified by the user. We can scale this displacement by a “structure memory” fac-
tor M. We can simulate passive structures, which are totally advected, when M = 1,
or very active structures, which are instantaneously generated and therefore un-
stretched, when M = 0. Our advected turbulence function is defined by modifying
the scaled noise to

bi(x) = b(2i (x − IM ti−1(x)))/2i

and using this to construct the sum

Results

Many flow textures can be created. A few are shown in Figures 12.21–12.24.

PROCEDURAL SHAPE SYNTHESIS
Recently, I’ve been working with Luiz Velho and others on multiresolution shape
blending (Velho et al. 2001). In this approach, you conceptualize surface shapes as
textures and then use multiresolution techniques to smoothly blend those shapes to-
gether, just as you might blend one texture into another. For example, just as Peter
Burt (1983) originally showed that you can smoothly blend two images together by
separately blending each of their multiscale components, you can do similar things
with textural surface deformations. Two very interesting images we created using
these techniques are shown in Figures 12.25 and 12.26.

TEXTURAL LIMB ANIMATION
In this section we borrow notions from procedural texture synthesis and use them to
control the affect of humanlike figures. Stochastic noise is applied to create time-
varying parameters with well-controlled statistics. We then linearly blend these pa-
rameters and feed the results into a motion system. Potential uses of this technique
include role-playing games, simulated conferences, “clip animation,” and simulated
dance.

Textural Limb Animation 387

0
() ()

N
N i

i
t x b x

=
= ∑

Team LRN

388 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.21 Lava flow.

FIGURE 12.22 Waterfall.

Team LRN

Textural Limb Animation 389

FIGURE 12.23 Waterfall with lava flow texture.

FIGURE 12.24 Swirling clouds using flow noise.

Team LRN

390 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.25 Rock blending into a screw shape.

FIGURE 12.26 Corroded skull blending into a fresh one.

Team LRN

Introduction to Textural Limb Motion

In simulated environments we often want synthetic cooperating characters to re-
spond to each other and to a changing environment in real time. Because simulated
worlds are often used primarily as a means of communication (in contrast to, say, ro-
botics simulation), we are often not so concerned with specific task completion as
with conveying emotional messages through motion or gesture.

This situation comes up in role-playing games, where game players want their
“Avatars” (Stephenson 1992) to show a particular affective response to a person or
event in the immediate environment.

Similarly, emotive gesturing would be useful for monitoring a shared electronic
“talk” conference. You could model the participants as physical gesturing characters
around a conference table. At a glance you could tell who is talking to whom, who is
entering and leaving the discussion, and who is paying attention to whom.

Also, it is useful to have “clip animation,” much like clip art, where, for exam-
ple, an entire crowd of people reacts in a particular way to a character or event. We
are not so concerned with their particular motions, but with the sense that “the
crowd went wild” or “they respectfully parted to let her pass.”

Dance is another instance where we’re primarily interested in the affect of ges-
ture. Music conveys emotional meaning, not literal meaning. It would be useful to be
able to generate simulated dancing characters to music, by working on the level of
“Now I want the dancer to convey this combination of emotions and reactions to
the other dancers.”

The system described here aims at allowing the building of and use of gesture on
the level of affective communication. It sidesteps many difficult issues faced by sys-
tems that address robotic problems such as “Pick up the glass of water and drink it.”
The work described here can be plugged into such systems as a modifying filter, but
is independent of them.

Road Map

The structure of this section is as follows. First will come a description of some prior
and related work by others. This will be followed by an outline of the basic ap-
proach, illustrated with a simple example.

After this we will describe textural gesture and the structure of the system—
what the different layers and modules are and how they communicate. We will fol-
low this with some examples of the system in use. This section will conclude with a
discussion of future and ongoing work.

Textural Limb Animation 391

Team LRN

Related Work

A number of researchers have done work complementary to that described in this
section. Badler has specified movements in a goal-driven way and then fed those
goals to a simulator (Badler, O’Rourke, and Kaufman 1980). Calvert sampled hu-
man figure motion and used Labanotation (a form of dance notation) to create
an animated deterministic stick figure (Calvert, Chapman, and Patla 1980). Miller
(1988b) has applied synthesis techniques to worms.

Waters (1987) did procedural modeling of faces. Deterministic methods for
dance have been described by Yang (1988). Actor/script-based systems for crowds
(flocks and herds) were first described by Reynolds (1987). Goal-based movement
was described by Badler, O’Rourke, and Kaufman (1980).

Physically based systems for jointed motion are very powerful, although they
can be difficult to control and specify (Girard and Maciejewski 1985). Fusco and
Tice (1993) take a sampling approach, digitizing sequences of actual human move-
ment and using those to drive animated figures.

Basic Notions

The basic idea is that often we don’t care what a gesture is actually doing, so long as
it is conveying particular emotional information. For example, when someone is ex-
plaining something, his or her arms will wave about in a particular way. Different
people, and the same people in different emotional states, will do this in a way that
can be defined statistically. Those watching do not care exactly where the hands or
arms of the speaker are at any given moment. Instead, they watch the rhythm, the
range of motion, the average posture, and the degree of regularity or irregularity of
movement.

Our approach is to create a nondeterministic “texture” as a synthesis of scalar
control parameters and to use these parameters to drive a motion description
subsystem.

Stochastic Control of Gesture

The key innovation is the use of stochastic controls to specify gestural affect. But this
needs to be placed in an appropriate system to be useful. This section consists of two
parts. First we will describe stochastically defined gestures and then the system in
which this technique is embedded.

Any animatable character has some N input parameters that control its
motion. At any moment, the character can be thought of as residing at a point in an

392 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

N-dimensional unit cube. Each dimension spans the lowest to the highest value of
one parameter.

We define a textural gesture as a stochastically defined path of motion within
this cube that has constant statistical properties. Many gestures of a human figure
can be defined by assigning to each joint angle a value for the triple [center,am-
plitude,frequency] and using the following procedure at the time of each
frame:

center + amplitude * noise (frequency * time)

This procedure was used for most of the gestures in this section. It allows control
over average position and frequency of undulation, while conveying a “natural”
quality to all motion. This procedure has a constant statistical quality over time and
therefore can be thought of as a fixed point in a gesture space induced over the N-
cube space.

Several specific and interesting relationships came out of playing with these pa-
rameters. For example, I found that natural arm gestures generally resulted when el-
bow joints were moved with twice the frequency of shoulder joints. Varying too far
from this ratio produced unnatural and artificial-looking gestures. This might be re-
lated to the fact that the weight of the entire arm is approximately twice the weight
of the lower arm alone. The output of these procedures is combined via linear blend-
ing and fed into a kinematic model. In this way the single gestural “points” of the in-
duced gesture space are used to traverse convex regions in this space.

The system provides the user with a general-purpose interpreted language for
defining new gesture textures, in the spirit of Stephenson (1992). Surprisingly, al-
most all gestures built using the system could be defined by linearly transformed
noise of the various joint angles. For example, the bottom row of Figure 12.27
shows a transition from a “fencing” gesture to a “conducting” gesture. This illus-
trates sliding along a line within the induced gesture space.

The System

The texturally defined parameters feed into “scene description modules” (SDMs).
An SDM can represent an animated character, a group of animated characters, or
some physical object(s) in the scene. Each SDM knows about kinematics, static con-
straints, dynamics, and so on (whereas the texture module does not). This separation
allows a very simple, high-level control of emotive qualities and makes those quali-
ties very easy to modify. An SDM can take as input a set of scalar parameters and
generally outputs scene transformations (matrices) and geometry to be rendered.
Also, one SDM can be dependent on the matrices computed by another. For clarity

Textural Limb Animation 393

Team LRN

in this section, we will define a parameter as a scalar value that controls the move-
ment of an SDM and a gesture as a procedure that outputs varying values over time
of a set of scalar parameters that feed into an SDM.

The system evaluates a frame of animation in several layers. At the top is a goal
determination module (GDM). The GDM is responsible for determining, at each
frame of animation, a weight for each gesture.

Below this we have the stochastic procedures for creating individual gestures. A
gesture g is invoked if its weight is nonzero. Each gesture creates values over time for
some set of parameters, as described in the previous section.

Once all gestures have been evaluated, we perform for each parameter a
weighted sum of its values within each gesture for which it is defined. All parameter
values are then normalized by their respective accumulated weights.

Finally, all SDMs are run for this frame. The transformation matrices produced
by the various SDMs are available to an analyzer, which uses them to produce scalar
variables that can be fed back into the GDM. For example, as character B physically

394 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.27 Gesturing man.

Team LRN

approaches character A, the analyzer can evaluate their mutual distance and feed
this back to the GDM to influence character A to increase the weight of a gesture
that conveys a sense of, say, “being sad” or “waving to character B.”

EXAMPLES
Figure 12.27 shows a gesticulating man at various points in his gesture space. The
top row shows him at a fixed “conducting” gesture point. If held at this point, he
will continue to convey exactly the same affect forever, while never actually repeat-
ing the same movement twice. The second row shows a transition between this point
and a “sad” gesture point—downcast with relatively slow movement, sloping shoul-
ders, and low energy.

The third row shows a linear transition to a “fencing” gesture point. This point
is held throughout the fourth row. In the fifth and sixth rows the man switches to
fencing the other way and then back again. Finally, in the bottom row he transitions
back to the original gesture point.

One important thing to note is that every point in the transition between ges-
tures produces reasonable motion. This is logical, since the statistical properties of
motion during these transitions are still under tight control.

A reasonable use to this approach would be to do statistical analysis/resynthesis
of human motion. This would involve analyzing statistics from real human figure
motion and turning these into sum-of-noise descriptions. These gesture “points”
would then be added to the system.

TEXTURE FOR FACIAL MOVEMENT
In this section we apply texture principles to the interactive animation of facial ex-
pression. Here the problems being addressed are “How do we make an embodied
autonomous agent react with appropriate facial expression, without resorting to re-
petitive prebuilt animations?” and “How do we mix and transition between facial
expressions to visually represent shifting moods and attitudes?”

By building up facial expression from component movements, and by approach-
ing combinations of these movements as a texturing problem, it is possible to use
controlled noise to create convincing impressions of responsiveness and mood.

This section is structured as follows. After giving a background and discussing
some related work, we will introduce a simple layered movement model. Then we
will describe the mechanism that allows animators to build successive abstractions.

Texture for Facial Movement 395

Team LRN

This is followed by examples of the use of controlled noise to build up elements of
autonomous facial movement. The section concludes with a discussion of some fu-
ture work.

Background

Much human communication is conveyed by facial expression (Faigin 1990). One
of the limitations of computer-human interfaces is their inability to convey the sub-
tleties we take for granted in face-to-face communication. This concept has
been well described in speculative fiction on the subject (Stephenson 1992). Toward
this end, Parke (1982) and others have made good use of the Facial Action Coding
System (FACS) (Ekman and Friesen 1978) for designing facially expressive autom-
ata, and there has been considerable work on computer-generated facial animation
(Parke and Waters 1996).

Here we focus in particular on using procedural texture to convey some of the
rich, time-varying facial expressions that people generally expect of each other. Ag-
gressive, endearing, or otherwise idiosyncratic movements of facial expression con-
vey a lot of our sense of another person’s individuality. One inspiration for capturing
this individuality can be found in successful animated characters.

For example, the hugely successful and endearing character of Gromit in Nick
Park’s animation (Park 1993) consistently reacts to events first with internal expres-
sions of instinctive surprise or worry and then, a beat later, with some expression of
higher judgment: disgust, realization, suspicion, and so on. Gromit’s reactions be-
come the audience’s point of view. This identification creates an emotional payoff
that draws in the audience (Park 1996). It would be good for an interactive character
to be able to convey the same sense of a compelling emotional point of view, and to
react with appropriate dynamic facial expression, without resorting to predefined
expressions or to repetitive prebuilt animations.

To approach this with procedural textures, we build on Perlin and Goldberg
(1996), using a parallel layered approach. The key is to allow the author of the ani-
mated agent to relate lower-level facial movements to higher-level moods and inten-
tions, through controlled procedural textures. The animator specifies time-varying
linear combinations and overlays of facial movements. Each such combination be-
comes a new, derived set of facial movements. In a later subsection we will show
how to use controlled noise (Perlin 1985) to introduce controllable autonomous mo-
tion, and we will show a number of examples of autonomous facial animation built
with this texturing approach.

396 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

Related Work

Facial movement synthesis by linear motion blending has been around for quite
some time. In addition to Parke’s work, this basic approach was also used by DeGraf
and Wahrman (1988) to help drive an interactive puppeteered face.

Kalra et al. (1991) proposed an abstraction model for building facial animation,
for combining vocal articulation with emotion, and for facilitating specification of
dialogs in which characters could converse while conveying facial emotion. The
model consisted of five abstraction layers:

1. Abstract muscles

2. Parameters built from these abstract muscles

3. Poses built by mixing parameters

4. Sequences and attack/sustain/release envelopes of poses

5. High-level scripts

Within this structure, the facial expression textures that we will describe largely
contribute between levels 2 and 3 of Kalra’s formalism, by providing a mecha-
nism for combining multiple time-varying layers of successively abstracted facial
expression.

Brooks (1986) developed autonomous robots having simultaneous different se-
mantic levels of movement and control. In his subsumption architecture, longer-term
goals were placed at higher levels, and immediate goals (such as “don’t fall over”)
were placed at lower levels. When necessary, the lower-level controls could tempo-
rarily override higher-level activities.

Using the basic noise-based procedural texture tools of Perlin (1985), includ-
ing bias and gain controls, I developed a responsive real-time dancer whose individ-
ual actions were procedurally defined (Perlin 1995). Actions could be layered and
smoothly blended together to create convincing responsive body movement, which
conveyed varying moods and attitudes. Athomas Goldberg and I later extended this
work (Perlin and Goldberg 1996) to create characters that used a more advanced
layering system for multiple levels of responsive motion. This continuous move-
ment model was controlled by a discrete stochastic decision system, which allowed
authors to create characters that would make choices based on dynamic moods,
personalities, and social interactions, both with each other and with human
participants.

Texture for Facial Movement 397

Team LRN

The Movement Model

Assume that a face model consists of a set of vertices, together with some surface
representation built on those vertices. We can build a component movement as a lin-
ear displacement of some subset of vertices. Thus, each movement is a list of [i, x]
pairs, where i is a vertex identifier and x is the displacement vector for that vertex.
We add additional movements for the axes of rigid head rotation, which are applied
after all vertices have been displaced.

Given K component movements, we can give a state vector for the facial expres-
sion, consisting of linear combinations of its component movements. I used this ap-
proach to build a face that was as simple as possible, including only vertices that
were absolutely necessary (Figure 12.28).

The goal was to make a model that would be used for working out a facial
expression–texture vocabulary. Then the small number of vertices of this model
could subsequently be used to drive movement of more elaborate facial geometries.

The face model used throughout this section contains fewer than 80 vertices, in-
cluding the hair and shoulders. It requires no 3D graphical support and runs as an
interactive Java applet on the Web (Perlin 1997).

The basic component movements included are

• Left/right eyebrows

• Left/right upper eyelids

• Left/right lower eyelids

• Horizontal/vertical eye gaze

398 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.28 The movement model.

Team LRN

• Left/right sneer

• Left/right smile

• Mouth open

• Mouth narrowed

• Head rotation

In this chapter we will refer to each of these component movements by the following
respective names:

• BROW_L, BROW_R

• WINK_L, WINK_R

• LLID_L, LLID_R

• EYES_R, EYES_UP

• SNEER_L, SNEER_R

• SMILE_L, SMILE_R

• AHH

• OOH

• TURN, NOD

Internally, each component movement is represented by a K-dimensional basis
vector, each of which has a value of 1 in some dimension j and a value of 0 in all
other dimensions. For example:

BROW_L = (1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)
BROW_R = (0,1,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0)

The state space for the face consists of all linear combinations of these basis vec-
tors. Commonly used combinations can be created rather easily. For example:

BROWS = BROW_L + BROW_R
BLINK = WINK_L + WINK_R
SNEER = SNEER_L + SNEER_R

Figure 12.29 shows some simple combinations of component movements. Fig-
ure 12.30 illustrates simple movement combinations and summation of component
movements, first in wire frame and then shaded.

Each component movement also defines its opposite. For example, (−1 * SMILE)
creates a frown. By convention, the face is modeled in a neutral expression, with the

Texture for Facial Movement 399

Team LRN

mouth half open, and the component movements are defined so that a range of −1
to +1 will produce a full range of natural-looking expressions.

Clearly, this is a simplified and incomplete model, sufficient just for the current
purposes. The model is flexible enough to allow building textural facial expressions,
but simple enough that it could be worked with quickly and easily for experiments.
For experimental purposes, 16 component movements are just sufficient to allow an
emotionally expressive face to be built.

Movements absent from this set include the ability to puff out or suck in the
cheeks, to stick out or wave the tongue, to thrust the lower jaw forward or back, to
tilt the head to the side, to displace the entire mouth sideways, as well as others.
These should certainly be included in a complete facial model, which could either

400 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

FIGURE 12.29 Simple component movement combinations.

+

+

=

=

FIGURE 12.30 Summation of simple component movements in wire frame and shaded.

Team LRN

retain our simple abstracted geometry or else drive a nonlinear muscle/skin model
such as that of Lee, Redner, and Uselton (1985) or Chadwick, Haumann, and Parent
(1989).

Movement Layering

The lowest-level abstraction is built on top of the primitive movements, using them
as a vocabulary. We extend the model for mixing and layering that was described in
Perlin (1995) and Perlin and Goldberg (1996). As in that model, movement is di-
vided into layers. Each layer is a collection of related actions that compete for con-
trol of the same movements. Within a layer, one or more actions are always active.
When a particular action Ai in a layer is activated, then the weight Wi for that action
smoothly rises from zero up to one, and simultaneously the weights of all other ac-
tions in the layer descend smoothly down to zero, with a default transition time of
one second.

Each action modulates the value of a set of movements (usually a fairly small
set). Action Ai produces a mapping from Time to a list of ComponentMovement,
Value pairs:

Ai : Time -> ((D1, V1), . . . , (Dk, Vk))

where each Vj is a scalar-valued time-varying function. In this way, an action influ-
ences one or more movements toward particular values. Ai(Time)[D] refers to the
value in action Ai at Time for component movement D.

Generally, more than one action is occurring within a layer. The total effect upon
component movement D of all actions that influence it is given by the weighted sum

The total effect, or opacity, upon D from this group is given by

All the groups run simultaneously. At any given moment, at least one action is
running in each group. As in an optical compositing model, the groups are layered
back to front. For each movement D, if the cumulative weight of a Layer at some
Time is opacity(Layer)(Time), then the results of all previous group influences on D
are multiplied by 1 − opacity(Layer)(Time).

Texture for Facial Movement 401

()[] ()i i
i
A Time D W Time∗∑

()i
i
W Time∑

Team LRN

retain our simple abstracted geometry or else drive a nonlinear muscle/skin model
such as that of Lee, Redner, and Uselton (1985) or Chadwick, Haumann, and Parent
(1989).

Movement Layering

The lowest-level abstraction is built on top of the primitive movements, using them
as a vocabulary. We extend the model for mixing and layering that was described in
Perlin (1995) and Perlin and Goldberg (1996). As in that model, movement is di-
vided into layers. Each layer is a collection of related actions that compete for con-
trol of the same movements. Within a layer, one or more actions are always active.
When a particular action Ai in a layer is activated, then the weight Wi for that action
smoothly rises from zero up to one, and simultaneously the weights of all other ac-
tions in the layer descend smoothly down to zero, with a default transition time of
one second.

Each action modulates the value of a set of movements (usually a fairly small
set). Action Ai produces a mapping from Time to a list of ComponentMovement,
Value pairs:

Ai : Time -> ((D1, V1), . . . , (Dk, Vk))

where each Vj is a scalar-valued time-varying function. In this way, an action influ-
ences one or more movements toward particular values. Ai(Time)[D] refers to the
value in action Ai at Time for component movement D.

Generally, more than one action is occurring within a layer. The total effect upon
component movement D of all actions that influence it is given by the weighted sum

The total effect, or opacity, upon D from this group is given by

All the groups run simultaneously. At any given moment, at least one action is
running in each group. As in an optical compositing model, the groups are layered
back to front. For each movement D, if the cumulative weight of a Layer at some
Time is opacity(Layer)(Time), then the results of all previous group influences on D
are multiplied by 1 − opacity(Layer)(Time).

Texture for Facial Movement 401

()[] ()i i
i
A Time D W Time∗∑

()i
i
W Time∑

Team LRN

The Bottom-Level Movement Vocabulary

At the bottom level are actions that simply pose the face or else make simple move-
ments. This level has separate layers for head position, facial expression, and mouth
position. The following are some actions in each layer. All are simple poses, except
for headroll, headbob, and headshake. The latter two are controlled by noise.

From the head position layer:

• action headback { (TURN, -0.2)), (NOD, -0.5) }

• action headbob { (TURN, 0), (NOD, noise(2*Time)) }

• action headdown { N(NOD, 1) }

• action headroll { (TURN, cos(Time)), (NOD, sin(Time)) }

• action headshake { (TURN, noise(2*Time)), (NOD, 0) }

From the facial expression layer:

• action angry { (BROWS, -1), (SMILE, -.8) }

• action distrust { (BROW_L, -1), (LLID_L, .5), (WINK_L, .5) }

• action nono { (AHH, -.6), (OOH, .6), (BROWS, -1), (BLINK, .1) }

• action sad { (AHH, -1), (BROWS, 1), (SMILE, -.8) }

• action smile { (BLINK, .4), (LLIDS, .5), (BROWS, 0), (SMILE,

1), (OOH, -.6) }

• action sneeze { (AHH, -1), (BLINK, 1), (BROWS, 1), (LLIDS,

.7), (SNEER, .7) }

• action surprised { (AHH, .1), (BROWS, 1), (BLINK, -.5), (LLIDS, 1) }

• action suspicious { (AHH, -.9), (BLINK, .5), (BROW_R, -1.2), (BROW_L,

-.5), (LLIDS, 1.1) }

From the mouth position layer:

• action say_a { (AHH, .1), (OOH, 0) }

• action say_e { (AHH, -.6), (OOH, -.2) }

• action say_f { (AHH, -.9), (OOH, -.2), (SNEER, .2) }

• action say_o { (AHH, -.1), (OOH, .3) }

• action say_r { (AHH, -.6), (OOH, .2) }

402 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

• action say_u { (AHH, -.6), (OOH, .6) }

• action say_y { (AHH, -.7), (OOH, -.3) }

Figure 12.31 shows the results of some pose actions.

Painting with Actions

Up to this point, the model mimics that of Perlin and Goldberg (1996), by allowing
simple layered combinations of the primitive movements. It would be useful to go
beyond this, treating an action as a texture. For example, the actions defined earlier
can place the face into useful positions, and the layered blending mechanism will
make smooth transitions between those positions. Yet the face will appear to move
in a fairly lifeless and mechanical way.

To improve on this, we would like to mix some coherent jitter into many compo-
nent movements, tuned to match the subtle shifting that real faces do. This is done
first by defining an action that creates the jitter and then by “mixing in” amounts of
this action as a transparent wash on top of the preexisting motion.

More generally, an action is a time-varying function of some set of movements.
This action itself can be viewed as a primitive, which can be added and mixed. Con-
sider the analogy with painting. An artist begins with a set of paints, each having a
discrete color. The artist then creates a palette by mixing these colors to get new col-
ors. The artist can then use each of these new colors without needing to go back to
the original color set. In digital paint systems, the artist can do this with textures as
well. The artist can create a texture and then paint with it, as though painting with a
custom-designed textured brush.

Similarly, an action provides a way to encapsulate a time-varying function of
movements and to treat this time-varying function as though it were itself a primitive
movement. If noise-based variation in the action definition creates some motion
“texture,” then any uses of this action will reflect that texture.

Here is a more sophisticated example, which contains time-varying behavior:

action sneeze {
Ah = timeCurve((0,0),(1,1),(1.5,0));
Choo = timeCurve((1.2,0),(1.5,1),(2,0));
(sneeze, Ah),
(headup, Ah / 3),
(nono, Choo),
(headshake, Choo / 2),
(headdown, Choo / 2)

}

Texture for Facial Movement 403

Team LRN

404 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

(a)

(e)

(i)

(b)

(f)

(j)

(c)

(g)

(k)

(m)

(d)

(h)

(l)

FIGURE 12.31 Results of pose actions: (a) angry; (b) daydreaming; (c) disgusted; (d) distrustful; (e)
fiendish; (f) haughty; (g) head back; (h) disapproving; (i) sad; (j) smiling; (k) sneezing; (l) surprised;
(m) suspicious.

Team LRN

where timeCurve(...) is a function that interpolates a smooth spline between a
given sequence of (time,value) pairs, based on elapsed time since the onset of the
action.

The animator does not need to know the details of the lower-level definitions for
sneeze, headup, and so on, which frees the animator to concentrate on the details
that are important at this level: tuning the time-varying behavior of the sneeze. Note
that in this example the derived action inherits, via headshake, a realistic nonde-
terministic shaking during the Choo phase of the sneeze. The animator gets this
nondeterminism for free.

Using noise in Movement

A number of examples will illustrate the use of noise in layering facial movement.

Blinking

Noise is used to trigger blinking with controlled irregularity. After each blink, we
wait for one second. Then we start to check the value of a time-varying noise, which
ranges smoothly from −1.0 to 1.0. When the value of this noise exceeds 0.1, we trig-
ger another blink:

action blink {
if (Time X blink.Time + 1 and noise(Time) X 0.1)
blink.Time = Time
(BLINK, 1) // set BLINK on this frame

}

Small Constant Head Movements

As we said earlier, we would like to mix some coherent noise into the movement,
tuned to match the subtle shifting that real faces do. To do this in a way that works
with all other movement, we overlay a transparent layer of random movement over
the activities of the bottom abstraction. First we add an action into the bottom ab-
straction that creates random movements:

action jitter {
T = noise(Time);

add (BROWS, T);
add (LLIDS, T);
add (EYES_R, T/2);
add (EYES_UP, T/2);
add (TURN, noise(Time + 10));
add (NOD, noise(Time + 20));

}

Texture for Facial Movement 405

Team LRN

Then we add an action to the next level of abstraction that creates a transparent
mix-in of the lower-level jitter:

action jitter { jitter 0.3 }

The effect is subtle, yet essential. It gives a sense of life and movement to whatever
the face is doing.

Both blinking and jitter are controlled by noise. This allows us to make move-
ments that are unpredictable to the observer and yet that have tunable statistics that
match users’ expectations.

Simulated Talking

We found that we could also use tuned noise to create a fairly realistic simulation of
the mouth movements a person makes while talking. This would be useful, for ex-
ample, when an agent or character is pretending to hold a conversation off in the
background:

action talking {
T = (1 + noise(2 * Time)) / 2; // noise between 0 and 1

add (AHH, lerp(gain(.9, bias(.3, T)), -1, .8)); // snap open/closed
add (OOH, noise(2 * Time + 10.5)); // vary smoothly
add (SNEER, lerp(bias(T, .1), -.1, .6)); // the “f” phoneme

}

In this implementation, we first define a noise process that has a frequency of
two beats per second, with values in the range 0 to 1. We also use bias() and gain() as
defined in Perlin (1985) to shape the noise, as well as linear interpolation, defined by

lerp(t, a, b) = a + t(b − a)

We use these tools to do several things simultaneously:

• Snap the mouth open and closed fairly crisply (the gain(.9, bias(.3, T))
takes care of this).

• Smoothly make the mouth wider and narrower.

• Occasionally show the upper teeth via a SNEER. This gives the visual impres-
sion of an occasional f or v sound.

Once the parameters have been tuned, the result is surprisingly convincing. We
use a derived abstraction to smoothly turn this talking action on and off, as when
two characters are taking turns during a conversation.

406 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

Searching

We can also create a lifelike motion to make the agent appear to be addressing an au-
dience. When people do this, they tend to look at particular people in their audience
in succession, generally holding each person’s gaze for a beat before moving on. We
can simulate this with noise, by making the head and gaze follow a controlled ran-
dom moving target. First we create a target that darts smoothly around, lingering for
a moment in each place:

T = Time/3 + .3 * sin(2*PI * Time/3); // make time undulate
Target = (noise(T), noise(T + 10) / 2); // choose moving target

Then we direct the TURN, NOD, EYES_R, and EYES_UP movements to follow this target
point.

The first line in the previous code undulates the domain of the noise so that the
target point will linger at each location. This is a special case of expressions having
the form X/S + A * sin(2*π*F/S), with A in the range [0..1], which creates a
monotonically increasing function that undulates regularly between slow and fast
movement, with an average slope of 1 /S. In particular, the function becomes slow
every S units on its domain.

By feeding such an undulating function into noise, we have specified a smoothly
moving point that slows to a near stop at a different random target point every three
seconds. We have found this to be quite effective together with the talking simula-
tion, to create a realistic impression of a person addressing an audience.

Laughing

Here we create a laugh motion that starts by rearing the head up momentarily, and
then settles into a steady state of bobbing and shaking the head while modulating an
open o sound with a noise function:

action laugh {
(headshake , 0.3),
(headbob , 0.3),
(headup , timeCurve((0,0) , (.5,.5) , (1,0))),
(smile , 1),
(say_o , 0.8 + noise(Time))

}

We can then mix this in, as a fleeting action, by deriving a higher-level laugh.
This more abstracted laugh leaves the face in persistent smiling mood, until some
other response causes the laugh action to be turned off:

Texture for Facial Movement 407

Team LRN

action laugh {
(laugh , timeCurve((0,0) , (.5,1) , (2,0))),
(smile , 1)

}

Same Action in Different Abstractions

We now describe several more actions that have been implemented at multiple se-
mantic levels, within successively derived abstractions.

Wink

At the lowest level, we can express a wink as just the closing of one eye:

action wink { (WINK_L , 1) }

At the next level we can mix in a sly or distrustful expression with the head
slightly turned to one side:

action wink {
H = timeCurve((0,0),(.5,.4),(.6,.5),(.9,.5),(1,.4),(3,0));
W = gain(.999, bias(.1, 2 * H));
(wink , W),
(distrust , H),
(headright , 0.2 * H)
}

This has consistent but different effects when it is invoked while the face is in differ-
ent moods: smiling, haughty, distrustful (Figure 12.32).

Note also that these haughty and distrustful facial expressions are more effective
than were their lower-level equivalents in Figure 12.29. At this higher level of ab-
straction they have been combined with the most effective head positions. Because
head position and facial expression have been mixed within a higher abstraction
layer, each is correctly modulated by the wink.

Talking in Different Moods

Finally, we have created various combinations of the autonomous talking process
overlaid with different moods. The movements of the face can be seen interactively
at mrl.nyu.edu/perlin/facedemo.

408 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

What Next?

Currently, the interface for creating individual actions is entirely script based, al-
though I use simple drawing widgets for defining time-varying splines. There is on-
going work to create a graphic user interface, so that animators can move sliders
interactively to modify component movements and mix-in weights.

Beyond this, I’m planning to extend the paint-mixing metaphor for blending ac-
tions. Within any abstraction, the animator will see a palette of small animated faces
that represent the primitives available to that abstraction. The animator can then
blend these to modify an action, using a time-varying brush.

I’m also continuing to increase the vocabulary of movements, working mostly
from direct observation. For example, one movement to add is amused disbelief,
which combines eyes looking up, smiling, and head shaking from side to side. An-
other is “You want this, don’t you?” which combines head turned to the side, eyes
looking at you, eyes wide upon, and eyebrows up. A third is puzzlement, which com-
bines head tilted to the side (requiring an additional degree of freedom), the lower
lids up, and one eyebrow raised.

In near future work, I’d like to categorize idioms that consist of mixing of lower
and higher levels. One goal is to implement a Gromit-like character by the use of
these mixed-level idioms. For example, the character can raise one eyebrow and then
shake its head a beat later. A test of this would be to attempt to implement some of
Gromit’s basic emotional reaction vocabulary.

Texture for Facial Movement 409

FIGURE 12.32 Various moods.

Team LRN

CONCLUSION
Since much of this chapter was first written, a huge revolution in procedural textur-
ing and modeling has been taking place. Just in the last year, we have seen enormous
strides in the capabilities and programmability of graphics accelerator boards. This
coming SIGGRAPH (2002) will mark the first year that graphics accelerator compa-
nies will be making truly general-purpose graphics hardware–level programming
available to high-level (“C style”) programmers, so that their algorithms can be com-
piled down to accelerated and highly parallel pixel shaders.

This year, these hardware pixel shader capabilities still provide only SIMD (sin-
gle instruction, multiple data) parallelism, which means that many of the techniques
I began to teach about in 1984, which make much use of data-based branching and
looping, are not yet available down at this fastest level.

But the gauntlet has been flung. Each year in this decade is going to see great
leaps on this hardware accelerated level of capability, and at some point in the next
few years we’ll see high-level programmable MIMD (multiple instruction, multiple
data) parallelism. At that point we will truly have real-time procedural texturing and
modeling, and the world I was trying to give people a glimpse into 18 years ago will
finally have arrived—a world, in the immortal words of Lance Williams, “limited
only by your imagination.”

410 CHAPTER 12 Noise, Hypertexture, Antialiasing, and Gesture

Team LRN

Team LRN

13

Team LRN

REAL-TIME PROCEDURAL SOLID TEXTURING
J O H N C . H A R T

As much of this book has demonstrated, procedural solid texturing is a powerful
tool for production-quality image synthesis. Procedural solid textures can allow us-
ers to explore worlds flush with nonrepeating mountains, coastlines, and clouds. Dy-
namic animated textures like fire and explosions can be represented efficiently as
procedural textures. Objects sculpted from a textured medium, like wood or stone,
can be textured using solid texturing. Solid texturing is also easier than surface tex-
turing because it does not require a surface parameterization.

However, much of the benefit of procedural solid texturing has been limited to
the offline rendering of production-quality scenes. With the advent of programmable
shading hardware in modern graphics accelerators, procedural solid texturing is be-
coming a useful tool for real-time graphics elements in video games and virtual envi-
ronments. Procedural solid textures are compact and can be synthesized dynamically
on demand. They can provide video games and virtual environments with a vast va-
riety of textures that require little additional storage, at a resolution limited only by
machine precision.

This chapter describes how to integrate procedural solid texturing into real-time
systems using features already available in current graphics programming libraries.
These techniques can also be used to create an interactive procedural solid texturing
design system with real-time feedback.

A REAL-TIME PROCEDURAL SOLID TEXTURING ALGORITHM
The real-time procedural solid texturing algorithm is based on a technique from
RenderMan that allows the texture map to hold the shading of a surface (Apodaca
1999). We assume each vertex in our model is assigned three kinds of coordinates.
The spatial coordinates x, y, z of the vertex describe the location of the vertex in
model space. The parameterization u, v of the vertex describes the location of the
vertex in a 2D texture map. The solid texture coordinates s, t, r of the vertex describe

413

Team LRN

from where in a 3D procedural texture space the vertex should get its color or other
shading information. Given the spatial coordinates and the solid texture coordi-
nates, we will construct a parameterization automatically. Often the solid texture co-
ordinates are simply set equal to the spatial coordinates, so this algorithm can
texture an object given only its spatial texture coordinates. The algorithm will run in
three phases: rasterization, procedural evaluation, and texture mapping (see Figure
13.1). There is also a preprocessing step that we will call atlas construction that as-
signs the texture coordinates u, v to each vertex. This step will be described in the
next section.

The rasterization phase plots the object’s polygons in the texture map. The
parameterization u, v serves as the coordinates of the vertices, and the solid texture
coordinates serve as the color (R = s, G = t, B = r) of the vertices. Graphics hard-
ware has long supported the linear interpolation of attributers across a polygonal
face,1 needed, for example, for smooth Gouraud shading. This linear interpolation
automatically calculates the solid texture coordinates across the face of the polygon
as it is rasterized in the texture map.

Rasterization
For each polygon p

Begin polygon
For each vertex i

Color(p[i].str)
Vertex(p[i].uv)

End polygon
Save image as texture map tex

The procedural evaluation phase marches through all of the pixels in the texture
map and evaluates the texturing procedure on the solid texture coordinates (s, t, r)
stored as the pixel’s RGB color. This evaluation will result in a new RGB color that
represents the texture at the point (s, t, r) in the solid texture space. This color is
stored at the current pixel in the texture map, overwriting the solid texture coordi-
nate with its corresponding procedural texture color.

Procedural Evaluation
For each pixel (x, y) in the texture map tex

tex[x, y] = proc(tex[x, y])

414 CHAPTER 13 Real-Time Procedural Solid Texturing

1. This interpolation is actually projective such that texture is interpolated “perspective correct.”

Team LRN

The texture mapping phase places the texture back on the object via standard
texture mapping using the object’s u, v parameterization. When the object is drawn,
the spatial coordinates of its polygon vertices are passed through the graphics pipe-
line. The polygon is rasterized, which interpolates its u, v parameterization and tex-
tures the polygon using the corresponding pixel from the procedural solid texture
stored in the texture map.

Texture Mapping
Set texture map to tex
For each polygon p

Begin polygon
For each vertex i

TexCoord(p[i].uv)
Vertex(p[i].xyz)

End polygon

A Real-Time Procedural Solid Texturing Algorithm 415

Apply texture map

Model space

Texture map

Rasterization

Texture
mapping

Procedural
evaluation

Plot using u, v
Fill using s, t, r

Replace
with

procedural
RGB

s, t, r

FIGURE 13.1 An algorithm for procedural solid texturing.

Team LRN

For this technique to work, the polygons on the object surface need to be laid
out in the texture map without overlap. Such a texture mapping is called an atlas.
The atlas construction step is performed as a preprocess to the previous algorithm
and only needs to be computed once for an object. Techniques for performing this
layout are described in the next section.

Models usually need one or more cuts in order to be laid flat into a texture map.
These cuts can result in seams, which appear as discontinuities in the texture. Some
texture layout techniques have focused on reducing the number and length of these
seams. The section “Avoiding Seam Artifacts” shows how seams can be avoided for
real-time procedural solid texturing, which allows the layout methods described in
the next section to ignore seam length altogether and pack triangles individually into
the texture atlas.

Both the rasterization and the texture mapping steps are hardware accelerated.
The procedural evaluation step remains the bottleneck. Later in this chapter we will
describe some techniques for efficient implementation of procedural textures, in par-
ticular those based on the Perlin noise function.

CREATING AN ATLAS FOR PROCEDURAL SOLID TEXTURING
A variety of techniques have been developed for creating texture atlases. Some of
these techniques have been developed to automatically parameterize an object in or-
der to place a 2D texture on its surface. These techniques try to minimize distortion,
such that the proportions of the texture map image are reasonably reproduced on
the textured surface. Because the real-time procedural solid texturing algorithm
computed the texture from solid texture coordinates stored per pixel in the texture
map, the distortion of the atlas does not affect the proportions of the procedural
solid texture. The scaling component of the distortion, quantified in various forms
elsewhere as the stretch (Sander et al. 2001) or the relative scale (Carr and Hart
2002), can affect the distribution of the samples across the object surface.

Because rasterization fills in the pixels in the texture map with solid texture co-
ordinates, the location of triangles relative to each other in the texture map can be
made irrelevant. Hence neighboring triangles in the object need not be neighbors in
the texture map. This greatly simplifies the process of laying out the triangles in the
texture atlas.

In order to use as many of the available texture pixels as possible, we lay out the
triangles in a mesh across the entire texture map. This mesh consists of rows of isos-
celes axis-aligned right triangles that pack in a very straightforward manner, as
shown in Figure 13.2.

416 CHAPTER 13 Real-Time Procedural Solid Texturing

Team LRN

Laying out all object triangles into uniformly sized texture map triangles does
not distribute texture samples well. Large object triangles should have more proce-
dural solid texture samples than smaller object triangles, but the uniform mesh atlas
assigns them the same number of samples. This can result in blocky texture artifacts
on larger triangles and in general wastes texture space by giving smaller triangles
too many texture samples.

We can also adjust the uniform mesh atlas to distribute the available texture
samples more evenly across the object surface by varying the size of triangles per
strip, as shown in Figure 13.3. We strip-pack the triangles into the texture map in or-
der of nonincreasing area. We estimate a uniform scale factor as the ratio of the sur-
face area to the texture area and use this scale factor to set the size of triangles in
each horizontal strip. All of the texture map triangles in each horizontal strip are set
to the same size to avoid wasting texture samples.

Other techniques have been developed to pack triangles of different sizes into a
texture atlas. Maruya (1995) treated the triangles of a uniform mesh atlas as blocks
and packed these blocks with triangles of a variety of sizes quantized to the nearest
power of two. Rioux, Soucy, and Godin (1996) paired triangles of similar sizes into
square blocks (quantized to the nearest power of two) and packed these blocks into
the texture map. Battke, Stalling, and Aege (1996) rigidly strip-packed the triangles
into the texture map, scaling them all uniformly so they would fit. Cignoni et al.

Creating an Atlas for Procedural Solid Texturing 417

FIGURE 13.2 A uniform meshed atlas.

Team LRN

(1998) performed a similar strip packing, but sheared the triangles to better fit
together.

Figure 13.3 shows an example of a shape shaded with a procedural solid texture
using an area-weighted mesh atlas. The per-strip sizing of the triangles provides a
more even distribution of texture samples across the surface than the other area-
weighted layouts that quantize to the nearest power of two. Those techniques tend
to more easily fill the texture map, whereas the area-weighted mesh has a blocky
edge of wasted texture samples.

Skinny triangles can confuse the area-weighted atlas. A skinny triangle has two
long edges that should receive more samples, but its surface area can be arbitrarily
small. Meshes with a significant number of skinny triangles can still exhibit some
texture blockiness using the area-weighted atlas.

For these cases, a length-weighted atlas is a better approach (Rioux, Soucy, and
Godin 1996). Instead of using the triangle’s surface area to set the size of its image in
the texture map, the length-weighted approach uses the length of the triangle’s long-
est edge. This technique ensures that the longest edges in the mesh get the most sam-
ples, but the technique tends to oversample skinny triangles, and this waste reduces
the number of samples available to other areas of the model.

Recent atlases have also been designed to support MIP mapping. An atlas by
Sander et al. (2001) clusters regions of triangles and packs these clusters into the at-
las. The regions between clusters are filled with “reasonable” colors that allow it to
be MIP mapped. An atlas by Carr and Hart (2002) uses a subset property of MIP
mapping to pack the triangles into a hierarchy of proximate, although not necessar-
ily neighboring, regions. Figure 13.4 shows an example of the proximate MIP map,

418 CHAPTER 13 Real-Time Procedural Solid Texturing

FIGURE 13.3 Rhino sculpted from wood and its area-weighted mesh atlas.

Team LRN

which maps proximate clusters of mesh triangles into the same quadrant at a given
MIP map level.

AVOIDING SEAM ARTIFACTS
Texture filtering can cause some samples near the boundary of the polygon to be
drawn from the wrong polygon image in the texture map. If the triangle is a neigh-
bor, then this error is not at all serious. But since we are ignoring polygonal neigh-
borhoods, we cannot depend on this situation.

Consider the example in Figure 13.5. In this example, the texture is a 4 × 4 pixel
square. We will use integer coordinates for the pixel centers, with the lower-left pixel
at (0,0). Two triangles are rasterized. The darker triangle has coordinates (−0.5,
−0.5), (4.5, −0.5), and (−0.5, 4.5), and the lighter triangle has coordinates (−0.5,
4.5), (4.5, −0.5), and (4.5, 4.5).

The pixels in Figure 13.5(a) are assigned according to the rules of rasterization.
These rules were designed to avoid competition over pixels that might be shared by
multiple polygons. Pixels that fall in the interior of the polygon are assigned to the
polygon. Pixels that fall on the shared edge of a pair of polygons are assigned to the
color of the polygon on the right. If the shared edge is horizontal, they are assigned
to the color of the polygon above. Hence the pixels that fall along the hypotenuse are
assigned to the lighter triangle.

The two triangles in Figure 13.5(a) delineate two sampling regions. During
texture-mapped rasterization, interpolated u, v coordinates may fall within the
bounds of either of these two texture map triangles. These coordinates will likely not
lie precisely at pixel centers. They instead need to sample a continuous function re-
constructed from the discrete pixel samples by a reconstruction filter.

Avoiding Seam Artifacts 419

FIGURE 13.4 MIP mapping based on clusters of proximate triangles.

A-

Team LRN

The nearest-neighbor filter is the simplest such reconstruction filter, so we will
begin our analysis with it. Nearest neighbor returns the color of the pixel closest to
the sample location. Because the texture is stored in a rectilinear grid of pixels,
nearest-neighbor sampling surrounds each of the pixel centers with square Voronoi
cells of constant color. Hence the nearest-neighbor filter reconstructs from the dis-
crete pixels in Figure 13.5(a) a continuous function consisting of square regions of
constant color as illustrated in Figure 13.5(b).

Seams appear in part because the rules of texture filtering are inconsistent with
the rules of rasterization. Samples taken anywhere within the lighter triangle draw
from an appropriate nearest-neighbor pixel. But some positions in the darker trian-
gle near the hypotenuse have, as their nearest neighbor, pixels assigned by rasteri-
zation to the lighter triangle. This results in the staircased seam in the sampling
region of the darker triangle. The two triangles are unrelated and could appear in
completely different locations on the object surface, representing completely unre-
lated textures.

We need to lay out the triangles in the texture map so they can be sampled cor-
rectly. The solution to this problem is to offset the triangles sharing the hypotenuse
by one pixel horizontally (Rioux, Soucy, and Godin 1996), as shown in Figure 13.6.
We rasterize an enlarged darker triangle with vertices (−0.5, −0.5), (5.5, −0.5), and
(−0.5, 5.5) and a translated lighter triangle with vertices (0.5, 4.5), (5.5, −0.5), and
(5.5, 4.5) as shown in Figure 13.6(a). The rasterization of these new triangles shades
the pixels as shown in Figure 13.6(b), giving an equal number of pixels to each trian-
gle. The texture coordinates u, v of the darker triangle have not changed, and so the
smaller triangle is sampled properly from the overscanned rasterization as shown in
Figure 13.6(c). The lighter triangle is similarly sampled from its translated position.

Bilinear filtering can also be supported (Carr and Hart 2002) by using the sam-
pling regions shown in Figure 13.6(d). In this case, triangles that share a hypotenuse

420 CHAPTER 13 Real-Time Procedural Solid Texturing

(a) (b) (c)

FIGURE 13.5 (a) Textures are stored as an array of pixels. (b) The nearest-neighbor filter returns the
color of the closest pixel to the sampled location. (c) This can result in seam artifacts, shown here
as the light triangle color bleeding into the darker triangle’s sampling region.

Team LRN

in the atlas must share an edge in the mesh. The vertices of the sampling region have
been inset one-half pixel, providing the buffer necessary to support bilinear filtering.

IMPLEMENTING REAL-TIME TEXTURING PROCEDURES
The procedural evaluation step of our real-time procedural solid texturing algorithm
executes the texturing procedure on the texture atlas after the rasterization step has
filled it with solid texture coordinates. The procedural evaluation step replaces the
solid texture coordinates stored in the RGB values with a resulting texture color,
which is applied to the object in the texture mapping step. This section explores vari-
ous techniques for implementing fast texturing procedures. These techniques focus
on implementations of the Perlin noise function (Perlin 1985), which is a common
element found in many procedural textures.

One option is to implement the texturing procedure on the CPU. Several have
implemented the Perlin noise function using special streamlined instructions avail-
able on Intel processors (Goehring and Gerlitz 1997; Hart et al. 1999). Our stream-
ing SIMD implementation was able to run at 10 Hz on an 800 MHz Pentium III. The
main drawback to CPU implementation is the asymmetry of the AGP graphics bus
found in personal computers, which is designed for high-speed transmission from
the host to the graphics card but not vice versa. In fact, we found that when we used
the CPU to perform the procedure evaluation step, it was faster to also perform the
atlas rasterization step on the CPU instead of the GPU because the result of the CPU
implementation did not require a readback through the AGP bus.

However, we should take advantage of the power of the graphics accelera-
tor. This means we should take advantage of the programmable shading features
available on modern GPUs in the implementation of the procedure evaluation
step. Doing so also allows us to take advantage of the GPU during the rasterization
step.

Implementing Real-Time Texturing Procedures 421

(b)(a) (c) (d)

FIGURE 13.6 Avoiding seam artifacts.

Team LRN

A variety of implementations exist using different components of modern graph-
ics accelerators. The noise function can be implemented using a 3D texture of ran-
dom values with a linear reconstruction filter (Mine and Neyret 1999). A texture
atlas of solid texture coordinates can be replaced with these noise samples using the
OpenGL pixel texture extension or dependent texturing. Others have implemented
the Perlin noise function as a vertex program (NVIDIA 2001), but a per-vertex pro-
cedural texture produces vertex colors or other attributes that are Gouraud inter-
polated across faces. Hence the frequency of the noise is limited by the frequency of
the tessellation.

The Perlin noise function can also be implemented as a multipass pixel shader
(Hart 2001). This implementation is based on the formulation of the Perlin noise
function as a 3D integer lattice of uniformly distributed random values from 0 to 1
(see Figure 13.7). These discrete lattice values are reconstructed into a continuous
function through interpolation, which locally correlates the random values. De-
pending on the application, this reconstruction can be C1 smooth, using cubic inter-
polation, or fast, using linear interpolation.

The multipass pixel shader implementation of the Perlin noise function is based
on the Rayshade implementation (Skinner and Kolb 1991). That implementation of
the noise function uses 3D reconstruction filter kernels at the integer lattice points,
with amplitudes set to the lattice point random values

The summation iterates over all eight corners of the cube containing the point s,
t, r. For each of these corners, the function Hash3d(x, y, z) constructs a random

422 CHAPTER 13 Real-Time Procedural Solid Texturing

1 1 1

0 0 0

Hash3d(, ,) (,) (,) (,)
k j i

s i t j r k w s i w t j w r k
= = =

 + + +∑ ∑ ∑

.1 .7

.2.4

.8

.6 .4

.5

s
t

r

#0 #1

#2 #3

#4 #5

#6 #7

FIGURE 13.7 Noise based on an integer lattice of random values. Corner are labeled from #0 to #7
for later reference.

Team LRN

value t the integer lattice point x, y, z by performing an arbitrary set of bitwise opera-
tions on the integer coordinate values x, y, and z.

The Rayshade implementation of the noise function can be adapted to a multi-
pass pixel shader. The basic outline of the multipass pixel shader implementation of
noise is as follows.

1. The algorithm begins with the input RGB texture named atlas whose colors
contain the interpolated s, t, r coordinates from the rasterization step (Figure
13.8(a)).

2. Initialize an output luminance texture noise to black.

3. Let atlas_int be an RGB texture whose pixels are the integer part of the cor-
responding pixels in atlas. Each pixel of atlas_int contains the coordinates
of the lower-left front corner of the noise lattice cell that contains the coordi-
nates of the corresponding pixel in atlas (Figure 13.8(b)).

4. Add the value one to each of the RGB components of the pixels of texture
atlas_int to get the texture atlas_int++. Each pixel of atlas_int++ now
contains the coordinates of the upper-right back corner of the noise lattice cell
that contains the coordinates of that pixel in atlas. Note that now all eight
corners of the noise lattice cell can be constructed as a combination of the com-
ponents of atlas_int and atlas_int++.

5. Let weight be a texture whose pixels are the fractional parts of the correspond-
ing pixels in atlas (Figure 13.8(c)).

Implementing Real-Time Texturing Procedures 423

(a) (b) (c)

FIGURE 13.8 (a) A texture map of solid texture coordinates (s, t, r) ranging from (0, 0, 0) to (1, 1,
0), decomposed into (b) an integer part atlas_int and (c) a fractional part weight.

Team LRN

6. For k = 0..7:

a. Let corner be an RGB texture equal to texture atlas_int overwritten
with the texture atlas_int++ using the color mask (k&1, k&2, k&4). The
texture corner now contains the integer coordinates of corner #k of the
cell.

b. Let random be a luminance texture whose pixels are uniformly distributed
random values indexed by the corresponding pixels of corner. The texture
random now holds the noise value at corner #k (Figure 13.9(a)).

c. Multiply random by the red channel of weight if (k&1), otherwise by one
minus the red channel of weight (Figure 13.9(b)).

d. Multiply random by the green channel of weight if (k&2), otherwise by one
minus the green channel of weight (Figure 13.9(c)).

e. Multiply random by the blue channel of weight if (k&4), otherwise by one
minus the blue channel of weight. These three instructions have now com-
puted the contribution of that corner’s value in the trilinear interpolation
(Figure 13.9(d)).

f. Add random to noise.

7. At this point the pixels of the luminance texture noise will now contain values
linearly interpolated from random values indexed by the coordinates of its
eight surrounding cell corners (Figure 13.10).

Our first implementations of this algorithm were on pixel shaders that only al-
lowed 8 bits of precision (Hart 2001). These implementations used fixed-point

424 CHAPTER 13 Real-Time Procedural Solid Texturing

FIGURE 13.9 (a) Random values computed from atlas_int, weighted by (b) 1 − R(weight),
and (c) 1 − G(weight) (and 1 − B(weight), which is uniformly equal to one), to produce (d)
corner #0.

(a) (b) (c) (d)

Team LRN

numbers with 4 bits of integer and 4 bits of fractional parts, and special pixel shader
routines were developed for shifting values left or right to obtain the integer and
fractional parts. Our original implementation also implemented a random number
generator in the pixel shader, although modern graphics hardware now supports de-
pendent texturing, which allows the random texture to be generated by using the
components of the corner texture to index into a precomputed texture of random
values.

APPLICATIONS
The real-time procedural solid texturing method is view independent. Hence, once
the procedural solid texture has been computed on the atlas of an object, then the
object can be viewed in real time. Each new view of the procedural solid texture on
the object requires only a simple texture-mapped rendering, which is supported by
modern graphics processors.

The most expensive operation of the real-time procedural solid texturing pro-
cess is the generation of the atlas. Fortunately, the atlas need only be generated once
per object. The atlas needs to be regenerated when the object changes shape. How-
ever, if the object deforms by changing only its vertex positions, then the atlas can re-
main unchanged (although the relative sizes of triangles on the object surface may
have changed, which can result in a poor distribution of texture samples). Further-
more, if the object deforms but retains the same mesh structure, then the procedural
solid texture will adhere to the object, overcoming the problem where the object
swims through a solid texture, as shown in Figure 13.11.

The atlas encapsulates a procedural solid texturing of an object. The textured at-
las can be attached to the object model as a simple 2D texture map, which is already
supported by numerous object file formats.

The next most expensive operation is the procedural texture evaluation step
mentioned earlier. The rasterization step can be performed on the graphics hard-
ware, but we found it was sometimes useful to perform this step on the CPU given

Applications 425

= + + +

FIGURE 13.10 Noise is equal to the sum of corners #0 through #3. (Corners #4 though #7 are black
since solid texture coordinate r is an integer, specifically zero, throughout this test.)

Team LRN

the constraints of current graphics hardware. The first reason was that it allowed the
CPU to apply the procedural texture without performing an expensive readback of
the rasterized pixels. The second reason was that it gave us full control over the rules
of rasterization, which can sometimes vary between hardware implementations. As
readback rates improve and graphics hardware becomes more programmable, im-
plementation of all three steps on the GPU will certainly be the better practical
choice.

We have used these techniques to construct an interactive procedural solid tex-
turing design system. This system allows the procedural solid texturing to be manip-
ulated via parameter sliders. As the sliders move, the resulting procedural solid
texture is reapplied to the object. Since the shape of the object is not changing, the
atlas does not need to be recomputed, but the procedural texture does need to be re-
computed on the atlas. Our implementations were able to support rates of 10 Hz for
an atlas of resolution 2562 using the host processor for rasterization and texture
evaluation. These speeds will improve as graphics hardware performance continues
to accelerate.

426 CHAPTER 13 Real-Time Procedural Solid Texturing

(a) (b) (c)

FIGURE 13.11 (a) A plank of wood. (b) A curved plank carved out of wood versus (c) a warped
plank of wood. Image courtesy of Jerome Maillot, Alias|Wavefront.

Team LRN

ACKNOWLEDGMENTS
Nate Carr was responsible for most of the work described in this chapter. Our
work on this topic was supported in part by the Evans & Sutherland Computer
Corp. Jerome Maillot was instrumental in developing the initial ideas behind this
work.

Acknowledgments 427

Team LRN

14

Team LRN

A BRIEF INTRODUCTION TO FRACTALS
F. K E N T O N M U S G R AV E

Our world is visually complex. Achieving realism in computer graphics is largely a
matter of reproducing that complexity in our synthetic images. Fractal geometry is
our first cogent language of visual complexity; it provides a potent vocabulary for
complex form, particularly the kinds of forms found in nature. Fractal geometry
can map seemingly chaotic complexity into the terse, deterministic idiom of mathe-
matics—simple equations that efficiently encapsulate lots of complexity. Further-
more, the way in which fractals encapsulate this complexity is exquisitely suited
to the capabilities of the digital computer (unlike much mathematics). Computer
graphics, for its part, can translate the fractal mathematical abstractions into the sin-
gle form best suited to human cognition: images.

Fractals and computer graphics have grown up together, and both are relatively
new disciplines. This is partly because the study of fractals is simply not possible
without computer graphics: fractals are too complex to comprehend except through
pictures and too tedious to create except with a computer. Thus computers have al-
ways been essential to the study of fractals. For their part, fractals have always been
the source of much of the visual complexity in realistic computer graphics. Fractals
are particularly salient in synthetic images of nature such as landscapes, while fractal
textures are often used to add visual interest to relatively simple and boring geomet-
ric models. Fractals can even comprise abstract art in themselves, as Figures 14.1,
19.4, and 19.5 illustrate. It is safe to say that fractals have been the source of much
of the beauty in synthetic images throughout the brief history of computer graphics.
Fractals and computer graphics go hand in hand.

This chapter provides a brief overview of fractal geometry. It is designed to be
a sort of “fractals for artists” discussion of the relevant issues. I have tried hard
to be accurate in the details while avoiding mathematical technicalities, knowing
how stultifying they can be. The mathematics is covered in exquisite detail in the
excellent text The Science of Fractal Images (Peitgen and Saupe 1988) if you’re
interested.

429

Team LRN

The importance of this chapter lies in the introduction of two fractal construc-
tions and the code segments that implement them. Let me state up front that the sec-
ond, pure multifractal, function may safely be ignored as simply a mathematical
curiosity, but the first is the primary building block for all of the constructions I will
present in later chapters. So, whatever your level of technical and/or mathematical
competence, I urge you to read on. I hope you enjoy the discussion; I have attempted
to make it provocative as well as informative.

Finally, a warning: Don’t expect to get all this your first time through. Expect to
have to read it maybe three times before you really get it. It took me at least that
many times when I was first grappling with the weirdly counterintuitive concepts be-
hind fractals. Don’t feel slow or dense—you’re not alone! I like to tell my students,
“Many things are obvious—after you’ve thought about them for several years.” So
take your time. There’s some major conceptual weirdness coming right up.

WHAT IS A FRACTAL?
As important as fractals are to computer graphics, they have always been widely
misunderstood in our field. At times they have even become a source of heated con-
troversy. Usually, in my experience, the problems arise mainly from incomplete

430 CHAPTER 14 A Brief Introduction to Fractals

FIGURE 14.1 “Genetic Sand Painting” is a procedural texture “grown” using Karl Sims’s genetic
software. Copyright © 1994 F. Kenton Musgrave.

Team LRN

The importance of this chapter lies in the introduction of two fractal construc-
tions and the code segments that implement them. Let me state up front that the sec-
ond, pure multifractal, function may safely be ignored as simply a mathematical
curiosity, but the first is the primary building block for all of the constructions I will
present in later chapters. So, whatever your level of technical and/or mathematical
competence, I urge you to read on. I hope you enjoy the discussion; I have attempted
to make it provocative as well as informative.

Finally, a warning: Don’t expect to get all this your first time through. Expect to
have to read it maybe three times before you really get it. It took me at least that
many times when I was first grappling with the weirdly counterintuitive concepts be-
hind fractals. Don’t feel slow or dense—you’re not alone! I like to tell my students,
“Many things are obvious—after you’ve thought about them for several years.” So
take your time. There’s some major conceptual weirdness coming right up.

WHAT IS A FRACTAL?
As important as fractals are to computer graphics, they have always been widely
misunderstood in our field. At times they have even become a source of heated con-
troversy. Usually, in my experience, the problems arise mainly from incomplete

430 CHAPTER 14 A Brief Introduction to Fractals

FIGURE 14.1 “Genetic Sand Painting” is a procedural texture “grown” using Karl Sims’s genetic
software. Copyright © 1994 F. Kenton Musgrave.

Team LRN

knowledge of exactly what fractals are and are not. They are a potent language of
form for shapes and phenomena common in nature. They are decidedly not the end-
all for describing all aspects of the world we inhabit, or for creating realistic syn-
thetic images. They encompass simultaneously more and less than what many people
think. I will attempt to illuminate the concept of a “fractal” in the following, and
also to make a first cut at delineating both the power of fractal geometry and at least
some of its limitations. Having worked with Benoit Mandelbrot, the father of fractal
geometry, for six years, I may be qualified to present the topic and to address some of
the misunderstandings of fractals that are common in our field.

Fractal geometry is mathematics, but it is a particularly user-friendly form of
math. In practice, it can be approached entirely heuristically: no understanding of
the underlying formulas is required, and the numerical parameters of the user inter-
face may be used intuitively, their exact values being more or less arbitrary “posi-
tions of a slider,” a slider that controls some aspect of visual behavior. For the
purposes of this text, I will develop this heuristic approach to fractals in computer
graphics. For my own purposes, I think entirely visually; the equations simply de-
scribe shapes and rules for their combination. Works for me! I am not a mathemati-
cian—rumors to the contrary are greatly exaggerated.

What, then, is a fractal? Let me define a fractal as “a geometrically complex ob-
ject, the complexity of which arises through the repetition of a given form over a
range of scales.”1 Note the simplicity and breadth of this definition. This simple,
heuristic definition will be sufficient for our purposes here.

Probably the easiest way to think of fractals is as a new form of symmetry—dila-
tion symmetry. Dilation symmetry is when an object is invariant under change of
scale—zooming in or zooming out. This invariance may be only in gross appearance,
not in the exact details. For example, clouds exhibit dilation symmetry in that a
small part of a cloud looks like a larger part, but only qualitatively, not exactly. Tree
branches, river networks, and lightning display this dilation symmetry, too. And all
are fractal.

In my current worldview there are at least two kinds of complexity: fractal and
nonfractal. Nonfractal complexity seems to be characterized by the accumulation of
a variety of features through distinct and unrelated events over time—like the scuffs,
holes, and stains on an old pair of shoes, for instance. Because of the independence
of the events that create the features that comprise this complexity, it is hard to char-
acterize it succinctly. Fractal complexity, on the other hand, can be very simple: just
keep repeating the same thing over and over, at different scales.

What Is a Fractal? 431

1. No tricks here: “scales” simply means “sizes.”

Team LRN

Our heuristic definition is sufficient, but let me explain a little further for your
edification. Fractals have a peculiar property called fractal dimension. We are all fa-
miliar with the Euclidean integer-valued dimensions: zero dimensions corresponds
to a point, one to a line, two to a plane, and three to space. Fractal dimension ex-
tends this concept to allow real-numbered values such as 2.3. Visually, values of
fractal dimension between the integer values (for example, 2.3, which lies between 2
and 3 dimensions) provide a continuous “slider” for the visual complexity of the
fractal. Something with a fractal dimension of 2.0 is (at least locally) planar, and as
the value of the fractal dimension rises from 2.0 to 3.0, that plane becomes rougher
and rougher—and more visually complex—until it densely occupies (at least locally)
some volume of three-dimensional space. I warned you that this would get weird!

Again, the “whole” component of the fractal dimension, or the 2 in 2.3, indi-
cates the underlying Euclidean dimension of the fractal, in this case a plane. The
“fractional” part, for example, the .3 in 2.3, is called the fractal increment. As this
part varies from .0 to .999 . . . , the fractal literally goes from (locally) occupying
only its underlying Euclidean dimension, for instance, a plane, to densely filling
some local part of the next higher dimension, such as space. It does this by becoming
ever more convoluted as the value of the fractal increment increases.

Why do I keep qualifying these statements with the word “locally”? Because
while a beach ball is, for example, a three-dimensional object, its surface is not: if we
zoom in infinitely close, it becomes “locally” planar. Sure, it’s a bit of a fine mathe-
matical point, but understanding it and keeping it in mind is necessary to help avoid
even more confusion than is inevitable in learning what fractals are. So a surface
doesn’t have to be a perfectly flat Euclidean plane to have a fractal dimension of 2.0,
nor does it have to fill all of three-space to have a fractal dimension of 3.0. This one
took me a while to get my head around, too. You’re not alone.

Fractal dimension is a peculiar property, to be sure. The mathematical definition
of it involves infinity; therefore, I claim, the human mind simply cannot fully com-
prehend it. But you quickly become numb (well, after a few years maybe) to the in-
comprehensibility, and furthermore, for our purposes here it is beside the point. So
let us not belabor the technical details; rather, let us continue in developing an intu-
itive grasp of fractals.

The source of the convoluted complexity that leads to this intermediate dimen-
sionality is, again, simply the repetition of some underlying shape, over a variety of
different scales. I refer to this underlying shape as the basis function. While that
function can be literally anything, for most of my constructions it is a variant of Ken
Perlin’s noise function.2 For now, think of the noise function as providing a kind of

432 CHAPTER 14 A Brief Introduction to Fractals

2. I generally prefer to use “gradient noise,” as described by Darwyn Peachey in Chapter 2.

Team LRN

cottage cheese with lumps all of a particular size. We build a fractal from it simply by
scaling down the lateral size of the lumps, and their height as well, and adding them
back in to the original lumps. We do this several times and—presto!—we have a
fractal.

To be a little more technical, we refer to the lateral size of the lumps as the fre-
quency of the function (more specifically, the spatial frequency). The height of the
lumps we refer to as the amplitude. The amount by which we change the lateral size,
or frequency, in each step of our iterative addition process is referred to as the
lacunarity of the fractal. Lacunarity is a fancy Latin word for “gap.” The gap, in this
case, is between successive frequencies in the fractal construction. In practice, lacu-
narity is pretty much a nonissue, as we almost always leave it set at 2.0 (although in
Chapter 6 Steve Worley describes some cases where you might want to change that
value slightly). In music, doubling the frequency—which is exactly what a lacunarity
value of 2.0 implies—raises a given pitch by exactly one octave. Hence we generally
speak of the number of octaves in our fractals: this corresponds to the number of
times we scaled down and added in smaller lumps to bigger lumps.

There is a well-defined relationship between the amount by which we scale size
and the amount by which we scale the height, or frequency versus amplitude. This
relationship is what determines the fractal dimension of our result. (Again, I decline
to get any more technical and refer the interested reader to The Science of Fractal
Images for details.) The particular kind of fractal we’re building is called fractional
Brownian motion, or fBm for short. fBm is characterized by its power spectrum,
which charts exactly how amplitude relates to frequency. Oops! Pardon me—I’ll
knock off the math.

Allow me now to point out two of the most common misconceptions about frac-
tals in our field of computer graphics. The first is that all fractals are variants of fBm.
Not so! Go back and look at our definition of fractals: it subsumes a far larger class
of objects than our scaled-and-added-up cottage cheese lumps. Many things are
fractal; more interestingly, perhaps, many things are “only sort of” fractal. Frac-
talness is a property that is, believe it or not, best left loosely defined. Think of it as a
quality like color: it is hard to define “blue” precisely, and any really precise defini-
tion of “blue” is likely to be overly restrictive in certain circumstances. The same
goes for fractals.

The second common misconception about fractals is this: that an object must
have infinite detail in order to qualify as fractal. Also not so! Benoit and I agree that
to talk about self-similarity over a range of less than three scales is rather vacuous.
So we may heuristically constrain fractals to be “objects that display self-similarity
at a minimum of three separate scales.” This magic number three may not even pro-
vide such a great definition of “fractal”—later I will describe a nice model of water

What Is a Fractal? 433

Team LRN

that can use only two octaves of noise. Is it fractal, or is it not? You could make a
convincing argument either way. The main point is this: as long as something dis-
plays self-similarity over some, albeit perhaps small, range of scale, it may qualify as
“fractal.” Note that all fractals in nature exhibit their fractal behavior over a limited
range of scale—even the large-scale cosmological structure of the universe. The dis-
tribution of galaxies and clusters of galaxies is quite fractal, but there is a finite and
observable largest scale of features in this universe (knowledge more recent than the
first edition of this book!). Another example: Seen from a distance in space, Earth is
smoother than a glass marble, yet on smaller scales it has many mountain ranges
that are quite fractal.

We refer to the size above which self-similarity ceases to manifest itself as the up-
per crossover scale. Similarly, there is a smaller size below which self-similarity no
longer is manifest; this is the lower crossover scale. All fractals in nature, then, are
what we call band-limited—they are fractal only over some limited range of scales.
Mandelbrot makes this striking observation: the Himalayas and the runway at JFK
have approximately the same fractal dimension (i.e., roughness)—they differ only in
their crossover scales! (Didn’t I warn you this would get weird?)

Finally, I’d like to note that all fractals for computer graphics must also be band-
limited, for two reasons: First, spatial frequencies that are higher than half our pixel
frequency (the screen width divided by resolution) may violate the Nyquist sampling
limit and cause aliasing (a highly technical point; feel free to ignore it here and when
it comes up again later, but hugely important to our ultimate goal of building the re-
alistic fractal planets that will become cyberspace). Second, we generally wish for
our computations to terminate, so it’s poor programming practice to put in the kind
of infinite loop that would be required to construct non-band-limited fractals.

WHAT ARE FRACTALS GOOD FOR?
Again, the world we inhabit is visually complex. When synthesizing worlds of our
own, complexity equals work. This work can be on the part of the programmer/
artist or the computer; in fact it will always be some of each. But there is a balance to
be struck, and personally I prefer to have the computer do most of the work. Usually,
it seems to have nothing better to do, while I generally can find other mischief to
make. One of the defining characteristics of procedural modeling, in general, is that
it tends to shift the burden of work from the programmer/artist to the computer. Com-
plexity is vital to realism in synthetic images. We still have a long way to come in this
area: I claim that you’d be hard put to find any scene in your everyday environment,
other than a clear blue sky, that’s as visually simple as the best, most detailed syn-
thetic image of the same thing (if for no other reason than that reality is higher

434 CHAPTER 14 A Brief Introduction to Fractals

Team LRN

resolution). How, then, can we close the gap? To date, fractals are our best tool.
While not all complexity in nature comprises the repetition of form over different
scales, much of it is. It is not so much true that nature is fractal as that fractals are
natural. Fractal models can be used to construct scenes with good realism and a high
degree of visual complexity, but they effectively address only a limited range of phe-
nomena. People often ask me if I can model dogs and people with fractals and the
answer is “no.” Dogs and people simply aren’t self-similar over a range of scales.
Fractals, then, allow us to model certain things well: mountains, clouds, water, even
planets. Non-self-similar complexity such as hair and grass require other methods.
Things not visually complex, obviously, do not require fractal geometry for their
reproduction.

All my time with fractals has led me to view them as “the simplest conceivable
form of complexity.” (If you can think of a simpler way to give rise to complexity
than to simply repeat the same thing over and over at a variety of scales, I’d love to
hear about it!) This simplicity is a very good thing, since computers are simpletons,
and simpler programs are better programs, too: they are quicker to write, (usually)
easier to understand, easier to trust, and take up less memory.3

Now let me answer the question “What are fractals good for?” Many natural
phenomena are fractal. Mountains are perhaps the best-known example: a smaller
part of a mountain looks just as mountainlike as a larger part. They’re not exactly
the same; this is the distinction between statistical self-similarity, where only the sta-
tistics of a random geometry are similar at different scales, and exact self-similarity,
where the smaller components are exactly the same as the larger ones, as with the
equilateral triangles forming the famous von Koch snowflake fractal. Trees, river
systems, lightning, vascular systems in living things—all have the character of statis-
tical self-similarity: smaller branches tend to resemble larger branches quite closely.
Another example, on which we capitalize quite heavily in this book, is turbulent
flow: the hierarchy of eddies in turbulence was known to be self-similar long before
Mandelbrot elucidated the concept of “fractal.” There’s even a little poem about it:

Bigger swirls have smaller swirls,
That feed on their velocity,
And smaller swirls have smaller swirls,
And so on, to viscosity
—Lewis F. Richardson, 1922

What Are Fractals Good For? 435

3. This bias in favor of simplicity is canonized in Occam’s Razor: “The simpler model is the preferred
model.” This principle has guided much of science and engineering through the centuries. More on this
later.

Team LRN

The essential fractal character of turbulence allows us to use fractal models to
represent clouds, steam, global atmospheric circulation systems on planets, even
soft-sediment deformation in sedimentary rock. Again, the pictures attest to the suc-
cess of these models, as well as the limits to that success.4

FRACTALS AND PROCEDURALISM
How are fractals and proceduralism related? Very closely indeed. When we describe
how to build fBm, it will be with an iterative, constructive procedure. The simplicity
of fractals resonates well with computers, too, as they are simple-minded devices.
The sort of simple, tedious, repetitive operations required to build a fractal are ex-
actly the kind of thing computers do best. As we will see, fractal constructions can
provide potentially unlimited visual complexity that issues from a relatively small
amount of code.

Alvy Ray Smith called this complexity-from-simplicity amplification (Smith
1984)—a small input provides a wealth of output. We engineer it in the classic
proceduralist method: by shifting the burden of work from the human designer to
the computer. Mandelbrot himself points out that fractals have been evident to
mathematicians for some time, but not until the advent of computer graphics did
they have the tools necessary to investigate them. This is almost certainly why frac-
tals were only recently “discovered”—perhaps more like “fleshed out”—and why it
was a researcher (Mandelbrot) at IBM (a computer company) who did so. Fractals
and computers have always been inextricably linked. The fruit of this symbiosis is il-
lustrated in the realistic synthetic imagery issuing from fractal models and by the
observation that most other complexity in computer graphics derives either from
captured data from the real world (cheating!) or from the hard labor of constructing
detailed models by hand (which is antiproceduralist).

PROCEDURAL fBm
But enough lecturing already. Let’s see exactly how to build the archetypal fractal
procedural texture: fBm (also known as “plasma” in some software applications).
It’s pretty simple:

436 CHAPTER 14 A Brief Introduction to Fractals

4. For instance, as our poem points out, turbulence is actually composed of a hierarchy of vortices, not
simply lumps like the noise function provides. To my knowledge, no one has yet developed a procedural
vortex turbulence model that competes well with physical simulations using the Navier-Stokes equations
that yield nice fractal vortices, but at a high computational cost.

Team LRN

/*
* Procedural fBm evaluated at “point”.
*
* Parameters:
* “H” is the fractal increment parameter
* “lacunarity” is the gap between successive frequencies
* “octaves” is the number of frequencies in the fBm
*/

double fBm(Vector point, double H, double lacunarity, double octaves)
{

double value, remainder, Noise();
int i;

value = 0.0;

/* inner loop of fractal construction */
for (i=0; i<octaves; i++) {
value += Noise(point) * pow(lacunarity, -H*i);

point *= lacunarity;
}

remainder = octaves - (int)octaves;
if (remainder) /* add in “octaves” remainder */

/* ‘i’ and spatial freq. are preset in loop above */
value += remainder * Noise3(point) * pow(lacunarity, -H*i);

return value;
}

Note the simplicity of this routine: the fractal itself is constructed in the two-line
inner loop; the rest of it is concerned with the picayune point of dealing with the re-
mainder of octaves. (This will be important when building fractals with continuous
level of detail, or LOD, in later chapters.5) Again, this routine is a generalization of
Perlin’s original “chaos” function. I’ve added new parameters to control lacunarity
(which in most cases can simply be fixed at 2.0, as Perlin originally did), the fractal
increment parameter H, and the number of octaves in the construction.

Procedural fBm 437

5. For a properly band-limited fBm with pixel-level detail, imaged from a distance of 1.0, the correct
number of octaves to use is

octaves = log2 (screen_resolution) − 2

or a value of about 6 to 10. The −2 term in this expression has to do with the facts that the Nyquist
limit is 1/2 of the screen resolution and that the highest frequency in the Perlin noise function is �1/2 of
the lattice spacing. Then we have 1/2 * 1/2 = 1/4 and log2 (1/4) = −2. Reducing the number of octaves
can speed up rendering time in exchange for less detail.

Team LRN

To accommodate LOD in advanced applications, this function is designed to ac-
commodate real-valued octaves. The fractional part of the value of parameter oc-
taves is added in, linearly, after the main loop. We’ll use this to adaptively band-
limit textures where we want to link the number of octaves to distance to avoid ex-
ceeding the Nyquist limit and subsequent aliasing. (We will utilize this in the QAEB
algorithm in Chapter 17.) This little trick with the octaves remainder avoids discon-
tinuities in the texture that would be introduced were the number of octaves to
abruptly change at some threshold.

If you implement something like adaptive band-limiting, you’ll want to store the
spectral exponents in a preinitialized array, to avoid repeated calls to pow() in the in-
ner loop. This exponent array would store the amplitude-scaling values for the vari-
ous frequencies in the construction. These weights, a simple function of H and the
lacunarity, determine the fractal dimension of the function. (Again, see The Science
of Fractal Images for details on how and why.)

The parameter H is equal to one minus the fractal increment. It corresponds to
the H described by Voss in The Science of Fractal Images. When H = 1, the fBm is
relatively smooth; as H goes to 0, the function approaches white noise. Figure 14.2
shows traces of the function for various values of H.

The underlying Euclidean dimension of the function is given by the dimen-
sionality of the vector-valued argument point.6

MULTIFRACTAL FUNCTIONS
The fBm described above is, at least as closely as we can make it (see Chapter 6 for
more on this), statistically homogeneous and isotropic. Homogeneous means “the
same everywhere,” and isotropic means “the same in all directions” (note that the
two do not mean the same thing). Fractal phenomena in nature are rarely so simple
and well behaved. For instance, synthetic fractal mountains constructed with a sin-
gle, uniform fractal dimension everywhere—as are most fractal mountains in com-
puter graphics—have the same roughness everywhere. Real mountains are never
like that: they typically rise out of plains and have rolling foothills at their feet. For

438 CHAPTER 14 A Brief Introduction to Fractals

6. A definition of vector: an ordered set of numbers, usually three numbers for our purposes, which de-
fines an arrow from the origin (the origin being [0,0,0] in three dimensions) to the point in space that the
set of numbers specifies. The dimensionality of the space is the same as the number of elements in the
vector. Thus the vector [1,−1,1] defines an arrow in three dimensions that points out from the origin at
45 degrees to each of the x-, y-, and z-axes. Its length is .2 2 2 2 2 21 (1) 1 3x y z+ + = + − + =

Team LRN

Multifractal Functions 439

FIGURE 14.2 Traces of fBm for H varying from 1.0 to 0.0 in increments of 0.2.

Team LRN

this and other concerns of realism, we desire some more interesting, heterogeneous
fractal functions.

Enter multifractals. Multifractals may be heuristically defined as “fractals that
require a multiplicity of measures, such as fractal dimension, to characterize them.”
Another heuristic definition is “heterogeneous fractals, the heterogeneity of which is
invariant with scale.”7 They are most easily thought of as fractals whose dimension
varies with location; the key point is that they are heterogeneous—not the same ev-
erywhere. Later I will demonstrate some terrain models with plains, rolling foothills,
and jagged alpine mountains, all of which issue from a single function that is only a
little more complicated than the basic fBm described earlier.

One mathematical definition of multifractals ties them to multiplicative cascades
(Evertsz and Mandelbrot 1992). The earlier fBm function is built using an additive
cascade. The formal difference between an additive and a multiplicative cascade is
simply that the addition of higher frequencies in the inner loop is replaced by a mul-
tiplication. Here is a multiplicative-cascade multifractal variation on fBm:

/*
* Procedural multifractal evaluated at “point.”
*
* Parameters:
* “H” determines the highest fractal dimension
* “lacunarity” is gap between successive frequencies
* “octaves” is the number of frequencies in the fBm
* “offset” is the zero offset, which determines multifractality
*/

double
multifractal(Vector point, double H, double lacunarity,

int octaves, double offset)
{

double value, Noise();

value = 1.0;

for (int i=0; i<octaves; i++) {
value *= (Noise(point) + offset) * pow(lacunarity, -H*i);
point *= lacunarity;

}
return value;

}

440 CHAPTER 14 A Brief Introduction to Fractals

7. The heterogeneity may be, for instance, that peaks on a terrain are rougher than valleys. This can be
true at all scales; then we have a multifractal, by this definition.

Team LRN

Note the addition of one more argument, offset, to the function, over the func-
tion for ordinary (monofractal) fBm; other than this and the multiplication in the
inner loop, this function is nearly identical to fBm(). The offset controls the
multifractality, if you will, of the function. When offset equals zero, the function is
heterogeneous in the extreme, and as its value increases the function goes from
multi- to monofractal, and then approaches a flat plane as offset gets large (i.e.,
around 100 or so). An offset value of �0.8 yields a very nice, heterogeneous terrain
model, as seen in Figure 14.3. One thing you must know about this function: its
range varies widely with changes to the value of offset—by many orders of magni-
tude. In fact, as the number of octaves goes up, it will either converge to zero or di-
verge to infinity. It’s just plain unstable. (Hence the parameter octaves is not real-
valued, as this function would behave badly in LOD schemes.) If you ever use this
function, you will need to take measures to rescale its output. I have accomplished
this by evaluating the function over some finite patch (e.g., a 3 × 3 area sampled at
100 × 100 resolution) and rescaling the function’s output by one over the maximum
value in the patch.

This function has the abstract advantage of following at least one mathematical
definition of “multifractal” closely. This may be desirable for mathematical research
into multifractals, but it is really pretty much a red herring for those more interested
in applications. Therefore, I suggest that you just ignore this construction and con-
centrate on the less mathematically well-defined, but better behaved, multifractal

Multifractal Functions 441

FIGURE 14.3 A multifractal terrain patch, with offset parameter set to 0.8. Copyright © 1994
F. Kenton Musgrave.

Team LRN

functions described in Chapter 16. Those functions are additive/multiplicative hy-
brids that we don’t quite know how to characterize mathematically yet, but that
have proven their usefulness in applications.

These multifractal models were developed for terrain models, and I have most
often interpreted them as height fields for that purpose. But in fact they are really
just more examples of procedural textures, and they can be used as such. I encour-
age you to experiment with them and invent your own new applications—it’s a lot
of fun! (For example, see Figure 15.17.) Since they were conceived as terrain models,
I will explain them in that context, in Chapter 16. But keep in mind that those mod-
els can also be used as textures when applications arise.

FRACTALS AND ONTOGENETIC MODELING
Fractal models are sometimes assailed on the grounds that they lack a physical basis
in reality. For example, there is no known causal basis for the resemblance between
fBm and real mountains. Is this a problem? For the reductionist-minded it is, for
such a model violates the reductionist principle that true validity can only be estab-
lished by showing that the model issues from first principles of physical law. This is a
narrow view that Mandelbrot and I, among others, would dispute. To wit, Nobel
Prize–winning physicist Richard Feynman once said: “A very great deal more truth
can become known than can be proven” (Brown and Rigden 1993). In practice, both
physical and nonphysical modeling have their places in computer graphics. To pro-
voke and focus this argument, I coined the term ontogenetic modeling. From Web-
ster’s Collegiate Dictionary, 10th edition:

ontogenetic: . . . 2: based on visible morphological characters.

I coined the term deliberately to contrast with Al Barr’s “teleological” modeling
(Barr 1991). Again, from Webster’s:

teleology: 1 a: the study of evidences of design in nature b: a doctrine (as in vitalism)
that ends are immanent in nature c: a doctrine explaining phenomena by final causes
2: the fact or character attributed to nature or natural processes of being directed to-
ward an end or shaped by a purpose 3: the use of design or purposes as an explanation
of natural phenomena.

442 CHAPTER 14 A Brief Introduction to Fractals

Team LRN

The underlying idea of ontogenetic modeling is that, in the field of image synthe-
sis, it is a legitimate engineering strategy to construct models based on subjective
morphological (or other) semblance; this as opposed to, for instance, pursuing pre-
cise (e.g., mathematical) veracity, as is a goal in scientific models, or constructing
them such that they and their behavior issue from first scientific principles, in the
reductionist tradition.

My point is that we computer graphics professionals are engineers, not scien-
tists. The goal of engineering is to construct devices that do something desirable. The
goal of science is to devise internally consistent models that reflect, and are consis-
tent with, the behavior of systems in nature (which are entirely unrelated to such
models) and to make verifiable predictions of the behavior of nature based on the
behavior of the model. Science informs engineering. But engineering is an ends-
driven discipline: if the device accomplishes what it is intended to accomplish, it
works and is therefore good. The means by which it accomplishes its end are of sec-
ondary importance.

Elegance8 in the model is nice in engineering, while it is necessary in science.
Occam’s Razor (i.e., the metaphysical prejudice that “the simpler solution is the pre-
ferred solution”) is equally applicable in both science and engineering. Engineers call
it the KISS principle: “Keep it simple, stupid.”9

In engineering—specifically, in computer graphics—Occam’s Razor often rec-
ommends ontogenetic models. Science is going for Truth and Beauty; we’re after
beautiful pictures that look like things familiar. The degree of preoccupation with
accuracy and logical consistency that marks good science is not admissible in our
engineering discipline: we have a job to get done (making pictures); getting that
job done efficiently takes precedence. Scientific models, or “physical” models in
computer graphics parlance, do not generally map well into efficient algorithms for
image synthesis. Given the aims and methods of science, this is not surprising. Algo-
rithmic computability and/or efficiency are not considerations in constructing scien-
tific models. And concerns for efficiency invoke a new, different set of constraints
that may be orthogonal to the considerations that shaped any given scientific model.
For instance, no scientist would hesitate to use an integral with no closed-form
solution in a model—the lack of a mechanism to obtain an exact evaluation is

Fractals and Ontogenetic Modeling 443

8. Again from Webster’s: “elegance: scientific precision, neatness, and simplicity.”
9. My mentor in landscape photography, Steve Crouch, put it another way: referring to composing an
image in the viewfinder, he said “See what you can get out of the picture,” not what you can get into it.

Team LRN

orthogonal to, and in no way compromises the validity of, the model. In the engi-
neering discipline of image synthesis, we must be able to complete our computa-
tions, faster is better, and if it looks good enough, it is good enough.

As the late Alain Fournier put it: When you use a physical model for image syn-
thesis, you often waste time computing the answers to questions about which you
care not. That is, they do not contribute to the image. Excessive accuracy in illumi-
nation calculations is an example, given the fact that we quantize our illumination
values to at most 256 levels in most standard output formats.

Given the serious drawbacks and complications of physically based models of
natural phenomena, I claim that the ontogenetic approach remains, for the fore-
seeable future, a viable alternative approach to engineering the synthesis of realistic
images. Ontogenetic models tend to be—indeed ought to be—simpler and more
efficient, both in programming and execution time, than corresponding physical
models.

[Editorial note, circa 2002: I got on my soapbox to deliver that rant about 15
years ago, when I was a graduate student and this was a hot topic. By now it seems
pretty dated and my passion, well, quaint. But the basic points remain valid and well
taken, I think. —FKM]

CONCLUSION
I hope I’ve helped you establish an intuitive understanding of fractals in this chapter.
The level of understanding presented here is all that is really required to pursue ap-
plications. You don’t need to be a mathematician to create and use fractals; in fact,
my experience indicates that an artistic eye is far more important than a quantitative
facility for creating striking fractal models for synthetic imagery. Keep in mind that
fractals are the simplest and easiest—for the human operator, at least—way to gener-
ate visual complexity, whether it be geometric detail, as in landscapes, or visual de-
tail, as with procedural textures. Fractals represent a first step toward procedurally
elegant descriptions of complexity in the natural world.

To work effectively with fractals, you need to be familiar with the heuristic
definition of fractal dimension—merely that it corresponds to roughness or wiggly-
ness. You need to be aware of the idea of octaves—the number of scales at
which you’re adding in smaller details. Also, you may occasionally find it help-
ful to be familiar with the concept of lacunarity—the change in scale between suc-
cessive levels of detail—although you probably will never have need to use this
knowledge.

444 CHAPTER 14 A Brief Introduction to Fractals

Team LRN

Finally, it is helpful to understand that most fractal constructions we use in com-
puter graphics are monofractal—that is, they are homogeneous, and for that reason,
may become a bit monotonous and boring. Multifractals can provide a second step
toward capturing more of the true complexity abundantly manifest in nature. Tur-
bulence, for instance, is a decidedly multifractal phenomenon.

With these elements of understanding in place, let us proceed to applications
and see how fractals may be used in procedural models.

Conclusion 445

Team LRN

15

Team LRN

FRACTAL SOLID TEXTURES: SOME EXAMPLES
F. K E N T O N M U S G R AV E

This chapter will describe some fractal procedural textures serving as models of nat-
ural phenomena. They are divided into the four elements of the ancients: air, fire,
water, and earth. The presentation format of the code segments, for the most part,
has been switched from the C++ programming language to the RenderMan (Upstill
1990) shading language.1 The fractal functions described in the previous chapter are
to be used as primitive building blocks for the textures we’ll develop here, and as
such, they should be implemented in the most efficient manner possible (e.g., in com-
piled code). If you like any of the textures we develop here enough to make them
part of a standard texture library, you might want to translate them to compiled
code, for efficiency. But, in general, it is quicker and easier to develop texture func-
tions using higher-level tools such as the function graph editors in MojoWorld and
Dark Tree or the RenderMan shading language. Take the texture constructions de-
scribed here as starting points and modify them. Do lots of experiments and come up
with your own unique textures—after all, such experimentation is how these tex-
tures came into being! Nothing here is written in stone; you can have endless fun de-
vising variations.

The textures described in this chapter were certainly not designed as a whole, a
priori, then implemented. Rather, they are generally the result of “hacking”—hours
and hours of making modifications and extensions, evaluating the texture to see how
it looks, making more changes, and so on. It may seem to you that this iterative loop
is more artistic than scientific, and I would agree that it is, but it does share with the
scientific method what Gregory Nielson calls “the basic loop of scientific discovery”
(Nielson 1991): you posit a formal model (nothing, after all, is more formal than the

447

1. The translations from C to the RenderMan shading language are provided courtesy of Larry Gritz of
ExLuna, the author of the shareware RenderMan package Blue Moon Rendering Tools (BMRT). Larry
kindly updated the shaders for the second edition of this book. They have been tested and verified on
both Pixar’s PhotoRealistic RenderMan and BMRT.

Team LRN

logic of a computer program), you make observations of the behavior of the model
and the system being modeled, you make modifications to improve the model, then
more observations, and so on, in an iterative loop. Perhaps the main difference be-
tween science and computer graphics is, as Pat Hanrahan has pointed out, in the
time required per iteration: that time is certainly much shorter when designing pro-
cedural textures than when pursuing the physical sciences. The point is, no scientific
model was born perfect, and neither is any complex procedural texture. Particularly
in ontogenetic modeling, again, we are not concerned with Truth but rather with vi-
sual Beauty. We are more interested in semblance than veracity. When you are more
interested in the quality of the final image than in the methodology of its production,
you are more an engineer than a scientist. In such an endeavor, whatever gets us the
result in a reasonable amount of time, both human and computer, is a viable strat-
egy. So we’ll do whatever works.

CLOUDS
Clouds remain one of the most significant challenges in the area of modeling natural
phenomena for computer graphics. While some very nice images of clouds have been
rendered by Geoffrey Gardner, Richard Voss, David Ebert, Matthew Fairclough,
Sang Yoon Lee, and myself, in general the modeling and rendering of clouds re-
mains an open problem. I can’t claim to have advanced the state of the art in cloud
modeling much, but I have devised a few two-dimensional models2 that are at least
significant aesthetically. I’ll describe them below, but first I’ll describe the most com-
mon, quick, and easy cloud texture.

Puffy Clouds

One of the simplest and most often used fractal textures is a simple representation of
thin, wispy clouds in a blue sky. All this consists of is a thresholded fBm. If our fBm
function outputs values in the range [−1, 1], we might specify that any value less
than zero represents blue sky. This will accomplish the effect:

surface
puffyclouds(float Ka = 0, Kd = 0;

float txtscale = 1;
color skycolor = color(.15, .15, .6);
color cloudcolor = color(1, 1, 1);

448 CHAPTER 15 Fractal Solid Textures: Some Examples

2. This may be a little confusing: I call these models 2D because, while they are implemented as 3D solid
textures, they are designed to be evaluated on 2D surfaces. In Chapter 17, I’ll show how to evaluate
them as volumetric hypertextures via the QAEB algorithm.

Team LRN

float octaves = 8, H = 0.5, lacunarity = 2;
float threshold = 0;)

{
float value;
color Ct; /* Color of the surface */
point PP; /* Surface point in shader space */

PP = txtscale * transform(“shader”, P);
/* Use fractional Brownian motion to compute a value for this point */
value = fBm(PP, filterwidthp(PP), octaves, lacunarity, H);
Ct = mix(skycolor, cloudcolor, smoothstep(threshold, 1, value));

/* Shade like matte, but use color Ct */
Ci = Ct; /* This makes the color disregard the lighting */

/* Uncomment the next line if you want the surface to be lit */
/* Ci = Ct * (Ka * ambient() + Kd * diffuse(faceforward(N,I))); */

}

This can make a good background texture for images where the view is looking
up at the sky, as in Jules Bloomenthal’s image of the mighty maple, shown in Figure
15.1 (Bloomenthal 1985).

Clouds 449

FIGURE 15.1 Jules Bloomenthal’s image of “the mighty maple” shows a typical use of the puffy
clouds texture.

Team LRN

A Variety of fBm

As noted in the previous chapter, our fractals can be constructed from literally any
basis function; the basis function we most often choose is the Perlin noise function.
For theoretical reasons outlined in the previous chapter, with our usual lacunarity of
2.0, we use at most about 8 to 10 octaves of the basis function in our constructions.
It turns out that the character of the basis function shows through clearly in such a
small spectral summation. So, if we use a different basis function, we get fBm with a
different character, with a different aesthetic “feel” to it. (That’s why there are over
200 different basis functions available in MojoWorld, with practically infinite varia-
tions on them possible.) Take, for example, fractal mountains constructed by the
popular polygon subdivision schemes. The basis function implicit in the linear inter-
polation between the sample points is a sawtooth wave. Thus the resulting moun-
tains are always quite triangular and jagged. When it comes to playing with different
basis functions, the possibilities are endless. Wavelets (Ruskai 1992) offer an excit-
ing prospect for basis function manipulation; Lewis’s “sparse convolution” (Lewis
1989), also called “fractal sum of pulses” in Lovejoy and Mandelbrot (1985), is a
theoretically desirable approach that accommodates the use of any finite basis func-
tion. Unfortunately, it is slow in practice. Try it in MojoWorld and see for yourself.

Let me now describe one trick I sometimes play with the Perlin noise function, to
get a variation of it with significantly altered aesthetic “feel.” I call it, for lack of a
better name, DistNoise(), for distorted noise. It employs one of the oldest tricks in
procedural textures: domain distortion. As it is a fundamental building block type
function, I present it in C++.

double
DistNoise(Vector point, double distortion)
{

Vector offset, VecNoise();
double Noise();

offset = point + 0.5; /* misregister domain for distortion */
offset = VecNoise(offset); /* get a random vector */
offset *= distortion; /* scale the distortion */
/* “point” is the domain; distort domain by adding “offset” */
point += offset;

return Noise(point); /* distorted domain noise */
}

The function VecNoise() is a vector-valued noise function that takes a 3D
vector as an argument and returns a 3D vector. This returned vector corresponds

450 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

to three separate noise values for each of its x, y, and z components. It can be con-
structed by simply evaluating a noise function at three different points in space: the
one passed in as the argument and two displaced copies of it, as in the previous
misregistration.

Vector
VecNoise(Vector point)
{

Vector result;
double Noise();

result.x = Noise(point);
result.y = Noise(point + 3.33);
result.z = Noise(point + 7.77);

return result;
}

Note that this is not the same thing as Perlin’s DNoise(), which is specified to return
the three partial derivatives of Noise(). The latter will be C-2 continuous, while our
function is C-3 continuous.3

We displace the point passed to VecNoise() by 0.5 in each of x, y, and z, to de-
liberately misregister the underlying integer lattices upon which VecNoise() and
Noise() are evaluated as, if you’re using gradient noise, both functions have value
zero at these points. Next we evaluate VecNoise() at the displaced point and scale
the returned vector by the distortion parameter. Then we add the resultant vector to
the input point; this has the net effect of distorting the input domain given to the
Noise() function. The output is therefore also distorted.

Figure 15.2 illustrates the difference between undistorted Noise() and
DistNoise(), with the distortion parameter set to 1.0. It also illustrates the differ-
ence between fBms constructed using Noise() and DistNoise(), respectively, as the
basis function. That difference is subtle, but significant. To my artist’s eye, the latter
fBm has a sort of wispy character that looks more like certain cirrus clouds than
does the “vanilla” fBm, which seems a little bland in comparison. Note, however,
that DistNoise() is about four times as expensive to evaluate as Noise(), so you
pay for this subtle difference. Cost aside, I have used the modified fBm to good effect
in clouds, as seen in Figures 20.4 and 20.9. In the following I will refer to such fBm
by the function name DistfBm().

Clouds 451

3. This business of C-2 and C-3 continuity is a mathematical point about the number of continuous de-
rivatives a function has. If you don’t know what a derivative is, just ignore this rigmarole.

Team LRN

Note that we can write DistNoise()more tersely:

/*
* Terse version of DistNoise()
*/

double DistNoise(Vector point, double distortion)
{

return Noise(point + distortion * VecNoise(point + 0.5));
}

The RenderMan version looks very similar:

/*
* RenderMan version of DistNoise()
*
* Since the noise() function in RenderMan shading language has range
* [0,1], we define a signed noise to be the noise function that Perlin
* typically uses.
*/

#define snoise(P) (2*noise(P) - 1)

float DistNoise(point Pt, float distortion)
{

point offset = snoise(Pt + point(0.5, 0.5, 0.5));
return snoise(Pt + distortion * offset);

}

452 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.2 The upper-left square shows Noise(); the upper right shows DistNoise(). Below
appears fBm constructed from each; note the subtle difference.

Team LRN

/* Alternatively, it can be defined as a macro: */

#define DistNoise(Pt,distortion) \
(snoise(Pt + distortion*snoise(Pt+point(0.5,0.5,0.5)))

Distortion for Cirrus Clouds and Global Circulation

Note that the previous construction is an example of functional composition,
wherein functions become the arguments to other functions. Such nesting is a pow-
erful procedural technique, as Karl Sims (1991) showed in his genetic LISP program,
which creates procedural textures and which was used to create Figure 14.1; we’ll
investigate this paradigm in detail in Chapter 19. The idea of composition of noise
functions to provide distortion has proved useful in another aspect of modeling
clouds: emulating the streaming of clouds that are stretched by winds. We can get the
kind of distinctive cirrus clouds seen in Figure 20.9 from the following specification:

/* Use signed, zero-mean Perlin noise */
#define snoise(x) ((2*noise(x))-1)

/* RenderMan vector-valued Perlin noise */
#define vsnoise(p) (2 * (vector noise(p)) - 1)

/* If we know the filter size, we can crudely antialias snoise by
* fading to its average value at the Nyquist limit.
*/

#define filteredsnoise(p,width) (snoise(p) * (1 - smoothstep(0.2,0.6,width)))
#define filteredvsnoise(p,width) (vsnoise(p) * (1-smoothstep(0.2,0.6,width)))

surface
planetclouds(float Ka = 0.5, Kd = 0.75;

float distortionscale = 1;
float H = 0.7;
float lacunarity = 2;
float octaves = 9;
float offset = 0;)

{
vector Pdistortion; /* The “distortion” vector */
point PP; /* Point after distortion */
float result; /* Fractal sum is stored here */
float filtwidth;

/* Transform to texture coordinates */ PP =
transform(“shader”, P);
filtwidth = filterwidthp(PP);

Clouds 453

Team LRN

/* Get “distortion” vector */
Pdistortion = distortionscale * filteredvsnoise(PP, filtwidth);
PP = PP + Pdistortion;
filtwidth = filterwidthp(PP);

/* Compute fBm */
result = fBm(PP, filtwidth, octaves, lacunarity, H);

/* Adjust zero crossing (where the clouds disappear) */
result = clamp(result+offset, 0, 1);

/* Scale density */
result /= (1 + offset);

/* Modulate surface opacity by the cloud value */
Oi = result * Os;
/* Shade like matte, but with color scaled by cloud opacity */
Ci = Oi * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));

}

Note that this is the same domain distortion idea that was used in DistNoise(), ex-
cept that the distortion has greater magnitude and is at a large scale relative to the
fBm.

This large-scale distortion was originally designed to provide a first approxima-
tion to the global circulation patterns in Earth’s clouds as seen from space. The pre-
ceding code produced the clouds seen in Figures 20.4 and 20.9. While not a bad first
approximation, it saliently lacks the eddies and swirls generated by vortices in turbu-
lent flow.

It occurred to me that we could use an fBm-valued distortion to better emulate
turbulence:

#define snoise(p) (2 * (float noise(p)) - 1)
#define vsnoise(p) (2 * (vector noise(p)) - 1)
#define filteredsnoise(p,width) \

(snoise(p) * (1 - smoothstep(0.2,0.6,width)))
#define filteredvsnoise(p,width) \

(vsnoise(p) * (1-smoothstep(0.2,0.6,width)))

/* A vector-valued antialiased fBm. */
vector
vfBm(point p;

float filtwidth;
uniform float maxoctaves, lacunarity, gain)

{
uniform float i;
uniform float amp = 1;
varying point pp = p;

454 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

varying vector sum = 0;
varying float fw = filtwidth;

for (i = 0; i < maxoctaves && fw < 1.0; i += 1) {
sum += amp * filteredvsnoise(pp, fw);
amp *= gain;
pp *= lacunarity;
fw *= lacunarity;

}
return sum;

}

surface
planetclouds(float Ka = 0.5, Kd = 0.75;

float distortionscale = 1;
float H = 0.7;
float lacunarity = 2;
float octaves = 9;
float offset = 0;)

{
vector Pdistortion; /* The “distortion” vector */
point PP; /* Point after distortion */
float result; /* Fractal sum is stored here */
float filtwidth;

/* Transform to texture coordinates */
PP = transform(“shader”, P);
filtwidth = filterwidthp(PP);

/* Get “distortion” vector */
Pdistortion = distortionscale * VfBm(PP, filtwidth, octaves, lacunarity, H);

/* Create distorted clouds */
PP = PP + Pdistortion;
filtwidth = filterwidthp(PP);

/* Compute fBm */
result = fBm(PP, filtwidth, octaves, lacunarity, H);

/* Adjust zero crossing (where the clouds disappear) */
result = clamp(result+offset, 0, 1);

/* Scale density */
result /= (1 + offset);

/* Modulate surface opacity by the cloud value */
Oi = result * Os;

/* Shade like matte, but with color scaled by cloud opacity */
Ci = Oi * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));

}

Clouds 455

Team LRN

Unfortunately, the result looks more like cotton than turbulence (see Figure
15.3), but it is an interesting experiment.

Once again, the essential element that our turbulence model lacks is vortices, or
vorticity. Large-scale vortices in Earth’s atmosphere occur in cyclonic and anticy-
clonic storm systems that are clearly visible from space. The most extreme vortices in
our atmosphere occur in tornadoes and hurricanes. In Figure 15.4 we see an onto-
genetic model of a hurricane, produced by the following specification:

surface
cyclone(float Ka = 0.5, Kd = 0.75;

float max_radius = 1;
float twist = 0.5;
float scale = .7, offset = .5;
float H = 0.675;
float octaves = 4;)

{
float radius, dist, angle, eye_weight, value;
point Pt; /* Point in texture space */
vector PN; /* Normalized vector in texture space */
point PP; /* Point after distortion */
float filtwidth, a;

/* Transform to texture coordinates */
Pt = transform(“shader”, P);
filtwidth = filterwidthp(Pt);

456 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.3 Clouds distorted with fBm: they look more like cotton than turbulence. Copyright ©
1994 F. Kenton Musgrave.

Team LRN

/* Rotate hit point to “cyclone space” */
PN = normalize(vector Pt);
radius = sqrt(xcomp(PN)*xcomp(PN) + ycomp(PN)*ycomp(PN));

if (radius < max_radius) { /* inside of cyclone */
/* invert distance from center */
dist = pow(max_radius-radius, 3);
angle = PI + twist * TWOPI * (max_radius-dist) / max_radius;
PP = rotate(Pt, angle, point(0,0,0), point(0,0,1));
/* Subtract out “eye” of storm */
if (radius < 0.05*max_radius) { /* if in “eye” */

eye_weight = (. l*max_radius-radius) * 10; /* normalize */
/* invert and make nonlinear */
eye_weight = pow(1 - eye_weight, 4);

}
else eye_weight = 1;

}
else { /* outside of cyclone */
PP = Pt;
eye_weight = 0;

}

Clouds 457

FIGURE 15.4 A first cut at including the vortices that comprise turbulence. Note that the smaller
clouds are not distorted by the vortex twist, only the large-scale distribution is. Copyright © 1994
F. Kenton Musgrave.

Team LRN

if (eye_weight > 0) { /* if in “storm” area */
/* Compute clouds */
a = DistfBm(PP, filtwidth, octaves, 2, H, 1);
value = abs(eye_weight * (offset + scale * a));

}
else value = 0;

/* Thin the density of the clouds */
Oi = value * Os;

/* Shade like matte, but with color scaled by cloud opacity */
Ci = Oi * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));

}

Here we have a single vortex; to model general turbulent flow we require a
fractal hierarchy of vortices. Note that we’ve modeled the clouds on two different
scales here: a distorted large-scale distribution comprising a weighting function,
which is applied to smaller-scale cloud features. This construction is based on my
subjective study of clouds and storms seen from space (see Kelley 1988 for many
lovely examples of such images). The idea of undistorted small features corresponds
to the phenomenon of viscosity, which, as our poem indicates, damps turbulence at
small scales. This may also be seen as a first step in the direction of multifractal mod-
els, as our fractal behavior is different at different scales, and therefore may require
more than one value or measure to characterize the fractal behavior.

The Coriolis Effect

A salient feature of atmospheric flow on Earth, and even more so on Venus, is that it
is strongly affected by the Coriolis effect—a shearing effect caused by the conserva-
tion of angular momentum as air masses move north and south. The atmosphere is
moving around the planet and, like a spinning skater who spins faster as she pulls
her arms and legs in closer, the air must spin around the planet faster as it moves to-
ward the poles and more slowly as it moves toward the equator. For a given angular
momentum, angular velocity (spin rate) varies as the inverse square of radius. In this
respect, the following model could be thought of as a physically accurate model, but
I would still call it an ontogenetic, or at best an empirical, model.

Using our modified fBm and a Coriolis distortion, we can model Venus (as im-
aged at ultraviolet wavelengths) quite well (see Figure 15.5).

surface
venus(float Ka = 1, Kd = 1;

float offset = 1;

458 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

float scale = 0.6;
float twist = 0.22;
float H = 0.65;
float octaves = 8;)

{
point Ptexture; /* the shade point in texture space */
vector PtN; /* normalized version of Ptexture */
point PP; /* Point after rotation by Coriolis twist */
float rsq; /* Used in calculation of twist */
float angle; /* Twist angle */
float value; /* Fractal sum is stored here */
float filtwidth; /* Filter width for antialiasing */

/* Transform to texture coordinates */
Ptexture = transform(“shader”, P);
filtwidth = filterwidthp(Ptexture);

/* Calculate Coriolis twist distortion */
PtN = normalize(vector Ptexture);
rsq = xcomp(PtN)*xcomp(PtN) + ycomp(PtN)*ycomp(PtN);

Clouds 459

FIGURE 15.5 A strong Coriolis twist characterizes the cloud patterns on Venus. Copyright © 1994
F. Kenton Musgrave.

Team LRN

angle = twist * TWOPI * rsq;
PP = rotate(Ptexture, angle, point(0,0,0), point(0,0,1));

/* Compute Coriolis-distorted clouds */
value = abs(offset + scale * fBm(PP,filtwidth,octaves,2,H));

/* Shade like matte, but with color scaled by cloud color */
Oi = Os;
Ci = Oi * (value * Cs) *

(Ka * ambient() + Kd *
diffuse(faceforward(normalize(N),1)));

}

FIRE
Fire is yet another example of turbulent flow. I can’t claim to have modeled fire par-
ticularly well, but I do have a fire texture that I can share with you. There are two pe-
culiar features in this model. The first is the use of a “ridged” fBm, as discussed in
the next chapter. The second is a distortion that varies exponentially with height,
which is meant to model the upward acceleration of the hot gases of the flames.

surface
flame(float distortion = 0;

float chaosscale = 1;
float chaosoffset = 0;
float octaves = 7;
float flameheight = 1;
float flameamplitude = .5;)

{
point PP, PQ;
float chaos;
float cmap;
float fw;

PQ = PP = transform(“shader”, P);
PQ *= point(1, 1, exp(-zcomp(PP)));
fw = filterwidthp(PQ);

chaos = DistfBm(PQ, fw, octaves, 2, 0.5, distortion);
chaos = abs(chaosscale*chaos + chaosoffset);
cmap = 0.85*chaos + 0.8 * (flameamplitude - flameheight * zcomp(PP);
Ci = color spline(cmap,

color(0, 0, 0), color(0, 0, 0),
color(27, 0, 0), color(54, 0, 0),
color(81, 0, 0), color(109, 0, 0),
color(136, 0, 0), color(166, 5, 0),
color(189, 30, 0), color(211, 60, 0),
color(231, 91, 0), color(238, 128, 0),

460 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

color(244, 162, 12), color(248, 187, 58),
color(251, 209, 115), color(254, 236, 210),
color(255, 241, 230), color(255, 241, 230)) / 255;

}

While this certainly doesn’t fully capture the rich structure of real flames, it’s not
too bad as a first approximation. In Figure 15.6 several transparent layers of this fire
texture were sandwiched with some of Przemek Prusinkiewicz’s early L-system tree
models (Prusinkiewicz and Lindenmayer 1990). Note that the colors are critical
to the realism of the results. What you want is a color map that represents a range
of colors and intensities of black-body radiators, going from black to cherry red,
through orange and yellow, to white.4 Also, if you scale the flame structure down so
that the high frequencies are more visible, this texture takes on a kind of astrophysi-
cal character—the ridges in the fBm form filaments and loops that, while not exactly
realistic, have a distinctive character reminiscent of certain emission nebulae where
stars are being born and dying. Try constructing this function without using abs()
and observe the difference—it’s actually more realistic and less surreal.

WATER
To my chagrin, people often say of my landscape images, “The water is the best
part!” Well, I’m here to tell you that it’s the cheapest and easiest trick I ever did with
procedural textures. Let me show you how.

Noise Ripples

I originally developed this texture in a ray tracer that didn’t have displacement map-
ping. In that context, it can be implemented as a bump map. This requires that
you build a vector-valued fBm function, which is no problem as it’s really just
three independent fBms, one for each of x, y, and z, or one fBm constructed from
VecNoise(), as we saw earlier in the definition of VfBm(). In MojoWorld and
RenderMan, displacement mapping is available, so the implementation is simpler: it

Water 461

4. Black-body radiators are a concept from physics: they are theoretically ideal (and therefore nonexis-
tent in nature) objects that are completely without color of their own, regardless of their temperature.
Thus, as you raise their temperature, they glow with a color that represents the ideal thermal, or Planck,
spectrum for their temperature. Real objects heated enough to glow at visible wavelengths tend to be
complicated both by their underlying (i.e., cold) nonblack color and by emission lines—certain wave-
lengths that have enhanced emission (or absorption) due to quantum effects. Most fires we see are made
more yellow than a black-body radiator at the same temperature by sodium emission lines.

Team LRN

requires only a scalar-valued displacement to perturb the surface, rather than a
vector-valued perturbation for the surface normal.

The water model I’ve always used requires only a reflective silver plane in the
foreground and this simple bump or displacement map applied to the surface:

displacement
ripples(float Km = 1, octaves = 2;)
{

float offset;
point PP;

/* Do the calculations in shader space */
PP = transform(“shader”, P);

/* Get fractal displacement, scale by Km */
offset = Km * fBm(PP, 3.0, 2.0, octaves);

462 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.6 Forest Fire illustrates a fire texture. Color is critical in getting the look of fire. Note
that the 1 − abs(noise) basis function gives rise to the sinews in the flames. Copyright © F. Kenton
Musgrave.

Team LRN

/* Displace the surface point and recompute the normal */
P += offset * normalize(N);
N = calculatenormal(P);

}

We have perturbed the surface normal with a degenerate—in the mathematical
sense—fractal function of only two octaves. (Recall that we said in the previous
chapter that a fractal ought to have at least three levels of self-similarity to be called
a fractal; this one only has two. Of course, you may use more or less octaves, as your
artistry dictates.) You can stretch this function by scaling it up in one of the lateral
directions, to get an impression of waves. For such a simple texture, it works surpris-
ingly well (see Figures 15.7 and 15.8).

Wind-Blown Waters

In nature, ripples on water so calm are rarely homogeneous as those given by the
previous function. Usually, on the large scale, ripples are modulated by the blowing

Water 463

FIGURE 15.7 Spirit Lake shows a noise-based water bump map. The terrain model is the first
multifractal model described in Chapter 16. Copyright © F. Kenton Musgrave.

Team LRN

wind. Blowing wind is turbulent flow and is therefore fractal. We can apply a large-
scale, as compared to the ripples, fractal weighting function to the previous ripples
to generate a nice approximation of breeze-blown water:

displacement
windywave(float Km = 0.1;

float txtscale = 1;
float windfreq = 0.5;
float windamp = 1;
float minwind = 0.3)

{
float offset;
point PP;
float wind;
float turb;
float filtwidth;

464 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.8 Lethe is a polygon subdivision terrain model, hence the jagged appearance. It
illustrates the water, sedimentary rock strata, and moon textures described in this chapter.
Copyright © F. Kenton Musgrave.

Team LRN

PP = txtscale * windfreq * transform(“shader”, P);
filtwidth = filterwidthp(PP);

/* get fractal displacement*/
offset = Km * fBm(PP,filtwidth,2,2,0.5);
PP *= 8; filtwidth *= 8;

/* calculate wind field */
turb = turbulence(PP, filtwidth, 4, 2, 0.5);
wind = minwind + windamp * turb;

/* displace the surface*/
N = calculatenormal(P+wind * offset * normalize(N));

}

The weighting function we use is, yet again, a variety of fBm. We use the most
generic version, as there’s no need for the subtleties of any of the variations we’ve de-
veloped. (Turbulence is actually multifractal, however, so it might be worthwhile to
experiment with multifractal weighting functions.) We need only a few octaves in
this fBm, since we don’t really want to generate fine-scale detail with the weighting
function.

The result of the Windywave() texture is illustrated in Figures 15.9 and 15.18.

Water 465

FIGURE 15.9 The effects of breezes on the water are illustrated in Sea Rock. Copyright © 1987
F. Kenton Musgrave.

Team LRN

EARTH
Now let’s look at earthly textures. Well, at least two out of three will be literally
earthly; the third will be a moon.

Sedimentary Rock Strata

Early in my career of rendering fractal landscapes, I didn’t have the capacity to ray-
trace terrains with very many triangles in them. Thus the “mountains” were quite
chunky, and the triangles used to tessellate the surface were quite large and obvi-
ously flat, unlike any terrain I have ever seen. One of the early textures I devised to
distract the eye’s attention from this intrinsically bogus geometry was an imitation of
sedimentary rock strata:

surface
strata(float Ka = 0.5, Kd = 1;

float txtscale = 1;
float zscale = 2;
float turbscale = 0.1;
float offset = 0;
float octaves = 8;)

{
color Ct;
point PP;
float cmap;
float turb;
PP = txtscale * transform(“shader”, P);

/*turbation by fBm */
turb = fBm(PP, filterwidthp(PP), octaves, 2, 0.5);

/*use turb and z to index color map */
cmap = zscale * zcomp(PP) + turbscale * turb - offset;
Ct = color spline(mod(cmap, 1),

color(166, 131, 70), color(166, 131, 70),
color(204, 178, 127), color(184, 153, 97),
color(140, 114, 51), color(159, 123, 60),
color(204, 178, 127), color(230, 180, 80),
color(192, 164, 110), color(172, 139, 80),
color(102, 76, 25), color(166, 131, 70),
color(201, 175, 124), color(181, 150, 94),
color(161, 125, 64), color(177, 145, 87),
color(170, 136, 77), color(197, 170, 117),
color(180, 100, 50), color(175, 142, 84),
color(197, 170, 117), color(177, 145, 87),

466 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

color(170, 136, 77), color(186, 156, 100),
color(166, 131, 70), color(188, 159, 104),
color(168, 134, 74), color(159, 123, 60),
color(195, 167, 114), color(175, 142, 84),
color(161, 125, 64), color(197, 170, 117),
color(177, 145, 87), color(177, 145, 87)) / 255;

/* Shade like matte, but with color scaled by cloud color and opacity */
Oi = Os;
Ci = Oi * Cs * Ct * (Ka * ambient() + Kd *
diffuse(faceforward(normalize(N),I)));

}

The key idea here is to index a color lookup table by altitude5 and to perturb
that altitude index with a little fBm. The geologic analogs to this are soft-sediment
deformation, in which layers of sediment are distorted before solidifying into sedi-
mentary rock. It’s closely related to Ken Perlin’s famous marble texture.

The color lookup table is loaded with a color map that contains bands of color
that you, the artist, deem appropriate for representing the different layers of rock.
Both aesthetics and my observations of nature indicate that the colors of the various
layers should be quite similar and subdued, with one or two layers that really stand
out tossed in to provide visual interest. For an example of this, see the red and yellow
bands in Figure 15.10.

Gaea: Building an Entire Planet

In fact, you can build an entire Earth-like planet with a single procedural texture.
(We now call such planets MojoWorlds; this text was originally written some 10
years ago.) Not surprisingly, such an ambitious texture gets rather complex. And, of
course, it is quite fractal. In fact, fractals are used in three ways in this texture: as a
displacement map to provide continents, oceans, and a fractal coastline; as a pertur-
bation to a climate-by-latitude color map (much like our earlier rock strata map)
providing an interesting distribution of mountains, deserts, forests, and so on; and
finally as a color perturbation, to ameliorate lack of detail in areas that would all be
the same color because they share the same lookup table index.

Now let’s see how such a complex procedural texture evolves, step by step.
The first step in creating an earth is to create continents and oceans. This can be

Earth 467

5. In my original C implementation of these texture functions, the color maps are stored in 256-entry
lookup tables. Larry Gritz has used RenderMan’s functionality to replace those tables with splines in the
code that appears in this text.

Team LRN

accomplished by quantizing an fBm texture: A parameter threshold controls the “sea
level”; any value less than threshold is considered to be below sea level and is there-
fore colored blue. This gives us the effect seen in Figure 15.11(a). Note that in the
following code, there is a Boolean-valued parameter multifractal. This gives us the
option of creating heterogeneous terrain and coastlines—see how the fractal dimen-
sion of the coasts varies in Figure 20.4.

Next we provide a color lookup table to simulate climatic zones by latitude; see
Figure 15.11(b). Our goal is to have white polar caps and barren, gray sub-Arctic
zones blending into green, temperate-zone forests, which in turn blend into buff-
colored desert sands representing equatorial deserts. (Of course, you can use what-
ever colors you please.) The coloring is accomplished with a splined color ramp,
indexed by the latitude of the ray/earth intersection point.

This rough coloring-by-latitude is then fractally perturbed, as in Figure 15.11(c).
This is accomplished simply by adding fBm to the latitude value to perturb it, as with
the rock strata texture. (This is just another example of the powerful tool of domain

468 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.10 Bryce illustrates a sedimentary rock strata texture. Note the red and yellow strata
that provide visual interest. The terrain model is a polygon subdivision erosion model described by
Mandelbrot (Peitgen and Saupe 1988). Copyright © F. Kenton Musgrave.

A-

Team LRN

distortion.) We also take into account the displacement map, so that the “altitude”
of the terrain may affect the climate. Note that altitude and latitude represent two in-
dependent quantities that could be used as parameters to a two-dimensional color
map; to date I have used only a one-dimensional color spline for simplicity.

Next we add an exponentiation parameter to the color spline index computed
earlier, to allow us to “drive back the glaciers” and expand the deserts to a favorable
balance, as in Figure 15.11(d).

We now modify the oceans, adjusting the sea level for a pleasing coastline and
making the color a function of “depth” to highlight shallow waters along the coast-
lines, as seen in Figure 15.11(e). Depth of the water is calculated in exactly the same
way as the “altitude” of the mountains—as the magnitude of the bump vector in
the direction of the surface normal. This depth value is used to darken the blue of the
water almost to black in the deepest areas. It might also be desirable to modify the
surface properties of the texture in the ocean areas, specifically the specular high-
light, as this significantly affects the appearance of Earth from space (again, see
Kelley 1988), although I haven’t yet tried it.

Earth 469

(a)

(d)

(b)

(e)

(c)

(f)

FIGURE 15.11 A sequence of stages in the development of a planetary structure. Copyright © F.
Kenton Musgrave.

Team LRN

Finally, we note that the “desert” areas about the equator in Figure 15.11(e) are
quite flat and unrealistic in appearance. Earth, by contrast, features all manners of
random mottling of color. By interpreting an fBm function as a color perturbation,
we can add significantly to the realism of our model: compare Figure 15.11(e) and
15.11(f). This added realism is of an artistic nature—the color mottling of Earth
does not, in general, resemble fBm—but it is nevertheless aesthetically effective.

This code accomplishes all of the above:

#define N_OFFSET 0.7
#define VERY_SMALL 0.0001
surface
terran(float Ka = .5, Kd = .7;

float spectral_exp = 0.5;
float lacunarity = 2, octaves = 7;
float bump_scale = 0.07;
float multifractal = 0;
float dist_scale = .2;
float offset = 0;
float sea_level = 0;
float mtn_scale = 1;
float lat_scale = 0.95;
float nonlinear = 0;
float purt_scale = .9;
float map_exp = 0;
float ice_caps = 0.9;
float depth_scale = 1;
float depth_max = .5;
float mottle_limit = 0.75;
float mottle_scale = 20;
float mottle_dim = .25;
float mottle_mag = .02;)

{
point PP, P2;
vector PtN;
float chaos, latitude, purt;
color Ct;
point Ptexture, tp;
uniform float i;
float o, weight; /* Loop variables for fBm calculation */
float bumpy;
float filtwidth, fw;

/* Do all shading in shader space */
Ptexture = transform(“shader”, P);
filtwidth = filterwidthp(Ptexture);
PtN = normalize(vector Ptexture); /* Normalize Ptexture to radius 1.0 */

470 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

/**
* First, figure out where we are in relation to the oceans/mountains.
* Note: this section of code must be identical to “terranbump” if you
* expect these two shaders to work well together.
***/

if (multifractal == 0) { /* use a “standard” fBm bump function */
bumpy = fBm(Ptexture, filtwidth, octaves, lacunarity, spectral_exp);

} else { /* use a “multifractal” fBm bump function */
/* get “distortion” vector, as used with clouds */
Ptexture += dist_scale * filteredvsnoise(Ptexture, filtwidth);
/* compute bump vector using MfBm with displaced point */
o = spectral_exp; tp = Ptexture;
fw = filtwidth;
weight = abs(filteredDistNoise(tp, fw, 1.5));
bumpy = weight * filteredsnoise(tp, fw);

/* Construct a multifractal */
for (i = 1; i < octaves && weight >= VERY_SMALL && fw < 1; i += 1) {

tp *= lacunarity;
fw *= filtwidth;
/* get subsequent values, weighted by previous value */
weight *= o * (N_OFFSET + snoise(tp));
weight = clamp(abs(weight), 0, 1);
bumpy += snoise(tp) * min(weight, spectral_exp);
o *= spectral_exp;

}
}

/* get the “height” of the bump, displacing by offset */
chaos = bumpy + offset;
/* set bump for land masses (i.e., areas above “sea level”) */
if (chaos > sea_level) {

chaos *= mtn_scale;
P2 = P + (bump_scale * bumpy) * normalize(N);

} else P2 = P;
N = calculatenormal(P2);

/***
* Step 2: Assign a climate type, roughly by latitude.
**/

/* make climate symmetric about equator */
latitude = abs(zcomp(PtN));

/* Fractally purturb color map offset using “chaos”
* “nonlinear” scales purturbation-by-z
* “purt_scale” scales overall purturbation
*/

Earth 471

Team LRN

latitude += chaos*(nonlinear*(1-latitude) + purt_scale);
if (map_exp > 0) /* Perform nonlinear “driving the glaciers back” */

latitude = lat_scale * pow(latitude,map_exp);
else latitude *= lat_scale;

if (chaos > sea_level) {
/* Choose color of land based on the following spline.
* Ken originally had a huge table. I was too lazy to type it in,
* so I used a scanned photo of the real Earth to select some
* suitable colors.—Larry Gritz
*/

Ct = spline(latitude,
color(.5, .39, .2),
color(.5, .39, .2),
color(.5, .39, .2),
color(.2, .3, 0),
color(.085, .2, .04),
color(.065, .22, .04),
color(.5, .42, .28),
color(.6, .5, .23),
color(1,1,1),
color(1,1,1));

/* Mottle the color to provide visual interest */
if (latitude < mottle_limit) {

PP = mottle_scale * Ptexture;
purt = fBm(PP, mottle_scale*filtwidth, 6, 2, mottle_dim);
Ct += (mottle_mag * purt) * (color(0.5, 0.175, 0.5));

}
}
else {
/* Oceans */
Ct = color(.12, .3, .6);
if (ice_caps > 0 && latitude > ice_caps)

Ct = color(1,1,1); /* Ice color */
else {

/* Adjust color of water to darken deeper seas */
chaos -= sea_level;
chaos *= depth_scale;
chaos = max(chaos, -depth_max);
Ct *= (1+chaos);

}
}

/* Shade using matte model */
Ci = Ct * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));
Oi = Os; Ci *= Oi;

}

472 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

Selene

Now I’ll show you an example of extreme hackery in pursuit of a specific visual end:
my texture that can turn a featureless gray sphere into an imitation of the Moon,
replete with lunar highlands, maria, and a single rayed crater.6 I reasoned that one
crater, if spectacular enough, would suffice to give an overall impression of moon-
liness. In retrospect, I guess it was, because this image caused Digital Domain to con-
tact Larry and me for help in modeling the Moon for the movie Apollo 13. This in
turn led to my being employed there, where I got to experience firsthand the mad-
ness and excitement of the Hollywood digital effects business, working on movies
like Titanic, Dante’s Peak, and Air Force One. Heady stuff—everyone should try it
for a year or two!

Back to the moon texture: The highlands/maria part of the texture is just a sim-
pler (in that it is not multifractal) variation on the continent/ocean part of the above
texture. The rayed crater is the interesting part. It is a classic example of ontogenetic
modeling taken to an extreme: the dynamics of such an impact and its resulting vi-
sual consequences would be very difficult to model physically, yet the phenomenon is
essential to the appearance of the Moon. So I set out to construct a reasonable visual
semblance through whatever chicanery I could devise. The resulting crater has two
parts, which I originally implemented as two separate C functions: the bump-
mapped crater rim and the rays, which are simply a surface color texture.

The crater bump map consists of a central peak, a common substrate-rebound
feature seen in large impact craters; an unperturbed crater floor, which is resurfaced
with smooth lava in the real craters; and a ring that delineates the edge of the crater.
The ring is designed to have a steep slope on the inside and a more gradual one on
the outside, again in emulation of the structure of real impact craters. Furthermore,
the outside ring has a texture of random ridges, concentric with the crater. This is in
emulation of compression features in the crust around the edge of the crater, formed
when the shock of impact “bulldozed” the crater out from the center. We obtain this
texture with radially compressed fBm. The composite result of these features is a de-
tailed, fairly realistic model of a crater. Since it is applied as a bump map, as with ray
tracers, you must be careful not to try to view the crater at a very low, glancing

Earth 473

6. If you’ve never seen a rayed crater before, just grab a pair of binoculars next time there’s a full moon,
and have a look. They’re all over the place, they’re not particularly subtle, and some have rays that reach
more than halfway around the globe of the Moon. The rays are the result of splattering of ejecta from
the impact that made the crater.

Team LRN

angle, for then the lack of geometric detail becomes evident. A problem with bump
maps is that since they do not affect geometry, bump-mapped features cannot ob-
scure one another, as the raised near rim of a real crater would obscure your view of
the far rim at low angles of view. If your renderer supports displacement maps or
QAEB primitives, you can model the geometry correctly.

The crater ray construction is inspired by the famous Doc Edgerton photo of the
splashing milk drop. (You know, the one where it looks like a crown, with all the lit-
tle droplets evenly spaced around the rim of the splash.) This high degree of regular-
ity inspired me to build my texture in a similar way: with a number of rays, evenly
spaced, with only a small random displacement in their spacing. The rays take the
form of weighting functions, the width of which asymptotically approaches zero as
we move out along the length of the ray. There is a discontinuity in the weighting
function between rays, but this has never been visible in practice. The weighting is
applied to an fBm splatter texture, which is stretched out away from the crater, ex-
actly opposite of the compression texture outside the rim of the crater.

This crater ray texture looked much too regular to be realistic. So next I tried a
fractal (fBm) splatter for the rays; the result was much too irregular. It seems that the
behavior of nature lies somewhere between the two. I eventually settled on a combi-
nation of both: I use fractal splatter for the short-range ejecta and the ray scheme for
the long-range ejecta. The combination looks reasonably good, although I think it
would benefit from further, artful randomization of the ray structure. At the time I
developed this model, I didn’t need to inspect the resulting moon up close—it was
designed to serve as a backdrop for earthly scenes—so I called it “good enough” and
moved on, only slightly embarrassed to have put so much time and effort into such
an entirely ad hoc model.

The code for the lunar texture follows. Figures 15.12 and 20.4 illustrate what it
can look like.

surface
luna (float Ka = .5, Kd = 1;

float lacunarity = 2, octaves = 8, H = 0.7;
color highland_color = .7;
float maria_basecolor = .7, maria_color = .1;
float highland_threshold = -0.2;
float highland_altitude = 0.01, maria_altitude = 0.004;
float peak_rad = .0075, inner_rad = .01, rim_rad = .02, outer_rad = .05;
float peak_ht = 0.005, rim_ht = 0.003;)

{
float radial_dist;
point PP;
float chaos;
color Ct;

474 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

float temp;
point vv;
float uu, ht;
float lighten;
point NN;
float pd; /* pole distance */
float raydist;
float filtwidth;
float omega;
PQ = P;

PP = transform(“shader”, P);
filtwidth = filterwidthp(PP);
NN = normalize(N);

radial_dist = sqrt(xcomp(PP)*xcomp(PP) + ycomp(PP)*ycomp(PP));
omega = pow(lacunarity, (-.5)-H);
chaos = fBm(PP, filtwidth, octaves, lacunarity, omega);

/*** Get overall maria/highlands texture *************************/

chaos = fBm (PP, H, lacunarity, octaves);

FIGURE 15.12 The rayed crater is prominent on this procedurally textured moon. Copyright ©
1994 F. Kenton Musgrave.

Team LRN

/* Start out with the surface color, then modify as needed */
Ct = Cs;

/* Ensure that the crater is in one of the maria */
temp = radial_dist;
if (temp < 1)

chaos -= .3 * (1 - smoothstep(0, 1, temp));

/* Determine highlands and maria */
if (chaos > highland_threshold) {

PQ += chaos * highland_altitude * NN;
Ct += highland_color * chaos;

} else {
PQ += chaos * maria_altitude * NN;
Ct *= maria_basecolor + maria_color * chaos;

}

/*** Add crater **/

pd = 1-v;
vv = vector(xcomp(PP)/radial_dist, 0, zcomp(PP)/radial_dist);
lighten = 0;
if (pd < peak_rad) { /* central peak */

uu = 1 - pd/peak_rad;
ht = peak_ht * smoothstep(0, 1, uu);

} else if (pd < inner_rad) { /* crater floor */
ht = 0;

} else if (pd < rim_rad) { /* inner rim */
uu = (pd-inner_rad) / (rim_rad - inner_rad);
lighten = .75*uu;
ht = rim_ht * smoothstep(0, 1, uu);

} else if (pd < outer_rad) { /* outer rim */
uu = 1 - (pd-rim_rad) / (outer_rad-rim_rad);
lighten = .75*uu*uu;
ht = rim_ht * smoothstep(0, 1, uu*uu);

} else ht = 0;

/* Lighten the higher areas */
PQ += ht * NN;
lighten *= 0.2;
Ct += color(lighten,lighten,lighten);

/* Add some noise to simulate rough features */
if (uu > 0) {

if (pd < peak_rad) { /* if on central peak */
vv = 5*PP + 3 * vv;
ht = fBm(vv, filterwidthp(vv), 4, 2, 0.833);
PQ += 0.0025 * uu*ht * NN;

} else {
vv = 6*PP + 3 * vv;

476 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

ht = fBm(vv, filterwidthp(vv), 4, 2, 0.833);
if (radial_dist > rim_rad) uu *= uu;
PQ += 0.0025 * (0.5*uu + 0.5*ht) * NN;

}
}

/*** Generate crater rays **/

lighten = 0;
if (pd >= rim_rad && pd < 0.4) {

float fw = filterwidth(u);
lighten = smoothstep(.15, .5, filteredsnoise(62*u, 62*fw));
raydist = 0.2 + 0.2 * filteredsnoise(20 * mod(u+0.022,1), 20*u);
lighten *= (1 - smoothstep(raydist-.2, raydist, pd));

}
lighten =0.2 * clamp(lighten, 0, 1);
Ct += color(lighten, lighten, lighten);

/* Shade like matte */
Ci = Ct * (Ka * ambient() + Kd * diffuse(faceforward(normalize(N),I)));
Oi = Os; Ci *= Oi;

}

RANDOM COLORING METHODS
Good painters evoke worlds of color in a painting, and even in a single brush stroke.
Van Gogh, who painted with a palette knife, not a brush, executed several paintings
in the morning, took a long lunch, then did several more in the afternoon. Painting
in a hurry, he didn’t mix his paints thoroughly before applying a thick blob to the
canvas. Thus each stroke has a universe of swirling color within it. Seurat’s pointil-
lism is another form of what painters call juxtaposition, or the use of a lot of differ-
ent colors to average to some other color. This is part of the visual complexity that,
to me, distinguishes good paintings from most computer graphics.

Generating visual complexity is pretty much the name of my game, so I’ve de-
vised some methods for procedurally generating complexity in color. They utilize the
same kinds of fractal functions that we use in modeling natural phenomena.

Random fBm Coloring

My first attempt at random coloring was simply fBm interpreted as color. For this,
you start with a vector-valued fBm that returns three values and interpret that 3-
vector as an RGB color. This can work pretty well, as seen in Figure 20.9. Unfortu-
nately, since fBm has a Gaussian distribution with an expected value of zero, when
one of the values (say, red) is fairly far from zero, the other two are likely to be close

Random Coloring Methods 477

Team LRN

to zero. This yields a preponderance of red, green, and blue blotches. We want more
control and color variation than that.

The GIT Texturing System

I wanted to obtain a rich, fractal variation in color detail, similar to the juxtaposi-
tion in a van Gogh stroke or a local area in a Seurat. This juxtaposition should aver-
age to a user-specified color, even though that color may not be present anywhere
in the resulting palette. We also want easy user control of the color variation in the
juxtaposition palette. Control of this palette is accomplished by manipulating the
values of a 4 × 4 transformation matrix, but this is too mathematically abstract to
constitute an effective user interface (UI), to say the least. We desire a simple and in-
tuitive UI that an artist can use effectively, without knowledge of the underlying
math.

Long ago I gave this idea the wonderfully unpretentious—not!—moniker “gen-
eralized Impressionistic texture,” or GIT for short. (We need more TLAs—three-
letter acronyms.) The GIT matrix generator system takes the form of a time-varying
swarm of color samples in a color space, usually the RGB color cube. The center of
the swarm is translated (moved) to the position in the color space of the desired aver-
age color of the resulting palette. A swarm of color sample chips is then manipulated
to obtain the desired variation in color. This is accomplished by rotating and scaling
the principal axes of color variation within the color space.7 If you think of the scat-
tering of color samples as lying within an ellipsoid, or an elongated M&M, the prin-
cipal axes correspond to the length, width, and thickness of the M&M. After some
manipulation, you might have a major axis of variation along, for instance, blue-to-
yellow, with less significant variations along two other perpendicular axes in the
chosen color space. The idea is that you can have a lot of different colors present,
with their average clearly specified and smooth interpolation between them well
defined.8 The major variations can be along any straight line in color space, not just
red, green, or blue; this is the flexibility of the system.

The simplest underlying mathematical model requires that the three axes of
color variation be mutually perpendicular. In this model we build a standard 4 × 4

478 CHAPTER 15 Fractal Solid Textures: Some Examples

7. Which color space you use is important, as it affects the character of available color variations. To
date, we’ve only implemented the RGB color cube. It is a little more challenging to display other color
spaces as polyhedra, due to their nonrectilinear shapes. It shouldn’t be too hard to do, though.
8. The average isn’t quite as clear as it may seem, as the ellipsoid can violate the bounds of the color
space. You can handle this by either clipping to the boundaries or reflecting them back into the color
space (the solution we’ve used). Either solution will skew the average color away from that at the center
of the ellipsoid, which marks the presumed average. There’s no easy fix for this.

Team LRN

transformation matrix encoding rotation, translation, and scaling. The transforma-
tion matrix is built using interactive controls that let the user manipulate the scatter
plot of color samples in the three-dimensional color space. In our implementation,
the scatter plot is constantly changing: it is a circular queue of vector values repre-
senting offsets from the center of the ellipsoid, which represents the average color.
When a sample reaches the end of the queue, it is replaced with another random
sample. The random samples are gotten by evaluating vector-valued fBm at random
points in its three-dimensional domain. We use about 100 samples at a time, the ac-
tual number being controlled by a slider. More samples span the range of colors
more accurately, but the ones in front tend to obscure those behind, so you can’t see
the entire range of colors being spanned. The idea behind the circular queue is that
by having the random samples constantly changing with time, you can get a pretty
good idea of the range of colors spanned just by watching for a while.

When the desired distribution of color variations has been determined inter-
actively, the resulting transformation matrix is used by a texture routine in a ren-
derer. The result is a procedural solid texture with wonderfully rich variations in
color. The colors of the mountains in Figures 15.13, 15.14, 16.6, 20.18, and 20.20
come from such GIT textures. I find them very pleasing because they finally start to
capture in synthetic imagery some of the color complexity and subtlety we see in
paintings.

An Impressionistic Image Processing Filter

The GIT scheme generates solid textures that are usually applied to the surfaces of
objects in a scene. In painting, juxtaposition is in image space—on the canvas—not
in world space or object space, as with solid textures. Hence we, Myeong Lim and
myself, sought to apply GIT texturing in image space to digital images. In this case,
the matrix is determined by performing principal components analysis (Gonzalez
and Woods 1992) to local areas in the image.9 In principal components analysis, the
Hotelling transform is applied to a scattering of data, yielding the autocorrelation
matrix for the distribution. This matrix encodes some magic values known mathe-
matically as the eigenvectors, which correspond to the principal axes described
earlier, and the eigenvalues, which correspond to the length of those axes. More
mathematical magic! The data points we provide to the Hotelling transform are the
RGB values of pixels, ranging from a fairly small neighborhood around a given
pixel to the entire image.

Random Coloring Methods 479

9. Explaining this is well beyond the scope of this book; see Gonzalez and Woods (1992) for details if
you’re interested. But be advised, it involves some pretty heavy linear algebra and statistics.

Team LRN

The autocorrelation matrix encodes exactly the same information as the interac-
tively derived matrix in the GIT scheme. We use it in a similar, but slightly different,
way: the juxtaposition is now expressed in a synthetic brush stroke. This is applied
to the image as a blurring, yet detail-adding filter. The added detail is in the smeared
colors in the synthetic brush strokes. To accommodate this added detail, we gener-
ally expand the image by a factor of four to eight in both dimensions. Standard im-
age processing routines are used to determine lightness gradients in the input image,
and the brush strokes are applied cross-gradient (Salisbury et al. 1994) to resemble
an artist’s strokes. Thus, if the image faded from dark at the bottom to light at the
top, the strokes would be horizontal. While blurring the image underneath along the
direction of the stroke (Cabral and Leedom 1993), random detail is simultaneously
added in the form of fractal color juxtaposition. Figure 15.15 shows this in practice.
This application of the GIT idea is probably less successful than commercially avail-
able paint programs such as Painter, but it was an interesting experiment. We never
spent much time on the model for the brush strokes; this scheme could provide an in-
teresting filter if the details were worked out.

480 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.13 Slickrock I features a procedural terrain with adaptive level of detail and a terrain
model constructed from a ridged basis function—hence the ridges everywhere and at all scales.
The same subtle color perturbation has been applied to the surface as in Figure 20.9, but it
has been “squashed down” vertically to make it resemble sedimentary rock strata. Copyright ©
F. Kenton Musgrave.

Team LRN

Random Coloring Methods 481

FIGURE 15.14 Slickrock III illustrates a GIT texture applied to a terrain. Both the terrain and the
texture feature adaptive level of detail, as described in Chapter 17. Copyright © F. Kenton
Musgrave.

Team LRN

The “Multicolor” Texture

I always like to automate things as much as possible to see what the computer can
be made to do on its own.10 Being interested in the kind of painterly textures that
the GIT experiments were designed to create, I set out to design a “painterly” proce-
dural texture that is entirely random (see Figure 15.16). The result is, I think, rather

FIGURE 15.15 A GIT-processed image of Beth Musgrave skating, by Myeong Lim. The GIT
processing adds random colors and the painterly quality. Copyright © F. Kenton Musgrave.

10. My considered view of the computer’s role in generating art is that it is like an idiot savant assistant:
it is extremely simple-minded, incapable of doing anything without the most exhaustively precise direc-
tions, but fantastically quick in what it does well—calculations, if you will. Its power in this can lead to
fabulous serendipity, as we will see in Chapter 19, but the computer is never truly creative. All creativity
resides in the human operator. While the computer can sometimes appear to be fabulously creative, it is
an illusion, at least in these schemes.

Team LRN

striking, so I’ll describe it here. It’s a solution looking for a problem—I haven’t found
a way to include it in any images—but perhaps someday someone will find a use for
it. It’s also a good example of how a hacked-together texture can become brittle:
small changes in the input parameters can “break” the result (meaning, your beauti-
ful texture gets ugly).

The idea here is to generate a rich, painterly combination of random colors in a
texture that looks something like flowing paint. Furthermore, we want the color to
average to neutral gray. (It can actually average to any color, but I like the neutrality
of 50% gray.) There are four basic elements in this texture: first, a vector-valued fBm
that provides a random axis about which to rotate in color space; second, another
vector-valued fBm provides a random color sample; third, a domain-distorted multi-
fractal function modulates saturation in the random colors; and fourth, a rotation by a
random amount around the random axis decorrelates the color from the RGB axes.

Let’s go over this step by step. We start with a neutral gray plane. Then we get a
random rotation axis from a vector-valued fBm function and store it for later use.
We modulate its saturation with a multifractal function similar to the one rendered
as a height field in Figure 14.3. Where that function is zero, the gray is unchanged.
Where it’s positive or negative, the gray becomes colored. Again, the color comes
from a vector-valued fBm. As noted earlier, interpreting such an fBm vector as an
RGB color doesn’t give us the truly random variety of colors we want. We can get
that using a random variation of the GIT scheme: simply build a random rotation
matrix, corresponding to a GIT matrix, but without any translation or scaling. (The
translation is inherent in the length of the fBm vector; the scaling is done by the

FIGURE 15.16 The “multicolor” texture attempts to capture some of the richness of color
juxtaposition seen in paintings. Copyright © F. Kenton Musgrave.

Team LRN

multifractal.) This may seem elaborate, but it has been my experience that you have
to mess around with random colors a lot to get them to be truly random and to vary
in a way that is pleasing to the eye.

Here’s the shader code for “multicolor.” As it (and some of the other textures in
this chapter) is brittle, you might also want to look at the code for the original C ver-
sion that appears on this book’s Web site (www.mkp.com/tm3).

vector vMultifractalFunc(point p; float H, lacunarity, octaves, zero_off-set)
{

point pos = p;
float f = 1, i;

vector y = 1;
for (i = 0; i < octaves; i += 1) {

y *= zero_offset + f * (2*vector noise(pos) - 1);
f *= H;
pos *= lacunarity;

}
return y;

}

/*
* A multifractal multicolor texture experiment
*/

surface multicolor()
{

vector axis, cvec, angle;
point tx = transform(“shader”, P);
float i;

axis = 4.0 * vfBm(tx, filterwidthp(tx), 8, 2.0, 0.5);
cvec = .5 * 5.0 * vfBm(tx*0.3, filterwidthp(tx), 7, 2.0, 0.5);
tx += cvec;

cvec += 4.0e5 * vMultifractalFunc(tx, 0.7, 2.0, 8, 0.2);
angle = fBm(tx, filterwidthp(tx), 6, 2.0, 0.5);
cvec = rotate(cvec, angle, point(0,0,0), axis);

Ci = 0.5 + color(xcomp(cvec), ycomp(cvec), zcomp(cvec));

/* Clamp color values to range [0..1] */
for (i = 0; i<3; i += 1) {

float c = abs(comp(Ci,i));
if (c > 1)
setcomp(Ci, i, 1-c);

}
Oi = Os;
Ci *= Oi;

}

484 CHAPTER 15 Fractal Solid Textures: Some Examples

Team LRN

Ultimately, I think of this texture and the genetic textures I present in Chapter 19
as applications of the “naturalness” of the fractal functions developed earlier in this
text, in pursuit of the look and feel of paintings, which I think of as being very “nat-
ural.” That is, they may be man-made, but they appear very natural compared to the
hard-edged artificiality of most synthetic images. The flow of the paint and the hand
of the painter are very natural, and paintings are executed in a physical medium,
rather than shuffling bits around for later output on some arbitrary device. This
physicality is completely natural, compared to the abstractions of image synthesis.
So I, personally, think of paintings as being a part of nature, as compared to what
we’re doing here. At any rate, I think of painters as the ancient masters of rendering,
so I’m trying to learn from them by imitation. I find it fun and, when I get a good re-
sult, satisfying.

The “multicolor” texture provided the starting point for my genetic texture pro-
gram described in Chapter 19. Development of this genetic program was driven
partly by my desire to automate the generation of textures like “multicolor”—brittle
textures like this are a real pain to design and refine—and partly by the knowledge
that someday we’re going to want to populate an entire virtual universe with proce-
durally generated planets, which, as we saw in this chapter, is also too much work to
do on a planet-by-planet basis. You’ll also see then that some of the fundamental
functionality in my genetic program derives from the ideas I’ve described here about
random coloration. At any rate, I think that the constructions in this chapter are
mostly rather unique and nonobvious, since they involve a cross-fertilization of ideas
from aesthetics and mathematics. I think that’s cool. And best of all, they can make
nice pictures.

PLANETARY RINGS
Rings like Saturn’s are particularly easy to model (see Figures 15.17 and 15.18). You
can simply employ a fractal function, evaluated as a function of radius, to control
the transparency—and color, if you like—of a disk passing through the equator of
the planet. The following C code is what was used to create Figure 15.18.

void Rings (Vector intersect,
double *refract,
Color *color,
double inner_rad, outer_rad,
double f_dim, octaves, density_scale, offset,
double inner_rolloff, outer_rolloff, /* in fraction of ring width */
double text_scale, tx_offset, ty_offset, tz_offset)

{

Planetary Rings 485

Team LRN

486 CHAPTER 15 Fractal Solid Textures: Some Examples

FIGURE 15.17 Planetary rings like Saturn’s are easy to model by modulating density with a fractal
function of radius.

FIGURE 15.18 Other style features a subtle use of the windywave shader and the model of Saturn
seen in Figure 15.17.

Team LRN

Vector point;
double x_pos, y_pos, z_pos, radius, density, fBm();
double band_width, inner_rolloff_end, outer_rolloff_start, rolloff;

x_pos = intersect.x;
y_pos = intersect.y;
z_pos = intersect.z;
radius = sqrt (x_pos*x_pos + y_pos*y_pos + z_pos*z_pos);

/* most of the work is in computing the inner and outer rolloff zones */
if (radius<inner_rad || radius>outer_rad) {

density = 0.0;
} else {

/* compute fBm texture */
point = Vector (text_scale*radius + tx_offset, ty_offset, tz_offset);
density = fBm(point, f_dim, 2.0, octaves);
density = density_scale*density + offset;

/* check for inner & outer rolloff zones */
band_width = outer_rad - inner_rad;
inner_rolloff_end = inner_rad + band_width*inner_rolloff;
outer_rolloff_start = outer_rad - band_width*outer_rolloff;
if (radius < inner_rolloff_end) {

/* get rolloff parameter in range [0..1] */
rolloff = (radius-inner_rad)/(band_width*inner_rolloff);
/* give rolloff desired curve */
rolloff = 1.0 - rolloff;
rolloff = 1.0 - rolloff*rolloff;
/* do the rolling-off */
density *= rolloff;

} else if (radius > outer_rolloff_start) {
/* get rolloff parameter in range [0..1] */
rolloff = (outer_rad-radius)/(band_width*outer_rolloff);
/* give rolloff desired curve */
rolloff = 1.0 - rolloff;
rolloff = 1.0 - rolloff*rolloff;
/* do the rolling-off */
density *= rolloff;

}
}
/* clamp max & min values */
if (density < 0.0) density = 0.0;
if (density > 1.0) density = 1.0;

transparency = 1.0 - density;

} /* Rings() */

Planetary Rings 487

Team LRN

16

Team LRN

PROCEDURAL FRACTAL TERRAINS
F. K E N T O N M U S G R AV E

As pointed out in Chapter 14, the same procedural constructions that we use as tex-
tures can also be used to create terrains. The only difference is that, instead of inter-
preting what the function returns as a color or other surface attribute, we interpret it
as an altitude. This chapter will now extend the discussion of terrain models begun
in Chapter 14.

Since we are designing these functions to generate terrain models external to the
renderer or as QAEB primitives built into the renderer, we’re switching back from
the RenderMan shading language to C code for the code examples.

ADVANTAGES OF POINT EVALUATION
I first started working with procedural textures when I used them to color fractal ter-
rains and to provide a sense of “environment,” with clouds, water, and moons, as
described earlier. Figure 15.8 is an example of this early work. The mountains I was
making then were created with a version of polygon subdivision (hexagon subdivi-
sion) described by Mandelbrot in an appendix of The Science of Fractal Images
(Peitgen and Saupe 1988). They have the jagged character of polygon subdivision
terrains and the same-roughness-everywhere character of a homogeneous fractal di-
mension. Mandelbrot and I were working together at the time on including ero-
sion features in our terrains. This led me to make some conjectures about varying the
local behaviors of the terrain, which led to the two multifractal constructions I will
describe next. Interestingly, I had never heard of “multifractals” when I devised
these first two additive/multiplicative hybrid multifractal functions. When I showed
Mandelbrot Figure 16.1 in 1991, he exclaimed in surprise, “A multifractal!” to
which I astutely replied, “What’s a multifractal?”1

What allowed me to intuitively “reinvent the (multifractal) wheel” was the flexi-
bility implicit in our noise-based procedural fractals. Dietmar Saupe calls our Perlin

489

1. His cryptic retort was, “Never mind—now is not the time.”

Team LRN

noise-based procedural fractal construction method “rescale and add” (Saupe
1989). Its distinguishing feature, he points out, is point evaluation: the fact that each
sample is evaluated at a point in space, without reference to any of its neighbors.
This is quite a distinction indeed, in the context of fractal terrain generation algo-
rithms. In polygon subdivision, a given altitude is determined by a series of interpo-
lations between neighboring points at lower frequencies (i.e., earlier steps in the
iterative construction). In Fourier synthesis, the entire terrain patch must be gener-
ated all at once; no sample can be computed in isolation. In contrast, the context in-
dependence of our procedural method allows us to do whatever we please at any
given point, without reference to its neighbors. There is interpolation involved, but it
has been hidden inside the noise function, where it takes the form of Hermite spline
interpolation of the gradient values at the integer lattice points (see Chapters 2, 6,
and 7 for details on this). In practice, you could employ the same tricks described be-
low to get multifractals from a polygon subdivision scheme, at least. It’s not so obvi-
ous how you could accomplish similar effects with Fourier synthesis. The point is, I
probably never would have thought of these multifractal constructions had I not
been working in the procedural idiom.

Another distinguishing feature of terrains constructed from the noise function is
that they can be rounded, like foothills or ancient mountains (see Figure 16.2). To
obtain this kind of morphology from polygon subdivision, we must resort to the
complexities of schemes like Lewis’s “generalized stochastic subdivision” (Lewis
1987). The rounded nature of our terrains has to do with the character of the basis
function; more on that later. And, as we have already shown, another distinguishing
characteristic of the procedural approach is that it naturally accommodates adaptive
band-limiting of spatial frequencies in the geometry of the terrain as required for
rendering with adaptive level of detail, as in QAEB rendering (described in the next

490 CHAPTER 16 Procedural Fractal Terrains

FIGURE 16.1 A multifractal terrain patch. Note the heterogeneity: plains, foothills, and mountains,
all captured in a single fractal model. Copyright © 1994 F. Kenton Musgrave.

Team LRN

chapter). Such capability makes possible exciting applications like the planetary
zoom seen in Figure 16.3.

THE HEIGHT FIELD
Terrain models in computer graphics generally take the form of height fields. A
height field is a two-dimensional array of altitude values at regular intervals (or post
spacings, as geographers call them). So it’s like a piece of graph paper, with altitude
values stored at every point where the lines cross.2

The Height Field 491

FIGURE 16.2 Carolina illustrates a procedural model of ancient, heavily eroded mountains.
Copyright © 1994 F. Kenton Musgrave.

2. This is the simplest, but not the most efficient, storage scheme for terrains. Extended areas of nearly
constant slope can be represented with fewer samples, for instance. Decimation algorithms (Schroeder,
Zarge, and Lorensen 1992) are one way to reduce the number of samples in a height field and thus its
storage space requirement. It may be desirable to resample such a model before rendering, however, to
get back to the regular array of samples that facilitates fast rendering schemes such as grid tracing. For
an animation of this zoom, see www.kenmusgrave.com/animations.html.

Team LRN

492 CHAPTER 16 Procedural Fractal Terrains

(a) (b)

(c) (d)

(e)

FIGURE 16.3 A series of frames from the Gaea
Zoom animation demonstrate the kind of
continuous adaptive level of detail possible
with the models presented in the text. The
MPEG animation is available at
www.kenmusgrave.com/animations.html.
Copyright © F. Kenton Musgrave.

Team LRN

There is one, and only one, altitude value at each grid point. Thus there can
be no caves or overhangs in a height field. This limitation may seem easy to over-
come, but it’s not. In fact, the problem is hard enough that I issued a challenge
in the first edition of this book, back in 1994, offering $100 to the first person to
come up with an “elegant, general solution” to it. The reward was won in early
1998 by Manuel Gamito, who came over from Portugul to work with us in the
MetaCreations Skunk Works for a year. Manuel’s award-winning image, an entirely
procedural model rendered in a modified version of the minimal ray tracer I wrote to
develop the QAEB algorithm, appears in Figure 17.2. Unfortunately, that image
took about a day to render!

The Height Field 493

(i)(h)

(g)(f)

Team LRN

The regular (i.e., evenly spaced) samples of the height field accommodate ef-
ficient ray-tracing schemes such as grid tracing (Musgrave 1988) and quad tree
(Kajiya 1983a) spatial subdivision. A detailed discussion of such a rendering scheme
is beyond the scope of this book; if you’re interested in that, see Musgrave (1993).
I’ve always preferred to ray-trace my landscapes, but if you lack the computational
horsepower for that, there are some very nice non-ray-tracing terrain renderers, such
as Vistapro, available for home computers. If you’d like to try your hand at ray-
tracing height fields, you can buy MetaCreations’ Bryce, Animatek World Builder, or
World Tool Set. Or you can pick up Craig Kolb’s public domain Rayshade ray tracer,
which features a very nice implementation of hierarchical grid tracing for height
fields. The hierarchical approach captures the best aspects of grid tracing (i.e., low
memory overhead) and of quadtree methods (i.e., speed). For multiple renderings of
a static height field—as in fly-by animations—the PPT algorithm is the fastest ren-
dering method (Paglieroni 1994).

There are several common file formats for height field data. There is the DEM
(digital elevation map) format of the U.S. Geological Survey (USGS) height fields,
which contain measured elevation data corresponding to the “quad” topographic
maps available from the USGS, which cover the entire United States. The U.S. mili-
tary establishment has their DTED (digital terrain elevation data) files, which are
similar, but are likely to include terrains outside of the United States and its territo-
ries. While you may render such data as readily as synthetic fractal terrains, as a syn-
thesist (if you will), I consider the use of “real” data to be cheating! My goal is to
synthesize a detailed and familiar-looking reality, entirely from scratch. Therefore, I
have rarely concerned myself with measured data sets; I have mostly worked with
terrains that I have synthesized myself.

As I have usually worked alone, with no programming assistance, I generally
prefer to implement things in the quickest, simplest manner I can readily devise so
that I can get on to making pictures. Thus my home-grown height field file format
(which is also used by Rayshade) is very simple: it is a binary file containing first a
single integer (4 bytes), which specifies the size of the (square) height field, followed
by n2 floats (4 bytes each), where n is the value of the leading integer. I append any
additional data I wish to store, such as the minimum and maximum values of the
height field, and perhaps the random number generator seed used to generate it, af-
ter the elevation data. While far more compact than an ASCII format for the same
data, this is still not a particularly efficient storage scheme. Matt Pharr, of ExLuna,
has implemented an improved file format, along with conversion routines from my
old format to his newer one. In the new scheme, there is a 600-byte header block for
comments and documentation of the height field. The elevation data is stored as
shorts (2 bytes), with the values normalized and quantized into integers in the range

494 CHAPTER 16 Procedural Fractal Terrains

Team LRN

[0, 216 − 1]. The minimum and maximum altitudes over the height field are also
stored, so that the altitude values may be restored to their floating-point values at
rendering time by the transformation

where a is the quantized and scaled altitude value, z is the decoded floating-point
value, and zmin and zmax are the min/max values of the height field. Pharr’s code also
obviates the big-endian/little-endian byte-order problem that can crop up when
transferring binary files between different computers, as well as automatically taking
care of transfers between 32-bit and 64-bit architectures. Pharr’s code is available on
the Internet via anonymous ftp at cs.princeton.edu. If you intend to render many
height fields, it is worth picking up, as it saves about half of the space required to
store a given height field.

HOMOGENEOUS fBm TERRAIN MODELS
The origin of fractal mountains in computer graphics is this: Mandelbrot was work-
ing with fBm in one dimension (or one-point-something dimensions, if you must),
like the plot we saw in Figure 14.2. He noted that, at a fractal dimension of about
1.2 (the second trace from the top in Figure 14.2), the trace of this function resem-
bled the skyline of a jagged mountain range. In the true spirit of ontogenetic model-
ing, he reasoned that, if this function were extended to two dimensions, the resulting
surface should resemble mountains. Indeed it did, and thus were born fractal moun-
tains for computer graphics. Figure 16.4 is a crude example of such a simple fractal
terrain model.

Again, there is no known causal relationship between the shape of real moun-
tains and the shape of this fractal function; the function simply resembles moun-
tains, and does so rather closely. Of course there are many features in real
mountains, such as drainage networks and other erosion features, that are not pres-
ent in this first model. Much of my own research has been toward including such
features in synthetic terrain models, largely through procedural methods (Musgrave
1993).

Fractal Dimension

As pointed out in Chapter 14 and as illustrated by Figure 14.2, fractal dimension can
be thought of as a measure of the roughness of a surface. The higher the fractal di-
mension, the rougher the surface. Figure 16.5 illustrates how the roughness of an

Homogeneous fBm Terrain Models 495

max min
min16

()
2 1

a z z
z z

−
= +

−

Team LRN

fBm surface varies with fractal dimension: at the left edge of the patch, the fractal di-
mension is 2.0; on the right it is 3.0. The most interesting thing about this patch is
that it is not planar (i.e., flat) on the left, nor does it fill all of the space on the right.
So we see that the formal definition of fractal dimension for fBm does not capture all
of the useful fractal behavior available from the construction: the kind of rolling
foothills that would occur off the left end of this patch are indeed self-similar and
thus fit our heuristic definition of “fractal.” Yet they do not fit the formal mathemat-
ical definition of fractal dimension (at least not the one for fBm).3 This is a good ex-
ample of how fractals defy precise definition and sometimes require that we “paint
with a broad brush” so that we don’t unnecessarily exclude relevant phenomena.
Many researchers in computer graphics and other fields have substituted terms such
as “stochastic” and “self-similar” for “fractal” because of this poor fit with formal
definitions, but this is probably not appropriate: there are few useful stochastic

496 CHAPTER 16 Procedural Fractal Terrains

FIGURE 16.4 A terrain patch with homogeneous fractal dimension (of �2.2).

3. It’s worth noting that different methods for measuring fractal dimension may give slightly different re-
sults when applied to the same fractal. So even formal methods may not agree about the limits of fractal
behavior and the exact values of quantitative measurements of fractal behavior.

Team LRN

models of visual natural phenomena that do not feature self-similarity, and self-
similar models are best characterized as fractal, formal technicalities notwith-
standing.

Visual Effects of the Basis Function

As illustrated in the previous chapter, the small spectral sums used to create random
fractals for computer graphics allow the character of the basis function to show
through clearly in the result. Usually, the choice of basis function is implicit in the al-
gorithm: it is a sine wave for Fourier synthesis, a sawtooth wave in polygon subdivi-
sion, and a piecewise-cubic Hermite spline in noise-based procedural fBm. You
could use a Walsh transform and get square waves as your basis. Wavelets (Ruskai
1992) promise to provide a powerful new set of finite basis functions. And again,
sparse convolution (Lewis 1989) or fractal sum of pulses (Lovejoy and Mandelbrot
1985) offer perhaps the greatest flexibility in choice of basis functions. With those
methods, you could even use the profile of the kitchen sink as a basis function, lead-
ing naturally to sinkholes in the terrain.

Homogeneous fBm Terrain Models 497

FIGURE 16.5 In this patch, the fractal dimension varies from 2.0 on the left to 3.0 on the right.
Copyright © 1994 F. Kenton Musgrave.

Team LRN

Gavin Miller (1986) showed that the creases in terrain constructed with the
most common form of polygon subdivision (i.e., subdivision of an equilateral trian-
gle) are really an artifact of the interpolation scheme implicit in the subdivision algo-
rithm. But I think that for the most part it has simply been overlooked that there is a
basis function implicit in any fBm construction and that the character of that basis
function shows through in the result. As shown in the previous chapter, we can use
this awareness to obtain certain aesthetic effects when designing both textures and
terrains.

The smoothness of the Hermite spline interpolant in the noise function allows us
to generate terrains that are more rounded than those commonly seen in computer
graphics previously. Figures 15.7, 16.2, and 20.9 illustrate this well. Other examples
of basis function effects are seen in Figures 15.15, 16.6, 18.3, 20.18, and 20.20 and
in Figures 17.4–17.6, where the ridged basis function was used to get a terrain with
razorback ridges at all scales. Note that this terrain model can only be effectively
rendered with adaptive level of detail, as with QAEB and other schemes (Bouville
1985; Kajiya 1983b). Without this, in a polygonal model rendered with perspec-
tive projection, nearby ridges would take on a saw-toothed appearance, as under-
sampled elevation values would generally lie on alternating sides of the ridgeline,
and distant areas would alias on the screen due to undersampling of the complex ter-
rain model. A nonpolygonal approach to rendering with adaptive level of detail,
QAEB tracing, is described in the next chapter. It is ideal for rendering such sharp-
edged terrain models.

HETEROGENEOUS TERRAIN MODELS
It would seem that before our 1989 SIGGRAPH paper (Musgrave, Kolb, and Mace
1989) it hadn’t yet occurred to anyone to generate heterogeneous terrain models.
Earlier published models had been monofractal, that is, composed of some form of
fBm with a uniform fractal dimension. Even Voss’s heterogeneous terrains (Voss
1988) represent simple exponential vertical scalings of a surface of uniform fractal
dimension. As pointed out in Chapter 14, nature is decidedly not so simple and well
behaved. Real landscapes are quite heterogeneous, particularly over large scales
(e.g., kilometers). Except perhaps on islands, mountains rise out of smoother ter-
rains—witness the dramatic rise of the Rocky Mountains from the relatively flat
plains just to their east. Tall ranges like the Rockies, Sierras, and Alps typically have
rolling foothills formed largely by the massive earthmovers known as glaciers. All
natural terrains, except perhaps recent volcanic ones, bear the scars of erosion. In
fact, erosion and tectonics are responsible for nearly all geomorphological features

498 CHAPTER 16 Procedural Fractal Terrains

Team LRN

Heterogeneous Terrain Models 499

FIGURE 16.6 Parabolic Curves in the Plane of the Ecliptic employs most of the tricks described in
Chapters 14–18, from multifractals to GIT textures to QAEB tracing. There are parabolas in the
terrain, in the central valley, in the clouds, and in depth. Copyright © F. Kenton Musgrave.

Team LRN

on our planet, other than volcanic features, impact craters, and various features due
to bioturbation (humanity’s included). Some erosion features are relatively easy to
model: talus slopes, for example. Others, such as drainage networks, are not so easy
(Musgrave, Kolb, and Mace 1989). The rest of this chapter will describe certain
ontogenetic models designed to yield a first approximation of certain erosion fea-
tures, without overly compromising the elegance and computational efficiency of
the original fBm model. These models are, at least loosely speaking, varieties of
multifractals.

Statistics by Altitude

The observation that motivated my first multifractal model is that, in real terrains,
low-lying areas sometimes tend to fill up with silt and become topographically
smoother, while erosive processes may tend to keep higher areas more jagged. This
can be accomplished with the following variation on fBm:

/*
* Heterogeneous procedural terrain function: stats by altitude method.
* Evaluated at “point”; returns value stored in “value”.
*
* Parameters:
* “H” determines the fractal dimension of the roughest areas
* “lacunarity” is the gap between successive frequencies
* “octaves” is the number of frequencies in the fBm
* “offset” raises the terrain from “sea level”
*/

double
Hetero_Terrain(Vector point,

double H, double lacunarity, double octaves, double offset)
{

double value, increment, frequency, remainder, Noise3();
int i;
static int first = TRUE;
static double *exponent_array;

/* precompute and store spectral weights, for efficiency */
if (first) {

/* seize required memory for exponent_array */
exponent_array =
(double *)malloc((octaves+1) * sizeof(double));
frequency = 1.0;
for (i=0; i<=octaves; i++) {

/* compute weight for each frequency */
exponent_array[i] = pow(frequency, -H);
frequency *= lacunarity;

}
first = FALSE;

500 CHAPTER 16 Procedural Fractal Terrains

Team LRN

}

/* first unscaled octave of function; later octaves are scaled */
value = offset + Noise3(point); point.x *= lacunarity;
point.y *= lacunarity; point.z *= lacunarity;

/* spectral construction inner loop, where the fractal is built */
for (1=1; i<octaves; 1++) {

/* obtain displaced noise value */
increment = Noise3(point) + offset;

/* scale amplitude appropriately for this frequency */
increment *= exponent_array[i];

/* scale increment by current “altitude” of function */
increment *= value;

/* add increment to “value” */
value += increment;

/* raise spatial frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

} /* for */

/* take care of remainder in “octaves” */
remainder = octaves - (int)octaves;
if (remainder) {

/* “i” and spatial freq. are preset in loop above */
/* note that the main loop code is made shorter here */
/* you may want to make that loop more like this */
increment = (Noise3(point) + offset) * exponent_array[i];
value += remainder * increment * value;

}

return(value);

} /* Hetero_Terrain() */

We accomplish our end by multiplying each successive octave by the current
value of the function. Thus in areas near zero elevation, or “sea level,” higher fre-
quencies will be heavily damped, and the terrain will remain smooth. Higher eleva-
tions will not be so damped and will grow jagged as the iteration progresses. Note
that we may need to clamp the highest value of the weighting variable to 1.0, to pre-
vent the sum from diverging as we add in more values.

The behavior of this function is illustrated in the terrains seen in Figures 16.2,
16.7, and 18.2.

Heterogeneous Terrain Models 501

Team LRN

A Hybrid Multifractal

My next observation was that valleys should have smooth bottoms at all altitudes,
not just at sea level. It occurred to me that this could be accomplished by scaling
higher frequencies in the summation by the local value of the previous frequency:

/* Hybrid additive/multiplicative multifractal terrain model. *
* Some good parameter values to start with:
*
* H: 0.25
* offset: 0.7
*/

double
HybridMultifractal(Vector point, double H, double lacunarity,

double octaves, double offset)
{

double frequency, result, signal, weight, remainder;
double Noise3();
int i;
static int first = TRUE;
static double *exponent_array;

/* precompute and store spectral weights */
if (first) {

/* seize required memory for exponent_array */
exponent_array =
(double *)malloc((octaves+1) * sizeof(double));

502 CHAPTER 16 Procedural Fractal Terrains

FIGURE 16.7 This multifractal terrain patch is quite smooth at “sea level” and gets rougher as
altitude increases. Copyright © 1994 F. Kenton Musgrave.

Team LRN

frequency = 1.0;
for (i=0; i<=octaves; i++) {
/* compute weight for each frequency */
exponent_array[i] = pow(frequency, -H);
frequency *= lacunarity;

}
first = FALSE;

}

/* get first octave of function */
result = (Noise3(point) + offset) * exponent_array[0];
weight = result;

/* increase frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

/* spectral construction inner loop, where the fractal is built */
for (1=1; i<octaves; 1++) {

/* prevent divergence */
if (weight > 1.0) weight = 1.0;

/* get next higher frequency */
signal = (Noise3(point) + offset) * exponent_array[i];

/* add it in, weighted by previous freq’s local value */
result += weight * signal;

/* update the (monotonically decreasing) weighting value */
/* (this is why H must specify a high fractal dimension) */
weight *= signal;

/* increase frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

} /* for */

/* take care of remainder in “octaves” */
remainder = octaves - (int)octaves;
if (remainder)

/* “i” and spatial freq. are preset in loop above */
result += remainder * Noise3(point) * exponent_array[i];

return(result);

} /* HybridMultifractal() */

Note the offset applied to the noise function to move its range from [−1, 1] to
something closer to [0, 2]. (If your noise function has a different range, you’ll need to

Heterogeneous Terrain Models 503

Team LRN

adjust this.) You should experiment with the values of these parameters and observe
their effects.

An amusing facet of this function is that it doesn’t do what I designed it to do: a
valley above sea level in this function is defined not by the local value of the last fre-
quency in the sum, as I have assumed, but by the local gradient of the function (i.e.,
the local tangent, the partial derivatives in x and y—however you care to view it).
Put another way, in the above construction, we ignore the bias introduced by lower
frequencies—we may be adding a “valley” onto the side of an already steep slope,
and thus we may not get a valley at all, only a depression on the side of the slope.
Nevertheless, this construction has provided some very nice, heterogeneous terrain
models. Figure 16.1 illustrates a terrain model produced from the above function.
Note that it begins to capture some of the large-scale heterogeneity of real terrains:
we have plains, foothills, and alpine mountains, all in one patch. Figure 20.18 shows
a similar construction, this time using the same ridged basis function seen in Figure
20.20: it’s like Perlin’s original “turbulence” function, which used the absolute value
of the noise function, only it’s turned upside-down, as l − abs(noise) so that the re-
sulting creases stick up as ridges. The resulting multifractal terrain model is illus-
trated in Figures 17.4–17.6. It is generated by the following code:

/* Ridged multifractal terrain model.
*
* Some good parameter values to start with:
*
* H: 1.0
* offset: 1.0
* gain: 2.0
*/

double RidgedMultifractal(Vector point, double H, double lacunarity,
double octaves, double offset, double gain)

{
double result, frequency, signal, weight, Noise3();
int i;
static int first = TRUE;
static double *exponent_array;

/* precompute and store spectral weights */
if (first) {

/* seize required memory for exponent_array */
exponent_array =

(double *)malloc((octaves+1) * sizeof(double));
frequency = 1.0;

for (i=0; i<=octaves; i++) {
/* compute weight for each frequency */
exponent_array[i] = pow(frequency, -H);
frequency *= lacunarity;

504 CHAPTER 16 Procedural Fractal Terrains

Team LRN

}
first = FALSE;

}

/* get first octave */
signal = Noise3(point);

/* get absolute value of signal (this creates the ridges) */
if (signal < 0.0) signal = -signal;
/* invert and translate (note that “offset” should be � = 1.0) */
signal = offset - signal;
/* square the signal, to increase “sharpness” of ridges */
signal *= signal;
/* assign initial values */
result = signal;
weight = 1.0;

for(1=1; i<octaves; i++) {
/* increase the frequency */
point.x *= lacunarity;
point.y *= lacunarity;
point.z *= lacunarity;

/* weight successive contributions by previous signal */
weight = signal * gain;
if (weight > 1.0) weight = 1.0;
if (weight < 0.0) weight = 0.0;
signal = Noise3(point);
if (signal < 0.0) signal = -signal;
signal = offset - signal;
signal *= signal;

/* weight the contribution */
signal *= weight;
result += signal *exponent_array[i];

}

return(result);

} /* RidgedMultifractal() */

Multiplicative Multifractal Terrains

In Chapter 14, Figure 14.3 illustrates, as a terrain patch, the multiplicative multi-
fractal function presented in that chapter. Qualitatively, that terrain patch appears
quite similar to the statistics-by-altitude patch seen in Figure 16.1. At the time of this
writing, our formal—that is, mathematical, rather than artistic—research into the
mathematics of such multifractal terrain models is quite preliminary, so I have little
of use to report. The multifractal construction of Chapter 14 does appear to have

Heterogeneous Terrain Models 505

Team LRN

some curious properties: as the value of scale goes from zero to infinity, the function
goes from highly heterogeneous (at zero) to flat (diverging to infinity). We have not
yet completed our quantitative study of the behavior, so I cannot elucidate further at
this time.

For the time being, however, for the purposes of terrain synthesis it seems best to
stick with the two hybrid additive multiplicative multifractal constructions pre-
sented in this chapter, rather than attempting to use the pure multifractal function
presented in Chapter 14. These hybrid models may be no better understood mathe-
matically, but they are better behaved as functions; that is, they don’t usually need to
be rescaled and are less prone to divergence.

CONCLUSION
I hope that in the last three chapters I have been able to illustrate the power of fractal
geometry as a visual language of nature. We have seen that fractals can readily pro-
vide nice visual models of fire, earth, air, and water. I hope that I have also helped
clarify the bounds of usefulness of fractal models for computer graphics: while frac-
tals are not the final word in describing the world we live in, they do provide an ele-
gant source of visual complexity for synthetic imagery. The accuracy of fractal
models of natural phenomena is of an ontogenetic, rather than physical, character:
they reflect morphology fairly well, but this semblance does not issue from first prin-
ciples of physical law, so far as we know. The world we inhabit is more visually com-
plex than we can hope to reproduce in synthetic imagery in the near future, but the
simple, inherently procedural complexity of fractals marks a first significant step to-
ward accomplishing such reproduction. I hope that some of the constructions pre-
sented here will be useful to you, whether in your own attempts to create synthetic
worlds or in more abstract artistic endeavors.

There is plenty of work left to be done in developing fractal models of natu-
ral phenomena. Turbulence has yet to be efficiently procedurally modeled to every-
one’s satisfaction, and multifractals need to be understood and applied in computer
graphics. Trees are distinctly fractal, yet to a large extent they still defy our ability to
capture their full complexity in a simple, efficient model; the same goes for river sys-
tems and dielectric breakdown (e.g., lightning). Reproducing other, nonfractal mani-
festations of heterogeneous complexity will, no doubt, keep image synthesists busy
for a long time to come. I like to think that our best synthetic images reflect directly
something of our depth—and lack—of understanding of the world we live in. As
beautiful and convincing as some of the images may be, they are only a first approxi-
mation of the true complexity of nature.

506 CHAPTER 16 Procedural Fractal Terrains

A-

Team LRN

Team LRN

17

Team LRN

QAEB RENDERING FOR PROCEDURAL MODELS
F. K E N T O N M U S G R AV E

INTRODUCTION
This chapter and the next present some pretty technical discussions. In the previous
three chapters, I have tried to keep the discussion at a level where the technically
minded artist might want to follow along. Now we’re plunging into stuff that is
probably only of interest to mathematically minded programmers. So a word of
warning: You might just want to read the introductions, which are written at a fairly
conversational level, or maybe even skip this chapter and the next entirely. These
chapters were written originally as technical papers, so most of the verbiage is in the
dry and dense idiom of scientific writing.

In the previous chapter we developed some procedural functions designed to
serve as realistic terrain models. When interpreted as height fields, these terrain mod-
els are pretty good. But, as we pointed out, height fields are usually precomputed
and stored at a fixed post spacing. That is, the function is sampled at points on a
regular grid, as at the points where lines intersect on graph paper. This has three
undesirable side effects: First, we have to store the height field data in files that
can become rather large (although this is less an issue as memory and disk space
become ever cheaper). Second, the discrete values in the height field must be inter-
polated, usually linearly, leading to unnatural artifacts such as a terrain composed of
triangles—try finding that in nature! Third, and the most serious problem in my
view, we have a fixed level of detail given by the post spacing. If we get too close to
our terrain model, it becomes locally flat and boring. If we view it at too great a dis-
tance, we will get aliasing, due to the triangles being smaller than the Nyquist limit,
or we have to resort to adaptive level of detail (LOD) schemes.

As demonstrated in earlier chapters, we can build terrain functions that are both
continuous (i.e., with a well-defined value everywhere across the surface, not just at
certain predetermined sample points) and band-limited so that the features in the
model can be kept at or near the Nyquist limit, whatever that limit may be locally.

509

Team LRN

Thus we can generate models that have ideal appearance everywhere, even though
such a model must be view dependent. This is because the appropriate level of detail
at any given point is a function of its distance from the view point, due to the per-
spective projection, as well as the synthetic camera’s field of view and resolution.
What we require is a rendering algorithm that can take advantage of the flexibility of
the procedural approach.

A few years ago I was teaching a class for which the first edition of this book was
the text. To illustrate to the class just how simply the procedural approach can gen-
erate piles and piles of visual detail, I designed such an algorithm. Again, the goal
was maximal simplicity in the algorithm, period. Accordingly, I expected it to be
really slow. It came as a considerable surprise when it turned out to be only very
slow, not glacial. (That is, it took on the order of a minute to create an image, when
I was expecting days.) I gave this algorithm the wonderfully turgid name quasi-
analytic error-bounded ray tracing, or QAEB tracing for short. To balance the scales
of pretense, I pronounce the acronym QAEB whimsically “kweeb” (to rhyme with
“dweeb,” of course).

QAEB tracing was originally applied to height fields. A discussion with John
Hart led me to the realization that, aside from the speedup scheme described later
that applies only to height fields, QAEB tracing is actually a general rendering
scheme for point-evaluated implicit models. Implicit models are isosurfaces of fields,
for example, surfaces where some function F defined over three-space is equal to
zero. (We’ll see examples of exactly this in our cloud models toward the end of this
chapter.) So QAEB tracing is actually a pretty powerful rendering method—slow but
really simple. I should point out that QAEB tracing is simply raymarching but with a
variable step size and an implied use of band-limiting in the procedural model to
provide adaptive level of detail. But the pertinent point is this: it’s simple to imple-
ment and it makes cool pictures.

Without further ado, let’s launch into the pithy text of the technical paper on
QAEB tracing, replete with the turgid use of the royal “we.”

QAEB TRACING
We present a numerical method called QAEB tracing for ray-tracing procedural
height field functions as displacement maps. The method accommodates continuous
adaptive level of detail in the height field. Spatial error in ray-surface intersections
is bounded by an error specified in screen space. We describe a speedup scheme gen-
eral to incremental height field ray-tracing methods and a method for rendering

510 CHAPTER 17 QAEB Rendering for Procedural Models

Team LRN

hypertextures, for example, clouds. The QAEB algorithm is simple and surprisingly
fast.

One capability distinguishing scanline rendering from ray tracing is the capa-
bility of rendering displacement maps (Cook 1984). We describe a method for ray
tracing a subclass of displacement maps, height fields. Height field rendering is im-
portant for visualizing terrain data sets, as in various defense-related simulation ap-
plications. Adaptive level of detail is desirable in such renderings, and this new
method accommodates that simply. Quasi-analytic error-bounded ray tracing is a
method for rendering general implicit functions, that is, continuous functions of n
variables . We will show applications for height fields, where n = 2, and
hypertextures, where n = 3. We call it “quasi-analytic” because it yields a numeri-
cal approximation of an analytic ray-surface intersection. This approximation is
bounded by an error specified in screen space. When F is a procedural fractal func-
tion, the world space frequency content of the terrain model may be linked to its
projected screen space Nyquist limit, to accommodate adaptive level of detail with-
out aliasing. QAEB-traced images can be superior, due to their adaptive level of de-
tail and the nonpolygonal character of the rendered height field primitive. As the
QAEB algorithm is isolated in the ray-surface intersection routine, QAEB-traced
objects amount to new primitives that may be added to the standard inventory of
ray-traced geometric primitives such as spheres and polygons. Development of the
QAEB algorithm was originally motivated by the desire to render landscapes with
adaptive level of detail. We thus describe the algorithm in the context of rendering
height fields.

A striking aspect of the QAEB algorithm is its simplicity. It was expected to be
slow, due to its profligate character. That is, it requires a very large number of evalu-
ations of the implicit function. In practice it is surprisingly fast, probably due to its
simplicity: the entire code can fit in cache on a contemporary microprocessor, yield-
ing near-optimal performance. A desirable feature is that spatial precision (and er-
ror) is linked directly to the spatial sampling rate. No greater precision is calculated
than is needed, potentially saving CPU cycles and time.

PROBLEM STATEMENT
Generally, the only moving part in a terrain animation is the camera. Freedom of
movement of the camera with perspective projection requires adaptive LOD in the
terrain model. LOD can be readily accommodated with procedural fractal terrain
models. Fractals are scaling (Mandelbrot 1982), thus detail is potentially unlimited.

Problem Statement 511

: nF R R→

Team LRN

Procedural fractals are inherently band-limited and can have parameterized band
limits, as shown in previous chapters. An argument based on similar triangles (see
Figure 17.1) shows that, in a perspective projection, feature span (not area) in screen
space varies linearly with distance. We can use this knowledge to roll off high fre-
quencies in the model to keep them at or below the Nyquist limit of the projected ba-
sis function (e.g., the Perlin noise function) in screen space. Octaves in the spectral
construction of the fractal may be related to distance d as

octaves = − log2(tan(fov/res)) − log2(d) − 3.5

where fov is the lateral field of view, res is the number of samples across that field,
and 3.5 is a constant relating our chosen Perlin noise basis function to the Nyquist
frequency.

PRIOR ART
Procedural ray tracing of synthetic fractal terrains with adaptive level of detail has
been addressed by Kajiya (1983a, 1983b) and Bouville (1985). These methods are
based on polygon subdivision fractal terrains. They require data structure overhead,
for example, quadtrees, to organize the numerous polygon primitives. Polygon-
based methods can suffer artifacts due to discontinuities in levels of detail. This gives
rise to the nontrivial problem of detecting and sealing “cracks” between polygons of
different sizes, where adaptive level of detail dictates a change in local polygon size.
The QAEB approach is nonpolygonal and features continuous adaptive level of de-
tail, and thus does not suffer from this complication. Procedural fractal functions ac-
commodating continuous frequency change for such adaptive level of detail are
described in the previous chapter.

512 CHAPTER 17 QAEB Rendering for Procedural Models

e

ee

dd

FIGURE 17.1 Feature span e varies linearly with distance d: at base length d, altitude is e; at base
length 2d, altitude is 2e. For isosceles triangles, reflect about the base.

Team LRN

The speedup scheme for rendering height fields was originally proposed by An-
derson (1982) and Coquillart (1984). Perlin described a raymarching scheme (Perlin
and Hoffert 1989) for hypertextures without LOD.

THE QAEB ALGORITHM
We now describe the QAEB method in the context of the simplest case, rendering
height fields.

QAEB tracing is predicated on the following assumptions:

1. A user-specified error ε in the ray-surface intersection and surface normal is
acceptable.

2. The function F being rendered is a height field, that is, a continuous function
with a well-defined, globally invariant “up” direction .

3. F is a point-evaluated function, for example, a procedural texture, that can be
efficiently evaluated at any point (x, y).

4. Near and far clipping planes are acceptable.

The algorithm is this: Starting at the near clipping plane, we march away from
the view point in error-sized increments until we either exceed the far clipping plane
or cross the height field surface, in which case we return an approximate intersection
point and surface normal. The marching increment, or stride ∆, is exactly equal to ε
in the virtual screen’s world space dimensions, at the virtual screen’s distance from
the view point. The size of ∆ varies linearly with distance, as shown in Figure 17.1.
At each step we evaluate the height field function F and compare it against the ray’s
altitude relative to . (Note that this constitutes rendering an implicit function with
the isosurface F(x,y) = surface elevation.) This is profligate in evaluations of F, lead-
ing to two conclusions: the algorithm is expected to be slow, and F should be as ef-
ficient as possible.

C code implementing the QAEB algorithm is presented in Appendix A.

ERROR IN THE ALGORITHM
The error is defined to be the difference between the analytic intersection of the ray
and F, and the intersection determined by the QAEB approximation. The error ε is
specified in screen space in terms of sample spacing, for example, one pixel. Both the

Error in the Algorithm 513

2F : R R→ Fu
�

Fu
�

Team LRN

stride and the error vary in world space proportional to εd, where d is the distance
from the view point. The value of ε actually specifies three somewhat independent
errors along three axes: the vertical, lateral, and depth axes of the (horizontal)
screen. The lateral error is exactly ε. The vertical error (the error associated with ver-
tical perturbation of the sampling ray) is indeterminate, due to the chances of hitting
or missing a ridge profile. Hitting or missing the top of a ridge can result in vastly
different intersection points in world space; this problem is intractable. The depth
error is more interesting. To ensure that depth error corresponds to ε, it should be
proportional to the slope F′ of F. For F with F′ discontinuous at local maxima and
maximum slope (Fmax)′max at such maxima, the stride ∆ should vary as l/(Fmax)′max to
ensure meeting the specified error.1 If F yields low, smooth terrain, ∆ may be in-
creased. Note that fractional Brownian motion (fBm), upon which most synthetic
terrain models are based, is self-affine (Voss 1988). That is, for fBm, local slope can
increase as higher spatial frequencies are added. Thus the correct stride may change
with the dictates of LOD on terrain frequency content. (Note that these matters not-
withstanding, we have never found it necessary to use anything other than the simple
stride length εd in our applications for image synthesis of nonpathological models—
in other words, anything we ever wanted to render nicely.2)

NEAR AND FAR CLIPPING PLANES
Stride ∆ varies linearly with distance d from the view point. It follows that at dis-
tance d = 0, ∆ = 0. Therefore, raymarching must begin at a near clipping distance d0

> 0. Features closer to the view point than d0 will not be visible. Conversely, a
greater value of d0 implies a larger initial stride. Thus the value of d0 can significantly
impact rendering time.

514 CHAPTER 17 QAEB Rendering for Procedural Models

1. This statement is actually incorrect; the truth is more subtle. The depth error, and thus the stride,
should be linked to the minimum slope occurring at local maxima of F. That is, if local maxima may be
very narrow (corresponding to sharp peaks or ridges in the terrain), the stride must be small enough to
capture them within the specified error. However, if maxima of F may be steep on one side only, the
error corresponds to the minimum (Fmax)′min of the two slopes on either side of the local maximum,
as l/(Fmax)′min.

2. Manuel Gamito has used interval arithmetic to ensure analytic ray-surface intersections in the QAEB
scheme and ray-domain distortion methods (Barr 1986) to render nonheight field terrains as seen in Fig-
ure 17.2. Werner Benger (www.photon.at/ �werner/Light.html) has developed more approximate
marching methods to speed up the QAEB rendering process, while sacrificing accuracy in the ray-surface
intersection.

Team LRN

A far clipping plane3 df < ∞ is necessary to terminate computation. Beyond df

the model is not visible. Smaller values of df imply a shorter raymarch. Choosing the
distances for the clipping planes involves the kind of trade-off between time and re-
alism typical in computer graphics.

CALCULATING THE INTERSECTION POINT AND SURFACE NORMAL
Ray-surface intersection is indicated when the ray altitude crosses adjacent evalua-
tions and zi of F. As these evaluation points are exactly ε apart, either can serve as
the approximate intersection point, both values being guaranteed to be within ε. Al-
ternatively, we may use the intersection of the ray and the line between and zi.
This may yield a slightly more accurate solution at a cost of a few more operations—
a cost that will generally be overwhelmed by the cost of the march to the
intersection.

Calculating the Intersection Point and Surface Normal 515

FIGURE 17.2 A QAEB-traced non-height-field model of a wave, modeled and rendered by Manuel
Gamito. The spray and foam are QAEB hypertextures.

3. We refer to the near and far clipping distances as “clipping planes,” although they are implemented as
distances from the view point and are thus more like “clipping spheres.”

li-z

-1iz

Team LRN

The surface normal is constructed via the cross product of two vectors between
three samples of F. The first vector is from to zi. The second vector is from

to a third sample zl of F taken at a distance equal to the current stride ∆i in a lat-
eral direction, that is, perpendicular to the plane containing the ray and . The nor-
malized cross product serves as our surface normal approximation.

C code implementing this scheme appears in Appendix B.

ANTIALIASING
Antialiasing may be accomplished with ordinary supersampling methods. Super-
sampling implies sampling at a higher spatial frequency; this in turn implies a
smaller error ε. In adaptive supersampling, this may require that the samples that in-
dicate supersampling be recomputed with the implied smaller ε to ensure meaningful
results. Uniform supersampling simply implies a smaller ε throughout, as ε should
generally be equal to the screen space distance between adjacent samples.

To the extent that F represents an uncorrelated random function (all reason-
able terrain models being in fact highly correlated), the model is self-jittering. That
is, samples automatically have a stochastic character, even if equidistant in screen
space. This is a property inherent in the random fractal model, not the QAEB ren-
dering method.

A SPEEDUP SCHEME FOR HEIGHT FIELDS
Assuming that (1) the scene is rendered bottom to top relative to and (2) coin-
cides with the screen “up” vector , we may employ a simple optimization to great
benefit. We keep an array Ad of depth values of size equal to the number of lateral
samples in the screen. Ad is initialized to d0 and updated to the distance di from the
view point of the last intersection in the corresponding column. Subsequent rays in
the same column, but higher relative to , may begin marching at di rather than d0.
This speeds up rendering enormously, particularly for horizontal views of great
depth. The second assumption may be dispensed with by indexing Ad along an axis

horizontal relative to and in the plane of the virtual screen. The span wa of the
array indices along is equal to the extent of the projection of the rotated screen
onto (see Figure 17.3). The number of buckets in Ad is . A given screen
sample is projected onto to determine its bucket in Ad. This bucket is within the
specified error ε, laterally. The projection of a point p on the screen onto is

516 CHAPTER 17 QAEB Rendering for Procedural Models

Fu
�

Fu
�

su
�

Fu
�

d lv v×
� �

dv
�

-1iz lv
�

-1iz

Fu
�

Fv
�

Fu
�

Fv
�

Fv
�

 Aw ε

Fv
�

Fv
�

Team LRN

, where os is the lower-left corner of the screen relative to and .
This speedup scheme is complicated in cases where the screen contains the point
where and the view direction are parallel. Such cases may be dealt with by keep-
ing two depth arrays, one for each of the two marching directions opposite relative
to .

SHADOWS, REFLECTION, AND REFRACTION
In rendering with adaptive level of detail, correct shadows depend on correct pro-
jected shadow feature size. In the QAEB scheme with a given ε, that size is equal
to the stride ∆i at the intersection point where the shadow ray is spawned. Fea-
tures must retain this size in the shadow projection. For a light source at infinity,
the feature size does not vary with the projection. Thus the shadow ray stride is
constant and equal to ∆i. For a light source not at infinity, for example, a point
light source, feature size changes linearly with distance, as shown earlier. It follows
that shadow rays start with stride proportional to ∆i, and the stride goes to zero as
the distance to the light source dl goes to zero. Stride then varies with ∆i and dl as
∆idl/(dl + 1).

Reflection and refraction cannot be handled correctly in the QAEB scheme, as
the divergence of adjacent rays is affected arbitrarily in such (specular) transport,
and our assumptions about the geometric error break down. This may not be sig-
nificant, as this scheme was developed to render fractal models of natural phenom-
ena, such as landscapes and clouds, that usually feature neither type of specular

Shadows, Reflection, and Refraction 517

Fu
�

Fu
�

p

os

wa

vr

FIGURE 17.3 Projection of rotated screen and sample onto horizontal axis.

()F Fv p o vs − •
� �

Fu
�

Fv
�

Team LRN

, where os is the lower-left corner of the screen relative to and .
This speedup scheme is complicated in cases where the screen contains the point
where and the view direction are parallel. Such cases may be dealt with by keep-
ing two depth arrays, one for each of the two marching directions opposite relative
to .

SHADOWS, REFLECTION, AND REFRACTION
In rendering with adaptive level of detail, correct shadows depend on correct pro-
jected shadow feature size. In the QAEB scheme with a given ε, that size is equal
to the stride ∆i at the intersection point where the shadow ray is spawned. Fea-
tures must retain this size in the shadow projection. For a light source at infinity,
the feature size does not vary with the projection. Thus the shadow ray stride is
constant and equal to ∆i. For a light source not at infinity, for example, a point
light source, feature size changes linearly with distance, as shown earlier. It follows
that shadow rays start with stride proportional to ∆i, and the stride goes to zero as
the distance to the light source dl goes to zero. Stride then varies with ∆i and dl as
∆idl/(dl + 1).

Reflection and refraction cannot be handled correctly in the QAEB scheme, as
the divergence of adjacent rays is affected arbitrarily in such (specular) transport,
and our assumptions about the geometric error break down. This may not be sig-
nificant, as this scheme was developed to render fractal models of natural phenom-
ena, such as landscapes and clouds, that usually feature neither type of specular

Shadows, Reflection, and Refraction 517

Fu
�

Fu
�

p

os

wa

vr

FIGURE 17.3 Projection of rotated screen and sample onto horizontal axis.

()F Fv p o vs − •
� �

Fu
�

Fv
�

Team LRN

transport. Experience indicates that reflective and refractive stochastic surfaces gen-
erally create visually confusing images, at any rate.

PERFORMANCE
The QAEB-traced terrain in Figure 17.4 was rendered in 2 minutes, 41 seconds on a
150 MHz R4400, at 640 × 480 (NTSC video) resolution. Near and far clipping
planes are at 0.01 and 100.0, respectively. Figure 17.5 is at the same resolution, with
shadows from a directional light source (i.e., a light source at infinity) at an elevation
of �30° above horizontal. Rendering time was 17 minutes, 57 seconds. Figure 17.6
was rendered at a film recorder resolution of 2000 × 1333, without shadows and
with atmospherics, in 62 minutes. Near and far clipping planes are at 0.4 and 100.0,
respectively. All images were rendered at one ray per pixel with an ε of one pixel.

This performance is far better than was expected before testing. Expectations
were low because of the profligate evaluations of the procedural height field

518 CHAPTER 17 QAEB Rendering for Procedural Models

FIGURE 17.4 The very first QAEB-traced terrain. The terrain model is the “ridged multifractal”
function described in Chapter 16. Copyright © F. Kenton Musgrave.

Team LRN

FIGURE 17.5 The first QAEB rendering demonstrating shadows from a light source at infinity.
Copyright © F. Kenton Musgrave.

FIGURE 17.6 High resolution and great depth, with atmosphere.

Team LRN

function, which uses on the order of 103 floating-point operations per evaluation.
QAEB tracing time is dominated by evaluations of the Perlin noise function in our
implementation. Rendering time is directly impacted by the computational complex-
ity of F, the size of the stride, the screen resolution, the number of screen samples, the
distances to the near and far clipping planes, the angle of the view direction relative
to , the use of shadows, and, in that case, the number of light sources and their an-
gles to and the slope considerations at local maxima described earlier.

QAEB-TRACED HYPERTEXTURES
The QAEB scheme is readily applicable, without the previous speedup scheme, to
volume rendering of procedural hypertextures (see Figure 17.7).

520 CHAPTER 17 QAEB Rendering for Procedural Models

Fu
�

Fu
�

FIGURE 17.7 QAEB-traced scene with volumetric shadowing.

Team LRN

Clouds

Rather than checking ray height versus F along the raymarch, you can interpret val-
ues of F > 0 as density, with values of F < 0 being zero density or clear air. This cor-
responds to raymarching a hypertexture (see Chapter 12). Accumulating the density
according to Beer’s law (see Chapter 18) and computing lighting with a self-
occluding, single-scattering model can yield nice results.4 Applying a realistic high-
albedo, anisotropic multiple-scattering illumination model (Max 1994) yields sub-
stantially better results, as seen in Figures 17.8 and 17.9.5

Our hypertexture cloud model has two parts: a procedural fractal function, usu-
ally either vanilla fBm or Perlin’s “turbulence” (fBm constructed using the absolute
value of Perlin noise as the basis), and a simple weighting function that modulates
the fractal, making the fractal cloud a more or less distinct blob situated in clear air.
The weighting function is necessary to ensure that fractal clouds do not completely
permeate all of space, as the fractal functions are statistically homogeneous. This
weighting function can be as simple as F = 1.0 − d, where d is the distance from a
central point, or something more complex to shape the cloud, as seen in Figure
17.9 and Figure 17.8(a), where the cloud bottom is rather flat. (The shaping function
for these clouds is included in the C code on this book’s Web site, www.mkp.com/
tm3.)

In the simplest single-scattering illumination model, local illumination is attenu-
ated by accumulating density along a shadow ray shot toward the light source. Na-
ively, one such ray must be sent per sample, accounting for most of the cost in the
rendering. In practice, the frequency of such illumination samples can be decreased,
and their stride length may be increased, up to the point of objectionable artifacts.
(For details on how, see the code on this book’s Web site.) Storing precomputed il-
lumination values in a voxel grid can speed rendering at the cost of increased mem-
ory use.

Jittering samples within the interval of the stride (Cook 1984) also allows
greater stride length in primary and shadow rays, with graceful degradation in image
quality, as seen in Figure 17.8(c). Nonjittered samples will lead to conspicuous quan-
tization artifacts at large stride lengths, as illustrated in Figure 17.8(b).

QAEB-Traced Hypertextures 521

4. Note that in this application, QAEB tracing is a slower but simpler and more accurate equivalent of
the gas rendering methods in Chapter 9.
5. Unfortunately, treatment of such physical illumination models are beyond the scope of this book.
Their development is the current Ph.D. research topic of my student Sang Yoon Lee at the time of this
writing. For more on his work, see http://student.seas.gwu.edu/�sylee/.

Team LRN

Simple QAEB-traced fBm clouds with single-scattering illumination were used
to create the Mickey Mouse and Goofy characters and a rather detailed cruise ship
model in a television commercial for Disney cruise lines produced during my tenure
at Digital Domain. Only spherical cloud primitives were used, along with animation
of the hypertexture spaces and densities. These simple models yielded some striking
and novel animation effects. For a preliminary cloud character animation test from
this project, see www.kenmusgrave.com/animations.html.

522 CHAPTER 17 QAEB Rendering for Procedural Models

(a) (b)

(c)

FIGURE 17.8 A QAEB-traced cloud: (a) rendered with
a stride of two pixels; (b) quantization artifacts from
long stride with regular sampling; (c) same long
stride, with jittered sampling. Copyright © F. Kenton
Musgrvae.

Team LRN

BILLOWING CLOUDS, PYROCLASTIC FLOWS, AND FIREBALLS
An ontogenetic model of billowing can yield realistic dynamic models of fireballs,
billowing smoke, and growing cumulus clouds. The distinctive behavior we call “bil-
lowing” results from rapid advection in a fluid medium, causing turbulent flow in
three dimensions. Accurate modeling of such turbulent flow is a problem of notori-
ous computational difficulty, which only recently yielded to solutions practical for
the field of image synthesis (Fedkiw 2001). For entertainment applications, empiri-
cal accuracy is not the goal; visual verisimilitude is, and visual novelty might prove
even more useful.

The film Dante’s Peak required effects simulating the fast-moving, highly de-
structive cloud of hot volcanic ash known as a pyroclastic flow. At the time, I had al-
ready developed the realistic hypertexture cloud model just described. That model
was originally designed to serve as a testbed for the difficult problem of modeling the
anisotropic, high-albedo, multiple-scattering illumination required for truly realistic

Billowing Clouds, Pyroclastic Flows, and Fireballs 523

FIGURE 17.9. A QAEB-traced hypertexture cloud, with a radiosity solution for high-albedo
anisotropic multiple scattering, by Sang Yoon Lee. The radiosity model is by Nelson Max.

Team LRN

rendering of clouds, as seen in Figure 17.9. That cloud model can be extended to
model billowing in a relatively simple way.

Our first attempt consisted of a swarm of cloudlets animated in the Alias Dy-
namation particle system package. This approach yielded good results when the ani-
mation consisted simply of sweeping the swarm of cloudlet fields through a static
texture space. “Popping” of high frequencies is inevitable in such a scheme because
the higher-frequency details change faster than those of lower frequency as the cloud
front advances through texture space. The result was an explosive quality in the ad-
vancing cloud, which seemed appropriate. However, the director, citing footage of
real volcanic clouds, requested a dynamic, billowing quality wherein the cloud ap-
pears to turn inside out as it evolves along its forward direction. This leads to the so-
lution presented here.

A single cloudlet can be made to appear to billow by scaling the domain of
the fractal function, relative to the “forward” direction of the billowing. The
scaling is of the angle a given sample makes with that axis with time (see Fig-
ure 17.10). The result of this domain distortion is that, as the sample point is
rotated toward the forward direction in magnitude proportional to the angle,
cloud features appear to rotate toward a singularity opposite the “forward”
direction.

Features get stretched longitudinally with time in this scheme. To ameliorate ob-
jectionable artifacts arising from this, the distorted, “old” texture is rolled off with
time and replaced with a “young,” undistorted texture that is in turn rolled off as it
ages. This proceeds cyclically, yielding a cyclic model. This cyclic nature is disguised,
visually, by growth in size of the cloudlet with time. For details on how this is accom-
plished, see the code on this book’s Web site (www.mkp.com/tm3).

524 CHAPTER 17 QAEB Rendering for Procedural Models

Sample at ti

Sample at t0

“Forward” vector

Cloudlet center

FIGURE 17.10 Rotation of samples with time in the billowing scheme.

Team LRN

Fireballs

Fireballs may be simulated by animating a color map that varies from white through
yellow, orange, and red to black, as in the “flame” shader in Chapter 15. This map is
indexed by radius (hotter toward the center) and time (cooling to black with age).
The map color is used as the cloud texture color. Fireballs are more efficient to
render than clouds because they are self-luminous and require no illumination or
shadow calculations. Preliminary models of such CG pyrotechnics were developed
for a bid for certain special effects scenes in the film Air Force One.6

Psychedelic Clouds

As noted in Chapter 15, a vector-valued fBm can be interpreted as an RGB color vec-
tor and used to color a cloud to get a fantastical coloration, as seen in Figure 17.11.
The animation Comet Leary7 was accomplished with this model, by sweeping the
hypertexture through five spherical weighting fields of successively decreasing den-
sity. Though not a convincing simulation of turbulent flow, it is a simple model yield-
ing a visually appealing effect. The GIT scheme described in Chapter 15 could be
used to obtain greater control over stochastic coloring.

CONCLUSION
We have demonstrated a numerical algorithm for ray-tracing implicit procedural
functions with adaptive level of detail. It is simple, surprisingly fast, and general
to all continuous functions F : Rn → R. It features a screen space geometric error
bounded by a user-specified value. The described speedup scheme, which is impor-
tant to good performance in rendering height fields, is general to all incremental
height field ray-tracing schemes. The stride we employ is the most conservative pos-
sible. It may be possible to use more sophisticated methods, such as Lipschitz con-
ditions (Standler and Hart 1994; Worley and Hart 1996) to speed rendering by
extending the average stride length. The demonstrated speed of this algorithm is sur-
prising. This speed is conjectured to be linked to the algorithm’s simplicity, which al-
lows it to reside entirely in cache memory for near-optimum microprocessor
performance.

Conclusion 525

6. For an early animation test, see www.kenmusgrave.com/animations.html.
7. Also available at www.kenmusgrave.com/animations.html.

A-

Team LRN

We have adapted the method to render measured height field data sets to add
adaptive level of detail. For this application, we simply constrain the fractal function
F by the measured data to render such data sets with added stochastic detail. The
lowest frequency in the added fractal detail should be close to that of the post spac-
ing in the measured data set.

We have also extended the method to procedural hypertextures, with a corre-
sponding increase in rendering time. The results have been cloud models of unprece-
dented realism, some promising synthetic pyrotechnic effects, and some gratuitous
psychedelia.

526 CHAPTER 17 QAEB Rendering for Procedural Models

FIGURE 17.11 Comet Leary is a whimsical rendering of Timothy’s final return to Earth. It is a
QAEB cloud with coloring by a vector-valued fBm. Copyright © F. Kenton Musgrave.

Team LRN

Team LRN

18

Team LRN

ATMOSPHERIC MODELS
F. K E N T O N M U S G R AV E , L A R RY G R I T Z ,

A N D S T E V E N W O R L E Y

INTRODUCTION
Even more than the last chapter, this chapter is highly technical and may be of inter-
est only to mathematically minded programmers. You might just want to read this
introduction, which is written at a fairly conversational level. The rest of this chapter
was originally written as a technical paper, so most of the prose is pretty dry and
terse.

Rendering realistic atmospheric effects involves three distinct elements: scatter-
ing models, geometric atmospheric density distribution (GADD) models, and nu-
merical integration schemes for each. We present a series of simple, continuous
GADD models of increasing geometric fidelity to spherical planetary atmospheres
and integration schemes for each. We describe a RenderMan implementation of a
planetary atmosphere and a general GADD integration scheme with bounded nu-
merical error. We also suggest a simplified approximation of Rayleigh scattering.
These models are distinctly nonphysical, ontogenetic models designed to be useful
for production image synthesis rather than to provide accurate simulations. The
GADDs we present and their associated integration schemes can, however, be cou-
pled to published physical scattering models to augment the accuracy of those
models.

Landscape painters have known for hundreds of years that aerial perspective,
the bluing and loss of contrast with distance, is the primary visual cue indicating
large physical scale in a rendering (Gedzelman 1991).1 These effects are due to

529

1. Shannon (1995) points out that artists break aerial perspective into two components: atmospheric
perspective and color perspective. The former is the change in contrast with distance, due to noncolored
haze. The latter is the change in color with distance, light backdrops becoming redder and dark ones
bluer, due to Rayleigh scattering. For more on this topic see www.kenmusgrave.com/4_persp.html.

Team LRN

atmospheric scattering of light. In the scientific literature these effects are described
by the Rayleigh and Mie scattering models. Previous authors (Klassen 1987; Nishita
et al. 1993; Tadamura et al. 1993) have presented physical models of Rayleigh
and Mie scattering. Efficiency of light scattering is modulated in part by the den-
sity of the atmosphere, which in turn varies spatially. This variation is not only
with altitude: altitude is a function of the radius from the center of a planet, thus at
the largest scales, the atmosphere must curve around a planet. We call a model de-
scribing the spatial distribution of atmospheric density geometric atmospheric den-
sity distribution (GADD). In Klassen (1987) the GADD consists of two horizontal
slabs of constant density; Nishita et al. (1993) uses concentric shells of linearly in-
terpolated density. We present some continuous GADDs to improve upon those
models.

The global context for a landscape is the surface of a planet. In that context, all
optical paths, defined as a ray’s extent in a participating medium, are finite since they
either intersect a surface, are absorbed or scattered, or exit the atmosphere due to its
curvature around the planet. The spatial distribution of a GADD can affect its accu-
racy as a function of scale: the simplest, homogeneous GADD is accurate for small
scales, an intermediate-scale model may take into account change in density with
height, while a global GADD should take into account both change in density with
altitude and the curvature of the atmosphere. (Modeling the true complexity of at-
mospheric structure remains impractical.) We will describe both local and global
GADD models, along with methods for integrating their optical density along ar-
bitrary ray paths. The local GADD models may be integrated analytically. We will
describe numerical integration schemes for the global GADD functions. We also sug-
gest a simple, computationally minimal approximation of Rayleigh scattering. Al-
though nonphysical, this model produces an artistically sufficient model of aerial
perspective without the unnecessary complications of physical models.

Although the models presented here are not physical models, they may in some
cases represent improvements over published “physical” models. We claim that they
are visually effective and that they are recommended by Occam’s Razor due to their
simplicity. Most are not particularly novel, as they appear to have been repeatedly
reinvented by different graphics researchers. Nevertheless, they have yet to be de-
scribed in the mainstream graphics literature.

Blinn (1982a) pointed out that atmospherics involve two distinct types of mod-
els: scattering models and density distribution models. We assert that integration
schemes for these models constitute a third essential element. Our goal is to address
all three elements, to visual satisfaction, in as little computation as possible.

530 CHAPTER 18 Atmospheric Models

Team LRN

For our discussion, we define the optical path as the extent of a ray’s passage
through an atmosphere, scattering as redirection of direct illumination from a light
source (implying single scattering) into the optical path and toward the view point,
outscattering as redirection of light out of an optical path toward the view point,
and extinction as the cumulative effect of both outscattering and absorption along
the path.

BEER’S LAW AND HOMOGENEOUS FOG
As a light ray traverses an optical path, some light is extinguished and some light
may be added by emission and/or scattering. As described in Max (1986), the sum of
these effects can describe, physically, the behavior of a participating medium. (We
discuss only atmospheres here, not general participating media such as glass, water,
smoke, flames, clouds, and so forth.)

The effect of an atmosphere on the intensity of a light ray can be described by
the differential equation

where x is the position in three dimensions, describes extinction per unit
length, and describes emission and scattering per unit length into the optical
path. When σ and E are proportional to one another and are functions solely of posi-
tion x, we can define optical depth τ as

the integral over the optical path of the GADD . As in Haines (1989) we index
the position along the ray by t, which ranges from 0 to te. Beer’s law gives a physical
solution to this simple model and gives us the transparency T over the optical path as
a function of τ:

T = e -τ

For a homogeneous and isotropic GADD (i.e., σ = c, a constant), we have τ = cte.
Such homogeneous fog is fairly common in renderers; its effectiveness is due to its
embodiment of a simple but physically accurate scattering model.

For simplicity, we consider extinction over the optical path to be 1 − T. This ex-
tinguished portion of the intensity is replaced with the atmosphere color as a direct

Beer’s Law and Homogeneous Fog 531

() ()dI x E x dx= σ +
� � �

()E x
�

()xσ
�

()
0

et x dtτ = σ∫ �

()xσ
�

Team LRN

consequence of the term in the previous differential equation. In the models
we present below, we ignore emission2 but engineer the absorption rate σ to vary
spatially. After obtaining τ by integrating σ, we may use Beer’s law to accurately
compute the true effect of the atmosphere, given a scattering model. We therefore
concentrate most of the rest of our presentation on nonhomogeneous density models
and their integration.

EXPONENTIAL MIST
A useful GADD for landscape renderings has a density distribution that varies as e−z,
where z is altitude relative to a horizontal plane. It features local fidelity to nature, as
atmospheric optical density is known to vary exponentially with altitude (Lynch
1991). Behavior of this GADD can be parameterized as

σ = Ae−Bz

where A controls the overall density and B controls the falloff of the density with al-
titude. Its effectiveness in a landscape rendering is illustrated in Figure 18.2. This
GADD may be integrated analytically:

where z0 is the z coordinate of the ray origin and zd is the z component of the ray’s
normalized direction vector. For very small zd, corresponding to nearly horizontal
rays, we substitute

532 CHAPTER 18 Atmospheric Models

2. Although we do not model emission, a similar effect is nonetheless obtained. These are nonphysical
scattering models, in which conservation of energy is not maintained. Because the atmosphere color does
not depend on illumination, except in our last model, energy may appear in the optical path without illu-
mination (e.g., the white color of an atmosphere that is actually in shadow). This nonphysicality can be
used to artistic advantage, as illustrated in Figure 18.1, a rendering without any light sources. The color
variation in that atmosphere is attained basically by reversing the order of the RGB values for the extinc-
tion coefficients on our simplified Rayleigh scattering model, from those used to get blue sky.

()E x
�

()
e

o d e o

o

z
ez z z t z

e
dz

At
t e dz e e

Bz
+τ = = −∫ − − −Ε Φ

oBz
eAt eτ = −

Team LRN

Exponential Mist 533

FIGURE 18.1 Fractal Mandala illustrates an alternative use of the planetary atmosphere and
minimal Rayleigh scattering model. The color is obtained by changing values in the extinction
coefficient vector from those used for Rayleigh scattering. Copyright © F. Kenton Musgrave.

Team LRN

the asymptotic value as zd goes to zero, to prevent division by zero. This GADD has
unbounded optical paths for horizontal rays. The optical path of such rays is ulti-
mately limited by the finite numerical representation of infinity in the renderer; this
value can be varied to limit integration.

A RADIALLY SYMMETRIC PLANETARY ATMOSPHERE
Because of the infinite optical paths cited earlier, a GADD that varies exponentially
with radius from a central point is more realistic on large scales. For such a GADD,
the radius r from the central point is related to position t along the ray as

where α and β are constants determined by the ray path and the origin, or center, of
the radial fog. This function forms a hyperbola. With σ given as this function of r, in-
stead of computing

534 CHAPTER 18 Atmospheric Models

FIGURE 18.2 Carolina illustrates both the exponential atmosphere and color perspective.
Copyright © F. Kenton Musgrave.

() 2 22r t t t= α + β +

Team LRN

we must compute

which can prove challenging.
A simple radial GADD is

This function cannot be integrated in closed form, but a numerical approximation is
available in the C and FORTRAN math libraries in the error function:

This GADD may be parameterized as

where A controls the overall density and B modulates falloff with radius. This
GADD can provide convincing visual results (see Figure 20.4).

Consider integrating this GADD. For a ray origin and unit direction , and a
GADD origin , we have

where and We must compute

A solution to this integral is given by

Unfortunately, the more physically plausible GADD σ = e−r cannot be reduced
to such an expression, due to the complex dependence of r on t. Thus we may re-
quire a numerical integration method, ideally one that is tailored specifically to the

A Radially Symmetric Planetary Atmosphere 535

()2 22
0

et B a r tAe dt+ β +τ = ∫ −

()
()

2 2

2

B

e
A e

erf B t erf B
B

α βπ
τ ≈ + β − β

− − Ι Ε Φ Ε Φϑ

0r
�

x
�

o
�

() 2 22r t t t= α + β +

r ooα =
� �

− ().r r oodβ = •
� �

−

()t dtσ∫

()2 22 t t dtσ α + β +∫

2() rr eσ = −

22
0

()
x terf x eπ≈ ∫ −

2BrAeσ = −

Team LRN

hyperbolic-quadratic exponential form of the equation and specific accuracy needed
for rendering. We discuss this in a later section; for now we digress to scattering.

A MINIMAL RAYLEIGH SCATTERING APPROXIMATION
We require at least a first approximation of Rayleigh scattering to obtain proper col-
oration of the atmosphere. Single Rayleigh scattering adds blue light along an illumi-
nated optical path; this is why the sky is blue. Rayleigh outscattering along the
optical path reddens light coming from the background, causing, for instance, sun-
sets to be red. Similarly, direct light flux available for scattering is reddened; this ef-
fect is what often makes sunlight yellow. Although more elaborate and accurate
models are available (Klassen 1987; Nishita et al. 1993), we have found the follow-
ing extremely simple approximation to be sufficient for first-order visual realism.
This model is responsible for all the atmospheric coloration effects seen in the figures
from Chapters 14–19.

In our discussion so far, τ has been treated as a scalar value. In wavelength-
dependent scattering, τ is a vector over wavelength λ, each λ sample having an inde-
pendent value of τ. For Rayleigh scattering, τ is proportional to λ−4 (Klassen 1987).
Each component of the τ vector requires a separate evaluation of the expression
of Beer’s law. Time complexity then varies linearly with the number of λ samples.
The tristimulus nature of color vision dictates a minimum of three values for full-
color images; hence the familiar triad of RGB samples. Larger numbers of samples,
taken in the CIE XYZ color space, may yield more accurate colors (Hall 1989).

We simply note that expanding τ to an RGB vector can give a computationally
minimal and visually pleasing approximation of Rayleigh scattering (see Figures
18.3 and 18.4). Correct discrete numerical integration of single scattering along
the optical path requires raymarching with computation at each sample of the ex-
tinction of the direct illumination available for scattering. In the absence of such
a correct but expensive scheme, extinction due to Rayleigh scattering along the
optical path can be approximated by using a yellow-brown (smog-colored) atmo-
sphere. In Figure 18.4 the RGB color of the atmosphere is (1.0, 0.65, 0.5) and τ
= (3.0, 7.5, 60.0). Observe that the atmosphere is blue against a black back-
ground, and a white background is filtered to orange, as illustrated in Figure 18.5.
Figure 18.4 illustrates that the horizon still appears white against a black back-
ground, largely due to psychoperceptual reasons—it is actually no more white than
the smoggy atmosphere color. We recommend this simplest model for maximally ef-
ficient rendering.

536 CHAPTER 18 Atmospheric Models

e λτ−

Team LRN

A Minimal Rayleigh Scattering Approximation 537

FIGURE 18.3 Himalayas shows color perspective over a long distance. Note that the white peaks
turn red, while the dark areas turn blue with distance. Copyright © F. Kenton Musgrave.

Team LRN

538 CHAPTER 18 Atmospheric Models

FIGURE 18.4 A detail of Figure 20.4 illustrates color perspective in a planetary atmosphere. This is
the e−r 2 atmosphere model. Copyright © F. Kenton Musgrave.

FIGURE 18.5 Color perspective in raw form. Two parallel vertical planes, one black and one white,
illustrate how color changes with distance. The atmosphere is an exponential mist. Copyright © F.
Kenton Musgrave.

Team LRN

To illustrate the simplicity of these two models, we now present pseudocode for
the GADD with our Rayleigh scattering approximation:

/* compute distance from ray origin to closest approach */
adjacent_leg = ray.origin - fog.origin;
beta = DOT(ray.dir, adjacent_leg);
nearval = erf(sqrt(B) * beta);
farval = erf(sqrt(B) * (beta + t_e));
/* compute distance from fog origin to ray’s closest approach */
r_c_squared = DOT(adjacent_leg,adjacent_leg) - beta*beta;
/* compute scattering approximation */
T = exp(-tau.red);
red = endpoint.red*T + (l.0-T)*atmosphere.red;
T = exp(-tau.green);
green = endpoint.green*T + (l.0-T)*atmosphere.green;
T = exp(-tau.blue);
blue = endpoint.blue*T + (1.0-T)*atmosphere.blue;

TRAPEZOIDAL QUADRATURE OF σ = e−r GADD AND RENDERMAN
IMPLEMENTATION
For GADDs that are not integrable analytically, we must develop numerical quadra-
ture (i.e., integration) schemes. The quadrature method may be arbitrarily sophisti-
cated, according to the required accuracy. We now present an adaptive trapezoidal
quadrature with sufficient accuracy for visual purposes and a RenderMan imple-
mentation of it.

Perhaps the most accurate, simple radial GADD is

σ(r) = Ae−Br

where A modulates density at sea level, B is the falloff coefficient, and r is the height
above sea level. For exponential GADDs, the density and its rate of change are great-
est close to the planet surface. This indicates quadrature (integration) with an adap-
tive step size. Step size should be inversely proportional to the local magnitude of σ.
Thus where the density and its rate of change in density are high, the step size is
small; where the density is low, the step size is relatively large. To speed up rendering,
we can employ a trivial reject if the ray never comes within a minimal distance to the
GADD center, returning zero when we know the integral must be very small. Also,
we can integrate separately forward and backward from the point of closest ap-
proach; this may increase accuracy through preventing overly large step sizes, by
basing step size on the interval end of higher density. At each step we sample both
the GADD and the illumination at the sample point.

Trapezoidal Quadrature of σ = e−r GADD and RenderMan Implementation 539

2reσ = −

Team LRN

Trapezoidal integration implies an assumption that the GADD varies linearly
between the samples. The optical depth of a given interval is then

where ∆ is the step size, and σi and σi−1 are the current and previous GADD density
values. Differential extinction

dO = 1 − e−r

and scattering

dC = I(1 − e−r)

where I is the direct illumination intensity at the sample point.
These differential values are then accumulated similarly to Drebin, Carpenter,

and Hanrahan (1988). The RenderMan implementation operates in such a way that
the atmosphere is shadowed where the light source is occluded by mountains, the
planet, and so forth. If occluding features may be small, you must specify suitably
low upper bounds on step sizes to prevent undersampling of shadow features.

Our implementation is as a volume shader in the RenderMan shading language
(Upstill 1990). A simplified version of the shader follows. In Figure 18.6 a similarly
structured light source shader causes the local illumination to undergo proper ex-
tinction. This and the full, more accurate volume shader are available on this book’s
Web site (www.mkp.com/tm3).

/* For ray index t, return the GADD (g) and illumination (li). */
#define GADD(li,g) \

PP = origin + t * IN; \
g = (density * exp(-falloff*(length(PP)-l))); \
PW = transform (“shader”, “current”, PP); \
li = 0; \
illuminance (PW, point(0,0,1), PI) { li += Cl; }

volume radial_atmosphere (float density = 3.0, falloff = 200.0;
float integstart = 0.0, integend = 10.0, rbound = 1.05;
float minstepsize = 0.001, maxstepsize = 1.0, k = 35.0;)

{
float t, tau, ss, dtau, last_dtau, te;
color li, last_li, lighttau;
point origin = transform(“shader”, P+I);
point incident = vtransform(“shader”, -I);
point IN = normalize(incident);

540 CHAPTER 18 Atmospheric Models

1()
2

i i−
∆

τ = σ + σ

Team LRN

point PP, PW;
color Cv = 0.0, Ov = 0.0; /* net color & opacity over optical path */
color dC, dO; /* differential color & opacity */

/* compute optical path length */
te = min(length(incident), integend) - 0.0001;
/* integrate forward from the eye point */
t = integstart;
GADD(li, dtau)
ss = min(clamp(I/(k*dtau+0.001), minstepsize, maxstepsize), te-t);
t += ss;
while (t <= te) {

last_dtau = dtau; last_li = li;
GADD (11, dtau)
/* compute dC and dO, the color and opacity of the portion
* of the interval covered by this step */

tau = 0.5 * ss * (dtau + last_dtau);
lighttau = 0.5 * ss * (li*dtau + last_li*last_dtau);
do = 1 - color (exp(-tau), exp(-tau*2.25), exp(-tau*21.0));
dC = lighttau * dO;

Trapezoidal Quadrature of σ = e−r GADD and RenderMan Implementation 541

FIGURE 18.6 A raymarched e−r planetary atmosphere model, implemented as a RenderMan
shader. Such a model can yield more realistic coloring by including color extinction in the
illumination. Copyright © F. Kenton Musgrave.

Team LRN

/* Adjust Cv and Ov to account for dC and dO */
Cv += (l.0-Ov)*dC;
Ov += (l.0-Ov)*dO;
/* Select next step size and take a step */
ss = min(clamp(I/(k*dtau+.001), instepsize, maxstepsize), te-t);
ss = max(ss, 0.0005);
t += ss;

}

/* Ci & Oi are the color and opacity of the background element.
* Cv & Ov are the color and opacity of the atmosphere along the viewing ray.
* Composite them together.
*/

Ci = 15.0*Cv + (l.0-Ov)*Ci;
Oi = Ov + (l.0-Ov)*Oi;

}

NUMERICAL QUADRATURE WITH BOUNDED ERROR FOR GENERAL
RADIAL GADDs
The previous integration method for the e−r GADD capitalizes on the smooth char-
acter of that GADD. As we may sometimes desire an error-bounded integration
scheme suitable for more general radial GADDs, we now present such a scheme. As τ
may be evaluated for every ray in a rendering, we require efficiency in its computa-
tion. Our knowledge of the integrand may be used to derive a suitable algorithm.
Consider the general radial GADD σ(r(t)), where

We can simplify by completing the square:

where rc is the value of r at the closest point on the line containing the ray to the cen-
ter of the radial GADD, and t corresponds to the tc index at this closest approach.
(This tc might lie beyond the ray’s extent on that line.) We can then make the substi-
tution s = t − tc and rewrite the integral:

The integrand is symmetric about s = 0. If the limits of integration straddle 0,
this symmetry can reduce the work of the numerical integrator by up to half. We can

542 CHAPTER 18 Atmospheric Models

o
�

() ()2 2
c cr t t t r= − +

() 2 22r t t t= α + β +

() ()2 2 2 2
0

2e e c

e

t t t
ct

t t dt s r dsτ = σ α + β + = σ +∫ ∫ −

Team LRN

also specify a bounding radius for the atmosphere, that is, where the integral of an
infinite optical path ultimately maps to a luminance value of zero. Let us specify this
radius as rmax. Since

the bound is

We can also trivially set τ = 0 if rc > rmax.
We are ultimately computing a transparency value that is in turn used to com-

pute a quantized luminance sample. For 8-bit quantization, an error in e−r of less
than ε = ± is insignificant. The symmetric integrand and high error tolerance al-
low for a specialized adaptive integration routine. An outline of a simple algorithm
of this type follows; it returns a guaranteed bounded estimate for any radial GADD
that decreases monotonically with radius.

1. Compute distance of closest approach rc and ray index tc at rc.

2. If rc > rmax, return 0. Let radial cutoff bound

If sm > tc, return 0. Compute integration bounds a and b: set a = −min(tc, sm).
Set b = −min(te − tc, sm); if b < − sm, return 0.

3. If a < 0 and b > 0 , define two “regions” R[1,2] . Region R[1] has left bound
3. right bound = min(−a,b), and a weight Rw of 2.0; region R[2] has

left and right bounds = min(−a,b), = max(−a,b), and a weight
Rw = 1.0. Otherwise, make a single region with Rl = a and Rr = b, with Rw =
1.0.

4. Compute the values of σ at left and right region bounds; label them Rσl and Rσr.
The maximum error Rδτ for the region, assuming Euler integration (i.e., the
worst case), is The trapezoidal estimate for the region’s
integral Rτ is (Rσl + Rσr)(Rr − Rl).

5. The total error

Numerical Quadrature with Bounded Error for General Radial GADDs 543

() .r r wl lR R R R Rσ σ− −
1
2

[2]
lR [2]

rR

[1] 0,lR = [1]
rR

2 2
maxm cs r r= +

2 2
cr s r= +

2 2
max cs r r=± +

1
512

R
Rδτδτ = ∑

Team LRN

The total integral estimate

If

return τ.

6. Find the region with the highest error estimate. Bisect that region; one evalua-
tion of σ is required. Compute integral and error estimates for both new re-
gions. Go to step 5.

Potential modifications to this algorithm include splitting several regions at a
time to allow less frequent checks of the error criterion and using Simpson’s rule for
integration.

CONCLUSION
We have presented a series of GADD models of increasing fidelity to the geometry of
a planetary atmosphere. We have suggested a Rayleigh scattering model at a level of
fidelity comparable to the ambient/diffuse/specular surface illumination model (i.e.,
highly nonphysical but simple, intuitive, and useful). We have illustrated the success-
ful use of these models in image synthesis. Occam’s Razor may recommend these
models due to their simplicity; indeed, some are simple enough to be candidates for
hardware implementation in real-time graphics systems. RenderMan implementa-
tions of these models are available on this book’s Web site (www.mkp.com/tm3).

544 CHAPTER 18 Atmospheric Models

()e eδτ−τ −τ− ≤ ε

R
Rττ = ∑

Team LRN

Team LRN

19

Team LRN

GENETIC TEXTURES
F. K E N T O N M U S G R AV E

INTRODUCTION: THE PROBLEM OF PARAMETER PROLIFERATION
As we saw in Chapter 15, one problem confronting us in the construction of proce-
dural textures or shaders is that of parameter proliferation. The “terran” texture
presented in Chapter 15 has 22 user-definable parameters, plus some 51 hard-coded
constants hidden in the shader code. The results of changes to these parameters are
often far from obvious and sometimes downright bizarre. For use in a production
environment by artists who didn’t write the shader, this kind of situation is simply
absurd. Most users of shaders—digital artists—don’t know about, or want to be
confronted with, the rich logical complexity and odd machinations of the shader’s
internal operation. They generally have another job to get done: making pictures,
within rigid constraints on time and quality. It is unfair and counterproductive to re-
quire them to learn about or necessarily understand how shaders work. And yet the
terran texture illustrates how, in fact, shaders are built and operate.

On the other hand, neither is it all that easy for the programmer or shader writer
to define and implement all those parameters. It’s tedious, arduous, and generally
time consuming to write and refine such complex shader code. The ultimate product
that the programmer should ideally deliver is a simple, intuitive user interface that’s
easy for an artist, with no programming or math background, to understand and
use. Unfortunately, if effective shader writing is a black art, then devising such inter-
faces is a black hole.

I hate to sound defeatist here, but ever since Gavin Miller first pointed out this
problem to me in 1988, when he was working at what is now Alias/Wavefront, I
have been bemused by this problem. I have not met anyone who has an effective,
general strategy for reducing a huge number of parameters to a few intuitively obvi-
ous sliders that maintain the power of the underlying functionality. I obtained direct
experience in managing this problem when producing the Disney Cruise Lines com-
mercial, where Mickey and Goofy are made out of clouds, at Digital Domain in the
spring of 1997. In that case, we—the art director and myself—simply revealed

547

Team LRN

parameters to the artists one at a time, as we perceived that they needed them or that
the look would benefit from their knowing about them. The vast majority of param-
eter values were preset by myself, the programmer. Unfortunately, this requires that
the programmer also be something of an artist, something that is not always possible
to achieve in a production context.

A USEFUL MODEL: AESTHETIC n-SPACES
Here is one way of thinking about the textures and their controls that I find useful:
they represent an aesthetic n-space. The “aesthetic” part simply means that changing
values of the parameters affects the aesthetics of the result. The “n-space” part is
more subtle. The “n” in “n-space” is simply some whole, positive number, from zero
to infinity. Each separate one of those n numbers represents a degree of freedom.
Think of a degree of freedom as a new direction in which we can move. For n = 1 we
have a line and exactly one axis along which we may move in two directions, call
them left and right, for convenience. For n = 2 we have a plane, wherein we may
move left and right and, say, forward and backward. For n = 3, we have the familiar
three-space in which we live, wherein we may move left and right, forward and
backward, and up and down. When n equals 4 or higher, we move into the higher di-
mensions for which human intuition fails us but into which mathematicians never
hesitate to go.

In this model, the terran texture presented in Chapter 15 represents a 73-
dimensional aesthetic space! No wonder you wouldn’t want to hand that shader
over, as written, to a digital artist. Believe me, it took more than a few hours to de-
fine and determine values for those 73 parameters, too. How can we deal with these
two problems, the overwhelmed user and the overworked programmer? Genetic
programming can provide a fascinating solution to both. But before I describe ex-
actly what genetic programming is, let me first describe some motivating concepts
behind our process.

The process of defining the n parameters in a procedural texture corresponds to
the creation or specification of the n-space. The process of determining good values
for the parameters may be thought of as searching the n-space for local maxima of an
aesthetic gradient function.1 This is an abstraction of which I am particularly fond:
as we change the values of the parameters, we move about in the n-space, in a man-
ner exactly analogous to the low-dimensional spaces described earlier. As we move

548 CHAPTER 19 Genetic Textures

1. This model is based on what are called hill-climbing optimization methods, such as simulated anneal-
ing (Press et al. 1986).

Team LRN

about, the aesthetics change. How they change is determined by an entirely subjec-
tive aesthetic judgment on the part of the user. But clearly some sets of values will
provide images that are “better” and other images that are “worse.” The aesthetic
gradient function is then the user’s subjective evaluation of how the “goodness” of
the result changes with changes in the parameter values, the gradient being between
“better” and “worse.” A local maximum represents a set of parameter values where,
if any one is changed a little, the image gets worse. Thus we’re in a position analo-
gous to being on a local hilltop or local aesthetic maximum. Small movements in all
directions in n-space correspond to moving downhill in terms of our aesthetics. Yet
this hilltop is only local—there is no guarantee that, if we move far enough away
from our current point, we’ll cross the equivalent of some “aesthetic valley” and be
able to climb up a higher hill to a better local aesthetic maximum. The nice thing
about this model of the creation and search of n-space is that it is independent of the
value of n and therefore of the complexity of the texture or shader.

CONTROL VERSUS AUTOMATICITY
An inevitable outcome of the growth of complexity (e.g., the number of parameters)
is that there arises an eternal tension that is general to models for image synthesis:
control versus ease of use. If you make things clear, simple, and easy for the user, you
necessarily have to compromise control, because control lies in the complexity of the
procedures. If you give the user full control, the interface becomes overwhelming in
its baroque complexity. Anyone who’s used 3D modeling or rendering software,
from low-end consumer to the top-of-the-line professional packages, has confronted
this problem.

As we’ve tried to make clear through much of this book, the whole paradigm of
proceduralism is intimately caught up with this idea of amplification, described in
Chapter 14, whereby lots of visual detail issues from a relatively small number of
controls (parameters). Unfortunately, the flip side of this wonderful power is that
automaticity implies lack of control. Just as in any human project large enough to re-
quire delegation of subtasks to colleagues, you abdicate full control over the results.
Thus we may construct the beautiful planet Gaea, imbued with the capacity to be
imaged at any range and/or field of view and resolution (see Figures 16.3 and 16.6),
from a very small amount of computer code, but we cannot, without compromising
elegance, control any of the specific features found there. We have only qualitative
controls with global effects.

Nevertheless, we can obtain some striking and useful results. But what if we
take this amplification/automaticity to its logical extreme and let the computer do

Control versus Automaticity 549

Team LRN

everything? Then the user would simply sit back and pick and choose from various
offerings, like Scarlet O’Hara selecting a beau for a dance. In this paradigm, the
computer simultaneously specifies and searches the aesthetic n-space. The method is
spectacularly productive, wonderfully automatic—once a lot of programming has
been done—but difficult to direct to a desired end, for example, a wood-grain tex-
ture. From a practical point of view, this last point may be a fatal flaw. Yet I’ll de-
scribe the genetic programming paradigm here because it illustrates the functional
nature of procedural textures and clarifies through extreme abstraction how such
textures are built, and simply because genetic programs are the most fun software
systems I’ve ever played with. Because the details of implementation are tedious, but
the concepts driving them are quite clear, I’ll stick to a high-level description here.
The code for the genetic program called Dr. Mutatis that I wrote for MetaCreations
went the way of that ill-fated company and is no longer available, unfortunately.

One thing you might keep in mind when reading this chapter is my basic motiva-
tion for taking on the nontrivial task of programming genetic textures: breeding
planets. You see, since 1987 I’ve been working toward building a synthetic universe.
One big problem: a universe has a lot of planets—far too many to build by hand
with code as complex as the terran texture. The solution? Have the computer build
them for us, automatically—or as close to “automatically” as we can get. The syn-
thetic universe we’re out to build is meant to be full of surprise and serendipity, so
exact control of all the details is not important. We’re not out to build a precon-
ceived stage set, but rather to explore some of the beauty inherent in mathematics
and logic, the mathematics and logic embodied in the texture code. This gets rather
philosophical and is covered in the final chapter of this book. For now let’s jump into
the genetic approach to building procedural textures.

A MODEL FROM BIOLOGY: GENETICS AND EVOLUTION
Genetic programming starts with a model borrowed from biology and proceeds to
use it by analogy. The idea was introduced to the computer graphics community by
Karl Sims in his 1991 SIGGRAPH paper (Sims 1991). Sims in turn got the idea from
Richard Dawkins’s book The Blind Watchmaker (Dawkins 1987) and the simple
computer graphics program called BioMorph that Dawkins uses to illustrate the
power of the theory of evolution in explaining the origins and complexity of life on
Earth. Unlike Dawkins, I have no metaphysical ax to grind vis-à-vis the origin of life
or competing religious and scientific models for the origin of life. I simply have
found genetic programming to be the coolest thing you can do with procedural

550 CHAPTER 19 Genetic Textures

Team LRN

textures and computer art and an important stepping stone toward the future of
proceduralism that I envision, this synthetic universe.

We start with a few definitions that should be familiar from your high school bi-
ology classes. Recall that the genotype is the genetic description for a given organ-
ism. The genotype is encoded in a fantastically long molecule of deoxyribonucleic
acid (DNA). The genotype is a specific instance from a genome, as in the Human Ge-
nome Project, the major scientific initiative that has mapped the general layout of all
human genes. The genome is general to a species and has variations among individu-
als, while the genotype is specific to a single organism. A gene is a specific part of the
genome that encodes a certain function, generally instructions for building a certain
biologically active protein.

The phenotype is the physical manifestation of the instructions encoded in the
genotype: it is a specific organism, such as you or I. Your genotype is similar to mine,
but they are not identical, so while we are both human beings, we are not identical
twins or clones. Different instances of a given genotype will, given similar environ-
ments during development, reliably give rise to a certain, well-defined phenotype, as
with identical twins (who are, in fact, clones).

Charles Darwin’s famous and controversial theory of evolution posits that life
has literally risen from the primordial ooze through evolution—the refinement of
genomes through what he called natural selection: the preferred survival and propa-
gation of individuals whose genotype has given rise to a “more fit” phenotype.2

Natural selection acts on phenotypes. No progress would occur if the pheno-
types didn’t change over generations. In nature they do, by two mechanisms: muta-
tion and sexual reproduction. Mutation occurs through errors introduced in the
DNA replication process and by direct alterations to DNA molecules by external
mechanisms such as ionizing radiation (for example, ultraviolet light and radioactive
decay byproducts). Sexual reproduction is presumed, in biology, to be a clever adap-
tation by higher organisms. In sexual reproduction, genes from two parents are
mixed and matched to “reshuffle the deck,” providing random combinations of
proven genes. This is a safer strategy for productive change than the purely random
variations provided by mutation, most of which presumably will not produce viable
phenotypes.

A Model from Biology: Genetics and Evolution 551

2. Note that Darwin’s theory of evolution preceded the discovery of DNA by about a century. The the-
ory of evolution is predicated only on the idea of inheritance, whereby offspring acquire the genetic in-
formation of their ancestors. It is in no way dependent on the mechanism for encoding or passing on
that information. This independence helps bolster the analogy we’re making here.

Team LRN

Evolution is the accumulation of “improvements” in the phenotypes through
these changes, as culled by natural selection, in inheritable genomes. This process
can be convincingly argued to account for all the glorious complexity and variation
in life on Earth, as Dawkins’s series of books on the topic attempts to do.

I have come to think of DNA as being like the operating system (OS) of an or-
ganism, while the cells of which the organism is composed are like the computer on
which the OS runs. (Fortunately, the human OS is generally more reliable than those
we’ve devised for our computers.) The coding of both DNA and an OS is very ab-
stract: the program code that comprises a computer OS bears little resemblance to
the user interface it presents to us, just as the DNA molecule little resembles a ham-
ster, a redwood tree, or you. Also similarly, both are highly nonportable: the encod-
ing is practically worthless without the platform on which it is designed to execute.
Hence you can’t just install and run the Mac OS on a PC, nor can you put human
DNA into a starfish cell nucleus and expect to grow a healthy human baby. This is a
little unfortunate for our application here, as we’d like to have a universal computer
genome that could be run on any computer, so that we could develop a kind of uni-
versal artificial life, or “A-life” as it’s called.

The Analogy: Genetic Programming

What we’re interested in here is procedural textures and how to create beautiful ones
efficiently. Enter our analogy: We will regard the code that specifies a texture to be its
genotype and an image of the resulting texture to be the corresponding phenotype.
Evolution is directed by what I call unnatural selection:3 God-like intervention by
the user, deciding which phenotypes, and thus the underlying genotypes, survive and
propagate. Change in the genome is accomplished by methods analogous to muta-
tion and sexual reproduction: we design the program to introduce random varia-
tions in genotypes and to be able to share “genes” in an analog of sexual
reproduction.

What then, is a gene in a genetic texture program? As with DNA, it is a unit of
genetic “code” specifying some functionality within the resulting texture, for exam-
ple, an fBm procedure. DNA is composed of the four nucleic acids cytosine, guanine,
adenosine, and thymine, commonly referred to by their initials C, G, A, and T. The

552 CHAPTER 19 Genetic Textures

3. I like this tongue-in-cheek term “unnatural selection” because it points out the artificial separation
of humankind from nature. In my view, humans and their actions are natural phenomena. If you dis-
agree, I suggest you try—in a thought experiment—separating humans entirely from nature and see how
we do!

Team LRN

DNA molecule is a long sequence of these bases, as they are called, paired across
from one another in the famous double helix. A certain functional sequence of bases
can comprise a gene.

Our encoding scheme is a little different. Our bases are all complete functions,
analogous in DNA more to genes than to bases. A combination of our bases can,
however, function as a gene. The difference between genes and bases is that bases are
atomic: bases cannot be subdivided into smaller parts.

The encoding scheme for our genetic information is, rather than a linear se-
quence as in DNA, an expression tree, which is analogous to a genealogical family
tree. (See Figure 19.1.) A tree is a special kind of graph. The graph is composed of
nodes. There are two relevant kinds of relationships between nodes: parent and
child, the meaning of which is obvious. There are three types of nodes: the root node
at the top of the tree (although it might seem that it should be called the bottom),
which has no parent and usually has children; interior nodes, which have both par-
ents and children; and leaf nodes, which have parents but no children. The root node
generally has to return three values to create an RGB value to display as the
phenotype.

The expression tree operates via functional composition, described in Chapters
2 and 15 as perturbation or domain distortion. The idea of functional composition is
simply that a function takes as its input parameters the output of another function
or functions. We saw the effects of simple functional composition in those earlier
chapters; now we take the idea to an extreme. In the expression tree, only leaf nodes

A Model from Biology: Genetics and Evolution 553

FIGURE 19.1 An expression tree. The circles are nodes; the lines between them are links
representing relationships.

x

HSV_to_RGB

Rotate3D

sin VecNoise3Noise2

2.7 cos

0.15

−0.310.23 cos

y

x

Team LRN

provide values that are not determined by functions. (In fact, the leaf nodes are usu-
ally simple linear functions of x, y, or z; that is, they are simply the x, y, or z value of
the point where the texture is being evaluated. The rest are simply random
numbers.)

Expression trees “evolve” via random mutation and sexual reproduction, as il-
lustrated in Figures 19.2 and 19.3. The user selects which phenotypes mutate and
breed.

554 CHAPTER 19 Genetic Textures

FIGURE 19.2 Mutation in an expression tree.

2.3

2.3

x

x

y

y

sin

sin

fBm

fBm

x

x

cos

cos

2.0

2.0

Noise3

Noise3

y

y

FIGURE 19.3 Sexual reproduction between two expression trees.

x y

x

sin

fBm

x cos

y

sin

fBm

2.3

Team LRN

Implementation

The expression tree is perhaps most easily implemented in a high-level, functional
language such as LISP, as in Sims’s original genetic texture program. Unfortunately,
LISP is relatively slow, unless you happen to have something like a Connection Ma-
chine 2 to run it on. Indeed, my first experience with genetic textures involved run-
ning Karl’s LISP code on a CM-2 using 16,000 processors. Ordinary users like you
and me will require a more efficient implementation for our more pedestrian com-
puters. In fact, I developed my genetic texture code primarily on a laptop, showing
how far processors have come since 1991. Steven Rooke tells me that switching from
LISP to C++ sped his genetic program by a factor of 100. (And yes, I know LISP
fans who’d contest that!)

It turns out that genetic programming is a perfect application for C++. The
data structures required for the various types of nodes, their relationships, and the
operations defined upon them are succinctly described in C++ classes. The devil is
in the details, mostly in memory management. For efficiency, I have each evaluation
of a function in the tree process an entire scanline’s worth of data. (This saves a
whole lot of tree traversals that would be necessary if you evaluate the tree pixel by
pixel.) For large trees, this can get into a lot of memory. Again for efficiency, I do all
my own memory management in the program because the C and C++ memory allo-
cation routines malloc and new are relatively slow. So I end up with piles of pointers
and memory pools—and lots of room for bugs. But that’s just standard program-
ming and thus outside the scope of this book.

There are two interesting issues in programming genetic textures that I’d like to
point out: the meaning of the root node, in terms of color, and the effect that a given
library of genetic bases has on the kinds of images produced.

INTERPRETATION OF THE ROOT NODE
Ultimately, we want to make color images. Thus each pixel will require a separate
value for red, green, and blue. A solution that immediately pops into mind is that we
simply have the root node consist of three separate subtrees, one each for red, green,
and blue. In practice, however, this is usually unsatisfactory: you tend to end up with
unrelated, overlaid images in red, green, and blue. You can interpret the values as ly-
ing in another color space, such as HLS (hue/luminosity/saturation), but similar
problems remain. The usual solution is to have the root function return a single
value that serves as an index into a color lookup table. This brings up the separate
and unrelated problem of generation of, and making changes to, that lookup table.
It is easy enough to automatically generate random color maps (Musgrave 1991),

Interpretation of the Root Node 555

Team LRN

but the obvious solutions are a little inelegant compared to the rest of our fully pro-
cedural paradigm.

The solution I’m currently using is based on the ideas behind the random color
textures presented in Chapter 15. The root node comprises a three-vector valued
function, which has been passed through a random rotation matrix to correlate, in
the final RGB color space, the influence of the three components of the vector. Math-
ematically, we’d say that the three vector components are then linear combinations
of the basis vectors that correspond to red, green, and blue. That is, rather than hav-
ing each component of the three-vector mapping to only red, green, or blue, each
component contributes to all of red, green, and blue, albeit indirectly through a final
HLS to RGB transform (see the expression tree in Figure 19.1). From a mathemati-
cal perspective this insight is obvious; my apologies if it’s not exactly clear when
translated into English prose. Such is the divergence of the two modes of thinking
and communication. But it’s cool to see again, as in the GIT schemes described in
Chapter 15, that a mathematical perspective can provide useful aesthetic insights.

This approach is not without its own problems. First, constructing a random ro-
tation matrix requires at least six input values: two—altitude and azimuth—to spec-
ify the random rotation axis, one to specify the angle of rotation, and three to specify
the vector being transformed by the resulting matrix. This implies a bushy tree at the
root, which in turn implies increased evaluation time. It also implies a rather large
amount of storage in the vector class—a maximum of six double-precision floating-
point numbers,4 which adds up when you need to store a lot of vectors. This ap-
proach also tends to consistently produce rainbows, due to the final HLS to RGB
transform. These rainbows become boring to annoying but can be excised through
the process of unnatural selection. The advantage of the approach, as I see it, is that
it nicely preserves the pure functional paradigm.

THE LIBRARY OF GENETIC BASES
An important aspect of any genetic image generation program is its library of bases,
the functions out of which the expression trees are formed. This library literally pro-
vides the expressive vocabulary of the system. Thus different genetic texture pro-
grams have different “looks.” Karl Sims’s system has a library of primitive
mathematical functions such as sine, log, arc tangent, and so on, as well as iterated

556 CHAPTER 19 Genetic Textures

4. My experience indicates that single-precision floating point does not provide sufficient accuracy for
the kind of multiple functional composition involved in genetic textures.

Team LRN

function systems (Sims 1991) that give rise to characteristic fractal patterns. Steven
Rooke’s system (www.azstarnet.com/�srooke/) is heavy on deterministic fractal
functions that are generally iterations on the complex plane, including a genetic gen-
eralization of the kinds of functions people experiment with in the well-known
Fractint freeware program. My own system (www.kenmusgrave.com/mutatis.html)
is based primarily on the kind of random fractal functions described in Chapters 14
and 16. Thus each system tends to create images with a certain, fairly consistent
character. Certainly, each produces images that the others are not capable of generat-
ing, due to the expressive limitations of their respective libraries of bases.

My own peculiar base functions tend to be very natural-looking, as they were
originally honed for the modeling of natural phenomena such as mountains, clouds,
and water. They thus tend to generate images that look like they were executed in a
natural medium, such as oil paint. In fact, one of my main motivations in going into
this area was to automate the generation of painterly textures such as that seen in
Figure 15.17. Examples of my system’s output are seen in Figures 19.4–19.9.

One nice thing is that the longer you work with a genetic program, the more
“evolved” the results become. That is because as you accumulate a library of “fit”
individuals, they can trade genetic information via sexual reproduction. Indeed, one
feature of my program is being able to have individuals breed with the entire popula-
tion of saved genomes, in a sort of orgiastic exchange of genetic information. An ef-
fect of this continued evolution is that subtrees become genes in their own right,
being swapped in whole in the breeding process. Thus the “library” of genes can
grow both in size and complexity as evolution proceeds. (We are now referring to a
single function—what computer scientists would call a “primitive” or “atomic”
function—as a base and a tree of any size as a gene.)

OTHER EXAMPLES OF GENETIC PROGRAMMING AND GENETIC ART
Karl Sims has taken this paradigm of genetic programming and genetic art farther
than the rest of us. For example, he evolves the behaviors of three-dimensional tex-
tures (Sims 1991) and virtual creatures (Sims 1994) (see www.biota.org/ksims.html).
William Latham (Todd and Latham 1993) has done some remarkable work in a sys-
tem designed to generate 3D sculptures that can bear uncanny resemblances to crea-
tures from the Cambrian epoch of life on Earth (www. artworks.co.uk/). Roman
Verostko (www.verostko.com) employs the related concept of epigenesis, or the un-
folding of form in the phenotype in the process of growth, in his plotter-generated
artworks. Eric Wenger’s ArtMatic product (www.artmatic.com) lets you play with a
version of genetic textures.

Other Examples of Genetic Programming and Genetic Art 557

Team LRN

This is by no means an exhaustive listing of artists and scientists working in this
exciting area. A search on the Web will turn up thousands of relevant sites. A good
general guide is Linda Moss’s site (www.marlboro.edu/�lmoss/planhome), which
even offers source code. The bible of genetic programming is Koza (1992).

A FINAL DISTINCTION: GENETIC PROGRAMMING VERSUS GENETIC
ALGORITHMS
In the literature, you’ll read of genetic programming and genetic algorithms. The for-
mer is what I’ve described here, wherein the very code of the program that generates

558 CHAPTER 19 Genetic Textures

FIGURES 19.4–19.9 Images generated by the genetic program Dr Mutatis. Note the rich visual
complexity that arises through the automated evolution of a procedural texture. Copyright ©
F. Kenton Musgrave.

Team LRN

the phenotype is itself transforming over time. The latter is a little different: it as-
sumes a fixed value on n for the n-space it explores and is thus perhaps more closely
related to optimization strategies than to free-form artificial evolution. That is, it
only searches the n-space for local aesthetic maxima, while genetic programs simul-
taneously define and search their n-space, with the value of n constantly changing.
Thus they tend to be simultaneously more chaotic, hard to control, and produc-
tive—a familiar set of characteristics among creative people! At any rate, it may be
helpful to be aware of the difference, so I’m pointing it out here.

A Final Distinction: Genetic Programming versus Genetic Algorithms 559

FIGURE 19.5

Team LRN

CONCLUSION
Genetic programming is one cool paradigm. It is amazingly automatic, has the
world’s best user interface—simply point and click on what you like—and it takes
proceduralism to its logical end. While it may not be terribly useful because it’s so
hard to control and direct, it certainly is fun to play with, and it does create some
striking images at times. It also gives the computer the greatest role in the creation of
digital art of any paradigm I know. This is exciting in itself, as the computer can be a
very capable, if simple-minded and cranky, artistic assistant.

Someday a program or programs will bring “genetic textures to the people.”
One fun thing about this prospect is that people could start trading genomes on the

560 CHAPTER 19 Genetic Textures

FIGURE 19.6

Team LRN

Internet, thus accelerating evolution by cross-breeding between populations that
spend most of their time in isolation on a given user’s machine. This is analogous in
nature to the evolutionary divergence of populations isolated on islands, which are
occasionally intermingled by migration, chance travel, or formation of a land bridge.

Such universal exchange of genetic information will require standard encoding
and interpretation machinery, just as DNA from some extraterrestrial organism
would have zero chance of intermingling with that of life on Earth. Again, the geno-
type is like the operating system, and the cell is like the computer it runs on. Geno-
types and operating systems are not highly portable. I foresee that, should we
succeed in bringing genetic art to the people, we will all suffer for some time to come
for a lack of foresight in the design of a robust and flexible system. I hope that one

Conclusion 561

FIGURE 19.7

Team LRN

day we’ll be able to “breed” entire galaxies—indeed, a whole universe—of proce-
dural planets, replete with automatic level of detail, in a future version of
MojoWorld, which we’ll get into in the next chapter. But that will be a few years
from now, at least. We’ll need a lot more processor power before we can deploy the
powerful but expensive technique of genetic programming in that context.

562 CHAPTER 19 Genetic Textures

FIGURE 19.8

Team LRN

Conclusion 563

FIGURE 19.9

Team LRN

20

Team LRN

MOJOWORLD: BUILDING
PROCEDURAL PLANETS

F. K E N T O N M U S G R AV E

INTRODUCTION
This chapter is derived from the first chapter of the MojoWorld manual. MojoWorld
is a software product that builds and images fractal planets. These planets are
entirely procedural, unless augmented with imported data. They are fractal.
MojoWorld employs most of the tricks and techniques described in Chapters 14–19
of this book to create images with unprecedented detail (see Figures 20.11, 20.16,
20.17, 20.42, and 20.43). These images are sometimes realistic, sometimes surrealis-
tic, and sometimes outright abstracts. As I’ve mentioned, my life’s work is about re-
vealing a synthetic universe. MojoWorld is our first cut at that.

Are we building this universe, or are we discovering it? That’s a fascinating ques-
tion. Sure, we won’t stumble on it by accident; rather, we’ll conjure it forth through a
lot of intelligent and hard work. But, this “synthetic” universe already exists. It al-
ways has and always will. Just as 2 is the eternal result of the computation 1 + 1,
presumably for all time and space in this universe, these places, as three-dimensional
models, and the images we make of them, are the result of a more complicated but
similarly deterministic calculation. They may already have been imaged and ex-
plored by other intelligent life-forms elsewhere and elsewhen in this universe. Their
complexity and dependence on an enormous series of more or less arbitrary deci-
sions by the programmers who wrote MojoWorld makes it extremely unlikely that
any place or image we make/discover in MojoWorld has been seen, made, or discov-
ered anywhere else by anyone else. But they have this eerie quality of “being there,”
just waiting to be discovered and explored (see Figure 20.1). This is surely the apo-
theosis of proceduralism.

Why include this chapter in this book? First, it explains fractals yet again. In all
my years of experience as a teacher of fractals, I’ve found it reliably takes about three

565

Team LRN

passes over explanations of fractals before you start to “get it.” It took me at least
that many times, believe me! So this chapter provides a third pass at it. Second, this
chapter explains MojoWorld as a learning lab in which to experiment with fractals
and procedural textures. MojoWorld is one of the most potent tools to date for that
purpose, and a demo version is included on this book’s Web site (www.mkp.com
/tm3) for your pleasure. Using MojoWorld in concert with your readings in this
book will turn your experience from a purely intellectual reading exercise to a
hands-on practical tutorial.

An inside tip: There’s a part of MojoWorld we don’t talk about much—the Pro
UI. It’s a powerful dataflow function graph editor for writing procedural shaders—a
kind of visual programming language. We don’t talk about it much because it’s too
advanced for our target market; they’d simply be flummoxed by it. But it’s perfect
for anyone reading this book, as it allows you to experiment with many of the meth-
ods and tricks we’ve described here. And, if you find you can’t do what you want

566 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.1 Metallichron: Brassy Rise is an image from one of the planets that MojoWorld users
shared, explored, and imaged in the weekly challenge at www.3dcommune.com. This kind of self-
organizing community event is part of the MojoWorld experience. © 2002 Armands Auseklis,
MojoWorld by Robert Buttery.

Team LRN

with the Pro UI as is, MojoWorld has an open architecture allowing you to extend its
functionality by writing your own plug-ins. MojoWorld was designed to be a high-
tech sandbox for all of us to play in. We encourage you to play and experiment with
MojoWorld, and we look forward to seeing what you create/discover.

This chapter ties together most of what I’ve written in previous chapters and de-
scribes it all in the context of a software package that’s included on this book’s Web
site for your use. It also points the way directly to my personal vision of cyberspace,
the future of the human-computer interface, as described in the final chapter. So, in a
very real sense, this chapter puts it all together and points to the future. I hope you
enjoy it. Let’s get started with another description of fractals.

FRACTALS AND VISUAL COMPLEXITY
Nature is visually complex. Capturing and reproducing that complexity in synthetic
imagery is one of the principal research problems in computer graphics. In recent
years we have made impressive progress, but nevertheless, most computer graphics
are still considerably less complex and varied than the average scene you see in na-
ture. Personally, I don’t expect computer graphics to be able to match the visual rich-
ness of nature in my own lifetime—there’s just too much complexity and variety to
be seen in our universe. But that certainly doesn’t mean we shouldn’t try, only that
we can keep at it for a long time to come.

So how do we make a first stab at creating visual complexity in synthetic imag-
ery? In a word, with fractals. Fractal geometry is a potent language of complex vi-
sual form. It is wonderful in that it reduces much of the staggering complexity we see
in nature to some very simple mathematics. I’m going to try to convey, as simply as I
can, the intuition behind fractals in this chapter. I know it’s a little confusing the first
time around. It took me several rereadings of the standard texts when I was a gradu-
ate student to get it straight in my head. But after I “got it,” it became clear that the
important parts are very simple. I’m going to try to convey that simple view of frac-
tals in this chapter. First a little motivation, though.

Building Mountains

One of the most common fractals we see in nature is the earth we walk on.
Mountains are fractal, and we can make very convincing synthetic mountains with
some pretty simple fractal computer programs. Benoit Mandelbrot, the inventor/
discoverer of fractals and fractal geometry, calls such imitations “fractal forgeries”
of nature. My own career in fractals began with making some new kinds of fractal

Fractals and Visual Complexity 567

Team LRN

terrains through novel computer programs, to create fractal forgeries the likes of
which had not been seen before. Figure 20.2 shows the current state of the art in
such “forgeries.”

When I began to crank out some very realistic images, people immediately
started asking me, “Why don’t you animate them?” Well, there aren’t many moving
parts in a landscape. Landscapes tend to just sit there rather peacefully. What is free
to roam about is the camera, or your point of view. This in turn begs the questions:
Where do you come from? Where do you go? If the point of view is free to roam, the
landscapes need to be in a proper global context. What’s the global context for a
landscape? A globe, of course!

Building Planets

Naturally, the next thing to do was to build a planet so that these realistic land-
scapes would have a geometrically correct context in which to reside. Fortunately,
planets, being covered with terrains that are fractal, are themselves fractal. So we
just need to build bigger fractal terrains to cover a planet.

568 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.2 Dale Stranded illustrates the extreme depth, with pixel-level detail throughout, that
can be imaged with the procedural methods MojoWorld employs. © 2002 Armands Auseklis.

Team LRN

When I set out to build my first planet, seen here in Figure 20.3, it was apparent
that we needed better fractal terrains. The kind of fractals we had all been so pleased
with up to that time weren’t really up to the job of modeling a whole planet—they
were just too monotonous. So I created some new fractals, multifractals, that had a
little more variety, as seen in Figure 20.4. Here’s the difference: See how the coastline
in Figure 20.3 has pretty much the same “wiggliness” everywhere on the planet? In
Figure 20.4 you can see that the coastline is pretty smooth and uncomplicated in
some places and pretty “rough” or “wiggly” in other places. That’s pretty much all
you need to know about multifractals—no kidding! They’re another step toward the
true richness and complexity we see in nature. The cool thing is that they don’t com-
plicate the math much at all, which is a very good thing, if you ask me.

There are other interesting aspects to modeling a planet. One that is not so obvi-
ous is the atmosphere. Landscape painters have known for hundreds of years that
the atmosphere gives the only visual indication of truly large scale in a rendering.
Leonardo wrote about it in his journal. Computer graphics have used atmospheric
effects for as long as we’ve been making realistic renderings of fractal mountains.
But it turns out that, in order to get the atmospherics to work really well, even on a
local scale, you can’t use the simplest and easiest atmospheric model—a flatland
model. You have to use an atmosphere that curves around a planet. You’ve seen the
sun lighting clouds from underneath well after it’s set—you can’t get that with a
flatland model! So for practical reasons of getting things just so, you end up having

Fractals and Visual Complexity 569

FIGURE 20.3 A preliminary Earth-like planet model.

Team LRN

to model Earth’s atmosphere quite accurately, just to get sunsets to look right. Look
up the word “atmosphere”—it literally means “sphere of vapor.” Another indica-
tion of “global context.”

Is the atmosphere fractal? Not in any obvious way, even though clouds certainly
are. When I was a graduate student working under Mandelbrot, who was basically
paying me to invent new fractal terrain models and make beautiful images of them, I
worried that I was spending too much time on my atmosphere models. When I asked
him about it, he, in true form, quipped mysteriously, “Well, many things that do not
appear to be fractal are, in fact, fractal.” It turns out that global circulation and the
distributions of pollutants and density layers are fractal. Someday we’ll have the
power to model these things in MojoWorld, but not yet in this, the second year of
the third millennium ad. Also, the path of photons as they are scattered by the atmo-
sphere is fractal, not that it’s of any consequence to us in making our pictures. Frac-
tals are, indeed, everywhere.

570 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.4 Gaea & Selene shows two procedural planet models. The clouds are the same ones
seen in Figure 20.7. Note the multifractal coastline: at some places it is quite smooth, while at
others it is quite convoluted, with many islands. Copyright © F. Kenton Musgrave.

Team LRN

Building a Virtual Universe

If landscapes need a global context, so do planets. Planets orbit suns in solar sys-
tems, stars tend to form in clusters, which in turn reside in and around galaxies,
which gather in clusters and superclusters, right up the largest-scale features of our
universe, which are in turn attributable to quantum fluctuations in the early uni-
verse, according to current cosmological theory. (If you want an explanation of that,
you’d better ask Jim Bardeen, who wrote the part of MojoWorld that gives us conti-
nents with rivers and lakes. Jim is an astrophysicist who helped Stephen Hawking
work out the original theory of black holes and now works on exactly that aspect of
cosmology. He does rivers for us on the side, in his spare time.) Fortunately, the dis-
tribution of stars and galaxies, and the beautiful shapes of the stellar and interstellar
nebulae that we’re constantly getting ever better pictures of, are all quite fractal. In
coming years, we here at Pandromeda have every intention of generating an entire
synthetic universe that lives inside your computer. The path is clear as for how to do
it. It will just take time to develop it and a lot of computer power to make it so. I, for
one, am anxious for that future to arrive already!

Okay, so there’s the big picture. Now how are we going to build this universe?
What does it take?

Fractals. Lots of fractals.

WHAT IS A FRACTAL?
Let’s get to first things first: What exactly is a fractal? Let me offer this definition:

fractal: a complex object, the complexity of which arises from the repetition of a given
shape at a variety of scales

Here’s another definition, from www.dictionary.com:

fractal (noun): A geometric pattern that is repeated at ever smaller scales to produce ir-
regular shapes and surfaces that cannot be represented by classical geometry. Fractals
are used especially in computer modeling of irregular patterns and structures in nature.
[French from Latin fractus, past participle of frangere, to break; see fraction.]

It’s really that simple. One of the easiest examples of a fractal is the von Koch
snowflake (Figure 20.5). In the von Koch snowflake the repeated shape is an

What Is a Fractal? 571

Team LRN

equilateral triangle. Each time it is repeated on a smaller scale, it is reduced in size by
exactly one-third. This repetition can continue at ever smaller scales ad infinitum,
leading to a curve—the edge of the snowflake—that is wonderfully complex. It also
exhibits some bizarre mathematical properties, but we won’t go into those here.

There’s lots of math we could go into about fractals, but perhaps the neatest
thing about fractal geometry is that you don’t need to learn any math at all to under-
stand and use it. You can think of it as an artist, entirely in terms of visual form. Let
me describe a few easy ways to think of fractals.

Self-Similarity

The repetition of form over a variety of scales is called self-similarity: a fractal looks
similar to itself on a variety of scales. A little piece of a mountain looks a lot like a
bigger piece of a mountain and vice versa. The bigger eddies in a turbulent flow look
much the same as the smaller ones and vice versa (see Figure 20.6). Small rocks look
the same as big rocks. In fact, in geology textbooks, you’ll always see a rock hammer
or a ruler in photographs of rock formations, something to give you a sense of scale
in the picture. Why? Because rock formations are fractal: they have no inherent
scale; you simply cannot tell how big a rock formation is unless you’re told. Hence
another synonym for the adjective “fractal” is “scaling”: a fractal is an object that is
invariant under change of scale.

Figure 20.6 shows my favorite example of a fractal in nature. Looks kind of like
a puff of smoke from a smoker’s mouth at arm’s length, or a drop of milk in water,
doesn’t it? Guess how big it is. It’s about 400,000 light years wide—that’s roughly
four thousand trillion kilometers, or 24 hundred trillion miles from one end to the
other. Too big for me to imagine! In the 1970s, when I first saw this picture, taken at
radio wavelengths by the Very Large Array radio telescope, I considered it the most
mind-blowing image I’d ever seen. I am not sure if Benoit had even coined the term

572 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.5 The von Koch snowflake: a canonical fractal.

Team LRN

“fractal” yet; if he had, I certainly hadn’t heard it yet. But I found it stunning that
this incomprehensibly large object looked so ordinary, even small. That’s a fractal
for you. You can recognize one immediately, even if you don’t know it’s called a
fractal.

Dilation Symmetry

My favorite, easy way to grasp the idea of “fractal” is as a new form of symme-
try: dilation symmetry. You’re probably already familiar with symmetries such as
the mirror symmetry by which the human body is pretty much the same on both
sides when mirrored across a line down the middle, and perhaps the rotational
symmetry whereby a square remains unchanged by a rotation of 90°. Dilation sym-
metry is when an object is unchanged by zooming in and out. Turbulence is like
that; hence we can’t tell how big that turbulent puff of gas in Figure 20.6 is until
we’re told.

Imagine, if you will for a moment, a tree branch. A smaller branch looks pretty
much like a larger branch, right down to the level of the twigs. This is dilation sym-
metry. The same goes for river networks: smaller tributaries and their networks look
much like the larger river networks. Figure 20.7 shows this in some of Jim Bardeen’s

What Is a Fractal? 573

FIGURE 20.6 A fractal on a truly grand scale: jets of gas from an active galactic nucleus. VLA radio
image of Cygnus A at 6 cm courtesy of NRAO.

Team LRN

river networks on a MojoWorld continent. Clouds, mountains, coastlines, and light-
ning are like that, too; smaller parts look just like larger parts. There is a catch:
unlike the Koch snowflake, they aren’t exactly the same at different scales, only qual-
itatively so. This leads to our next distinction in fractals: random fractals.

Random Fractals

Random fractals may be loosely defined as fractals that incorporate random vari-
ables in their construction. The random variable may be some quantum process, like
the probability of a given air molecule scattering a passing photon, or a pseudo-
random variable in a computer program, as we might use to determine the altitude
of a point on a fractal terrain. Computers are always deterministic, so we don’t have
truly random variables in computer programs, only ones that are designed to look
random while being, in fact, deterministic. “Deterministic” means that a given input
always generates the same output. This determinism is a good thing: it is why we al-
ways get the same MojoWorld from a given scene file, even though what we find

574 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.7 A fractal river drainage network for a MojoWorld continent.

Team LRN

there is unpredictable. If the computer were producing truly random variables, we
might get slightly better MojoWorlds (for very obscure mathematical reasons), but
we wouldn’t be able to roam around and come back to the same place again.

The point is that self-similarity comes in at least two flavors: exact self-
similarity, as in the Koch snowflake where every part is exactly the same as every
other if you rotate it properly, and statistical self-similarity, as in all the natural phe-
nomena I’ve mentioned. In nature, self-similarity is usually of the statistical sort,
where the statistics of random behaviors don’t change with scale. But you needn’t
worry any about statistics—to the human eye these fractals look similar at different
scales, no doubt about it, without any reference to numbers, statistics, or any other
fancy mathematics.

A BIT OF HISTORY OF FRACTAL TERRAINS
Like all intellectual revolutions, fractal geometry did not happen overnight. Rather,
it was an extension of the work and observations of many people working in many
different fields. But let me perform the standard practice of historians and make a
complex story simple.

The Mathematics

Fractals were noticed by mathematicians around the turn of the 20th century. They
noted their mathematically bizarre behavior, labeled them “monsters,” and left them
for posterity.

Benoit Mandelbrot had an uncle who was a famous mathematician. He assured
the young Benoit that the person who cracked this mathematical case could make a
name for himself. Benoit was not immediately interested, but the ideas festered (my
word, not his!) in his mind, and he eventually came to work on such things as a re-
searcher at IBM. In 1982 he published his classic book The Fractal Geometry of Na-
ture, which introduced the world to fractals. In 1987 I was fortunate to be hired as
Benoit’s programmer in the Yale math department. I was to work on fractal terrain
models that included river networks, a research project that didn’t pan out for us. In
1988 The Science of Fractal Images was published, edited by Heinz-Otto Peitgen
and Dietmar Saupe, whom I had gotten to know at UC Santa Cruz in 1986. In it
Mandelbrot issued a challenge to the world to solve the difficult problem of creat-
ing fractal terrains with river networks. In 1989 Craig Kolb, Rob Mace, and I pub-
lished a paper titled “The Synthesis and Rendering of Eroded Fractal Terrains,”
which described a way to create rivers in fractal terrains, although that method

A Bit of History of Fractal Terrains 575

Team LRN

remains mathematically and computationally intractable to this day. A little later
Jim Bardeen solved the problem in the way that Benoit had in mind; his latest solu-
tion appears in MojoWorld. In 1993 I completed my doctoral dissertation “Methods
for Realistic Landscape Imaging,” which was pretty much a compilation of the vari-
ous papers and course notes that I had published over the last six years on various
aspects of modeling and rendering realistic forgeries of nature. In it I described my
multifractal terrain models.

That’s a very brief sketch of the academic mathematical history of fractal ter-
rains. Now for the mathematical imaging track.

Mathematical Imaging of Fractal Terrains

Mandelbrot divides the history of computer images of fractal terrains into three eras:
the Heroic, the Classical, and the Romantic. The Heroic Era is characterized by the
work of Sig Handelman, who made the first wire frame renderings of Benoit’s terrain
models. According to Benoit, it was a heroic effort in the 1970s to get even a wire
frame image out of the computer, hence the name of that era. Handelman’s images
are mostly lost in the mists of time, alas, although one or two appear in The Fractal
Geometry of Nature (Mandelbrot 1982). Next came the work of Richard Voss, who
made the first realistic (for that time, at least) images, such as the classic Fractal
Planetrise, which graces the back cover of The Fractal Geometry of Nature. Voss’s
work comprises the Classical Era. Richard fleshed out the mathematics and render-
ing algorithms required to make beautiful and convincing forgeries of nature. Next
came my work, in which I brought various artistic subtleties to the forefront. As I
went on at length about artistic self-expression, Benoit calls my work the Romantic
Era. Benoit has generously credited me with being “the first true fractal-based art-
ist.” Figures 20.8–20.10 are a few of my personal favorites from my own body of
work of that era. You may notice that I was fascinated with planets right from
the start.

The Computer Graphics Research Community

Then there’s the computer graphics track. In 1979 Loren Carpenter, then at Boeing,
made the groundbreaking computer animation Vol Libre, the first animated flyby of
a synthetic fractal terrain. In 1982 Loren, now senior scientist at Pixar and a mem-
ber of Pandromeda’s distinguished board of advisors, published with Alain Fournier
and Donald Fussell the paper “Computer Rendering of Stochastic Models,” which
introduced the commonly used polygon subdivision method for generating fractal

576 CHAPTER 20 MojoWorld: Building Procedural Planets

Team LRN

FIGURE 20.8 Blessed State is also a polygon subdivision terrain—compare it to the terrain models
seen in Figures 15.7 and 20.9. The water is the “ripples” texture. The moon is a very simple fBm
bump map applied to a white sphere; a more realistic moon model would be too busy for the
visual composition. Copyright © F. Kenton Musgrave.

FIGURE 20.9 Zabriskie Point illustrates distorted fBm clouds and the rounded character of terrains
constructed from the Perlin noise function. A vector-valued fBm function, with the vector
interpreted as an RGB color value, has been used to perturb the color of the terrain. Such coloring
is also seen in Figure 17.11. It is a prototype of the more sophisticated coloring seen in Figures
15.15, 16.6, 20.18, and 20.20. Copyright © F. Kenton Musgrave.

Team LRN

terrains. That precipitated a bit of a feud with Mandelbrot, but it was before my
time in the field, so I’ll say no more about that. Also in 1982, Loren and the rest of
the distinguished crew at Pixar showed us the first MojoWorld (if I may be so pre-
sumptuous) on the big screen in the “Genesis Sequence” in Star Trek II: The Wrath
of Kahn. That blew our minds. In 1985 the late Alain Fournier came to UC Santa
Cruz to teach a course, “Modeling Natural Phenomena,” that changed my life and
set the course of my career.

Alain mentored me in the area and advised me in my master’s research. Later in
1985 Ken Perlin and Darwyn Peachey published twin papers that introduced the
procedural methods that have pretty much driven my entire career. Thanks, guys!
They had some really cool pictures in those papers; I saw a world of possibility (so
to speak) in their methods, and the rest is, well, history. In 1986 Dietmar Saupe
and Heinz-Otto Peitgen came to the UC Santa Cruz math department, and I took
Dietmar’s course “Fractals in Computer Graphics.” In 1987 Dietmar recommended
me to Mandelbrot for the job at Yale. (I always tell my students: “There’s no substi-
tute for dumb luck.”) In 1993 I finally graduated from Yale with a terminal degree—

578 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.10 Pleiades has all the major elements of a procedural fractal universe. Copyright ©
1996 F. Kenton Musgrave.

Team LRN

a Ph.D., but I prefer that other term for it—at the ripe old age of 37. Can you
say “professional student?” In 1994 Matt Pharr, Rob Cook, and I created the
Gaea Zoom computer animation (see Figure 16.3 and www.kenmusgrave.com
/animations.html). I believe it was the first MojoWorld with adaptive level of detail,
that is, a synthetic fractal planet that you could zoom in and out from, without nasty
artifacts described by obscure mathematics that I won’t go into here. Suffice it to say,
it’s not so easy to make a planet that looks good from both near and far, doesn’t
overload your computer’s memory, and renders in a reasonable amount of time. The
Gaea Zoom took two weeks to render on four supercomputers, so we weren’t quite
there yet in 1994. Finally, in 2001, we were. Hence MojoWorld launched that year—
it really couldn’t have been launched even a year earlier.

The Literature

And then there’s the track of explanations of fractal terrains. First came the technical
papers that even I never could really understand. Then came The Science of Fractal
Images in 1988 (which I even wrote a tiny part of), in which Richard Voss and
Dietmar Saupe cover everything you’d ever want to know about the mathematics of
these and other kinds of fractals. Next came our book, Texturing & Modeling: A
Procedural Approach, first edition in 1994, second in 1998, third edition circa 2003
in your hands now, by David Ebert, Darwyn Peachey, Ken Perlin, Steve Worley, and
me. In it I explain how to build fractal terrains from a programming perspective. Still
pretty technical, but the standard reference on how to program fractal terrains and
even entire MojoWorlds. And now there’s this little exposition, in which I’m trying
to explain it all to the nontechnical reader.

The Software

Last but not least, there’s the software track of the history of fractal terrains. For
some time there existed only the various experimental programs created by us aca-
demics. They couldn’t be used by the average person or on the average computer.
The first commercial software that included fractal terrains was high-end stuff like
Alias. I’m afraid I must plead ignorance of those high-end packages. I was just a
lowly graduate student at the time and, while I had access to some mighty fancy
computers to run my own programs on, we certainly couldn’t afford such top-of-
the-line commercial software, and they weren’t giving it away to university types like
us despite our constant and pathetic pleas of poverty and need.

A Bit of History of Fractal Terrains 579

Team LRN

The first affordable commercial fractal terrain program that came to my atten-
tion was Vistapro, around 1992. With its flight simulator interface for making ani-
mations, it was really cool. You can still buy Vistapro, although it’s a bit quaint by
today’s technological standards. Next, I believe, came Bryce 1.0, in 1994, written
primarily by Eric Wenger and Kai Krause for what was then HSC Software, then
MetaTools, then MetaCreations, now defunct. (Corel now owns the Bryce name
and is carrying the product forward.) Bryce 1.0 was Macintosh-only software and
mighty cool. It put a user-friendly interface on all the procedural methods that my
colleagues and I had been going on about in the academic literature for years, and
made it all accessible to the average home computer user. Since then, Animatek’s
World Builder and 3D Nature’s World Construction Set have released powerful,
semi-high-end products priced around $1000. Natural Graphics’ Natural Scene De-
signer, E-on Software’s Vue d’Esprit, and Matt Fairclough’s Terragen shareware pro-
gram have filled out the low end at $200 and less. Each product has its specialty;
each can create and render fractal terrains. Meanwhile, Bryce is up to version 5.0. I
personally worked on Bryce 4.0 for MetaCreations until December 1999, when
MetaCreations imploded. The very next day FractalWorlds, now Pandromeda, was
launched to make MojoWorld a reality. We’re the first to come to market with entire
planets with level of detail, thus opening the door to cyberspace.

Disclaimers and Apologies

So there’s Doc Mojo’s Close Cover Before Striking History of Fractal Terrains. Sure,
it’s biased. I worked for Mandelbrot. I come from the academic side and was camped
more with the mathematicians than with my real colleagues, the computer science/
computer graphics people. I’ve left out a lot of important contributions by friends
and colleagues like Gavin Miller, Jim Kajiya, and many, many more. I’m keeping it
brief here; if you want the exhaustive listing of who’s done what in the field, see the
bibliography of this book or my dissertation. And I must state that, although many
people think so, I am not a mathematician. Believe me, having a faculty office in the
Yale math department for six years drove that point home! My degrees are in com-
puter science. But I’m really a computer artist more than a computer scientist. My
contribution has been mostly to the artistic methods, ways to make our images of
fractal terrains more beautiful and realistic. I’m a mathematical lightweight; I just do
what I have to do to get what I want. And all my reasoning is visual: I think in terms
of shape and proportion, even if I do translate it into math in order to make my pic-
tures. To me all the equations just provide shapes and ways to combine them.

580 CHAPTER 20 MojoWorld: Building Procedural Planets

Team LRN

The Present and Future

The abstract of my 1993 doctoral dissertation ends with this sentence:

Procedural textures are developed as models of mountains and clouds, culminating in
a procedural model of an Earth-like planet that in the future may be explored interac-
tively in a virtual reality setting.

The planet model I was referring to is Gaea, seen in Figures 20.4 and 16.3, imple-
mented as a C language version of the “terran” texture presented in Chapter 15. In
MojoWorld we finally have the interactive planet I envisioned and an endless variety
of others as well. It’s still not quite what I’d call “virtual reality”—the real-time part
is just not that realistic. Yet. But getting there is just a matter of a lot of hardware
and software engineering.

Gertrude Stein once said of Oakland, California, “There’s no ‘there’ there.” If
that’s true for Oakland, I say it’s even more true of all implementations of virtual re-
ality up to now. MojoWorld, at last, puts the “there” there. This is the main thing
that’s fundamentally new about MojoWorld.

All other 3D graphics programs build the equivalent of stage sets. Stage sets are
designed to be viewed from a distance and at a given resolution, whether it’s that of a
TV camera, a movie camera, or the human eye. If you get too close, the flaws show.
(One problem TV studios face today is that the transition to high-definition, or HD,
video requires that they replace their studio sets. The ones that look fine with older
video technology won’t cut it with HD video: all the defects in the sets show—things
like dents and dings, coffee rings, and poor craftsmanship that are invisible at NTSC
resolution suddenly are clearly visible. I discovered the same thing early in my career
as a computer artist: images that looked great at screen resolution didn’t always look
so good when rendered at poster resolution.) Also, a set is always local: it is of finite
size, and if you get too far away, it ends. And generally, if you view it from the wrong
angle, the effect it’s designed to create breaks down. MojoWorld isn’t like that. You
can go anywhere. In MojoWorld, as Buckaroo Bonzai said, “Everywhere you go,
there you are.” You never run out of detail, and there’s always someplace new and
interesting to visit.

I think of MojoWorld as a window on a parallel universe, a universe that al-
ready exists, always has and always will exist, in the timeless truth of mathematical
logic. All we’ve done is create the machinery that reveals it and the beauty to be
found there. It’s been my great privilege to play a small part in the discovery/creation

A Bit of History of Fractal Terrains 581

Team LRN

of this possibility. It’s been my vision for years now to make this experience accessi-
ble to everyone. With MojoWorld, we’re on our way, and I, for one, am very excited
about that. I hope you enjoy it half as much as I will!

Now let’s get on to explaining how we build a MojoWorld so that you under-
stand the controls that you’ll be using.

BUILDING RANDOM FRACTALS
The construction of fractal terrains is remarkably simple: it is an iterative loop in-
volving only four important factors, one of which is generally a nonissue. First, we
have the basis function, or the shape that we build the fractal out of, by repeating it
at a variety of scales. Next there’s the fractal dimension, which controls the rough-
ness of the fractal by simply modulating the amplitude or vertical size of the basis

582 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.11 Southern Parfait Flood is another scene from the parallel universe we call the
“Mojoverse.” There are countless other such scenes of beauty and fascination waiting to be
discovered there. Copyright © 2002 Armands Auseklis.

Team LRN

function in each iteration (i.e., each time you go through the loop). Then there are
the octaves, or the number of times that we iterate in building the fractal. Finally, we
have the lacunarity, or the factor by which we change the frequency or horizontal
size of the basis function in each iteration. Usually, we leave the lacunarity at around
two and never think about it again. Let’s see what the effect of each of these four fac-
tors is and how they all fit together.

The Basis Function

The basis function is perhaps the most interesting choice you get to make when
building a random fractal, whether for terrain, clouds, water, nebulae, or surface
textures. The shape of the basis function largely determines the visual qualities of the
resulting fractal, so “choose wisely.” It’s fun to experiment and see the subtle and
not-so-subtle visual effects of your choice of basis function. I have certainly gotten a
lot of artistic mileage over the years through careful choice and modulation of basis
functions. And MojoWorld has plenty of basis functions, that’s for sure.

For obscure but important mathematical reasons, basis functions should (1)
have shapes that are not too complicated, (2) never return values smaller than −1.0
or larger than +1.0, and (3) have an average value of 0.0. As Mick once said, “You
can’t always get what you want,” but the basis functions in MojoWorld are designed
to obey these constraints in most cases.

The main thing to keep in mind about the basis function is that its shape will
show through clearly in the fractal you’re building. So your choice of basis function
is the most significant decision you make when building a fractal.

Fractal Dimension: “Roughness”

Fractal dimension is a powerful, if slippery, beast. I’ll leave mathematical explana-
tions to other texts. In MojoWorld we call it “Roughness.” For our purposes, just
think of the Roughness control as a slider that controls visual complexity. It does this
by varying the jaggedness of terrain, the wiggliness of coastlines, the raggedness of
clouds, and the busyness of textures. The Roughness control in MojoWorld is an
extremely potent control.1 Use it a lot! You’ll find it a powerful and subtle way to

Building Random Fractals 583

1. The way we’ve implemented it in MojoWorld, the Roughness control doesn’t necessarily have an ac-
curate relationship to the numerical value of the fractal dimension in the fractal you’re building, but that
doesn’t matter—the numerical value isn’t important to us in the context of MojoWorld, only the qualita-
tive effect we’re getting, which you can assess visually.

Team LRN

affect the aesthetics of your fractals. And don’t be surprised if you find yourself set-
ting its value via text entry, down to the third digit after the decimal point. It’s that
sensitive and powerful. Play with it and see.

Larger values make for rougher, busier, more detailed fractals (see Figure 20.12).
They tend to get visually “noisy” at values over about 0.5. I generally prefer to use
smaller values than most people, but, hey, it’s strictly a matter of taste.

Octaves: Limits to Detail

We call the number of times we iterate, adding in more detail, the octaves. Fractals
can have potentially unlimited detail. But that detail has to be built by the computer,
so it must have limits if you want your computation to finish. In nature, fractals are
always band-limited: there is a scale above which the fractal behavior vanishes (this
is even true of the largest structures in the universe) and a scale below which it also
goes away (as when we get to the scale of quantum physics). For mathematical rea-
sons, MojoWorld has to be in control of the number of times each sample of a fractal
goes through the construction loop. The explanation for why this is so is beyond the
scope of this presentation. (See Chapter 17 for details on this.) Suffice it to say that
controlling the number of times we go through the loop controls the amount of de-
tail, and the amount of detail required at a given point in the image depends on its
distance from the camera, the screen resolution, the field of view, and other, more
subtle factors as well. Furthermore, too much detail not only wastes computation
time, it also causes aliasing—nasty visual artifacts that we go to great lengths to
eliminate in MojoWorld. So, bottom line, MojoWorld has to control the number of
octaves in the fractals. That’s just the way it is.

We can, however, play games with the octaves. The Detail control can reduce
or increase the number of octaves, and hence the fine detail, in MojoWorld fractals.
Its effects can look pretty strange in animations and when you change the rendering
resolution, but it can keep your fractals from being annoyingly visually “busy”

584 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.12 Planets with fractal roughness of −0.5, 0.0, 0.5, 1.0, and 1.5.

Team LRN

everywhere, all the time. The Largest Feature Size and Smallest Feature Size controls
set the band limits to the fractal. You’ll get no more fractal detail above and below
these scales. You have to set the Largest Feature Size to something reasonable. Keep
in mind that it shouldn’t be any larger than the planet, or you’re just wasting compu-
tation time. The Smallest Feature Size can be left at zero. MojoWorld will eventually
decide that “enough is enough” and stop generating more detail, but you’ll probably
get tired of zooming in long before that.

Tip: If you build a terrain or texture that aliases in the high-quality MojoWorld ren-
derings, use the Detail control to reduce the number of octaves until the aliasing goes
away at the quality level you’re using.

Note: The MojoWorld RTR (real-time renderer) uses a very different sampling
method than the MojoWorld photorealistic renderer. It will usually suffer significant
to severe aliasing when viewing a planet from a distance, whereas the photorealistic
renderer will not.

Lacunarity: The Gap between Successive Frequencies

This one is usually a nonissue, but we’ve made it an input parameter in MojoWorld
just to be thorough, as you can get certain unique artistic effects using lacunarity.
When going through the iterative loop that builds the fractal, the frequency or lat-
eral scale of features must change at each iteration because that’s how we get fea-
tures at a variety of scales. The lacunarity determines how much the scale is changed
at each iteration. Since “scale” is in this case synonymous with “spatial frequency”
(of the features in the basis function), it’s easiest to think of the lacunarity as the gap
between successive spatial frequencies in the construction of the fractal. Indeed, “la-
cuna” is Latin for “gap.”

Usually, we double the frequency at each iteration, corresponding to a lacunarity
of 2.0. Musically, this corresponds to raising the frequency by one octave, hence the
term “octaves” for the number of scales at which we create detail. Why the value of
2.0 and not something else? Well, it has to be bigger than 1.0, or you go nowhere or
even backward. On the other hand, the bigger you make it, the faster you can cover
a given range of scales because you’re taking a bigger step at each iteration. Each it-
eration takes time, and when you’re building a planet, you have a big range of scales
to cover. So a clever person might think, “Well, then, just crank up the lacunarity!”
Not so fast, Bucko. It turns out that for lacunarity values much over 2.0, you start to
see the individual frequencies of the basis function. It just looks bad, as Figure 20.13

Building Random Fractals 585

Team LRN

demonstrates. Similarly, Figure 20.14 shows that lacunarities less than 2.5 pretty
much look alike, although close inspection will reveal artifacts at 2.7. We’ve gone
with a default lacunarity just over 2.2 in MojoWorld, to eek out a little more speed.
If you want images that are as good as they can be, I’d recommend a value more like
1.9.2 My best advice: Don’t mess with lacunarity until you really know what you’re
doing.

586 CHAPTER 20 MojoWorld: Building Procedural Planets

2. For obscure technical reasons, it’s best not to use a lacunarity of exactly 2.0, but something close to it,
like 1.9 or 2.1. Transcendental numbers are best. MojoWorld’s default is the natural logarithm e minus
one-half, or 2.718 . . . −0.5 = 2.218. . . . You might try changing the 2 after the decimal point to 1.
Keep in mind you should set your lacunarity permanently before you use your fractal because changing
it will change all the features except those on the largest scale, and this could completely disrupt some
specific feature in your MojoWorld that you’ve become interested in.

FIGURE 20.13 Planets made with a Perlin basis and lacunarities of 2.7, 5.0, and 10.0.

FIGURE 20.14 Planets made with a Perlin basis and lacunarities of 1.5, 1.9, and 2.7.

Team LRN

ADVANCED TOPICS
That covers the fundamentals of where MojoWorld comes from and how it works.
Now we’ll go into some of the more esoteric aspects of MojoWorld.

Dimensions: Domain and Range

The various functions used to create textures and geometry (for example, moun-
tains) in MojoWorld are implemented in several dimensions. What does this mean?
Pay close attention, as this can be a little confusing and even counterintuitive. A
function is an entity that maps some input, called the domain of the function, to
some arbitrary output, called the range. Inside the MojoWorld program, the domain
and range are all a bunch of numbers. As users, we usually think of the output as
color, the height of mountains, the density of the atmosphere, and other such things.
We also think of the input as things like position in space, altitude, and color, too, or
as numbers like the ones we can type into the UI.

Both the domain and range of functions have dimensions. One dimension corre-
sponds to a line, two to a plane, three to space, and four to space plus time. When
you’re creating a new function in MojoWorld, you’ll sometimes have to choose the
dimensionality of the domain of the function. This seems a little backward, as what
you’re really interested in is the dimensionality of the output, or the range of the
function. Here’s the catch: you can’t have meaningful output of dimensionality
greater than that of the input. There’s just no way to make up the difference in infor-
mation content.

Usually, we’re working in three dimensions in MojoWorld, so that’s the correct
default choice to make when you’re confronted with this decision. But, in general,
every added dimension doubles the time required to compute the function. So you
want to use as few dimensions as you can get away with. You might also want to
do some special effects using lower dimensions, like determining the climate zones
of your planet (implemented as a three-dimensional texture) by latitude (a one-
dimensional variable). Figure 20.15 illustrates MojoWorlds made from the same
function, with domains of one, two, and three dimensions.

MojoWorld also has a full complement of functions with four-dimensional do-
mains “under the hood.” These will be useful for animating three-dimensional mod-
els over time to simulate things like continental drift and billowing volumetric clouds.
The user interface for animation is a complicated thing, however, so we decided to
leave it for a future version of MojoWorld, when we’ve had time to do it right.

Advanced Topics 587

Team LRN

Hyperspace

You may have noticed that we go on about hyperspace a lot in our MojoWorld pro-
paganda. Hyperspace is whenever you go up one dimension: a plane is a hyperspace
to a line, and three dimensions is a hyperspace to a plane. Add time to space, and
you have a hyperspace to the three dimensions we’re most familiar with. Well, it’s re-
ally easy to keep adding more dimensions. Take the three dimensions of space and
add a color, for example. Because the human eye has three different color receptors
in the retina, one each for red, green, and blue light, human vision has three color di-
mensions—hence the RGB color space used in computer graphics. (Some birds have
six; they live in a world with far richer color than we monkeys.) It takes three values
to specify a color for the human eye: one each for red, green, and blue. Each is inde-
pendent—part of the definition of a dimension. From www.dictionary.com:

dimension: . . . 4. Mathematics. a. One of the least number of independent coordinates
required to specify a point in space or in space and time.

In our example we have three dimensions for space and three for color, for a total of
six dimensions. Presto—a hyperspace! Not hard to do at all, eh?

Now think for a minute of all the values you may assign to make a
MojoWorld—things like planet radius, sea level, color, atmospheric density, fractal
dimension, and so on. For an interesting planet, there’ll be hundreds, even thousands
of variables involved. From a mathematical standpoint, each independent variable
adds another dimension to the space that the planet resides in. The more compli-
cated the MojoWorld, the higher the dimensionality of the space it resides in. Each

588 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.15 Planet made from a sine function with one-, two-, and three-dimensional domains.

Team LRN

lower-dimensional space, as for the same MojoWorld with one less color specified, is
called a subspace in mathematics. And, of course, each higher-dimensional space is
a hyperspace. There’s no limit to the amount of complication you can add to a
MojoWorld, and so there’s no limit to the dimensionality of the master MojoWorld
hyperspace. Pretty mind-bending, ain’t it? I certainly think so!

The variables used to specify a MojoWorld are called parameters. So the master
hyperspace spanned by the possible parameters is rightly called Parametric Hyper-
space. (We took out a trademark on the name because that’s what corporations
do.) It’s simply the most succinct and accurate way to think and talk about how
MojoWorld works. A pure MojoWorld scene file, uncomplicated by content such as
plants, cities, monkeys, and the like, needs only encode the numbers that specify the
parameter settings. Everything else is generated at run time from these values. This
set of parameter values specifies the point in Parametric Hyperspace where the
MojoWorld resides. Load them into MojoWorld, and MojoWorld “beams” you
there—hence we call them transporter coordinates. Very sci-fi, but very scientifically
and mathematically accurate. MojoWorld Transporter let’s you beam yourself to
these places and explore them in three dimensions. If you want access to all of

Advanced Topics 589

FIGURE 20.16 At the Edge illustrates the kind of beautiful surface textures that can be built using
the procedural texture engine that is the heart of MojoWorld. Copyright © 2002 Allison Morris.

Team LRN

Parametric Hyperspace, however, and have the ability to mess with all of the param-
eters, you need MojoWorld Generator.

The Basis Functions

MojoWorld has by far the richest set of basis functions ever seen in a random fractal
engine, so don’t be surprised to find the choices a bit bewildering at first. They’re all
based on methods from the academic literature in computer graphics. If you’re an
advanced graduate student in the field, they should all be familiar. If you’re not,
don’t worry—not everyone needs a Ph.D. in computer graphics! (Very few do, in-
deed.) You can familiarize yourself with the choices by least two routes: you can
plunge right into the lists of basis functions and their controlling parameters in the
MojoWorld Texture Editor, or, if you’re less patient and intrepid (like myself), you
can keep examining the way various MojoWorlds that you like have been built and
note the basis functions used in fractals that you particularly like. The variety of ba-
sis functions available in MojoWorld far surpasses anything I, personally, have ever
had before, and it will be a long time—probably never—before I get around to trying
every basis function that’s possible in there. In fact, once you get to distorting or ap-
plying curves to the basis functions, the possibilities are basically infinite, so no one
will ever try them all.

Because there are so many, I’m not going to try to describe all of MojoWorld’s
basis functions here. Rather, I’ll describe the basic classes into which they fall and the
fundamental visual qualities of each.

Perlin

The best and fastest basis function, in general, is a Perlin noise. Ken Perlin intro-
duced this famous basis function in his classic 1985 SIGGRAPH paper “An Image
Synthesizer,” and it’s the basis function that launched a thousand pictures (and my
own career). Ken—and everybody else—calls it a “noise function.” In the context of
fractal mathematics this term is rather misleading, so in MojoWorld we call Perlin
noise a “Perlin basis.” At any rate, there are several flavors of the Perlin basis, and
we have them all in MojoWorld, plus a new one.

The Perlin basis consists of nice, smooth, random lumps of a very limited range
of sizes. Its output values range between −1.0 and 1.0. It’s ideal for building smooth,
rounded fractals, such as ancient, heavily eroded terrains as seen in Figures 16.2 and
18.2. One of everyone’s favorite terrain models is the so-called “ridged multifractal”
seen in Figure 20.18. It looks completely unlike an ordinary Perlin fractal but is

590 CHAPTER 20 MojoWorld: Building Procedural Planets

Team LRN

closely related: it’s made by taking the absolute value of the Perlin basis—that is, by
changing the sign of all negative values to positive—and turning that upside down.
Figure 20.19 shows visually how this process works. The result is a basis that has
sharp ridges. You can use it in a monofractal function to get terrain, as seen in Figure
20.20, or in a multifractal to get terrain, as in Figure 20.18.

Voronoi

The Voronoi, or “cellular,” basis functions are cool and useful, but slow. Steve
Worley introduced the Voronoi basis in his 1996 SIGGRAPH paper (Worley 1996).
It has a cell-like character, kind of like mud cracks with pits drilled into the middle
of each tile of the mud (see Figure 20.21.) The pits are conical when you use the
“distance” contour and rounded (actually, parabolic) when you use the “distance
squared” contour. The mud tiles are flat plateaus of random height when you use the
“cell ID” contour. The value of the Voronoi basis at a given sample point derives
from the distance of that sample point from a random point in space, called the
“seed,” and one or more of its neighbors in a stored set of seeds. There is a ridge at
the perpendicular bisector of the line between the random point and the chosen
neighbor. That neighbor can be the first, second, third, or fourth closest neighbor to
the point. You don’t have to worry about which number you choose; rather, just
look at the quality of the resulting texture and choose one you like. You can also

Advanced Topics 591

FIGURE 20.17 A planet with relief from a Perlin basis.

Team LRN

FIGURE 20.18 Emil is a terrain made from a ridged multifractal, a variety of Perlin fractal.
Copyright © 1996 F. Kenton Musgrave.

Team LRN

choose the differences between the first and second, second and third, or third and
fourth neighbors. Again, figure out what that means only if you want to; otherwise,
just examine the quality of the texture you get and choose one you like for aesthetic
reasons.

Voronoi basis functions have ridges like the ridged Perlin basis, only they’re all
straight lines. Usually, you’ll want to apply a fractal domain distortion to Voronoi
fractals, to make those straight lines more natural (read: wiggly).

Sparse Convolution

In 1989 John Lewis introduced the sparse convolution basis: the slowest, technically
“best,” and most flexible of all (Lewis 1989). I’d say its time has not yet come—we
simply need faster computers before this basis is going to be practical. But I’m

Advanced Topics 593

y

x

x

x

FIGURE 20.19 Building a ridged basis function from a Perlin basis: the Perlin basis, its absolute
value, and one minus the absolute value.

Team LRN

FIGURE 20.20 Slickrock is a monofractal built from a ridged Perlin basis. Copyright © 1993
F. Kenton Musgrave.

FIGURE 20.21 Planets made from the Voronoi basis, first neighbor. “Distance” Voronoi on the left,
“distance squared” on the right. “Distance” has conical pits; “distance squared” has smooth pits.

Team LRN

personally obsessed with basis functions and I wanted it in there, so I put it in there.
And to my surprise, people are using it! (See Figure 20.22.)

The sparse convolution basis generates random points in space and splats down
a convolution kernel around those points. (That funny name comes from some
more pointy-headed math terminology.) The kernel can be literally anything. In
MojoWorld version 1.0 it can be a simple, radially symmetric shape that you choose
from a list of options or building the curve editor. In later versions, we’ll get into
some bizarre and powerful kernels like bitmaps. Personally, I look forward to build-
ing planets out of Dobbsheads.

Various

Then there are the various other basis functions that I’ve thrown in for fun. See if
you can find a creative use for them! Some of you may wonder why I haven’t in-
cluded some of the ones found in other texture engines such as Bryce’s (which was
written by Eric Wenger and myself). Well, some of those “noises” are really textures,
not basis functions. You can obtain similar results, with far more flexibility, using
MojoWorld’s function fractals, which will build a fractal from whatever function
you pass to them—and probably alias like crazy while they’re at it. Such aliasing
is why many things that are used as basis functions in Bryce shouldn’t be used for
that. Others, like Eric’s “techno noise,” don’t lend themselves to the level-of-
detail schemes used in MojoWorld. As a rule, for deep mathematical reasons that I

Advanced Topics 595

FIGURE 20.22 A planet made from the sparse convolution basis, using a cone for the kernel.

Team LRN

won’t go into here, basis functions should be visually simple. So all of MojoWorld’s
basis functions are—with the exception of sparse convolution when using a com-
plex kernel. Keeping to this constraint of simplicity, here are a few more basis
functions.

First there’s the venerable sine wave. As a function of more than one variable, it’s
a little ambiguous what a sine wave should be. In MojoWorld we multiply sine
waves along the various dimensions. As the sine function is periodic, anything built
using the sine basis will be periodic (see Figure 20.23). Periodic phenomena are quite
common in nature, but they tend to look unnatural in synthetic images. Nature can
get away with things that we can’t.

The linear basis function is a simpler version of the simplest Perlin basis. It uses
linear interpolation of random offsets, rather than the smooth cubic spline used in
the Perlin bases. It will give you straight, sharp creases (see Figure 20.24). Not very
natural-looking, but I’m sure someone will find a use for it.

The steps basis is simpler still: it’s just a bunch of random levels in a cubic lattice
(see Figure 20.25). And then there’s the procedural texture that any student of com-
puter graphics programs first: the common checkerboard. In MojoWorld, the check-
erboard basis alternates between 1.0 and −1.0. The little sawtooth artifacts you see
on the cliff faces in the steps and checkerboard planets (Figures 20.25 and 20.26) are
the micropolygons that compose them. They can be made smaller, at the expense of

596 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.23 A planet made from a 3D sine
basis.

FIGURE 20.24 A planet made from the linear
basis function.

Team LRN

longer render times, but they’ll never go away completely. Discontinuous basis func-
tions like these are mathematically evil. And so they really shouldn’t be used, but
what the heck, MojoWorld is for play as well as serious work, so not everything has
to be perfect.

The Seed Tables

Here’s another MojoWorld first. Call me a noise dweeb, a basis function junkie, or
just plain ill advised, but . . . “I just had to.” The Voronoi and sparse convolution ba-
sis functions are built from tables of random points in space. It just turns out that
there are many forms “random” can take. (Take a class in probability or statistics
and learn to hate them.) So I implemented a mess of different ones and whacked ’em
into MojoWorld.

Look at them closely and try to distinguish the subtle visual differences between
them (see Figure 20.27). In general, the ones with larger numbers have a denser spa-
tial distribution. The ones with “uniform distribution” are more dense in some areas
and less dense in others—more heterogeneous, in a word. Uniform distribution
means that each cell has an equal probability of having any of the possible range of
seeds per cell in each cell. Thus the “0–2 per cell, uniform distribution” seed table
has cells that have zero, one, or two seeds per cell, with equal probability of each.

Advanced Topics 597

FIGURE 20.25 A planet made from the steps
basis function.

FIGURE 20.26 A planet made from the
checkerboard basis function.

Team LRN

The seed tables with “Gaussian distribution” are more subtle: there is a higher prob-
ability of a given cell having the middle of the possible number of seeds per cell than
the greatest or smallest possible number. This is the good old “bell curve” that statis-
ticians are so fond of. So the “0–4 per cell, Gaussian distribution” seed table will
have mostly cells with two seeds each, very few with zero or four seeds, and an inter-
mediate number of cells with one or three seeds.

At any rate, just evaluate the seed tables visually and use them if you like, or just
ignore them—they are a very advanced feature for subtle effects. Figure 20.28 illus-
trates some of the extremes in the visual consequences available with different ran-
dom seed tables. Note that even these “extremes” are only subtly different; there are
other tables with intermediate values to make the possible transitions all but imper-
ceptible. A few perfect masters of MojoWorld will someday find these subtle differ-
ences useful, I predict.

598 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.27 The distributions of seeds in the 11 seed tables available in MojoWorld: 1, 2, 3, and
4 seeds per cell; 0–1, 0–2, 0–3, and 0–4 seeds per cell, uniform distribution; and 0–2, 1–3, and 0–4
seeds per cell, Gaussian distribution.

Team LRN

Monofractals

Much like the various possible distributions of random numbers I just glossed over
so quickly, there are even more complicated mathematical measures that character-
ize the randomness in random fractals. I’ll do my best to simplify and clarify the
complicated and obscure here, so please bear with me.

Early fractal terrains were derived from a mathematical function called frac-
tional Brownian motion (fBm). fBm is a generalization of Brownian motion, which

Advanced Topics 599

FIGURE 20.28 Planets made from Voronoi first neighbor with, going clockwise from upper left,
seed tables with 1 seed per cell; 4 seeds per cell; 0–4 per cell, uniform distribution; and 0–4 per
cell, Gaussian distribution.

A-

Team LRN

you may remember from your high school science classes: Brownian motion is the
random walk of a very small particle being jostled about by the thermal motions of
the much smaller particles comprising the fluid in which it is suspended. It’s a lot like
the random walk of an aimless drunk staggering about on a flat plain. fBm has a
bunch of specific properties, and foremost among them is its uniformity: it’s designed
to look the same at all places and in all directions.3 You can think of it as “statisti-
cally monotonous”—hence the name monofractal.

This was a good start, and variations on fBm, generated from a variety of differ-
ent basis functions, remain the standard random fractal used in MojoWorld and
other fractal programs that create models of natural phenomena like mountains,
clouds, fire, and water (see Figure 20.29).

Multifractals

Real terrains are not the same everywhere. Alpine mountains can rise out of flat
plains—the eastern margin of America’s Rocky Mountains being a conspicuous
example. Early in my work with Mandelbrot, I wanted to capture some more of

600 CHAPTER 20 MojoWorld: Building Procedural Planets

3. In math lingo, this property is called statistical stationarity.

FIGURE 20.29 A planet made from monofractal fBm, a Perlin basis, and roughness of 0.3, with and
without “oceans.”

Team LRN

that kind of variety in fractal terrains, without complicating the very simple mathe-
matical model that gives us fBm. As usual, I was reasoning as an artist, not a mathe-
matician. I had some ideas about how the fractal dimension, or roughness, of terrain
should vary with altitude and slope. For example, I knew that lakes fill in with sedi-
ment and become meadows as geologic time passes, so I thought, “Low areas should
remain smooth, while peaks should be rough.” Interestingly, the opposite appears to
be more common in nature, but what the heck, I was working in a dark closet (no
kidding) in the Yale math department at the time, so I was just working from mem-
ory, not active field work. I fiddled with my math—more, with my programs that im-
plemented the math.

In order to escape Yale with my Ph.D. and not get roasted like a pig on a spit at
my thesis defense, I tightened up my descriptions of these multifractal functions and
did some interesting experiments that led to dead ends, from the standpoint of my
ultimate goal, making MojoWorlds. I did get a little attention from some physi-
cists interested in multifractals, which I thought was cool, as an artist. At any rate, I
packaged up the two best-behaved multifractals I had devised and stuck them in
MojoWorld.

“What do I care?,” you ask. Well, monofractals get pretty boring pretty fast be-
cause they’re the same everywhere, all the time. Multifractals are a little more inter-
esting, visually: they’re not the same everywhere. They’re smoother in some places
and rougher in others. Nature, of course, is far more complex than this, but hey, it’s
a second step in the right direction. In general, I use multifractals for my terrains and
usually use monofractals for clouds and textures.

The Heterofractal Function

The first of the two multifractal functions in MojoWorld I call heterofractal. Its
roughness is a function of how far it is above or below “sea level” (where it tends to
be quite smooth and boring). You can add in another function to a heterofractal ter-
rain to move the terrain around vertically, so that the smooth areas don’t always oc-
cur at the same altitude (see Figure 20.30).

The Multifractal Function

The second of the two multifractal functions in MojoWorld is simply named multi-
fractal. Back when I was still trying to figure out the Byzantine mathematics of multi-
fractals, as in my dissertation and the first edition of this book, I called this

Advanced Topics 601

Team LRN

function a “hybrid multifractal,” for technical reasons. What I was then calling
“multifractal” turned out to be a dead end, for practical purposes, so I’ve since
promoted “hybrid multifractal” to “multifractal” in my personal lexicon, and in
MojoWorld’s, by transitivity. It’s a good workhorse and my first choice for terrains
on a planetary scale most every time (see Figure 20.31).

Function Fractals

A fractal consists of some form repeated over a range of scales. There is no inherent
restriction on what that form might be. In the good, safe practice of image synthesis,
however, there are some fundamental restrictions. More math being glossed right
over: There is a highest spatial frequency that can be used when synthesizing images
on the computer. There is a mathematical theorem that tells us what that highest fre-
quency is—the Nyquist sampling theorem. Frequencies higher than that limit, the
Nyquist limit, will alias (turn into undesirable artifacts) in our images. The upshot:
You don’t want to go building fractals out of just anything; you really want to know
what the highest spatial frequency is in your basis function. But we know you most
likely care more about making interesting pictures than hearing about mathemati-
cal limitations. Hence we have function fractals in MojoWorld (see Figure 20.32).
Rather than limiting you to using the carefully crafted basis functions built by well-

602 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.30 Planets made from a heterofractal with a Perlin basis and an “ocean” sphere at sea
level. Straight heterofractal on the left, heterofractal plus a random vertical displacement on the
right.

Team LRN

informed professional engineers, with function fractals you can build them out of
whatever ill-informed, ill-advised basis function you can come up with.

But be warned, there are two predictable consequences of using function frac-
tals: First, they will tend to be slow. The arbitrary basis function you put in may al-
ready be a fractal that requires thousands of CPU cycles to evaluate. Repeat that at a

Advanced Topics 603

FIGURE 20.31 Planets made from multifractal 3 with a Perlin basis and a smooth sphere at sea
level. Straight multifractal on the left, multifractal plus a random vertical displacement on the
right.

FIGURE 20.32 A planet made from a 3D function fractal.

Team LRN

hundred different scales, and rendering your image will redefine the word “slow.”
Second, such fractals are very likely to alias badly. Such aliasing will usually look
kind of like sandpaper in a still image—not too evil. But when you animate it, it can
sizzle in a most annoying way. Also, the way MojoWorld is designed, if you have
aliasing anywhere in your image, you’re likely to have it everywhere, whereas in or-
dinary 3D graphics software aliasing generally increases with distance.

Don’t say we didn’t warn you. But then, we have a motto here at Pandromeda:
“Give ’em enough rope.”

Domain Distortion

When I first started playing with procedural textures like we’re using in MojoWorld,
one of the first things I tried is distorting one texture with another. Because we ac-
complish this by adding the output of one fractal function to the input of another, we
call it domain distortion. Imagine a function with a one-dimensional domain, say,
the sine wave. Undistorted, it looks like Figure 20.33.

Imagine adding the cosine to x before we pass x to the sine function. What we’re
computing is then not the sine of x, but the sine of x plus the cosine of x. As the value
of the cosine function varies from −1.0 to 1.0 and is added to x, it has the effect of
displacing the x value that gets passed to the sine function, moving it back and forth
from its undistorted value (see Figure 20.34). Distorting the input of a function has
the effect of distorting the output. We see such a result in Figure 20.35.

Of course, this example is what mathematicians call “trivial.” It’s just to illus-
trate the process simply and clearly. Domain distortion in MojoWorld will generally
involve more complex functions and take place in higher dimensions, but the way it’s
done is exactly the same. Figure 20.36 shows planets made from an undistorted
fractal and the same fractal with domain distortion. The domain distortion has the
effect of stretching the distorted texture out in some places and pinching it together
in others.

MojoWorld’s Texture Editor allows domain distortion both to the basis func-
tions and to the aggregate fractal. For efficiency and to avoid severe aliasing, basis

604 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.33 An undistorted sine wave: y = sin(x).

x

Team LRN

Advanced Topics 605

x

y y y

(a) (b) (c)

x

FIGURE 20.35 A distorted sine wave y = sin(x + cos(x)).

FIGURE 20.36 A planet with undistorted and distorted fractal relief.

FIGURE 20.34 (a) The undistorted domain y = x, (b) a distortion function y = cos(x), and (c) the
distorted domain y = x + cos(x).

Team LRN

functions can only be distorted with other basis functions. On the other hand, fractal
functions can be distorted with other fractals—indeed, with any function. There are
at least two reasons for the two being treated differently. The first is that, for three-
dimensional functions, the distortion function is three times as expensive to evaluate
as the distorted function. This is because the distortion function has to be evaluated
once for each of the three input dimensions to the distorted function, while the dis-
torted function only has to be evaluated once, using that distorted three-dimensional
input. The second is that the distortion function has to be evaluated once per octave
of the distorted function, in the case of distortion applied to the basis function, but
only once for distorting the aggregate fractal. As MojoWorld is churning through
around 25 to 30 octaves—and potentially many more—when you’re down close to
the surface of a planet, performing anything other than simple distortion on a per-
octave basis is simply not computationally practical—yet. No doubt it will become
so in years to come, with faster computers, but it will still present aliasing problems.

Distorted Fractal Functions

You can use domain distortion to make long, linear mountain ranges in the areas
where the distorted texture, stretched in one direction and pinched in the other. But
when you zoom in to those mountains, it’s not very realistic to have all the little de-
tails stretched and pinched in the same way—real mountains just don’t look like
that. So I borrowed an idea from turbulent flow, viscous damping, to get around
that. Turbulent flow is damped, or slowed, by viscosity in the fluid at small scales.4

Since domain distortion is kind of like turbulence, I thought, “Why not do the same
thing with the domain distortion? Taper it off at smaller scales.” So MojoWorld has
what I call distorted fractal functions available in the Graph Editor, or Pro UI. These
are complicated little beasts—definitely a very advanced feature. Beginners will find
them hopelessly confusing, I fear. But they have two fields, onset and viscosity, in
which you can specify where the viscous damping begins and is total (no distortion),
respectively. The scales are specified in meters, the default unit of scale in MojoWorld.

Crossover Scales

This idea of scales, for the onset of viscosity and where viscous damping is complete,
leads to our next and last advanced feature in MojoWorld fractals: crossover scales.

606 CHAPTER 20 MojoWorld: Building Procedural Planets

4. “Small” is a relative term here; the scales at which viscosity damps turbulence depends on the viscos-
ity of the turbulent fluid, which can be anything from molten rock, as in plumes in the Earth’s mantle, to
the tenuous gas in a near-perfect vacuum that we see in Figure 20.6.

Team LRN

A crossover scale is simply a scale where the behavior of a fractal changes. The sim-
plest examples are the upper crossover scale and lower crossover scale, above and
below which fractal behavior vanishes.

MojoWorld has such crossover scales. There’s always a largest feature size for
any MojoWorld fractal, and if you don’t explicitly set a lower crossover scale,
MojoWorld will eventually say “enough” and quit adding detail. (That limit is up to
the MojoWorld programmers.) In the distorted fractal functions we employ another
kind of crossover scale, in another very advanced MojoWorld feature. I figured that
zooming in on a single fractal, from the scale of continents to that of dirt, is neither
very interesting nor realistic. In Nature, the character of terrain is different at differ-
ent scales. So, in MojoWorld’s distorted fractals, I included the ability to use dif-
ferent basis functions at different scales. You can use up to three different basis
functions in these fractals. When you use more than one, you have to specify the
scale, in meters, where the crossover between basis functions begins and ends. It’s
not easy to show how this works, other than in an animated zoom. So please accept
my apologies; no illustration here.

Driving Function Parameters with Functions

One of the most powerful features of the MojoWorld Graph Editor, or Pro UI, is the
ability to drive the value of almost any parameter of any function with the output of
any other function. This can give some really wild and complicated results! Once
you’ve become an advanced MojoWorld user, I recommend going into the Pro UI
and playing with this. (It will probably be hopelessly confusing until you learn to
think in the new, purely procedural MojoWorld paradigm.)

For example, using a “blend” node you can easily make a texture whose color is
white above a certain altitude—the snow line. But a straight, horizontal snow line is
not very natural-looking. So you might create an “add” node, with “altitude” as one
input and a fractal as the other. The add node is then a function with inputs and an
output. You can hook the output of the add node to the parameter that controls
where the blend node makes the transition to white. Now the snow line will be
fractal and quite natural-looking!

A potent hidden aspect of the MojoWorld Graph Editor is that each node knows
the dimensionality of the input it needs. All nodes will automatically provide output
of the dimensionality requested by the parameter they are hooked into. Note that
this doesn’t free the user from having to make the right choice of dimensionality for
certain function modes, as MojoWorld can’t know what kind of effect you’re out to
create, and so it can’t always make the choice for you.

Advanced Topics 607

Team LRN

USING FRACTALS
I’ve talked a lot about fractals and all their wonderful complexities in MojoWorld.
Now let me talk a little about the specific uses for fractals.

Textures

Perhaps the main use for fractals in MojoWorld is in surface textures. Sure,
MojoWorld can create some very complex geometry, but you can still get most of
your interesting visual information from textures applied to surfaces. The proce-
dural methods used in MojoWorld were originally designed by Darwyn Peachey and
Ken Perlin for creating such surface textures. You can create some really beautiful ef-
fects in color alone, using fractal procedural textures. See Figures 20.37 and 20.38
for examples from MojoWorld.

608 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.37 This MojoWorld texture study by Jonathan Allen illustrates the kind of complex and
abstract beauty that can issue from procedural textures. Copyright © 2002 Jonathan Allen.

Team LRN

The development and artful use of fractal textures has pretty much made my ca-
reer. Such texture functions can be used to control surface color, shininess, displace-
ment, transparency—you name it. Pretty much everything that makes a MojoWorld
interesting and beautiful is some form of a fractal procedure, or procedural texture.
That’s why the Texture Editor is the very heart of MojoWorld. Doc Mojo’s advice:
Spend time mastering the Texture Editor. It is by far the most powerful tool in
MojoWorld.

Terrains

Even the terrains that comprise a MojoWorld’s planetary landscape are just proce-
dural textures, used in this case to determine elevation. For consistency, the terrain

Using Fractals 609

FIGURE 20.38 Another MojoWorld texture study: Complex behaviors result from fractals
constructed from different basis functions, blended using various combination modes, with surface
displacements for additional subtle detail. This and all the MojoWorld images in this chapter can
be reproduced from the mjw files available at this book’s Web site.

Team LRN

texture is evaluated on the surface of a sphere of constant radius, and the result is
used to raise or lower the planet’s terrain surface. The multifractal functions in
MojoWorld were originally designed for modeling terrain, so I recommend using
them when you’re creating the terrain for a MojoWorld.

Displacement Maps

MojoWorld also features displacement maps—textures that can actually displace the
surfaces they’re applied to. Yes, a MojoWorld is just a displacement-mapped sphere.
But the algorithm used to displace the planet’s surface is a special one, designed
for speed (at the expense of memory). There are two consequences to this: First, you
can make displacement-mapped spheres for moons, but you can’t zoom into them
like you can a MojoWorld. (Well, you could, but the renderer would crawl to a
halt, as you got close. We’ll fix this in a future version.) Second, you can do lateral
displacements on the MojoWorld terrain to get overhangs. Figure 20.39 shows an
example of this. This is a majorly cool feature of MojoWorld, although extreme

610 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.39 Peeking demonstrates an extreme example of displaced displacements in
MojoWorld: first, the planet sphere is displaced using sparse convolution to create the spires, then
a Voronoi-based displacement material is applied to the surface, creating overhangs on the near-
vertical surfaces. Copyright © 2002 Irene Alora.

Team LRN

displacements can throw MojoWorld’s photorealistic renderer, producing unpredict-
able artifacts. MojoWorld’s real-time renderer can only handle one displacement—
that of the terrain on the planet sphere—so such lateral displacements aren’t visible
there at all.

Clouds

MojoWorld 1.0 Near Space only has two-dimensional clouds, mapped onto spheres
concentric with the planet. You can put any texture you like on those spheres to rep-
resent your clouds. (You can do some really wild clouds—go for it!) Future ver-
sions will have full volumetric three-dimensional clouds. “We have the technology.”
See the “Great Balls of Fire” section of my Web site—www.pandromeda.com
/musgrave—for some animated examples of what I’ve done in the past. We’ll include
those and more in future versions of MojoWorld.

More exciting still, in a future version we’ll put in four-dimensional clouds. This
will allow you to animate volumetric clouds over time. That will be fun!

Planets

Obviously, MojoWorld is an exercise in modeling entire planets with fractals. The
possibilities are endless. I’m looking forward with great anticipation to seeing what
people create and find in Parametric Hyperspace. They’re all out there, virtually, just
waiting to be discovered. Figure 20.40 is one of may favorite early examples.

Nebulae

Figure 20.6 illustrates rather convincingly that astrophysical nebulae can be fractal
in nature. Figure 20.41 illustrates an early experiment of mine in modeling with a
multifractal texture—interstellar dust clouds like we see in the dark lanes in the
Milky Way.

Planets reside in solar systems, solar systems in galaxies, and galaxies in clusters.
In future versions of MojoWorld we plan to model all these things. Volumetric nebu-
lae are something we’re all looking forward to seeing, playing with, and zipping
through!

THE EXPRESSIVE VOCABULARY OF RANDOM FRACTALS
People often ask me, “Can you do people with fractals?” The answer is no. Not ev-
erything is fractal. People don’t look the same on a variety of scales (although parts
of us, like our lungs and vascular systems, do). There is a limit to what can be done

The Expressive Vocabulary of Random Fractals 611

Team LRN

FIGURE 20.40 Planet Copperwine is probably my favorite early MojoWorld image. The fantastic
terrain, colors, moon atmosphere, clouds, and sea all make this a world that calls to me in a deep
way. Copyright © 2001 Armands Auseklis.

FIGURE 20.41 A multifractal texture as a model of the Milky Way.

Team LRN

with fractals. We can do a lot, but certainly far from everything. MojoWorld is de-
signed to do most of what can be done with random fractals today. So while we can’t
do everything we’d ever want to do in MojoWorld, what we can do will keep us busy
and entertained for some time to come. MojoWorld reveals a rich, new creative
space for us to explore, and that exploration will keep us entertained for the rest of
my life, I’m quite certain.

EXPERIMENT!
Get in there and experiment. Although Parametric Hyperspace as spanned by
MojoWorld version 1.0 certainly doesn’t include every world we’d ever like to see
and explore, it does span an infinitely vast virtual universe, much larger in fact than
the one we inhabit, simply because it has so many dimensions. Get in there and find/
create cool images/places and share them with the rest of us! You never know:

Experiment! 613

FIGURE 20.42 Dale—Winds of Interference illustrates a MojoWorld—derived from Planet
Copperwine—that calls for exploration, imaging, and perhaps colonization. Copyright © 2002
Armands Auseklis.

Team LRN

planets are big places; someone else is very likely find a more beautiful view on a
planet you’ve created than any you’ve yet found. If you become a master builder of
MojoWorlds, you won’t have the time you need to explore them properly. You’ll
need help. We foresee at least two kinds of MojoWorld users: creators and explorers.
The creators will do the work of constructing new planets, while the explorers will
be the landscape photographers, the journalists who find and document in images
the beauty in these worlds. A true team effort—that’s another fun aspect of
MojoWorld.

THE FUTURE
We’ve put into MojoWorld everything I can think of that’s practical and even a few
things—like the “distorted fractal” functions—that probably aren’t. Yet. What’s
practically doable on your home computer is a fast-moving target: they get faster at
an amazing rate. We’ve designed MojoWorld to push the state of the art. And

614 CHAPTER 20 MojoWorld: Building Procedural Planets

FIGURE 20.43 The parallel universe of Parametric Hyperspace is a place where your imagination
can run wild. Charon is an example of the kind of place that you can construct/find there.
Copyright © 2002 Armands Auseklis.

Team LRN

MojoWorld can bring any processor in the world to its knees quite easily. Of course,
we have other algorithms like radiosity (superaccurate illumination calculations),
physically based erosion, and fluid dynamics that we could stick in MojoWorld, just
in case we need to slow things down some more.

The Holy Grail we seek is virtual reality. Not the lame, anything-but-real stuff
we’ve seen called “VR” to date, but believable virtual reality—interactive
MojoWorlds as beautiful and realistic as those we can render currently in non–real
time. It will happen. And not too long from now. It’s only a matter of engineering.

The Future 615

Team LRN

21

Team LRN

ON THE FUTURE: ENGINEERING THE
APPEARANCE OF CYBERSPACE

F. K E N T O N M U S G R AV E

Cyberspace. A consensual hallucination experienced daily by billions of legitimate op-
erators, in every nation, by children being taught mathematical concepts . . . A graphic
representation of data abstracted from the banks of every computer in the human sys-
tem. Unthinkable complexity. Lines of light ranged in the nonspace of the mind, clus-
ters and constellations of data. Like city lights, receding . . .

—William Gibson, Neuromancer

INTRODUCTION
This chapter derives from an invited paper delivered to the Computer Graphics In-
ternational Conference in Calgary, Canada, in 1999. It makes a nice epilog to this
book, as it points out that procedural methods are key to the future of the human-
computer interface. Or so the author would have us believe . . .

It was written before the MojoWorld project was begun in earnest. MojoWorld
version 1.0 marks the first step toward the kind of procedural cyberspace advo-
cated here. One of the most interesting things about MojoWorld is that it shows
clearly, in one application program, the engineering gap that remains to be closed
between what we can do in real time today, as illustrated by MojoWorld’s real-
time renderer, and what we want to do in real time in the future, as illustrated by
MojoWorld’s photorealistic renderer. The imagery generated by the real-time ren-
derer is a pale approximation to that of the photorealistic renderer, which is in turn
“good enough” to generate the alternate reality that is cyberspace. “Good enough”
is, of course, a value judgment, and everyone is entitled to his or her own opinion
about it. And I’ve started—but was too impatient to finish—a MojoWorld render-
ing that would have taken about 100 days to complete. (Granted, that was at a reso-
lution of 15,000 by 10,000 pixels, far higher than required for a useful interactive
cyberspace.) When we can get the quality of MojoWorld’s photorealistic renderer in

617

Team LRN

real time at a resolution of 2000–4000 pixels on a side, we’ll have the environment
that will serve as cyberspace. Then we’ll face the challenge of representing the data
that we go into cyberspace to access in real time as well. Clearly, we have some years
of work cut out for us to get from here to there.

It’s interesting to keep in mind that what we’re ultimately up to with MojoWorld
is not simply generating realistic and beautiful imagery but a transparent user
interface.

Gibson’s definition of cyberspace in a science fiction novel in 1984 was remark-
ably prescient. Today’s World Wide Web is the beginning of the organization of, and
access to, the data Gibson refers to, but as a visualization it is embryonic and, so far,
unremarkable—it is simply hypertext, not the immersive environment envisioned by
Gibson. The fact that we are constrained to such tame representation is primarily at-
tributable to the two separate problems of transferring large amounts of data rapidly
and of computing high-quality imagery in real time. When we achieve near-instant
access to the requisite data and the capacity to generate detailed immersive, interac-
tive visuals on the fly, cyberspace will reach its vaunted potential as a useful, immer-
sive virtual reality. Cyberspace is meant to be nothing less than the human-computer
interface of the future.

But what should it look like once we’ve engineered the capacity to create it? Gib-
son’s vision is rather limited here. Lines of light and glowing blue pyramids provide
nice imagery for a science fiction novel, but what we require is a highly functional
and truly powerful design for this new user interface. It is well established that the
main conduit of information from the senses to the human brain is through vision.
Thus we are going to need a carefully engineered and well-justified visual manifesta-
tion of cyberspace to fully tap its potential to organize and convey the information it
embodies.

Navigation of the representation is a key issue. Early experience with virtual re-
ality indicates that navigation of synthetic 3D spaces is difficult for humans. Keeping
track of your orientation and relative and absolute positions in the synthetic envi-
ronment are notoriously difficult, perhaps because of the alien appearance of the en-
vironment, its simplicity (read: lack of visual cues) compared to reality, and/or the
limited engagement of our senses in current VR technology. Or perhaps it is because
we, as biological entities, are better designed to deal with the kind of environment in
which we evolved than with abstract, synthetic spaces.

CLAIMS
We have a biological heritage: primates roaming forests and the savanna. Invoking
the neural net model, our “wetware” may be inherently optimized for certain image

618 CHAPTER 21 On the Future

Team LRN

recognition tasks. Primary among these is apprehending nonverbal communication
of other individuals of our species: we feature exquisite sensitivity to the nuances of
people’s facial appearances and the dynamics thereof. External to our troop of pri-
mates, we are engineered by evolution to deal effectively with features of our natural
environment: terrain and other natural phenomena.

So what is the best visual manifestation of cyberspace? It should be familiar and
suited to the hardwired specializations of our neural net. That is, it should appear
like nature as our ancestors over the eons knew it, which was far more intimately
than modern humans.

What are the fundamental features of this “natural” cyberspace? Of course,
there are the standard features of a landscape scene: terrain, clouds, atmospheric ef-
fects, water, and so on. Realism in these has been, and will continue to be, addressed
to ever greater satisfaction in the literature of computer graphics research. Those are
the obvious phenomena. I wish to point out some more subtle, yet equally essential,
requisite features of a “natural” cyberspace:

1. It should be locally two-dimensional, like the surface of the earth.

2. On intermediate scales it should be spherical, like a planet.

3. On the largest scale it should be three-dimensional, like the universe we
inhabit.

4. The geometry used for its representation should be, for the most part, fractal.

Let me now motivate and justify these claims.
The locally planar appearance of our planet is compelling enough that the “flat

earth” model held sway as a sufficient model of Earth quite recently in our cultural
history. Furthermore, we primates generally enjoy mobility only in two-and-one-
half dimensional space, that is, within a slab extending about three meters above
the surface of the earth (with occasional forays into trees, multistory buildings,
and such). Also, which way is “up” is rarely in doubt. These factors greatly simplify
our navigational challenges. Experience with the Bryce synthetic landscape genera-
tion software product indicates that naive users find Bryce much easier to learn and
operate than general 3D graphics applications. We conjecture that this may be be-
cause (1) the user is generally dealing with a 21

2D space rather than full 3D, and (2)
the default natural environment features a horizon and gradated-by-altitude sky,
which make it obvious which way is “up.” Given this familiar and nonthreatening
initial environment, a new user with no prior experience in 3D graphics naturally
makes straightforward progress in learning the more recondite aspects of general 3D
graphics without even being aware of how difficult mastering them can be.

Claims 619

Team LRN

Simply stated, 21
2D environments appear to be natural and intuitive for the average

person.
The global context for landscapes is a planet: a sphere, a globe. This alone could

justify the claim that “natural” cyberspace should be spherical at intermediate
scales. But there is another advantage to this geometry: it is topologically con-
venient. A spherical surface is finite but unbounded. This means that we can have
our locally planar geometry, without worrying about falling off the edge of our nec-
essarily finite world. It can also be a convenient boundary condition assumption for
simulations such as artificial ecosystems. Finally, it can obviate, through spatial
disconnection, the problem of engineering transitions between disparate models.
Thus, for instance, no one would need to labor over making a seamless transition be-
tween the stylized appearance of an environment designed for interactive shoot-’em-
up game play and that of an environment designed to host a set of non-real-time, sci-
entifically accurate simulations of natural processes.

Planets, in turn, reside in the familiar context of three-dimensional space. Using
three dimensions yields the maximum usable space by employing the highest usable
dimension—human intuition being ill equipped to deal with higher-dimensional
spaces. Three-dimensional space is obviously the way to organize our layout on the
largest scale not only because it maximizes the total usable space but also because it
can vastly increase the local density of information (this being only occasionally a
virtue). Maintaining the argument that nature’s appearance will always be the most
comfortable, familiar, and efficacious of our visual options, the obvious way to lay
out our universe of planets is to imitate the universe as we know it: planets reside in
solar systems, solar systems in galaxies, galaxies in clusters, and clusters in super-
clusters. The real universe is inhomogeneous on large scales: there are vast voids be-
tween concentrations of galaxies. This, fortunately, can correspond to the good
practice in visual design of judicious use of empty space (so-called negative space) to
reduce clutter and guide the viewer’s attention. That is, the sheets-and-voids distri-
bution that characterizes the largest-scale structure of matter in the visible universe
just might lend itself naturally to good visual design and effective imposition of
(more or less arbitrary) order on the vast quantities of data that cyberspace is de-
signed to represent for human consumption.

THE FRACTAL GEOMETRY OF CYBERSPACE
We must choose a geometry to use in constructing the visual representation of
cyberspace. We have two realistic choices: Euclidean or fractal. The passage where
Gibson defined “cyberspace” evokes a primarily Euclidean visualization: “lines of

620 CHAPTER 21 On the Future

Team LRN

light . . . like city lights, receding . . .” Auspiciously, he also mentions “clusters and
constellations of data,” evoking the fractal geometry that generally better charac-
terizes the forms found in nature. We’re all familiar with the shapes of Euclidean
geometry: lines, planes, spheres, cubes, cones, and so on. Euclidean geometry is ex-
cellent for describing things made by humans and generally poor for describing the
complex forms common in nature. The opposite is true of fractal geometry. You
might conclude that, since cyberspace and everything in it is a human-made artifact,
Euclidean geometry is the obvious choice for its visual representation. This is proba-
bly so, for the artifacts representing the information content in cyberspace. That is,
there will be cities and schematics of devices and text and such on the planets that
comprise cyberspace; these should be represented in the familiar Euclidean way.
What is better made fractal is the visual context for that content. I maintain that the
context should be like nature, and nature is largely fractal. Yet it’s not that simple
and clear-cut, either.

I assume that you are familiar with Euclidean geometry; let me now give a
brief overview of fractal geometry. Random fractals or so-called scaling noises such
as fractional Brownian motion (Peitgen and Saupe 1988) characterize many struc-
tures in nature. Deterministic fractals such as the famous Mandelbrot set, or M-set,
and the von Koch snowflake constitute another class of fractals. (Interestingly, cer-
tain deterministic fractals such as the von Koch snowflake and the Peano curve
(Mandelbrot 1982) are even locally Euclidean, e.g., are comprised of straight line
segments.) Fractal geometry can be most succinctly characterized as dilation symme-
try, or invariance (perhaps only statistical) over changes in scale. That is, zooming in
and zooming out, you see pretty much the same thing at different scales; appearance
remains similar, hence the term self-similarity is used to characterize fractals. Fractal
objects appear complex, due to the amount of detail evoked by this repetition of
form over a range of scales. This apparent complexity may be deceivingly simple,
however, as both the basic form and the rules of repetition may be very simple. How,
then, do fractals mix with generally simpler Euclidean forms in our synthetic
universe?

We primates are social beasts, and there will inevitably arise cyberManhattans:
“hot properties,” local spots where “everyone will want to be” in the vast cyber-
universe. Again, to maintain the analogy with real cities, we will probably construct
them using Euclidean geometry. Yet despite its complexity and the fact that it is
not generally a good language for human-made form, fractal geometry has appli-
cations in constructing cybercities: as in real cities, space in cybercities will be at a
premium. Just because your company grew from two employees to owning Micro-
soft doesn’t mean you can necessarily expand your corporate headquarters in

The Fractal Geometry of Cyberspace 621

Team LRN

cyberSeattle to occupy half of downtown—that space will already be occupied. But
scale is an entirely arbitrary concept in cyberspace; there is no standard meter, no in-
herent size to anything. Thus it won’t matter how “large” you loom in cyberspace,
but rather how much information you have that people want to access. Using a
fractal representation, you can grow “inward” by adding ever more detail that
can be seen by zooming farther in to your cyberconstruct. Growing inward like this
will obviate the need to occupy ever more space, to expand your hegemony by con-
quest or cyberimperialism. The ability to grow inward may spawn a new esthetic
based—in the fine artistic tradition of contradicting contemporary values—on the
idea that smaller is better, that getting the most content into the smallest space is a
greater accomplishment than growing to be as large as possible. The ability to grow
inward, fractally, obviates the problem of available space in our cybercities.

Two other issues indicate the use of fractal geometry in the construction of
cyberspace: first, the transfer and, second, the realistic rendering of highly complex
scenes. The problem of aliasing is too recondite to address here, but let us say that
one of the main problems in rendering very complex scenes arises from the dif-
ficulties in cramming more information in the pixel grid, or raster, that comprises the
image, than that grid can accurately represent. The problem is inevitable because of
the complexity of cyberspace. Aliasing shows up as highly unnatural and objection-
able artifacts in still images and worse artifacts still in moving images. Fortunately,
due to their constructive or “procedural” nature, fractals can be adaptively band-
limited for alias-free rendering. That is, their construction can limit their detail to
that which the raster can accurately represent. Furthermore, their procedural char-
acter ensures that everyone can explore the same synthetic universe of unlimited vi-
sual richness, without the need for hypernet bandwidth or huge, mirrored database
servers simply to dish up the visual representation—as opposed to the information
content—of that universe. This is because the visual richness of fractal models is an
emergent property of their computation. As we have seen, a relatively simple model
and a small, in terms of data transfer, number of parameter values are sufficient to
generate an entire world, with potentially unlimited detail. (MojoWorld files tend to
be less than 100 kilobytes in size.) A beauty of the fractal representation is that the
model is tiny in comparison to the visual result. The model consists only of the basic
shape and the rules for its repetition; all details emerge from the computation. This
solves the bandwidth problem inherent in transferring from remote repositories to
users complex representations of cyberspace—the place, as opposed to the content
or information accessed there—leaving the network bandwidth free for transferring
that content, which is what we’ll go into cyberspace for in the first place.

622 CHAPTER 21 On the Future

Team LRN

CONCLUSION
In conclusion, I’d like to reiterate that the natural, fractal universe I am advocating is
not an end in itself, but rather a context for the information content that cyberspace
is designed to make accessible to humans. Cyberspace is strictly for human con-
sumption. The machines do not need it; they do very well with their streams of bi-
nary code. Cyberspace is a visualization tool designed to make the exponentially
growing stores of information entrusted to the computers, and their inherent value,
available to humans who generally do poorly at comprehending binary-encoded
information.

The “natural” cyberspace I am proposing is an efficacious setting for entertain-
ment, like games and Myst-style puzzles, for synthetic ecosystems, simulated cities
and civilizations, artistic creations, meditative spaces, and raw data retrieval. The
suggested hierarchy going from 3D to 21

2D to 2D preserves advantages of the
evolved human faculties for interaction with our environment. Extensive use of frac-
tals imparts visual richness, compact representation, and a natural visual character
also suited to our naturally evolved faculties. It is familiar and expandable. It is as
politically and aesthetically neutral and noncontroversial as such an important and
soon-to-be ubiquitous aspect of human life can be made. Most importantly, it has
the potential to be made as beautiful as the universe we inhabit, as Figure 21.1
illustrates.

Conclusion 623

Team LRN

624 CHAPTER 21 On the Future

FIGURE 21.1 Dale Beach is a visualization of what cyberspace—or at least one tiny part of it—
may look like, once we have the capability of rendering it in real time. It will, of course, have
representations of the data and avatars we go there to interact with, making it in essence the
ultimate human-computer interface. Copyright © F. Kenton Musgrave; world by Armands
Auseklis

Team LRN

APPENDICES

appendix a: c code implementing qaeb tracing
/* determines 3D position along ray at distance t */

#define RAY_POS(ray,t,pos) \
{(pos)->x = (ray)->origin.x + t*(ray)->dir.x; \
(pos)->y = (ray)->origin.y + t*(ray)->dir.y; \
(pos)->z = (ray)->origin.z + t*(ray)->dir.z; }

typedef struct { /* catch-all type for 3D vectors and positions */
double x;
double y;
double z; } Vector;
/* returns TRUE if HF intersected, FALSE otherwise */

Boolean
Intersect_Terrain(int row, int column, double epsilon, Ray *ray, Hit *hit)
{
double d, /* ray parameter, equal to distance travelled */

alt, /* alt at current step */
prev_d, /* d at last step */
prev_alt; /* alt at last step */

Vector position, /* current position along ray */
prev_position; /* previous position along ray */

if (row == 0) { /* if at bottom of bottom-to-top rendering */
d = near_clip_dist; /* init march stride */
RAY_POS(ray, d, &prev_position); /* init previous 3D position */
prev_alt = Displacement(prev_position, d); /* evaluate the HF function */

} else { /* (this scheme is valid only for vertical columns) */
d = prev_d = prev_dist[column]; /* start at final d of prev. ray in column */
prev_position = prev_pos[column];
prev_alt = prev_alts[column];

}

while (d < far_clip_dist) { /* the QAEB raymarch loop */
d += d * epsilon; /* update the marching stride */
RAY_POS(ray, d, Sposition); /* get current 3D position */
alt = Displacement(position, d); /* evaluate the HF function */
if (position.z < alt) { /* surface penetrated */

625

Team LRN

Intersect_Surface(prev_alt, alt, d*epsilon, d,
position, prev_position, ray, hit);
prev_dist[column] = prev_d; /* update prev. distance data */
prev_alts[column] = prev_alt;
prev_pos[column] = prev_position;
return(TRUE);

}
prev_d = d;
prev_alt = alt;
prev_position = position;

}

/* exceeded far clip distance; update “prev_dist” appropriately & exit. */
prev_dist[column] = d;
return(FALSE);

} /* Intersect_Terrain() */

626 APPENDICES

Team LRN

appendix b: c code for intersection and surface
normal
#define VEC_SUB(a,b,c) {(c)->x = (a).x-(b).x; \

(c)->y = (a).y-(b).y; \
(c)->z = (a).z-(b).z;}

#define CROSS(a,b,c) {(c)->x = (a.y * b.z) - (a.z * b.y); \
(c)->y = (a.z * b.x) - (a.x * b.z); \
(c)->z = (a.x * b.y) - (a.y * b.x);}

/* assigns ray-surface intersection and surface normal */
void
Intersect_Surface(double z_near, double z_far, double epsilon, double distance,

Vector position, Vector prev_position, Ray *ray, HitData *hit)
{

Vector P_r, /* point to the right, relative to ray dir and “up” */
v_d, /* vector from prev_position to position */
v_l, /* vector from prev_position to p_r */
n; /* surface normal */

/* first construct three points that lie on the surface */
prev_position.z = z_near;
position.z = z_far;

/* construct a point one error width to right */
p_r.x = prev_position.x + epsilon*camera.right_dir.x;
p_r.y = prev_position.y + epsilon*camera.right_dir.y;
p_r.z = prev_position.z + epsilon*camera.right_dir.z;
p_r.z = Displacement(p_r, distance);

/* get two vectors in the surface plane; cross for surface normal */
VEC_SUB(position, prev_position, &v_d);
Normalize(&v_d);
VEC_SUB(p_r, prev_position, &v_l);
Normalize(&v_l);
CROSS(v_l, v_d, &n);
Normalize(&n);

/* assign the various hit data */
hit->distance = distance;
hit->intersect = prev_position;
hit->normal = n;

} /* Intersect_Surface() */

APPENDICES 627

Team LRN

Team LRN

BIBLIOGRAPHY

Abelson, H., and A. A. diSessa. 1982. Turtle geometry. Cambridge, MA: MIT Press.

Abhyankar, S., and C. Bajaj. 1987a. Automatic parametrization of rational curves and surfaces I:
Conies and conicoids. Computer News, 1:19.

Abhyankar, S., and C. Bajaj. 1987b. Automatic parametrization of rational curves and surfaces II:
Conies and conicoids. Computer News, 3:25.

Ahlberg, J., E. Nilson, and J. Walsh. 1967. The theory of splines and their applications. Boston:
Academic Press.

Amanatides, J. 1984. Ray tracing with cones. In H. Christiansen, ed., Computer Graphics
(SIGGRAPH ’84 Proceedings), 18:129–135.

Amburn, P., E. Grant, and T. Whitted. 1986. Managing geometric complexity with enhanced pro-
cedural models. Computer Graphics 20(4):189–195.

American National Standards Institute. 1986. Nomenclature and definitions for illumination engi-
neering, ANSI/IBS, RP-16–1986.

Anderson, D. 1992. Hidden line elimination in projected grid surfaces. ACM Transactions on
Graphics, 1(4): 274–288.

Apodaca, A. A. 1999. Advanced RenderMan: Creating CGI for motion pictures. San Francisco:
Morgan Kaufmann. See also RenderMan tricks everyone should know in SIGGRAPH ’98, or
SIGGRAPH ’99 Advanced RenderMan Course Notes.

Apodaca, A. A., and L. Gritz. 2000. Advanced RenderMan: Creating CGl for motion pictures. San
Francisco: Morgan Kaufmann.

Arvo, J. 1992. Fast random rotation matrices. In David Kirk, ed., Graphics Gems III, Academic
Press, 117.

629

Team LRN

Arvo, J., and D. Kirk. 1989. A survey of ray tracing acceleration techniques. In Andrew Glassner,
ed., An introduction to ray tracing, Boston: Academic Press, 201–262.

Badler, N. I., J. O’Rourke, and B. Kaufman. 1980. Special problems in human movement simula-
tion. SIGGRAPH ’80 Proceedings, 189–197.

Bagby, D. 1984. Parameterization of elliptical elements. Letter to ANSI X3H3 Committee (August
16, 1984), 17.

Banks, D. 1994. Illumination in diverse codimensions. Computer Graphics, Annual Conference
Series (Proceedings of S1GGRAPH ’94), 327–334.

Baraff, D., and A. P. Witkin. 1998. Large steps in cloth simulation. Proceedings of SIGGRAPH
’98, 43–54.

Barr, A. H. 1986. Ray tracing deformed surfaces. In Maureen C. Stone, ed., Computer Graphics
(SIGGRAPH ’86 Proceedings), 20:287–296.

Barr, A. H. 1991. Teleological modeling. In N. I. Badler, B. A. Barsky, and D. Zeltzer, eds., Making
them move: Mechanics, control, and animation of articulated figures, San Francisco: Morgan
Kaufmann, 315–321.

Battke, H., D. Stalling, and H.-C. Hege. 1996. Fast line integral convolution for arbitrary surfaces
in 3D. Preprint SC-96–59, Konrad-Zuse-Zentrum für Informationstechnik Berlin (ZIB).

Bennis, C., J. Vezien, and G. Iglesias. 1991. Piecewise surface flattening for non-distorted texture
mapping. Proceedings of SIGGRAPH ’91, 237–246.

Bian, B. 1990. Accurate simulation of scene luminances. Worcester, MA: Worcester Polytechnic
Institute.

Birkhoff, G., and S. MacLane. 1965. A survey of modern algebra, 3rd edition. New York:
MacMillan. Exercise 15, Section IX-3, 240; also corollary, Section IX-14, 277–278.

Bishop, G., and D. M. Weimer. 1986. Fast phong shading. Computer Graphics, 20(4):103–106.

Blinn, J. F. 1977. Models of light reflection for computer synthesized pictures. In James George,
ed., Computer Graphics (SIGGRAPH ’77 Proceedings), 11:192–198.

Blinn, J. F. 1978. Simulation of wrinkled surfaces. In James George, ed., Computer Graphics
(SIGGRAPH ’78 Proceedings), 12:286–292.

630 BIBLIOGRAPHY

Team LRN

Blinn, J. F. 1982a. Light reflection functions for simulation of clouds and dusty surfaces. In Com-
puter Graphics (SIGGRAPH ’82 Proceedings), 16(3):21–29.

Blinn, J. F. 1982b. A generalization of algebraic surface drawing. ACM Transactions on Graphics,
1(3):235–256.

Blinn, J. F., and M. E. Newell. 1976. Texture and reflection in computer generated images. Com-
munications of the ACM, 19:542–546.

Bloomenthal, J. 1985. Modeling the mighty maple. In B. A. Barsky, ed., Computer Graphics
(SIGGRAPH ’85 Proceedings), 19(3):305–311.

Bloomenthal, J., C. Bajaj, J. Blinn, M. P. Cani-Gascuel, A. Rockwood, B. Wyvill, and G. Wyvill.
1997. Introduction to implicit surfaces. San Francisco: Morgan Kaufmann.

Bouville, C. 1985. Bounding ellipsoids for ray fractal intersection. In B. A. Barsky, ed., Computer
Graphics (SIGGRAPH ’85 Proceedings), 19(3):45–52.

Bracewell, R. N. 1986. The Fourier transform and its applications. New York: McGraw-Hill.

Breen, D. E., D. H. House, and M. J. Wozny. 1994. Predicting the drape of woven cloth using in-
teracting particles. Proceedings of SIGGRAPH ’94, 365–372.

Brigham, E. O. 1988. The fast Fourier transform and its applications. Englewood Cliffs, NJ:
Prentice Hall.

Brinsmead, D. 1993. Convert solid texture. Software component of Alias|Wavefront Power Ani-
mator 5.

Brooks, R. 1986. A robust layered control for a mobile robot. IEEE Journal of Robotics and Au-
tomation, 2(1):14–23.

Brown, L. M., and J. Rigden, eds. 1993. Most of the good stuff. New York: American Institute of
Physics.

Burt, P. J., and E. H. Adelson. 1983. A multiresolution spine with application to image mosaics.
ACM Transactions on Graphics, 2(4)217–236.

Cabral, B., N. Cam, and J. Foran. 1994. Accelerated volume rendering and tomographic recon-
struction using texture mapping hardware. ACM/IEEE Symposium on Volume Visualization,
91–98.

BIBLIOGRAPHY 631

Team LRN

Cabral, B., and L. Leedom. 1993. Imaging vector fields using line integral convolution. Computer
Graphics Proceedings, Annual Conference Series, 263–270.

Cabral, B., N. Max, and R. Springmeyer. 1987. Bidirectional reflection functions from surface
bump maps. In M. C. Stone, ed., Computer Graphics (SIGGRAPH ’87 Proceedings),
21:273–281.

Cabral, B., M. Olano, and P. Nemec. 1999. Reflection space image based rendering. Proceedings
of SIGGRAPH ’99, 165–170.

Calvert, T. W., J. Chapman, and A. Patla. 1980. The integration of subjective and objective data in
the animation of human movement. In Computer Graphics (SIGGRAPH ’80 Proceedings),
14:198–203.

Canright, D. 1994. Estimating the spatial extent of attractors of iterated function systems. Com-
puters and Graphics 18(2):231–238.

Carpenter, L. 1984. The A-buffer, an antialiased hidden surface method. In H. Christiansen, ed.,
Computer Graphics (SIGGRAPH ’84 Proceedings), 18:103–108.

Carr, N. A., and J. C. Hart. 2002. Meshed atlases for real-time procedural solid texturing. ACM
Transactions on Graphics, 21(2), 106–131.

Catmull, E. E. 1974. A subdivision algorithm for computer display of curved surfaces. Ph.D.
thesis, Department of Computer Science, University of Utah.

Chadwick, J., D. Haumann, and R. Parent. 1989. Layered construction for deformable animated
characters. Computer Graphics, 23(3):243–252.

Chen, L., G. T. Herman, R. A. Reynolds, and J. K. Udupa. 1985. Surface shading in the cuberille
environment. IEEE Computer Graphics and Applications, 5(12):33–43.

Cignoni, B., C. Montani, C. Rocchini, and B. Scopigno. A general method for preserving attribute
values on simplified meshes. Proceedings of Visualization ’98, 59–66.

Cline, H. E., W. E. Lorensen, and S. Eudke. 1988. Two algorithms for the three dimensional re-
construction of tomograms. Medical Physics, 15(3):320–327.

Cohen, J., M. Olano, and D. Manocha. 1998. Appearance-preserving simplification. Proceedings
of SIGGRAPH ’98, 115–122.

Cook, R. L. 1984. Shade trees. In H. Christiansen, ed., Computer Graphics (SIGGRAPH ’84 Pro-
ceedings), 18(3):223–231.

632 BIBLIOGRAPHY

Team LRN

Cook, R. L. 1986. Stochastic sampling in computer graphics. ACM Transactions on Graphics,
5(1):51–72.

Cook, R. L., E. Carpenter, and E. Catmull. 1987. The Reyes image rendering architecture. In
M. C. Stone, ed., Computer Graphics (SIGGRAPH ’87 Proceedings), 95–102.

Cook, R. L., T. Porter, and E. Carpenter. 1984. Distributed ray tracing. In H. Christiansen, ed.,
Computer Graphics (SIGGRAPH ‘84 Proceedings), 18(3):137–145.

Cook, R. L., and K. E. Torrance. 1981. A reflectance model for computer graphics. In Computer
Graphics (SIGGRAPH ’81 Proceedings), 15:307–316.

Coquillart, S., and M. Gagnet. 1984. Shaded display of digital maps. IEEE Computer Graphics
and Applications, 35–42.

Cotton, W., and A. Anthes. 1989. Storm and cloud dynamics. San Diego: Academic Press.

Crow, F. C. 1984. Summed-area tables for texture mapping. In H. Christiansen, ed., Computer
Graphics (SIGGRAPH ’84 Proceedings), 18:207–212.

Cychosz, J. M. 1986. Vectorized ray tracing of polygonal models. Unpublished results.

Dawkins, R. 1987. The blind watchmaker. New York: W. W. Norton.

DeGraf, B., and M. Wahrman. 1988. Mike the talking head. Computer Graphics World, 11(7):57.

Deussen, O., P. M. Hanrahan, B. Lintermann, R. Mech, M. Pharr, and P. Prusinkiewicz. 1998. Re-
alistic modeling and rendering of plant ecosystems. Proc. of SIGGRAPH ’98, 275–286.

Dippé, M. A. Z., and E. H. Wold. 1985. Antialiasing through stochastic sampling. In B. A. Barsky,
ed., Computer Graphics (SIGGRAPH ’85 Proceedings), 19:69–78.

Dobashi Y., K. Kaneda, H. Yamashita, T. Okita, and T. Nishita. 2000. A simple, efficient method
for realistic animation of clouds. In K. Akeley, ed., Proceedings of SIGGRAPH 2000, Com-
puter Graphics Proceedings, Annual Conference Series, 19–28.

DoCarmo, M. 1976. Differential geometry of curves and surfaces. Englewood Cliffs, NJ: Prentice
Hall.

Drebin, R., L. Carpenter, and P. Hanrahan. 1988. Volume rendering. In John Dell, ed., Computer
Graphics (SIGGRAPH ’88 Proceedings), 22(4):65–74.

BIBLIOGRAPHY 633

Team LRN

Dubuc, S., and R. Hamzaoui. 1994. On the diameter of the attractor of an IFS. C. R. Math Rep.
Sci., Canada XVI 2, 3, 85–90.

Duff, T. 1985. Compositing 3-D rendered images. In B. A. Barsky, ed., Computer Graphics
(SIGGRAPH ’85 Proceedings), 19:41–44.

Dungan, W., Jr. 1979. A terrain and cloud computer image generation model. In Computer
Graphics (SIGGRAPH ’79 Proceedings), 13:143–150.

Ebert, D., and E. Bedwell. 1998. Implicit modeling with procedural techniques. Proceedings Im-
plicit Surfaces ’98, Seattle, WA.

Ebert, D., K. Boyer, and D. Roble. 1989. Once a pawn a foggy knight . . . [videotape].
SIGGRAPH Video Review, 54. New York: ACM SIGGRAPH, Segment 3.

Ebert, D., W. Carlson, and R. Parent. 1994. Solid spaces and inverse particle systems for control-
ling the animation of gases and fluids. The Visual Computer, 10(4):179–190.

Ebert, D., J. Ebert, and K. Boyer. 1990. Getting into art [videotape]. Department of Computer and
Information Science, Ohio State University.

Ebert, D., J. Kukla, T. Bedwell, and S. Wrights. 1997. A cloud is born. ACM SIGGRAPH Video
Review. SIGGRAPH ’97 Electronic Theatre Program. New York: ACM SIGGRAPH.

Ebert, D., F. K. Musgrave, D. Peachey, K. Perlin, and S. Worley. 1994. Texturing and modeling: A
procedural approach. Cambridge, MA: Academic Press.

Ebert, D. S. 1991. Solid spaces: A unified approach to describing object attributes. Ph.D. thesis,
Ohio State University.

Ebert, D. S. 1997. Volumetric modeling with implicit functions: A cloud is born. In David Ebert,
ed., SIGGRAPH ’97 Visual Proceedings, ACM SIGGRAPH, 147.

Ebert, D. S., and R. E. Parent. 1990. Rendering and animation of gaseous phenomena by combin-
ing fast volume and scanline A-buffer techniques. In Forest Baskett, ed., Computer Graphics
(SIGGRAPH ’90 Proceedings), 24:357–366.

Ekman, P., and W. Friesen. 1978. Manual for the facial action coding system. Palo Alto, CA: Con-
sulting Psychologists Press.

Elinas, P., and W. Stürzlinger. 2000. Real-time rendering of 3D clouds. Journal of Graphics Tools,
5(4):33–45.

634 BIBLIOGRAPHY

Team LRN

Etzmuss, O., B. Eberhardt, and M. Hauth. 2000. Implicit-explicit schemes for fast animation with
particle systems. Computer Animation and Simulation 2000, 138–151.

Evertsz, C. J. G., and B. B. Mandelbrot. 1992. Multifractal measures. In H. O. Peitgen, H.
Jürgens, and D. Saupe, eds., Chaos and fractals, New York: Springer-Verlag, Appendix B,
921–953.

Faigin, G. 1990. The artist’s complete guide to facial expression. New York: Watson-Guptill.

Fedkiw, R., J. Stam, and H. Wann Jensen. 2001. Visual simulation of smoke. In E. Fiume, ed., Pro-
ceedings of ACM SIGGRAPH 2001, Computer Graphics Proceedings, Annual Conference
Series, 15–22.

Feibush, E. A., M. Levoy, and R. E. Cook. 1980. Synthetic texturing using digital filters. In Com-
puter Graphics (SIGGRAPH ’80 Proceedings), 14:294–301.

Fidducia, C. M., and R. M. Mattheyses. 1982. A linear time heuristic for improving network par-
titions. Proceedings of IEEE Design Automation Conference, 175–181.

Foley, J. D., A. van Dam, S. K. Feiner, and J. F. Hughes. 1990. Computer graphics: Principles and
practice. Systems Programming Series. Reading, MA: Addison-Wesley.

Foster, N., and D. Metaxas. 1982. Modeling the motion of a hot, turbulent gas. In Turner
Whitted, ed., SIGGRAPH ’97 Conference Proceedings, Annual Conference Series, New
York: Addison-Wesley, 181–187.

Fournier, A. 1992. Normal distribution functions and multiple surfaces. Graphics Interface ‘92
Workshop on Local Illumination, 45–52.

Fournier, A., D. Fussell, and L. Carpenter. 1982. Computer rendering of stochastic models. Com-
munications of the ACM, 25(6):371–384.

Fowler, D. R., P. Prusinkiewicz, and J. Battjes. 1992. A collision-based model of spiral phyllotaxis.
Computer Graphics 26(2):361–368.

Fu, K. S., and S. Y. Lu. 1978. Computer generation of texture using a syntatic approach. In Com-
puter Graphics (SIGGRAPH ’78 Proceedings), 12:147–152.

Fuchs, H., Z. M. Kedem, and S. P. Uselton. 1977. Optimal surface reconstruction from planar
contours. Communications of the ACM, 20(10):693–702.

Fusco, M. J., and S. Tice. 1993. Character motion systems course notes. SIGGRAPH ’93 Course
Notes 01, ACM SIGGRAPH, 9–22.

BIBLIOGRAPHY 635

Team LRN

Gagalowicz, A., and S. D. Ma. 1985. Sequential synthesis of natural textures. Computer Graphics,
Vision and Image Processing, 30:289–315.

Gallagher, R. S., and J. C. Nagtegaal. 1989. An efficient 3D visualization technique for finite ele-
ment models and other course volumes. In J. Lane, ed., Computer Graphics (SIGGRAPH ’89
Proceedings), 23:185–194.

Garber, D. D. 1981. Computational models for texture analysis and texture synthesis. Ph.D.
thesis, University of Southern California.

Gardner, G. 1984. Simulation of natural scenes using textured quadric surfaces. In H. Christian-
sen, ed., Computer Graphics (SIGGRAPH ’84 Proceedings), 18:11–20.

Gardner, G. 1985. Visual simulation of clouds. In B. A. Barsky, ed., Computer Graphics
(SIGGRAPH ’85 Proceedings), 19(3):297–304.

Gardner, G. 1990. Forest fire simulation. In F. Baskett, ed., Computer Graphics (SIGGRAPH ’90
Proceedings), 24:430.

Garland, M., A. Willmott, and P. S. Heckbert. 2001. Hierarchical face clustering on polygonal sur-
faces. Proceedings of Interactive 3D Graphics, 49–58.

Gedzelman, S. D. 1991. Atmospheric optics in art. Applied Optics, 30(24):3514–3522.

Ghezzi, C., and M. Jazayeri. 1982. Programming language concepts. New York: Wiley.

Girard, M., and A. A. Maciejewski. 1985. Computational modeling for the computer animation
of legged figures. In B. A. Barsky, ed., Computer Graphics (SIGGRAPH ’85 Proceedings),
19:263–270.

Goehring, D., and O. Gerlitz. 1997. Advanced procedural texturing using MMX technology. Intel
MMX technology application note. http://developer.intel.com/software/idap/ resources
/technical_collateral/mmx/proctex2.htm.

Gonzalez, R. C., and R. E. Woods. 1992. Digital image processing. Reading, MA: Addison-
Wesley.

Gordon, D., and R. A. Reynolds. 1985. Image space shading and 3-dimensional objects. Com-
puter Vision, Graphics, and Image Processing, 29:361–376.

Greene, N. 1986. Applications of world projections. In M. Green, ed., Proceedings of Graphics
Interface ’86, 108–114.

636 BIBLIOGRAPHY

Team LRN

Greene, N., and M. Kass. 1993. Hierarchical z-buffer visibility. Proceedings of SIGGRAPH ’93,
231–240.

Grossmann, A., and J. Morlet. 1984. Decomposition of hardy functions into square integrable
wavelets of constant shape. SI AM Journal of Mathematics, 15:723–736.

Haines, E. 1989. Essential ray tracing algorithms. In A. Glassner, ed., An introduction to ray trac-
ing, Boston: Academic Press.

Haines, E., and S. Worley. 1993. Point-in-polygon testing. Ray Tracing News, 2:1. E-mail avail-
able under anonymous ftp from weedeater.math.yale.edu.

Hall, R. A. 1989. Illumination and color in computer generated imagery. New York: Springer-
Verlag.

Hanrahan, P. 1990. Volume rendering. SIGGRAPH ’90: Course Notes on Volume Visualization.

Hanrahan, P. 1999. Procedural shading (keynote). Eurographics/SIGGRAPH Workshop on
Graphics Hardware. http://graphics.stanford.edu/hanrahan/talks/rts1/slides.

Hanrahan, P., and P. E. Haeberli. 1990. Direct WYSIWYG painting and texturing on 3D shapes.
Computer Graphics, 24(4):215–223.

Hanrahan, P., and J. Lawson. 1990. A language for shading and lighting calculations. In F.
Baskett, ed., Computer Graphics (SIGGRAPH ’90 Proceedings), 24:289–298.

Harris, M. J. 2002. Real-time cloud rendering for games. Games Developers Conference 2002
Proceedings.

Harris, M. J., and A. Lastra. 2001. Real-time cloud rendering. Computer Graphics Forum
(Eurographics 2001 Proceedings), 20(3):76–84.

Hart, J. C. 1992. The object instancing paradigm for linear fractal modeling. Proceedings of
Graphics Interface. San Francisco: Morgan Kaufmann, 224–231.

Hart, J. C. 2001. Perlin noise pixel shaders. Proceedings of the Graphics Hardware Workshop,
Eurographics/SIGGRAPH, 87–94.

Hart, J. C., N. Carr, M. Kameya, S. A. Tibbits, and T. J. Colemen. 1999. Antialiased
parameterized solid texturing simplified for consumer-level hardware implementation. 1999
SIGGRAPH/Eurographics Workshop on Graphics Hardware, 45–53.

BIBLIOGRAPHY 637

Team LRN

Hart, J. C., and T. A. DeFanti. 1991. Efficient antialiased rendering of 3-D linear fractals. Com-
puter Graphics 25(3).

Haruyama, S., and B. A. Barsky. 1984. Using stochastic modeling for texture generation. IEEE
Computer Graphics and Applications, 4(3):7–19.

He, X. D., K. E. Torrance, F. X. Sillion, and D. P. Greenberg. 1991. A comprehensive physical
model for light reflection. In T. W. Sederberg, ed., Computer Graphics (SIGGRAPH ’91 Pro-
ceedings), 25:175–186.

Hearn, D., and M. P. Baker. 1986. Computer graphics. Englewood Cliffs, NJ: Prentice Hall.

Heckbert, P. S. 1986a. Filtering by repeated integration. In D. C. Evans and R. J. Athay, eds.,
Computer Graphics (SIGGRAPH ’86 Proceedings), 20:315–321.

Heckbert, P. S. 1986b. Survey of texture mapping. IEEE Computer Graphics and Applications,
6(11):56–67.

Heidrich, W., and H.-P. Seidel. 1999. Realistic, hardware-accelerated shading and lighting. Com-
puter Graphics, Annual Conference Series (Proceedings of SIGGRAPH ’99), 171–178.

Hoehne, K. H., M. Romans, A. Pommert, and U. Tiede. 1990. Voxel based volume visualization
techniques. SIGGRAPH ’90: Course Notes on Volume Visualization.

Houze, R. 1993. Cloud dynamics. San Diego: Academic Press.

Inakage. M. Modeling laminar flames. 1991. SIGGRAPH ’91: Course Notes 27.

Jaquays, P., and B. Hook. 1999. Quake 3: Arena shader manual, revision 10.

Kajiya, J. T. 1983a. New techniques for ray tracing procedurally defined objects. ACM Transac-
tions on Graphics, 2(3):161–181.

Kajiya, J. T. 1983b. New techniques for ray tracing procedurally defined objects. In Computer
Graphics (SIGGRAPH ’83 Proceedings), 17(3):91–99.

Kajiya, J. T. 1985. Anisotropic reflection models. In B. A. Barsky, ed., Computer Graphics
(SIGGRAPH ’85 Proceedings), 19:15–21.

Kajiya, J. T. 1986. The rendering equation. In David C. Evans and Russell J. Athay, eds., Com-
puter Graphics (SIGGRAPH ’86 Proceedings), 20:143–150.

638 BIBLIOGRAPHY

Team LRN

Kajiya, J. T., and T. L. Kay. 1989. Rendering fur with three dimensional textures. In Jeffrey Lane,
ed., Computer Graphics (SIGGRAPH ’89 Proceedings), 23:271–280.

Kajiya, J. T., and B. P. Von Herzen. 1984. Ray tracing volume densities. In H. Christiansen, ed.,
Computer Graphics (SIGGRAPH ’84 Proceedings), 18:165–174.

Kalra, P., A. Mangili, N. Magnenat-Thalmann, and D. Thalmann. 1991. A multilayered facial an-
imation system. In T. Kunii, ed., Modeling in Computer Graphics. New York: Springer-
Verlag, 189–198.

Kameya, M., and J. C. Hart. 2000. Bresenham noise. SIGGRAPH 2000 Conference Abstracts and
Applications, 182.

Karni, Z., and C. Gotsman. 2000. Spectral compression of mesh geometry. Proceedings of
SIGGRAPH 2000, 279–286.

Karypis, G. 1999. Multi-level algorithms for multi-constraint hypergraph partitioning. Technical
report #99–034, University of Minnesota.

Karypis, G., and V. Kumar. 1998. Multilevel algorithms for multi-constraint graph partitioning.
Proceedings of Supercomputing ’98.

Karypis, G., and V. Kumar. 1999. Multilevel k-way hypergraph partitioning. Proceedings of IEEE
Design Automation Conference, 343–348.

Kautz, J., and M. D. McCool. 1999. Interactive rendering with arbitrary BRDFs using separable
approximations. Eurographics Rendering Workshop 1999, 255–268.

Kay, T., and J. Kajiya. 1986. Ray tracing complex scenes. Computer Graphics, 20(4):269–278.

Kelley, K. W. 1988. The home planet. New York: Addison-Wesley.

Keppel, E. 1975. Approximating complex surfaces by triangulation of contour lines. IBM Journal
of Research and Development, 19(1):2–11.

Kilgard, M. J. 2000. A practical and robust bump-mapping technique for today’s GPUs. NVIDIA
technical report.

Kim, T.-Y., and U. Neumann. 2001. Opacity shadow maps. Proceedings of the Eurographics Ren-
dering Workshop 2001.

Kirk, D., and J. Arvo. 1991. Unbiased sampling techniques for image synthesis. Computer Graph-
ics, 25(4):153–156.

BIBLIOGRAPHY 639

Team LRN

Klassen, R. V. 1987. Modeling the effect of the atmosphere on light. ACM Transactions on
Graphics, 6(3):215–237.

Kluyskens, T. 2002. Making good clouds. MAYA based QueenMaya magazine tutorial, http://
reality.sgi.com/tkluyskens aw/txt/tutor6.html.

Kniss, J., G. Kindlmann, and C. Hansen. 2002. Multi-dimensional transfer functions for interac-
tive volume rendering. IEEE Transactions on Visualization and Computer Graphics. To
appear.

Kniss, J., S. Premoíe, C. Hansen, and D. Ebert. 2002. Interactive translucent volume rendering
and procedural modeling. Submitted to IEEE Visualization 2002.

Knuth, D. 1973. The art of computer programming: Sorting and searching. Reading, MA:
Addison-Wesley.

Koza, J. R. 1992. Genetic programming. Cambridge, MA: MIT Press.

Lastra, A., S. Molnar, M. Olano, and Y. Wang. 1995. Real-time programmable shading. 1995
Symposium on Interactive 3D Graphics, 59–66.

Lee, A. W. F., W. Sweldens, P. Schröder, L. Cowsar, and D. Dobkin. 1998. MAPS: Multiresolution
adaptive parameterization of surfaces. Proceedings of SIGGRAPH ’98, 95–104.

Lee, M. E., R. A. Redner, and S. P. Uselton. 1985. Statisically optimized sampling for distributed
ray tracing. In B. A. Barsky, ed., Computer Graphics (SIGGRAPH ’85 Proceedings), 19:61–
67.

Leech, J. 1998. OpenGL extensions and restrictions for PixelFlow. Technical Report UNC-CH
TR98–019, University of North Carolina at Chapel Hill, Dept. of Computer Science.

Levoy, M. 1988. Display of surfaces from volume data. IEEE Computer Graphics and Applica-
tions, 8(3):29–37.

Levoy, M. 1990a. Efficient ray tracing of volume data. ACM Transactions on Graphics, 9(3):245–
261.

Levoy, M. 1990b. A hybrid ray tracer for rendering polygon and volume data. IEEE Computer
Graphics and Applications, 10(2):33–40.

Levoy, M. 1990c. Volume rendering by adaptive refinement. The Visual Computer, 6(1):2–7.

640 BIBLIOGRAPHY

Team LRN

Levy, B., and J. L. Mallet. 1998. Non-distorted texture mapping for sheared triangulated meshes.
Proceedings of SIGGRAPH ’98, 343–352.

Lewis, J. P. 1984. Texture synthesis for digital painting. In H. Christiansen, ed., Computer Graph-
ics (SIGGRAPH ’84 Proceedings), 18:245–252.

Lewis, J. P. 1986. Methods for stochastic spectral synthesis. In M. Green, ed., Proceedings of
Graphics Interface ’86, 173–179.

Lewis, J. P. 1987. Generalized stochastic subdivision. ACM Transactions on Graphics, 6(3):167–
190.

Lewis, J. P. 1989. Algorithms for solid noise synthesis. In J. Lane, ed., Computer Graphics
(SIGGRAPH ’89 Proceedings), 23(3):263–270.

Lindenmayer, A. 1968. Mathematical models for cellular interactions in development. Journal of
Theoretical Biology, 18:280–315.

Lokovic, T., and E. Veach. 2000. Deep shadow maps. In K. Akeley, ed., Proceedings of ACM
SIGGRAPH 2000, Computer Graphics Proceedings, Annual Conference Series, 385–392.

Lorensen, W. L., and H. L. Cline. 1987. Marching cubes: A high resolution 3D surface construc-
tion algorithm. In M. C. Stone, ed., Computer Graphics (SIGGRAPH ’87 Proceedings),
21:163–169.

Lorensen, W. L., and H. L. Cline. 1990. Volume modeling. First Conference on Visualization on
Biomedical Computing.

Lovejoy, S., and B. B. Mandelbrot. 1985. Fractal properties of rain and a fractal model. Tellus,
37A:209–232.

Lynch, D. K. 1991. Step brightness changes of distant mountain ridges and their perception. Ap-
plied Optics, 30(24):308–313.

Ma, S., and H. Lin. 1988. Optimal texture mapping. Proceedings of Eurographics ’88, 421–428.

Maillot, J., H. Yahia, and A. Verroust. 1993. Interactive texture mapping. Proceedings of
SIGGRAPH ’93, 27–34.

Mallat, S. G. 1989a. Multifrequency channel decompositions of images and wavelet modeling.
IEEE Transactions on Acoustic Speech and Signal Processing, 37(12):2091–2110.

BIBLIOGRAPHY 641

Team LRN

Mallat, S. G. 1989b. A theory for multiresolution signal decomposition: The wavelet representa-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 11:674–693.

Mandelbrot, B. B. 1982. The fractal geometry of nature. New York: W. H. Freeman.

Maruya, M. 1995. Generating a texture map from object-surface texture data. Computer Graph-
ics Forum 14(3):C-397–C-403.

Max, N. L. 1986. Light diffusion through clouds and haze. Computer Vision, Graphics and Image
Processing, 33(3):280–292.

Max, N. L. 1994. Efficient light propagation for multiple anisotropic volume scattering. Fifth
Eurographics Workshop on Rendering, Darmstadt, Germany, 87–104.

McCool, M., and E. Fiume. 1992. Heirarchical poisson disk sampling distributions. Proceedings
of Graphics Interface ’92, 94–105.

McCool, M. C., and W. Heidrich. 1999. Texture shaders. 1999 SIGGRAPH/Eurographics Work-
shop on Graphics Hardware, 117–126.

Microsoft. 2001. Direct3D 8.0 specification. Available at http://www.msdn.microsoft.com/directx.

Milenkovic, V. J. 1998. Rotational polygon overlap minimization and compaction. Computa-
tional Geometry: Theory and Applications, 10:305–318.

Miller, G., and A. Pearce. 1989. Globular dynamics: A connected particle system for animating
viscous fluids. Computers and Graphics, 13(3):305–309.

Miller, G. S. P. 1986. The definition and rendering of terrain maps. In D. C. Evans and R. J. Athay,
eds., Computer Graphics (SIGGRAPH ’86 Proceedings), 20(4):39–48.

Miller, G. S. P. 1988a. From wire-frames to furry animals. Proceedings of Graphics Interface ’88,
135–145.

Miller, G. S. P. 1988b. The motion dynamics of snakes and worms. In J. Dill, ed., Computer
Graphics (SIGGRAPH ’88 Proceedings), 22:169–178.

Mine, A., and F. Neyret. 1999. Perlin textures in real time using OpenGL. Research report #3713,
INRIA. http://www-imagis.imag.fr/Membres/Fabrice.Neyret/publis/RR-3713-eng.html.

Mitchell, D. 1987. Generating antialiased images at low sampling densities. Computer Graphics,
21(4):65–72.

642 BIBLIOGRAPHY

Team LRN

Mitchell, D. 1991. Spectrally optimal sampling for distribution ray tracing. Computer Graphics,
25(4):157–164.

Mitchell, D. P., and A. N. Netravali. 1988. Reconstruction filters in computer graphics. In J. Dill,
ed., Computer Graphics (SIGGRAPH ’88 Proceedings), 22:221–228.

Miyata, 1990. A method of generating stone wall patterns. In F. Baskett, ed., Computer Graphics
(SIGGRAPH ’90 Proceedings), 24:387–394.

Molnar, S., J. Eyles, and J. Poulton. PixelFlow: High-speed rendering using image composition.
Computer Graphics, 26(2):231–240.

Munkres, J. R. 1974. Topology: A first course. Englewood Cliffs, NJ: Prentice Hall.

Musgrave, F. K. 1988. Grid tracing: Fast ray tracing for height fields. Research Report, YALEU/
DCS/RR 639. New Haven, CT: Yale University Dept. of Computer Science.

Musgrave, F. K. 1990. A note on ray tracing mirages. IEEE Computer Graphics and Applications,
10(6):10–12.

Musgrave, F. K. 1991. A random colormap animation algorithm. In J. Arvo, ed., Graphics Gems
II, Boston: Academic Press.

Musgrave, F. K. 1993. Methods for realistic landscape imaging. New Haven, CT: Yale University.

Musgrave, F. K. 1994. Methods for realistic landscape imaging. Ph.D. thesis, Ann Arbor, Michi-
gan, UMI Dissertation Services (Order Number 9415872).

Musgrave, F. K., C. E. Kolb, and R. S. Mace. 1989. The synthesis and rendering of eroded fractal
terrains. In J. Eane, ed., Computer Graphics (SIGGRAPH ’89 Proceedings), 23(3):41–50.

Musgrave, F. K., and B. B. Mandelbrot. 1989. Natura ex machina. IEEE Computer Graphics and
Applications, 9(1):4–7.

Neyret, F. 1997. Qualitative simulation of convective cloud formation and evolution. Eighth Inter-
national Workshop on Computer Animation and Simulation, Eurographics.

Nielson, G. M. 1991. Visualization in scientific and engineering computation. IEEE Computer,
24(9):58–66.

Nishimura, H., A. Hirai, T. Kawai, T. Kawata, I. Shirakawa, and K. Omura. 1985. Object model-
ling by distribution function and a method of image generation. Journal of Papers Given at
the Electronics Communication Conference ’85, J68-D(4). In Japanese.

BIBLIOGRAPHY 643

Team LRN

Nishita, T., Y. Miyawaki, and E. Nakamae. 1987. A shading model for atmospheric scattering
considering luminous intensity distribution of light sources. In M. C. Stone, ed., Computer
Graphics (SIGGRAPH ’87 Proceedings), 21:303–310.

Nishita, T., E. Nakamae, and Y. Dobashi. 1996. Display of clouds and snow taking into account
multiple anisotropic scattering and sky light. In H. Rushmeier, ed., SIGGRAPH ’96 Confer-
ence Proceedings, Annual Conference Series, Reading, MA: Addison-Wesley, 379–386.

Nishita, T., T. Sirai, K. Tadamura, and E. Nakamae. 1993. Display of the earth taking into ac-
count atmospheric scattering. Computer Graphics, Annual Conference Series, 175–182.

Norton, A., A. P. Rockwood, and P. T. Skolmoski. 1982. Clamping: a method of antialiasing tex-
tured surfaces by bandwidth limiting in object space. In Computer Graphics (SIGGRAPH
’82 Proceedings), 16:1–8.

NVIDIA. 2001. Noise, component of the NVEffectsBrowser. Available at http://www.nvidia.com/
developer.

Olano, M., and A. Lastra. 1998. A shading language on graphics hardware: The PixelFlow shad-
ing system. Computer Graphics, Annual Conference Series (Proceedings of SIGGRAPH ’98),
159–168.

OpenGL ARB. 1999. OpenGL programming guide, third edition. Reading, MA: Addison-Wesley.

OpenGL Architecture Review Board. 2002. OpenGL extension registry. Available at http://
oss.sgi.com/projects/ogl-sample/registry/.

Oppenheim, A. V., and R. W. Schafer. 1989. Discrete-time signal processing. Englewood Cliffs,
NJ: Prentice Hall.

Owens, J. D., W. J. Dally, U. J. Kapasi, S. Rixner, P. Mattson, and B. Mowery. 2000. Polygon ren-
dering on a stream architecture. SIGGRAPH/Eurographics Workshop on Graphics Hard-
ware, 23–32.

Paglieroni, D. W., and S. M. Petersen. 1994. Height distributional distance transform methods for
height field ray tracing. ACM Transactions on Graphics, 13(4):376–399.

Pallister, K. 2002. Generating procedural clouds in real time on 3D hardware. http://
cedar.intel.com/software/idap/media/pdf/games/procedural_clouds.pdf.

Parish, Y. I. H., and P. Müller. 2001. Procedural modeling of cities. Proceedings of SIGGRAPH
2001, 301–308.

644 BIBLIOGRAPHY

Team LRN

Park, N. 1993. The wrong trousers. Aardmann Animation.

Park, N. 1996. Personal communication.

Parke, F. 1982. Parameterized models for facial animation. IEEE Computer Graphics and Appli-
cations, 2(9):61–68.

Parke, F., and K. Waters. 1996. Computer facial animation. Wellesley, MA: A. K. Peters.

Peachey, D. R. 1985. Solid texturing of complex surfaces. In B. A. Barsky, ed., Computer Graphics
(SIGGRAPH ’85 Proceedings), 19:279–286.

Pedersen, H. K. 1995. Decorating implicit surfaces. In Computer Graphics (SIGGRAPH ’95 Pro-
ceedings), 291–300.

Pedersen, H. K. 1996. A framework for interactive texturing operations on curved surfaces. Pro-
ceedings of SIGGRAPH ’96, 295–302.

Peercy, M. S., J. Airey, and B. Cabral. 1997. Efficient bump mapping hardware. Proceedings of
SIGGRAPH ’97, Computer Graphics Proceedings, Annual Conference Series, 303–306.

Peercy, M. S., M. Olano, J. Airey, and J. Ungar. 2000. Interactive multipass programmable shad-
ing. Computer Graphics, Annual Conference Series (Proceedings of SIGGRAPH 2000), 425–
432.

Peitgen, H. O., H. Jürgens, and D. Saupe. 1992. Chaos and fractals: New frontiers of science.
New York: Springer-Verlag.

Peitgen, H. O., and D. Saupe, eds. 1988. The science of fractal images. New York: Springer-
Verlag.

Perlin, K. 1985. An image synthesizer. In B. A. Barsky, ed., Computer Graphics (SIGGRAPH ’85
Proceedings), 19(3):287–296.

Perlin, K. 1992. A hypertexture tutorial. SIGGRAPH ’92: Course Notes 23.

Perlin, K. 1995. Real time responsive animation with personality. IEEE Transactions on Visualiza-
tion and Computer Graphics, 1(1):5–15.

Perlin, K. 1997. Layered compositing of facial expression. ACM SIGGRAPH ’97 Technical
Sketch, 226–227

Perlin, K. 2002. Improving noise. Computer Graphics, 35(3).

BIBLIOGRAPHY 645

Team LRN

Perlin, K., and A. Goldberg. 1996. Improv: A system for scripting interactive actors in virtual
worlds. Computer Graphics, 30(3):205–216.

Perlin, K., and E. M. Hoffert. 1989. Hypertexture. In J. Lane, ed., Computer Graphics
(SIGGRAPH ’89 Proceedings), 23:253–262.

Perlin, K., and F. Neyret. 2001. Flow noise. SIGGRAPH Technical Sketches and Applications.

Phong, B. 1975. Illumination for computer generated pictures. Communications of the ACM,
18(6):311–317.

Piponi, Dan, and George Borshukov. 2000. Seamless texture mapping of subdivision surfaces by
model pelting and texture blending. In Computer Graphics (SIGGRAPH 2000 Proceedings),
471–477.

Pixar. 1989. The RenderMan interface: Version 3.1. San Rafael, CA: Pixar.

Pixar. 1999. Future requirements for graphics hardware. Memo (April 12).

Pixar. 2000. The RenderMan interface: Version 3.2. San Rafael, CA: Pixar.

Plath, J. 2000. Realistic modelling of textiles using interacting particle systems. Computers and
Graphics, 24(6):897–905.

Porter, T., and T. Duff. 1984. Compositing digital images. In H. Christiansen, ed., Computer
Graphics (SIGGRAPH ’84 Proceedings), 18:253–259.

Potmesil, M., and E. M. Hoffert. 1989. The pixel machine: A parallel image computer. Computer
Graphics, 23(3):69–78.

Poulin, P., and A. Fournier. 1990. A model for anisotropic reflection. In F. Baskett, ed., Computer
Graphics (SIGGRAPH ’90 Proceedings), 24:273–282.

Praun, E., A. Finkelstein, and H. Hoppe. 2000. Lapped textures. In Computer Graphics
(SIGGRAPH 2000 Proceedings), 465–470.

Press, W. H., B. P. FLannery, S. A. Tenkolsky, and W. T. Vetterting. 1986. Numerical recipes. New
York: University of Cambridge.

Proudfoot, K., W. R. Mark, S. Tzvetkov, and P. Hanrahan. 2001. A real-time procedural shading
system for programmable graphics hardware. Computer Graphics, Annual Conference Series
(Proceedings of SIGGRAPH 2001), 159.

646 BIBLIOGRAPHY

Team LRN

Prusinkiewicz, P., M. James, and R. Mech. 1994. Synthetic topiary. Computer Graphics, Annual
Conference Series, 351–358.

Prusinkiewicz, P., and A. Lindenmayer. 1990. The algorithmic beauty of plants. New York:
Springer-Verlag.

Purcell, T. J., I. Buck, W. R. Mark, and P. Hanrahan. 2002. Ray tracing on programmable graphics
hardware. Computer Graphics, Annual Conference Series (Proceedings of SIGGRAPH
2002), 703.

Reeves, W. T. 1983. Particle systems: A technique for modeling a class of fuzzy objects. ACM
Transactions on Graphics, 2:91–108.

Reeves, W. T., and R. Blau. 1985. Approximate and probabilistic algorithms for shading and ren-
dering structured particle systems. Computer Graphics 19:313–322.

Reeves, W. T., D. H. Salesin, and R. L. Cook. 1987. Rendering antialiased shadows with depth
maps. In M. C. Stone, ed., Computer Graphics (SIGGRAPH ’87 Proceedings), 21:283–291.

Reynolds, C. W. 1987. Flocks, herds, and schools: A distributed behavioral model. In M. C. Stone,
ed., Computer Graphics (SIGGRAPH ’87 Proceedings), 21:25–34.

Rhoades, J., G. Turk, A. Bell, U. Neumann, and A. Varshney. 1992. Real-time procedural textures.
1992 Symposium on Interactive 3D Graphics, 25(2):95–100.

Rich, E. 1983. Artificial intelligence. New York: McGraw-Hill.

Rioux, M., M. Soucy, and G. Godin. 1996. A texture-mapping approach for the compression of
colored 3D triangulations. Visual Computer, 12(10):503–514.

Rixner, S., W. J. Dally, U. J. Kapasi, B. Khailany, A. Lopez-Lagunas, P. R. Mattson, and J. Owens.
1998. A bandwidth-efficient architecture for media processing. Proceedings of the 31st An-
nual International Symposium on Microarchitecture, 3–13.

Rubin, S. M., and T. Whitted. 1980. A 3-dimensional representation for fast rendering of complex
scenes. Proceedings of SIGGRAPH ’80, 110–116.

Rushmeier, H. E., and K. E. Torrance. 1987. The zonal method for calculating light intensities in
the presence of a participating medium. In M. C. Stone, ed., Computer Graphics
(SIGGRAPH ’87 Proceedings), 21:293–302.

Ruskai, M. B., ed. 1992. Wavelets and their applications. Boston: Jones and Bartlett.

BIBLIOGRAPHY 647

Team LRN

Sabella, P. 1988. A rendering algorithm for visualizing 3D scalar fields. In J. Dill, Computer
Graphics (SIGGRAPH ’88 Proceedings), 22:51–58.

Sakas, G. 1993. Modeling and animating turbulent gaseous phenomena using spectral synthesis.
The Visual Computer, 9(4):200–212.

Salisbury, M. B., S. Anderson, R. Barzel, and D. Salesin. 1994. Interactive pen-and-ink illustration.
Computer Graphics Proceedings, Annual Conference Series, 101–108.

Samek, M. 1986. Texture mapping and distortion in digital graphics. The Visual Computer,
2(5):313–320.

Sander, P. V., J. Snyder, S. J. Gortley, and H. Hoppe. 2001. Texture mapping progressive meshes.
Proceedings of SIGGRAPH 2001, 409–416.

Saupe, D. 1988. Algorithms for random fractals. In H. O. Peitgen and D. Saupe, eds., The science
of fractal images, New York: Springer-Verlag, 71–136.

Saupe, D. 1989. Point evaluation of multi-variable random fractals. In H. Juergen and D. Saupe,
eds., Visualisierung in Mathematik und Naturissenschaft-Bremer Computergraphik Tage
1988, Heidelberg: Springer-Verlag.

Saupe, D. 1992. Random fractals in image synthesis. In P. Prusinkiewicz, ed., Fractals: From Folk
Art to Hyperreality, SIGGRAPH ’92 Course Notes 12.

Sayre, R. 1992. Antialiasing techniques. In A. Apodaca and D. Peachey, eds., Writing RenderMan
Shaders, SIGGRAPH ’92 Course Notes 21, 109–141.

Schacter, B. J. 1980. Long-crested wave models. Computer Graphics and Image Processing,
12:187–201.

Schacter, B. J., and N. Ahuja. 1979. Random pattern generation processes. Computer Graphics
and Image Processing, 10:95–114.

Schlick, C. 1994. Fast alternatives to Perlin’s bias and gain functions. In P. S. Heckbert, ed.,
Graphics Gems IV, volume IV, 401–403, Cambridge, MA: Academic Press Professional.

Schroeder, W. J., J. A. Zarge, and W. E. Lorensen. 1992. Decimation of triangle meshes. In E. E.
Catmull, ed., Computer Graphics (SIGGRAPH ’92 Proceedings), 26(2):65–70.

Segal, M., and K. Akeley. 2001. The OpenGL graphics system: A specification, version 1.2.1.
Available at http://www.opengl.org/.

648 BIBLIOGRAPHY

Team LRN

Shannon, S. 1995. The chrome age: Dawn of virtual reality. Leonardo, 28(5):369–380.

Shirley, P. 1993. Monte Carlo simulation. SIGGRAPH ’92 Course Notes 18.

Shoemake, K. 1991. Interval sampling. In J. Arvo, ed., Graphics Gems II, Boston: Academic Press,
394–395.

Sims, K. 1990. Particle animation and rendering using data parallel computation. In F. Baskett,
ed., Computer Graphics (SIGGRAPH ’90 Proceedings), 24:405–413.

Sims, K. 1991a. Artificial evolution for computer graphics. In T. W. Sederberg, ed., Computer
Graphics (SIGGRAPH ’91 Proceedings), 25(4):319–328.

Sims, K. 1991b. Interactive evolution of dynamical systems. Proceedings of the European Confer-
ence on Artificial Life. Paris: MIT Press.

Sims, K. 1994. Evolving virtual creatures. In Andrew Glassner, ed., Computer Graphics
(SIGGRAPH ’94 Proceedings), 15–22.

Skinner, R., and C. E. Kolb. 1991. Noise.c component of the Rayshade ray tracer.

Smith, A. R. 1984. Plants, fractals and formal languages. In H. Christiansen, ed., Computer
Graphics (SIGGRAPH ’84 Proceedings), 18:1–10.

Snyder, J. M., and A. H. Barr. 1987. Ray tracing complex models containing surface tessellations.
Computer Graphics 21(4):119–128.

Stam, J. 1995. Multiple scattering as a diffusion process. Eurographics Rendering Workshop.

Stam, J. 1999. Stable fluids. In A. Rockwood, ed., Proceedings of SIGGRAPH ’99, Computer
Graphics Proceedings, Annual Conference Series, 121–128.

Stam, J., and E. Fiume. 1991. A multiple-scale stochastic modelling primitive. Proceedings of
Graphics Interface ’91, 24–31.

Stam, J., and E. Fiume. 1993. Turbulent wind fields for gaseous phenomena. In J. T. Kajiya, ed.,
Computer Graphics (SIGGRAPH ’93 Proceedings), 27:369–376.

Stam, J., and E. Fiume. 1995. Depicting fire and other gaseous phenomena using diffusion pro-
cesses. In R. Cook, ed., SIGGRAPH ’95 Conference Proceedings, Annual Conference Series,
Reading, MA: Addison-Wesley, 129–136.

BIBLIOGRAPHY 649

Team LRN

Standler, B., and J. Hart. 1994. A Lipschitz method for accelerated volume rendering. 1994 Sym-
posium on Volume Visualization.

Stephenson, N. 1992. Snow crash. New York: Bantam Doubleday.

Sutherland, I. E. 1963. Sketchpad: A man-machine graphical communication system. Proceedings
of Spring Joint Computer Conference.

Szeliski, R., and D. Tonnesen. 1992. Surface modeling with oriented particle systems. Computer
Graphics (Proceedings of SIGGRAPH ’92), 26(2):185–194.

Tadamura, K., E. Nakamae, K. Kaneda, M. Baba, H. Yamashita, and T. Nishita. 1993. Modeling
and skylight and rendering of outdoor scenes. Eurographics ’93, 12(3):189–200.

Thompson, D. 1942. On growth and form. Cambridge: University Press. Abridged edition (1961)
edited by J. T. Bonner.

Thorne, C. 1997. Convert solid texture. Software component of Alias|Wavefront Maya 1.

3Dlabs. 2001. OpenGL 2.0 shading language white paper, version 1.1.

Todd, S., and W. Latham. 1993. Evolutionary art and computers. Boston, MA: Academic Press.

Tricker, R. 1970. The science of the clouds. Amsterdam: Elsevier.

Turk, G. 1991. Generating texures on arbitrary surfaces using reaction-diffusion. In T. W.
Sederberg, ed., Computer Graphics (SIGGRAPH ’91 Proceedings), 25:289–298.

Turk, G. 2001. Texture synthesis on surfaces. In Computer Graphics (SIGGRAPH ’01 Proceed-
ings), 347–354.

University of Illinois Department of Atmospheric Sciences. 2002. Cloud catalog. http://
ww2010.atmos.uiuc.edu/(Gh)/guides/mtr/cld/cldtyp/home.rxml.

Upstill, S. 1990. The RenderMan companion. Reading, MA: Addison-Wesley.

Van Gelder, A., and K. Kim. 1996. Direct volume rendering with shading via 3D textures. ACM/
IEEE Symposium on Volume Visualization, 22–30.

van Wijk, J. J. 1991. Spot noise-texture synthesis for data visualization. In T. W. Sederberg, ed.,
Computer Graphics (SIGGRAPH ’91 Proceedings), 25:309–318.

650 BIBLIOGRAPHY

Team LRN

Velho, L., K. Perlin, L. Ying, and H. Biermann. 2001. Procedural shape synthesis on subdivision
surfaces. Proc. Symposium on Computer Graphics and Image Processing (SIBGRAPI), 146–
153.

Voorhies, D. 1991. Space filling curves and a measure of coherence. In J. Arvo, ed., Graphics
Gems II, Boston: Academic Press, 26–30.

Voss, R. 1983. Fourier synthesis of Gaussian fractals: Noises, landscapes, and flakes. SIGGRAPH
’83: Tutorial on State of the Art Image Synthesis, 10.

Voss, R. F. 1988. Fractals in nature: From characterization to simulation. In H. O. Peitgen and D.
Saupe, eds., The science of fractal images, New York: Springer-Verlag, 21–70.

Wann Jensen, H., and P. H. Christensen. 1998. Efficient simulation of light transport in scenes
with participating media using photon maps. In M. F. Cohen, ed., Proceedings of
SIGGRAPH 98, Computer Graphics Proceedings, Annual Conference Series, 311–320.

Ward, G. 1991. A recursive implementation of the Perlin noise function. In J. Arvo, ed., Graphics
Gems II, 396–401. Academic Press Professional.

Waters, K. 1987. A muscle model for animating three-dimensional facial expression. In M. C.
Stone, ed., Computer Graphics (SIGGRAPH ’87 Proceedings), 21:17–24.

Wei, L.-Y., and M. Levoy. 2000. Texture synthesis using tree-structured vector quantization. In
Computer Graphics (SIGGRAPH 2000 Proceedings), 479–488.

Wei, L.-Y., and M. Levoy. 2001. Texture synthesis over arbitrary manifold surfaces. In Computer
Graphis (SIGGRAPH ’01 Proceedings), 355–360.

Westover, L. 1990. Footprint evaluation for volume rendering. In F. Baskett, ed., Computer
Graphics (SIGGRAPH ’90 Proceedings), 24:367–376.

Williams, L. 1983. Pyramidal parametrics. Computer Graphics, 17(3):1–11.

Willis, P. J. 1987. Visual simulation of atmospheric haze. Computer Graphics Forum, 6(1):35–42.

Winston, P. H., and B. K. P. Horn. 1984. LISP, 2nd edition. Reading, MA: Addison-Wesley.

Witkin, A., and P. Heckbert. 1994. Using particles to sample and control implicit surfaces. In An-
drew Glassner, ed., Computer Graphics (SIGGRAPH ’94 Proceedings), 269–278.

Witkin, A., and M. Kass. 1991. Reaction-diffusion textures. In T. W. Sederberg, ed., Computer
Graphics (SIGGRAPH ’91 Proceedings), 25:299–308.

BIBLIOGRAPHY 651

Team LRN

Worley, S. 1993. Practical texture implementation. Procedural Modeling and Rendering Tech-
niques Course Notes, ACM SIGGRAPH ’93, vol. 12.

Worley, S. 1996. A cellular texture basis function. Proceedings of SIGGRAPH ’96, 291.

Worley, S., and J. Hart. 1996. Hyper-rendering of hyper-textured surfaces. Implicit Surfaces ’96.

Wyvill, B., and J. Bloomenthal. 1990. Modeling and animating with implicit surfaces.
SIGGRAPH ’90: Course Notes 23.

Wyvill, B., C. McPheeters, and G. Wyvill. 1986. Data structure for soft objects. The Visual Com-
puter, 2(4):227–234.

Wyvill G., B. Wyvill, and C. McPheeters. 1987. Solid texturing of soft objects. IEEE Computer
Graphics and Applications, 7(4):20–26.

Yang, X. D. 1988. Fuzzy disk modeling and rendering of textured complex 3D surfaces of real ob-
jects. Technical Report, TR-88–414. New York: New York University.

652 BIBLIOGRAPHY

A-

Team LRN

INDEX

Symbols and Numbers
2D antialiasing, 176
2D slices of noise functions, 74
2D texture mapping

for clouds, 267
limitations of, 10
methods, 197–199

3D Nature’s World Construc-
tion Set, 580

3D tables for controlling anima-
tion, 244–254

accessing table entries,
245

breeze effect using attrac-
tor, 247, 248,
252–253, 254

combinations of functions,
251–254

common dimensions for,
245

flow into hole in wall,
253–254, 255

functional flow field func-
tions, 246–251

functional flow field tables,
245, 246

nonuniform spacing be-
tween entries,
244–245

overview, 244–245
vector field tables, 245
wind effects, 252–254

3D textures, converting to im-
age maps, 197–199

4D cellular texturing, 149
4D noise functions, 84, 181

abs function (RenderMan),
29–30

abstraction, 2
a-buffer rendering algorithm,

205
additive cascades, multiplicative

cascades vs., 440
Advanced RenderMan, 102,

129
Adventures of André & Wally

B, The, 259, 260
aerial perspective, 529–530
aesthetic n-space model,

548–549, 559
air currents. See wind
Air Force One, 473, 525
algorithms

a-buffer rendering algo-
rithm, 205

for cumulus clouds, 272,
274

explicit noise algorithms,
82–83

genetic algorithms vs. ge-
netic programming,
558–559

multipass pixel shader im-
plementation of noise
function, 423–425

QAEB, 513–514
real-time procedural solid

texturing, 413–416
REYES (PRMan),

103–106
ridge algorithm for bump

mapping, 187
shadow table algorithm,

207–208
volume-rendering algo-

rithm for gases, 206
Alias Dynamation, 524
aliasing. See also antialiasing

brick texture example, 56,
57

cyberspace and, 622
defined, 52
fractal octaves and, 585
image textures vs. proce-

dural textures and,
15

index aliasing, 158–166
maximum frequency and,

53, 54
MojoWorld function frac-

tals and, 602–604
Nyquist frequency and,

53–54
planetary rings example,

163–166
in procedural textures,

55–56
sampling rate and, 53, 54
in signal processing, 53–54
signal processing concepts,

52–56
smoothstep function for

avoiding, 31
sources of, 158–160
supersampling and, 54
temporal, 175
white noise and, 68

Alias’s Maya animation system.
See Maya animation
system

ambient function (RenderMan),
21

amplification
data amplification algo-

rithms for procedural
geometry, 305,
312–314

database amplification, 2

653

Team LRN

amplification (continued)
by fractals, 436
intermediate representa-

tion and, 313
proceduralism and, 549

amplitude of fractals, 433
analytic prefiltering

box filter for, 61–62,
64–65

brick texture example,
64–66

filters with negative lobes,
62

integrals for, 3–4, 65
overview, 56–57
smoothstep function for,

62
summed-area table

method, 63–64
Animatek’s World Builder, 580
animating gaseous volumes,

235–243
helical path effects,

236–243
rolling fog, 238–239
smoke rising, 239–243
steam rising from teacup,

236–238
animating hypertextures,

254–256
animating solid spaces, 227–261

animation paths, 228–229
approaches, 227–228
changing solid space over

time, 227, 229–232
ease-in and ease-out proce-

dures, 229
hypertextures, 254–256
marble procedure for ex-

amples, 229
moving screen space point

through solid space,
227, 228, 232–233,
235–243

solid textured transpar-
ency, 233–235

three-dimensional tables
for controlling ani-
mation, 244–254

animating volumetric proce-
dural clouds,
279–283

implicit primitive anima-
tion, 280–283

procedural animation,
279–280

animation
aliasing problems

magnified by, 157
cellular texturing for, 149
clip animation, 391
ease-in and ease-out proce-

dures, 229
flame shader, noise-based

procedural, 124–129
paths for, 228–229
of real-time effects, 291
textural limb animation,

387, 391–395
texture for facial move-

ment, 395–409
textures for, 196–197
time-animated fractal

noise, 181
anisotropic1 shader, 114–115
anisotropic2 shader, 115–116
anisotropic shading models

development of, 8
Heidrich/Banks model,

112–116
antialiased rendering of proce-

dural textures,
369–376

background, 370
basic idea, 370–372
detailed description,

372–373
examples, 374–376
high-contrast filter,

371–372, 373–374
ifpos pseudofunction for,

371, 372–373
nested conditionals and,

369
overview, 369, 376

antialiasing, 52–67, 157–176,
369–376. See also
aliasing

alternatives to low-pass fil-
tering, 66–67

analytic prefiltering tech-
niques, 56–57, 61–66

blending between texture
versions for, 66

blur effects for, 175–176
blurring color map for,

175
box filter for, 61–62,

64–65
brick texture example,

64–66
bump mapping and, 59
clamping method, 56,

59–61
edges that result from con-

ditionals, 369–376
efficiency issues, 157
emergency alternatives,

175–176
exaggerating spot size for,

175
filters with negative lobes

for, 62
fractal octave reduction

for, 585
high-contrast filter for,

371–372, 373–374
if functions vs. step func-

tions for, 28
image textures vs. proce-

dural textures and, 15
importance of, 157
index antialiasing,

160–166
integrals for, 63–64, 65
low-pass filtering, 54
methods for procedural

textures, 56–67
modeling input distribu-

tion, 161–162
object space vs. screen

space shading and,
106

optimization and verifica-
tion, 173–175

PhotoRealistic RenderMan
scheme, 55

654 INDEX

Team LRN

planetary rings example,
163–166

in QAEB tracing, 516
reference image for, 174
by renderers, 55–56
rendering procedural tex-

tures, 369–376
rendering texture as 2D

image, 176
sampling and bumping,

170–173
sampling rate determina-

tion, 57–59
smoothstep function for,

62
spot size calculation,

166–170
stochastic sampling, 55, 67
sum table for, 162–163
summed-area table

method, 63–64
supersampling, 10–13, 54,

66–67, 157
temporal, 175
test scene design, 174
by texture instead of ren-

derer, 170–173
two-dimensional, 176

API routines
interface between shaders

and applications,
118–121

OpenGL, 118
in Stanford shading lan-

guage, 118–120
Apollo 13, 473
applytexture program,

111–112
architectexture, 359–362
area-weighted mesh atlas,

417–418
art, computer’s role in, 482
artifacts

frequency multiplier and
lattice artifacts, 88–89

grid-oriented artifacts, re-
ducing, 348

from noise algorithms,
88–89, 180–181, 348

rotation matrices for hid-
ing, 180, 181

seam artifacts, avoiding,
419–421

terrain creases as, 498
ArtMatic, 557
assembly language, for shading,

high-level language
vs., 100–101

atlas
area-weighted mesh atlas,

417–418
based on clusters of proxi-

mate triangles, 418,
419

defined, 416
length-weighted atlas, 418
for real-time procedural

solid texturing,
416–419

to support MIP mapping,
418–419

uniform meshed atlas,
416–417

atmosphere, fractal properties
of, 570

atmospheric dispersion effects
for gaseous phenom-
ena, 205

atmospheric models, 529–544.
See also color per-
spective; GADDs
(geometric atmo-
spheric density distri-
bution models)

aerial perspective, 529–530
Beer’s law and homoge-

nous fog, 531–532
curved, 569–570
dispersion effects for gas-

eous phenomena, 205
elements involved in, 529,

530
exponential mist, 532, 534
extinction, 531–532
global context for land-

scape, 530
integration schemes for,

529, 534–544

minimal Rayleigh scatter-
ing approximation,
536, 539

numerical quadrature with
bounded error for ra-
dial GADDs, 542–544

optical depth, 531
optical paths, 531, 534
physical models vs., 530
radially symmetric plane-

tary atmosphere,
534–536

scattering models for, 529,
530, 536, 539

terminology, 531
trapezoidal quadrature for

radial GADDs,
539–542

atmospheric perspective, 529
attractors

combinations of functions,
251–254

creating repulsors from,
246

extensions of spherical at-
tractors, 249

overview, 247
spherical, 247–249

Avatars, 391
axioms in L-system, 308

banded color, sine function for,
230

band-limited fractals, 434
bandwidth

memory bandwidth and
performance tuning,
110

in signal processing, 52
basic_gas function

overview, 214–215
patchy fog using, 216
power function effects on,

215–216
sine function effects on,

215, 216
steam rising from teacup

using, 216–219, 220

INDEX 655

Team LRN

basis functions of fractals
defined, 582
manipulating for variety,

450
MojoWorld, 450, 582,

583, 590–597
overview, 432–433
for random fractals, 583
visual effects for homoge-

nous fBm terrain
models, 497–498

basketball, texture baking ex-
ample for, 198–199

Beer’s law, atmospheric models
and, 531–532

bevel for bump mapping. See
ridge for bump
mapping

bias function
gain function and, 39
for gamma correction,

37–38
biasb function

defined, 339
for tuning fuzzy regions,

339, 340
bicubic patch modeling with L-

system, 311
bilinear filtering, seam artifacts

and, 420–421
billboards

for cloud modeling, 268
for gases, 209

billowing clouds, 523–524
binding

early vs. late, performance
and, 117–118

of shaders, program re-
sponsibility for, 120

Stanford shading language
early-binding model,
118

black-body radiators, 461
black-box textures, future of,

200–201
blending capability of GPUs,

290
blinking, 405. See also texture

for facial movement
blobby molecules, 3

Blue Moon Rendering Tools
(BRMT), 102

blurring
blur effects for

antialiasing, 175–176
color map for antialiasing,

175
bombing, random placement pat-

terns based on, 91–94
bounding volumes for proce-

dural geometry,
330–332

box filter for antialiasing,
61–62, 64–65

boxstep function (RenderMan)
analytic prefiltering using,

61–62
brick texture antialiasing

example, 64–65
brick textures

aliasing in, 56, 57
antialiased example, 64–66
bump-mapped brick,

41–46
bump-mapped mortar,

44–45
determining whether point

is in brick or mortar,
41

images rendered using, 42,
46, 66

offsetting alternate rows,
41

perturbed, 89–90
procedural texture genera-

tor, 39–41
pulses generating brick

shape, 41
scoord and tcoord texture

coordinates, 40
BRMT (Blue Moon Rendering

Tools), 102
Bryce software, 580
bump mapping. See also dis-

placement mapping
adding to basic texture, 183
antialiasing and, 59,

170–173
bevel for three-dimensional

appearance, 183, 184

brick mortar example,
44–45

brick texture example,
41–46

cellular textures, 140, 141,
142

correct vs. incorrect,
171–173

geometry of, 42
impressive textures’ use of,

183
methods, 183–187
overview, 9, 41–43
ridge algorithm for,

183–187
rotation matrices for hid-

ing artifacts, 180
texture spaces and, 45–46
for water ripples, 461, 463

“Bursting,” 17
bushes, L-system for modeling,

318–320

C language, translating
RenderMan shading
language into, 19

calc_noise function, 212–213
calculatenormal function, de-

scribed, 44
calc_vortex procedure,

250–251
camera space (RenderMan)

current space and, 24
solid textures and, 24–25

Carefree Gum, “Bursting,” 17
Carmack, John, 130
cascades, multiplicative vs. addi-

tive, 440
ceil function (RenderMan), 33
ceilf function (ANSI C imple-

mentation), macro al-
ternative to, 33

cellular texturing, 135–155
2D and 4D variants, 149
basis functions, 136–140
density of feature points

in, 144–145,
146–147, 149

distance metric for, 147–149

656 INDEX

Team LRN

extensions and alterna-
tives, 147–149

feature points defined,
136

fractal combinations,
138–140, 141

implementation strategy,
140–149

isotropic property of, 142,
143, 145–147

linear combinations of
functions F, 137–138,
139

“Manhattan” distance
metric, 148

mapping function values
onto colors and
bumps, 137

modifying the algorithm,
136, 140–141

neighbor testing, 144–145
noise compared to,

135–136
nonlinear combinations of

polynomial products,
140

partitioning space into cel-
lular regions,
136–137, 142–144

Poisson distribution of fea-
ture points, 145–147

population table for,
145–147

properties of functions F,
137

random number generator
for, 143

sample code, 149–155
speed vs. isotropy in,

146–147
Cg language (NVIDIA), 111,

292–296
checkerboard basis function

(MojoWorld),
596–597

checkerboard pattern genera-
tion, 39

cirrus cloud models, 275–276,
277, 282, 283,
453–458

Cirrus procedure, 275–276
clamp function (RenderMan),

28–29
clamping

closeness to texture pattern
and, 60–61

described, 56
fade-out for sampling rate

changes, 60
limitations of, 61
spectral synthesis

antialiasing using,
59–61, 86–87

for turbulence function,
86–87

clip animation, 391
clipping planes in QAEB trac-

ing, 514–515
cloth, hypertexture example,

357, 359, 360, 361
cloudplane shader, 50
clouds. See also fog; gases; volu-

metric cloud model-
ing and rendering

altitude and types of, 266
animating volumetric pro-

cedural clouds,
279–283

atmospheric dispersion ef-
fects, 267

basics, 263, 266–267
billowing, 523–524
challenge of, 448
cirrus cloud models,

275–276, 277, 282,
283, 453–458

cloud creatures, 273, 278
commercial packages for

rendering, 284, 285
Coriolis effect, 458–460
cumulus cloud models,

272–274, 282
difficulties modeling, 263,

267
distorted noise function

for, 450–453
ellipsoid surfaces for mod-

eling, 195, 267
example photographs,

264–265

fBm-valued distortion for,
454–456

forces shaping, 263, 266
fractal solid textures for,

448–460
functional composition for

modeling, 453–454
hardware acceleration for,

298–301
illumination models,

266–267
for interactive applica-

tions, 267–268
interactive models,

283–284, 285
jet stream warping,

279–280
MojoWorld for, 611
ontogenetic modeling of

hurricane, 456–458
previous approaches to

modeling, 267–268
psychedelic, 525, 526
puffy, 448–449
QAEB-traced hyper-

textures for,
520–525, 526

real-time, 298–301
spectral synthesis for simu-

lating, 50–51
stratus cloud models, 276,

277–278, 282, 283
surface-based modeling ap-

proaches, 267–268
on Venus, 458–460
visual characteristics, 266
volume perturbation for

modeling, 299–301
volumetric modeling,

268–272
volumetric rendering,

272–279
weather forecasting and, 266

color. See also RGB color
black-body radiators, 461
blurring color map for

antialiasing, 175
color mappings, 181–182
color splines, 182,

189–192

INDEX 657

Team LRN

color (continued)
color table equalization,

189, 190–192
fBm coloring, 477–478
for fire, 461
GIT texturing system,

478–480
index aliasing, 158–163
layering texture patterns,

25–26
L-system specification,

311–312
for marble using NVIDIA’s

Cg language, 293–294
“multicolor” texture,

482–485
normalizing noise levels

for, 189–192
plastic shader output, 21
random coloring methods,

477–485
sine function for banding,

230
solid color texture, 196
spline function for map-

ping, 36
usage in this book, 182

color perspective. See also atmo-
spheric models

in Carolina, 534
defined, 529
in Himalayas, 537
in planetary atmosphere,

538
raw form, 538
Rayleigh scattering and,

536
color splines

color table equalization,
189, 190–192

normalizing noise levels,
189–192

overview, 182
color table equalization

histogram of noise values,
190, 191

mapping percentage levels
to noise values,
190–192

need for, 189, 192
normalization plot, 190,

191
complexity

fractal vs. nonfractal, 431
fractals and visual com-

plexity, 429, 506,
567–571

hyperspace in MojoWorld
and, 588–589

realism and, 434–435
as work, 434

composition. See functional
composition

computational precision issues
for GPUs, 288

compute_color function for
raymarcher renderer,
350, 351

computer graphics research
community, 576,
578–579

“Computer Rendering of Sto-
chastic Models,” 576

computer’s role in art, 482
compute_shading function for

raymarcher renderer,
350

conditional functions
abs (RenderMan), 30
antialised rendering of

edges resulting from,
369–376

clamp (RenderMan),
28–29

max (RenderMan), 28–29
min (RenderMan), 28–29
smoothstep (RenderMan),

30–31
step (RenderMan), 27–28

conferencing, electronic, 391
conservation of angular momen-

tum, spiral vortex
functions based on,
251

constant density medium for
modeling gases, 204

convective cloud modeling, 268
convolution kernel, 595

convolution noise
lattice, 78–80
sparse, 80–82

coordinate systems in
RenderMan, 24. See
also texture spaces

Coriolis effect, 458–460
cosf function (ANSI C imple-

mentation),
RenderMan cos func-
tion vs., 31

cosine function
graph of, 32
overview, 31
for rotation on helical

path, 228
CPUs

GPUs vs., 100, 102, 109
migrating procedural tech-

niques to GPUs from,
287–289

real-time procedural solid
texturing on, 421

virtualization supported
by, 109

crop circles, PGI for modeling,
326

crossover scales
of fractals, 434
in MojoWorld, 606–607

cubic Catmull-Rom spline inter-
polation for value
noise, 71–72

cumulus cloud models,
272–274, 282

cumulus procedure, 272, 274
current space, described, 24
cyberspace

aliasing and, 622
as context for information

content, 621, 622, 623
defined, 617
features of “natural”

cyberspace, 619–620
fractal geometry of,

620–622
MojoWorld photorealistic

renderer and,
617–618

658 INDEX

Team LRN

social aspects of, 621–622
vision of, 618–620

cyclic scene graphs, 320, 321
cyclone procedure, 456–458

dance
bias and gain controls for,

397
emotional gestures in, 391

Dark Tree, 447
data amplification algorithms

for procedural geom-
etry, 312–314

described, 305
intermediate representa-

tion and, 313
in L-system, 312–314
for particle systems,

313–314
data types, GPU support for,

108–109
database amplification, 2
“Death Star” surface, 148
debugging, image textures vs.

procedural textures
and, 14

declarative components of pro-
cedural techniques,
12

deep shadow map for gases, 208
degrees of freedom in n-spaces,

548
DEM (digital elevation map)

format, 494
density

constant, for modeling
gases, 204

of feature points in cellular
texturing, 144–145,
146–147, 149

function for hypertexture
explosion example,
355

height attenuation for ris-
ing steam, 218–219

height attenuation for
smoke dispersion,
220

implicit density functions
for cloud modeling,
270–271

power function and gas
density, 215–216

raymarcher renderer user-
defined functions,
350–352

scaling vector returned by
functional flow field
functions, 246–247

smoke density function,
367–368

spherical attenuation to
confine steam within
cup radius, 216–218

turbulence-based, for
cloud modeling, 271

density_function for
raymarcher renderer,
350

depth buffer renderers, implicit
vs. explicit proce-
dures in, 13

depth-of-field effects, object
space vs. screen space
shading and,
105–106

derivative discontinuities in
turbulence function,
86

diffuse function (RenderMan),
21

diffuse model, 7–8
digital elevation map (DEM)

format, 494
digital terrain elevation data

(DTED) format, 494
dilation symmetry

in fractal geometry, 621
fractals as, 431, 573–574

dimension, 588
Direct3D, OpenGL vs., 102
displacement mapping. See also

height fields
in MojoWorld, 610–611
object space vs. screen

space shading and,
104, 105–106

overview, 9
scanline rendering vs. ray

tracing and, 511
for water ripples, 461–463

distorted fractal functions in
MojoWorld, 606

distorted noise (DistNoise)
function, 450–453

for altering fractal basis
function, 450

C++ version, 450
RenderMan version,

452–453
terse version, 452
undistorted noise function

vs., 451–452
VecNoise function in,

450–451
domain distortion

for cirrus cloud modeling,
453–454

DistNoise function based
on, 450–453

in MojoWorld, 604–606
domain function dimensions in

MojoWorld, 587–588
dot product capability of GPUs,

290
Dr. Mutatis program

demise of, 550
images generated by,

558–563
DTED (digital terrain elevation

data) format, 494
Du and Dv functions

(RenderMan), 58–59
du and dv variables

(RenderMan), 58
dynamic bounding volumes, 331

earth textures. See also
MojoWorld; proce-
dural fractal terrains

fractal solid textures for
earth textures,
466–477

Gaea (Earth-like planet),
467–472

INDEX 659

Team LRN

earth textures (continued)
sedimentary rock strata,

466–467, 468
Selene (Moon), 473–477

ease-in and ease-out procedures,
229

edge events, 370. See also
antialiased rendering
of procedural
textures

egg shape
for creating hypertextures,

354
explosion inside, 355, 356,

357
electronic conferencing, 391
emittance, volume rendering

with surface textures
and, 196

emotive gesturing. See textural
limb animation

environment function
(RenderMan), 22

environment mapping, 9
E-on Software’s Vue d’Esprit,

580
Euclidean geometry, fractal ge-

ometry vs., 620–621
exact self-similarity, statistical

self-similarity vs.,
435, 575

explicit procedures
defined, 12
implicit procedures vs.,

12–14
explosions

hypertexture example,
354–356

inside an egg, 355, 356,
357

pyroclastic flow, 523–524
expression trees, 553–556
extinction in atmospheric mod-

els, 531–532

F (turtle graphics symbol), 308
fabs function with turbulence

functions, 369

faceforward function
(RenderMan), 21

Facial Action Coding System
(FACS), 396

facial expressions. See texture
for facial movement

fade in, solid color texture for,
196

fast Fourier transform (FFT),
spectral synthesis
and, 49

fBm. See fractional Brownian
motion (fBm)

feature points in cellular
texturing

defined, 136
density of, 144–145,

146–147, 149
isotropic distribution of,

142, 143, 145–147
precomputed, 149
testing regions of space for,

142–145
feature spaces for textures

overview, 25
star texture, 46

FFT (fast Fourier transform),
spectral synthesis
and, 49

filtering capability of GPUs, 290
fire. See also volumetric proce-

dural modeling and
texturing

colors for, 461
fBm-valued distortion for,

460–461, 462
fractal solid textures for,

460–461
noise-based procedural

flame shader,
124–129

particle system for wall of
fire, 257, 258

pyroclastic flow, 523–524
QAEB-rendered fireballs,

525
flagstone texture, 140, 142
flame. See fire
flame procedure, 460–461

flexibility
GPU issues, 288–289
procedural techniques and,

2
floor function (RenderMan),

32–33
floorf function (ANSI C imple-

mentation), macro al-
ternative to, 33

flow field functions. See func-
tional flow field
functions

flow noise, 384–387
example flow textures,

387, 388–389
need for, 384–385
pseudoadvection in,

386–387
rotation gradients for,

385–386
fog. See also gases; volumetric

procedural modeling
and texturing

animating solid textured
transparency,
233–235

Beer’s law and homoge-
nous fog, 531–532

exponential mist, 532,
534

hardware acceleration for
space-filling fog,
297–298

patchy fog modeling, 216
rolling fog animation,

238–240
fog procedure, 233–234

described, 233
helical path for, 233
values for, 235

Fourier synthesis
basis function for, 497
for cloud modeling, 267
for controlling transpar-

ency, 204
point evaluation vs., 490

Fourier transform
domain change from, 49
inverse, 49

660 INDEX

Team LRN

signal processing and,
52–53

for spectral synthesis,
49–51

frac macro, 65
fractal dimension

amplitude scaling and, 89
defined, 582–583
for homogenous fBm ter-

rain models, 495–497
overview, 432–433
for random fractals,

583–584
roughness of surface and,

444, 495–496,
583–584

fractal geometry of cyberspace,
620–622

Fractal Geometry of Nature,
The, 575, 576

fractal noise. See noise func-
tions; Perlin’s noise
function

Fractal Planetrise, 576
fractal planets. See MojoWorld
fractal solid textures, 447–487

clouds, 448–460
earth, 466–477
fire, 460–461, 462
iterative design of,

447–448
planetary rings, 485–487
random coloring methods,

477–485
water, 461–465

fractal sum of pulses. See sparse
convolution noise

fractals, 429–445. See also
MojoWorld;
multifractals; proce-
dural fractal terrains

amplification by, 436
amplitude, 433
band-limited, 434
basis function, 432–433,

450, 497–498, 582,
583

cellular texture combina-
tions, 138–140, 141

complexity of, 431,
434–435

computer graphics and,
429

defined, 431, 571
difficulties for understand-

ing, 430
as dilation symmetry, 431,

573–574
distribution of fractal func-

tions, 190
fractal dimension property,

89, 432–433, 444,
495–497

fractal forgeries, 567–568
fractal increment, 432
fractional Brownian mo-

tion (fBm) and, 433
further information, 429
heuristic approach to, 431
history of fractal terrains,

575–582
lacunarity of, 433, 444,

583, 585–586
as language of visual com-

plexity, 429, 506, 567
level of detail (LOD) in,

433–434, 437–438,
511

literature on, 579
local dimensionality in,

432
lower crossover scale, 434
mathematical history of

fractal terrains,
575–576

mathematical imaging of
fractal terrains, 576

misunderstanding of,
430–431

for modeling gases, 204
monofractal graphics, 445
multifractals, 438,

440–442, 569
“naturalness” of, 485
in nature, 567–568,

572–573
nonfractal complexity vs.,

431

octaves in, 433–434, 444,
583, 584–585

ontogenetic modeling and,
442–444

poem about, 435
as primary building blocks,

430
procedural fBm, 436–438,

440
procedural fractal terrains,

489–506
proceduralism and, 436
random, 574–575,

582–586, 611, 613
self-similarity in, 496–497,

572–573
simplicity of, 435
software, history of,

579–580
space-filling hypertexture

example, 357,
358–359

spatial frequency of basis
function, 433

statistical self-similarity vs.
exact self-similarity,
435

for synthesizing cloud im-
ages, 267

turbulence and, 435–436
in turbulence function

power spectrum, 85
upper crossover scale,

434
uses for, 434–436, 506,

608–611
visual complexity and,

567–571
fractalsum function

power spectrum of, 86, 87
turbulence function vs.,

86
fractional Brownian motion

(fBm)
approximating, 89
basis function effects,

497–498
for color perturbation, 470
described, 599–600

INDEX 661

Team LRN

fractional Brownian motion
(continued)

DistNoise function based
on, 450–453

fBm-valued distortion for
clouds, 454–456

fBm-valued distortion for
fire, 460–461, 462

fractals and, 433
homogenous fBm terrain

models, 495–498
level of detail and,

437–438
monofractals using,

599–600
multiplicative-cascade

multifractal variation,
440–441

in PGI, 327–329, 330
power spectrum of, 433
procedural, 436–438, 440
random fBm coloring,

477–478
as weighting function in

windywave proce-
dure, 465

fragment processing in GPUs,
287, 289

frequency of fractal basis func-
tion, 433

function fractals in MojoWorld,
602–604

functional composition
for cirrus cloud modeling,

453–454
defined, 453
in DistNoise function,

453
expression trees and,

553–554
for texture pattern genera-

tion, 26
functional flow field functions

attractors, 247–249
breeze effect using attrac-

tor, 247, 248,
252–253, 254

combinations of functions,
251–254

density_scaling parame-
ter, 246–247

direction parameter, 246,
247

extensions of spherical at-
tractors, 249

for flow into hole in wall,
253–254, 255

information returned by,
246–247

overview, 246–247
percent_to_use parame-

ter, 246, 247
repulsors, 246
spherical attractor func-

tion, 248–249
spiral vortex functions,

249–251
velocity parameter, 246,

247
wind effects using,

252–253
functional flow field tables

accessing table entries, 245
combinations of functions,

251–254
functions, 246–251
overview, 245, 246

functional programming, 26
fur, volume perturbation for,

301, 302
fuzzy blobbies for modeling

gases, 204
fuzzy regions

for biasb function for tun-
ing, 339, 340

combining solid textures
with, 338

defined, 338
gaing function for tuning,

339–340

GADDs (geometric atmospheric
density distribution
models). See also at-
mospheric models

for exponential mist, 532,
534

homogenous and isotropic,
531–532

local vs. global, 350
numerical quadrature with

bounded error for ra-
dial GADDs,
542–544

overview, 530
for radially symmetric

planetary atmo-
sphere, 534–536

with Rayleigh scattering
approximation, 539

trapezoidal quadrature for
radial GADDs,
539–542

Gaea (Earth-like planet) model,
467–472

climactic zones, 468–469
coastline, 469
continents and oceans,

467–468
deserts, 469, 470
fractals in, 467
terran procedure,

470–472
gain function

bias function and, 39
remapping unit interval

with, 38–39
gaing function

defined, 340
for tuning fuzzy regions,

339–340
gamma correction functions

bias, 37–38
for CRT display systems,

37, 38
gamma correction texture, 196
gases. See also animating solid

spaces; clouds; fire;
volumetric proce-
dural modeling and
texturing

animating gaseous vol-
umes, 235–243

animating solid textured
transparency,
233–235

662 INDEX

Team LRN

basic gas shaping,
214–224

breeze effect using attrac-
tor, 247, 248,
252–253, 254

flow into hole in wall,
253–254, 255

geometry of, 211–224
hardware acceleration for

smoke and fog,
297–298

helical path for, 228
historical overview of

modeling approaches,
204–205

illumination model for,
207

noise and turbulence func-
tions for, 211–214

particle systems for, 209
patchy fog modeling, 216
power and function effects

on, 214–216
rolling fog animation,

238–240
self-shadowing, 207–208
sine function effects on,

215, 216
smoke column examples,

219–224, 239–243
solid spaces framework for

modeling, 209–211
steam rising from teacup

examples, 216–219,
220, 236–238

three-dimensional tables
for controlling ani-
mation, 244–254

turbulence for simulating
air currents, 238

usage in this book, 203
GDM (goal determination mod-

ule), 394–395
generalized Impressionistic tex-

ture. See GIT (gener-
alized Impressionistic
texture) texturing
system

genes, 551, 552–555

genetic algorithms, genetic pro-
gramming vs.,
558–559

genetic programming. See also
genetic textures

biological analogy for,
550–552

DNA and, 551–552
examples, 557–558
expression trees, 553–556
further information, 558
future directions, 560–562
genes, 551, 552–555
genetic algorithms vs.,

558–559
genomes, 551
genotypes, 551
implementation, 555
mutation, 551, 554
parameter proliferation

problem and, 548
phenotypes, 551, 554
sexual reproduction, 551,

554
unnatural selection in,

552
genetic textures, 547–563. See

also genetic
programming

aesthetic n-space model,
548–549

basis vectors, 556
control vs. automaticity,

549–550
evolutionary biological

model, 550–555
expression trees for,

553–556
future directions, 560–562
genetic programming and

genetic art examples,
557–558

genetic programming vs.
genetic algorithms,
558–559

library of genetic bases,
556–557

parameter proliferation
problem, 547–548

root node interpretation,
555–556

genomes, 551
genotypes, 551
geometric atmospheric density

distribution models.
See GADDs
(geometric

atmospheric density distribution
models)

geometric modeling
advanced techniques, 2–3
bump map geometry, 42
evolution of, 2–3
star geometry, 47

geometric normal, GPU support
lacking for, 106

geometrical calculations, 7
geometry mapping with PGI,

326–327
geometry of gases, 211–224
geometry, procedural synthesis

of. See procedural
synthesis of geometry

gesturing. See textural limb
animation

GIT (generalized Impressionistic
texture) texturing sys-
tem, 478–480

Impressionistic image pro-
cessing filter,
479–480

mathematical model un-
derlying, 478–479

overview, 478–479
global shading models, 8
gnoise function. See gradient

noise
goal determination module

(GDM), 394–395
GPUs. See also hardware accel-

eration of procedural
techniques

assembly languages for,
100–101

blending capability, 290
commercially supported

programming lan-
guages, 111

INDEX 663

Team LRN

basic gas shaping,
214–224

breeze effect using attrac-
tor, 247, 248,
252–253, 254

flow into hole in wall,
253–254, 255

geometry of, 211–224
hardware acceleration for

smoke and fog,
297–298

helical path for, 228
historical overview of

modeling approaches,
204–205

illumination model for,
207

noise and turbulence func-
tions for, 211–214

particle systems for, 209
patchy fog modeling, 216
power and function effects

on, 214–216
rolling fog animation,

238–240
self-shadowing, 207–208
sine function effects on,

215, 216
smoke column examples,

219–224, 239–243
solid spaces framework for

modeling, 209–211
steam rising from teacup

examples, 216–219,
220, 236–238

three-dimensional tables
for controlling ani-
mation, 244–254

turbulence for simulating
air currents, 238

usage in this book, 203
GDM (goal determination mod-

ule), 394–395
generalized Impressionistic tex-

ture. See GIT (gener-
alized Impressionistic
texture) texturing
system

genes, 551, 552–555

genetic algorithms, genetic pro-
gramming vs.,
558–559

genetic programming. See also
genetic textures

biological analogy for,
550–552

DNA and, 551–552
examples, 557–558
expression trees, 553–556
further information, 558
future directions, 560–562
genes, 551, 552–555
genetic algorithms vs.,

558–559
genomes, 551
genotypes, 551
implementation, 555
mutation, 551, 554
parameter proliferation

problem and, 548
phenotypes, 551, 554
sexual reproduction, 551,

554
unnatural selection in,

552
genetic textures, 547–563. See

also genetic
programming

aesthetic n-space model,
548–549

basis vectors, 556
control vs. automaticity,

549–550
evolutionary biological

model, 550–555
expression trees for,

553–556
future directions, 560–562
genetic programming and

genetic art examples,
557–558

genetic programming vs.
genetic algorithms,
558–559

library of genetic bases,
556–557

parameter proliferation
problem, 547–548

root node interpretation,
555–556

genomes, 551
genotypes, 551
geometric atmospheric density

distribution models.
See GADDs
(geometric

atmospheric density distribution
models)

geometric modeling
advanced techniques, 2–3
bump map geometry, 42
evolution of, 2–3
star geometry, 47

geometric normal, GPU support
lacking for, 106

geometrical calculations, 7
geometry mapping with PGI,

326–327
geometry of gases, 211–224
geometry, procedural synthesis

of. See procedural
synthesis of geometry

gesturing. See textural limb
animation

GIT (generalized Impressionistic
texture) texturing sys-
tem, 478–480

Impressionistic image pro-
cessing filter,
479–480

mathematical model un-
derlying, 478–479

overview, 478–479
global shading models, 8
gnoise function. See gradient

noise
goal determination module

(GDM), 394–395
GPUs. See also hardware accel-

eration of procedural
techniques

assembly languages for,
100–101

blending capability, 290
commercially supported

programming lan-
guages, 111

INDEX 663

Team LRN

GPUs (continued)
computational precision is-

sues, 288
CPUs vs., 100, 102, 109
data types, 108–109
dot product capability, 290
filtering capability, 290
flexibility issues, 288–289
fragment processing in,

287, 289
future hardware and pro-

gramming languages,
130–131, 410

interpolation capability,
290

language interface, 288
levels of operation in the

pipeline, 289
limitations and restric-

tions, 102–103,
106–110

memory bandwidth and
performance tuning,
110

migrating procedural tech-
niques from CPUs to,
287–289

parallelism in, 102, 103,
106–108

real-time procedural solid
texturing on,
421–425

real-time procedural tech-
niques and, 1

resource limits, 109
REYES shading contrasted

with, 103–106
separation of surface and

light properties and,
117

SIMD computation model
in, 107–108

SPMD computation model
in, 108

storage issues, 103, 289
vertex processing in, 287,

289
virtualization support lack-

ing in, 109

gradient noise
2D slice of, 74
flow noise, 384–387
generating value for single

integer lattice point,
76

graph of, 73
initializing table of

pseudorandom gradi-
ent vectors, 73–75

lattice noise, 69–70
lookup table for, 181
overview, 72–77
Perlin’s function, 69, 73,

75–76, 340–348
for perturbed regular pat-

terns, 89–90
power spectrum of, 75, 77
trilinear interpolation,

76–77
value-gradient noise, 77–78

Graphics Gems III, 180
graphics processors. See GPUs;

hardware accelera-
tion of procedural
techniques

grass modeling
bounding volumes for, 331
geometry mapping for,

326–327
iterative instancing for,

322–323
meadows, 327–329
PGI for, 322–323,

326–329, 331
grid tracing, height fields and,

494
GUI for textures. See user inter-

face for textures

hardware acceleration of proce-
dural techniques,
287–302. See also
GPUs

animated real-time effects,
291

common acceleration tech-
niques, 289–291

dummy geometry and
depth culling, 290

example accelerated/real-
time textures and
models, 291–301

general issues, 287–289
marble texture, 292–297
migrating procedural tech-

niques from CPUs to
GPUs, 287–289

multilevel procedural mod-
els, 290–291

noise functions, 291
precomputation for,

289–290
real-time clouds and proce-

dural detail,
298–301, 302

real-time procedural solid
texturing, 416,
421–425

smoke and fog, 297–298
tasks beyond designers’ in-

tentions, 290
texture mapping, 208,

209
turbulence functions,

291–292
hardware texture mapping

for modeling and render-
ing gases, 209

for shadowing gases, 208
hashing in lattice noise genera-

tion, 69–70
Heidrich/Banks anisotropic

shader
example using explicit

computations,
113–115, 116

example using implicit
computations,
115–116

explicit vs. implicit ver-
sion, 116

overview, 112–113
height fields

defined, 491
as displacement maps, 511
file formats, 494–495

664 INDEX

Team LRN

for light diffusion effects
simulation, 204

post spacing side effects,
509

in QAEB tracing, 511,
516–517

ray tracing and, 494
single altitude value per

grid point in, 493
speedup scheme for, 513,

516–517
as storage scheme for ter-

rains, 491
helical paths

for animating gaseous vol-
umes, 228, 236–243

for fog animation as solid
textured transpar-
ency, 233

for marble animation,
232–233

for rolling fog animation,
238–239

for smoke rising anima-
tion, 239–243

for smoke simulation, still
image, 220, 222–224

for space-filling fog, 298
for steam rising from tea-

cup animation,
236–238

Henyey-Greenstein functions for
illumination of gas-
eous phenomena, 207

Hermite blending functions for
bump mapping ridge,
186

Hermite noise
2D slice of, 74
described, 78
graph of, 73
power spectrum of, 75, 78

Hermite spline interpolation in
noise functions, 490,
498

heterofractal function in
MojoWorld, 601, 602

heterogeneous terrain models,
498–506

hybrid multifractal terrain,
502–505

multiplicative multifractal
terrains, 505–506

real landscapes and, 498,
500

smooth valleys at all alti-
tudes, 502–505

smoother low-lying areas,
500–502

statistics by altitude,
500–502

Hetero_Terrain procedure,
500–501

hierarchy of surflets, 381–382
high frequencies. See also

aliasing; antialiasing;
Nyquist frequency

aliasing and, 53, 54, 370
edge events as sources of,

370
if function generation of,

47
non-edge high-frequency

events, 370
step function generation

of, 54, 57
high-albedo reflection models

for clouds, 266
low-albedo models vs., 205

high-contrast filter for
antialiasing,
371–372, 373–374

HighEnd3D Web site, 284
homogenous, defined, 438
homogenous fBm terrain mod-

els, 495–498
basis function effects,

497–498
fractal dimension, 495–497

homogenous procedural fBm,
438

HSV color, transforming RGB
to, texture for, 196

Human Genome Project, 551
humanlike figures

textural limb animation
for emotive gesturing,
387, 391–395

texture for facial move-
ment, 395–409

hurricane, ontogenetic modeling
of, 456–458

hybrid multifractal terrains,
502–505

HybridMultifractal pro-
cedure, 502–504

RidgedMultifractal pro-
cedure, 504–505

hyperspace in MojoWorld,
588–590

complexity and, 588–589
defined, 588
dimension defined, 588
Parametric Hyperspace,

589–590
hypertextures

animating, 254–256
architexture, 359–362, 363
defined, 338
editing levels for, 352–353
egg shape for, 354
explosions example,

354–356
interaction with, 352–353
life forms example, 355,

356, 357
liquid flowing through

hole in wall, 254–255
methods of combining

fuzzy shapes with
solid textures, 338

NYU torch example, 362,
364

QAEB-traced, 520–525,
526

raymarcher renderer for,
348–352

smoke examples, 364–368
solid textures as precursor

to, 337–338
space-filling fractals exam-

ple, 357, 358–359
sphere shape for, 353–354
surflets for storing,

376–384
volumetric marble forma-

tion, 255–256

INDEX 665

Team LRN

hypertextures (continued)
woven cloth example, 357,

359, 360, 361
z-slicing, 35

if function (RenderMan)
antialiasing and, 28
high frequencies generated

by, 47
replacing with step func-

tion, 28–29
ifpos pseudofunction, 371,

372–373
illumination models. See shad-

ing models
image maps

converting 3D textures to,
197–199

textures vs., 196–197
“Image Synthesizer, An,” 590
image textures

perturbed, 90–91
PhotoRealistic RenderMan

antialiasing for, 56
procedural textures vs.,

14–15
implicit functions for cloud

modeling, 269,
270–272

implicit models, 10
implicit primitive animation for

clouds, 280–283
implicit procedures

defined, 12–13
explicit procedures vs.,

12–14
in RenderMan shading

language, 15
implicit surfaces, 3
imposters

for cloud modeling,
268–269

defined, 268
for gases, 209

index aliasing
defined, 159
modeling input distribu-

tion, 161–162

planetary rings example,
163–166

reducing, 160–163
sources of, 158–159
sum table for, 162–163
transformation of scalar

functions and,
159–160

inductive instancing, 322–323
init_density_function for

raymarcher renderer,
350

instances
defined, 315
inductive instancing,

322–323
parameter passing and,

321–322
of scene graphs, 315

integrals, antialiasing using,
63–64, 65

integration schemes
numerical quadrature with

bounded error for ra-
dial GADDs,
542–544

as requirement for atmo-
spheric models, 529,
530

trapezoidal quadrature for
radial GADDs,
539–542

intelligent textures, 200
interactivity

cloud modeling ap-
proaches for,
267–268

for hypertextures,
352–353

in previewer for textures,
194

real-time vs. offline shad-
ing and, 98, 99, 100

intermediate representation,
313

interpolation capability of
GPUs, 290

inverse Fourier transform
defined, 49

domain change from, 49
noise generation using,

82–83
for spectral synthesis,

49–51
irregular procedural textures,

67–94
noise functions for, 67–83
perturbed image textures,

90–91
perturbed regular patterns,

89–90
pseudorandom number

generation and, 67–68
random placement pat-

terns, 91–94
RenderMan noise func-

tions for, 83–85
spectral synthesis, 85–89
time-dependent textures,

84
white noise and, 67–68

isocurves, 13
isosurfaces

defined, 3
implicit models, 10
overview, 13
surflets and, 383

isotropic property
of cellular texturing func-

tion, 142, 143,
145–147

of noise function, 68, 180
of procedural fBm, 438

iterated function systems, 320
iteration

in fractal solid texture de-
sign, 447–448

iterative instancing,
322–323

in scientific discovery,
447–448

in shader development
process, 99, 130

jaggies. See aliasing; antialiasing
Java, procedural geometric

modeling and, 333

666 INDEX

Team LRN

jet stream warping for clouds,
279–280

Kelvin-Helmholtz shearing in
clouds, 266

KISS (Keep it simple, stupid)
principle, 443

knot values in spline function
(RenderMan), 34

Koch snowflake. See von Koch
snowflake

labels in L-system, 312
lacunarity

defined, 89, 583
of fractals, 433, 444, 583,

585–586
noise artifacts and, 180

Lambertian (diffuse) model, 708
landscapes. See atmospheric

models; earth tex-
tures; MojoWorld;
plant modeling; pro-
cedural fractal
terrains

language interface, CPUs vs.
GPUs, 288

lapped textures, 11
lattice convolution noise

2D slice of, 74
graph of, 73
implementation of, 78–80
power spectrum of, 75, 80

lattice noises, 69–80
artifacts, 180
frequency multiplier and

lattice artifacts,
88–89

gradient noise, 72–77
hashing technique, 69–70
integer lattice, 69
lattice convolution noise,

78–80
for modeling gases,

211–214
optimizing, 214
overview, 69–70

PRNs for, 69
value noise, 70–72
value-gradient noise,

77–78
laughing, 407–408. See also tex-

ture for facial
movement

layering
RGBA textures and, 26
for texture pattern genera-

tion, 25–26
lazy evaluation algorithms for

procedural geometry
client-server relationship

and, 314
described, 305, 314
L-system and, 315
for spatial coherence data

structures, 314–315
LED display, texture for,

196–197
length-weighted atlas, 418
lerping

layering texture patterns
and, 26

LERP function in
antialiasing, 371,
373

in rasterization phase for
real-time procedural
solid texturing, 414

level of detail. See LOD (level of
detail)

life forms hypertexture example,
355, 356, 357

light properties, 116–117
light shaders, surface shaders

vs., 117
lighting

photographic texture im-
ages and, 22–23

surflets for, 376–377
lighting models. See shading

models
limb animation. See textural

limb animation
linear basis function

(MojoWorld), 596
linear interpolation. See lerping

liquid. See also water
flow into hole in wall,

253–254, 255
flow noise for, 384–387,

388–389
volumetric marble forma-

tion, 255–256
LISP, functional composition in,

26
Listerine (RenderMan exam-

ples), 18–19
local dimensionality in fractals,

432
local shading models, 8
LOD (level of detail)

in fractals, 433–434,
437–438, 511

procedural fBm and,
437–438

low-albedo reflection models
for clouds, 266
high-albedo models vs.,

205
lower crossover scale

of fractals, 434
in MojoWorld, 607

low-pass filtering
analytic prefiltering tech-

niques, 56–57, 61–66
antialiasing and, 54
clamping, 56, 59–61
defined, 54
in lattice noise generation,

69
sampling rate determina-

tion, 57–59
of white noise, 68

L-system, 307–312. See also
procedural geometric
instancing (PGI);
scene graphs

axioms, 308
bicubic patch modeling,

311
bush modeling, 318–320
color and texture specifica-

tion, 311–312
context-free and context-

sensitive aspects, 308

INDEX 667

Team LRN

L-system (continued)
data amplification para-

digm in, 312–314
described, 305
development of, 307
intermediate representa-

tion in, 313
labels for debugging or an-

notation, 312
lazy evaluation and, 315
operating system com-

mand execution, 312
for particle systems,

313–314
PGI compared to, 329–330
PGI enhancements,

321–330
for plant modeling,

308–310, 311, 313
polygon modeling, 311
productions, 307, 308
scene graphs, 315–321
shortcomings of, 305–306
turtle graphics symbols in,

305, 306, 308–312
von Koch snowflake mod-

eling, 308, 310–311
luminosity, volume rendering

with surface textures
and, 196

luna procedure, 474–476

Mandelbrot set, texture using,
197

“Manhattan” distance metric in
cellular texturing, 148

mapping from unit interval to
itself, 37–39

marble function, 229, 292
marble texture

animated volumetric marble
formation, 255–256

animating by changing
solid space over time,
229–232

animating by moving
through solid space,
232–233

formation from banded
rock, 229–232

frequency multiplier for,
88–89

hardware acceleration for,
292–297

NVIDIA Cg language im-
plementation,
292–296

for solid texture anima-
tion, 229–232

spectral synthesis for,
87–89

marble_color function, 88, 229
marble_forming procedure,

230–231
marble_forming2 procedure,

231–232
Marble_Vertex.cg shader,

294–296
master, defined, 315
matte shading model, plastic

shader and, 21
max function (RenderMan),

28–29
Maya animation system

cloud modeling in, 267,
284, 285

MEL scripts, 284, 285
volumeGas plug-in, 284,

285
Web sites, 284

meadows, PGI for modeling,
327–329

memory
GPU resource limits, 109
GPU restrictions on access,

107
performance tuning and

bandwidth, 110
meta-balls, 3
MetaCreations Skunk Works,

493
metal shading model, plastic

shader and, 21–22
“Methods for Realistic Land-

scape Imaging,” 576
Mie scattering, aerial perspec-

tive and, 530

min function (RenderMan),
28–29

MIP mapping, atlases support-
ing, 418–419

mist, exponential, 532, 534
mix function (RenderMan), 25
mod function (RenderMan),

31–33
MojoWorld, 565–615

aliasing from function
fractals, 604

basis functions, 450, 582,
583, 590–597

building a virtual universe,
571

checkerboard basis func-
tion, 596–597

for clouds, 611
crossover scales, 606–607
dimensions of domain and

range functions,
587–588

displacement maps,
610–611

distorted fractal functions,
606

domain distortion, 604–606
driving function parame-

ters with functions,
607

ease of, 447
experimenting with,

613–614
fractal dimension and,

582–584
fractals and visual com-

plexity, 567–571
fractals overview, 571–575
function fractals, 602–604
future work, 581–582,

614–615
Graph Editor, 606, 607
heterofractal function,

601, 602
history of fractal terrains,

575–582
hyperspace, 588–590
lacunarity of fractals, 583,

585–586

668 INDEX

Team LRN

linear basis function, 596
MojoWorld Generator,

590
MojoWorld Texture Edi-

tor, 589, 590, 604
monofractals, 599–600
mountain building,

567–568
multifractals, 600–602,

603
for nebulae, 611, 612
octaves of fractals and,

583, 584–585
Perlin basis function,

590–591, 592, 593,
594

photorealistic renderer,
585, 617–618

planet building, 568–570,
611, 612

Pro UI, 566–567, 606
random fractals, 582–586
real-time renderer, 585, 617
reason for inclusion in this

book, 565–566
ridged basis function,

590–591, 593, 594
seed tables, 597–599
SIGGRAPH 2001 presen-

tation of, 200
sine wave basis function,

596
sparse convolution basis

function, 593, 595
steps basis function, 596,

597
surface textures, 589,

608–609
for terrains, 609–610
texture engine, 589
transporter coordinates, 589
Voronoi basis function,

591, 593, 594, 597,
599

MojoWorlds, 467
molten_marble procedure,

255–256
monofractals in MojoWorld,

599–600

Monte Carlo sampling method
in Perlin’s noise function,

342
in volume-rendering algo-

rithm, 206
Moon texture. See Selene

(Moon) texture
motion blur, object space vs.

screen space shading
and, 105–106

mouse abdomen visualization,
122

moving_marble procedure,
232–233, 236

“multicolor” texture, 482–485
goal of, 482–483
multicolor shader code,

484
“naturalness” of, 485
steps for, 483–484

multifractals, 438, 440–442. See
also MojoWorld; pro-
cedural fractal
terrains

defined, 440
described, 569
fBm variation, 440–441
hybrid multifractal terrain,

502–505
MojoWorld, 600–602, 603
multiplicative cascades

and, 440
multiplicative multifractal

terrains, 505–506
procedural textures and,

442
realism and, 438, 440
terrain patch example,

441
multipass pixel shader imple-

mentation of noise
function, 422–425

multiplicative cascades, additive
cascades vs., 440

mutation, 551, 554

Natural Graphics’ Natural
Scene Designer, 580

Navier-Stokes solutions for
modeling gases, 204

nearest-neighbor filter, seam ar-
tifacts and, 420

nebulae, MojoWorld for model-
ing, 611, 612

Ng variable, RenderMan vs.
real-time hardware
rendering and, 106

noise function (RenderMan),
83–84

noise functions, 67–83. See also
cellular texturing;
Perlin’s noise function

for 2D cloud textures,
267–268

2D slices of, 74
4D functions, 84, 181
artifacts from, 180–181
cellular texturing com-

pared to, 135–136
in cloud modeling, 270,

298–299
color splines and, 189
distorted (DistNoise),

450–453
enhancements and modi-

fications, 179–182
explicit noise algorithms,

82–83
flame shader based on,

124–129
flow noise, 384–387
Fourier spectral synthesis,

82–83
for gases, 211–214
generating, 67–68
gradient noise, 72–77
graphs of, 73
hardware acceleration for,

291
Hermite spline interpola-

tion in, 490, 498
lacunarity, 89, 180
lattice convolution noise,

78–80
lattice noises, 69–70
in layering facial move-

ment, 405–408

INDEX 669

Team LRN

noise functions (continued)
lookup table for, 181
for marble texture, 87–89
multipass pixel shader im-

plementation,
422–425

need for, 67
noise value range and dis-

tribution for, 85
normalizing noise levels,

189–190
performance issues,

194–195
for perturbed image tex-

tures, 90–91
for perturbed regular pat-

terns, 89–90
with PGI, 327
as pink noise, 68
power spectra of, 75
properties of ideal func-

tion, 68
random placement pat-

terns using, 91–94
Rayshade implementation,

422–425
in real-time procedural

solid texturing,
421–425

RenderMan functions,
83–85

rotation matrices for hid-
ing artifacts, 180,
181

for smoke and fog, 297,
298

sparse convolution noise,
80–82

spectral synthesis with,
85–89

as surflet, 379
value noise, 70–72
value-gradient noise,

77–78
vector-valued (VecNoise),

450–451
versatility of, 135
for volumetric cloud mod-

eling, 270

Ward’s Hermite noise func-
tion, 73, 74, 75

white noise and, 67–68
noise textures, development of,

11
nonprocedural textures, proce-

dural vs., 12
normal vectors, transforming

between texture
spaces, 46

normalizing noise levels,
189–190

n-space model, 548–549, 559
ntransform function

(RenderMan),
transform function
vs., 46

NVIDIA’s Cg language, 111,
292–296

Nyquist frequency
aliasing and, 53–54
clamping and, 60
defined, 53
MojoWorld function frac-

tals and, 602–603
PhotoRealistic RenderMan

antialiasing scheme
and, 56

QAEB tracing and, 511,
512

white noise and, 68
NYU torch hypertexture exam-

ple, 362, 364

object space
described, 24
screen space vs., for shad-

ing, 103–106
transformation to world

space with PGI,
323–324

Occam’s Razor, 443, 530
octaves in fractals, 433–434,

444, 583, 584–585
offline programmable shading,

real-time programma-
ble shading vs.,
98–100

ontogenetic modeling
defined, 442
fractals and, 442–444
of hurricane, 456–458
Occam’s Razor and, 443
realism and, 444
semblance in, 443
teleological modeling vs.,

442
opacity

plastic shader output,
21

solid textured transpar-
ency, 233–235

in volume-rendering algo-
rithm for gases, 206

OpenGL
Direct3D vs., 102
lighting model, 118
pixel texture extension,

422
for real-time cloud render-

ing, 267
OpenGL Programming Guide,

102
OpenGL Shader project, 131
operands in GPUs, precision of,

288
optical depth, 531
optical paths, 531, 534
optimizing. See also

performance
hypertexture smoke,

367–368
lattice noises, 214
spot size, 173–175

outscattering
defined, 531
Rayleigh, 536

oversampling. See
supersampling

parallelism
CPUs vs. GPUs and, 102
GPU restrictions due to,

103, 106–108
parameter passing in PGI,

321–322

670 INDEX

Team LRN

parameter proliferation prob-
lem, 547–548

parametric control, 2, 14
Parametric Hyperspace,

589–590
parametric patches, 8
particle systems

animation using, 257–261
attributes of particles, 257
for cloud modeling, 269,

282–283
initial shape, 257–258
L-system for, 313–314
movement of particles,

258
overview, 3
particle creation proce-

dure, 257
probabilistic rendering,

259, 260
processes for each time

step, 257
rendering problems, 259,

261
structured, 257, 258–259,

260
uses for, 209, 257, 259
for wall of fire, 257, 258

pattern generation
advantages of procedural

generation, 23
brick texture example,

39–41
bump-mapped brick exam-

ple, 41–46
checkerboard pattern, 39
defined, 20
functional composition

technique, 26
hiding regularity and peri-

odicity, 51
irregular patterns, 83–94
layering technique, 25–26
perturbed image textures,

90–91
perturbed regular patterns,

89–90
photographic texture im-

ages for, 22–23

primitive functions as
building blocks,
27–51

random placement pat-
terns, 91–94

spectral synthesis tech-
nique, 48–51, 85–89

star texture example,
46–48, 49

writing procedural genera-
tors, 23–24

pelting, described, 10–11
penumbra, self-shadowing with,

382–383
percentage closer filtering, de-

scribed, 9
performance. See also hardware

acceleration of proce-
dural techniques;
optimizing

antialiasing efficiency is-
sues, 157

assembly language vs.
high-level language
for shading and, 101

in cellular texturing, speed
vs. isotropy, 146–147

as critical for real-time
shading, 98, 99–100

early vs. late binding and,
117–118

hardware improvements
and, 97

height field speedup
scheme, 513,
516–517

memory bandwidth and
performance tuning,
110

procedural texture ef-
ficiency issues,
194–195

of QAEB tracing, 510,
511, 518, 520

of ray-traced self-shadow-
ing, 207–208

real-time procedural solid
texturing issues,
425–426

target hardware and, 130
texture size and, 110

periodic functions (RenderMan)
ceil, 33
cos, 31, 32
floor, 32–33
lacunarity and, 180
making other functions pe-

riodic, 32
mod, 31–32
sin, 31, 32

Perlin basis function
(MojoWorld),
590–591, 592, 593,
594

Perlin’s noise function
construction of, 340–347
DistNoise function based

on, 450
finding current cubical

“cel” location, 341
finding the pseudorandom

wavelet at each cel
vertex, 341–342

folding function, 343
as fractal basis function,

432–433
gradient distribution, 348
gradient table, 342–343
interpolation polynomial

improvement, 347
in MojoWorld basis func-

tion, 590–591, 592,
594

nonbiased index of G,
343–344

overview, 340–341
performance improve-

ments, 348
point evaluation in,

489–490
procedural fBm and, 437
pseudorandom permuta-

tion table, 343
in QAEB-traced

hypertextures, 521
in real-time procedural

solid texturing,
421–423

INDEX 671

Team LRN

Perlin’s noise function
(continued)

reducing grid-oriented arti-
facts, 348

as seminal function, 69, 73
steps in computation, 341
uniformly distributed unit

gradients generated
by, 75–76

wavelet coefficients,
342–344

wavelet evaluation,
344–347

wavelet properties, 342
perm array in lattice noise gen-

eration, 69–70
perturbance

perturbed image textures,
90–91

perturbed regular patterns,
89–90

texture for, 197
volume perturbation for

cloud modeling,
299–301

PGI. See procedural geometric
instancing (PGI)

phenotypes, 551, 554
photographic texture images,

22–23
PhotoRealistic RenderMan

antialiasing in, 55–56
REYES algorithm, 103
sampling interval changes

in, 59
screen space use by, 103

pink noise, 68
pipelines

computational precision is-
sues, 288

levels of operation in, 289
REYES (PRMan) vs. real-

time graphics hard-
ware, 103–104

PixelFlow project, 131
planetary atmosphere. See at-

mospheric models
planetary rings, fractal solid tex-

tures for, 485–487

planetary rings antialiasing ex-
ample, 163–166

planetclouds procedure,
453–455

plant modeling. See also
MojoWorld

bounding volumes for,
331–332

bushes, 318–320
crop circles, 326
grass, 322–323, 326–329,

331
L-system for, 308–310,

311, 313, 318–320
meadows, 327–329
PGI for, 322–323,

324–329, 331–332
trees, 309–310, 324, 325,

331–332
tropism, 324–326

plastic shader, 20–22
plateau width parameter for

bump mapping ridge,
184

pnoise function (RenderMan),
84–85

point evaluation
context-independence of,

490
Fourier synthesis vs., 490
in Perlin noise-based pro-

cedural fractal con-
struction, 489–490

polygon subdivision vs.,
490

rounded terrain capabili-
ties of, 490–491

Poisson distribution in cellular
texturing, 145–147

polygon subdivision
basis function for, 497
for mountain modeling,

489
point evaluation vs., 490
terrain creases as artifacts,

498
polygons

cloud modeling using, 268
L-system modeling of, 311

object space vs. screen
space shading and,
104–105

post spacing of height fields,
509

power functions
gas shape and, 215–216
for tuning procedural tex-

tures, 339
power spectra

of fractional Brownian
motion (fBm), 433

of noise functions, 75
precomputation for procedural

techniques, 289–290
previewer for textures, 194
Primitive Itch’s ShaderLab2

package, 130
PRMan. See PhotoRealistic

RenderMan
PRNs (pseudorandom numbers)

in cellular texturing, 143
for lattice noises, 69
table for noise functions,

69
for value noise, 70–71
for white noise, 67–68

Pro UI of MojoWorld, 566–567,
606

procedural, defined, 12
procedural city technique, 200
procedural cloud animation,

279–280
procedural evaluation phase for

real-time procedural
solid texturing, 414,
425

procedural fBm, 436–438, 440
procedural fractal terrains,

489–506. See also
earth textures;
MojoWorld

advantages of point evalu-
ation, 489–491

basis function effects,
497–499

fractal dimension,
495–497

height fields, 491–495

672 INDEX

Team LRN

heterogeneous terrain
models, 498–506

homogenous fBm terrain
models, 495–498

hybrid multifractal terrain,
502–505

multiplicative multifractal
terrains, 505–506

rounded terrain capabili-
ties, 490–491, 498

statistics by altitude,
500–502

procedural geometric instancing
(PGI), 321–330

accessing world coordi-
nates, 323–324

bounding volumes,
330–332

crop circles example, 326
described, 321
fractional Brownian mo-

tion, 327–329
front-to-back ordering,

330
geometry mapping exam-

ple, 326–327
inductive instancing exam-

ple, 322–323
levels of detail, 329
L-systems compared to,

329–330
meadows example,

327–329
noise function with, 327
parameter passing,

321–322
random number function,

327
trees example, 331–332
tropism example, 324–326

procedural modeling of gases.
See volumetric proce-
dural modeling and
texturing

procedural shape synthesis, 387,
390

procedural synthesis of geome-
try, 305–334

applications, 305

bounding volumes,
330–332

data amplification algo-
rithms, 305,
312–314

flow of data, 312
future work, 333–334
lazy evaluation algorithms,

305, 314–315
L-system, 305–306,

307–312
overview, 332–333
paradigms governing,

312–315
procedural geometric

instancing (PGI),
321–330

scene graphs, 307,
315–321

Web and, 333
procedural techniques. See also

specific techniques
defined, 1
implicit vs. explicit, 12–14
migrating from CPUs to

GPUs, 287–289
overview, 1–2
precomputation for,

289–290
procedural textures (overview).

See also texture de-
sign methods; volu-
metric procedural
modeling and
texturing

advantages of, 14
aliasing in, 55–56
antialiasing methods,

56–67
antialised rendering of,

369–376
brick texture example,

39–41
bump-mapped brick exam-

ple, 41–46
checkerboard pattern, 39
defining characteristics, 12
disadvantages of, 14–15
efficiency issues, 194–195

explicit vs. implicit meth-
ods, 12–14

functional composition
technique, 26

hiding regularity and peri-
odicity, 51

historical overview, 11–12
image texture vs., 14–15
irregular, 67–94
isocurve or isosurface

method, 13
layering technique, 25–26
multifractal models, 442
nonprocedural vs., 12
pattern generation, 20,

22–24, 25–26
primitive functions as

building blocks,
27–51

renderer antialiasing
schemes and, 55

shading models, 20–22
spectral synthesis tech-

nique, 48–51
star texture example,

46–48, 49
texture spaces, 24–25
volume rendering with sur-

face textures,
195–196

productions in L-system, 307,
308

pseudoadvection in flow noise
function, 386–387

pseudorandom numbers. See
PRNs
(pseudorandom
numbers)

psychedelic clouds, 525, 526
puffyclouds procedure,

448–449
pyroclastic flow, 523–524

QAEB rendering for procedural
models, 509–526

antialiasing, 516
C code implementation,

625–626

INDEX 673

Team LRN

QAEB rendering for procedural
models (continued)

clouds, 520–525, 526
error in the algorithm,

513–514
fireballs, 525
implicit models and, 510
intersection point calcula-

tion, 515
meaning and pronuncia-

tion of acronym, 510,
511

near and far clipping
planes, 514–515

Nyquist limit and, 511,
512

performance, 510, 511,
518, 520

prior art, 512–513
problem statement,

511–512
pyroclastic flow, 523–524
QAEB algorithm, 513–514
QAEB tracing overview,

510–511
QAEB-traced

hypertextures,
520–523

reflection and refraction,
517–518

shadows, 517
speedup scheme for height

fields, 513, 516–517
stride length, 521–522
surface normal construc-

tion, 516
quad tree spatial subdivision,

height fields and, 494
Quake III game engine, 131
quasi-analytic error-bounded

ray tracing. See
QAEB rendering for
procedural models

radar texture, 197
radial coordinate distance met-

ric in cellular textur-
ing, 148

radiosity as global shading
model, 8

random coloring methods,
477–485

fBm coloring, 477–478
GIT texturing system,

478–480
“multicolor” texture,

482–485
random fractals

basis function, 582, 583
constructing, 582–586
expressive vocabulary of,

611, 613
fractal dimension, 582–584
lacunarity of, 585–586,

593
octaves, 583, 584–585
overview, 574–575

random placement patterns
defined, 91
noise function for, 91–94
one-star-per-cell version,

92–93
storing bomb positions in

table, 91
version improving clipping

and randomness,
93–94

randomness. See also noise
functions; PRNs
(pseudorandom
numbers)

deterministic nature of
computers and, 574

MojoWorld seed tables for,
597–599

PGI functions, 327
in setting texture parame-

ters, 193
true vs.

pseudorandomness,
67, 574–575

range function dimensions in
MojoWorld, 587

rasterization phase for real-time
procedural solid tex-
turing, 414, 416,
419, 425–426

ray tracing. See also QAEB ren-
dering for procedural
models

antialiasing by stochastic
ray tracer, 55

as global shading model, 8
height fields and, 494
implicit geometric models

in, 13
implicit vs. explicit proce-

dures in, 13
raymarcher renderer,

348–352
ray-surface intersection

point calculation,
515

reflection mapping as, 9
scanline rendering vs., 511
for self-shadowing of

gases, 207–208
in surflets, 379–380,

382–383
for volume rendering of

gases, 205–206
Rayleigh scattering

aerial perspective and, 530
color perspective due to,

529
in Fractal Mandala, 533
minimal approximation,

536, 539
raymarcher renderer, 348–352

overview, 348–349
system code, 349–350
user-defined functions,

350–352
Rayshade implementation of

noise function,
422–425

reaction-diffusion textures, in-
telligent, 200

realism
complexity and, 434–435
heterogeneous terrains for,

498, 500
multifractal functions and,

438, 440
“naturalness” of fractals,

485

674 INDEX

Team LRN

ontogenetic modeling and,
444

real-time clouds, 298–301
real-time procedural solid tex-

turing, 413–427
algorithm, 413–416
applications, 425–426
area-weighted mesh atlas,

417–418
atlas based on clusters of

proximate triangles,
418, 419

atlas construction for,
416–419, 425

bilinear filtering, 420–421
hardware acceleration,

416, 421–425
implementing, 421–425
length-weighted atlas, 418
multipass pixel shader im-

plementation of noise
function, 422–425

nearest-neighbor filter, 420
noise functions in,

421–425
parameterization, 413
performance issues,

425–426
procedural evaluation

phase, 414, 425
rasterization phase, 414,

416, 419, 425–426
scaling component of dis-

tortion, 416
seam artifacts, avoiding,

419–421
solid texture coordinates,

413–414
spatial coordinates, 413
texture filtering, 419–421
texture mapping phase,

415–416
uniform meshed atlas,

416–417
view independence, 425

real-time programmable shad-
ing, 97–132

flame shader, noise-based
procedural, 124–129

future GPU hardware and
programming lan-
guages, 130–131

GPU architecture, 102–103
hardware data types,

108–109
Heidrich/Banks

anisotropic shader,
112–116

high-level shading lan-
guage advantages,
100–101

interactivity and, 98, 99,
100

interface between shaders
and applications,
118–121

iterative nature of develop-
ment process, 99, 130

knowledge required for the
reader, 101–102

literature review, 131
memory bandwidth and

performance tuning,
110

object space shading vs.
screen space shading,
103–106

offline programmable
shading vs., 98–100

parallelism, 106–108
performance as critical is-

sue for, 98, 99
resource limits, 109
simple examples, 111–116
Stanford shading language

example, 111–112
strategies for developing

shaders, 129–130
surface and light shaders,

116–118
volume-rendering shader,

121–124
rectangular pulse, step function

for, 28, 29
recurrent iterated function sys-

tems, 320
reflection, QAEB tracing and,

517–518

reflection mapping, 9
reflection models. See shading

models
refraction, QAEB tracing and,

517–518
renderers

antialiasing schemes and
procedural textures,
55

flow of data and, 312
image display while ren-

dering, 194
raymarcher, 348–352
spot size calculation by,

166–167
rendering

antialised rendering of pro-
cedural textures,
369–376

efficiency issues, 194–195
image display during, 194
particle systems, 259, 261
previews, 194
texture as 2D image, 176
volume, 121–124,

195–196
volumetric rendering sys-

tem, 205–208
RenderMan

development of, 1
PhotoRealistic, 55–56, 59,

103
RenderMan Companion, The,

102
RenderMan shading language.

See also specific
functions

brick texture example,
39–41

bump-mapped brick tex-
ture example, 43–46

cloud simulation using
spectral synthesis,
50–51

conditional functions,
27–31

du and dv variables, 58
ease of, 447
examples using, 16–19

INDEX 675

Team LRN

RenderMan shading language
(continued)

further information, 15,
102

multiplying colors in, 26
noise functions, 83–85
OpenGL lighting model

and, 118
overview, 15–16, 19
periodic functions, 31–33
plastic shader in, 20–22
real-time shading and,

101–102
star texture example,

47–48
surface and light properties

separated in, 117
texture spaces, 24–25
translating into C code,

19
reptile hide texture, 139
repulsors, 246
resolution

image textures vs. proce-
dural textures and,
14

low-resolution previews,
194

surflet hierarchy, 381–382
resource limits in GPUs, 109
REYES algorithm (PRMan),

103–106
RGB color. See also color

multiplying colors to-
gether, 26

random fBm coloring,
477–478

in RenderMan shading
language, 118

transforming to HSV using
a texture, 196

RGBA color
layering texture patterns

and, 26
in OpenGL lighting model,

118
in Stanford shading lan-

guage, 118
ridge for bump mapping,

183–187

algorithm, 187
bevel shape parameters,

184–186
Hermite blending func-

tions, 186
non-geometric applica-

tions, 187
plateau width parameter,

184
ridge shapes for different

slope controls, 185
ridge width parameter,

183–184
simple ridge, 183, 184

ridged basis function
(MojoWorld),
590–591, 593, 594

RidgedMultifractal proce-
dure, 504–505

Rings procedure, 485, 487
ripples procedure, 462–463
rising_smoke_stream proce-

dure, 239–243
rotation along helical path, 228
rotation matrices, noise artifacts

and, 180, 181
roughness. See fractal

dimension
RTSL. See Stanford shading

language

sample point, shading, 15
sampling

defined, 52
Monte Carlo method, 206
stochastic, 55–56, 67
supersampling, 54

sampling interval
clamping and, 60
defined, 57–58
Du and Dv functions for de-

termining, 58–59
du and dv variables for de-

termining, 58
variations in

PhotoRealistic
RenderMan, 59

sampling rate
aliasing and, 53, 54

clamping and changes in,
60

defined, 52
for low-pass filtering, de-

termining, 57–59
Nyquist frequency and, 53
as sampling interval recip-

rocal, 57–58
supersampling or

oversampling, 54
sampling theorem, 52
Saturn’s rings, 485–487
scanline rendering, ray tracing

vs., 511
scattering, 531
scattering models

aerial perspective and, 530
color perspective and, 529
Rayleigh scattering, 529,

530, 533, 536, 539
scene description modules

(SDMs), 393–394
scene graphs, 315–321. See also

procedural geometric
instancing (PGI)

benefits of, 307
cyclic, 320, 321
defined, 315
instances, 315
iterated function systems,

320
libraries and languages for,

315
limitations of, 307, 321
L-system with additional

iteration, 318–320
named node syntax,

315–316
overview, 307
PGI augmentations,

321–330
single-production L-system

implementation,
317–318

terminology, 315
tree-structured, 320–321

science
computer graphics vs., 448
iterative method in,

447–448

676 INDEX

Team LRN

Science of Fractal Images, The,
429, 433, 438, 489,
575, 579

scnoise function. See sparse
convolution noise

screen space
mapping for 3D tables for

controlling anima-
tion, 245

moving point through
solid space, 227, 228,
232–233, 235–243

object space shading vs.,
for shading, 103–106

relating texture space to,
168

SDMs (scene description mod-
ules), 393–394

sea surface texture, 140, 141
sedimentary rock strata,

466–467, 468
seed tables for MojoWorld,

597–599
Selene (Moon) texture, 473–477

highlands/maria, 473
luna procedure, 474–476
rayed crater, 473–474

self-shadowing. See also
shadowing

of clouds, 267
of gases, 207–208
of particle systems, 259
with penumbra, 382–383
surflets for, 376, 382–383

self-similarity
defined, 572
in fractal geometry, 621
fractal terminology and,

496–497
in fractals and nature,

572–573
statistical vs. exact, 435,

575
semblance

in ontogenetic modeling,
443

veracity vs., 448
serendipity

image textures vs. proce-
dural textures and, 15

procedural techniques and,
2

sexual reproduction, 551, 554
“shade trees” system, 11
shader space (RenderMan)

described, 24
for solid textures, 25

ShaderLab2 package (Primitive
Itch), 130

shading, 7
shading models. See also specific

types
anisotropic, 8
for clouds, 266–267
defined, 20
diffuse, 7–8
for gaseous phenomena,

205, 207
historical overview, 7–8
local vs. global, 8
low-albedo vs. high-

albedo, 205
object space vs. screen

space, 103–106
plastic shader, 20–22
for procedural textures,

20–22
separation of surface and

light properties, 117
simplifying assumptions in,

7
specular reflection, 8

shading sample, 15
shading sample point, 15
shadowing. See also self-

shadowing
cloud shadowing, 267
in gases, 207–208
hardware acceleration for,

208
in particle systems, 259
in QAEB tracing, 517
self-shadowing, 207–208,

259, 267, 376
volumetric, 207–208

shape
Boolean characteristic

function for, 337–338
continuous function for,

338

procedural shape synthesis,
387, 390

sign function (RenderMan),
step function vs., 48

signal processing
aliasing in, 53–54
Fourier analysis in, 52–53
further information, 52
Nyquist frequency, 53–54
sampling theorem, 52

SIMD (single instruction, multi-
ple data) computa-
tion model, in GPUs,
107–108

simple_light shader, 115
sine function

as band-limited, 57
gas shape and, 215, 216
graph of, 32
overview, 31
for rotation on helical

path, 228
sine wave basis function

(MojoWorld), 596
sinf function (ANSI C imple-

mentation),
RenderMan sin func-
tion vs., 31

single program, multiple data
(SPMD) computation
model in GPUs, 108

sintegral macro, 65
size (area)

fractal complexity and,
431

image textures vs. proce-
dural textures and,
14

photographic texture im-
age problems, 23

spot size, 166–170
size (storage)

of image textures vs. pro-
cedural textures, 14

texture size and perfor-
mance, 110

smoke. See also fog; gases; volu-
metric procedural
modeling and
texturing

INDEX 677

Team LRN

smoke (continued)
column, animated,

239–243
column, hypertexture ex-

amples, 364–368
column, still image,

219–224
drifting, 365, 366
hardware acceleration for

space-filling smoke,
297–298

optimizing, 367–368
rings, 365, 366–367

Smoke function, 297–298
smoke_density_function for

hypertextures,
367–368

smoke_stream procedure,
220–224

described, 220
helical path for smoke,

220, 222–224
parameters, 224
rising_smoke_stream

procedure and, 243
smoothstep function

(RenderMan)
aliasing and, 57
analytic prefiltering with, 62
C implementation, 30
graph of, 31
overview, 30–31
step function vs., 31

snoise function
marble texture using,

87–89
perturbed image textures

using, 90–91
perturbed regular patterns

using, 89–90
soft objects, 3
solid spaces. See also animating

solid spaces; volumet-
ric procedural model-
ing and texturing

changing over time, 227,
229–232

development of frame-
work, 209–210

mathematical description
of framework,
210–211

moving screen space point
through, 227, 228,
232–233, 235–243

overview, 210
three-dimensional tables

for controlling ani-
mation, 244–254

uses for framework, 210
solid textures. See also animat-

ing solid spaces;
fractal solid textures;
real-time procedural
solid texturing

for clouds in Maya anima-
tion system, 267

color texture, 196
defined, 337
described, 209
fractal, 447–487
fuzzy shapes combined

with, 338
as hypertexture precursor,

337–338
overview, 10
real-time procedural solid

texturing, 413–427
solid spaces framework for

modeling gases,
209–211

solid textured transpar-
ency, 233–235

as space-filling functions,
337–338

transparency, 233–235
wood-grain example, 10

space-filling fractals,
hypertexture exam-
ple, 357, 358–359

spaces. See coordinate systems;
texture spaces; spe-
cific spaces

sparse convolution basis func-
tion (MojoWorld),
593, 595

sparse convolution noise
2D slice of, 74, 82

as fractal basis function,
450, 497

graph of, 73
implementation of, 80–82
power spectrum of, 75, 82

spatial frequency of fractal basis
function, 433

spectral synthesis
clamping method for

antialiasing, 56,
59–61, 86–87

cloud simulation, 50–51
inverse Fourier transform

for, 49
irregular pattern genera-

tion using, 85–89
marble synthesis using,

87–89
for modeling gases, 204
noise generation using,

82–83
overview, 48–51
turbulence function,

85–87
specular function

(RenderMan), 21
specular reflection models, 8
specularcolor parameter of

plastic shader, 21,
22

sphere
for hypertexture creation,

353–354
for hypertexture explosion

example, 354
implicit formulation of, 270

spherical attractors, 247–249
animating center of attrac-

tion, 249
breeze effect using, 247,

248, 252–253, 254
effect of increasing over

time, 247
effect over time, 247
extensions of, 249
flow field function,

248–249
geometry of attraction,

249

678 INDEX

Team LRN

SPHIGS, 322
spiral paths. See helical paths
spiral vortex functions,

249–251
based on 2D polar coordi-

nate function, 250
based on conservation of

angular momentum,
251

based on frame number
and distance from
center, 250–251

example of effects, 252
vortex simulation vs., 249

spline functions
C implementation, 34–35
as color map or color ta-

ble, 36
for colors or points, 35–36
graph of, 35
knot values, 34
overview, 34–37
reflection texture example,

37
for tuning procedural tex-

tures, 339
for value noise interpola-

tion, 71–72
SPMD (single program, multiple

data) computation
model in GPUs, 108

spot noise, 80
spot size

calculating, 167–170
“correct” bump mapping

using, 171–173
correcting renderer calcu-

lations, 167
defined, 166
exaggerating to reduce

aliasing, 175
optimization and verifica-

tion, 173–175
renderer calculation of,

166–167
stretched spots and,

169–170
square waves as fractal basis

function, 497

Stanford shading language
API calls for one face of a

cube, 119–120
API routines, 118–119
as current sole choice for

GPUs, 288
development of, 131
early-binding model in,

118
Heidrich/Banks

anisotropic shader,
112–116

noise-based procedural
flame shader,
124–129

OpenGL API and, 118
OpenGL lighting model

and, 118
separation of surface and

light properties in,
118

vertex/fragment program-
ming model,
111–112

volume-rendering shader,
121–124

star shader, 47–48
star texture

feature space for, 46
geometry of star, 46–47
image rendered using, 49
procedural texture genera-

tor, 46–48
random placement pattern

using, 92–94
testing whether point is in-

side star, 48
Star Trek II: The Wrath of

Khan, 257, 258, 578
static bounding volumes, 331
stationary property of noise

function, 68
statistical self-similarity, exact

self-similarity vs.,
435, 575

steam. See also fog; gases; volu-
metric procedural
modeling and
texturing

breeze effect using attrac-
tor, 247, 248,
252–253, 254

rising from teacup, ani-
mated, 236–238

rising from teacup, still im-
age, 216–219, 220

steam_moving procedure
breeze effect using attrac-

tor, 247, 248,
252–253, 254

for steam rising from tea-
cup, 236–238

steam_slab1 procedure
basic slab of steam, 216
confining steam within cup

radius, 216–218
ramping off gas density for

rising steam,
218–219

steam_moving procedure
and, 238

variables, 219
step function (RenderMan)

antialiasing and, 28, 61–62
box-filtering, 61–62,

64–65
C implementation, 27
graph of, 27
high frequencies generated

by, 54, 57
overview, 27
for rectangular pulse, 28,

29
rewriting if functions us-

ing, 27–28
sign function vs., 48
smoothstep function vs.,

31
steps basis function

(MojoWorld), 596,
597

stochastic control of gesture,
387, 392–393

stochastic models vs. fractal
models, 495–497

stochastic procedures
for particle creation,

257–258

INDEX 679

Team LRN

stochastic procedures
(continued)

for particle movement,
258

in structured particle sys-
tems, 258–259

stochastic sampling
for antialiasing, 55–56, 67
defined, 55
by renderers, 55–56

storage
GPU issues, 103, 289
height fields for terrains,

491, 493–495
surflets for storing

hypertextures,
376–384

store-to-memory instruction,
GPU lack of, 103

strata procedure, 466–467
stratus cloud models, 276,

277–278, 282, 283
stream processors, GPUs as, 110
structured particle systems, 257,

258–259
subsumption architecture, 397
sum table, antialiasing using,

162–163
summed-area table method of

antialiasing, 63–64
supersampling

as antialiasing strategy, 54,
66–67, 157

in procedural textures,
66–67

stochastic, 55, 67
by texture instead of ren-

derer, 170–173
surface normal construction for

QAEB tracing, 516
surface properties

defined, 116
GPUs and, 117
separating from light prop-

erties, 116–117
surface shaders vs. light shaders,

117
surface textures

MojoWorld, 589, 608–609

procedural shape synthesis,
387, 390

volume rendering with,
195–196

surflets, 376–384
advantages over surface-

based techniques,
383–384

defined, 376, 378
finding visible surfaces,

379–380
generator for, 381
hierarchical model,

381–382
noise function as, 379
ray tracing in, 379–380,

382–383
selective surface re-

finement, 380–381
self-shadow with penum-

bra example,
382–383

shading by, 380
singularities and, 381
steps for generating, 379
surflet model, 377–378
uses for, 376–377, 384
wavelet integration with,

384
as wavelets, 378–379

symmetry, dilation, 431,
573–574

“Synthesis and Rendering of
Eroded Fractal Ter-
rains, The,”
575–576

synthetic texture models, 11

talking in different moods,
408–409. See also
texture for facial
movement

teleological modeling, 442
temporal antialiasing, verifying,

175
Terragen software, 580
terrains. See atmospheric mod-

els; earth textures;

MojoWorld; proce-
dural fractal terrains

terran procedure, 470–472
textural limb animation, 387,

391–395
basic notions, 392
examples, 394, 395
goal determination module

(GDM), 394–395
limb motion, 391
overview, 387
related work, 392
scene description modules

(SDMs), 393–394
stochastic control of ges-

ture, 387, 392–393
system for, 393–395
textural gesture defined,

393
uses for, 391

texture. See also procedural tex-
tures (overview)

historical overview, 8–11
L-system specification,

311–312
texture baking, 197–199
texture design methods,

179–201. See also
user interface for
textures

2D mapping methods,
197–199

bump-mapping methods,
183–187

color mappings, 181–182
efficiency issues, 194–195
future of, 199–202
hiding noise artifacts,

179–182
toolbox functions,

179–187
user interface, 187–194
utility textures, 196–197
volume rendering with sur-

face textures,
195–196

texture filtering for real-time
procedural solid tex-
turing, 419–421

680 INDEX

Team LRN

texture for facial movement,
395–409

addressing an audience,
407

background, 396
basic component move-

ments, 398–399
blinking, 405
bottom-level movement

vocabulary, 402–403
example component move-

ment combinations,
399, 400

future work, 409
laughing, 407–408
mixing coherent jitter in

component move-
ments, 403, 405

movement layering, 401
movement model,

398–401
noise in layering facial

movement, 405–408
opposites of component

movements, 399–400
painting with actions,

403–405
problems addressed, 395
related work, 397
searching, 407
small constant head move-

ments, 405–406
talking in different moods,

408–409
Web site, 408
winking, 408

texture function (RenderMan)
built-in filtering for, 57
described, 22

texture images, photographic,
22–23

texture mapping
2D methods, 197–199
2D techniques, limitations

of, 10
atlas for real-time proce-

dural solid texturing,
416–419

for clouds, 267

evolution of, 10–11
GPU support lacking for

vertices, 105
hardware acceleration for

smoke and fog,
297–298

photographic texture im-
age problems, 23

in real-time procedural
solid texturing,
415–416

shader development and,
130

simple point-sampling ap-
proach, 8

texture baking, 197–199
UV mapping, 197–199

texture spaces. See also specific
spaces

built-in in RenderMan, 24
bump mapping and, 45–46
changing world space to,

168
choosing when defining

textures, 24–25
feature spaces, 25
relating to screen space, 168
transforming normal vec-

tors between, 46
user-defined in

RenderMan, 24
texturing, 7
three-dimensional tables for

controlling anima-
tion, 244–254

accessing table entries, 245
breeze effect using attrac-

tor, 247, 248,
252–253, 254

combinations of functions,
251–254

common dimensions for,
245

flow into hole in wall,
253–254, 255

functional flow field func-
tions, 246–251

functional flow field tables,
245, 246

nonuniform spacing be-
tween entries,
244–245

overview, 244–245
vector field tables, 245
wind effects, 252–254

time vs. space trade-off, 15
time-animated fractal noise,

181
time-dependent textures, 4D

noise function for, 84
tintegral macro, 65
tinting, solid color texture for,

196
torch hypertexture example,

362, 364
transform function

(RenderMan),
ntransform function
vs., 46

transparency, solid textured,
233–235

trees
bounding volumes for,

331–332
dilation symmetry in, 573
fractal modeling chal-

lenges, 506
L-system for modeling,

309–310
PGI for modeling, 324,

325, 331–332
tree-structured scene graphs,

320–321
tropism

defined, 324
PGI for modeling,

324–326
truth, known vs. proven, 442
turbulence

fBm-valued distortion to
emulate, 454–456

fractal character of,
435–436

ontogenetic model of hur-
ricane, 456–458

in QAEB-traced
hypertextures, 521

viscous dumping and, 606

INDEX 681

Team LRN

turbulence functions
for air current simulation,

238
clamping version, 86–87
in cloud modeling, 270,

271, 281
derivative discontinuities

in, 86
fabs function with, 369
in flame shader, 129
fractalsum function vs.,

86
for gases, 211, 214
hardware acceleration for,

291–292
for marble formation from

banded rock,
230–232

overview, 368–369
with particle systems, 261
power spectrum of, 85, 86,

87
for rolling fog animation,

238
sine function effects on,

215, 216
for smoke and fog, 297,

298
for smoke stream model-

ing, 220, 223
for transparency control,

234
for volumetric cloud mod-

eling, 270
turtle graphics symbols in L-

system
for bicubic patch model-

ing, 311
for color and texture speci-

fication, 311–312
described, 305
difficulties for human pro-

cessing, 306
geometric meanings of,

308
labels for debugging or an-

notation, 312
multicharacter symbols,

311

operating system com-
mand execution, 312

parameterized, 310–311
for plant modeling,

308–310, 311
for polygon modeling, 311
query command, 326
for von Koch snowflake

modeling, 310–311
type promotion in Stanford

shading language, 112

uniform meshed atlas, 416–417
unit interval, remapping, 37–39
upper crossover scale

of fractals, 434
in MojoWorld, 607

user interface for cloud model-
ing, 278–279

user interface for textures,
187–194

adding parameter range
suggestions, 188

color table equalization,
189, 190–192

difficulties in manipulating
parameters, 192–193

importance of, 187–188
library of settings, 192, 193
normalizing noise levels,

189–190
parameter proliferation

problem, 547–548
polishing the texture, 193
previews (low-resolution),

194
random method for pa-

rameter settings, 193
remapping nonintuitive pa-

rameter ranges, 188
tracking previous settings,

192
user preset functionality,

193
user-defined functions for

raymarcher renderer,
350–352

UV mapping, 197–199

value noise
2D slice of, 74
graph of, 73
interpolation schemes,

71–72
lookup table for, 181
overview, 70–72
power spectrum of, 72, 75
PRN table initialization,

70–71
value-gradient noise, 77–78
Wiener interpolation, 72

value-gradient noise
2D slice of, 74, 78
graph of, 73
overview, 77–78
power spectrum of, 75
Ward’s Hermite noise, 73,

74, 75, 78
vcnoise function. See lattice

convolution noise
vector-valued noise (VecNoise)

function, 450–451
Venus, Coriolis effect in model-

ing, 458–460
venus procedure, 458–460
vfBm procedure, 454–455
Virtual Reality Modeling Lan-

guage (VRML), 333
virtual reality (VR), 581–582,

615
virtualization, CPUs vs. GPUs

and, 109
viscous dumping, 606
visibility function in deep

shadow map, 208
Vistapro software, 580
vnoise function. See value noise
volume density functions for

modeling gases, 204
volume perturbation for cloud

modeling, 299–301
volume rendering

algorithm for gases, 206
QAEB-traced

hypertextures,
520–525, 526

ray tracing for gases,
205–206

682 INDEX

Team LRN

shader for, 121–124
surface textures for,

195–196
volume_fog_animation proce-

dure, 238–239
volumeGas plug-in, 284, 285
volumetric cloud modeling and

rendering. See also
clouds

animating volumetric pro-
cedural clouds,
279–283

cirrus cloud models,
275–276, 277, 282,
283

cloud creatures, 273, 278
commercial packages, 284,

285
cumulus cloud models,

272–274, 282
dynamics and physics-

based simulations in,
281–282

hardware acceleration for,
298–301

historical overview,
268–269

implicit functions for,
270–272

interactive cloud models,
283–284, 285

jet stream warping,
279–280

microstructure and
macrostructure, 270

modeling system, 269–272
particle system for, 269,

282–283
physics-based approach,

limitations of,
269–270

rendering, 272–279
simple cloud model, 271
stratus cloud models, 276,

277–278, 282, 283
turbulence and noise

functions in, 270
user specification and con-

trol, 278–279

volumetric implicit functions,
for cloud modeling,
269, 270–272

volumetric procedural modeling
and texturing,
203–224. See also
gases; volumetric
cloud modeling and
rendering

a-buffer rendering algo-
rithm, 205

alternative rendering and
modeling approaches,
208–209

basic gas shaping,
214–224

constant density medium
for, 204

geometry of gases,
211–224

historical overview,
204–205

marble formation anima-
tion, 255–256

noise and turbulence func-
tions, 211–214

patchy fog example, 216
power function effects on

gas shape, 215–216
ray tracing for volume ren-

dering, 205–206
rendering system,

205–208
sine function effects on gas

shape, 215, 216
smoke column example,

219–224
solid spaces procedural

framework, 209–211
steam rising from teacup

example, 216–219,
220

stochastic functions used
for, 203

uses for, 203
volume-rendering algo-

rithm, 206
volumetric shadowing,

207–208

volumetric_procedural_
implicit_function
for simple cloud
model, 271

von Koch snowflake
exact self-similarity in,

435
as locally Euclidean, 621
L-system modeling of, 308,

310–311
as simple fractal, 571–572

Voronoi basis function
(MojoWorld), 591,
593, 594, 597, 599

vortex functions
based on 2D polar coordi-

nate function, 250
based on conservation of

angular momentum,
251

based on frame number
and distance from
center, 250–251

example of effects, 252
ontogenetic model of hur-

ricane, 456–458
spiral, 249–251
vortex simulation vs.,

249
voxel automata algorithm,

359–360
VR (virtual reality), 581–582,

615
VRML (Virtual Reality

Modeling Language),
333

vtransform function, 36
Vue d’Esprit software, 580

wallpaper shader, 92–94
water. See also liquid; volumet-

ric procedural model-
ing and texturing

flow into hole in wall,
253–254, 255

fractal solid textures for,
461–465

noise ripples, 461–463

INDEX 683

Team LRN

water (continued)
sea surface texture, 140,

141
wind-blown, 463–465

Wavefront’s Maya animation
system. See Maya ani-
mation system

wavelets. See also surflets
defined, 341, 378
as fractal basis functions,

450, 497
in Perlin’s noise function,

340–347
surflet integration with,

384
surflets as, 378–379

weathering, texture for, 197
Web sites

for cellular texturing infor-
mation, 149

cloud rendering, 284
facial movement examples,

408
genetic programming and

genetic art, 557–558
HighEnd3D, 284
Musgrave, F. Kenton, 492,

522, 557, 579, 611
Rooke, Steven, 557
Sims, Karl, 557

for this book, 149, 484, 524
white noise

aliasing and, 68
defined, 67
irregular procedural tex-

tures and, 67
physical generation of, 67
repeatable, from PRNs,

67–68
Wiener interpolation for value

noise, 72
wind

breeze effect using attrac-
tor, 247, 248,
252–253, 254

Coriolis effect, 458–460
jet stream warping for

clouds, 279–280
ontogenetic modeling of

hurricane, 456–458
turbulence for simulating

air currents, 238
wind-blown waters,

463–465
windywave procedure, 464–465
winking, 408. See also texture

for facial movement
World Builder software, 580
World Construction Set soft-

ware, 580

world space
changing to texture space,

168
changing world coordinate

to image coordinate,
168

current space and, 24
described, 24
moving screen space point

through solid space
and, 228

PGI for object-to-world
transformation,
323–324

placement of model into
scene and, 315

solid textures and, 25
World Wide Web. See also Web

sites
procedural geometric mod-

eling and, 333
woven cloth, hypertexture ex-

ample, 357, 359,
360, 361

write_noise function, 212

xfrog plant modeling program,
306

z-slicing hypertextures, 35

684 INDEX

Team LRN

ABOUT THE AUTHORS

david s. ebert is an associate professor in the School of Electrical and Computer
Engineering at Purdue University. He received his Ph.D. in computer and informa-
tion science from The Ohio State University in 1991. His research interests are scien-
tific, medical, and information visualization; computer graphics; animation; and
procedural techniques. Dr. Ebert performs research in volume rendering, nonphoto-
realistic visualization, minimally immersive visualization, realistic rendering, model-
ing natural phenomena, procedural texturing, modeling, animation, and volumetric
display software. He has also been very active in the graphics community, teaching
courses, presenting papers, chairing the ACM SIGGRAPH ’97 Sketches program,
co-chairing the IEEE Visualization ’98 and ’99 Papers program, serving on the ACM
SIGGRAPH Executive Committee and serving as editor in chief for IEEE Transac-
tions on Visualization and Computer Graphics.

f. kenton musgrave, also known as “Doc Mojo,” Musgrave is a computer artist
and computer graphics researcher with a worldwide reputation. Dr. Musgrave lec-
tures internationally on fractals, computer graphics and the visual arts, and his own
computer graphics research. He has developed digital effects for such films as Titanic
and Apollo 13. His images have been widely published and exhibited at interna-
tional venues, including the Lincoln Center and the Guggenheim Museum in New
York City. Dr. Musgrave spent six years in the mathematics department at Yale Uni-
versity working with Benoit Mandelbrot, the inventor of fractal geometry, who cred-
ited Musgrave with being “the first true fractal-based artist.” He is a founding
member of the Algorist school of algorithmic artists and CEO/CTO of Pandromeda,
Inc., whose planet-building software product, MojoWorld, is the pinnacle of his re-
search. Musgrave has served as director of advanced 3D research at MetaCreations,
principal software engineer at Digital Domain, senior scientist at Bethesda Soft-
works, and assistant professor at George Washington University. Musgrave received
his Ph.D. in computer science from Yale University and his M.S. and B.A. in com-
puter science from the University of California at Santa Cruz.

685

Team LRN

darwyn peachey is vice president of technology at Pixar Animation Studios in
Emeryville, California. He has worked at Pixar since 1988 as a developer of render-
ing and animation software, as a member of the technical crew on Toy Story, and as
a technology manager.

Peachey studied at the University of Saskatchewan in Canada, where he received
bachelor’s and master’s degrees in computer science. He later worked as a member of
the research staff in the computer science department, where he began his work in
computer graphics. Peachey is a member of the Visual Effects Society and the ACM.
He has served on several SIGGRAPH and Graphics Interface technical program
committees and on the editorial board of the Journal of Graphics Tools. His pub-
lished papers include work in computer graphics and artificial intelligence, and he
was one of the recipients of a 1993 Academy Award for the RenderMan renderer.

ken perlin is a professor in the computer science department and the director of the
Media Research Laboratory and Center for Advanced Technology at New York Uni-
versity. Dr. Perlin’s research interests include graphics, animation, and multimedia.
In 2002 he received the New York City Mayor’s Award for Excellence in Science and
Technology and the Sokol Award for Outstanding Science Faculty at NYU. In 1997
he won an Academy Award for Technical Achievement from the Academy of Mo-
tion Picture Arts and Sciences for his noise and turbulence procedural texturing tech-
niques, which are widely used in feature films and television. In 1991 he received a
Presidential Young Investigator Award from the National Science Foundation. Dr.
Perlin received his Ph.D. in computer science from New York University in 1986,
and a B.A. in theoretical mathematics from Harvard University in 1979. He was
head of software development at R/GREENBERG Associates in New York, from
1984 to 1987. Prior to that he was the system architect for computer-generated ani-
mation at Mathematical Applications Group, Inc. TRON was the first movie in
which Ken Perlin’s name appeared in the credits. He has served on the board of di-
rectors of the New York chapter of ACM/SIGGRAPH and currently serves on the
board of directors of the New York Software Industry Association.

steven worley has focused his research in computer graphics on appearance and
rendering models. His early work on algorithmic textures led to new antialiasing
and efficiency adaptations to classical algorithms. In 1996, he introduced the con-
cept of the cellular texturing basis function, which has been widely adopted by
most commercial rendering packages. His extensive collaboration with many profes-
sional studios has led to the creation of a wide variety of 3D tools. Most recently, his
tools for rendering hair and fur have been widely adopted and used in film, TV, and

686 ABOUT THE AUTHORS

Team LRN

game development. His company, Worley Laboratories (www.worley.com), pub-
lishes plug-in tools for various 3D packages.

CONTRIBUTORS

william r. mark was the technical leader of the team at NVIDIA that co-designed
the Cg language (with Microsoft) and developed the first release of the NVIDIA
Cg compiler. Prior to that, he worked as a research associate at Stanford Univer-
sity, where he co-led the Stanford Real-Time Shading Project with Pat Hanrahan.
Starting in January 2003, Bill will join the faculty of the University of Texas at Aus-
tin as an assistant professor of computer science. His research interests focus on sys-
tems and hardware architectures for real-time computer graphics. Dr. Mark received
his Ph.D. from the University of North Carolina at Chapel Hill in 1999.

john c. hart is an associate professor in the computer science department at the
University of Illinois at Urbana-Champaign. His research area is procedural meth-
ods in computer graphics, including implicit surfaces, texturing, modeling, and ani-
mation. He has worked on a variety of procedural modeling and shading projects for
Intel, IBM, AT&T, Evans & Sutherland, Kleiser-Walczak, and Blue Sky/VIFX. He
received his B.S. in computer science from Aurora University in 1987 and his M.S.
(1989) and Ph.D. (1991) in computer science from the Electronic Visualization Lab-
oratory at the University of Illinois at Chicago. He is currently an associate editor for
ACM Transactions on Graphics and also served on the ACM SIGGRAPH Executive
Committee from 1994 to 1999, where he was an executive producer for the feature-
length documentary The Story of Computer Graphics.

ABOUT THE AUTHORS 687

Team LRN

